WO2000075655A1 - Screening method with the use of cd100 - Google Patents

Screening method with the use of cd100 Download PDF

Info

Publication number
WO2000075655A1
WO2000075655A1 PCT/JP2000/003558 JP0003558W WO0075655A1 WO 2000075655 A1 WO2000075655 A1 WO 2000075655A1 JP 0003558 W JP0003558 W JP 0003558W WO 0075655 A1 WO0075655 A1 WO 0075655A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
gene
cells
compound
screening
Prior art date
Application number
PCT/JP2000/003558
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Kikutani
Atsushi Kumanogoh
Akira Hori
Original Assignee
Takeda Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries, Ltd. filed Critical Takeda Chemical Industries, Ltd.
Priority to AU49526/00A priority Critical patent/AU4952600A/en
Publication of WO2000075655A1 publication Critical patent/WO2000075655A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/04Artificial tears; Irrigation solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/7056Lectin superfamily, e.g. CD23, CD72
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/7056Selectin superfamily, e.g. LAM-1, GlyCAM, ELAM-1, PADGEM
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • the present invention is based on the CD 100 (Proc Natl Acad Sci USA) 93, (1996) pp. 11780-11785, on CD 100 (Procedures of the National Academy) of Sciences of the U.S.A. Etc.) or its salt and its receptor, CD72 (J. Immunol, 149 (1992) pp. 880-886, etc.) to induce or induce abnormal antibody production.
  • the present invention relates to a method for screening a compound or a salt thereof useful as a therapeutic agent for preventing or treating a disease caused by the disease. Background art
  • B cells can give one of five types of antibodies: IgM, IgD, IgG, IgA, and IgE.
  • B cells first produce IgM due to their gene composition when they encounter the first antigen they encounter in vivo as they differentiate. However, the physiology of IgM is weaker than other types of antibodies. When stimulation with the same antigen continues, the gene changes and antibodies other than IgM are produced to exert strong physiological functions. The action or phenomenon that this immunoglobulin changes from IgM to another type is called class switch.
  • CD40 is a membrane glycoprotein expressed on B cells and reacts with, for example, CD40L expressed on activated T cells. It is known that mice without CD40 have no antibody production, class switch, or vaccine effect, and CD40 is an essential molecule for the antibody production function of B cells. When B cells are stimulated with CD40, B cell killing by anti-IgM antibodies is suppressed, and when B cells are stimulated with CD40, production of various classes of antibodies including IgM is induced. However, it is still unclear what drives these B cell responses.
  • abnormal antibodies can be specifically reduced for diseases caused by the production of abnormal antibodies, for example, atopic asthma, atopic dermatitis, chronic indirect rheumatism, allergic rhinitis, such It is an effective treatment for allergy and autoimmune diseases, but so far there is no such treatment. Disclosure of the invention
  • the present inventors isolated and obtained a gene induced by CD40 and elucidated that the molecule was CD100.
  • CD100 binds to CD72 on B cells stimulated with activators such as CD40, IL-4, or PS to form a complex
  • B-cells are stimulated by anti-IgM antibodies. It has been revealed that death can be avoided and that it plays a very important role in inducing the class switch.
  • CD100 binds and forms a complex with CD72 on B cells stimulated with activators such as CD40, IL-4, or LPS
  • the B cells trigger a class switch and are specific in vivo It has been elucidated that strong high-affinity antibodies are strongly induced.
  • CD100 itself is an effective treatment for rapidly increasing antibody titers after vaccination against epidemic diseases such as cold syndrome and influenza.
  • CD 100 has also been shown to be an immunostimulant for cancer and infectious diseases.
  • substances that inhibit the binding between CD72 and CD100 are diseases that are expected to inhibit only antibody production of activated B cells and are caused by abnormal antibody production, such as atopy. It has been shown to be an effective treatment for acute asthma, atopic dermatitis, chronic indirect rheumatism, and allergic rhinitis.
  • CD100 or its salt and CD72 or its salt A method for screening a compound or a salt thereof that alters the binding property between CD100 or a salt thereof and CD72 or a salt thereof,
  • CD100 or a salt thereof, or CD100 or a salt thereof and a test compound are added to CD72-expressing cells, and the change in the amount of antibody produced or secreted from the expressing cells is measured.
  • (11) a method for screening a compound or a salt thereof that alters the binding between CD100 or a salt thereof and a receptor thereof, which comprises using a non-human animal in which the CD100 gene has been knocked out;
  • a transgenic non-human animal having enhanced T cell reactivity characterized by having a DNA incorporating the exogenous CD100 gene or its mutant gene. Or its progeny having the DNA,
  • CD100 or a salt thereof and a receptor thereof using a transgenic non-human animal having a DNA into which the exogenous CD100 gene or its mutant gene has been incorporated, or a progeny thereof having the DNA. Screening method for a compound or a salt thereof, which changes the binding property to
  • FIG. 1 shows the binding between CD72-expressing CHO cells and mCD100_Fc in Example 1.
  • FIG. 2 shows the activity of CD100 in Example 2 for promoting the production of IgG1-specific antibodies.
  • FIG. 3 shows the activity of CD100 for inducing antibody production in vivo in Example 3.
  • Figure 4 shows the evening targeting vector used for the production of the CD100 knockout mouse in Example 4, the gene map of the CD100 gene expected in wild-type and knockout mice, and the CD in wild-type and knockout mice. The 100 gene structure and the expression level of CD100 protein in wild type mice and knockout mice are shown.
  • FIG. 5 shows the expression level of CD5 in the wild-type mouse and the CD100 knockout mouse in Example 5.
  • FIG. 6 shows antibody production against a TD (T cell-dependent) antigen in Example 6.
  • FIG. 7 shows the loss of T cell reactivity in CD100 knockout mice in Example 7.
  • Figure 8 shows the age-related soluble CD100 in MR LZ 1 pr mice in Example 9. And the increase in the amount of autoantibodies.
  • FIG. 9 shows the loss of dendritic cell reactivity in CD100 knockout mice in Example 10.
  • FIG. 10 shows T cell hyperreactivity in CD100 transgenic mice in Example 11. BEST MODE FOR CARRYING OUT THE INVENTION
  • CD 100 in the present invention specifically, a known CD 100 or a salt thereof [Procedures of the National Academy of Sciences-of-the-USA] (Proc Natl. Acad Sci USA) 93, (1996) 11780-11785; Journal of Biological Chemistry, Volume 271 (1996) 33376-33381] ,
  • CD72 in the present invention specifically, a known CD72 or a salt thereof [The 'Journal of Immunology', 144, 4870-4877 (1990); The Journal of Ibb unology, Volume 149, 880-886 (1992)], etc. Mouse CD72 is described in The Journal of Immunology, Volume 149, 880-886 (1992). And it has Lyb-2 al, Lyb-2 a 2, Lyb - 2 b, also includes Arotaipu such Lyb- 2 e. Furthermore, regarding CD 72,
  • CD72 a polypeptide characterized by containing the same or substantially the same amino acid sequence as that represented by SEQ ID NO: 5 or SEQ ID NO: 7 (hereinafter abbreviated as CD72) Or its salt, or
  • amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 7 an amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 7, in which 1 to 10 amino acids, preferably 1 to 5 amino acids have been added (or inserted), or SEQ ID NO: 5 or A protein comprising an amino acid sequence in which 1 to 10 amino acids, preferably 1 to 5 amino acids in the amino acid sequence represented by SEQ ID NO: 7 are substituted with other amino acids (19) CD72 or a salt thereof described in the above section.
  • the term “substantially the same” means that the activities of polypeptides and the like, for example, the binding activity of ligand (CD100) and receptor (CD72), physiological properties, etc. are substantially the same. I do. Amino acid substitutions, deletions, additions or insertions often do not significantly alter the physiological or chemical properties of the polypeptide, in which case the substitutions, deletions, additions or insertions are made.
  • the polypeptides (so-called CD100 variants, CD72 variants, etc.) will be substantially identical to those without such substitutions, deletions, additions or insertions.
  • Substantially identical substitutions of amino acids in the amino acid sequence can be selected, for example, from other amino acids of the class to which the amino acid belongs.
  • Non-polar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, purine, phenylalanine, tributofan, methionine and the like.
  • Examples of polar (neutral) amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine.
  • Amino acids having a positive charge (basic) include arginine, lysine, histidine and the like.
  • Examples of negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
  • the CD100 and CD72 used in the present invention include humans, warm-blooded animals (eg, guinea pigs, rats, mice, bushs, sheep, magpies, monkeys, etc.), and all tissues such as fishes.
  • warm-blooded animals eg, guinea pigs, rats, mice, bushs, sheep, magpies, monkeys, etc.
  • tissues such as fishes.
  • Any polypeptide may be used as long as it contains
  • the amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7 is preferably about 70% or more, preferably, the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7. Is an amino acid sequence having a homology of about 80% or more, more preferably about 90% or more, and still more preferably about 95% or more.
  • CD72 includes, in addition to the polypeptide containing the amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 7, etc., the amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 7
  • examples thereof include polypeptides having an activity substantially the same as that of the contained polypeptide.
  • Substantially the same activity includes, for example, ligand binding activity, signal transduction activity, antibody-producing ability and the like.
  • the term “substantially the same” means that the ligand binding activity and the like are substantially the same. Therefore, the strengths such as the strength of the ligand binding activity and the quantitative factors such as the molecular weight of the polypeptide may be different.
  • CD100 includes, in addition to a polypeptide containing the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3 and the like, a polypeptide containing the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3
  • polypeptides include polypeptides having substantially the same activity as polypeptides.
  • substantially equivalent activities include, for example, receptor binding activity, antibody production activity, and the like.
  • substantially the same quality means that the receptor binding activity and the like are the same in nature. Therefore, strength factors such as the strength of receptor binding activity, and quantitative factors such as the molecular weight of the polypeptide may be different.
  • CD72 and CD100 have N-terminal (amino terminal) at the left end and C-terminal (carboxyl terminal) at the right end according to the convention of peptide labeling.
  • the polypeptide containing the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7, etc. is usually a C-terminal carboxylate group (-C00H) or carboxy.
  • the rate is (-C00_), but the C-terminal may be amide (_C0NH 2 ) or ester (-C00R).
  • R of the ester such as methyl, Echiru, n_ propyl, alkyl groups such as isopropyl, n- butyl, Shikurobe pentyl, ⁇ 3 _ 8 cycloalkyl group such as cyclohexyl, phenyl, shed - 2, such as naphthyl Le Ariru group, benzyl, phenethyl, phenylene Lou C ⁇ such as benzhydryl - 2 alkyl, or ⁇ - naphthylmethyl etc. ⁇ - naphthyl - 2 other C 7 _ 14 Ararukiru groups such as alkyl, commonly used as an ester for oral administration Viva yloxymethyl group and the like.
  • salts with physiologically acceptable bases eg, alkali metals and the like
  • acids organic acids and inorganic acids
  • Such salts include, for example, salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid) or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, Salts such as co-octanoic acid, tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid and benzenesulfonic acid are used.
  • inorganic acids eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid
  • organic acids eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid
  • Salts such as co-octanoic acid, tartaric acid, citric acid, malic acid, oxalic acid
  • CD72 and CD100 used in the present invention can be prepared by a known method [The Journal of Immunology, vol. 144, pp. 4870-4877 (1990); Proc Natl, The Journal of Immunology, 149, 880-886 (1992); Processing of the 'National' Academy 'of' Science ', of the' Proc Natl Acad Sci USA) 93, (1996) 11780-11785; Journal of Biological Chemistry, Volume 271 (1996) 33376-33381], That is, the polypeptide can be produced by a method of purifying a polypeptide from a tissue or a cell of a human warm-blooded animal, or can be produced according to a polypeptide synthesis method described later. Alternatively, it can be produced by culturing a transformant containing a DNA encoding the polypeptide described below.
  • CD72 and CD100 used in the present invention are produced according to a known method for synthesizing a polypeptide, or by cleaving a polypeptide containing a polypeptide with an appropriate peptidase. can do.
  • a method for synthesizing the peptide for example, any of a solid phase synthesis method and a liquid phase synthesis method may be used. That is, the target peptide can be produced by condensing a partial peptide or amino acid that can constitute the polypeptide with the remaining portion, and if the product has a protecting group, removing the protecting group. Examples of the known condensation method and elimination of the protecting group include the methods described in the following 1 to 1.
  • the polypeptide (CD72, CD100) can be purified and isolated by a combination of ordinary purification methods such as solvent extraction, distillation, column chromatography, liquid chromatography, and recrystallization. .
  • the polypeptide obtained by the above method is a free form, it can be converted to an appropriate salt by a known method, and conversely, when the polypeptide is obtained as a salt, it can be converted to a free form by a known method. can do.
  • a commercially available resin for peptide synthesis suitable for amide formation can be used.
  • resins include, for example, chloromethyl resin, hydroxymethyl resin, benzhydrylamine resin, aminomethyl resin, 4-Benzyloxybenzyl alcohol resin, 4-methylbenzhydrylamine resin, PAM resin, 4-hydroxymethylmethylphenylacetamidomethyl resin, polyacrylamide resin, 4- (2 ', 4'-dimethoxyphene) (2-hydroxymethyl) phenoxy resin, 4- (2 ′, 4′-dimethoxyphenyl-Fmocaminoethyl) phenoxy resin and the like.
  • an amino acid having an ⁇ -amino group and a side chain functional group appropriately protected is condensed on the resin in accordance with the sequence of the target peptide according to various known condensation methods.
  • the peptide is cleaved from the resin, and at the same time, various protecting groups are removed.
  • an intramolecular disulfide bond formation reaction is carried out in a highly diluted solution to obtain a desired polypeptide.
  • Caprolidimides include DC (;, N, ⁇ '-diisopropylcarbodiimide, ⁇ -ethyl- ⁇ '-(3-dimethylaminopropyl) carbodiimide, etc.
  • the activation by these agents requires a racemization inhibitor.
  • the protected amino acid (e.g., ⁇ 0 ⁇ ) can be added directly to the resin, or can be added to the resin after activating the previously protected amino acid as a symmetric acid anhydride or ⁇ 0 ⁇ ester
  • the solvent used for the activation of the protected amino acid or the condensation with the resin can be appropriately selected from solvents known to be usable for the peptide condensation reaction, for example, ⁇ , ⁇ -dimethylformamide, ⁇ Acid amides such as, ⁇ -dimethylacetamide and ⁇ -methylpyrrolidone; halogens such as methylene chloride and chloroform Hydrocarbons, alcohols such as trifluorophenol, sulfoxides such as dimethyl sulfoxide, tertiary amines such as pyridine, ethers such as dioxane and tetrahydrofuran, nitriles such as acetonitrile and propionitrile, and methyl acetate And an ester such as ethyl a
  • the reaction temperature is appropriately selected from the range known to be usable for peptide bond formation reactions, and is usually about 120 ° C .
  • the selected amino acid derivative is appropriately selected from the range of 50 ° C.
  • the activated amino acid derivative is usually used in a 1.5 to 4-fold excess, and as a result of a test using the ninhydrin reaction, if the condensation is insufficient. Can be sufficiently condensed by repeating the condensation reaction without removing the protecting group. Repetitive When sufficient condensation cannot be obtained even after repetition, the unreacted amino acid can be acetylated using acetic anhydride or acetylimidazole so as not to affect the subsequent reaction.
  • Examples of the protecting group for the amino acid of the starting amino acid include Z, Boc, pentyloxycarbonyl, isopolnyloxycarbonyl, 4-methoxybenzyloxycarbonyl, U-Z, Br-Z, and adamantyl.
  • Is a protecting group of carboxyl group for example the above as R ( ⁇ _ 6 alkyl group, C 3 _ 8 cycloalkyl group, other C 7 _ 1 4 Ararukiru group, 2-Adamanchiru, 4 twelve Torobenjiru, 4 — Methoxybenzyl, 4-cyclohexyl benzyl, phenacyl group and benzyloxycarbonyl hydrazide, tertiary butoxycarbonyl hydrazide, trityl hydrazide and the like.
  • the hydroxyl groups of serine and threonine can be protected, for example, by esterification or etherification.
  • Suitable groups for this esterification include, for example, lower alkanoyl groups such as acetyl group, aroyl groups such as benzoyl group, and groups derived from carbon such as benzyloxycarbonyl group and ethoxycarbonyl group.
  • groups suitable for etherification include a benzyl group, a tetrahydropyranyl group, and a butyl group.
  • the protecting group of the phenolic hydroxyl group of tyrosine include Bz l, C l 2 -Bz l , 2 twelve Torobenjiru, Br @ - Z, and the like evening over tert-butyl.
  • Examples of the protecting group for imidazole of histidine include Tos, 4-methoxy-2,3,6-trimethylbenzenesulfonyl, DNP, benzyloxymethyl, Bum, Boc, Tr and Fmoc.
  • Activated carboxyl groups of the raw materials include, for example, corresponding acid anhydrides, azides, and activated esters [alcohols (eg, phenol, 2,4,5-trichlorophenol, 2,4-dinitrophenol) Esters with phenol, cyanomethyl alcohol, paranitrophenol, H0NB, N-hydroxysuccinimide, N-hydroxyfurimide, H0BT) and the like.
  • Activation of amino group of raw material Examples include the corresponding phosphoric amide.
  • Methods for removing (eliminating) the protecting group include catalytic reduction in a hydrogen stream in the presence of a catalyst such as Pd black or Pd carbon, or anhydrous hydrogen fluoride, methanesulfonate, or trifluoromethanesulfonate.
  • a catalyst such as Pd black or Pd carbon, or anhydrous hydrogen fluoride, methanesulfonate, or trifluoromethanesulfonate.
  • Acid treatment with trifluoroacetic acid or a mixture thereof base treatment with diisopropylethylamine, triethylamine, piperidine, piperazine, etc .; and reduction with sodium in liquid ammonia.
  • the elimination reaction by the above-mentioned acid treatment is generally carried out at a temperature of 120 to 40, but in the acid treatment, anisol, phenol, thioanisole, methacrylol, paracresol, dimethyl sulfide, 1,4 -Addition of a cation scavenger such as butanedithiol or 1,2-ethanedithiol is effective.
  • a cation scavenger such as butanedithiol or 1,2-ethanedithiol
  • the 2,4-dinitrophenyl group used as an imidazole protecting group of histidine is removed by thiophenol treatment, and the formyl group used as an indole protecting group of tributofan is replaced with 1,2-ethanedithiol and 1,4-butane described above.
  • alkali treatment with dilute sodium hydroxide, dilute ammonia, etc.
  • Protection and protection of functional groups that should not be involved in the reaction of the raw materials, elimination of the protective groups, activation of the functional groups involved in the reaction, and the like can be appropriately selected from known groups or known means.
  • a peptide chain is added to the amino group to the desired length. After the elongation, a peptide (or amino acid) from which only the protecting group for the ⁇ -amino group at the N-terminus of the peptide chain is removed and a peptide (or amino acid) from which only the protecting group for the carboxyl group at the C-terminal is removed, These two peptides are condensed in a mixed solvent as described above. Details of the condensation reaction are the same as described above.
  • an ester of the desired polypeptide can be obtained in the same manner as the amide of the polypeptide.
  • the DNA encoding CD72 used in the present invention includes a receptor protein containing an amino acid sequence identical or substantially identical to the amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 7.
  • the DNA containing the amino acid sequence represented by SEQ ID NO: 1 or the amino acid sequence identical to or substantially identical to the amino acid sequence represented by SEQ ID NO: 3 is used as the DNA encoding the CD100 used in the present invention.
  • Any DNA may be used as long as it contains a DNA encoding a ligand protein. Further, it may be any of genomic DNA, genomic DNA library, the above-described cDNA derived from tissues and cells, the above-described cDNA library derived from tissues and cells, and synthetic DNA.
  • the vector used for the library may be any of bacteriophage, plasmid, cosmid, phagemid and the like. Alternatively, it can also be directly amplified by Reverse Transcriptase Polymerase Chain Reaction (hereinafter abbreviated as RT-PCR method) using an RNA fraction prepared from the above-described tissue / cell.
  • RT-PCR method Reverse Transcriptase Polymerase Chain Reaction
  • Hybridization can be performed according to a method known per se or a method analogous thereto.
  • the DNA encoding CD72 or CD100 used in the present invention can also be produced by the following genetic engineering techniques.
  • the DNA library was synthesized by a PCR method known per se using a synthetic DNA primer having a partial nucleotide sequence of a polypeptide. It is possible to amplify the desired DNA from the first place, or to combine DNA incorporated in an appropriate vector with, for example, a DNA fragment having a partial or entire region of a polypeptide or labeled with a synthetic DNA. Sorting can be performed by hybridization. The hybridization method is performed according to, for example, the method described in Molecular Cloning (2nd ed .; J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989). When using a commercially available library, follow the method described in the attached instruction manual.
  • the cloned DNA encoding CD72 or CD100 used in the present invention can be used as it is, or digested with a restriction enzyme or added with a linker, if desired, if desired.
  • the DNA may have ATG as a translation initiation codon on the 5 'end, and may have TAA, TGA or TAG as a translation termination codon on the 3' end. These translation initiation codon and translation termination codon can also be added using an appropriate synthetic DNA adapter.
  • the expression vector for CD72 or CD100 used in the present invention can be prepared, for example, by (a) cutting out a DNA fragment of interest from DNA encoding CD72 or CD100 used in the present invention;
  • the DNA fragment can be produced by ligating the DNA fragment downstream of the promoter in an appropriate expression vector.
  • the vector examples include a plasmid derived from E. coli (eg, pBR322, pBR325, pUC12, pUC13), a plasmid derived from Bacillus subtilis (eg, pUB110, TP5, pC194), a plasmid derived from yeast ( For example, bacteriophages such as pSH19, pSH15) and ⁇ phage, and animal viruses such as retrovirus, vaccinia virus, and baculovirus are used.
  • the promoter used may be any promoter that is appropriate for the host used for gene expression.
  • the promoter derived from SV40, the promoter of the retrovirus, the metamouth thionine promoter, the heat shock promoter, the cytomegalovirus promoter, SR Hi promoters can be used.
  • the host is a genus Escherichia, Trp promoter, T7 promoter, lac promoter, recA promoter, ⁇ PL promoter, 1 pp promoter, etc.
  • the host are Bacillus
  • a PHO5 promoter, a PGK promoter, a GAP promoter, an ADH1 promoter, a GAL promoter, and the like are preferable.
  • a polyhedrin promoter, a P10 promoter and the like are preferable.
  • the expression vector may further contain an enhancer, a splicing signal, a polyA addition signal, a selection marker, an SV40 replication origin (hereinafter sometimes abbreviated as SV40 ori) and the like, if desired.
  • SV40 ori an SV40 replication origin
  • the selectable marker include a dihydrofolate reductase (hereinafter sometimes abbreviated as dh fr) gene [methodrexate (MTX) resistance] and an ampicillin resistance gene (hereinafter abbreviated as Amp).
  • MTX methodrexate
  • Amp ampicillin resistance gene
  • Neo neomycin resistance gene
  • the DHF R gene is used as a selectable marker using CH ⁇ (dh fr ⁇ ) cells. If used, selection can also be made with thymidine-free media.
  • a signal sequence suitable for the host is added to the N-terminal side of the polypeptide or its partial peptide.
  • the host is a genus Escherichia, the phoA-signal sequence, immediately A signal sequence, etc.
  • the host is a Bacillus genus, the human amylase signal sequence, subtilisin signal sequence, etc.
  • insulin signal sequence, ⁇ -interferon ⁇ signal sequence , Antibody molecule, signal sequence, etc. can be used.
  • a transformant can be produced using the vector having the transformant.
  • Escherichia bacteria for example, Escherichia bacteria, Bacillus bacteria, yeast, insects or insect cells, animal cells, and the like are used.
  • Escherichia examples include Escherichia coli K12. DH1 [Procedures of the National Academy of Sciences of the Proc. Natl. Acad. Sci. USA), 60, 160 (1968)], JM103 [Nucleic Acids Research, (Nucleic Acids Research), 9, 309 (1981)], JA221 [Journal ' Journal of Molecular Biology], 120, 5 17 (1 978)), ⁇ 10 1 [Journal of Bio Molecular Biology, 41, 459 (Journal of Molecular Biology)] 1969)], C600 [Genetics, 39, 440 (1954)], E. coli DH10 B cells [Focus 12, p19 (1990) Law, D, etc.] Used.
  • Bacillus genus examples include Bacillus subtilis (BacUlus subtilis) M11114 [Gene, 24, 255 (1983)], 207-21 (Journal of Biochemistry, 95) , 87 (198 4)].
  • yeast for example, Saccharomyces cerevisiae AH22, AH22R-1, NA87-11A, DKD-5D, 20B112 are used.
  • insects for example, silkworm larvae are used [Maeda et al., Nature, 315, 592 (1985)].
  • insect cells for example, when the virus is Ac NPV, a cell line derived from a larva of night roth moth (Spodoptera frugiperda cell; Sf cell), MG1 cell derived from the midgut of Trichoplus ia ni, egg of Trichoplusia ni For example, High Five TM cells, Mamestra brassicae-derived cells, Estigmena acrea-derived cells and the like are used.
  • Sf cell a cell line derived from silkworm (Bombyxmori N; BmN cell) is used.
  • Sf cell include Sf9 cell (ATCC CRL1711), Sf21 cell [Vaughn, LL et al., In Vitro, Vol. 13-217 (1977)].
  • animal cells examples include monkey COS-7 cells, Vero cells, Chinese hamster cells CH ⁇ , DHFR gene-deficient Chinese hamster cells CHO (dhfr-CHO cells), mouse L cells, mouse 3T3 cells, mouse myeloma cells, Human ⁇ 293 cells, human FL cells, 293 cells, C127 cells, BALB 3 ⁇ 3 cells, Sp_2 / ⁇ cells, mouse B cell line WEH I 231 cells, P 3U1 plasma site and the like are used.
  • Transformation of yeast can be performed, for example, using Proc. Natl. Acad. Sci. USA, Proc. Natl. Acad. Sci. USA, 75, 1929 (Proc. 1978). Transformation of insect cells or insects is performed, for example, according to the method described in Bio / Technology, Vol. 6, pages 47-55 (1988).
  • Transformation of animal cells is performed, for example, according to the method described in Virology, 52, 456 (1973).
  • Examples of a method for introducing an expression vector into cells include the lipofection method.
  • the above-described expression vector introduced into the animal cells and a cell in which the expression vector is incorporated into a chromosome are clone-selected.
  • a transformant is selected using the above-mentioned selection marker as an index.
  • a stable animal cell line having high expression ability of polypeptides or the like can be obtained.
  • the MTX concentration is gradually increased, culture is performed, and by selecting a resistant strain, DNA encoding the polypeptide or its partial peptide, etc., together with the dhfr gene can be transferred to cells. It can also be amplified in E. coli to obtain more highly expressed animal cell lines.
  • the above transformant is cultured under conditions under which DNA encoding the polypeptide etc. (CD72, CD100) can be expressed, and the polypeptide etc. can be produced and accumulated by producing and accumulating the polypeptide etc. .
  • a liquid medium is suitable as a medium used for the cultivation, and a carbon source necessary for the growth of the transformant is contained therein.
  • carbon sources include glucose, dextrin, soluble starch, and sucrose.
  • nitrogen sources include ammonium salts, nitrates, corn chip liquor, peptone, potato zein, meat extract, soybean meal, and potato extract.
  • the inorganic or organic substance and the inorganic substance include calcium chloride, sodium dihydrogen phosphate, and magnesium chloride.
  • yeast extract, vitamins, growth promoting factors and the like may be added.
  • the pH of the medium is preferably about 5-8.
  • Examples of a medium for culturing the genus Escherichia include, for example, an M9 medium containing glucose and casamino acid (Miller, Journal of Experiments in Molecular Genetics). 431-433, Cold Spring Harbor Laboratory, New York. 19 72] is preferred. If necessary, a drug such as 33-indolylacrylic acid can be added to make the promotion work efficiently.
  • the cultivation is usually performed at about 15 to 43 ° C for about 3 to 24 hours, and if necessary, aeration and stirring may be added.
  • cultivation is usually performed at about 30 to 40 ° C for about 6 to 24 hours.
  • the culture medium When culturing a transformant in which the host is yeast, the culture medium may be, for example, Burkholder's minimal medium [Bostian, KL, et al., “Procedures * of the National Academy of Sciences”. Natl. Acad. Sci. USA, 77 vol.'4505 (1980)] or an SD medium containing 0.5% casamino acid [Bitter, GA et al. Seasings-of-the-National-Academy-of-the-Sciences-of-the-Your-Sue (Pro atl. Acad. Sci. USA), 81, 5330 (1 984)]
  • the ⁇ is preferably adjusted to about 5 to 8. Culture is usually performed at about 2 Ot: ⁇ 35 for about 24 to 72 hours, and aeration and stirring are added as necessary.
  • the culture medium When culturing a transformant whose host is an insect cell, the culture medium was immobilized in Grace's Insect Medium (Grace, TCC, Nature, 195, 788 (1962)). Those to which additives such as serum are appropriately added are used.
  • the pH of the medium is preferably adjusted to about 6.2 to 6.4. Culture is usually performed at about 27 ° C for about 3 to 5 days, and aeration and / or agitation are added as necessary.
  • a MEM medium containing about 5 to 20% fetal bovine serum [Seience, 122, 501 (1952)] , DMEM medium (Virology, 8, 396 (1959)), RPMI 1640 medium (Journal of the American Medical Association, The Jounal of The American Medical Association, 199, 5 1 9 (1967)], 199 medium [Proceeding of the Society for The Biological Medicine], 73, 1 (1 950)] are used.
  • the pH is about 6-8.
  • Culture is usually about 30 ° (: about 15-60 at ⁇ 40 ° C) Perform for a while, and add aeration and stirring as needed.
  • CHO (dhfr ) cells and the dhfr gene as selection markers, it is preferable to use a DMEM medium containing dialyzed fetal serum containing almost no thymidine.
  • the CD72 or CD100 used in the present invention can be separated and purified from the above culture by, for example, the following method.
  • CD72 or CD100 used in the present invention is extracted from cultured cells or cells
  • the cells or cells are collected by a known method after culturing, and the cells or cells are suspended in an appropriate buffer. After disrupting cells or cells by ultrasonication, lysozyme, Z or freeze-thawing, a method of obtaining a crude extract of the polypeptide by centrifugation or filtration may be used as appropriate. Even if the buffer contains a protein denaturing agent such as urea or guanidine hydrochloride, or a surfactant such as Triton X-100 (registered trademark, sometimes abbreviated as TM). Good.
  • TM Triton X-100
  • CD72 or CD100 used in the present invention is secreted into the culture solution, after the culture is completed, the supernatant is separated from the cells or cells by a method known per se, and the supernatant is collected. .
  • Purification of the CD72 or CD100 used in the present invention contained in the culture supernatant or the extract obtained in this manner is carried out by appropriately combining known separation and purification methods.
  • known separation and purification methods mainly include methods utilizing solubility such as salting out and solvent precipitation, dialysis, ultrafiltration, gel filtration, and SDS-polyacrylamide gel electrophoresis.
  • Method using difference in molecular weight Method using charge difference such as ion exchange chromatography, Method using specific affinity such as affinity chromatography, Hydrophobic such as reversed phase high performance liquid chromatography
  • a method utilizing the difference in gender, a method utilizing the difference in isoelectric points such as isoelectric focusing, and chromatofocusing are used.
  • CD72 or CD100 used in the present invention when CD72 or CD100 used in the present invention thus obtained is obtained in a free form, it can be converted into a salt by a method known per se or a method analogous thereto, and conversely, it can be obtained in a salt form. In the case where it is obtained, it can be converted into a free form or another salt by a method known per se or a method analogous thereto.
  • CD72 or CD100 used in the present invention produced by the recombinant can be arbitrarily modified or the polypeptide can be partially removed before or after purification by the action of an appropriate protein-modifying enzyme. You can also.
  • the protein modifying enzyme for example, trypsin, chymotrypsin, arginyl endopeptidase, protein kinase, glycosidase and the like are used.
  • the presence of the polypeptide of the present invention thus produced can be measured by enzyme immunoassay using a specific antibody or the like.
  • CD72 or a salt thereof as a receptor, or construct a recombinant CD72 expression system, and use the expression system to bind CD100 or a salt thereof to a ligand-based receptor system (Ligand Receptor Aichi-Atsui).
  • the compound eg, peptide, protein, non-peptidic compound, synthetic compound, fermentation product, etc.
  • its salt that changes the binding between CD100 or its salt and CD72 or its salt by using Can be screened.
  • Such compounds include CD72-mediated immune response-promoting activity [eg, the production of antibodies such as antigen-specific IgG; the production of antibodies to TD (T cell-dependent) antigens; the proliferation of T cells; (I.e., T cell reactivity such as production of interferon gamma, activity to promote or suppress dendritic cell reactivity such as production of IL-12, etc.) (ie, CD72 agonist) and the promotion of the immune response.
  • CD72-mediated immune response-promoting activity eg, the production of antibodies such as antigen-specific IgG; the production of antibodies to TD (T cell-dependent) antigens; the proliferation of T cells; (I.e., T cell reactivity such as production of interferon gamma, activity to promote or suppress dendritic cell reactivity such as production of IL-12, etc.) (ie, CD72 agonist) and the promotion of the immune response.
  • Compounds having no activity ie, CD72 antagonist
  • Changing the binding between CD100 or its salt and its receptor means that CD100 or its salt and its receptor (eg, CD72 or its salt) This includes both the case of inhibiting the binding of and the case of promoting the binding to the ligand.
  • the present invention relates to (i) a case where CD100 or a salt thereof is brought into contact with CD100 or a salt thereof, and (ii) a case where the above-mentioned CD72 or a salt thereof is brought into contact with CD100 or a salt thereof and a test compound. And a method for screening a compound or a salt thereof that alters the binding property between CD100 or a salt thereof and CD72 or a salt thereof, wherein the method is characterized by comparing with CD100 or a salt thereof.
  • a compound that activates CD72 or a salt thereof is contacted with a cell containing CD72 or a salt thereof, and a compound or test that activates CD72 or a salt thereof.
  • CD72 or its salt-mediated immune response-promoting activity when a compound is contacted with cells containing CD72 or a salt thereof [eg, production of an antibody such as an antigen-specific IgG; TD (T cell-dependent ) T cell reactivity such as antibody production against antigen, T cell proliferation, IL-14 production, interferon gamma production, etc .; activity to promote or suppress ⁇ dendritic cell reactivity such as IL-12 production, etc.
  • a compound that activates CD72 or a salt thereof and a test compound are expressed on a cell membrane by culturing a transformant containing DNA encoding CD72.
  • CD72 or its salt-mediated immune response promoting activity when exposed to 72 or a salt thereof for example, production of an antibody such as an antigen-specific IgG; production of an antibody against a TD (T cell-dependent) antigen; T cell proliferation, T cell reactivity such as IL-14 production, interferon gamma production; activity to promote or suppress dendritic cell reactivity such as IL-12 production, etc.
  • any CD72 may be used as long as it contains the above-mentioned CD72, but the membrane fraction of organs such as humans, warm-blooded animals, and fish may be used. Is preferred. However, since it is extremely difficult to obtain human-derived organs in particular, CD72 or a salt thereof expressed in a large amount using a recombinant is suitable for screening.
  • CD72 or a salt thereof, the above-described methods and the like are used.
  • the cells When cells containing CD72 or a salt thereof are used, the cells may be immobilized with datalaldehyde, formalin, or the like.
  • the immobilization method can be performed according to a method known per se.
  • the cell containing CD72 or a salt thereof refers to a host cell expressing CD72 or a salt thereof.
  • the host cell include the aforementioned Escherichia coli, Bacillus subtilis, yeast, insect cells, animal cells, and the like. Can be
  • the membrane fraction refers to a fraction containing a large amount of cell membrane obtained by a method known per se after cell disruption.
  • the cells can be crushed by crushing the cells with a Potter-Elvehjem homogenizer, crushing with a Waring Blender ⁇ Polytron (Kinematica), crushing with ultrasonic waves, or squirting the cells from a narrow nozzle while applying pressure with a French press. Crushing and the like.
  • centrifugal fractionation methods such as differential centrifugation and density gradient centrifugation are mainly used.
  • the cell lysate is centrifuged at a low speed (500 rpm to 3000 rpm) for a short time (typically about 1 minute to 10 minutes), and the supernatant is further centrifuged at a higher speed (1500 rpm to 30000 rpm). Centrifuge for 1 minute to 2 hours, and use the resulting precipitate as the membrane fraction.
  • the membrane fraction is rich in the expressed CD72 or a salt thereof and membrane components such as cell-derived phospholipids and membrane proteins.
  • the amount of CD72 or a salt thereof in a cell or a membrane fraction containing the CD72 or a salt thereof is preferably 10 3 to 10 8 molecules per cell, and more preferably 10 5 to 10 7 molecules per cell. It is suitable.
  • an appropriate CD72 fraction and a labeled ligand (CD100) Is used.
  • the CD72 fraction a natural CD72 fraction or a recombinant CD72 fraction having an activity equivalent thereto is desirable.
  • the equivalent activity means equivalent ligand binding activity and the like.
  • the labeled ligand a labeled ligand (CD 100), a labeled ligand (CD 100) analog compound, or the like is used.
  • [3 H], [125 1], [14 C] it is the child utilizing such a ligand which is labeled with a [35 S] (CD 100).
  • a labeled form of CD100 or a CD100 derivative prepared by a known method using Bolton-Han-Yuichi reagent can also be used.
  • the cells containing the CD72 or a salt thereof or a membrane fraction of the cell are subjected to screening.
  • a buffer suitable for screening may be any buffer such as a phosphate buffer having a pH of 4 to 10 (preferably pH 6 to 8) or a buffer such as Tris-HCl buffer which does not inhibit the binding between the ligand and the receptor.
  • surfactants such as CHAPS, Tween-80 TM (Kao-Atlas), digitonin, and dexcholate can be added to the buffer to reduce non-specific binding.
  • a protease inhibitor such as PMSF, leptin, E-64 (manufactured by Peptide Research Institute), or peptidyltin can be added in order to suppress the degradation of CD72 and CD100 by the protease.
  • PMSF Propeptide Research Institute
  • peptidyltin a protease inhibitor
  • the reaction solution is filtered through a glass fiber filter, washed with an appropriate amount of the same buffer, and the radioactivity remaining on the glass fiber filter is measured by liquid scintillation. Measure in the evening of the race county or the evening of the county count.
  • the specific binding amount (B—NSB) is For example, a test compound having 50% or less can be selected as a candidate substance having a competitive inhibitory ability.
  • BI Acore manufactured by Amersham Pharmacia Biotech
  • CD100 or a salt thereof or a derivative thereof is immobilized on a sensor chip by an amino coupling method according to a protocol attached to the device, and a cell containing CD72 or a salt thereof or a DN encoding CD72.
  • CD72 or a salt thereof purified from a transformant containing A or a membrane fraction containing CD72 or a salt thereof, or a purified CD72 or a membrane fraction containing a salt thereof or CD72 or a salt thereof and a test compound Pass a buffer solution such as phosphate buffer or Tris buffer solution containing at a flow rate of 2-20 ⁇ per minute over the sensor chip.
  • CD72 or its salt and CD Compounds that alter the binding to 100 or a salt thereof can be screened.
  • CD72 or a salt thereof is immobilized on a sensor chip, and a buffer solution such as a phosphate buffer or a Tris buffer containing CD100 or a salt thereof, or CD100 or a salt thereof and a test compound is sensed.
  • a buffer solution such as a phosphate buffer or a Tris buffer containing CD100 or a salt thereof, or CD100 or a salt thereof and a test compound is sensed.
  • the same measurement can be performed by using a method of passing through one chip.
  • Examples of the test compound include the same compounds as described above.
  • the activity of promoting an immune reaction through CD72 or a salt thereof [for example, production of antibodies such as antigen-specific IgG; production of antibodies to TD (T cell-dependent) antigen; proliferation of T cells; production of IL-14; reactivity of T cells such as production of interferon gamma; production of IL_12 Activity for promoting or suppressing dendritic cell reactivity, etc.] can be measured using known methods or commercially available measurement kits. Specifically, first, cells containing CD72 or a salt thereof are cultured in a multiwell plate or the like.
  • the assay may be performed by adding an inhibitor to the enzyme.
  • cells expressing the appropriate CD72 or a salt thereof are used.
  • cells expressing CD72 or a salt thereof B cells and the above-mentioned recombinant CD72-expressing cell line are preferable.
  • the transformant-expressing CD72-expressing cell may be a stable expression strain or a transient expression strain. The same kind of animal cells as described above are used.
  • Test compounds include, for example, peptides, proteins, non-peptidic compounds, synthetic compounds, fermentation products, cell extracts, plant extracts, animal tissue extracts, and the like.
  • the above-mentioned ligand system is used as follows.
  • a receptor-expressing cell When a receptor-expressing cell is stimulated by a receptor agonist, the production and secretion of intracellular class switches and any of IgG, IgA, IgD, and IgE other than IgM are promoted. Occurs.
  • the amount of antibody produced and secreted can be measured by the ELISA method by using a directly or indirectly labeled anti-Ig antibody to promote the antibody production of the receptor agonist. Using this reaction, the activity of CD100 to promote the production of antibodies against CD72-expressing cells can be measured. Specifically, this is carried out according to Example 2 described later and a method analogous thereto.
  • CD100 or a salt thereof, or CD100 or a salt thereof and a test compound were added, and the change in the activity of promoting antibody production was observed as compared with the case where CD100 or a salt thereof was administered alone.
  • Wear At this time, a compound exhibiting an activity of suppressing the activity of promoting the production of antibodies against CD72-expressing cells by CD100 can be selected as a candidate substance having a competitive inhibitory ability.
  • agonists can be screened by administering the test compound alone and observing the activity of promoting antibody production on CD72-expressing cells.
  • the culture medium or control IgM and IgG were diluted with 0.1 M carbonate buffer (pH 9.6), and each well of EIA 96-well Immunobrate (Maxisorp: Nunc) was diluted. 100 1 each, and leave it for about 4 hours. Wash each well with buffer A (0.02 M phosphate buffer, pH 7.0 containing 0.15 M NaCl), then add buffer B (0.1% BSA, 0.15 M NaCl). Solution containing enzyme-labeled anti-IgM, IgG, IgA, IgD, and IgE antibody diluted with 0.02M phosphate buffer (pH 7.0). Let react for 2 hours.
  • buffer A 0.02 M phosphate buffer, pH 7.0 containing 0.15 M NaCl
  • buffer B 0.15 M NaCl
  • alkaline phosphatase substrate solution (lmg / m1 phosphatase substrate (Sigma), 10 OmM Tris (pH 9.5), 100 mM NaC1, Add 100 mM 1 of 5 mM MgC12) and react at 25 ° C for 30 minutes. Measure absorbance at 405 nm using an automatic colorimeter for microplates. Assuming that the absorbance of the experimental group to which only CD 100 or its salt was added was 100% and that of the experimental group to which CD 100 or its salt was not added was 0%, the effect of the test compound on the antibody production promoting activity by CD 100 or its salt Is calculated. A test compound having an antibody production-promoting activity of, for example, 50% or less can be selected as a candidate substance capable of competitive inhibition.
  • a kit for screening a compound or a salt thereof that alters the binding between CD100 or a salt thereof and CD72 or a salt thereof includes CD72 or a salt thereof, a cell containing the CD72 or a salt thereof, or CD72 or a salt thereof. Of cells containing salt It contains a membrane fraction and CD100 or a salt thereof.
  • Examples of the screening kit of the present invention include the following.
  • CD100 or a salt thereof labeled with [ 3 H], [ 125 I], [ 14 C], [ 35 S] or the like.
  • CD100 or a salt thereof in PBS containing 0.1% ⁇ serum albumin (manufactured by Sigma) so as to become ImM, and store at -20 :.
  • a compound or a salt thereof obtained by using the screening method or the screening kit of the present invention is a compound that changes the binding (inhibits or promotes the binding) between CD100 or a salt thereof and CD72 or a salt thereof.
  • a compound having an immune response promoting activity such as antibody production via CD72 or a salt thereof, or a salt thereof (so-called CD72 agonist), or a compound having no immune response promoting activity (so-called CD72) 72 anniversary gonist).
  • the compound include peptides, proteins, non-peptidic compounds, synthetic compounds, and fermentation products. These compounds may be novel compounds or known compounds.
  • test compound is brought into contact with cells containing CD72 or a salt thereof, and the activity of promoting immune response such as antibody production via CD72 or a salt thereof is measured.
  • the compound having an immune response promoting activity or a salt thereof is CD72 agonist.
  • a compound that activates CD72 or a salt thereof eg, CD100 or CD 72 agonist
  • a compound that activates CD72 or a salt thereof and a test compound to a cell containing CD72 or a salt thereof.
  • the activity of promoting immune response such as antibody production via CD72 or a salt thereof is measured and compared.
  • a compound or a salt thereof that can reduce the immune response promoting activity by a compound that activates CD72 or a salt thereof is a CD72 antagonist.
  • the CD72 agonist Since the CD72 agonist has the same activity as CD100 or a salt thereof on CD72 or a salt thereof, the CD72 agonist is safe and low in the same manner as the CD100 or a salt thereof. Useful as a toxic drug.
  • the CD72 antagonist is capable of suppressing the physiological activity of CD100 or a salt thereof against CD72 or a salt thereof, it is safe and low toxic to suppress the receptor activity. Useful as a medicine.
  • CD72 or a salt thereof can suppress the physiological activity of CD100 or a salt thereof, like the CD72 antagonist, and is therefore useful as a safe and low-toxic drug.
  • CD72 agonist is a viral infection or disease (cold syndrome, influenza, AIDS, hepatitis, herpes, measles, chickenpox, limbs Mouth disease, shingles, erythema contaminated, rash, rubella, idiopathic rash, viral conjunctivitis, viral meningitis, viral pneumonia, viral encephalitis, Lassa fever, Ebola blood fever, Marlbladder fever, Congo haemorrhagic fever, Yellow fever, dengue, rabies, adult T-cell leukemia (ATL), oral virus infection, polio, mumps, etc., bacterial or fungal infections or diseases (bacterial food poisoning, bacterial diarrhea, tuberculosis, Hansen
  • a pharmaceutically acceptable salt or the like is used as a salt of the compound obtained by using the above-described screening method or screening kit.
  • examples include salts with inorganic bases, salts with organic bases, salts with inorganic acids, salts with organic acids, salts with basic or acidic amino acids, and the like.
  • the salt with an inorganic base include an alkali metal salt such as a sodium salt and a potassium salt, an alkaline earth metal salt such as a calcium salt and a magnesium salt, and an aluminum salt and an ammonium salt.
  • salts with organic bases include, for example, trimethylamine, triethylamine, pyridine, picoline, 2,6-lutidine, ethanolamine, genoaluminamine, triethanolamine, cyclohexylamine, dicyclohexane. Salts with xylamine, N, N'-dibenzylethylenediamine and the like.
  • salts with inorganic acids include salts with hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, and the like.
  • Suitable examples of salts with organic acids include, for example, formic acid, acetic acid, propionic acid, fumaric acid Salts with acids, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, malic acid, methanesulfonic acid, benzenesulfonic acid, benzoic acid, and the like.
  • salts with a basic amino acid include, for example, salts with arginine, lysine, or oltinine
  • salts with the acidic amino acid include, for example, salts with aspartic acid, glutamic acid, and the like. can give.
  • a compound or a salt thereof obtained by using the screening method or the screening kit of the present invention is used as a medicament, it can be carried out in a conventional manner.
  • sterile solution orally as tablets, capsules, elixirs, microcapsules, etc. coated with sugar coating or enteric coating as needed, or with water or other pharmaceutically acceptable liquids
  • the compound or a salt thereof may be combined with a physiologically acceptable carrier, flavoring agent, excipient, vehicle, preservative, stabilizer, binder, etc., in a generally accepted unit dosage required for pharmaceutical practice. It can be manufactured by mixing in the form. The amount of the active ingredient in these preparations is adjusted so that an appropriate dose in the specified range can be obtained.
  • Additives that can be incorporated into tablets, capsules, etc. include, for example, binders such as gelatin, corn starch, tragacanth gum, gum arabic, excipients such as crystalline cellulose, corn starch, gelatin, alginic acid, etc.
  • binders such as gelatin, corn starch, tragacanth gum, gum arabic
  • excipients such as crystalline cellulose, corn starch, gelatin, alginic acid, etc.
  • a leavening agent such as magnesium stearate
  • a sweetener such as sucrose, lactose or saccharin
  • a flavoring agent such as peppermint, cocoa oil or cellulose
  • a liquid carrier such as an oil or fat can be further contained in the above-mentioned type of material.
  • Sterile compositions for injection can be formulated according to standard pharmaceutical practice, such as dissolving or suspending the active substance in a vehicle such as water for injection, or naturally occurring vegetable oils such as sesame oil
  • Aqueous solutions for injection include, for example, saline, isotonic solutions containing dextrose and other auxiliaries (eg, D-Sorbi! ⁇ -I, D_mannitol, sodium chloride, etc.), and the like.
  • Suitable solubilizers such as alcohols (eg, ethanol), polyalcohols (eg, propylene glycol, polyethylene glycol) ), Nonionic surfactants (eg, polysorbate 80 (TM), HCO-50) and the like.
  • the oily liquid includes sesame oil, soybean oil and the like, and may be used in combination with solubilizers such as benzyl benzoate and benzyl alcohol.
  • buffers eg, phosphate buffer, sodium acetate buffer
  • soothing agents eg, benzalkonium chloride, proforce hydrochloride, etc.
  • stabilizers eg, human serum albumin, polyethylene glycol, etc.
  • preservatives eg, benzyl alcohol, phenol, etc.
  • the preparations obtained in this way are safe and low toxic, and can be used, for example, in humans and mammals (for example, mice, rats, guinea pigs, egrets, sheep, higgs, bushus, dogs, cats, dogs, monkeys, chimpanzees, etc.). ) Can be administered.
  • the dose of a compound or a salt thereof obtained by using the screening method or the screening kit of the present invention varies depending on the symptoms and the like.
  • the single dose varies depending on the administration target, target organ, symptoms, administration method, etc. It is convenient to administer about 0.01 to 3 Omg per day, preferably about 0.1 to 2 Omg, more preferably about 0.1 to 10 mg by intravenous injection.
  • the amount converted per 60 kg can be administered.
  • CD72 or a salt thereof When CD72 or a salt thereof is used as a medicament, a compound or a salt thereof obtained using the above-described screening method or screening kit of the present invention or a salt thereof is formulated and carried out in the same manner as when a medicament is used. be able to.
  • a non-human animal in which the CD100 gene has been knocked out (hereinafter sometimes referred to as a CD100 gene-deficient non-human animal) can be produced using non-human animal ES cells having an inactivated CD100 gene sequence.
  • the non-human animal ES cells having the inactivated CD100 gene sequence are artificially mutating the CD100 gene of the non-human animal ES cells to suppress the gene expression ability, or By substantially losing the activity of CD100 encoded by the gene, the gene was substantially inactivated without the ability to express CD100 (hereinafter, may be referred to as a knockout gene).
  • ES cells of non-human animals are artificially mutating the CD100 gene of the non-human animal ES cells to suppress the gene expression ability, or By substantially losing the activity of CD100 encoded by the gene, the gene was substantially inactivated without the ability to express CD100 (hereinafter, may be referred to as a knockout gene).
  • the non-human animal may be any animal other than a human having the CD100 gene, but a non-human mammal is preferred.
  • a non-human mammal for example, red sea lions, bushes, higgies, goats, blue herons, dogs, cats, guinea pigs, hams, mice, rats and the like are used.
  • the ontogenesis and biological cycle are relatively short in terms of the creation of the diseased animal model system, and rodents, especially those that are easy to breed, especially mice (for example, the C57BLZ6 strain as a pure strain,
  • rodents especially those that are easy to breed, especially mice (for example, the C57BLZ6 strain as a pure strain
  • a cross line such as two DBA lines, one B 6 C 3 F line, one BDF line, one B 6D2 F line, BALBZc line, ICR line, or rat (eg, Wistar, SD, etc.) is particularly preferable.
  • the CD100 gene may be a CD100 gene derived from a genome isolated and extracted from an animal, or may be a CD100 cDNA cloned using a genetic engineering technique.
  • the gene for the mouse-derived CD100 protein having the amino acid sequence represented by SEQ ID NO: 1 for example, a gene having the base sequence represented by SEQ ID NO: 2 is used.
  • a gene having the base sequence represented by SEQ ID NO: 4 or the like is used as the gene for the human-derived CD100 protein having the amino acid sequence represented.
  • a method for artificially mutating the CD100 gene for example, it can be carried out by deleting a part or all of the gene sequence and inserting or substituting another gene by a genetic engineering technique.
  • a knockout gene of CD100 can be prepared by shifting the codon reading frame or disrupting the function of the promoter or exon.
  • CD100 gene inactivated ES cells or knockout ES cells include, for example, drug resistance genes (eg, , Neomycin resistance gene, hygromycin resistance gene, etc., preferably omycin resistance gene, etc., or repo overnight gene (eg, lacZ (] 3_galactosidase gene), cat (chloramphenicol acetyltyl transferase gene) Or preferably, lac Z, etc.) to destroy the exon function, or insert a DNA sequence (eg, polyA addition signal) into the intron between the exons to terminate gene transcription.
  • drug resistance genes eg, Neomycin resistance gene, hygromycin resistance gene, etc., preferably omycin resistance gene, etc.
  • repo overnight gene eg, lacZ (] 3_galactosidase gene
  • cat chloramphenicol acetyltyl transferase gene
  • lac Z lac Z
  • RNA strand (hereinafter, evening abbreviated as one Getting vectors) which have a DNA sequence which was constructed Kowasuru so making.
  • the reporter gene is preferably inserted so as to be expressed under the control of the CD100 promoter.
  • a DNA strand having a DNA sequence constructed so as to disrupt the gene is introduced into the chromosome of the animal by, for example, homologous recombination, and the resulting ES cell is subjected to a DNA sequence on or near the CD100 gene
  • the DNA sequence on the targeting vector and the DNA sequence on the targeting vector and the DNA sequence of the nearby region other than the CD100 gene used for the preparation of the targeting vector were analyzed by PCR using primers as primers. It can be obtained by sorting.
  • ES cells from which the CD100 gene is inactivated by the homologous recombination method or the like for example, those already established as described above may be used, or a new ES cell may be used according to the method of Evans and Kaufma. It may be established. For example, in the case of mouse ES cells, currently, 129 ES cells are generally used. However, since the immunological background is not clear, a pure line which is an alternative to immunological genetically For the purpose of obtaining ES cells with a clear background, for example, BDF1 mice (C57BLZ6 and C57BLZ6 Those established using F1) with DBAZ2 can also be used successfully.
  • BDF 1 mice have the advantage of high egg collection and robust eggs
  • C57BL / 6 mice are used as background
  • the ES cells obtained by using them can be used to cross-react with C57BLZ6 mice to create a genetic background for C57BLZ6 mice. It can be used advantageously because it can be replaced with a BL / 6 mouse.
  • blastocysts 3.5 days after fertilization are generally used.However, it is more efficient to collect embryos at the 8-cell stage and culture them up to blastocysts. Many early embryos can be obtained.
  • male ES cells are generally more convenient for producing a germline chimera. It is also desirable to discriminate between males and females as soon as possible in order to reduce the complexity of culturing.
  • sex identification methods of ES cells for example, amplifying the gene in the sex-determining region on the Y chromosome by PCR process and detected, be mentioned as its example is
  • the use of Degiru t this method conventional , for example G-banding method, it requires about 10 6 cells for karyotype analysis, since requires the number of ES cells approximately 1 colony (about 50), the first ES cells in culture Initial Subsequent selection can be carried out by gender discrimination, and the early selection of male cells can greatly reduce the labor required for the initial culture.
  • Embryonic stem cell lines obtained in this way usually have very good growth potential, but must be carefully subcultured because they tend to lose their ability to generate individuals.
  • a suitable feeder cell such as STO fibroblasts
  • CO 2 incubator preferably 5% CO 2, 95% air or Incubate the cells at about 37 ° C in 5% oxygen, 5% carbon dioxide, 90% air, etc.
  • trypsin ZEDTA solution usually 0.001-0.5% trypsin / 0%
  • 1-5 mM EDTA preferably about 0.1% trypsin Z1
  • a single cell is prepared by treatment with mM EDTA) and seeded on a newly prepared feeder cell.
  • Such subculture is usually performed every 1 to 3 days. At this time, cells are observed, and if morphologically abnormal cells are found, it is desirable to discard the cultured cells.
  • ES cells can be transformed into various types of cells, such as parietal, visceral, and cardiac muscle, by monolayer culture up to high density or suspension culture until cell clumps are formed under appropriate conditions.
  • MJ Evans and MH Kaufman Nature, 292, 154, 1981; GR Martin Proceedings of the National Academy of Sciences (SA). Proc. Natl. Acad. Sci. USA) 78, 7634, 1981; TC Doetschman et al., Journal of Obembliology and Experimental Morphology, 87, 27, 1985.
  • CD100 gene expression deficient cells obtained by differentiating ES cells are useful in the cell biology of CD100 in the in vivo mouth.
  • a transgenic non-human animal having an inactivated CD100 gene sequence (hereinafter sometimes referred to as a non-human gene-deficient non-human animal) is, for example, a non-human animal embryo having the inactivated CD100 gene sequence. It is created by genetic engineering using stem cell-derived cells, and is, for example, a non-human animal in which the inactivated CD100 gene sequence has been introduced into germ cells and somatic cells at an early stage of embryogenesis.
  • the above-mentioned evening-targeting vector is introduced into mouse embryonic stem cells or mouse egg cells, and the inactivated CD100 gene sequence of the evening-targeting vector is homologously recombined by gene homologous recombination. This can be achieved by replacing the CD100 gene on the chromosome of mouse embryonic stem cells or mouse egg cells.
  • non-human animal embryonic stem cells When non-human animal embryonic stem cells are used, a cell line in which the CD100 gene has been inactivated by homologous recombination is cloned, and the cells are cloned at an appropriate time in the early stage of embryogenesis, for example, The 8-cell stage non-human animal embryo or blastocyst is injected, and the prepared chimeric embryo is transplanted into the uterus of the pseudo-pregnant non-human animal.
  • the produced animal is a chimeric animal composed of both cells having a normal CD100 locus and cells having an artificially mutated CD100 locus.
  • all tissues are artificially obtained from the population obtained by crossing such a chimeric individual with a normal individual. It can be obtained by selecting individuals composed of cells having the CD100 locus with mutation added thereto, for example, by judging coat color or the like.
  • the individuals obtained in this way are usually CD100 heterozygously deficient individuals, and crossbreeding individuals with CD100 heterozygously deficient expression, and CD100 homozygous expression defects from their offspring. Individuals can be obtained.
  • a transgenic non-human animal having a chromosome into which a gettering vector has been introduced can be obtained by injecting a gene solution into a nucleus of an egg cell by a microinjection method. Compared to non-human genic animals, they can be obtained by selecting those with a mutation at the CD100 locus by genetic homologous recombination.
  • a non-human animal deficient in CD100 gene expression can be distinguished from a normal animal by measuring the mRNA level of the animal using a known method and indirectly comparing the expression level. .
  • the animals obtained by crossing should also be confirmed to have the gene knocked out and be subcultured in a normal breeding environment. Can be.
  • the germline can be obtained and maintained according to a conventional method. That is, by mating male and female animals having the inactivated gene sequence, a homozygous animal having the inactivated gene sequence on both homologous chromosomes can be obtained. The obtained homozygous animal was compared to the mother animal by 1 normal individual It can be obtained efficiently by breeding in a state where there are multiple mosaigots. By mating male and female heterozygous animals, homozygous and heterozygous animals having the inactivated gene sequence can be bred and subcultured. The progeny of the animal having the inactivated gene sequence thus obtained is also included in the non-human animal deficient in CD100 gene expression.
  • Such non-human animal embryonic stem cells in which the CD100 gene has been inactivated are extremely useful for producing a nonhuman animal deficient in expression of the CD100 gene.
  • the non-human animal deficient in CD100 gene expression produced as described above has (1) a reduced ability to produce antibodies to the TD (T cell-dependent) antigen (Example 6 described later), (2) Loss of T cell reactivity such as IL-4 producing ability and INF-fer producing ability (Example 7 described later) (3) Loss of dendritic cell reactivity such as IL-11 producing ability (Example 1 described later) 0) a non-human animal that has a CD100 deficiency, such as a disease caused by a CD100 deficiency, for example, an inactivity of the CD100 biological activity based on the loss of various biological activities that can be induced by the CD100.
  • Diseases caused by metamorphosis such as viral infections or diseases (cold syndrome, influenza, AIDS, hepatitis, herpes, measles, varicella, hand, foot and mouth disease, shingles, erythema contagis, rubella, sudden rash , Viral conjunctivitis, viral meningitis, viral pneumonia, viral brain , Lassa fever, Ebola hemorrhagic fever, Marbleda disease, Congo haemorrhagic fever, yellow fever, dengue fever, rabies, adult T-cell leukemia (ATL), oral tauvirus, polio, mumps), bacterial or fungal infection or Diseases (bacterial food poisoning, bacterial diarrhea, tuberculosis, leprosy, dysentery, typhoid fever, cholera, paratyphoid, plague, tetanus, tularemia, brucellosis, anthrax, sepsis, bacterial pneumonia, dermatomycosis,
  • the non-animals deficient in CD100 gene expression can be used for screening for a preventive / therapeutic agent for the disease.
  • Examples of the non-human animal deficient in CD100 gene expression used in the screening method of the present invention include the same animals as described above.
  • Test compounds include, for example, peptides, proteins, non-peptidic compounds, synthetic compounds, fermentation products, cell extracts, plant extracts, animal tissue extracts, etc., and these compounds are novel compounds. Or a known compound.
  • non-human animals deficient in CD100 gene expression are treated with a test compound, compared with untreated control animals, and tested using changes in the organs, tissues, disease symptoms, etc. of the animals as indices. Compounds can be tested for their prophylactic and therapeutic effects.
  • test compound for example, oral administration, intravenous injection and the like are used, and it can be appropriately selected according to the symptoms of the test animal, the properties of the test compound, and the like.
  • the dose of the test compound can be appropriately selected according to the administration method, the properties of the test compound, and the like.
  • a non-human animal lacking the expression of the CD100 gene is administered, for example, mocyanine to a keyhole limpet, and then the test substance is administered to the abdominal cavity, subcutaneously, intravenously, etc.
  • screening can be performed by measuring the amount of interferon gamma or IL-12 in the blood.
  • screening can be performed by implanting the tumor into the abdominal cavity, subcutaneously, or intravenously, administering the test substance to the peritoneal cavity, subcutaneously, intravenously, etc. over time, and measuring the tumor volume and survival time.
  • the prophylactic / therapeutic agent of the present invention obtained by the screening method using a non-human animal in which the CD100 gene has been knocked out is a compound selected from the test compounds described above, It is effective as a safe and low-toxic treatment for diseases caused by CD100 deficiency because it has preventive and therapeutic effects on diseases caused by it.
  • a compound derived from the compound can also be used.
  • the compound obtained by the screening method may form a salt, and the salt of the compound is preferably a physiologically acceptable acid addition salt.
  • Such salts include, for example, salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid), Alternatively, salts with organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid) and the like are used. .
  • inorganic acids eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid
  • organic acids eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid,
  • the screening method of the present invention using a non-human animal in which the CD100 gene is knocked out is performed by the above-described method for screening a compound or a salt thereof that alters the binding property between CD100 and CD72 (ligand ⁇ It may be implemented in combination with Reception (Atsui system). That is, the present invention uses a non-human animal in which the CD100 gene has been knocked out, and comprises a compound that alters the binding between CD100 or a salt thereof and its receptor (particularly, CD1 A compound that promotes the binding between CD100 and CD72 or a compound that binds to CD72 in place of CD100) or a salt thereof.
  • the compound that alters the binding property between CD100 and CD72 was selected as a candidate compound using the ligand-receptor-Atsui system as a primary screening, and then the non-human CD100 knocked-out non-human compound was selected.
  • the prophylactic / therapeutic effect of the candidate compound may be tested in a secondary screening system using animals, or a screening system using a non-human animal in which the CD100 gene is knocked out may be used as the primary screening for the candidate compound.
  • the ligand ′ is subjected to secondary screening of Receptu Atsushi system, and the obtained compound that alters the binding property between CD100 and CD72 is used as the preventive agent of the present invention. It may be selected as a candidate compound.
  • the compound or a salt thereof obtained by the screening method using a non-human animal in which the CD100 gene of the present invention has been knocked out is used as the above-mentioned therapeutic or prophylactic agent, it can be carried out according to conventional means.
  • orally coated as tablets, capsules, elixirs, microcapsules, etc. coated with sugar, aseptic solution or suspension with water or other pharmaceutically acceptable liquids It can be used parenterally in the form of injections.
  • the compound or a salt thereof is mixed with a physiologically acceptable carrier, flavoring agent, excipient, vehicle, preservative, stabilizer, binder and the like in a unit dosage form required for generally accepted pharmaceutical practice. Can be manufactured.
  • Additives that can be incorporated into tablets, capsules, etc. include, for example, binders such as gelatin, corn starch, tragacanth, gum arabic, excipients such as crystalline cellulose, corn starch, gelatin, alginic acid, etc. Swelling agents such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, and flavoring agents such as peppermint, cocoa oil or cherry.
  • a liquid carrier such as oil and fat can be further contained in the above-mentioned type of material.
  • Sterile compositions for injection can be formulated according to standard pharmaceutical practice, such as dissolving or suspending the active substance in vehicles such as water for injection, and naturally occurring vegetable oils such as sesame oil and coconut oil. it can.
  • Aqueous injection solutions include, for example, physiological saline, isotonic solutions containing glucose and other adjuvants (eg, D-sorbitol, D-mannitol, sodium chloride, etc.).
  • glucose and other adjuvants eg, D-sorbitol, D-mannitol, sodium chloride, etc.
  • alcohols for example, ethanol
  • polyalcohols for example, propylene glycol, polyethylene glycol, etc.
  • nonionic surfactants for example, polysorbate 80TM, HCO-50, etc.
  • buffers eg, phosphate buffer, sodium acetate buffer, etc.
  • soothing agents eg, benzalkonium chloride, proactive hydrochloride, etc.
  • stabilizers eg, human serum albumin, polyethylene glycol, etc.
  • Preservatives eg, benzyl alcohol, phenol, etc.
  • antioxidants eg, antioxidants and the like.
  • the prepared injection solution is usually filled into a suitable ampoule.
  • the preparations obtained in this way are safe and low toxic and can be used, for example, in humans or in warm-blooded animals (eg mice, rats, puppies, sheep, bush, pussi, puma, birds, cats, dogs, Monkeys, chimpanzees, etc.).
  • warm-blooded animals eg mice, rats, puppies, sheep, bush, pussi, puma, birds, cats, dogs, Monkeys, chimpanzees, etc.
  • the dose of the compound or a salt thereof varies depending on the symptoms and the like. However, in the case of oral administration, in general, for an adult (assuming a body weight of 60 kg), about 0.1 to 100 mg per day, Preferably, it is about 1.0 to 50 mg, more preferably about 1.0 to 20 mg.
  • the single dose depends on the subject, target organ, and disease. For example, in the form of an injection, usually about 0.01 to 30 mg, preferably about 0.1 to 2 Omg per day for an adult (60 kg) in the form of an injection More preferably, about 0.1 to 1 Omg is administered by intravenous injection. For other animals, the equivalent dose per 60 kg can be administered.
  • the present invention provides a test compound administered to a non-human animal deficient in CD100 gene expression, and detects or suppresses the expression of a reporter gene, thereby promoting or inhibiting CD100 promoter activity.
  • a method for screening a compound or a salt thereof is provided.
  • the non-human animals deficient in CD100 gene expression described above are inactivated by introducing a reporter gene.
  • the CD100 gene sequence is used, and the reporter gene can be expressed under the control of the CD100 promoter.
  • test compound examples include the same compounds as described above.
  • reporter gene the same one as described above is used, and the) 3-galactosidase gene (lacZ) is more preferably used.
  • the expression of the substance encoded by the reporter gene is traced because the reporter gene is under the control of the CD100 promoter.
  • the activity of the CD100 promoter can be detected.
  • a tissue that expresses CD100 originally should I3_galactosidase is expressed instead of 100. Therefore, for example, by staining with a reagent that serves as a substrate for 3-galactosidase, such as 5-promo 4-cyclo-3-3-indolyl_] 3-galactopyranoside (X-gal), it is easy to perform staining. Thus, the expression state of CD100 in an animal body can be observed.
  • a reagent that serves as a substrate for 3-galactosidase such as 5-promo 4-cyclo-3-3-indolyl_] 3-galactopyranoside (X-gal)
  • a CD100-deficient mouse or a tissue section thereof is fixed with Daltar aldehyde or the like, washed with Dulbecco's phosphate buffered saline (PBS), and then X- After reacting with the staining solution containing gal at room temperature or around 7 ° C for about 30 minutes to 1 hour, the ⁇ -galactosidase reaction was stopped by washing the tissue specimen with ImM.EDTAZPBS solution. Observe the color.
  • mRNA encoding 1 ac Z may be detected according to a conventional method.
  • non-human animals deficient in CD100 gene expression are extremely useful in screening for compounds or salts thereof that promote or inhibit CD100 promoter activity, and that are caused by CD100 deficiency. It can greatly contribute to investigating the causes of various diseases or developing preventive and therapeutic drugs.
  • the compound or a salt thereof obtained by using the above-mentioned screening method is a compound selected from the above-mentioned test compounds and is a compound that promotes or inhibits CD100 promoter activity.
  • CD100 promoter activity can promote the expression of CD100 and enhance the function of CD100.
  • infections or diseases caused by virus cold syndrome, influenza, AIDS, etc.
  • compounds or salts thereof that inhibit CD100 promoter activity can inhibit the expression of CD100 and inhibit the function of CD100, for example, resulting from abnormal or excessive antibody production.
  • Diseases eg, atopic Asthma, allergic rhinitis, atopic dermatitis, allergic bronchitis, pulmonary aspergillosis, parasitic disease, Kimura's disease, high IgE syndrome, Wiskott—A 1 drich syndrome, thymic hypoplasia, Hodkin disease, cirrhosis, acute hepatitis, rheumatoid arthritis, insulin-dependent diabetes mellitus, systemic lupus erythematosus, scleroderma, infertility, endometriosis, autoimmune thyroid disease myasthenia gravis, Hashimoto's disease, B asedow disease, pernicious anemia, Ad dison disease, male infertility, multiple sclerosis, Good pasture syndrome, pemphigus, pemph
  • CD100 transgenic animals having DNA incorporating the exogenous CD100 gene or its mutant gene
  • CD100 transgenic animals include unfertilized eggs, fertilized eggs, spermatozoa and their progenitor cells For germ cells, etc., preferably at the early stage of embryogenesis in non-human animal development (more preferably at the stage of monocytic or fertilized egg cells and generally before the 8-cell stage), calcium phosphate It can be produced by transferring the target CD100 gene by the pulse method, lipofection method, agglutination method, microinjection method, particle gun method, DEAE-dextran method, or the like.
  • the exogenous CD100 gene of interest can be transferred to somatic cells, organs of living organisms, tissue cells, and the like by the CD100 gene transfer method, and can be used for cell culture, tissue culture, and the like.
  • the CD100 gene-transferred animal can also be produced by fusing these cells with the above-mentioned germ cells by a cell fusion method known per se.
  • An exogenous CD100 gene is a CD100 gene found in the body of a non-human animal. Instead of using genes, CD100 genes once isolated and extracted from animals, or CD100 cDNA cloned using genetic engineering techniques are used.
  • mutant CD100 gene a gene in which a mutation (for example, mutation) has occurred in the base sequence of the original CD100 gene, specifically, The CD100 gene in which additions, deletions, substitutions with other bases and the like have occurred is used, and also includes an abnormal gene of the CD100 gene (hereinafter, abbreviated as abnormal CD100 gene).
  • the abnormal CD100 gene means a CD100 gene that expresses abnormal CD100.
  • a CD100 gene that expresses CD100 that suppresses normal CD100 function and the like are used.
  • the exogenous CD100 gene may be derived from an animal of the same or different species as the animal of interest.
  • Any DNA incorporating the exogenous CD100 gene or its mutant gene may be used as long as it contains the exogenous CD100 gene or its mutant gene.
  • the CD100 gene in transferring the CD100 gene to a target animal, it is generally advantageous to use the CD100 gene as a DNA construct linked downstream of a promoter capable of expressing in animal cells.
  • a DNA construct eg, a vector, etc. linked to the human CD100 gene is microinjected into a fertilized egg of a target animal, such as a mouse fertilized egg, by microinjecting the CD100. It is possible to create a CD100 transgenic animal that highly expresses the gene.
  • CD100 expression vectors include plasmids derived from E. coli, plasmids derived from Bacillus subtilis, plasmids derived from yeast, bacteriophages such as Retroviruses such as Ronny leukemia virus, animal viruses such as vaccinia virus or baculovirus are used. Among them, a plasmid derived from Escherichia coli, a plasmid derived from Bacillus subtilis or a plasmid derived from yeast are preferably used.
  • promoters derived from viruses include promoters derived from viruses (eg, Simian virus, cytomegalovirus, Moroni leukemia virus, JC virus, breast cancer virus, poliovirus, etc.).
  • viruses eg, Simian virus, cytomegalovirus, Moroni leukemia virus, JC virus, breast cancer virus, poliovirus, etc.
  • Various animals humans, egrets, dogs, cats, guinea pigs, hamsters, rats, mice, etc.
  • birds chicken, etc.
  • Endothelin Endothelin
  • muscle creatine kinase glial fibrillary acidic protein
  • daltathione S-transferase platelet-derived growth factor 3
  • keratin Kl, K10 and K14 collagen type I and type II
  • collagen type I and type II cyclic AMP-dependent protein
  • Cukkinaze i3 I subunit Dystrophin Tartrate-Resistant
  • the vector preferably has a sequence that terminates the transcription of the messenger RNA of interest in a CD100 transgenic animal (generally referred to as Yuichi Minei Yuichi).
  • the sequences of the respective CD100 genes derived from various mammals and birds can be used, and preferably, the simian virus SV40 / Mine / Yuichi is used.
  • a gene splicing signal a gene enhancer region such as an immunoglobulin gene, a part of an intron of a eukaryotic cell gene, etc., 5 ′ upstream of the promoter region, for the purpose of further expressing the target CD100 gene, It is also possible to link between the promoter region and the translation region or 3 ′ downstream of the translation region depending on the purpose.
  • the normal CD100 translation region includes DNAs derived from liver, kidney, thyroid cells, fibroblasts, and the like from various animals (eg, egrets, dogs, cats, guinea pigs, hamsters, rats, mice, humans, etc.). All or part of the genomic genes from various commercially available genomic libraries, or the complementary CD100 gene prepared by known methods from liver, kidney, thyroid cells, or fibroblast-derived RNA, as a raw material Can be obtained.
  • the exogenous abnormal CD100 gene can be prepared by mutating the translation region of normal CD100 obtained from the above cells or tissues by point mutagenesis.
  • the translation region can be prepared as a DNA construct that can be expressed in a transgenic animal by a conventional genetic engineering technique in which it is ligated downstream of the above promoter and, if desired, upstream of the transcription termination site.
  • CD100 gene at the fertilized egg cell stage is ensured to be present in all germ cells and somatic cells of the subject animal.
  • Production after CD100 gene transfer The presence of the CD100 gene in the germ cells of the animal means that all progeny of the produced animal retain the CD100 gene in all of its germ cells and somatic cells Means this. Progeny of this type of animal that has inherited the CD100 gene have the CD100 gene in all of its germ cells and somatic cells.
  • the non-human animal to which the exogenous normal CD 100 gene was transferred was confirmed to stably maintain the CD 100 gene by mating, and as a CD 100 gene-carrying animal, It can be reared in a normal breeding environment. Transfer of the CD100 gene at the fertilized egg cell stage is ensured to be present in excess in all germ and somatic cells of the subject animal. Excess of the CD100 gene in the germ cells of the produced animal after the CD100 gene transfer means that all offspring of the produced animal have an excess of the CD100 gene in all of their germ cells and somatic cells. . The offspring of this type of animal that has inherited the CD100 gene have an excess of the CD100 gene in all of their germ and somatic cells.
  • the transgenic non-human animal having the DNA incorporating the exogenous CD100 gene or its mutant gene obtained in this way has an increased T cell interferon gamma production ability and proliferative property, and has an enhanced T cell reactivity.
  • This is a non-human animal (Example 11 described later).
  • Non-human animals that have the normal CD100 gene have high expression of the normal CD100 gene, and ultimately develop CD100 hyperactivity by promoting the function of the endogenous normal CD100 gene. And can be used as a disease model animal.
  • CD100 hyperactivity and CD100-related diseases such as diseases caused by abnormal or excessive antibody production (eg, atopic asthma, allergic rhinitis, atopy) Dermatitis, allergic bronchitis, pulmonary aspergillosis, parasitic disease, Kimura's disease, high IgE syndrome, Wiskott-Aldrich syndrome, thymic dysplasia, Hodkin's disease, liver cirrhosis, acute hepatitis, chronic joint Rheumatism, inulin-dependent diabetes mellitus, systemic lupus erythematosus, scleroderma, infertility, endometriosis, autoimmune thyroid disease myasthenia gravis, Hashimoto's disease, Based
  • the animal in which the exogenous normal CD100 gene has been transferred has an increased symptom of free CD100, it can be used for a screening test for a therapeutic agent for the above-mentioned CD100-related disease.
  • the above mice are inoculated with a foreign antigen such as dinitrophenylovalbumin, and on the other hand, the test substance is administered as appropriate to determine whether the antibody titer against the foreign antigen decreases, thereby determining the inhibitory activity of the inhibitor. Screening is possible. More specifically, it can also be measured by measuring the amount of blood cytokines such as interferon gamma, which is considered to increase in autoimmune diseases and the like.
  • a non-human animal having an exogenous abnormal CD 100 gene can be subcultured in a normal breeding environment as an animal having the CD 100 gene after confirming that the CD 100 gene is stably maintained by mating.
  • the target CD100 gene can be inserted into the above-mentioned plasmid and used as a source substance.
  • the DNA construct with the promoter can be prepared by a conventional CD100 genetic engineering technique.
  • Transfer of the abnormal CD100 gene at the fertilized egg cell stage is ensured to be present in all germ and somatic cells of the subject animal.
  • the presence of the abnormal CD100 gene in the germ cells of the animal after the CD100 gene transfer means that all offspring of the animal produce the abnormal CD100 gene in all of its germ cells and somatic cells.
  • the offspring of such animals that have inherited the CD100 gene have an abnormal CD100 gene in all of their germ and somatic cells.
  • Non-human animals that have an abnormal CD100 gene have high expression of the abnormal CD100 gene, and may eventually become refractory to CD100 by inhibiting the function of the endogenous normal CD100 gene. Yes, it can be used as a model animal of the disease state. It is possible to elucidate the pathophysiology of dysfunction and to examine treatment methods for this disease.
  • animals with abnormally high CD100 gene expression can inhibit normal CD100 function (dominant negative effect) by abnormal CD100 in CD100 refractory disease.
  • a model to elucidate since the function of normal CD100 is impaired in animals transfected with the foreign CD100 gene, infection or disease caused by virus (cold syndrome, influenza, AIDS, hepatitis, virus, etc.) , Measles, chickenpox, hand-foot-and-mouth disease, shingles, erythema contaminated, rubella, idiopathic rash, virulent conjunctivitis, viral meningitis, viral pneumonia, viral encephalitis, Lassa fever, Ebola hemorrhagic disease, Marbleda disease, Congo hemorrhage Fever, yellow fever, dengue, rabies, adult T cell leukemia (ATL), rotavirus infection, polio, mumps, etc., bacterial or fungal infections or diseases (bacterial food poisoning, bacterial diarrhea
  • the screening method using a transgenic non-human animal having a DNA into which the exogenous CD100 gene or its mutant gene has been incorporated according to the present invention provides a compound that alters the binding property between CD100 and CD72 described above.
  • it may be carried out in combination with a method for screening a salt thereof (ligand / receptor atsei system). That is, the present invention is characterized by using a transgenic non-human animal having a DNA into which an exogenous CD100 gene or its mutant gene has been incorporated, wherein the binding between CD100 or a salt thereof and its receptor is performed.
  • a method for screening a compound that alters the sex particularly, a compound that inhibits the binding between CD100 and CD72 or a salt thereof.
  • DNA incorporating the exogenous CD100 gene or its mutant gene was selected.
  • the prophylactic / therapeutic effect of the candidate compound may be tested in a secondary screening system using a transgenic non-human animal having a transgenic non-human animal.
  • the screening system using human animals is used as a primary screen to select candidate compounds, and then subjected to a secondary screening of ligand, receptor, and Yuichi Atsushi system to change the binding between the obtained CD100 and CD72.
  • the compound may be selected as a candidate compound for the prophylactic or therapeutic agent of the present invention.
  • CD100 transgenic animals include, for example,
  • CD 100 gene or RNA in the tissues of CD 100 transgenic animals can be analyzed directly, or by analyzing tissues with high expression of CD 100 gene.
  • Cells of the tissue having the CD100 gene are cultured by standard tissue culture techniques, and these are used to study the function of cells from tissues that are generally difficult to culture.
  • CD100 transgenic animals can be used to examine the clinical symptoms of CD100-related diseases, including CD100 dysfunction, and to provide more detailed pathological findings in each organ of the CD100-related disease model. Thus, it can contribute to the development of new treatment methods and the research and treatment of secondary diseases caused by the diseases.
  • each organ is removed from the CD100 transgenic animal, cut into small pieces, and CD100 transgenic cells are obtained using a proteolytic enzyme such as tribcine, and cultured.
  • a proteolytic enzyme such as tribcine
  • a virus vector such as a retrovirus vector, an adenovirus vector, an AAV vector, a herpes virus vector, or a membrane fusion ribosome method is used.
  • DNA Deoxyribonucleic acid
  • Y thymine or cytosine
  • N Thymine, cytosine, adenine or guanine
  • R adenine or guanine
  • H is or H histidine
  • Trt Trityl
  • BSA Serum albumin
  • CHAPS 3 — [(3-colamidopropyl) dimethylammonio] 1-1—propanesulfonate
  • DNP-OVA dinitrophenylovalbumin
  • DNP-BSA Dinitrophenyl serum albumin
  • PBS phosphate buffered salen
  • LPS Lipopolysaccharide
  • SEQ ID Nos in the present specification indicate the following sequences.
  • Reference Example 1 Isolation of CD100 whose expression is enhanced by CD40 stimulation
  • MCD100-Fc described in Examples 1 and 3 below is a protein obtained by fusing a soluble human IgGI Fc portion to mouse CD100.
  • a primer gctgtcgactgtgtgcccgttgctgaaggcct
  • S a1 I site 3 ⁇ 4r in the sense direction [SEQ ID NO: 9]
  • a primer containing a BamHI site in the antisense direction gacggatcctacttactttgctt tgcttgct tgagatacaccgtcttctctga
  • Secretory mouse CD100 cDNA was prepared from mouse CD100 cDNA extracted from WE HI 231 cells stimulated with the same method.
  • the resulting Sa1I-BamHI fragment was inserted into the SaII-BamHI fragment DNA fragment of the pEFBos human IgGlFc cassette, and the gene that expresses the mCD100-Fc protein was inserted.
  • Produced The gene was introduced into P3U1 plasmacytoma by electroporation (using a Bio-Rad Gene Pulser at 0.25 kV and 960 micro FD) to produce transformed cells.
  • the 50 g pEFBo s one mCD 1 00- F c plasmid DNA and pMC 1 neo vector cleaved with B amH I 10 7 cells which were digested with H i ndlll of transformed. After culturing for 10 days in RPMI medium containing 10% fetal calf serum and 0.3 mg / ml G418, colonies resistant to G418 were isolated and cloned.
  • the mCD100-Fc protein was purified from the culture broth by Protein A Sepharose (Amersham Sharmpharmacia).
  • the biotinylated mCDIOO-Fc described in Example 1 described below is obtained by binding biotin to mCD100-Fc using a biotinylated kit (Boehringer Mannheim).
  • the CHO cell expressing CD100 described in Example 2 is a transformed cell in which the CD100 gene has been introduced into the CHO cell, and expresses the CD100 protein.
  • the full-length CD100 cDNA was incorporated into pEFBOS Vector, and introduced into CHO cells together with the pMC1neo vector using ribofectamine minplus (Life Technology). After 10 days in the presence of 0.3 mg / m 1 of G418, cells resistant to G418 were selected.
  • Reference Example 2 Isolation of CD72, a molecule that binds to CD100
  • mice 2 B 4 cells were cultured with RPM I 16 40 culture medium containing 10% fetal bovine serum, 1 X 10 6 eel 1 s Zm 1 of 2 B 4 cells 2 ng / / 1111 (: 0) Stimulation for 18 hours at 8.
  • Total RNA was isolated from the cells by guanidine isothionate density gradient centrifugation, and mRNA was analyzed from the total RNA using o1igo (dT) -bound magnetic beads (Promega).
  • O Double-stranded cDNA containing 1 igo (d T) was synthesized using Superscript II cDNA synthesis kit (Life Technology) and Bst XI adapter was added to the cDNA.
  • the DNA was fractionated by 1% agarose gel electrophoresis, and the cDNA of 1.0 kb or more was recovered and inserted into pME18S vector cut with BstXI.
  • E. DH 10B cells using Bio-Rad Gene Pulser at 2.5 kV, 25 FD) by electroporation (A) Lee off Technology -..) was transformed with 2 X 10 7 independent by using the plasmid obtained from E.
  • Extrachromosomal plasmid DNA was extracted using Hir (Proceeding of National Academy of Sciences of USA 84, 3365-3369 (1987)).
  • the plasmid DNA was inserted into Escherichia coli DH10 B cells by electroporation (performed at 2.5 kV, 25 FD using a Bio-Rad Gene Pulser), and the second, third, and fourth transformations were performed by protoplast fusion. Was done.
  • the above magnetic extraction was repeated four times. As a result, a clear band of 1.4 kb was observed.
  • As a result of analyzing the nucleotide sequence of this 1.4 kb cDNA clone it was found to be the full-length mouse CD72 cDNA [SEQ ID NO: 6].
  • the CD72 gene is a transformed cell introduced into the CHO cell, and expresses the CD72 protein.
  • the pME18S vector incorporating CD72 was introduced into CHO cells together with pMC1neo vector using Ribofectmin Plus (Life Technology 1). After 10 days in the presence of 0.38 mg / m 1 of G418, G418-resistant cells were selected.
  • mCD100-Fc was biotinylated using a biotinylation kit.
  • staining buffer 2% bovine containing 10 6 control CHO cells and CD 72 CHO transformed cells originating current to the 5 gZm 1 F c block (Pharmingen)
  • the cells were reacted with biotinylated mCD100_Fc (40 ⁇ gZml) in ice for 1 hour in fetal serum, PBS containing 0.02% sodium azide, 2 mM calcium chloride, and ImM magnesium chloride.
  • cells were stained with FITC-labeled streptavidin (Becton Dickinson) for 20 minutes. After washing the cells with the staining buffer, the cells to which FITC-labeled streptavidin was bound were analyzed using a flow cytometer.
  • Figure 1 shows the results.
  • the diagram on the left shows the results for control CHO cells, and the diagram on the right shows the results for CHO cells expressing CD72.
  • the dotted line shows the result when mCD100-Fc was not added, and the solid line shows the result when mCD100-Fc was added.
  • the horizontal axis shows the fluorescence intensity per cell, and the vertical axis shows the cell number relatively.
  • the fluorescence intensity did not change even when the biotinylated mCD100-Fc was added. This indicates that the CHO cells do not bind to the biotinylated mCD100-Fc.
  • the culture solution or control IgM or IgG was diluted with 0.1 M carbonate buffer (pH 9.6), and added to each well of an EIA 96-well immunoplate (Maxisorp: Nunc). The mixture was injected one at a time, and the mixture was allowed to stand for about 4: 4. After washing each well with buffer A (0.02 M phosphate buffer at pH 7.0 containing 0.15 M NaC1, buffer B (0.1% BSA, 0.15 M NaC1) The solution was added with an enzyme-labeled anti-IgM / IgG1 antibody solution (100 ⁇ 1) diluted with 0.02M phosphate buffer (pH 7.0) containing l and reacted at 25 for about 2 hours.
  • buffer A 0.02 M phosphate buffer at pH 7.0 containing 0.15 M NaC1
  • buffer B (0.1% BSA, 0.15 M NaC1
  • the solution was added with an enzyme-labeled anti-IgM / IgG1 antibody solution (100 ⁇ 1) diluted with 0.02M
  • the experiments were performed under the following conditions: (1) When only culture medium (Medium) was added in the absence of CHO cells expressing no CD100, (2) When only culture medium (Medium) was added in the presence of CHO cells expressing CD100 (3) Anti-CD40 in the absence of CD100-expressing CHO cells (A CD40), when IL-14 was added, and (4) IgM amount when the anti-CD40 antibody (a CD40) and IL-4 were added in the presence of CD100-expressing CHO cells. The amount of IgG1 was compared.
  • Figure 2 shows the results. The horizontal axis shows the results of (1), (2), (3), and (4), respectively, from the left, and the vertical axis shows the antibody amount (unit: ng / ml) quantified from the absorbance.
  • both IgM and IgG1 do not affect antibody production as compared to the control group without additives (1).
  • both IgM and IgG1 induce antibody production compared to the control group without additives (1).
  • IgM production was slightly reduced compared to when stimulated with anti-CD40 antibody and IL-14.
  • IgGl production increased more strongly than in (3). This indicates that the phenomenon in which the class of antibodies produced and secreted from B cells is switched from IgG to IgG1 is called a class switch.
  • Example 3 CD100 enhances in vivo antibody production
  • DNP-OVA Dnitronitrophenol
  • human IgGl myeloma protein or mCD100-Fc was administered at 200 g / day for 10 days.
  • Serum was collected 6 days and 10 days after DNP-OVA administration.
  • the antibody titer of the antibody specific to DNP was measured by ELISA using DNP-BSA.
  • the serum of the mouse after immunization was diluted with 0.1 M carbonate buffer (pH 9.6) and coated with a DNP-BSA-coated 96-well EIA plate for EIA (Maxisorp: Nunc).
  • Figure 3 shows the results.
  • the figure on the left shows the antibody titer to DNP contained in the serum 6 days after administration of DNP-OVA, and the figure on the right shows the antibody titer after 10 days.
  • the abscissa indicates the antibody titer when the human IgG 1 myeloma protein was administered, and ⁇ indicates the antibody titer when mCD100-Fc was administered.
  • the vertical axis Anti-DNP indicates the antibody titer to DNP.
  • One thousandth of the amount of the antibody against DNP contained in the serum of the mice of the control group 12 days after the administration was defined as lunit.
  • CD100 mCD100-Fc
  • the antibody titer on day 6 exceeded the antibody titer on day 6 when the control human IgGl myeloma protein was administered by at least three times.
  • the antibody titer was higher than the antibody titer on day 10 when the control human IgGI myeloma protein was administered. This indicates that CD100 plays an important role in the ability to induce antigen-specific antibody production.
  • a phage clone containing a CD100 genomic DNA fragment of about 12 kb was isolated from a 129ZS vJ mouse liver-derived genomic library (Strategene) using 0 bp).
  • the 1.6 Kb portion including the part of the first exon where the initiation codon is present was replaced with a neomycin resistance gene (distributed from the Maternal and Child Health Center) (Cell (Cel 1), 51 (1987) Year) 503-512).
  • a thymidine kinase gene (HSV-TK) derived from the herpes simplex virus was inserted downstream of the CD100 genomic gene for negative selection (Neichia-(Nature) 336 (1988) 348-352). Evening A plasmid DNA was constructed. 50 g of this evening gettering plasmid DNA was transduced into 1 ⁇ 10 6 E14-1 embryonic stem cells by electroporation. Embryonic stem cells into which the gene was introduced were double-selected with G418 (0.4 mg / m 1; Life Technology) and ganciclovir (2 M; Syntex). The homologous recombination on the CD100 gene was selected from the 1000 resistant colonies by Southern blotting. Two clones of embryonic stem cells were identified.
  • Embryonic stem cells derived from CD100 mutant clones were inoculated into blastocysts of C57BLZ6 mice (Shizuoka Experimental Animals Association, 6-8 weeks old), and then ICR foster parents (Shizuoka Experimental Animals Association, 6-8 weeks) Aged).
  • the chimerism of offspring was determined based on the degree of fur coat color, and a knockout mouse was produced in which the male chimera was further bred to C57BLZ6 female mice.
  • the offspring were analyzed by Southern blot to determine whether the CD100 gene had been knocked out. Genomic DNA was isolated from the tail of the mouse, digested with BamHI, and then subjected to agarose gel electrophoresis.
  • the electrophoresed DNA was transferred to a nylon filter (Amersham Pharmacia), and then hybridized with a radiolabeled probe (CD 100 Promoter, 0.2 Kb).
  • the filter was washed for 1 hour with 65 in 0.1 ⁇ SSC, 0.1% SDS, and then subjected to autoradiography.
  • Figure 4 shows the results.
  • A shows a CD100 wild-type gene, a CD100 gene targeting vector gene map, and a CD100 gene map when expected recombination has occurred, respectively, from the top. Exons in the 5 'untranslated region are shown in gray boxes, and exons in the translated region are shown in black boxes.
  • B indicates a position to be cleaved by BamHI restriction enzyme, and E indicates a position to be cleaved by EcoRI restriction enzyme.
  • Neo indicates the neomycin resistance gene
  • HSV-TK indicates the thymidine kinase gene derived from herpes simplex virus
  • the arrow indicates the transcription direction of these genes.
  • Probe indicates the position of the probe used in the Southern blot. When Southern blotting with BamHI digestion is performed, the length of the gene binding to the probe is expected to be 2.6 Kb for the wild-type gene and 1.2 Kb for the recombinant.
  • CD100-positive cells were observed in wild-type mice, whereas no CD100-positive cells were observed in knockout mice. Therefore, it was confirmed that the CD100 molecule was not expressed on the cells in the knockout mouse.
  • Example 5 Analysis of CD5 surface antigen of knockout mouse and wild type mouse lymphocytes
  • Peritoneal cells were collected by washing the peritoneal cavity with a phosphate buffer containing 2% FCS and 10 UZm1 heparin. The results of double staining of a cell suspension prepared from the abdominal cavity or spleen with a FTC-labeled anti-B220 antibody and a phycoerythrin-labeled anti-CD5 antibody (Pharmingen) are shown.
  • B220 is a cell surface marker for mouse B cells.
  • CD5 is known as a marker for autoantibody production (Autoimmunity, 30 (1999) 63-69).
  • Fig. 5 shows the results.
  • ++ indicates a wild type mouse
  • 1/1 indicates a CD100 knockout mouse.
  • the horizontal axis and the vertical axis respectively show the production amounts of B220 and CD5 molecules on the cell surface in logarithmic representation as the fluorescence intensity per cell.
  • the cell fraction positive for both cell markers is shown in the frame in the figure.
  • the ratio of both B220 and CD5 positive cells was 14.6% in wild-type mice, but decreased to 7.49% in knockout mice.
  • spleen cells the ratio of both B220 and CD5 positive cells was 1.5% in wild-type mice and 0.93% in knockout mice, which also decreased.
  • CD5 which is considered to be upregulated in autoimmune diseases. It is presumed that it may be useful for treating autoimmune diseases.
  • Example 6 Antibody production against TD (T cell-dependent) antigen
  • Fig. 6 shows the results.
  • A represents a time course of NP 12 labeled ⁇ shea serum albumin binding of I gG amount.
  • B shows the time course of NP 2 labeled ⁇ shea serum albumin binding of I gG amount.
  • C over time shows the ratio of NP 2 labeled ⁇ shea serum albumin binding of I gG amount and NP 12 labeled ⁇ shea serum albumin binding of I gG amount.
  • the vertical axis indicates the amount of antibody in A and B. In C, the ratio is shown.
  • the horizontal axis shows the number of days elapsed after immunization with the first immunization day as 0 day.
  • shows the results when CD100 knockout mice were used, and ⁇ shows the results when wild-type mice were used.
  • NP 2 / NP j 2 ratio is increased in wild-type mice as shown in Figure 6 C. It shows a process that mature B cell populations that produce higher affinity antibodies over time, the increase in NP 2 ZNP 12 ratio was Roh Kkuautomausu is moderate as compared to wild type mice, high The mechanism of maturation to affinity antibody production was shown to be impaired.
  • KLH keyhole limpet hemocyanin
  • CD4-positive T cells were prepared from spleen or regional lymph nodes using CD4-labeled magnetic beads (Magnetic Cell Sorting, Milteny Biotech).
  • the 1 X 10 5 cells, radiation treatment (3 000 rad) and wildtype mouse spleen cells (5 x 10 5) presence were stimulated 3 days with various concentrations of KLH.
  • 2Ci of tritiated thymidine was added for 12 hours, and intracellular radioactivity was measured.
  • the amounts of IL-4 (interleukin 4) and IFN- ⁇ (interferon gamma) in the cell culture supernatant for 3 days were measured using an ELISA kit (R & D system).
  • Fig. 7 shows the results.
  • A shows the comparison between CD4 positive T cells derived from spleen and KLH-stimulated proliferating wild type mice and CD100 knockout mice.
  • B shows a comparison of proliferating wild-type mice and CD100 knockout mice proliferating by KLH stimulation of CD4 positive T cells derived from the associated lymph node.
  • indicates the results of wild-type mice, and ⁇ indicates the results of CD100 knockout mice.
  • the vertical axis represents intracellular radioactivity as an index of proliferation.
  • the horizontal axis shows the amount of KLH added.
  • C Proliferation of CD4-positive T cells derived from regional lymph nodes by KLH stimulation, IL-4 and IFN-producing wild type mice and CD1
  • the following shows a comparison between 00 knockout mice and the effect of adding CD100.
  • mCD100-Fc was administered intravenously at 50 us / mouse for 6 consecutive days from the day after immunization. The result when 4 gZm1 of KLH is used is shown.
  • the horizontal axis + _ / +, -Z- indicates wild type mice and knockout mice.
  • CD 100—Fc indicates the case where 10 was added, and the case where — was not added.
  • the vertical axis is proliferative from the left, IL-14 amount,
  • FIG. 7A the reactivity of spleen-derived T cells to KLH was reduced in knockout mice compared to wild type mice.
  • FIG. 7B further reduction in reactivity was observed in lymph node-derived T cells in knockout mice, and no reactivity was observed even when the amount of KLH was increased.
  • FIG. 7C in the knockout mice, the production ability of IL-4 and INF- ⁇ of the 04-positive cells was significantly reduced as compared with the wild-type mice, and it was confirmed that both factors were hardly produced. Was called. Furthermore, the addition of soluble CD100 restored the decrease in reactivity, confirming that these abnormalities in knockout mice were mediated by CD100.
  • C57BL-6, Ba1 / c, MRLZn, MRLZ1pr mice were purchased from SLC (Shizuoka Experimental Animal Cooperative). Blood was collected from the fundus of 16-week-old mice.
  • a mouse fusion protein of soluble CD100 and F1ag was prepared by PCR from CD100 cDNA prepared from WEH1-231 cells stimulated with anti-CD40 antibody.
  • the primer 1 contains the S a 1 I site as the 5′-end sequence.
  • ttgctt tgct tgct tgagatacac cgtctctctga [SEQ ID NO: 10] was used.
  • the Sa1I-BamHI fragment generated by PCR was incorporated into the SalI—BamHI portion of the pEFBos human IgG1Fc cassette.
  • the transfected cells were selected in RPMI 1640 medium containing 10% fetal calf serum and 0.3 mg / ml G418.
  • the CD100-F1ag protein was purified using anti-F1ag antibody-labeled agarose (Sigma).
  • the sandwich ELISA method for detecting soluble CD100 was performed as follows.
  • a 96-well microplate (Nunc) was coated with rat anti-mouse CD100 antibody (Clone BMA-12, 5 g / m 1) with ⁇ -4.
  • 200 1 hole in blocking solution (5 OmM T ris- HC 1 ( pH8. 1), lm M MgC l 2, 0. 15M NaC l, 1% BSA, 0. 05% Twe en 20) was added, It was left at room temperature for 1 hour.
  • a 100-well sample and standard sample (mouse fusion protein of soluble CD100 and F1ag) diluted with a blocking solution were allowed to stand at room temperature for 1.5 hours.
  • the double-stranded DNA was boiled for 15 minutes and then cooled on ice to obtain single-stranded DNA.
  • 5 g / ml single-stranded DNA was attached to a 96-well microplate, mouse serum was added, and alkaline phosphatase-labeled anti-mouse IgG antibody (Southern Biotechnology) was added.
  • the monoclonal antibodies BMA-8 and BMA-12 were prepared as follows. 100 g of CD100-Fc was subcutaneously administered once a week for a total of four times and immunized.
  • the adjuvant used for immunization was Freund's complete adjuvant for the first time, and Freund's incomplete adjuvant for the second and subsequent times.
  • B cells were prepared from rat spleen and fused with myeloma cells. Clones BMA-8 and BMA-12 producing antibodies to CD100 were selected from the fused cells. The clone was transplanted into a rat intraperitoneal cavity, and the antibody was purified from ascites.
  • the RL / 1pr mouse is an autoimmune disease model mouse selected from MRL / n mice.
  • Serum soluble CD100 in serum was C57BLZ6, Ba1b / c, MR.LZn normal mice were below the detection limit (12 ngZml), but MR showing autoimmune disease-like symptoms. It was extremely elevated in mice with LZ 1 pr autoimmune disease (166 ng / m 1).
  • the amount of anti-single-chain DNA antibody which is an indicator of the amount of autoantibodies associated with autoimmune diseases, is much higher in MRLZ1r mice than in MRL / n mice, and MRLZ1pr mice It was also evident from the amount of anti-single-chain DNA antibody.
  • the amount of soluble CD100 (A) and the amount of anti-single-chain DNA antibody (B) were measured using 8-20 week old mice. Blood was collected from the fundus. A sandwich ELISA for detecting soluble CD100 was performed as follows. A 96-well microplate (nucleated) was coated with rat anti-mouse CD100 antibody (BMA-12, 5 ⁇ g / m1) with- ⁇ 4. After washing, 200 1 Z well blocking solution (5 OmM Tris—HC1 (pH 8.1), 1 mM MgCl 2 , 0.15 M NaCl, l% BSA, 0.05% Tween 20) was added and left at room temperature for 1 hour.
  • a sandwich ELISA for detecting soluble CD100 was performed as follows. A 96-well microplate (nucleated) was coated with rat anti-mouse CD100 antibody (BMA-12, 5 ⁇ g / m1) with- ⁇ 4. After washing, 200 1 Z well blocking solution (5 OmM Tris—HC1 (pH
  • the specimen and standard sample (mouse fusion protein of soluble CD100 and FLAG sequence) in the 1001 Z well diluted with the blocking solution were allowed to stand at room temperature for 1.5 hours. After washing three times with PBS containing 0.05% Tween 20, 2 g Zm1 of a biotinylated rat anti-mouse CD100 antibody (BMA-8) was added. One hour later, alkaline phosphatase-labeled streptavidin (Sigma) was added. After washing, a phosphatase substrate (Sigma) was added, and soluble CD100 molecules were detected at an absorbance of 405 nm.
  • BMA-8 biotinylated rat anti-mouse CD100 antibody
  • Anti-single-stranded DNA was prepared as follows. ⁇ The thymus DNA (Sigma) was treated with S1 nuclease (Sigma) to obtain double-stranded DNA. The double-stranded DNA was boiled for 15 minutes and then cooled on ice to obtain a single-stranded DNA. 5 g / ml single-stranded DNA was attached to a 96-well microplate, mouse serum was added, and alkaline phosphatase-labeled anti-mouse IgG antibody (Southern Biotechnology) was added.
  • Fig. 8 shows the results.
  • A shows the amount of soluble CD100 in serum
  • B shows the amount of anti-single-chain DNA antibody in serum.
  • the horizontal axis represents the age of mice.
  • the vertical axis of B represents the amount of the antibody. 22
  • the numerical value obtained from the serum of the 2-week-old mouse was set to 1, and the numerical value of each sample was indicated by the magnification.
  • the amount of soluble CD100 in the serum was below the detection sensitivity in 8-week-old MRL / 1pr mice, but increased with the age of the week and reached 116 ⁇ 89 ngZm1 at the age of 16 weeks. Similarly, it is an indicator of the progression of an autoimmune disease
  • the amount of anti-single-chain DNA antibody also increased with age.
  • Fig. 9 shows the results.
  • the results for wild-type mice are shown in white, and the results for knockout trout are shown as hatched lines.
  • the vertical axis represents IL-12.
  • dendritic cells derived from wild-type mice were stimulated with an anti-CD40 antibody or LPS, the production of IL-112 increased and the dendritic cells were activated.
  • dendritic cells derived from knockout mice were used, the production of IL-112 decreased, and the activation of dendritic cells was impaired. It has been reported that the release of IL-12, which activates antigen-presenting cells, induces the activation of antitumor T cells and produces antitumor immunity (Nature, 393: (19) 1998) 413-414).
  • Example 11 1 Hyperactivity of T cells in CD100 transgenic mice
  • An integrated construct was created.
  • Transgenic mice were prepared by introducing this gene fragment into fertilized eggs of C57BLZ6 mice.
  • CD4-positive T cells were prepared from the regional lymph nodes using CD4-labeled magnetic beads (Magnetic Cell Sorting, Milten Biotech). 1 ⁇ 10 5 cells were stimulated with various concentrations of KLH for 3 days in the presence of irradiated (3000 rad) wild-type mouse spleen cells (5 ⁇ 10 5 ). When examining cell proliferation, 2 Ci of thymidine thymidine was added for 12 hours, and intracellular radioactivity was measured. The amount of IFN-r (interferon gamma) in the cell culture supernatant for 3 days was measured using an ELISA kit (R & D system).
  • FIG. 1 The results are shown in FIG.
  • the left figure shows the amount of I NF- ⁇ production, and the right figure shows the proliferation.
  • shows the results of wild-type mice
  • Hata shows the results of CD100 transgenic mice.
  • the horizontal axis shows the added KLH amount. Proliferation is represented by intracellular radioactivity as an index.
  • transgenic mice As shown in FIG. 10, in transgenic mice, the amount of I NF- ⁇ production and proliferation of CD4-positive T cells increased as compared to wild-type mice. This indicates that T cells specific for KLH were activated. It has been reported that the activation of antigen-presenting cells induces the activation of antitumor T cells, thereby generating antitumor immunity (Nachiya, 393: (1998) pp. 413-414). . At that time, an increase in proliferation and an increase in the ability to produce INF-a are observed in the antitumor T cells. From the results of this example, transgenic mice also showed an increase in INF- ⁇ production and an index of proliferative activity for antigen-specific T cell activation.
  • CD100 is deeply involved in the activation of antitumor T cells.
  • CD72 a receptor for CD100, is expressed on antigen presenting cells or activated T cells (Anyual Solar Surgery, Vol. 61: (199 6 years) 25 2—2 58 pages). Therefore, it is presumed that CD100 acts directly on these cells to activate T cells and exert antitumor activity.
  • this transgenic model mouse is considered to be in an immune reaction hypersensitivity state due to enhanced CD100 production. Therefore, it is considered to be a model for diseases such as putative immunodeficiency caused by enhanced CD100.
  • Screening methods include viral infections or diseases (cold syndrome, influenza, AIDS, hepatitis, herpes, measles, varicella, hand-foot-and-mouth disease, shingles, erythema flu, rubella, sudden rash, viral conjunctivitis , Viral meningitis, viral pneumonia, viral encephalitis, Lassa fever, Ebola hemorrhagic fever, Mar Burda disease, Congo hemorrhagic fever, yellow fever, dengue fever, rabies, adult T cell leukemia (ATL), rotavirus infection, polio , Mumps, etc., bacterial or fungal infections or diseases (bacterial food poisoning, bacterial diarrhea, tuberculosis, leprosy, dysentery, typhoid fever
  • atopic asthma, allergic rhinitis, atopic dermatitis, allergic bronchitis, pulmonary aspergillosis, parasitic disease Kimura's disease, high IgE syndrome, Wisk ott-A 1 drich syndrome, thymic dysplasia, Hodkin's disease, cirrhosis, acute hepatitis, rheumatoid arthritis, insulin-dependent diabetes mellitus, systemic lupus tomatoes, scleroderma, infertility, endometriosis, Autoimmune thyroid disease myasthenia gravis, Hashimoto's disease, Basedow's disease, pernicious anemia, Addison's disease, male infertility, multiple sclerosis Syndrome, Good pasture syndrome, pemphigus, pemphigoid, myasthenia gravis, lens ophthalmitis, sympathetic ophthalmitis, autoimmune hemolytic anemia, idi

Abstract

A method of screening a compound or its salt capable of changing the avidity of CD100 or its salt to CD72 or its salt characterized by using CD100 or its salt and CD72 or its salt. This method is useful as a method of screening a CD72 agonist which is usable as a preventive, a remedy, etc. for viral infection or diseases, bacterial or fungal infection or diseases, cancer and the like, or a CD72 antagonist which is usable as a preventive, a remedy, etc. for diseases caused by abnormal antibody production or excessive antibody production and the like.

Description

明 細 書  Specification
CD 100を用いるスクリーニング方法 技術分野 Screening method using CD 100
本発明は、 CD 100 (プロシ一ジングズ'ォブ'ザ'ナショナル'アカデミー' ォブ 'サイェンシィズ ·ォブ'ザ'ユーエスェ一(Proc Natl Acad Sci USA) 93 巻、 (1996年) 11780-11785頁など) またはその塩とその受容体、 CD72 (ジャー ナルォブイミュノロジー (J. Immunol) 149巻 ( 1992年) 880- 886頁など) を 用いることを特徴とする抗体産生誘導剤または抗体異常産生に起因する疾患の予 防'治療剤として有用な化合物またはその塩のスクリーニング方法に関する。 背景技術  The present invention is based on the CD 100 (Proc Natl Acad Sci USA) 93, (1996) pp. 11780-11785, on CD 100 (Procedures of the National Academy) of Sciences of the U.S.A. Etc.) or its salt and its receptor, CD72 (J. Immunol, 149 (1992) pp. 880-886, etc.) to induce or induce abnormal antibody production. The present invention relates to a method for screening a compound or a salt thereof useful as a therapeutic agent for preventing or treating a disease caused by the disease. Background art
B細胞は I gM、 I gD、 I gG、 I gA、 I g Eの 5つの種類の抗体のいづ れか 1種類を出しうる。 B細胞は分化に伴い、 生体内で始めて出会う抗原に遭遇 するとまず遺伝子の構成上、 まず I gMを産生する。 しかし、 I gMの生理機能 は他の種類の抗体に比べて弱い。 同じ抗原の刺激が続くと、 遺伝子が変化して I gM以外の種類の抗体が産生され強い生理機能を発揮する。 この免疫グロプリン が I gMから他の種類に変わる作用、 現象をクラススィッチという。  B cells can give one of five types of antibodies: IgM, IgD, IgG, IgA, and IgE. B cells first produce IgM due to their gene composition when they encounter the first antigen they encounter in vivo as they differentiate. However, the physiology of IgM is weaker than other types of antibodies. When stimulation with the same antigen continues, the gene changes and antibodies other than IgM are produced to exert strong physiological functions. The action or phenomenon that this immunoglobulin changes from IgM to another type is called class switch.
CD40は B細胞上に発現している膜糖蛋白質であり、例えば活性化した T 細 胞上に発現している CD40 Lと反応する。 CD 40がないマウスでは、 抗体産 生、 クラススィッチ、 ワクチン作用が認められないことが知られており、 CD4 0は B細胞の抗体産生機能にとって必須の分子である。 CD40で B細胞を刺激 した場合、 抗 I gM抗体による B細胞の死滅を抑制し、 また、 CD40で B細胞 を刺激した場合、 I gMを含む様々なクラスの抗体産生が誘導される。 しかしな がら、 未だ何がこれらの B細胞の反応を誘導しているのかは不明である。  CD40 is a membrane glycoprotein expressed on B cells and reacts with, for example, CD40L expressed on activated T cells. It is known that mice without CD40 have no antibody production, class switch, or vaccine effect, and CD40 is an essential molecule for the antibody production function of B cells. When B cells are stimulated with CD40, B cell killing by anti-IgM antibodies is suppressed, and when B cells are stimulated with CD40, production of various classes of antibodies including IgM is induced. However, it is still unclear what drives these B cell responses.
もし、 B細胞の死滅、 およびクラススィッチを制御することができれば、 B細 胞の抗体産生を調節することが可能になる。  If B cell killing and class switching could be controlled, it would be possible to regulate B cell antibody production.
抗体産生がすみやかに産生されることが要求される場合、 例えばかぜ症候群、 等の流行性疾患に対してワクチン接種後の抗体価を速やかに上げ ることができれば、 流行性疾患に対する有効な治療法となるが、 現在までのとこ ろそのような治療法は存在しない。 また、 異常な抗体が産生されることによって 生じる疾病、 例えばアトピー性喘息、 アトピー性皮膚炎、 慢性間接リューマチ、 アレルギー性鼻炎に対して、 異常抗体を特異的に低下させることができればこの ようないわゆるアレルギー、 自己免疫疾患に対する有効な治療法となるが、 現在 までのところそのような治療法は存在しない。 発明の開示 If antibody production is required to be produced promptly, for example, cold syndrome, If an antibody titer after vaccination can be raised quickly for such epidemic diseases, it will be an effective treatment for epidemic diseases, but so far there is no such treatment. In addition, if abnormal antibodies can be specifically reduced for diseases caused by the production of abnormal antibodies, for example, atopic asthma, atopic dermatitis, chronic indirect rheumatism, allergic rhinitis, such It is an effective treatment for allergy and autoimmune diseases, but so far there is no such treatment. Disclosure of the invention
本発明者らは、 CD 40によって誘導される遺伝子を分離取得し、 その分子が CD 100であることを解明した。さらに、 CD 100が CD 40, I L— 4, ま たはし P S等の活性化因子で刺激された B細胞上の C D 72に結合し複合体を形 成すると、 抗 I gM抗体による B細胞の死滅が回避でき、 さらにクラススィッチ の誘導に非常に重要な役割を担っていることを解明した。 CD 100が CD 40, I L— 4,または LPS等の活性化因子で刺激された B細胞上の CD 72に結合 し、 複合体を形成すると、 B細胞はクラススィッチを引き起こし、 生体内で特異 的な高親和性の抗体を強力に誘導することを解明した。 これらの事実は CD 72 と CD 100との結合を誘導する物質、 CD 100に置き換わり CD 72に結合 する物質、 CD 100分子を一部改変して CD 72への結合能を高めた物質、 も しくは CD 100そのものが、例えばかぜ症候群、ィンフルェンザ等の流行性疾 患に対してワクチン接種後の抗体価を速やかに上げる有効な治療法となることを 示している。  The present inventors isolated and obtained a gene induced by CD40 and elucidated that the molecule was CD100. In addition, when CD100 binds to CD72 on B cells stimulated with activators such as CD40, IL-4, or PS to form a complex, B-cells are stimulated by anti-IgM antibodies. It has been revealed that death can be avoided and that it plays a very important role in inducing the class switch. When CD100 binds and forms a complex with CD72 on B cells stimulated with activators such as CD40, IL-4, or LPS, the B cells trigger a class switch and are specific in vivo It has been elucidated that strong high-affinity antibodies are strongly induced. These facts indicate that a substance that induces the binding between CD72 and CD100, a substance that replaces CD100 and binds to CD72, a substance that partially modifies the CD100 molecule to enhance its ability to bind to CD72, or Shows that CD100 itself is an effective treatment for rapidly increasing antibody titers after vaccination against epidemic diseases such as cold syndrome and influenza.
また CD 100は癌、 感染症に対する免疫賦活剤になることを示している。 ま た、 CD 72と CD 100との結合を阻害するような物質は、 活性化 B細胞の抗 体産生のみを阻害することが予想され異常な抗体が産生されることによって生じ る疾病、 例えばアトピー性喘息、 アトピー性皮膚炎、 慢性間接リューマチ、 ァレ ルギー性鼻炎に対する有効な治療法となることを示している。  CD 100 has also been shown to be an immunostimulant for cancer and infectious diseases. In addition, substances that inhibit the binding between CD72 and CD100 are diseases that are expected to inhibit only antibody production of activated B cells and are caused by abnormal antibody production, such as atopy. It has been shown to be an effective treatment for acute asthma, atopic dermatitis, chronic indirect rheumatism, and allergic rhinitis.
すなわち、 本発明は、  That is, the present invention
(1) CD 100またはその塩および CD 72またはその塩を用いることを特徴 とする、 CD 100またはその塩と CD 72またはその塩との結合性を変化させ る化合物またはその塩のスクリーニング法、 (1) Use of CD100 or its salt and CD72 or its salt A method for screening a compound or a salt thereof that alters the binding property between CD100 or a salt thereof and CD72 or a salt thereof,
(2) CD 100またはその塩および CD 72またはその塩を用いることを特徴 とする、 CD 100またはその塩と CD 72またはその塩との結合性を変化させ る化合物またはその塩のスクリーニング用キット、  (2) a kit for screening a compound or a salt thereof that changes the binding property between CD100 or a salt thereof and CD72 or a salt thereof, characterized by using CD100 or a salt thereof and CD72 or a salt thereof;
(3) 上記 (1) 項記載のスクリーニング法または上記 (2) 項記載のスクリー ニング用キッ卜を用いて得られる、 CD 100またはその塩と CD 72またはそ の塩との結合性を変化させる化合物またはその塩、  (3) Alter the binding between CD100 or a salt thereof and CD72 or a salt thereof obtained by using the screening method described in the above (1) or the screening kit described in the above (2). A compound or a salt thereof,
(4) CD 100またはその塩の活性を促進または阻害する上記 (3) 項記載の 化合物またはその塩、  (4) The compound according to (3) or a salt thereof, which promotes or inhibits the activity of CD100 or a salt thereof,
(5) 上記 (3) 項記載の化合物またはその塩を含有する医薬、  (5) a medicine containing the compound or a salt thereof according to the above (3),
(6)抗体産生誘導剤、 または抗体異常産生に起因する疾患の予防'治療剤である 上記 (5) 項記載の医薬、  (6) The medicament according to the above (5), which is an antibody production inducer or a preventive / therapeutic agent for a disease caused by abnormal antibody production.
(7) 抗体異常産生に起因する疾患がアレルギーまたは自己免疫疾患である上記 (6) 項記載の医薬、  (7) The medicament according to the above (6), wherein the disease caused by abnormal production of antibodies is an allergy or an autoimmune disease.
(8) CD 100またはその塩、 あるいは CD 100またはその塩および試験化 合物を C D 72の発現細胞に添加し、 発現細胞より産生もしくは分泌された抗体 量の変化を測定することを特徴とする上記 (1) 項記載のスクリーニング法、 (8) CD100 or a salt thereof, or CD100 or a salt thereof and a test compound are added to CD72-expressing cells, and the change in the amount of antibody produced or secreted from the expressing cells is measured. The screening method according to the above (1),
(9) T細胞の反応性が喪失した、 CD 100遺伝子がノックアウトされた非ヒ ト動物、 (9) a non-human animal in which T cell reactivity has been lost and the CD100 gene has been knocked out;
(10) CD 100遺伝子がノックアウトされた非ヒト動物を用いることを特徴 とする CD 100の欠損に起因する疾病の予防'治療薬のスクリーニング法、 (10) a method for screening a therapeutic drug for preventing a disease caused by CD100 deficiency, which comprises using a non-human animal in which the CD100 gene has been knocked out;
(1 1) CD 100遺伝子がノックアウトされた非ヒト動物を用いることを特徴 とする、 CD 100またはその塩とその受容体との結合性を変化させる化合物ま たはその塩のスクリーニング法、 (11) a method for screening a compound or a salt thereof that alters the binding between CD100 or a salt thereof and a receptor thereof, which comprises using a non-human animal in which the CD100 gene has been knocked out;
(12) 受容体が CD 72またはその塩である上記 (1 1) 項記載のスクリー二 ング法、  (12) The screening method according to the above (11), wherein the receptor is CD72 or a salt thereof,
(13) 外来性 CD 100遺伝子またはその変異遺伝子を組み込んだ DN Aを有 することを特徴とする T細胞の反応性が亢進したトランスジエニック非ヒト動物 または該 D N Aを有するその子孫、 (13) A transgenic non-human animal having enhanced T cell reactivity, characterized by having a DNA incorporating the exogenous CD100 gene or its mutant gene. Or its progeny having the DNA,
(14) 外来性 CD 100遺伝子またはその変異遺伝子を組み込んだ DNAを有 するトランスジエニック非ヒト動物または該 DNAを有するその子孫を用いるこ とを特徴とする CD 100の亢進に起因する疾病の予防'治療薬のスクリーニン グ法、  (14) Use of a transgenic non-human animal having a DNA into which an exogenous CD100 gene or its mutant gene has been incorporated, or a progeny thereof having the DNA, to prevent a disease caused by an increase in CD100. 'Therapeutic drug screening methods,
(15) 外来性 CD 100遺伝子またはその変異遺伝子を組み込んだ DNAを有 するトランスジエニック非ヒト動物または該 DNAを有するその子孫を用いるこ とを特徴とする、 CD 100またはその塩とその受容体との結合性を変化させる 化合物またはその塩のスクリーニング法、  (15) CD100 or a salt thereof and a receptor thereof using a transgenic non-human animal having a DNA into which the exogenous CD100 gene or its mutant gene has been incorporated, or a progeny thereof having the DNA. Screening method for a compound or a salt thereof, which changes the binding property to
(16) 受容体が CD 72またはその塩である上記 (15) 項記載のスクリー二 ング法などを提供するものである。 図面の簡単な説明  (16) The screening method according to the above (15), wherein the receptor is CD72 or a salt thereof. BRIEF DESCRIPTION OF THE FIGURES
図 1は実施例 1中 、CD72発現 CHO細胞と mCD 100_Fcとの結合性を 示す。 FIG. 1 shows the binding between CD72-expressing CHO cells and mCD100_Fc in Example 1.
図 2は実施例 2中 CD 100の I gG l特異的抗体産生促進活性を示す。 FIG. 2 shows the activity of CD100 in Example 2 for promoting the production of IgG1-specific antibodies.
図 3は実施例 3中の生体内における CD 100の抗体産生誘導促進活性について 示す。 FIG. 3 shows the activity of CD100 for inducing antibody production in vivo in Example 3.
図 4は実施例 4中の CD 100ノックァゥトマウス作製のために用いた夕ーゲッ ティングベクター、 野性型マウスおよびノックアウトマウスで予想される CD 1 00遺伝子の遺伝子地図、 野性型マウスおよびノックアウトマウスにおける CD 100遺伝子構造ならびに野性型マウスおよびノックアウトマウスにおける CD 100蛋白質の発現量について示す。 Figure 4 shows the evening targeting vector used for the production of the CD100 knockout mouse in Example 4, the gene map of the CD100 gene expected in wild-type and knockout mice, and the CD in wild-type and knockout mice. The 100 gene structure and the expression level of CD100 protein in wild type mice and knockout mice are shown.
図 5は実施例 5中の野性型マウスおよび CD 100ノックアウトマウスにおける CD 5発現量について示す。  FIG. 5 shows the expression level of CD5 in the wild-type mouse and the CD100 knockout mouse in Example 5.
図 6は実施例 6中の TD (T細胞依存性) 抗原に対する抗体産生について示す。 図 7は実施例 7中の CD 100ノックァゥトマウスにおける T細胞の反応性の喪 失について示す。  FIG. 6 shows antibody production against a TD (T cell-dependent) antigen in Example 6. FIG. 7 shows the loss of T cell reactivity in CD100 knockout mice in Example 7.
図 8は実施例 9中の MR LZ 1 p rマウスにおける加齢に伴う可溶性 CD 100 および自己抗体量の増加について示す。 Figure 8 shows the age-related soluble CD100 in MR LZ 1 pr mice in Example 9. And the increase in the amount of autoantibodies.
図 9は実施例 10中の CD 100ノックアウトマウスにおける樹状細胞の反応性 の喪失について示す。 FIG. 9 shows the loss of dendritic cell reactivity in CD100 knockout mice in Example 10.
図 10は実施例 1 1中の CD 100トランスジエニックマウスにおける T細胞の 反応性亢進について示す。 発明を実施するための最良の形態 FIG. 10 shows T cell hyperreactivity in CD100 transgenic mice in Example 11. BEST MODE FOR CARRYING OUT THE INVENTION
本発明における CD 1 00に関して、 具体的には、 公知の CD 1 00またはそ の塩〔プロシージングズ 'ォブ ·ザ ·ナショナル ·アカデミー ·ォブ ·サイエンシィズ- ォブ'ザ 'ユーエスエー(Proc Natl Acad Sci USA) 93巻、 (1996年) 11780- 11785 頁;ジャーナル'ォブ'バイオロジカル'ケミストリー(Journal of Biological Chemistry) 271巻、 (1996年) 33376- 33381頁〕 などがあげられるのみならず、  With respect to the CD 100 in the present invention, specifically, a known CD 100 or a salt thereof [Procedures of the National Academy of Sciences-of-the-USA] (Proc Natl. Acad Sci USA) 93, (1996) 11780-11785; Journal of Biological Chemistry, Volume 271 (1996) 33376-33381] ,
(17) 配列番号: 1または配列番号: 3で表わされるアミノ酸配列と同一もし くは実質的に同一のアミノ酸配列を含有することを特徴とするポリぺプチド (以 下、 CD 100と略称する) またはその塩、 または  (17) a polypeptide characterized by containing the same or substantially the same amino acid sequence as the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3 (hereinafter abbreviated as CD 100) Or its salt, or
(18) ポリペプチドが、 配列番号: 1または配列番号: 3で表わされるァミノ 酸配列中の 1個以上 30個以下、 好ましくは 1個以上 10個以下のアミノ酸が欠 失したアミノ酸配列、 配列番号: 1または配列番号: 3で表わされるアミノ酸配 列に 1個以上 30個以下、 好ましくは 1個以上 10個以下のアミノ酸が付加した (または挿入された) アミノ酸配列、 あるいは配列番号: 1または配列番号: 3 で表わされるアミノ酸配列中の 1個以上 30個以下、 好ましくは 1個以上 1 0個 以下のアミノ酸が他のアミノ酸で置換されたアミノ酸配列を含有する蛋白質であ る上記 (17) 項記載の CD 100またはその塩などがあげられる。  (18) an amino acid sequence in which the polypeptide has a deletion of 1 to 30 amino acids, preferably 1 to 10 amino acids in the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3, : An amino acid sequence represented by 1 or SEQ ID NO: 3 with 1 to 30 amino acids, preferably 1 to 10 amino acids added (or inserted), or SEQ ID NO: 1 or SEQ ID NO: 3 The above-mentioned (17), which is a protein containing an amino acid sequence in which 1 to 30 amino acids, preferably 1 to 10 amino acids in the amino acid sequence represented by No. 3 are substituted with another amino acid. Described CD 100 or a salt thereof.
また、 本発明における CD 72に関して、 具体的には、 公知の CD 72または その塩 〔ザ 'ジャーナル ·ォブ 'ィムノロジー(The Journal of Immunology), 14 4巻、 4870— 4877頁(1 990);ザ'ジャーナル'ォブ 'ィムノロジー(The Journal of I讓 unology)、 149巻、 880— 886頁 ( 1 992 ) 〕 などがあ げられる。 マウス CD 72についてはザ'ジャーナル'ォブ 'ィムノロジー(The Journal of Immunology), 149巻、 880— 886頁 ( 1 992 ) に記載され ている Lyb-2a l, Lyb-2a 2, Lyb - 2b, Lyb- 2eなどのァロタイプも含まれる。 さらに C D 72に関して、 As for the CD72 in the present invention, specifically, a known CD72 or a salt thereof [The 'Journal of Immunology', 144, 4870-4877 (1990); The Journal of Ibb unology, Volume 149, 880-886 (1992)], etc. Mouse CD72 is described in The Journal of Immunology, Volume 149, 880-886 (1992). And it has Lyb-2 al, Lyb-2 a 2, Lyb - 2 b, also includes Arotaipu such Lyb- 2 e. Furthermore, regarding CD 72,
(19) 配列番号: 5または配列番号: 7で表わされるアミノ酸配列と同一もし くは実質的に同一のアミノ酸配列を含有することを特徴とするポリぺプチド (以 下、 CD 72と略称する) またはその塩、 または  (19) a polypeptide characterized by containing the same or substantially the same amino acid sequence as that represented by SEQ ID NO: 5 or SEQ ID NO: 7 (hereinafter abbreviated as CD72) Or its salt, or
(20) ポリペプチドが、 配列番号: 5または配列番号: 7で表わされるァミノ 酸配列中の 1個以上 10個以下、 好ましくは 1個以上 5個以下のアミノ酸が欠失 したアミノ酸配列、 配列番号: 5または配列番号: 7で表わされるアミノ酸配列 に 1個以上 10個以下、 好ましくは 1個以上 5個以下のアミノ酸が付加した (ま たは挿入された) アミノ酸配列、 あるいは配列番号: 5または配列番号: 7で表 わされるアミノ酸配列中の 1個以上 10個以下、 好ましくは 1個以上 5個以下の アミノ酸が他のアミノ酸で置換されたアミノ酸配列を含有する蛋白質である上記 (19) 項記載の CD 72またはその塩などがあげられる。  (20) an amino acid sequence in which one or more, preferably one to five, amino acids are deleted from the amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 7; : An amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 7, in which 1 to 10 amino acids, preferably 1 to 5 amino acids have been added (or inserted), or SEQ ID NO: 5 or A protein comprising an amino acid sequence in which 1 to 10 amino acids, preferably 1 to 5 amino acids in the amino acid sequence represented by SEQ ID NO: 7 are substituted with other amino acids (19) CD72 or a salt thereof described in the above section.
本明細書において、 「実質的に同一」 とはポリペプチドなどの活性、 例えば、 リガンド (CD 100) と受容体 (CD72) の結合活性、 生理的な特性などが、 実質的に同じことを意味する。 アミノ酸の置換、 欠失、 付加あるいは挿入はしば しばポリペプチドの生理的な特性や化学的な特性に大きな変化をもたらさないが、 こうした場合その置換、 欠失、 付加あるいは挿入を施されたポリペプチド (いわ ゆる CD 100改変体、 CD 72改変体など) は、 そうした置換、 欠失、 付加あ るいは挿入のされていないものと実質的に同一であるとされるであろう。 該アミ ノ酸配列中のアミノ酸の実質的に同一な置換物としては、 たとえばそのアミノ酸 が属するところのクラスのうち他のアミノ酸類から選ぶことができうる。 非極性 (疎水性) アミノ酸としては、 ァラニン、 ロイシン、 イソロイシン、 バリン、 プ 口リン、 フエ二ルァラニン、 トリブトファン、 メチォニンなどが挙げられる。 極 性 (中性) アミノ酸としてはグリシン、 セリン、 スレオニン、 システィン、 チロ シン、 ァスパラギン、 グルタミンなどが挙げられる。 陽電荷をもつ (塩基性) ァ ミノ酸としてはアルギニン、 リジン、 ヒスチジンなどが挙げられる。 負電荷をも つ (酸性) アミノ酸としては、 ァスパラギン酸、 グルタミン酸などがあげられる。 本発明で用いられる CD 100および CD 72の製造法を以下にさらに詳細に 説明する。 As used herein, the term “substantially the same” means that the activities of polypeptides and the like, for example, the binding activity of ligand (CD100) and receptor (CD72), physiological properties, etc. are substantially the same. I do. Amino acid substitutions, deletions, additions or insertions often do not significantly alter the physiological or chemical properties of the polypeptide, in which case the substitutions, deletions, additions or insertions are made. The polypeptides (so-called CD100 variants, CD72 variants, etc.) will be substantially identical to those without such substitutions, deletions, additions or insertions. Substantially identical substitutions of amino acids in the amino acid sequence can be selected, for example, from other amino acids of the class to which the amino acid belongs. Non-polar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, purine, phenylalanine, tributofan, methionine and the like. Examples of polar (neutral) amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine. Amino acids having a positive charge (basic) include arginine, lysine, histidine and the like. Examples of negatively charged (acidic) amino acids include aspartic acid and glutamic acid. The method for producing CD 100 and CD 72 used in the present invention is described in further detail below. explain.
本発明で用いられる C D 1 0 0および C D 7 2としては、 ヒト、 温血動物 (例 えば、 モルモット、 ラット、 マウス、 ブ夕、 ヒッジ、 ゥシ、 サルなど) および魚 類などのあらゆる組織 (たとえば、 下垂体、 滕臓、 脳、 腎臓、 肝臓、 生殖腺、 甲 状腺、 胆のう、 骨髄、 副腎、 皮膚、 筋肉、 肺、 消化管、 血管、 心臓など) または 細胞などに由来するポリペプチドが挙げられ、 C D 1 0 0としては、 配列番号: 1または配列番号: 3、 C D 7 2としては配列番号: 5または配列番号: 7で表 わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含有するポ リペプチドであれば如何なるものであってもよい。 配列番号: 1、 3、 5または 7で表わされるアミノ酸配列と実質的に同一のアミノ酸配列としては、 配列番 号: 1、 3、 5または 7で表わされるアミノ酸配列と約 7 0 %以上、 好ましくは 約 8 0 %以上、 より好ましくは約 9 0 %以上、 さらに好ましくは約 9 5 %以上の 相同性を有するアミノ酸配列などが挙げられる。 例えば、 C D 7 2としては、 配 列番号: 5または配列番号: 7で表わされるアミノ酸配列を含有するポリべプチ ドなどの他に、 配列番号: 5または配列番号: 7で表わされるアミノ酸配列を含 有するポリぺプチドと実質的に同質の活性を有するポリぺプチドなどが挙げられ る。 実質的に同質の活性としては、 例えばリガンド結合活性、 シグナル伝達活性、 抗体産生能などが挙げられる。 実質的に同質とは、 リガンド結合活性などが性質 的に同質であることを示す。 したがって、 リガンド結合活性の強さなどの強弱、 ポリペプチドの分子量などの量的要素は異なっていてもよい。 C D 1 0 0として は、 配列番号: 1または配列番号: 3で表わされるアミノ酸配列を含有するポリ ペプチドなどの他に、 配列番号: 1または配列番号: 3で表わされるアミノ酸配 列を含有するポリぺプチドと実質的に同質の活性を有するポリぺプチドなどが挙 げられる。 実質的に同質の活性としては、 例えばレセプ夕一結合活性、 抗体産生 活性などが挙げられる。 実質的に同質とは、 レセプ夕一結合活性などが性質的に 同質であることを示す。 したがって、 レセプ夕一結合活性の強さなどの強弱、 ポ リペプチドの分子量などの量的要素は異なっていてもよい。  The CD100 and CD72 used in the present invention include humans, warm-blooded animals (eg, guinea pigs, rats, mice, bushs, sheep, magpies, monkeys, etc.), and all tissues such as fishes. For example, polypeptides derived from pituitary gland, brain, brain, kidney, liver, gonad, thyroid, gall bladder, bone marrow, adrenal gland, skin, muscle, lung, gastrointestinal tract, blood vessel, heart, etc. or cells The amino acid sequence identical or substantially identical to the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3 as CD100 and the amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 7 as CD72 Any polypeptide may be used as long as it contains The amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7 is preferably about 70% or more, preferably, the amino acid sequence represented by SEQ ID NO: 1, 3, 5, or 7. Is an amino acid sequence having a homology of about 80% or more, more preferably about 90% or more, and still more preferably about 95% or more. For example, CD72 includes, in addition to the polypeptide containing the amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 7, etc., the amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 7 Examples thereof include polypeptides having an activity substantially the same as that of the contained polypeptide. Substantially the same activity includes, for example, ligand binding activity, signal transduction activity, antibody-producing ability and the like. The term “substantially the same” means that the ligand binding activity and the like are substantially the same. Therefore, the strengths such as the strength of the ligand binding activity and the quantitative factors such as the molecular weight of the polypeptide may be different. CD100 includes, in addition to a polypeptide containing the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3 and the like, a polypeptide containing the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3 Examples of such polypeptides include polypeptides having substantially the same activity as polypeptides. Examples of substantially equivalent activities include, for example, receptor binding activity, antibody production activity, and the like. Substantially the same quality means that the receptor binding activity and the like are the same in nature. Therefore, strength factors such as the strength of receptor binding activity, and quantitative factors such as the molecular weight of the polypeptide may be different.
本明細書における C D 7 2および C D 1 0 0はペプチド標記の慣例に従って左 端が N末端 (ァミノ末端) 、 右端が C末端 (カルボキシル末端) である。 例えば、 配列番号: 1、 配列番号: 3、 配列番号: 5または配列番号: 7で表されるアミ ノ酸配列などを含有するポリぺプチドは C末端が通常力ルポキシル基 (- C00H)ま たはカルボキシレート(-C00_)であるが、 C末端がアミド (_C0NH2)またはエステ ル(-C00R)であってもよい。 エステルの Rとしては、 例えばメチル、 ェチル、 n_ プロピル、 イソプロピルもしくは n—ブチルなどの アルキル基、 シクロべ ンチル、 シクロへキシルなどの〇3_8シクロアルキル基、 フエニル、 ひ—ナフチ ルなどの 2ァリール基、 ベンジル、 フエネチル、 ベンズヒドリルなどのフエ 二ルー C^— 2アルキル、 もしくは α—ナフチルメチルなどの α—ナフチル— 2アルキルなどの C7_14ァラルキル基のほか、 経口用エステルとして汎用される ビバ口ィルォキシメチル基などが挙げられる。 In the present specification, CD72 and CD100 have N-terminal (amino terminal) at the left end and C-terminal (carboxyl terminal) at the right end according to the convention of peptide labeling. For example, The polypeptide containing the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5 or SEQ ID NO: 7, etc. is usually a C-terminal carboxylate group (-C00H) or carboxy. The rate is (-C00_), but the C-terminal may be amide (_C0NH 2 ) or ester (-C00R). As R of the ester, such as methyl, Echiru, n_ propyl, alkyl groups such as isopropyl, n- butyl, Shikurobe pentyl, 〇 3 _ 8 cycloalkyl group such as cyclohexyl, phenyl, shed - 2, such as naphthyl Le Ariru group, benzyl, phenethyl, phenylene Lou C ^ such as benzhydryl - 2 alkyl, or α- naphthylmethyl etc. α- naphthyl - 2 other C 7 _ 14 Ararukiru groups such as alkyl, commonly used as an ester for oral administration Viva yloxymethyl group and the like.
本発明で用いられる CD 72および CD 1 00の塩としては、 生理学的に許容 される塩基 (例えばアルカリ金属など) や酸 (有機酸、 無機酸) との塩が用いら れるが、 とりわけ生理学的に許容される酸付加塩が好ましい。 このような塩とし ては例えば無機酸 (例えば、 塩酸、 リン酸、 臭化水素酸、 硫酸) との塩、 あるい は有機酸 (例えば、 酢酸、 ギ酸、 プロピオン酸、 フマル酸、 マレイン酸、 コ八ク 酸、 酒石酸、 クェン酸、 リンゴ酸、 シユウ酸、 安息香酸、 メタンスルホン酸、 ベ ンゼンスルホン酸) との塩などが用いられる。  As the salts of CD72 and CD100 used in the present invention, salts with physiologically acceptable bases (eg, alkali metals and the like) and acids (organic acids and inorganic acids) are used. Are preferred. Such salts include, for example, salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid) or organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, Salts such as co-octanoic acid, tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid and benzenesulfonic acid are used.
本発明で用いられる CD 72および CD 1 00は、公知の方法〔ザ'ジャーナル · ォブ 'ィムノロジー(The Journal of Immunology), 144巻、 4870— 487 7頁( 1 990);ザ'ジャーナル'ォブ 'ィムノロジー(The Journal of Immunology), 149巻、 880— 886頁 (1 992) ;プロシージングズ ·ォブ'ザ 'ナショナ ル 'アカデミー 'ォブ 'サイェンシィズ'ォブ'ザ 'ユーエスエー(Proc Natl Acad Sci USA) 93巻、 (1996年) 11780- 11785頁; ジャーナル'ォブ'バイオロジカル'ケミス トリー(Journal of Biological Chemistry)271巻、 (1996年) 33376- 33381頁〕 に準 じた方法、 即ち、 ヒトゃ温血動物の組織または細胞からポリペプチドを精製する 方法によって製造することもできるし、 後述のポリぺプチド合成法に準じて製造 することもできる。 また、 後述するポリペプチドをコードする DNAを含有する 形質転換体を培養することによっても製造することができる。  CD72 and CD100 used in the present invention can be prepared by a known method [The Journal of Immunology, vol. 144, pp. 4870-4877 (1990); Proc Natl, The Journal of Immunology, 149, 880-886 (1992); Processing of the 'National' Academy 'of' Science ', of the' Proc Natl Acad Sci USA) 93, (1996) 11780-11785; Journal of Biological Chemistry, Volume 271 (1996) 33376-33381], That is, the polypeptide can be produced by a method of purifying a polypeptide from a tissue or a cell of a human warm-blooded animal, or can be produced according to a polypeptide synthesis method described later. Alternatively, it can be produced by culturing a transformant containing a DNA encoding the polypeptide described below.
ヒト、 温血動物、 魚類などの組織または細胞から製造する場合、 ヒト、 温血動 物、 魚類などの組織または細胞をホモジナイズした後、 酸、 有機溶媒などで抽出 を行い、 該抽出液を、 塩析、 透析、 ゲル濾過、 逆相クロマトグラフィー、 イオン 交換クロマトグラフィー、 ァフィ二ティ一クロマトグラフィーなどのクロマトグ ラフィーを組み合わせることにより精製単離することができる。 When manufactured from tissues or cells such as humans, warm-blooded animals, fish, etc. After homogenizing tissues or cells such as fish, fish, etc., extract with acid, organic solvent, etc., and extract the extract with salting out, dialysis, gel filtration, reverse phase chromatography, ion exchange chromatography, affinity Purification and isolation can be performed by combining chromatographic techniques such as chromatography.
上記したように本発明で用いられる CD 72および CD 1 00は、 自体公知の ポリべプチドの合成法に従つて、 あるいはポリペプチドを含有するポリべプチド を適当なぺプチダーゼで切断することによって製造することができる。 ペプチド の合成法としては、 例えば固相合成法、 液相合成法のいずれによっても良い。 す なわち、 ポリペプチドを構成し得る部分ペプチドもしくはアミノ酸と残余部分と を縮合させ、 生成物が保護基を有する場合は保護基を脱離することにより目的の ペプチドを製造することができる。 公知の縮合方法や保護基の脱離としてはたと えば、 以下の①〜⑤に記載された方法が挙げられる。  As described above, CD72 and CD100 used in the present invention are produced according to a known method for synthesizing a polypeptide, or by cleaving a polypeptide containing a polypeptide with an appropriate peptidase. can do. As a method for synthesizing the peptide, for example, any of a solid phase synthesis method and a liquid phase synthesis method may be used. That is, the target peptide can be produced by condensing a partial peptide or amino acid that can constitute the polypeptide with the remaining portion, and if the product has a protecting group, removing the protecting group. Examples of the known condensation method and elimination of the protecting group include the methods described in the following ① to ①.
(DM. Bodanszky および Μ· A. Ondetti, ペプチド シンセシス (Peptide  (DM. Bodanszky and Μ · A. Ondetti, Peptide Synthesis
Synthesis), Interscience Publ ishers, New York (1966年) Synthesis), Interscience Publ ishers, New York (1966)
② Schroederおよび Luebke、ザ ペプチド(The Pept ide), Academic Press, New York (1965年) ② Schroeder and Luebke, The Peptide, Academic Press, New York (1965)
③泉屋信夫他、 ペプチド合成の基礎と実験、 丸善 (株) (1975年)  (3) Nobuo Izumiya et al. Basics and experiments on peptide synthesis, Maruzen Co., Ltd. (1975)
④矢島治明 および榊原俊平、 生化学実験講座 1、 タンパク質の化学 IV、 205、 (1977年)  治 Haruaki Yajima and Shunpei Sakakibara, Laboratory for Biochemical Experiments 1, Protein Chemistry IV, 205, (1977)
⑤矢島治明監修、 続医薬品の開発 第 14巻 ペプチド合成広川書店 治 Supervised by Haruaki Yajima, Development of Continuing Drugs Volume 14 Peptide Synthesis Hirokawa Shoten
また、 反応後は通常の精製法、 たとえば、 溶媒抽出 ·蒸留 ·カラムクロマトグ ラフィ一 ·液体クロマトグラフィー ·再結晶などを組み合わせてポリぺプチド( C D72, CD 100) を精製単離することができる。 上記方法で得られるポリべ プチドが遊離体である場合は、 公知の方法によって適当な塩に変換することがで きるし、 逆に塩で得られた場合は、 公知の方法によって遊離体に変換することが できる。  After the reaction, the polypeptide (CD72, CD100) can be purified and isolated by a combination of ordinary purification methods such as solvent extraction, distillation, column chromatography, liquid chromatography, and recrystallization. . When the polypeptide obtained by the above method is a free form, it can be converted to an appropriate salt by a known method, and conversely, when the polypeptide is obtained as a salt, it can be converted to a free form by a known method. can do.
CD 72および CD 100のアミド体は、 アミド形成に適した市販のペプチド 合成用樹脂を用いることができる。 そのような樹脂としては例えば、 クロロメチ ル樹脂、 ヒドロキシメチル樹脂、 ベンズヒドリルァミン樹脂、 アミノメチル樹脂、 4一べンジルォキシベンジルアルコール樹脂、 4—メチルベンズヒドリルァミン 樹脂、 PAM樹脂、 4ーヒドロキシメチルメチルフエニルァセトアミドメチル樹脂、 ポリアクリルアミド樹脂、 4— ( 2 ', 4 ' -ジメトキシフエ二ルーヒドロキシメチ ル) フエノキシ樹脂、 4一 ( 2 ' , 4 ' -ジメトキシフエ二ル— Fmocアミノエチル) フエノキシ樹脂などを挙げることができる。 このような樹脂を用い、 α—ァミノ 基と側鎖官能基を適当に保護したアミノ酸を、 目的とするペプチドの配列通りに、 自体公知の各種縮合方法に従い、 樹脂上で縮合させる。 反応の最後に樹脂からぺ プチドを切り出すと同時に各種保護基を除去し、 必要に応じて高希釈溶液中で分 子内ジスルフィ ド結合形成反応を実施し、 目的のポリペプチドを取得する。 As the amide form of CD72 and CD100, a commercially available resin for peptide synthesis suitable for amide formation can be used. Such resins include, for example, chloromethyl resin, hydroxymethyl resin, benzhydrylamine resin, aminomethyl resin, 4-Benzyloxybenzyl alcohol resin, 4-methylbenzhydrylamine resin, PAM resin, 4-hydroxymethylmethylphenylacetamidomethyl resin, polyacrylamide resin, 4- (2 ', 4'-dimethoxyphene) (2-hydroxymethyl) phenoxy resin, 4- (2 ′, 4′-dimethoxyphenyl-Fmocaminoethyl) phenoxy resin and the like. Using such a resin, an amino acid having an α-amino group and a side chain functional group appropriately protected is condensed on the resin in accordance with the sequence of the target peptide according to various known condensation methods. At the end of the reaction, the peptide is cleaved from the resin, and at the same time, various protecting groups are removed. If necessary, an intramolecular disulfide bond formation reaction is carried out in a highly diluted solution to obtain a desired polypeptide.
上記した保護されたアミノ酸の縮合に関しては、 ペプチド合成に使用できる各 種活性化試薬を用いることができるが、 特に、 カルポジイミド類がよい。 力ルポ ジイミド類としては DC (;、 N, Ν' -ジイソプロピルカルボジイミド、 Ν-ェチル -Ν' - (3- ジメチルァミノプロピル) カルポジイミドなどが挙げられる。 これらによる活性 化にはラセミ化抑制添加剤(例えば、 Η0ΒΤなど)とともに保護されたアミノ酸を直 接樹脂に添加するかまたは、 対称酸無水物または Η0ΒΤエステルとしてあらかじめ 保護されたアミノ酸の活性化を行ったのちに榭脂に添加することができる。 保護 されたアミノ酸の活性化や樹脂との縮合に用いられる溶媒としては、 ペプチド縮 合反応に使用しうることが知られている溶媒から適宜選択されうる。 たとえば Ν, Ν—ジメチルホルムアミド、 Ν, Ν—ジメチルァセトアミド、 Ν—メチルピロリ ドンなどの酸アミド類、 塩化メチレン、 クロ口ホルムなどのハロゲン化炭化水素 類、 トリフルォロェ夕ノールなどのアルコール類、 ジメチルスルホキシドなどの スルホキシド類、 ピリジンなどの三級アミン類、 ジォキサン、 テトラヒドロフラ ンなどのエーテル類、 ァセトニトリル、 プロピオ二トリルなどの二トリル類、 酢 酸メチル、 酢酸ェチルなどのエステル類あるいはこれらの適宜の混合物などが用 いられる。 反応温度はペプチド結合形成反応に使用され得ることが知られている 範囲から適宜選択され、 通常約一 2 0 Τ:〜 5 0 °Cの範囲から適宜選択される。 活 性化されたアミノ酸誘導体は通常 1 . 5ないし 4倍過剰で用いられる。 ニンヒド リン反応を用いたテス卜の結果、 縮合が不十分な場合には保護基の脱離を行うこ となく縮合反応を繰り返すことにより十分な縮合を行うことができる。 反応を繰 り返しても十分な縮合が得られないときには、 無水酢酸またはァセチルイミダゾ ールを用いて未反応アミノ酸をァセチル化して、 後の反応に影響を及ぼさないよ うにすることができる。 Regarding the condensation of the above protected amino acids, various activating reagents that can be used for peptide synthesis can be used, and carbodiimides are particularly preferable. Caprolidimides include DC (;, N, Ν'-diisopropylcarbodiimide, Ν-ethyl-Ν '-(3-dimethylaminopropyl) carbodiimide, etc. The activation by these agents requires a racemization inhibitor. The protected amino acid (e.g., {0}) can be added directly to the resin, or can be added to the resin after activating the previously protected amino acid as a symmetric acid anhydride or {0} ester The solvent used for the activation of the protected amino acid or the condensation with the resin can be appropriately selected from solvents known to be usable for the peptide condensation reaction, for example, Ν, Ν-dimethylformamide, Ν Acid amides such as, Ν-dimethylacetamide and Ν-methylpyrrolidone; halogens such as methylene chloride and chloroform Hydrocarbons, alcohols such as trifluorophenol, sulfoxides such as dimethyl sulfoxide, tertiary amines such as pyridine, ethers such as dioxane and tetrahydrofuran, nitriles such as acetonitrile and propionitrile, and methyl acetate And an ester such as ethyl acetate, or an appropriate mixture thereof, etc. The reaction temperature is appropriately selected from the range known to be usable for peptide bond formation reactions, and is usually about 120 ° C .: The selected amino acid derivative is appropriately selected from the range of 50 ° C. The activated amino acid derivative is usually used in a 1.5 to 4-fold excess, and as a result of a test using the ninhydrin reaction, if the condensation is insufficient. Can be sufficiently condensed by repeating the condensation reaction without removing the protecting group. Repetitive When sufficient condensation cannot be obtained even after repetition, the unreacted amino acid can be acetylated using acetic anhydride or acetylimidazole so as not to affect the subsequent reaction.
原料アミノ酸のァミノ基の保護基としては、 たとえば、 Z、 Boc、 夕ーシャリー ペンチルォキシカルボニル、 イソポルニルォキシカルポニル、 4—メトキシベン ジルォキシカルボニル、 U -Z、 Br-Z、 ァダマンチルォキシカルポニル、 卜リフル ォロアセチル、 フタロイル、 ホルミル、 2—二トロフエニルスルフエ二ル、 ジフ ェニルホスフイノチオイル、 Fmocなどが挙げられる。 カルボキシル基の保護基と しては、 たとえば Rとして上記した (^ _ 6アルキル基、 C 3 _ 8シクロアルキル基、 C 7 _ 1 4ァラルキル基の他、 2—ァダマンチル、 4一二トロベンジル、 4—メトキ シベンジル、 4一クロ口ベンジル、 フエナシル基およびべンジルォキシカルボ二 ルヒドラジド、 ターシャリーブトキシカルボニルヒドラジド、 トリチルヒドラジ ドなどが挙げられる。 Examples of the protecting group for the amino acid of the starting amino acid include Z, Boc, pentyloxycarbonyl, isopolnyloxycarbonyl, 4-methoxybenzyloxycarbonyl, U-Z, Br-Z, and adamantyl. Oxycarbonyl, trifluoroacetyl, phthaloyl, formyl, 2-ditrophenylsulfenyl, diphenylphosphinothioyl, Fmoc and the like. Is a protecting group of carboxyl group, for example the above as R (^ _ 6 alkyl group, C 3 _ 8 cycloalkyl group, other C 7 _ 1 4 Ararukiru group, 2-Adamanchiru, 4 twelve Torobenjiru, 4 — Methoxybenzyl, 4-cyclohexyl benzyl, phenacyl group and benzyloxycarbonyl hydrazide, tertiary butoxycarbonyl hydrazide, trityl hydrazide and the like.
セリンおよびスレオニンの水酸基は、 たとえばエステル化またはエーテル化に よって保護することができる。 このエステル化に適する基としては例えばァセチ ル基などの低級アルカノィル基、 ベンゾィル基などのァロイル基、 ベンジルォキ シカルボニル基、 エトキシカルボニル基などの炭素から誘導される基などが挙げ られる。 また、 エーテル化に適する基としては、 たとえばベンジル基、 テトラヒ ドロピラニル基、 夕ーシャリーブチル基などである。  The hydroxyl groups of serine and threonine can be protected, for example, by esterification or etherification. Suitable groups for this esterification include, for example, lower alkanoyl groups such as acetyl group, aroyl groups such as benzoyl group, and groups derived from carbon such as benzyloxycarbonyl group and ethoxycarbonyl group. Examples of groups suitable for etherification include a benzyl group, a tetrahydropyranyl group, and a butyl group.
チロシンのフエノール性水酸基の保護基としては、 たとえば Bz l、 C l 2 -Bz l、 2 一二トロベンジル、 Br- Z、 夕ーシャリーブチルなどが挙げられる。 The protecting group of the phenolic hydroxyl group of tyrosine include Bz l, C l 2 -Bz l , 2 twelve Torobenjiru, Br @ - Z, and the like evening over tert-butyl.
ヒスチジンのイミダゾールの保護基としては、 Tos、 4 -メトキシ- 2, 3, 6-トリメ チルベンゼンスルホニル、 DNP、 ベンジルォキシメチル、 Bum、 Boc、 Trし Fmocな どが挙げられる。  Examples of the protecting group for imidazole of histidine include Tos, 4-methoxy-2,3,6-trimethylbenzenesulfonyl, DNP, benzyloxymethyl, Bum, Boc, Tr and Fmoc.
原料のカルボキシル基の活性化されたものとしては、 たとえば対応する酸無水 物、 アジド、 活性エステル [アルコール (たとえば、 ペン夕クロ口フエノール、 2, 4, 5 -トリクロ口フエノール、 2, 4-ジニトロフエノール、 シァノメチルアルコー ル、 パラニトロフエノ一ル、 H0NB、 N-ヒドロキシスクシミド、 N-ヒドロキシフ夕 ルイミド、 H0BT) とのエステル] などが挙げられる。 原料のァミノ基の活性化さ れたものとしては、 たとえば対応するリン酸アミドが挙げられる。 Activated carboxyl groups of the raw materials include, for example, corresponding acid anhydrides, azides, and activated esters [alcohols (eg, phenol, 2,4,5-trichlorophenol, 2,4-dinitrophenol) Esters with phenol, cyanomethyl alcohol, paranitrophenol, H0NB, N-hydroxysuccinimide, N-hydroxyfurimide, H0BT) and the like. Activation of amino group of raw material Examples include the corresponding phosphoric amide.
保護基の除去 (脱離) 方法としては、 たとえば Pd黒あるいは Pd炭素などの触媒 の存在下での水素気流中での接触還元や、 また、 無水フッ化水素、 メタンスルホ ン酸、 トリフルォロメ夕ンスルホン酸、 トリフルォロ酢酸あるいはこれらの混合 液などによる酸処理や、 ジイソプロピルェチルァミン、 トリェチルァミン、 ピぺ リジン、 ピぺラジンなどによる塩基処理、 また液体アンモニア中ナトリウムによ る還元なども挙げられる。 上記酸処理による脱離反応は一般に一 2 0 〜 4 0 の温度で行われるが、 酸処理においてはァニソ一ル、 フエノール、 チオアニソー ル、 メタクレゾ一ル、 パラクレゾール、 ジメチルスルフイ ド、 1, 4 -ブタンジチォ ール、 1, 2-エタンジチオールのようなカチオン捕捉剤の添加が有効である。 また、 ヒスチジンのイミダゾール保護基として用いられる 2, 4-ジニトロフエニル基はチ オフエノール処理により除去され、 トリブトファンのインドール保護基として用 いられるホルミル基は上記の 1, 2 -エタンジチオール、 1, 4 -ブタンジチオールなど の存在下の酸処理による脱保護以外に、 希水酸化ナトリウム、 希アンモニアなど によるアルカリ処理によっても除去される。  Methods for removing (eliminating) the protecting group include catalytic reduction in a hydrogen stream in the presence of a catalyst such as Pd black or Pd carbon, or anhydrous hydrogen fluoride, methanesulfonate, or trifluoromethanesulfonate. Acid treatment with trifluoroacetic acid or a mixture thereof; base treatment with diisopropylethylamine, triethylamine, piperidine, piperazine, etc .; and reduction with sodium in liquid ammonia. The elimination reaction by the above-mentioned acid treatment is generally carried out at a temperature of 120 to 40, but in the acid treatment, anisol, phenol, thioanisole, methacrylol, paracresol, dimethyl sulfide, 1,4 -Addition of a cation scavenger such as butanedithiol or 1,2-ethanedithiol is effective. In addition, the 2,4-dinitrophenyl group used as an imidazole protecting group of histidine is removed by thiophenol treatment, and the formyl group used as an indole protecting group of tributofan is replaced with 1,2-ethanedithiol and 1,4-butane described above. In addition to deprotection by acid treatment in the presence of dithiol, etc., it is also removed by alkali treatment with dilute sodium hydroxide, dilute ammonia, etc.
原料の反応に関与すべきでない官能基の保護および保護基、 ならびにその保護 基の脱離、 反応に関与する官能基の活性化などは公知の基あるいは公知の手段か ら適宜選択しうる。  Protection and protection of functional groups that should not be involved in the reaction of the raw materials, elimination of the protective groups, activation of the functional groups involved in the reaction, and the like can be appropriately selected from known groups or known means.
C D 7 2および C D 1 0 0のアミド体を得る別の方法としては、 まず、 カルボ キシル末端アミノ酸のひ—カルボキシル基をアミド化した後、 アミノ基側にぺプ チド鎖を所望の鎖長まで延ばした後、 該ぺプチド鎖の N末端の α—ァミノ基の保 護基のみを除いたペプチドと C末端のカルボキシル基の保護基のみを除いたぺプ チド (またはアミノ酸) とを製造し、 この両ペプチドを上記したような混合溶媒 中で縮合させる。 縮合反応の詳細については上記と同様である。 縮合により得ら れた保護ペプチドを精製した後、 上記方法によりすベての保護基を除去し、 所望 の粗ポリぺプチドを得ることができる。 この粗ポリぺプチドは既知の各種精製手 段を駆使して精製し、 主要画分を凍結乾燥することで所望のポリペプチドのァミ ド体を得ることができる。  As another method for obtaining amides of CD72 and CD100, first, after amidating the carboxyl group of the carboxyl-terminal amino acid, a peptide chain is added to the amino group to the desired length. After the elongation, a peptide (or amino acid) from which only the protecting group for the α-amino group at the N-terminus of the peptide chain is removed and a peptide (or amino acid) from which only the protecting group for the carboxyl group at the C-terminal is removed, These two peptides are condensed in a mixed solvent as described above. Details of the condensation reaction are the same as described above. After purifying the protected peptide obtained by the condensation, all the protecting groups are removed by the above-mentioned method, and a desired crude polypeptide can be obtained. This crude polypeptide is purified using various known purification means, and the main fraction is lyophilized to obtain an amide of the desired polypeptide.
C D 7 2および C D 1 0 0のエステル体を得るにはカルポキシ末端アミノ酸の α—カルボキシル基を所望のアルコール類と縮合しアミノ酸エステルとした後、 ポリペプチドのアミド体と同様にして所望のポリペプチドのエステル体を得るこ とができる。 To obtain CD72 and CD100 esters, the carboxy terminal amino acid After condensing the α-carboxyl group with a desired alcohol to form an amino acid ester, an ester of the desired polypeptide can be obtained in the same manner as the amide of the polypeptide.
本発明で用いられる CD 72をコードする DN Aとしては、 配列番号: 5また は配列番号: 7で表わされるアミノ酸配列と同一もしくは実質的に同一のァミノ 酸配列を含有するレセプ夕一蛋白質をコードする DNAを含有する DNA、 本発 明で用いられる CD 100をコードする DNAとしては、 配列番号: 1または配 列番号: 3で表わされるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配 列を含有するリガンド蛋白質をコードする DN Aを含有する DN Aであればいか なるものであってもよい。 また、 ゲノム DNA、 ゲノム DNAライブラリー、 前 記した組織 ·細胞由来の c DNA、 前記した組織 ·細胞由来の c DNAライブラ リー、 合成 DNAのいずれでもよい。 ライブラリーに使用するベクターはバクテ リオファ一ジ、 プラスミド、 コスミド、 ファージミドなどいずれであってもよい。 また、 前記した組織 ·細胞より RN A画分を調製したものを用いて直接 Reverse Transcriptase Po merase Chain Reaction (以下、 RT- P C R法と略称する) によって増幅することもできる。  The DNA encoding CD72 used in the present invention includes a receptor protein containing an amino acid sequence identical or substantially identical to the amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 7. The DNA containing the amino acid sequence represented by SEQ ID NO: 1 or the amino acid sequence identical to or substantially identical to the amino acid sequence represented by SEQ ID NO: 3 is used as the DNA encoding the CD100 used in the present invention. Any DNA may be used as long as it contains a DNA encoding a ligand protein. Further, it may be any of genomic DNA, genomic DNA library, the above-described cDNA derived from tissues and cells, the above-described cDNA library derived from tissues and cells, and synthetic DNA. The vector used for the library may be any of bacteriophage, plasmid, cosmid, phagemid and the like. Alternatively, it can also be directly amplified by Reverse Transcriptase Polymerase Chain Reaction (hereinafter abbreviated as RT-PCR method) using an RNA fraction prepared from the above-described tissue / cell.
より具体的には、 (1)ストリンジェン卜な条件下で、 配列番号: 5または配列 番号: 7 (または、 配列番号: 1または配列番号: 3) で表わされるアミノ酸配 列と同一もしくは実質的に同一のアミノ酸配列を含有するレセプ夕一蛋白質をコ 一ドする DNAを含有する DNAの有する配列とハイブリダィズする DNA、(2) 遺伝コードの縮重のため、配列番号: 5または配列番号: 7 (または、配列番号: 1または配列番号: 3) で表わされるアミノ酸配列と同一もしくは実質的に同一 のアミノ酸配列を含有するポリペプチドをコ一ドする DNAを含有する DNAの 有する配列および(1)に定められている配列とハイプリッド形成しないが、同一ァ ミノ酸配列をもつポリペプチドをコードする DNAなどが用いられる。 ハイプリ ダイゼーシヨンは、 自体公知の方法あるいはそれに準じた方法に従って行うこと ができる。 上記ストリンジェントな条件としては、 例えば 42 、 50%ホルム アミド、 4 X S S PE ( 1 X S S P E = 150mM NaCl, lOmM NaH2P04-H20, ImM EDTA pH7.4)、 5 Xデンハート溶液、 0. 1 %SDSである。 本発明で用いられる CD 72または CD 1 00をコードする DNAは以下の遺 伝子工学的手法によっても製造することができる。 More specifically, (1) identical or substantially identical to the amino acid sequence represented by SEQ ID NO: 5 or SEQ ID NO: 7 (or SEQ ID NO: 1 or SEQ ID NO: 3) under stringent conditions DNA that hybridizes with the sequence of the DNA containing the DNA encoding the receptor protein containing the same amino acid sequence as that of (2) SEQ ID NO: 5 or SEQ ID NO: 7 due to the degeneracy of the genetic code. (Or a sequence having a DNA containing a DNA encoding a polypeptide containing the same or substantially the same amino acid sequence as the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 3) and (1) DNA that does not form a hybrid with the sequence defined in (1) but encodes a polypeptide having the same amino acid sequence is used. Hybridization can be performed according to a method known per se or a method analogous thereto. Examples of the stringent conditions, for example 42, 50% formamide, 4 XSS PE (1 XSSPE = 150mM NaCl, lOmM NaH 2 P0 4 -H 2 0, ImM EDTA pH7.4), 5 X Denhardt's solution, zero. 1% SDS. The DNA encoding CD72 or CD100 used in the present invention can also be produced by the following genetic engineering techniques.
CD 72または CD 1 00を完全にコードする DNAのクロ一ニングの手段と しては、 ポリペプチドの部分塩基配列を有する合成 DN Aプライマーを用いて自 体公知の PC R法によって前記 DN Aライブラリ一等から目的とする DN Aを増 幅するか、 または適当なベクターに組み込んだ D N Aを例えばポリぺプチドの一 部あるいは全領域を有する DN A断片もしくは合成 DN Aを用いて標識したもの とのハイブリダィゼーシヨンによつて選別することができる。 ハイブリダイゼー シヨンの方法は、例えば Molecular Cloning (2nd ed. ; J. Sambrook et al. , Cold Spring Harbor Lab. Press, 1989) に記載の方法などに従って行われる。 また、 市販のライブラリーを使用する場合、 添付の使用説明書に記載の方法に従って行 う。  As a means for cloning DNA which completely encodes CD72 or CD100, the DNA library was synthesized by a PCR method known per se using a synthetic DNA primer having a partial nucleotide sequence of a polypeptide. It is possible to amplify the desired DNA from the first place, or to combine DNA incorporated in an appropriate vector with, for example, a DNA fragment having a partial or entire region of a polypeptide or labeled with a synthetic DNA. Sorting can be performed by hybridization. The hybridization method is performed according to, for example, the method described in Molecular Cloning (2nd ed .; J. Sambrook et al., Cold Spring Harbor Lab. Press, 1989). When using a commercially available library, follow the method described in the attached instruction manual.
クローン化された本発明で用いられる CD 72または CD 1 00をコ一ドする DNAは目的によりそのまま、 または所望により制限酵素で消化したり、 リンカ —を付加したりして使用することができる。 該 DNAはその 5' 末端側に翻訳開 始コドンとしての AT Gを有し、 また 3' 末端側には翻訳終止コドンとしての T AA、 TGAまたは TAGを有していてもよい。 これらの翻訳開始コドンや翻訳 終止コドンは、 適当な合成 DNAアダプタ一を用いて付加することもできる。 本発明で用いられる CD 72または CD 1 00の発現べクタ一は、例えば、(ィ) 本発明で用いられる CD 72または CD 100をコードする DNAから目的とす る DNA断片を切り出し、 (口) 該 DNA断片を適当な発現べクタ一中のプロモ —夕一の下流に連結することにより製造することができる。  The cloned DNA encoding CD72 or CD100 used in the present invention can be used as it is, or digested with a restriction enzyme or added with a linker, if desired, if desired. The DNA may have ATG as a translation initiation codon on the 5 'end, and may have TAA, TGA or TAG as a translation termination codon on the 3' end. These translation initiation codon and translation termination codon can also be added using an appropriate synthetic DNA adapter. The expression vector for CD72 or CD100 used in the present invention can be prepared, for example, by (a) cutting out a DNA fragment of interest from DNA encoding CD72 or CD100 used in the present invention; The DNA fragment can be produced by ligating the DNA fragment downstream of the promoter in an appropriate expression vector.
ベクターとしては、 大腸菌由来のプラスミド (例、 pBR 322, pBR 32 5, pUC 1 2, pUC 13) 、 枯草菌由来のプラスミド (例、 pUB 1 10, TP 5, pC 1 94) 、 酵母由来プラスミド (例、 p SH 1 9, p SH 1 5) 、 λファージなどのバクテリオファージ、 レトロウイルス, ワクシニアウィルス, バキュロウィルスなどの動物ウィルスなどが用いられる。 用いられるプロモー夕 一としては、 遺伝子の発現に用いる宿主に対応して適切なプロモーターであれば いかなるものでもよい。 形質転換する際の宿主が動物細胞である場合には、 S V 40由来のプロモー夕 一、 レトロウイルスのプロモーター、 メタ口チォネインプロモーター、 ヒー卜シ ョックプロモー夕一、 サイ卜メガロウィルスプロモー夕一、 SRひプロモーター などが利用できる。 宿主がェシエリヒア属菌である場合は、 Tr pプロモーター、 T 7プロモー夕一、 l a cプロモ一夕一、 r e cAプロモーター、 λ PLプロモ 一夕一、 1 p pプロモー夕一などが、 宿主がバチルス属菌である場合は、 SPO 1プロモーター、 SP02プロモーター、 p e n Pプロモーターなど、 宿主が酵 母である場合は、 PHO 5プロモーター、 PGKプロモーター、 GAPプロモ一 夕一、 ADH 1プロモーター、 GALプロモーターなどが好ましい。 宿主が昆虫 細胞である場合は、 ポリヘドリンプロモーター、 P 10プロモーターなどが好ま しい。 Examples of the vector include a plasmid derived from E. coli (eg, pBR322, pBR325, pUC12, pUC13), a plasmid derived from Bacillus subtilis (eg, pUB110, TP5, pC194), a plasmid derived from yeast ( For example, bacteriophages such as pSH19, pSH15) and λ phage, and animal viruses such as retrovirus, vaccinia virus, and baculovirus are used. The promoter used may be any promoter that is appropriate for the host used for gene expression. When the host used for the transformation is an animal cell, the promoter derived from SV40, the promoter of the retrovirus, the metamouth thionine promoter, the heat shock promoter, the cytomegalovirus promoter, SR Hi promoters can be used. When the host is a genus Escherichia, Trp promoter, T7 promoter, lac promoter, recA promoter, λ PL promoter, 1 pp promoter, etc., and the host are Bacillus When the host is an enzyme, a PHO5 promoter, a PGK promoter, a GAP promoter, an ADH1 promoter, a GAL promoter, and the like are preferable. When the host is an insect cell, a polyhedrin promoter, a P10 promoter and the like are preferable.
発現ベクターには、 以上の他に、 所望によりェンハンサー、 スプライシングシ グナル、 ポリ A付加シグナル、 選択マーカー、 SV40複製オリジン (以下、 S V40 o r iと略称する場合がある) などを含有しているものを用いることがで きる。 選択マーカ一としては、 例えば、 ジヒドロ葉酸還元酵素 (以下、 dh f r と略称する場合がある) 遺伝子 〔メソ卜レキセ一ト (MTX) 耐性〕 、 アンピシ リン耐性遺伝子 (以下、 Amp「と略称する場合がある) 、 ネオマイシン耐性遺 伝子 (以下、 Ne oと略称する場合がある、 G418耐性) 等が挙げられる。 特 に、 CH〇 (dh f r— ) 細胞を用いて DHF R遺伝子を選択マーカーとして使 用する場合、 チミジンを含まない培地によっても選択できる。  In addition to the above, the expression vector may further contain an enhancer, a splicing signal, a polyA addition signal, a selection marker, an SV40 replication origin (hereinafter sometimes abbreviated as SV40 ori) and the like, if desired. Can be used. Examples of the selectable marker include a dihydrofolate reductase (hereinafter sometimes abbreviated as dh fr) gene [methodrexate (MTX) resistance] and an ampicillin resistance gene (hereinafter abbreviated as Amp). And the neomycin resistance gene (hereinafter sometimes abbreviated as Neo, G418 resistance), etc. In particular, the DHF R gene is used as a selectable marker using CH〇 (dh fr−) cells. If used, selection can also be made with thymidine-free media.
また、 必要に応じて、 宿主に合ったシグナル配列を、 ポリペプチドまたはその 部分ペプチドの N端末側に付加する。 宿主がェシエリヒア属菌である場合は、 phoA - シグナル配列、 〇即 A · シグナル配列などが、 宿主がバチルス属菌である 場合は、 ひ—アミラーゼ ·シグナル配列、 サブチリシン ·シグナル配列などが、 宿主が酵母である場合は、 メイティングファクター a (MF a) · シグナル配列、 インベル夕一ゼ ·シグナル配列など、 宿主が動物細 である場合には、 例えばィ ンシュリン ·シグナル配列、 α—インターフェロン · シグナル配列、 抗体分子 · シグナル配列などがそれぞれ利用できる。  If necessary, a signal sequence suitable for the host is added to the N-terminal side of the polypeptide or its partial peptide. If the host is a genus Escherichia, the phoA-signal sequence, immediately A signal sequence, etc., if the host is a Bacillus genus, the human amylase signal sequence, subtilisin signal sequence, etc. In the case of yeast, mating factor a (MFa) · signal sequence, signal sequence of Inbellase, etc. When the host is an animal, for example, insulin signal sequence, α-interferon · signal sequence , Antibody molecule, signal sequence, etc. can be used.
このようにして構築された CD 72または CD 100をコードする DNAを含 有するベクターを用いて、 形質転換体を製造することができる。 It contains the DNA encoding CD72 or CD100 constructed in this way. A transformant can be produced using the vector having the transformant.
宿主としては、 たとえばェシエリヒア属菌、 バチルス属菌、 酵母、 昆虫または 昆虫細胞、 動物細胞などが用いられる。  As the host, for example, Escherichia bacteria, Bacillus bacteria, yeast, insects or insect cells, animal cells, and the like are used.
ェシエリヒア属菌としては、 ェシエリヒア ·コリ (Escherichia col i) K 12 . DH 1 〔プロシ一ジングズ ·ォブ ·ザ ·ナショナル ·アカデミー ·ォブ ·サイエ ンシィズ 'ォブ ·ザ ·ユーエスエー (Proc. Natl. Acad. Sci. USA) , 60巻, 1 60 (1 968)〕, JM 103 〔ヌクイレック ·ァシッズ ·リサーチ, (Nucleic Acids Research) , 9巻, 309 (1 98 1)〕 , J A22 1 〔ジャーナル'ォブ · モレキュラー ·バイオロジー (Journal of Molecular Biology) 〕 , 1 20巻, 5 1 7 ( 1 978)) , ΗΒ 1 0 1 〔ジャーナル .ォブ 'モレキュラー 'バイオ口 ジ一, 41巻, 459 (1 969)〕 , C 600 〔ジェネティックス (Genet ics) , 39巻, 440 (1954)〕 , 大腸菌 DH 10 B細胞 〔 F o c u s 1 2, p 19 ( 1 990) Lo r ow, D他〕 などが用いられる。  Examples of the genus Escherichia include Escherichia coli K12. DH1 [Procedures of the National Academy of Sciences of the Proc. Natl. Acad. Sci. USA), 60, 160 (1968)], JM103 [Nucleic Acids Research, (Nucleic Acids Research), 9, 309 (1981)], JA221 [Journal ' Journal of Molecular Biology], 120, 5 17 (1 978)), ΗΒ 10 1 [Journal of Bio Molecular Biology, 41, 459 (Journal of Molecular Biology)] 1969)], C600 [Genetics, 39, 440 (1954)], E. coli DH10 B cells [Focus 12, p19 (1990) Law, D, etc.] Used.
バチルス属菌としては、 たとえばバチルス ·サチルス (BacUlus subtilis) M 1 1 14 〔ジーン, 24巻, 255 (1983)〕 , 207 - 2 1 〔ジャーナル · ォブ ·バイオケミストリー (Journal of Biochemistry) , 95巻, 87 (198 4)〕 などが用いられる。  Examples of Bacillus genus include Bacillus subtilis (BacUlus subtilis) M11114 [Gene, 24, 255 (1983)], 207-21 (Journal of Biochemistry, 95) , 87 (198 4)].
酵母としては、 たとえばサッカロマイセス セレピシェ (Saccharomyces cerevisiae) AH22, AH22 R一, NA87 - 1 1 A, DKD- 5 D, 20 B 一 1 2などが用いられる。  As the yeast, for example, Saccharomyces cerevisiae AH22, AH22R-1, NA87-11A, DKD-5D, 20B112 are used.
昆虫としては、 例えばカイコの幼虫などが用いられる 〔前田ら、 ネイチヤー (Nature) , 3 1 5巻, 592 (1 985)〕 。  As insects, for example, silkworm larvae are used [Maeda et al., Nature, 315, 592 (1985)].
昆虫細胞としては、 例えば、 ウィルスが Ac NPVの場合は、 夜盗蛾の幼虫由 来株化細胞 (Spodoptera frugiperda cell; S f細胞) 、 Trichoplus ia niの中腸 由来の MG 1細胞、 Trichoplusia niの卵由来の High FiveTM細胞、 Mamestra brassicae由来の細胞または Estigmena acrea由来の細胞などが用いられる。 ウイ ルスが BmNP Vの場合は、 蚕由来株化細胞 (Bombyxmori N; BmN細胞) など が用いられる。 該 S f細胞としては、 例えば、 S f 9細胞 (ATCC CRL1711) 、 S f 2 1細胞 〔以上、 Vaughn, L Lら、 イン ·ヴィト口 (in Vl tro) , 1 3巻, 2 13— 217頁 (1977年) 〕 などが用いられる。 As insect cells, for example, when the virus is Ac NPV, a cell line derived from a larva of night roth moth (Spodoptera frugiperda cell; Sf cell), MG1 cell derived from the midgut of Trichoplus ia ni, egg of Trichoplusia ni For example, High Five cells, Mamestra brassicae-derived cells, Estigmena acrea-derived cells and the like are used. When the virus is BmNPV, a cell line derived from silkworm (Bombyxmori N; BmN cell) is used. Examples of the Sf cell include Sf9 cell (ATCC CRL1711), Sf21 cell [Vaughn, LL et al., In Vitro, Vol. 13-217 (1977)].
動物細胞としては、 たとえばサル COS— 7細胞, Vero細胞, チャイニーズハ ムスター細胞 CH〇,DHFR遺伝子欠損チャイニーズハムスター細胞 CHO(d h f r—CHO細胞) , マウス L細胞, マウス 3 T 3細胞、 マウスミエローマ細胞, ヒト ΗΕΚ293細胞、 ヒト FL細胞、 293細胞、 C 127細胞、 BALB 3 Τ3細胞、 Sp_2/〇細胞、 マウス B細胞株 WEH I 231細胞、 P 3U1プ ラズマサイトなどが用いられる。  Examples of animal cells include monkey COS-7 cells, Vero cells, Chinese hamster cells CH〇, DHFR gene-deficient Chinese hamster cells CHO (dhfr-CHO cells), mouse L cells, mouse 3T3 cells, mouse myeloma cells, Human ΗΕΚ293 cells, human FL cells, 293 cells, C127 cells, BALB 3Τ3 cells, Sp_2 / 〇 cells, mouse B cell line WEH I 231 cells, P 3U1 plasma site and the like are used.
ェシエリヒア属菌を形質転換するには、たとえばプロシージングズ'ォブ'ザ · ナショナル ·アカデミー'ォブ *サイエンジィズ'ォブ ·ザ'ユーエスエー(Pro Natl. Acad. Sci. USA) , 69巻, 2 1 10 ( 1972 )やジーン (Gene) , 1 7巻, 107 (1982)などに記載の方法に従って行なわれる。  Transformation of Escherichia sp. Is performed, for example, in Pro Natl. Acad. Sci. USA, 69, 2 The method is carried out according to the method described in, for example, 1 10 (1972) and Gene (17), 107 (1982).
バチルス属菌を形質転換するには、 たとえばモレキュラー ·アンド ·ジエネラ ル ·ジェネティックス (Molecular & General Genetics), 168巻, 1 1 1 (1 979)などに記載の方法に従って行われる。  Transformation of Bacillus spp. Is performed, for example, according to the method described in Molecular & General Genetics, Volume 168, 11 (179).
酵母を形質転換するには、たとえばプロシージングズ ·ォブ *ザ*ナショナル · アカデミー ·ォブ ·サイェンシィズ ·ォブ ·ザ'ユーエスエー(Proc. Natl. Acad. Sci. USA) , 75巻, 1929 (1978)に記載の方法に従って行なわれる。 昆虫細胞または昆虫を形質転換するには、 たとえばバイオノテクノロジー (Bio/Technology) , 6巻, 47— 55頁( 1988年)などに記載の方法に従つ て行なわれる。  Transformation of yeast can be performed, for example, using Proc. Natl. Acad. Sci. USA, Proc. Natl. Acad. Sci. USA, 75, 1929 (Proc. 1978). Transformation of insect cells or insects is performed, for example, according to the method described in Bio / Technology, Vol. 6, pages 47-55 (1988).
動物細胞を形質転換するには、 たとえばヴイロロジー (Virology) , 52巻, 456 (1973)に記載の方法に従って行なわれる。  Transformation of animal cells is performed, for example, according to the method described in Virology, 52, 456 (1973).
発現ベクターの細胞への導入方法としては、 例えば、 リポフエクシヨン法  Examples of a method for introducing an expression vector into cells include the lipofection method.
[Feigner, P. L. et al. プロシ一ジングズ ·ォブ ·ザ ·ナショナル.アカデミー ' ォブ ·サイェンジィズ ·ォブ ·ザ ·ユーエスエー (Proceedings of The National Academy of Sciences of The United States of America) , 84巻, 7413頁 (1987年) 〕 、 リン酸カルシウム法 〔Graham, F. L. and van der Eb, A. J. ヴィロロジー (Virology) , 52巻, 456— 467頁 (1973年) 〕 、 電気 穿孔法 〔Nuemann, E. et al. ェンボ ·ジャーナル (EMB0 J. ) , 1巻, 841— 845頁 (1982年) 〕 等が挙げられる。 [Feigner, PL et al. Proceedings of The National Academy of Sciences of The United States of America, Vol. 84, 7413 (1987)], calcium phosphate method [Graham, FL and van der Eb, AJ Virology, 52, 456-467 (1973)], electroporation method [Nuemann, E. et al. · Journal (EMB0 J.), Volume 1, 841— 845 (1982)].
このようにして、 本発明で用いられる CD 72または CD 100をコ一ドする DNAを含有する発現べク夕一で形質転換された形質転換体が得られる。  Thus, a transformant transformed with the expression vector containing the DNA encoding CD72 or CD100 used in the present invention is obtained.
なお、 動物細胞を用いて、 本発明で用いられる CD 72または CD 100等を 安定に発現させる方法としては、 上記の動物細胞に導入された発現ベクターが染 色体に組み込まれた細胞をクローン選択によって選択する方法がある。 具体的に は、 上記の選択マーカーを指標にして形質転換体を選択する。 さらに、 このよう に選択マーカーを用いて得られた動物細胞に対して、 繰り返しクローン選択を行 なうことによりポリぺプチド等の高発現能を有する安定な動物細胞株を得ること ができる。 また、 d h f r遺伝子を選択マーカ一として用いた場合、 MTX濃度 を徐々に上げて培養し、 耐性株を選択することにより、 dh f r遺伝子とともに、 ポリペプチドまたはその部分ペプチド等をコードする DN Aを細胞内で増幅させ て、 さらに高発現の動物細胞株を得ることもできる。  As a method for stably expressing CD72, CD100, or the like used in the present invention using animal cells, the above-described expression vector introduced into the animal cells and a cell in which the expression vector is incorporated into a chromosome are clone-selected. There are ways to choose. Specifically, a transformant is selected using the above-mentioned selection marker as an index. Furthermore, by repeatedly performing clone selection on the animal cells obtained using the selection marker in this manner, a stable animal cell line having high expression ability of polypeptides or the like can be obtained. In addition, when the dhfr gene is used as a selection marker, the MTX concentration is gradually increased, culture is performed, and by selecting a resistant strain, DNA encoding the polypeptide or its partial peptide, etc., together with the dhfr gene can be transferred to cells. It can also be amplified in E. coli to obtain more highly expressed animal cell lines.
上記の形質転換体をポリペプチド等 (CD72, CD 100) をコードする D N Aが発現可能な条件下で培養し、 ポリペプチド等を生成、 蓄積せしめることに よって、 ポリペプチド等を製造することができる。  The above transformant is cultured under conditions under which DNA encoding the polypeptide etc. (CD72, CD100) can be expressed, and the polypeptide etc. can be produced and accumulated by producing and accumulating the polypeptide etc. .
宿主がェシエリヒア属菌、 バチルス属菌である形質転換体を培養する際、 培養 に使用される培地としては液体培地が適当であり、 その中には該形質転換体の生 育に必要な炭素源、 窒素源、 無機物その他が含有せしめられる。 炭素源としては、 たとえばグルコース、 デキストリン、 可溶性澱粉、 ショ糖など、 窒素源としては、 たとえばアンモニゥム塩類、 硝酸塩類、 コーンスチープ ·リカー、 ペプトン、 力 ゼイン、 肉エキス、 大豆粕、 バレイショ抽出液などの無機または有機物質、 無機 物としてはたとえば塩化カルシウム、 リン酸二水素ナトリウム、 塩化マグネシゥ ムなどが挙げられる。 また、 酵母エキス、 ビタミン類、 生長促進因子などを添加 してもよい。 培地の pHは約 5〜8が望ましい。  When culturing a transformant whose host is a bacterium belonging to the genus Escherichia or Bacillus, a liquid medium is suitable as a medium used for the cultivation, and a carbon source necessary for the growth of the transformant is contained therein. , Nitrogen sources, inorganic substances and others. Examples of carbon sources include glucose, dextrin, soluble starch, and sucrose.Examples of nitrogen sources include ammonium salts, nitrates, corn chip liquor, peptone, potato zein, meat extract, soybean meal, and potato extract. Examples of the inorganic or organic substance and the inorganic substance include calcium chloride, sodium dihydrogen phosphate, and magnesium chloride. In addition, yeast extract, vitamins, growth promoting factors and the like may be added. The pH of the medium is preferably about 5-8.
ェシエリヒア属菌を培養する際の培地としては、 例えばグルコース、 カザミノ 酸を含む M 9培地 〔ミラー (Miller) , ジャーナル ·ォブ ·ェクスペリメンッ · イン ·モレキュラー ·シエネティックス (Journal of Experiments in Molecular Genetics) , 431—433, Cold Spring Harbor Laboratory, New York. 19 72〕 が好ましい。 ここに必要によりプロモー夕一を効率よく働かせるために、 たとえば 3 3—インドリルアクリル酸のような薬剤を加えることができる。 Examples of a medium for culturing the genus Escherichia include, for example, an M9 medium containing glucose and casamino acid (Miller, Journal of Experiments in Molecular Genetics). 431-433, Cold Spring Harbor Laboratory, New York. 19 72] is preferred. If necessary, a drug such as 33-indolylacrylic acid can be added to make the promotion work efficiently.
宿主がェシエリヒア属菌の場合、 培養は通常約 1 5〜43°Cで約 3〜24時間 行い、 必要により、 通気や撹拌を加えることもできる。  When the host is a bacterium belonging to the genus Escherichia, the cultivation is usually performed at about 15 to 43 ° C for about 3 to 24 hours, and if necessary, aeration and stirring may be added.
宿主がバチルス属菌の場合、 培養は通常約 30〜 40 °Cで約 6〜 24時間行な レ 必要により通気や撹拌を加えることもできる。  When the host is a bacterium belonging to the genus Bacillus, cultivation is usually performed at about 30 to 40 ° C for about 6 to 24 hours.
宿主が酵母である形質転換体を培養する際、 培地としては、 たとえばバークホ 一ルダー (Burkholder) 最小培地 〔Bostian, K. L. ら、 「プロシージングズ *ォ ブ ·ザ ·ナショナル ·アカデミー ·ォブ ·サイェンシィズ ·ォブ ·ザ ·ユーエス ェ一 (Proc. Natl. Acad. Sci. USA) , 77卷' 4505 (1 980)〕 や 0. 5%カザミノ酸を含有する SD培地 〔Bitter, G. A. ら、 「プロシージングズ- ォブ ·ザ ·ナショナル ·アカデミー ·ォブ ·サイェンシィズ ·ォブ ·ザ ·ユーェ スエー (Pro atl. Acad. Sci. USA) , 8 1巻, 5330 ( 1 984) 〕 力 挙げられる。培地の ρΗは約 5〜 8に調整するのが好ましい。培養は通常約 2 Ot: 〜35 で約 24〜72時間行い、 必要に応じて通気や撹拌を加える。  When culturing a transformant in which the host is yeast, the culture medium may be, for example, Burkholder's minimal medium [Bostian, KL, et al., “Procedures * of the National Academy of Sciences”. Natl. Acad. Sci. USA, 77 vol.'4505 (1980)] or an SD medium containing 0.5% casamino acid [Bitter, GA et al. Seasings-of-the-National-Academy-of-the-Sciences-of-the-Your-Sue (Pro atl. Acad. Sci. USA), 81, 5330 (1 984)] The ρΗ is preferably adjusted to about 5 to 8. Culture is usually performed at about 2 Ot: ~ 35 for about 24 to 72 hours, and aeration and stirring are added as necessary.
宿主が昆虫細胞である形質転換体を培養する際、培地としては、 Grace' s Insect Medium (Grace, T. C. C. ,ネィチヤ一 (Nature) , 195, 788 (1962)) に非動化した 1 0 %ゥシ血清等の添加物を適宜加えたものなどが用いられる。 培地の p Hは約 6. 2〜6. 4に調整するのが好ましい。 培養は通常約 27°Cで約 3〜5日間行い、 必要に応じて通気や撹拌を加える。  When culturing a transformant whose host is an insect cell, the culture medium was immobilized in Grace's Insect Medium (Grace, TCC, Nature, 195, 788 (1962)). Those to which additives such as serum are appropriately added are used. The pH of the medium is preferably adjusted to about 6.2 to 6.4. Culture is usually performed at about 27 ° C for about 3 to 5 days, and aeration and / or agitation are added as necessary.
宿主が動物細胞である形質転換体を培養する際、 培地としては、 たとえば約 5 〜20 %の胎児牛血清を含む MEM培地 〔サイエンス (Seience) , 1 22巻, 5 0 1 (1 952)〕 , DMEM培地 〔ヴイロロジー (Virology) , 8巻, 396 (1 959)〕 , RPM I 1640培地 〔ジャーナル 'ォブ ·ザ ·アメリカン 'メデ イカル 'アソシエーション (The Jounal of The American Medical Association) 199巻, 5 1 9 (1967)〕 , 1 99培地 〔プロシージング ·ォブ ·ザ ·ソサ イエティ ·フォー'ザ 'バイオロジカル'メディスン (Proceeding of The Society for The Biological Medicine) , 73巻, 1 ( 1 950)〕 などが用いられる。 p Hは約 6〜 8であるのが好ましい。 培養は通常約 30° (:〜 40°Cで約 1 5〜60 時間行い、 必要に応じて通気や撹拌を加える。 When culturing a transformant in which the host is an animal cell, for example, a MEM medium containing about 5 to 20% fetal bovine serum [Seience, 122, 501 (1952)] , DMEM medium (Virology, 8, 396 (1959)), RPMI 1640 medium (Journal of the American Medical Association, The Jounal of The American Medical Association, 199, 5 1 9 (1967)], 199 medium [Proceeding of the Society for The Biological Medicine], 73, 1 (1 950)] Are used. Preferably, the pH is about 6-8. Culture is usually about 30 ° (: about 15-60 at ~ 40 ° C) Perform for a while, and add aeration and stirring as needed.
特に C HO (dhfr") 細胞および dh f r遺伝子を選択マーカ一として用いる場合 には、 チミジンをほとんど含まない透析ゥシ胎児血清を含む D M E M培地を用い るのが好ましい。  In particular, when using CHO (dhfr ") cells and the dhfr gene as selection markers, it is preferable to use a DMEM medium containing dialyzed fetal serum containing almost no thymidine.
上記培養物から本発明で用いられる C D 7 2または C D 1 0 0を分離精製する には、 例えば下記の方法により行なうことができる。  The CD72 or CD100 used in the present invention can be separated and purified from the above culture by, for example, the following method.
本発明で用いられる C D 7 2または C D 1 0 0を培養菌体あるいは細胞から抽 出するに際しては、 培養後、 公知の方法で菌体あるいは細胞を集め、 これを適当 な緩衝液に懸濁し、 超音波、 リゾチームおよび Zまたは凍結融解などによって菌 体あるいは細胞を破壊したのち、 遠心分離やろ過によりポリペプチドの粗抽出液 を得る方法などが適宜用い得る。 緩衝液の中に尿素や塩酸グァニジンなどのたん ばく変性剤や、 トリトン X— 1 0 0 (登録商標。 以下、 TMと省略することがあ る。 ) などの界面活性剤が含まれていてもよい。  When CD72 or CD100 used in the present invention is extracted from cultured cells or cells, the cells or cells are collected by a known method after culturing, and the cells or cells are suspended in an appropriate buffer. After disrupting cells or cells by ultrasonication, lysozyme, Z or freeze-thawing, a method of obtaining a crude extract of the polypeptide by centrifugation or filtration may be used as appropriate. Even if the buffer contains a protein denaturing agent such as urea or guanidine hydrochloride, or a surfactant such as Triton X-100 (registered trademark, sometimes abbreviated as TM). Good.
培養液中に本発明で用いられる C D 7 2または C D 1 0 0が分泌される場合に は、 培養終了後、 自体公知の方法で菌体あるいは細胞と上清とを分離し、 上清を 集める。  If CD72 or CD100 used in the present invention is secreted into the culture solution, after the culture is completed, the supernatant is separated from the cells or cells by a method known per se, and the supernatant is collected. .
このようにして得られた培養上清、 あるいは抽出液中に含まれる本発明で用い られる C D 7 2または C D 1 0 0の精製は、 自体公知の分離 ·精製法を適切に組 み合わせて行なうことができる。 これらの公知の分離、 精製法としては、 塩析ゃ 溶媒沈澱法などの溶解度を利用する方法、 透析法、 限外ろ過法、 ゲルろ過法、 お よび S D S—ポリアクリルアミドゲル電気泳動法などの主として分子量の差を利 用する方法、 イオン交換クロマトグラフィーなどの荷電の差を利用する方法、 ァ フィ二ティ一クロマトグラフィ一などの特異的親和性を利用する方法、 逆相高速 液体クロマトグラフィーなどの疎水性の差を利用する方法、 等電点電気泳動法や クロマトフォーカシングなどの等電点の差を利用する方法などが用いられる。 かくして得られる本発明で用いられる C D 7 2または C D 1 0 0が遊離体で得 られた場合には、 自体公知の方法あるいはそれに準じる方法によって塩に変換す ることができ、 逆に塩で得られた場合には自体公知の方法あるいはそれに準じる 方法により、 遊離体または他の塩に変換することができる。 なお、 組換え体が産生する本発明で用いられる CD 72または CD 100を、 精製前または精製後に適当な蛋白修飾酵素を作用させることにより、 任意に修飾 を加えたり、 ポリペプチドを部分的に除去することもできる。 蛋白修飾酵素とし ては、 例えば、 トリプシン、 キモトリブシン、 アルギニルエンドべプチダーゼ、 プロテインキナーゼ、 グリコシダーゼなどが用いられる。 Purification of the CD72 or CD100 used in the present invention contained in the culture supernatant or the extract obtained in this manner is carried out by appropriately combining known separation and purification methods. be able to. These known separation and purification methods mainly include methods utilizing solubility such as salting out and solvent precipitation, dialysis, ultrafiltration, gel filtration, and SDS-polyacrylamide gel electrophoresis. Method using difference in molecular weight, Method using charge difference such as ion exchange chromatography, Method using specific affinity such as affinity chromatography, Hydrophobic such as reversed phase high performance liquid chromatography A method utilizing the difference in gender, a method utilizing the difference in isoelectric points such as isoelectric focusing, and chromatofocusing are used. When CD72 or CD100 used in the present invention thus obtained is obtained in a free form, it can be converted into a salt by a method known per se or a method analogous thereto, and conversely, it can be obtained in a salt form. In the case where it is obtained, it can be converted into a free form or another salt by a method known per se or a method analogous thereto. CD72 or CD100 used in the present invention produced by the recombinant can be arbitrarily modified or the polypeptide can be partially removed before or after purification by the action of an appropriate protein-modifying enzyme. You can also. As the protein modifying enzyme, for example, trypsin, chymotrypsin, arginyl endopeptidase, protein kinase, glycosidase and the like are used.
かくして生成する本発明のポリペプチドの存在は特異抗体を用いたェンザィム ィムノアッセィなどにより測定することができる。  The presence of the polypeptide of the present invention thus produced can be measured by enzyme immunoassay using a specific antibody or the like.
〔CD 100と CD72との結合性を変化させる化合物またはその塩のスクリー ニング法 (リガンド ' レセプ夕一アツセィ系) 〕 [Screening method for compounds that alter the binding between CD100 and CD72 or salts thereof (Ligand 'Recept Yuichi Atsushi system)]
CD 100またはその塩および CD 72またはその塩を用いることを特徴とす る、 CD 100またはその塩と CD 72またはその塩との結合性を変化させる化 合物またはその塩のスクリーニング方法、 または CD 100またはその塩および CD 72またはその塩を用いることを特徴とする、 CD 100またはその塩と C D 72またはその塩との結合性を変化させる化合物またはその塩のスクリーニン グ用キット (以下、 本発明のスクリーニング方法、 本発明のスクリーニング用キ ットと略記する) について以下に詳述する。  A method for screening a compound or a salt thereof that alters the binding property between CD100 or a salt thereof and CD72 or a salt thereof, comprising using CD100 or a salt thereof and CD72 or a salt thereof, or CD. A screening kit for a compound or a salt thereof that alters the binding between CD100 or a salt thereof and CD72 or a salt thereof, characterized by using 100 or a salt thereof and CD72 or a salt thereof. The screening method of the present invention and the screening kit of the present invention are abbreviated below.
受容体として CD 72またはその塩を用いるか、 または組換え型 CD 72の発 現系を構築し、該発現系を用いた CD 100またはその塩との結合アツセィ系(リ ガンド ·レセプ夕一アツセィ系) を用いることによって、 CD 100またはその 塩と CD 72またはその塩との結合性を変化させる化合物 (例えば、 ペプチド、 蛋白質、 非ペプチド性化合物、 合成化合物、 発酵生産物など) またはその塩をス クリーニングすることができる。  Either use CD72 or a salt thereof as a receptor, or construct a recombinant CD72 expression system, and use the expression system to bind CD100 or a salt thereof to a ligand-based receptor system (Ligand Receptor Aichi-Atsui). The compound (eg, peptide, protein, non-peptidic compound, synthetic compound, fermentation product, etc.) or its salt that changes the binding between CD100 or its salt and CD72 or its salt by using Can be screened.
このような化合物には、 CD 72を介して免疫反応促進活性 〔例えば、 抗原特 異的 I gGなどの抗体産生; TD (T細胞依存性) 抗原に対する抗体産生、 T細 胞の増殖性、 I L一 4産生、 インターフェロンガンマ産生などの T細胞反応性; I L一 12産生などの樹状細胞反応性などを促進する活性または抑制する活性な ど〕 を有する化合物 (即ち CD72ァゴニスト) と該免疫反応促進活性を有しな い化合物 (即ち CD 72アン夕ゴニスト) などが含まれる。 「 CD 100またはその塩とその受容体(例、 CD 72またはその塩) との結 合性を変化させる」 とは、 CD 100またはその塩とその受容体(例、 CD 72 またはその塩) との結合を阻害する場合とリガンドとの結合を促進する場合の両 方を包含するものである。 Such compounds include CD72-mediated immune response-promoting activity [eg, the production of antibodies such as antigen-specific IgG; the production of antibodies to TD (T cell-dependent) antigens; the proliferation of T cells; (I.e., T cell reactivity such as production of interferon gamma, activity to promote or suppress dendritic cell reactivity such as production of IL-12, etc.) (ie, CD72 agonist) and the promotion of the immune response. Compounds having no activity (ie, CD72 antagonist) are included. “Changing the binding between CD100 or its salt and its receptor (eg, CD72 or its salt)” means that CD100 or its salt and its receptor (eg, CD72 or its salt) This includes both the case of inhibiting the binding of and the case of promoting the binding to the ligand.
すなわち、 本発明は、 ( i) CD72またはその塩に、 CD 100またはその 塩を接触させた場合と (ii) 上記した CD 72またはその塩に、 CD 100また はその塩および試験化合物を接触させた場合との比較を行なうことを特徴とする CD 100またはその塩と CD 72またはその塩との結合性を変化させる化合物 またはその塩のスクリーニング方法を提供する。  That is, the present invention relates to (i) a case where CD100 or a salt thereof is brought into contact with CD100 or a salt thereof, and (ii) a case where the above-mentioned CD72 or a salt thereof is brought into contact with CD100 or a salt thereof and a test compound. And a method for screening a compound or a salt thereof that alters the binding property between CD100 or a salt thereof and CD72 or a salt thereof, wherein the method is characterized by comparing with CD100 or a salt thereof.
本発明のスクリーニング方法においては、 ( i) 上記した CD72またはその 塩に、 CD 100またはその塩を接触させた場合と (ii) 上記した CD 72また はその塩に、 CD 100またはその塩および試験化合物を接触させた場合におけ る、 例えば該 CD 72またはその塩に対するリガンドの結合量や抗体産生などの 免疫反応促進活性などを測定して、 比較する。  In the screening method of the present invention, (i) a case in which CD100 or a salt thereof is brought into contact with CD100 or a salt thereof, and (ii) a case in which the above-mentioned CD72 or a salt thereof is contacted with CD100 or a salt thereof, and When the compound is brought into contact, for example, the amount of a ligand bound to the CD72 or a salt thereof, the activity of promoting an immune reaction such as antibody production, and the like are measured and compared.
本発明のスクリーニング方法は具体的には、  Specifically, the screening method of the present invention
①標識した CD 100またはその塩を、 上記した CD 72またはその塩に接触さ せた場合と、 標識した CD 100またはその塩および試験化合物を CD 72また はその塩に接触させた場合における、 標識した CD 100またはその塩の該 CD 72またはその塩に対する結合量を測定し、 比較することを特徴とする CD 10 0またはその塩と CD 72またはその塩との結合性を変化させる化合物またはそ の塩のスクリーニング方法、  (1) Labeling when the labeled CD100 or its salt is brought into contact with the above-mentioned CD72 or its salt, and when the labeled CD100 or its salt and the test compound are brought into contact with CD72 or its salt Measuring the amount of binding of the obtained CD100 or a salt thereof to the CD72 or a salt thereof, and comparing the measured amount, and a compound or a compound thereof that changes the binding property between CD100 or a salt thereof and CD72 or a salt thereof. Salt screening method,
②標識した CD 100またはその塩を、 CD 72またはその塩を含有する細胞ま たは該細胞の膜画分に接触させた場合と、 標識した CD 100またはその塩およ び試験化合物を CD 72またはその塩を含有する細胞または該細胞の膜画分に接 触させた場合における、 標識した CD 100またはその塩の該細胞または該膜画 分に対する結合量を測定し、 比較することを特徴とする CD 100またはその塩 と C D 72またはその塩との結合性を変化させる化合物またはその塩のスクリー ニング方法、  (2) When labeled CD100 or a salt thereof is brought into contact with a cell containing CD72 or a salt thereof or a membrane fraction of the cell, or when labeled CD100 or a salt thereof and a test compound are contacted with CD72 or a salt thereof. Or measuring the amount of labeled CD100 or a salt thereof bound to the cell or the membrane fraction in the case of contact with a cell containing the salt or a membrane fraction of the cell, and comparing the measured amounts. A method for screening a compound or a salt thereof that changes the binding property between CD100 or a salt thereof and CD72 or a salt thereof,
③標識した CD 100またはその塩を、 CD 72をコードする DNAを含有する 形質転換体を培養することによつて細胞膜上に発現した C D 72またはその塩に 接触させた場合と、 標識した CD 100またはその塩および試験化合物を CD 7 2をコードする DNAを含有する形質転換体を培養することによつて細胞膜上に 発現した CD 72またはその塩に接触させた場合における、 標識した CD 100 またはその塩の CD 72またはその塩に対する結合量を測定し、 比較することを 特徴とする CD 100またはその塩と CD 72またはその塩との結合性を変化さ せる化合物またはその塩のスクリーニング方法、 (3) Contains labeled CD100 or its salt, and DNA encoding CD72 When the transformant was contacted with CD72 or its salt expressed on the cell membrane by culturing the transformant, and the transformant containing the labeled CD100 or its salt and the test compound containing DNA encoding CD72. The method is characterized by measuring the amount of labeled CD100 or its salt bound to CD72 or its salt when exposed to CD72 or its salt expressed on the cell membrane by culturing the body, and comparing it. A method for screening a compound or a salt thereof that alters the binding property between CD100 or a salt thereof and CD72 or a salt thereof,
④ CD 72またはその塩を活性化する化合物(例えば、 CD 100またはその塩) を CD 72またはその塩を含有する細胞に接触させた場合と、 CD 72またはそ の塩を活性化する化合物および試験化合物を CD 72またはその塩を含有する細 胞に接触させた場合における、 CD 72またはその塩を介した免疫反応促進活性 〔例えば、 抗原特異的 I gGなどの抗体産生; TD (T細胞依存性) 抗原に対す る抗体産生、 T細胞の増殖性、 I L一 4産生、 インターフェロンガンマ産生など の T細胞反応性; I L一 12産生などの榭状細胞反応性などを促進する活性また は抑制する活性など〕 を測定し、 比較することを特徴とする CD 100またはそ の塩と CD 72またはその塩との結合性を変化させる化合物またはその塩のスク リーニング方法、 および  化合物 A compound that activates CD72 or a salt thereof (eg, CD100 or a salt thereof) is contacted with a cell containing CD72 or a salt thereof, and a compound or test that activates CD72 or a salt thereof. CD72 or its salt-mediated immune response-promoting activity when a compound is contacted with cells containing CD72 or a salt thereof [eg, production of an antibody such as an antigen-specific IgG; TD (T cell-dependent ) T cell reactivity such as antibody production against antigen, T cell proliferation, IL-14 production, interferon gamma production, etc .; activity to promote or suppress 榭 dendritic cell reactivity such as IL-12 production, etc. And a method for screening a compound or a salt thereof that changes the binding property between CD100 or a salt thereof and CD72 or a salt thereof, and
©CD 72またはその塩を活性化する化合物(例えば、 CD 100またはその塩 など) を CD 72をコードする DNAを含有する形質転換体を培養することによ つて細胞膜上に発現した CD 72またはその塩に接触させた場合と、 CD72ま たはその塩を活性化する化合物および試験化合物を、 CD 72をコードする DN Aを含有する形質転換体を培養することによつて細胞膜上に発現した C D 72ま たはその塩に接触させた場合における、 CD 72またはその塩を介する免疫反応 促進活性 〔例えば、 抗原特異的 I gGなどの抗体産生; TD (T細胞依存性) 抗 原に対する抗体産生、 T細胞の増殖性、 I L一 4産生、 インターフェロンガンマ 産生などの T細胞反応性; I L一 12産生などの榭状細胞反応性などを促進する 活性または抑制する活性など〕 を測定し、 比較することを特徴とする CD 100 またはその塩と CD 72またはその塩との結合性を変化させる化合物またはその 塩のスクリーニング方法などである。 本発明のスクリーニング方法の具体的な説明を以下にする。 © CD72 or a compound that activates CD72 or a salt thereof (for example, CD100 or a salt thereof) expressed on the cell membrane by culturing a transformant containing DNA encoding CD72. When exposed to a salt, a compound that activates CD72 or a salt thereof and a test compound are expressed on a cell membrane by culturing a transformant containing DNA encoding CD72. CD72 or its salt-mediated immune response promoting activity when exposed to 72 or a salt thereof [for example, production of an antibody such as an antigen-specific IgG; production of an antibody against a TD (T cell-dependent) antigen; T cell proliferation, T cell reactivity such as IL-14 production, interferon gamma production; activity to promote or suppress dendritic cell reactivity such as IL-12 production, etc.] CD featuring A screening method for a compound or a salt thereof that alters the binding between 100 or a salt thereof and CD72 or a salt thereof. The specific description of the screening method of the present invention is as follows.
まず、 本発明のスクリーニング方法に用いる CD 72としては、 上記の CD 72 を含有するものであれば何れのものであってもよいが、 ヒト、 温血動物、 魚類な どの臓器の膜画分などが好適である。 しかし、 特にヒト由来の臓器は入手が極め て困難なことから、 スクリーニングに用いられるものとしては、 組換え体を用い て大量発現させた CD 72またはその塩などが適している。 First, as the CD72 used in the screening method of the present invention, any CD72 may be used as long as it contains the above-mentioned CD72, but the membrane fraction of organs such as humans, warm-blooded animals, and fish may be used. Is preferred. However, since it is extremely difficult to obtain human-derived organs in particular, CD72 or a salt thereof expressed in a large amount using a recombinant is suitable for screening.
CD 72またはその塩を製造するには、 前述の方法などが用いられる。  To produce CD72 or a salt thereof, the above-described methods and the like are used.
本発明のスクリーニング方法において、 CD 72またはその塩を含有する細胞 あるいは該細胞膜画分などを用いる場合、 後述の調製法に従えばよい。  In the screening method of the present invention, when cells containing CD72 or a salt thereof or a cell membrane fraction thereof are used, the preparation method described later may be followed.
CD 72またはその塩を含有する細胞を用いる場合、 該細胞をダルタルアルデ ヒド、 ホルマリンなどで固定化してもよい。 固定化方法はそれ自体公知の方法に 従って行うことができる。  When cells containing CD72 or a salt thereof are used, the cells may be immobilized with datalaldehyde, formalin, or the like. The immobilization method can be performed according to a method known per se.
CD 72またはその塩を含有する細胞としては、 CD 72またはその塩を発現 した宿主細胞をいうが、 該宿主細胞としては、 前述の大腸菌、 枯草菌、 酵母、 昆 虫細胞、 動物細胞などが挙げられる。  The cell containing CD72 or a salt thereof refers to a host cell expressing CD72 or a salt thereof. Examples of the host cell include the aforementioned Escherichia coli, Bacillus subtilis, yeast, insect cells, animal cells, and the like. Can be
膜画分としては、 細胞を破碎した後、 それ自体公知の方法で得られる細胞膜が 多く含まれる画分のことをいう。 細胞の破砕方法としては、 Potter— Elvehjem型 ホモジナイザーで細胞を押し潰す方法、 ワーリングブレンダーゃポリトロン (Kinematica社製) による破砕、 超音波による破砕、 フレンチプレスなどで加圧 しながら細胞を細いノズルから噴出させることによる破碎などが挙げられる。 細 胞膜の分画には、 分画遠心分離法や密度勾配遠心分離法などの遠心力による分画 法が主として用いられる。 例えば、 細胞破碎液を低速 (500 r pm〜3000 r pm) で短時間 (通常、 約 1分〜 10分) 遠心し、 上清をさらに高速 (150 00 r pm〜30000 r pm) で通常 30分〜 2時間遠心し、 得られる沈澱を 膜画分とする。 該膜画分中には、 発現した CD 72またはその塩と細胞由来のリ ン脂質や膜蛋白質などの膜成分が多く含まれる。  The membrane fraction refers to a fraction containing a large amount of cell membrane obtained by a method known per se after cell disruption. The cells can be crushed by crushing the cells with a Potter-Elvehjem homogenizer, crushing with a Waring Blender ゃ Polytron (Kinematica), crushing with ultrasonic waves, or squirting the cells from a narrow nozzle while applying pressure with a French press. Crushing and the like. For cell membrane fractionation, centrifugal fractionation methods such as differential centrifugation and density gradient centrifugation are mainly used. For example, the cell lysate is centrifuged at a low speed (500 rpm to 3000 rpm) for a short time (typically about 1 minute to 10 minutes), and the supernatant is further centrifuged at a higher speed (1500 rpm to 30000 rpm). Centrifuge for 1 minute to 2 hours, and use the resulting precipitate as the membrane fraction. The membrane fraction is rich in the expressed CD72 or a salt thereof and membrane components such as cell-derived phospholipids and membrane proteins.
該 CD 72またはその塩を含有する細胞や膜画分中の CD 72またはその塩の 量は、 1細胞当たり 103〜108分子であるのが好ましく、 105〜107分子で あるのが好適である。 なお、 発現量が多いほど膜画分当たりのリガンド結合活性 (比活性) が高くなり、 高感度なスクリーニング系の構築が可能になるばかりで なく、 同一ロッ卜で大量の試料を測定できるようになる。 The amount of CD72 or a salt thereof in a cell or a membrane fraction containing the CD72 or a salt thereof is preferably 10 3 to 10 8 molecules per cell, and more preferably 10 5 to 10 7 molecules per cell. It is suitable. The higher the expression level, the higher the ligand binding activity per membrane fraction (Specific activity), which not only makes it possible to construct a highly sensitive screening system, but also makes it possible to measure a large number of samples in the same lot.
CD 100またはその塩と CD 72またはその塩との結合性を変化させる化合 物をスクリーニングする前記の①〜③を実施するためには、 適当な CD 72画分 と、 標識したリガンド (CD 100) が用いられる。 CD 72画分としては、 天 然型の CD 72画分か、 またはそれと同等の活性を有する組換え型 CD 72画分 などが望ましい。 ここで、 同等の活性とは、 同等のリガンド結合活性などを示す。 標識したリガンドとしては、 標識したリガンド (CD 100) 、 標識したリガン ド (CD 100) アナログ化合物などが用いられる。 例えば 〔3H〕 、 〔1251〕 、 〔14C〕 、 〔35S〕 などで標識されたリガンド (CD 100) などを利用するこ とができる。 特に、 ボルトン一ハン夕一試薬を用いて公知の方法で調製した CD 100または CD 100誘導体の標識体を利用することもできる。 In order to carry out the above steps (1) to (3) for screening a compound that alters the binding between CD100 or a salt thereof and CD72 or a salt thereof, an appropriate CD72 fraction and a labeled ligand (CD100) Is used. As the CD72 fraction, a natural CD72 fraction or a recombinant CD72 fraction having an activity equivalent thereto is desirable. Here, the equivalent activity means equivalent ligand binding activity and the like. As the labeled ligand, a labeled ligand (CD 100), a labeled ligand (CD 100) analog compound, or the like is used. For example [3 H], [125 1], [14 C], it is the child utilizing such a ligand which is labeled with a [35 S] (CD 100). In particular, a labeled form of CD100 or a CD100 derivative prepared by a known method using Bolton-Han-Yuichi reagent can also be used.
具体的には、 CD 100またはその塩と CD 72またはその塩との結合性を変 化させる化合物のスクリーニングを行うには、 まず CD 72またはその塩を含有 する細胞または細胞の膜画分を、 スクリーニングに適した緩衝液に懸濁すること によりレセプ夕一標品を調製する。 緩衝液には、 pH4~10 (望ましくは pH 6〜8) のリン酸緩衝液、 トリスー塩酸緩衝液などのリガンドとレセプ夕一との 結合を阻害しない緩衝液であればいずれでもよい。 また、 非特異的結合を低減さ せる目的で、 CHAPS、 Twe e n- 80™ (花王—アトラス社) 、 ジギトニ ン、 デォキシコレートなどの界面活性剤を緩衝液に加えることもできる。 さらに、 プロテアーゼによる CD 72や CD 100の分解を抑える目的で PMS F、 ロイ ぺプチン、 E—64 (ペプチド研究所製) 、 ぺプス夕チンなどのプロテアーゼ阻 害剤を添加することもできる。 0.0 lml〜 10mlの該レセプ夕ー溶液に、一定 量 (5000 c pm〜500000 c m) の標識した CD 100を添加し、 同 時に 10一4〜 10— 1 Mの試験化合物を共存させる。 非特異的結合量 (NSB) を知るために大過剰の未標識の CD 100またはその塩を加えた反応チューブも 用意する。 反応は 0°Cから 50 、 望ましくは 4 から 37 で 20分から 24 時間、 望ましくは 30分から 3時間行う。 反応後、 ガラス繊維濾紙等で濾過し、 適量の同緩衝液で洗浄した後、 ガラス繊維濾紙に残存する放射活性を液体シンチ レーシヨンカウン夕一またはァーカウン夕一で計測する。 拮抗する物質がない場 合のカウント(B。) から非特異的結合量 (NSB) を引いたカウント (B。一 N SB) を 100%とした時、 特異的結合量 (B— NSB) が例えば 50%以下に なる試験化合物を拮抗阻害能力のある候補物質として選択することができる。 また、 CD 72またはその塩と CD 100またはその塩との結合を測定する方 法として、 B I Ac o r e (アマシャムフアルマシアバイオテク社製) を用いる こともできる。 この方法では、 CD 100またはその塩あるいはその誘導体を装 置に添付のプロトコルに従ったァミノカツプリング法によってセンサーチップに 固定し、 CD 72またはその塩を含有する細胞または CD 72をコードする DN Aを含有する形質変換体から精製した CD 72またはその塩または CD 72また はその塩を含む膜画分、 あるいは精製した CD 72またはその塩または CD 72 またはその塩を含む膜画分および試験化合物を含むリン酸緩衝液またはトリス緩 衝液などの緩衝液をセンサーチップ上を毎分 2— 20 \の流量で通過させる。 センサーチップ上の CD 100またはその塩と CD 72またはその塩とが結合す ることによって生じる表面プラズモン共鳴の変化を共存する試験化合物が変化さ せることを観察することによって CD 72またはその塩と CD 100またはその 塩との結合性を変化させる化合物のスクリーニングを行なうことができる。 この 方法は、 CD 72またはその塩をセンサ一チップに固定し、 CD 100またはそ の塩、 または CD 100またはその塩および試験化合物を含むリン酸緩衝液また はトリス緩衝液などの緩衝液をセンサ一チップ上を通過させる方法を用いても同 様に測定することができる。 試験化合物としては、 上記と同様のものなどがあげ られる。 Specifically, to screen for a compound that alters the binding between CD100 or a salt thereof and CD72 or a salt thereof, first, cells containing the CD72 or a salt thereof or a membrane fraction of the cell are subjected to screening. Prepare an overnight receptor sample by suspending it in a buffer suitable for screening. The buffer may be any buffer such as a phosphate buffer having a pH of 4 to 10 (preferably pH 6 to 8) or a buffer such as Tris-HCl buffer which does not inhibit the binding between the ligand and the receptor. In addition, surfactants such as CHAPS, Tween-80 ™ (Kao-Atlas), digitonin, and dexcholate can be added to the buffer to reduce non-specific binding. Further, a protease inhibitor such as PMSF, leptin, E-64 (manufactured by Peptide Research Institute), or peptidyltin can be added in order to suppress the degradation of CD72 and CD100 by the protease. 0.0 to the receptions evening over a solution of lml~ 10ml, was added labeled CD 100 a certain amount (5000 c pm~500000 cm), the coexistence of test compound simultaneously 10 one 4 ~ 10- 1 M. Prepare a reaction tube containing a large excess of unlabeled CD100 or its salt to determine the amount of non-specific binding (NSB). The reaction is carried out at 0 ° C. to 50, preferably 4 to 37, for 20 minutes to 24 hours, preferably 30 minutes to 3 hours. After the reaction, the reaction solution is filtered through a glass fiber filter, washed with an appropriate amount of the same buffer, and the radioactivity remaining on the glass fiber filter is measured by liquid scintillation. Measure in the evening of the race county or the evening of the county count. When the nonspecific binding amount (NSB) is subtracted from the count (B.) when there is no antagonistic substance and the count (B. NSB) is 100%, the specific binding amount (B—NSB) is For example, a test compound having 50% or less can be selected as a candidate substance having a competitive inhibitory ability. As a method for measuring the binding between CD72 or a salt thereof and CD100 or a salt thereof, BI Acore (manufactured by Amersham Pharmacia Biotech) can also be used. In this method, CD100 or a salt thereof or a derivative thereof is immobilized on a sensor chip by an amino coupling method according to a protocol attached to the device, and a cell containing CD72 or a salt thereof or a DN encoding CD72. CD72 or a salt thereof purified from a transformant containing A or a membrane fraction containing CD72 or a salt thereof, or a purified CD72 or a membrane fraction containing a salt thereof or CD72 or a salt thereof and a test compound Pass a buffer solution such as phosphate buffer or Tris buffer solution containing at a flow rate of 2-20 \ per minute over the sensor chip. By observing a change in the test compound that coexists with the change in surface plasmon resonance caused by the binding of CD100 or its salt to CD72 or its salt on the sensor chip, CD72 or its salt and CD Compounds that alter the binding to 100 or a salt thereof can be screened. In this method, CD72 or a salt thereof is immobilized on a sensor chip, and a buffer solution such as a phosphate buffer or a Tris buffer containing CD100 or a salt thereof, or CD100 or a salt thereof and a test compound is sensed. The same measurement can be performed by using a method of passing through one chip. Examples of the test compound include the same compounds as described above.
CD 100またはその塩と CD 72またはその塩との結合性を変化させる化合 物をスクリーニングする前記の④〜⑤の方法を実施するためには、 CD 72また はその塩を介する免疫反応促進活性〔例えば、抗原特異的 I g Gなどの抗体産生; TD (T細胞依存性) 抗原に対する抗体産生、 T細胞の増殖性、 I L一 4産生、 インターフェロンガンマ産生などの T細胞反応性; I L_ 12産生などの樹状細 胞反応性などを促進する活性または抑制する活性など〕 を公知の方法または市販 の測定用キットを用レ ^て測定することができる。 具体的には、 まず、 CD 72またはその塩を含有する細胞をマルチウエルプレ —ト等に培養する。 スクリーニングを行うにあたっては前もって新鮮な培地ある いは細胞に毒性を示さない適当な緩衝液に交換し、 試験化合物などを添加して一 定時間インキュベートした後、 細胞を抽出あるいは上清液を回収して、 生成した 産物をそれぞれの方法に従って定量する。免疫反応促進活性の指標とする物質 (例 えば、 抗原特異的 I gG量、 イン夕一フエロンガンマ、 インターロイキン 12な ど) の生成が、 細胞が含有する分解酵素によって検定困難な場合は、 該分解酵素 に対する阻害剤を添加してアツセィを行なってもよい。 In order to carry out the above-mentioned methods (1) to (4) for screening a compound that changes the binding property between CD100 or a salt thereof and CD72 or a salt thereof, the activity of promoting an immune reaction through CD72 or a salt thereof [ For example, production of antibodies such as antigen-specific IgG; production of antibodies to TD (T cell-dependent) antigen; proliferation of T cells; production of IL-14; reactivity of T cells such as production of interferon gamma; production of IL_12 Activity for promoting or suppressing dendritic cell reactivity, etc.] can be measured using known methods or commercially available measurement kits. Specifically, first, cells containing CD72 or a salt thereof are cultured in a multiwell plate or the like. Before performing screening, replace the cells with fresh medium or an appropriate buffer that is not toxic to cells, add test compounds, etc., incubate for a certain period of time, and then extract cells or collect supernatant. Quantify the product produced according to each method. If the production of a substance that serves as an indicator of the immune response promoting activity (for example, antigen-specific IgG, inferon-feron-gamma, interleukin-12, etc.) is difficult to assay using the cell-containing degrading enzyme, The assay may be performed by adding an inhibitor to the enzyme.
抗体産生などの免疫反応促進活性を測定してスクリーニングを行なうには、 適 当な CD 72またはその塩を発現した細胞が用いられる。 CD 72またはその塩 を発現した細胞としては、 B細胞や前述の組換え型 CD 72発現細胞株などが望 ましい。 形質変換体である CD 72発現細胞は安定発現株でも一過性発現株でも 構わない。 また、 動物細胞の種類は上記と同様のものが用いられる。  For screening by measuring an immune response promoting activity such as antibody production, cells expressing the appropriate CD72 or a salt thereof are used. As cells expressing CD72 or a salt thereof, B cells and the above-mentioned recombinant CD72-expressing cell line are preferable. The transformant-expressing CD72-expressing cell may be a stable expression strain or a transient expression strain. The same kind of animal cells as described above are used.
試験化合物としては、 例えばペプチド、 タンパク、 非ペプチド性化合物、 合成 化合物、 発酵生産物、 細胞抽出液、 植物抽出液、 動物組織抽出液などが挙げられ る。  Test compounds include, for example, peptides, proteins, non-peptidic compounds, synthetic compounds, fermentation products, cell extracts, plant extracts, animal tissue extracts, and the like.
上記のリガンド ' レセプ夕一アツセィ系について、 さらに具体的に記載すると 以下のようなアツセィ系が用いられる。  More specifically, the above-mentioned ligand system is used as follows.
(1) 受容体発現細胞が受容体ァゴニストによって刺激されると細胞内のクラス スィッチ、 I gM以外クラスの抗体 I gG、 I gA、 I gD、 I gEのいづれか の産生、 分泌が促進される現象が生じる。 産生、 分泌された抗体量は EL I SA 法により、 直接的、 または間接的に標識した抗 I g抗体を用いることによって受 容体ァゴニス卜の抗体産生促進活性を測定することができる。 この反応を利用し て CD 100の CD72発現細胞に対する抗体産生促進活性を測定することがで きる。 具体的には、 後述の実施例 2およびそれに準じた方法により行われる。 こ こにおいて、 CD 100またはその塩、 あるいは CD 100またはその塩および 試験化合物を添加し、 CD 100またはその塩の単独投与に比べて抗体産生促進 活性に変化が生じることを観察することによって CD 100またはその塩と CD 72またはその塩との結合性を変化させる化合物をスクリーニングすることがで きる。 このとき、 CD 100による CD 72発現細胞へ抗体産生促進活性を抑制 する活性を示す化合物を拮抗阻害能力のある候補物質として選択することができ る。 一方、 試験化合物のみを投与し、 CD 72発現細胞への抗体産生促進活性を 観察することによりァゴニス卜のスクリーニングを行なうこともできる。 (1) When a receptor-expressing cell is stimulated by a receptor agonist, the production and secretion of intracellular class switches and any of IgG, IgA, IgD, and IgE other than IgM are promoted. Occurs. The amount of antibody produced and secreted can be measured by the ELISA method by using a directly or indirectly labeled anti-Ig antibody to promote the antibody production of the receptor agonist. Using this reaction, the activity of CD100 to promote the production of antibodies against CD72-expressing cells can be measured. Specifically, this is carried out according to Example 2 described later and a method analogous thereto. Here, CD100 or a salt thereof, or CD100 or a salt thereof and a test compound were added, and the change in the activity of promoting antibody production was observed as compared with the case where CD100 or a salt thereof was administered alone. Or a compound that alters the binding of CD72 or a salt thereof to CD72 or a salt thereof. Wear. At this time, a compound exhibiting an activity of suppressing the activity of promoting the production of antibodies against CD72-expressing cells by CD100 can be selected as a candidate substance having a competitive inhibitory ability. On the other hand, agonists can be screened by administering the test compound alone and observing the activity of promoting antibody production on CD72-expressing cells.
スクリーニング法の一例についてより具体的に以下に述べる。 後述の実施例 2 に述べた方法によって調製した 1 X 105 e e l 1 s/we 1 1 脾臓由来休止 B細胞を抗 CD 40 モノクローナル抗体、 I L— 4 100 un i t s Zml と共に、 パラホルムアルデヒドで固定した正常、 CD 100を発現する CHO細 胞(2 104 6 1 1 3ノ € 1 1 )の存在下で、 平底 96穴マイクロタイ夕一 プレー卜で約 7日間培養する。 I gM または I gG 1免疫グロブリンの産生を E L I SA法により測定する。 具体的には、 培養液または対照の I gM, I gGを 0. 1M炭酸緩衝液 (pH9. 6) を用いて希釈し、 E I A用 96穴ィムノブレ —ト (マキシソープ:ヌンク社) の各ゥエルに 100 1ずつ注入して約 4でで ー晚放置して添着する。 各ゥエルを緩衝液 A (0. 15M N a C 1を含む pH7. 0の 0. 02 Mリン酸緩衝液) で洗浄後、 緩衝液 B (0. 1%BSA、 0. 15 M NaC lを含む pH7. 0の 0. 02 Mリン酸緩衝液)で希釈した酵素標識し た抗 I gM, I gG, I g A、 I gD、 I g E抗体溶液 100 1を加えて 25で でさらに約 2時間反応させる。 各ゥエルを緩衝液 Aで洗浄し、 アルカリフォスフ ァ夕ーゼ基質溶液( lmg/m 1フォスファタ一ゼ基質(シグマ)、 10 OmM T r i s (pH 9. 5) 、 100 mM N a C 1、 5 mM Mg C 1 2) を 100M 1加え 25°Cで 30分間反応させる。 マイクロプレート用自動比色計を用い、 4 05 nmにおける吸光度を測定する。 CD 100またはその塩のみを加えた実験 区の吸光度を 100%、 CD 100またはその塩を加えなかった実験区の吸光度を 0%とし、 CD 100またはその塩による抗体産生促進活性に対する試験化合物の 影響を算出する。 抗体産生促進活性が例えば 50%以下になる試験化合物を拮抗 阻害能力のある候補物質として選択することができる。 One example of the screening method is described below more specifically. Normal 1 × 10 5 eel 1 s / we 11 spleen-derived resting B cells prepared by the method described in Example 2 below were fixed with paraformaldehyde together with an anti-CD40 monoclonal antibody, IL-4100 un its Zml. The cells are cultured in a flat-bottomed 96-well microtiter plate for about 7 days in the presence of CHO cells expressing CD100 (210 4 13 13 cells). The production of IgM or IgG1 immunoglobulin is measured by the ELISA method. Specifically, the culture medium or control IgM and IgG were diluted with 0.1 M carbonate buffer (pH 9.6), and each well of EIA 96-well Immunobrate (Maxisorp: Nunc) was diluted. 100 1 each, and leave it for about 4 hours. Wash each well with buffer A (0.02 M phosphate buffer, pH 7.0 containing 0.15 M NaCl), then add buffer B (0.1% BSA, 0.15 M NaCl). Solution containing enzyme-labeled anti-IgM, IgG, IgA, IgD, and IgE antibody diluted with 0.02M phosphate buffer (pH 7.0). Let react for 2 hours. Wash each well with buffer A, and add alkaline phosphatase substrate solution (lmg / m1 phosphatase substrate (Sigma), 10 OmM Tris (pH 9.5), 100 mM NaC1, Add 100 mM 1 of 5 mM MgC12) and react at 25 ° C for 30 minutes. Measure absorbance at 405 nm using an automatic colorimeter for microplates. Assuming that the absorbance of the experimental group to which only CD 100 or its salt was added was 100% and that of the experimental group to which CD 100 or its salt was not added was 0%, the effect of the test compound on the antibody production promoting activity by CD 100 or its salt Is calculated. A test compound having an antibody production-promoting activity of, for example, 50% or less can be selected as a candidate substance capable of competitive inhibition.
CD 100またはその塩と CD 72またはその塩との結合性を変化させる化合 物またはその塩のスクリーニング用キットは、 CD 72またはその塩、 CD 72 またはその塩を含有する細胞、 あるいは CD 72またはその塩を含有する細胞の 膜画分、 および CD 100またはその塩を含有するものである。 A kit for screening a compound or a salt thereof that alters the binding between CD100 or a salt thereof and CD72 or a salt thereof includes CD72 or a salt thereof, a cell containing the CD72 or a salt thereof, or CD72 or a salt thereof. Of cells containing salt It contains a membrane fraction and CD100 or a salt thereof.
本発明のスクリーニング用キッ卜の例としては、 次のものが挙げられる。  Examples of the screening kit of the present invention include the following.
1. スクリーニング用試薬  1. Screening reagent
①測定用緩衝液および洗浄用緩衝液  ①Measurement buffer and washing buffer
Hank s ' B a l an c e d S a l t S o l u t i on (ギブコ社製) に、 Hank s' B a l an c e d S a l t S o l u t i on (manufactured by Gibco)
0.05 %のゥシ血清アルブミン (シグマ社製) を加えたもの。 A solution containing 0.05% serum albumin (manufactured by Sigma).
孔径 0.45 mのフィルターで濾過滅菌し、 4でで保存するか、あるいは用時 調製しても良い。  Sterilize by filtration with a 0.45 m filter, and store at 4 or prepare it before use.
② CD 72標品  ② CD 72 standard
CD 72またはその塩を発現させた CHO細胞を、 12穴プレートに 5 X 10 Transfer CHO cells expressing CD72 or its salt to a 12-well plate at 5 x 10
5個/穴で継代し、 37t:、 5%C〇2、 95 % a i rで 2日間培養したもの。Passaged 5 cells / well, 37 t :, 5% C_〇 those cultivated for 2 days at 2, 95% air.
③標識リガンド ③ Labeled ligand
3H〕 、 〔125 I〕 、 〔14C〕 、 〔35S〕 などで標識した CD 100または その塩。 CD100 or a salt thereof labeled with [ 3 H], [ 125 I], [ 14 C], [ 35 S] or the like.
適当な溶媒または緩衝液に溶解したものを 4°Cあるいは— 2 Ot:にて保存し、 用時に測定用緩衝液にて 1 Μに希釈する。  Dissolve it in an appropriate solvent or buffer at 4 ° C or -2 Ot: and dilute to 1 ml with the measuring buffer before use.
④リガンド標準液  ④Ligand standard solution
CD 100またはその塩を 0. 1 %ゥシ血清アルブミン(シグマ社製)を含む P BSで ImMとなるように溶解し、 — 20 :で保存する。  Dissolve CD100 or a salt thereof in PBS containing 0.1% ゥ serum albumin (manufactured by Sigma) so as to become ImM, and store at -20 :.
2. 測定法  2. Measurement method
① 12穴組織培養用プレートにて培養した CD 72またはその塩を発現させた細 胞を、 測定用緩衝液 1 m 1で 2回洗浄した後、 490 1の測定用緩衝液を各穴 に加える。  (1) After washing cells expressing CD72 or its salt cultured in a 12-well tissue culture plate twice with 1 ml of the measurement buffer, add 4901 measurement buffer to each well. .
©10— 3〜10— 1GMの試験化合物溶液を 5 1加えた後、 標識した CD 100 またはその塩を 5 n 1加え、 室温にて 1時間反応させる。 非特異的結合量を知る ためには試験化合物のかわりに 10—3Mのリガンドを 5 1加えておく。 © 10- 3 to 10-1G after test compound solution 5 1 added in M, labeled CD 100 or a salt thereof 5 n 1 added and reacted at room temperature for 1 hour. A supplementary 5 1 ligands of 10- 3 M in place of the test compound to determine the amount of non-specific binding.
③反応液を除去し、 lm 1の洗浄用緩衝液で 3回洗浄する。 細胞に結合した標識 リガンドを 0.2N NaOH— 1 %SDSで溶解し、 4 m 1の液体シンチレ一夕 一 A (和光純薬製) と混合する。 ④液体シンチレーシヨンカウンター (ベックマン社製) を用いて放射活性を測定 し、 Percent Maximum Binding (PMB) を次の式 〔数 1〕 で求める。 (3) Remove the reaction solution and wash three times with lm1 of washing buffer. The labeled ligand bound to the cells is dissolved in 0.2N NaOH—1% SDS, and mixed with 4 ml of liquid scintillator overnight A (manufactured by Wako Pure Chemical Industries). 放射 Measure the radioactivity using a liquid scintillation counter (manufactured by Beckman), and determine the Percent Maximum Binding (PMB) by the following formula [Equation 1].
〔数 1〕  (Equation 1)
PMB= [ (B-NS B) / (B。一 NSB) ] X 1 00  PMB = [(B-NS B) / (B. One NSB)] X 100
PMB : Percent Maximum Binding  PMB: Percent Maximum Binding
B :検体を加えた時の値  B: Value when the sample is added
NSB : Non-specific Binding (非特異的結合量)  NSB: Non-specific Binding
D 0 : 取大系口口'里  D 0: Toridaiguchiguchi
本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる 化合物またはその塩は、 CD 1 00またはその塩と CD 72またはその塩との結 合性を変化させる (結合を阻害あるいは促進する) 化合物であり、 具体的には C D72またはその塩を介して抗体産生などの免疫反応促進活性を有する化合物ま たはその塩 (いわゆる CD 72ァゴニスト) 、 あるいは該免疫反応促進活性を有 しない化合物 (いわゆる CD 72アン夕ゴニスト) である。 該化合物としては、 ペプチド、 タンパク、 非ペプチド性化合物、 合成化合物、 発酵生産物などが挙げ られ、 これら化合物は新規な化合物であってもよいし、 公知の化合物であっても よい。  A compound or a salt thereof obtained by using the screening method or the screening kit of the present invention is a compound that changes the binding (inhibits or promotes the binding) between CD100 or a salt thereof and CD72 or a salt thereof. Yes, specifically, a compound having an immune response promoting activity such as antibody production via CD72 or a salt thereof, or a salt thereof (so-called CD72 agonist), or a compound having no immune response promoting activity (so-called CD72) 72 anniversary gonist). Examples of the compound include peptides, proteins, non-peptidic compounds, synthetic compounds, and fermentation products. These compounds may be novel compounds or known compounds.
上記 CD 72ァゴニス卜であるかアン夕ゴニス卜であるかの具体的な評価方法 は以下の ( i ) または (ii) に従えばよい。  The specific method of evaluating whether a CD 72 agonist or an angel gonist is described above may be in accordance with the following (i) or (ii).
( i ) 前記①〜③のスクリーニング方法で示されるバインディング ·アツセィを 行い、 CD 100またはその塩と CD 72またはその塩との結合性を変化させる (特に、 結合を阻害する) 化合物を得た後、 該化合物が上記した CD 72を介す る抗体産生などの免疫反応促進活性を有しているか否かを測定する。 免疫反応促 進活性を有する化合物またはその塩は CD 72ァゴニストであり、 該活性を有し ない化合物またはその塩は CD 72アン夕ゴニストである。  (i) After performing the binding assay shown in the above screening methods (1) to (3) to obtain a compound that changes the binding property (particularly, inhibits the binding) of CD100 or a salt thereof to CD72 or a salt thereof. Then, it is determined whether or not the compound has an immune reaction promoting activity such as the above-mentioned CD72-mediated antibody production. The compound having an immune response promoting activity or a salt thereof is a CD72 agonist, and the compound having no such activity or a salt thereof is a CD72 antagonist.
(ii) (a)試験化合物を CD 72またはその塩を含有する細胞に接触させ、上記 C D 72またはその塩を介した抗体産生などの免疫反応促進活性を測定する。 免疫 反応促進活性を有する化合物またはその塩は CD 72ァゴニストである。  (ii) (a) The test compound is brought into contact with cells containing CD72 or a salt thereof, and the activity of promoting immune response such as antibody production via CD72 or a salt thereof is measured. The compound having an immune response promoting activity or a salt thereof is CD72 agonist.
(b) CD 72またはその塩を活性化する化合物 (例えば、 CD 100または CD 7 2ァゴニストなど) を C D 7 2またはその塩を含有する細胞に接触させた場合 と、 C D 7 2またはその塩を活性化する化合物および試験化合物を C D 7 2また はその塩を含有する細胞に接触させた場合における、 C D 7 2またはその塩を介 した抗体産生などの免疫反応促進活性を測定し、 比較する。 C D 7 2またはその 塩を活性化する化合物による免疫反応促進活性を減少させ得る化合物またはその 塩は C D 7 2アン夕ゴニストである。 (b) a compound that activates CD72 or a salt thereof (eg, CD100 or CD 72 agonist) and a cell containing CD72 or a salt thereof, and a compound that activates CD72 or a salt thereof and a test compound to a cell containing CD72 or a salt thereof. Upon contact, the activity of promoting immune response such as antibody production via CD72 or a salt thereof is measured and compared. A compound or a salt thereof that can reduce the immune response promoting activity by a compound that activates CD72 or a salt thereof is a CD72 antagonist.
該 C D 7 2ァゴニストは、 C D 7 2またはその塩に対する C D 1 0 0またはそ の塩が有する生理活性と同様の作用を有しているので、 C D 1 0 0またはその塩 と同様に安全で低毒性な医薬として有用である。  Since the CD72 agonist has the same activity as CD100 or a salt thereof on CD72 or a salt thereof, the CD72 agonist is safe and low in the same manner as the CD100 or a salt thereof. Useful as a toxic drug.
逆に、 C D 7 2アン夕ゴニストは、 C D 7 2またはその塩に対する C D 1 0 0 またはその塩が有する生理活性を抑制することができるので、 該レセプ夕ー活性 を抑制する安全で低毒性な医薬として有用である。  Conversely, since the CD72 antagonist is capable of suppressing the physiological activity of CD100 or a salt thereof against CD72 or a salt thereof, it is safe and low toxic to suppress the receptor activity. Useful as a medicine.
さらに C D 7 2またはその塩は C D 7 2アン夕ゴニストと同様、 C D 1 0 0ま たはその塩が有する生理活性を抑制することができるので、 安全で低毒性な医薬 として有用である。  Furthermore, CD72 or a salt thereof can suppress the physiological activity of CD100 or a salt thereof, like the CD72 antagonist, and is therefore useful as a safe and low-toxic drug.
C D 1 0 0またはその塩はクラススィッチを誘導する作用および抗体産生促進 作用などに関与していることから、 抗体産生誘導剤、 免疫賦活剤などとして用い ることができる。 したがって、 上記のスクリーニング方法またはスクリーニング 用キットを用いて得られる化合物のうち、 C D 7 2ァゴニストはウィルスによる 感染症または疾病 (かぜ症候群、 インフルエンザ、 エイズ、 肝炎、 ヘルぺス、 麻 疹、 水痘、 手足口病、 帯状疱疹、 伝染性紅斑、 風疹、 突発性発疹、 ウィルス性結 膜炎、 ウィルス性髄膜炎、 ウィルス肺炎、 ウィルス性脳炎、 ラッサ熱、 エボラ出 血熱、 マールブルダ病、 コンゴ出血熱、 黄熱病、 デング熱、 狂犬病、 成人 T細胞 白血病 (AT L ) 、 口夕ウィルス感染症、 ポリオ、 おたふくかぜなど) 、 細菌ま たは真菌による感染症または疾病 (細菌性食中毒、 細菌性下痢、 結核、 ハンセン 氏病、 赤痢、 腸チフス、 コレラ、 パラチフス、 ペスト、 破傷風、 野兎病、 ブルセ ラ症、 炭疽、 敗血症、 細菌性肺炎、 皮膚真菌症など) 、 癌 (口腔癌、 咽頭癌、 口 唇癌、 舌癌、 歯肉癌、 鼻咽頭癌、 食道癌、 胃癌、 小腸癌、 結腸癌を含む大腸癌、 肝臓癌、 胆のう癌、 塍臓癌、 鼻腔癌、 肺癌、 骨肉腫、 軟部組織癌、 皮膚癌、 黒色 腫、 乳癌、 子宮癌、 卵巣癌、 前立腺癌、 精巣癌、 陰茎癌、 膀胱癌、 腎臓癌、 脳腫 瘍、 甲状腺癌、 リンパ腫、 白血病など) などの予防 ·治療薬などとして用いるこ とができ、 CD72アン夕ゴニスト (または CD 72またはその塩) は異常抗体 産生または過度の抗体産生によってもたらされる疾病 (アトピー性喘息、 アレル ギー性鼻炎、 アトピー性皮膚炎、 アレルギー性気管支炎、 肺ァスペルギールス症、 寄生虫疾患、 木村氏病、 高 I g E症候群、 Wi s ko t t— A l d r i c h症候 群、 胸腺形成不全症、 Hod k i n病、 肝硬変、 急性肝炎、 慢性関節リューマチ、 インシュリン依存性糖尿病、 全身性エリトマト一デス、 強皮症、 不妊症、 子宮内 膜症、 自己免疫性甲状腺疾患重症筋無力症、 橋本病、 B a s e d ow病、 悪性貧 血、 A d d i s o n病、 男性不妊症、 多発性硬化症、 Good p a s t u r e症 候群、 天疱瘡、 類天疱瘡、 重症筋無力症、 水晶体性眼炎、 交感性眼炎、 自己免疫 性溶血性貧血、 特発性血小板減少症、 自己免疫性白血球減少症、 F e 1 t y症候 群、 自己免疫性リンパ球減少症、 潰瘍性大腸炎、 S j o g r e n症候群、 全身性 自己免疫疾患、 原発性胆汁性肝硬変症、 ルポイド肝炎など) の予防 ·治療薬など として用いることができる。 Since CD100 or a salt thereof is involved in the action of inducing a class switch and the action of promoting the production of antibodies, it can be used as an antibody production inducer, an immunostimulant and the like. Therefore, among the compounds obtained using the screening methods or screening kits described above, CD72 agonist is a viral infection or disease (cold syndrome, influenza, AIDS, hepatitis, herpes, measles, chickenpox, limbs Mouth disease, shingles, erythema contaminated, rash, rubella, idiopathic rash, viral conjunctivitis, viral meningitis, viral pneumonia, viral encephalitis, Lassa fever, Ebola blood fever, Marlbladder fever, Congo haemorrhagic fever, Yellow fever, dengue, rabies, adult T-cell leukemia (ATL), oral virus infection, polio, mumps, etc., bacterial or fungal infections or diseases (bacterial food poisoning, bacterial diarrhea, tuberculosis, Hansen) Illness, dysentery, typhoid fever, cholera, paratyphoid, plague, tetanus, tularemia, brucellosis, Cancer, such as stomach, sepsis, bacterial pneumonia, dermatomycosis, cancer (oral cancer, pharyngeal cancer, lip cancer, tongue cancer, gingival cancer, nasopharyngeal cancer, esophageal cancer, gastric cancer, small intestine cancer, colon cancer including colon cancer) , Liver cancer, gallbladder cancer, kidney cancer, nasal cavity cancer, lung cancer, osteosarcoma, soft tissue cancer, skin cancer, black color Tumor, breast, uterine, ovarian, prostate, testicular, penis, bladder, kidney, brain, thyroid, lymphoma, leukemia, etc.) CD72 Angonist (or CD72 or its salts) is a disease caused by abnormal or excessive antibody production (atopic asthma, allergic rhinitis, atopic dermatitis, allergic bronchitis, pulmonary aspergillosis, Parasitic disease, Kimura's disease, high IgE syndrome, Wis kott—Aldrich syndrome, thymic dysplasia, Hodkin's disease, cirrhosis, acute hepatitis, rheumatoid arthritis, insulin-dependent diabetes mellitus, systemic erythematosus Ideath, scleroderma, infertility, endometriosis, autoimmune thyroid disease myasthenia gravis, Hashimoto's disease, Based ow's disease, pernicious anemia, Addison's disease, male infertility Multiple sclerosis, Good pasture syndrome, pemphigus, pemphigoid, myasthenia gravis, lens ophthalmitis, sympathetic ophthalmitis, autoimmune hemolytic anemia, idiopathic thrombocytopenia, autoimmune leukocytes Prophylactic / therapeutic agents for hypoxia, Fe1ty syndrome group, autoimmune lymphopenia, ulcerative colitis, S jogren syndrome, systemic autoimmune disease, primary biliary cirrhosis, rupioid hepatitis, etc. Can be used as
上記のスクリーニング方法またはスクリーニング用キットを用いて得られる化 合物の塩としては、 例えば、 薬学的に許容可能な塩などが用いられる。 例えば、 無機塩基との塩、 有機塩基との塩、 無機酸との塩、 有機酸との塩、 塩基性または 酸性アミノ酸との塩などがあげられる。  As a salt of the compound obtained by using the above-described screening method or screening kit, for example, a pharmaceutically acceptable salt or the like is used. Examples include salts with inorganic bases, salts with organic bases, salts with inorganic acids, salts with organic acids, salts with basic or acidic amino acids, and the like.
無機塩基との塩の好適な例としては、 例えばナトリウム塩、 カリウム塩などの アルカリ金属塩、 カルシウム塩、 マグネシウム塩などのアルカリ土類金属塩、 な らびにアルミニウム塩、 アンモニゥム塩などがあげられる。  Preferable examples of the salt with an inorganic base include an alkali metal salt such as a sodium salt and a potassium salt, an alkaline earth metal salt such as a calcium salt and a magnesium salt, and an aluminum salt and an ammonium salt.
有機塩基との塩の好適な例としては、 例えばトリメチルァミン、 トリェチルァ ミン、 ピリジン、 ピコリン、 2, 6—ルチジン、 エタノールァミン、 ジェ夕ノー ルァミン、 トリエタノールァミン、 シクロへキシルァミン、 ジシクロへキシルァ ミン、 N, N' —ジベンジルエチレンジァミンなどとの塩あげられる。  Preferred examples of salts with organic bases include, for example, trimethylamine, triethylamine, pyridine, picoline, 2,6-lutidine, ethanolamine, genoaluminamine, triethanolamine, cyclohexylamine, dicyclohexane. Salts with xylamine, N, N'-dibenzylethylenediamine and the like.
無機酸との塩の好適な例としては、 例えば塩酸、 臭化水素酸、 硫酸、 リン酸な どとの塩があげられる。  Preferable examples of salts with inorganic acids include salts with hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, and the like.
有機酸との塩の好適な例としては、 例えばギ酸、 酢酸、 プロピオン酸、 フマル 酸、 シユウ酸、 酒石酸、 マレイン酸、 クェン酸、 コハク酸、 リンゴ酸、 メタンス ルホン酸、 ベンゼンスルホン酸、 安息香酸などとの塩があげられる。 Suitable examples of salts with organic acids include, for example, formic acid, acetic acid, propionic acid, fumaric acid Salts with acids, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, malic acid, methanesulfonic acid, benzenesulfonic acid, benzoic acid, and the like.
塩基性アミノ酸との塩の好適な例としては、 例えばアルギニン、 リジン、 オル チニンなどとの塩があげられ、 酸性アミノ酸との好適な例としては、 例えばァス パラギン酸、 グルタミン酸などとの塩があげられる。  Preferable examples of the salt with a basic amino acid include, for example, salts with arginine, lysine, or oltinine, and preferable examples of the salt with the acidic amino acid include, for example, salts with aspartic acid, glutamic acid, and the like. can give.
本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる 化合物またはその塩を医薬として使用する場合、 常套手段に従つて実施すること ができる。 例えば、 必要に応じて糖衣や腸溶性被膜を施した錠剤、 カプセル剤、 エリキシル剤、 マイクロカプセル剤などとして経口的に、 あるいは水もしくはそ れ以外の薬学的に許容し得る液との無菌性溶液、 または懸濁液剤などの注射剤の 形で非経口的に使用できる。 例えば、 該化合物またはその塩を生理学的に認めら れる担体、 香味剤、 賦形剤、 べヒクル、 防腐剤、 安定剤、 結合剤などとともに一 般に認められた製薬実施に要求される単位用量形態で混和することによって製造 することができる。 これら製剤における有効成分量は指示された範囲の適当な容 量が得られるようにするものである。  When a compound or a salt thereof obtained by using the screening method or the screening kit of the present invention is used as a medicament, it can be carried out in a conventional manner. For example, sterile solution orally as tablets, capsules, elixirs, microcapsules, etc., coated with sugar coating or enteric coating as needed, or with water or other pharmaceutically acceptable liquids It can be used parenterally in the form of injections, or suspensions. For example, the compound or a salt thereof may be combined with a physiologically acceptable carrier, flavoring agent, excipient, vehicle, preservative, stabilizer, binder, etc., in a generally accepted unit dosage required for pharmaceutical practice. It can be manufactured by mixing in the form. The amount of the active ingredient in these preparations is adjusted so that an appropriate dose in the specified range can be obtained.
錠剤、 カプセル剤などに混和することができる添加剤としては、 例えばゼラチ ン、 コーンスターチ、 トラガントガム、 アラビアゴムのような結合剤、 結晶性セ ルロースのような賦形剤、 コーンスターチ、 ゼラチン、 アルギン酸などのような 膨化剤、 ステアリン酸マグネシウムのような潤滑剤、 ショ糖、 乳糖またはサッカ リンのような甘味剤、 ペパーミント、 ァカモノ油またはチェリ一のような香味剤 などが用いられる。 調剤単位形態がカプセルである場合には、 前記タイプの材料 にさらに油脂のような液状担体を含有することができる。 注射のための無菌組成 物は注射用水のようなべヒクル中の活性物質、 胡麻油、 椰子油などのような天然 産出植物油などを溶解または懸濁させるなどの通常の製剤実施にしたがって処方 することができる。  Additives that can be incorporated into tablets, capsules, etc. include, for example, binders such as gelatin, corn starch, tragacanth gum, gum arabic, excipients such as crystalline cellulose, corn starch, gelatin, alginic acid, etc. Such a leavening agent, a lubricant such as magnesium stearate, a sweetener such as sucrose, lactose or saccharin, and a flavoring agent such as peppermint, cocoa oil or cellulose are used. When the preparation unit form is a capsule, a liquid carrier such as an oil or fat can be further contained in the above-mentioned type of material. Sterile compositions for injection can be formulated according to standard pharmaceutical practice, such as dissolving or suspending the active substance in a vehicle such as water for injection, or naturally occurring vegetable oils such as sesame oil, coconut oil, etc. .
注射用の水性液としては、 例えば、 生理食塩水、 ブドウ糖やその他の補助薬を 含む等張液 (例えば、 D—ソルビ! ^一ル、 D _マンニトール、 塩化ナトリウムな ど) などがあげられ、 適当な溶解補助剤、 たとえばアルコール (たとえばェ夕ノ ール) 、 ポリアルコール (たとえばプロピレングリコール、 ポリエチレングリコ ール) 、 非イオン性界面活性剤 (たとえばポリソルベート 80 (™) 、 HCO— 50) などと併用してもよい。 油性液としてはゴマ油、 大豆油などがあげられ、 溶解補助剤として安息香酸ベンジル、 ベンジルアルコールなどと併用してもよい。 また、 緩衝剤 (例えば、 リン酸塩緩衝液、 酢酸ナトリウム緩衝液) 、 無痛化剤 (例えば、 塩化ベンザルコニゥム、 塩酸プロ力インなど) 、 安定剤 (例えば、 ヒ ト血清アルブミン、 ポリエチレングリコールなど) 、 保存剤 (例えば、 ベンジル アルコール、 フエノールなど) 、 酸化防止剤などと配合してもよい。 調製された 注射液は通常、 適当なアンプルに充填される。 Aqueous solutions for injection include, for example, saline, isotonic solutions containing dextrose and other auxiliaries (eg, D-Sorbi! ^-I, D_mannitol, sodium chloride, etc.), and the like. Suitable solubilizers, such as alcohols (eg, ethanol), polyalcohols (eg, propylene glycol, polyethylene glycol) ), Nonionic surfactants (eg, polysorbate 80 (™), HCO-50) and the like. The oily liquid includes sesame oil, soybean oil and the like, and may be used in combination with solubilizers such as benzyl benzoate and benzyl alcohol. In addition, buffers (eg, phosphate buffer, sodium acetate buffer), soothing agents (eg, benzalkonium chloride, proforce hydrochloride, etc.), stabilizers (eg, human serum albumin, polyethylene glycol, etc.), It may be blended with preservatives (eg, benzyl alcohol, phenol, etc.), antioxidants and the like. The prepared injection solution is usually filled in a suitable ampoule.
このようにして得られる製剤は安全で低毒性であるので、 例えばヒトゃ哺乳動 物 (例えば、 マウス、 ラット、 モルモット、 ゥサギ、 ヒッジ、 ブ夕、 ゥシ、 ネコ、 ィヌ、 サル、 チンパンジーなど) に対して投与することができる。  The preparations obtained in this way are safe and low toxic, and can be used, for example, in humans and mammals (for example, mice, rats, guinea pigs, egrets, sheep, higgs, bushus, dogs, cats, dogs, monkeys, chimpanzees, etc.). ) Can be administered.
本発明のスクリーニング方法またはスクリーニング用キットを用いて得られる 化合物またはその塩の投与量は、 症状などにより差異はあるが、 経口投与の場合、 一般的に成人(体重 60 k gとして) においては、 一日につき約 0. 1から 100 Omg、 好ましくは約 1. 0から 30 Omg、 より好ましくは約 3. 0から 50 mgである。 非経口的に投与する場合は、 その 1回投与量は投与対象、 対象臓器、 症状、 投与方法などによっても異なるが、 たとえば注射剤の形では成人 (体重 6 O kgとして) への投与においては、 一日につき約 0. 01から 3 Omg程度、 好ましくは約 0. 1から 2 Omg程度、 より好ましくは約 0. 1から 10mg程 度を静脈注射により投与するのが好都合である。  The dose of a compound or a salt thereof obtained by using the screening method or the screening kit of the present invention varies depending on the symptoms and the like. About 0.1 to 100 Omg per day, preferably about 1.0 to 30 Omg, more preferably about 3.0 to 50 mg. In the case of parenteral administration, the single dose varies depending on the administration target, target organ, symptoms, administration method, etc. It is convenient to administer about 0.01 to 3 Omg per day, preferably about 0.1 to 2 Omg, more preferably about 0.1 to 10 mg by intravenous injection.
他の動物の場合も、 60 k g当たりに換算した量を投与することができる。 In the case of other animals, the amount converted per 60 kg can be administered.
CD 72またはその塩を医薬として用いる場合、 上記の本発明のスクリ一ニン グ方法またはスクリーニング用キットを用いて得られる化合物またはその塩を医 薬として使用する場合と同様にして製剤化および実施することができる。 When CD72 or a salt thereof is used as a medicament, a compound or a salt thereof obtained using the above-described screening method or screening kit of the present invention or a salt thereof is formulated and carried out in the same manner as when a medicament is used. be able to.
CCD 100遺伝子がノックアウトされた非ヒト動物〕 Non-human animal in which the CCD 100 gene has been knocked out)
CD 100遺伝子がノックアウトされた非ヒト動物 (以下、 CD 100遺伝子 発現不全非ヒト動物と称することがある) は、 不活性化 CD 100遺伝子配列を 有する非ヒト動物 E S細胞を用いて製造できる。 該不活性化 CD 100遺伝子配列を有する非ヒト動物 ES細胞とは、 非ヒト動 物 ES細胞が有する CD 100遺伝子に人為的に変異を加えることにより、 遺伝 子の発現能を抑制するか、 もしくは該遺伝子がコードしている CD 100の活性 を実質的に喪失させることにより、 遺伝子が実質的に CD 100の発現能を有さ ない不活性化された (以下、 ノックアウト遺伝子と称することがある) 非ヒト動 物の ES細胞をいう。 A non-human animal in which the CD100 gene has been knocked out (hereinafter sometimes referred to as a CD100 gene-deficient non-human animal) can be produced using non-human animal ES cells having an inactivated CD100 gene sequence. The non-human animal ES cells having the inactivated CD100 gene sequence are artificially mutating the CD100 gene of the non-human animal ES cells to suppress the gene expression ability, or By substantially losing the activity of CD100 encoded by the gene, the gene was substantially inactivated without the ability to express CD100 (hereinafter, may be referred to as a knockout gene). ES cells of non-human animals.
非ヒト動物としては、 CD 100遺伝子を有するヒト以外の動物ならば、 いか なる動物でもよいが、 非ヒト哺乳動物が好ましい。 非ヒト哺乳動物としては、 例 えば、 ゥシ、 ブ夕、 ヒッジ、 ャギ、 ゥサギ、 ィヌ、 ネコ、 モルモット、 ハムス夕 一、 マウス、 ラットなどが用いられる。 非ヒト哺乳動物のなかでも、 病体動物モ デル系の作成の面から個体発生および生物サイクルが比較的短く、 また、 繁殖が 容易なゲッ歯動物、 とりわけマウス (例えば、 純系として、 C 57BLZ6系統, DBA2系統など、 交雑系として、 B 6 C 3 F 1系統, B D F 1系統, B 6D2 F 1系統, BALBZc系統, I CR系統など) またはラット (例えば、 Wi s t a r, SDなど) などが特に好ましい。  The non-human animal may be any animal other than a human having the CD100 gene, but a non-human mammal is preferred. As the non-human mammal, for example, red sea lions, bushes, higgies, goats, blue herons, dogs, cats, guinea pigs, hams, mice, rats and the like are used. Among non-human mammals, the ontogenesis and biological cycle are relatively short in terms of the creation of the diseased animal model system, and rodents, especially those that are easy to breed, especially mice (for example, the C57BLZ6 strain as a pure strain, As a cross line, such as two DBA lines, one B 6 C 3 F line, one BDF line, one B 6D2 F line, BALBZc line, ICR line, or rat (eg, Wistar, SD, etc.) is particularly preferable.
CD 100遺伝子としては、 動物から単離、 抽出されたゲノム由来の CD 10 0遺伝子であってもよく、 あるいは、 遺伝子工学的手法を用いてクローニングさ れた CD 100 c DNAであってもよい。  The CD100 gene may be a CD100 gene derived from a genome isolated and extracted from an animal, or may be a CD100 cDNA cloned using a genetic engineering technique.
具体的には、 配列番号: 1で表わされるアミノ酸配列を有するマウス由来 CD 100蛋白質の遺伝子としては、 例えば、 配列番号: 2で表わされる塩基配列を 有する遺伝子などが用いられ、 配列番号: 3で表わされるアミノ酸配列を有する ヒ卜由来 CD 100蛋白質の遺伝子としては、 例えば、 配列番号: 4で表わされ る塩基配列を有する遺伝子などが用いられる。 これらの遺伝子は、 前述した方法 に従って入手することができる。  Specifically, as the gene for the mouse-derived CD100 protein having the amino acid sequence represented by SEQ ID NO: 1, for example, a gene having the base sequence represented by SEQ ID NO: 2 is used. As the gene for the human-derived CD100 protein having the amino acid sequence represented, for example, a gene having the base sequence represented by SEQ ID NO: 4 or the like is used. These genes can be obtained according to the method described above.
CD 100遺伝子に人為的に変異を加える方法としては、 例えば、 遺伝子工学 的手法により該遺伝子配列の一部又は全部の削除、 他遺伝子を挿入または置換さ せることによって行なうことができる。 これらの変異により、 例えば、 コドンの 読み取り枠をずらすか、 プロモーターあるいはェキソンの機能を破壊することに より CD 100のノックァゥト遺伝子を作製することができる。 不活性化 CD 100遺伝子配列を有する非ヒ卜動物胚幹細胞 (以下、 CD 10 0遺伝子不活性化 ES細胞またはノックアウト ES細胞と略記する) の具体例と しては、 例えば、 薬剤耐性遺伝子 (例えば、 ネオマイシン耐性遺伝子、 ハイグロ マイシン耐性遺伝子など、 好ましくは、 ォマイシン耐性遺伝子など) 、 あるいは、 レポ一夕一遺伝子 (例えば、 l a c Z (]3_ガラクトシダーゼ遺伝子) 、 c a t (クロラムフエニコールァセチルトランスフェラーゼ遺伝子) など、 好ましくは、 l a c Zなど) 等を挿入することによりェキソンの機能を破壊するか、 あるいは ェキソン間のイントロン部分に遺伝子の転写を終結させる DNA配列 (例えば、 polyA付加シグナルなど) を挿入し、 完全なメッセンジャー RNAを合成できな くすることによって、 結果的に遺伝子を破壊するように構築した DNA配列を有 する DNA鎖 (以下、 夕一ゲッティングベクターと略記する) を作製する。 レポ 一夕一遺伝子を挿入してェキソンの機能を破壊する場合、 該レポーター遺伝子は、 CD 100プロモーターの制御下で発現するように挿入することが好ましい。 さらに、 遺伝子を破壊するように構築した DNA配列を有する DNA鎖を、 例 えば、 相同組換え法により該動物の染色体に導入し、 得られた ES細胞について CD 100遺伝子上あるいはその近傍の DNA配列をプローブとしたサザンハイ ブリダイゼーション解析あるいはターゲッティングベクター上の D N A配列と夕 —ゲッティングベクター作製に使用した CD 100遺伝子以外の近傍領域の DN A配列をプライマーとした PC R法により解析し、 ノックアウト ES細胞を選別 することにより得ることができる。 As a method for artificially mutating the CD100 gene, for example, it can be carried out by deleting a part or all of the gene sequence and inserting or substituting another gene by a genetic engineering technique. By these mutations, for example, a knockout gene of CD100 can be prepared by shifting the codon reading frame or disrupting the function of the promoter or exon. Specific examples of non-human animal embryonic stem cells having the inactivated CD100 gene sequence (hereinafter abbreviated as CD100 gene inactivated ES cells or knockout ES cells) include, for example, drug resistance genes (eg, , Neomycin resistance gene, hygromycin resistance gene, etc., preferably omycin resistance gene, etc., or repo overnight gene (eg, lacZ (] 3_galactosidase gene), cat (chloramphenicol acetyltyl transferase gene) Or preferably, lac Z, etc.) to destroy the exon function, or insert a DNA sequence (eg, polyA addition signal) into the intron between the exons to terminate gene transcription. The inability to synthesize complete messenger RNA results in gene DNA strand (hereinafter, evening abbreviated as one Getting vectors) which have a DNA sequence which was constructed Kowasuru so making. When a repo overnight gene is inserted to disrupt exon function, the reporter gene is preferably inserted so as to be expressed under the control of the CD100 promoter. Furthermore, a DNA strand having a DNA sequence constructed so as to disrupt the gene is introduced into the chromosome of the animal by, for example, homologous recombination, and the resulting ES cell is subjected to a DNA sequence on or near the CD100 gene The DNA sequence on the targeting vector and the DNA sequence on the targeting vector and the DNA sequence of the nearby region other than the CD100 gene used for the preparation of the targeting vector were analyzed by PCR using primers as primers. It can be obtained by sorting.
また、 相同組換え法等により CD 100遺伝子を不活性化させる元の ES細胞 としては、例えば、前述のような既に樹立されたものを用いてもよく、また Evans と Kaufmaの方法に準じて新しく樹立したものでもよい。 例えば、 マウスの ES細 胞の場合、 現在、 一般的には 129系の ES細胞が使用されているが、 免疫学的 背景がはっきりしていないので、 これに代わる純系で免疫学的に遺伝的背景が明 らかな ES細胞を取得するなどの目的で例えば、 C 57 BLZ6マウスや C 57 8し 6の採卵数の少なさを08八 2との交雑により改善した BDF 1マウス (C 57 BLZ6と DBAZ2との F 1) を用いて樹立したものなども良好に用 いうる。 BDF 1マウスは、 採卵数が多く、 かつ、 卵が丈夫であるという利点に 加えて、 C57BL/6マウスを背景に持つので、 これを用いて得られた ES細 胞は病態モデルマウスを作出したとき、 C 57 BLZ6マウスとバッククロスす ることでその遺伝的背景を C 57 BL/6マウスに代えることが可能である点で 有利に用い得る。 As the ES cells from which the CD100 gene is inactivated by the homologous recombination method or the like, for example, those already established as described above may be used, or a new ES cell may be used according to the method of Evans and Kaufma. It may be established. For example, in the case of mouse ES cells, currently, 129 ES cells are generally used. However, since the immunological background is not clear, a pure line which is an alternative to immunological genetically For the purpose of obtaining ES cells with a clear background, for example, BDF1 mice (C57BLZ6 and C57BLZ6 Those established using F1) with DBAZ2 can also be used successfully. BDF 1 mice have the advantage of high egg collection and robust eggs In addition, since C57BL / 6 mice are used as background, the ES cells obtained by using them can be used to cross-react with C57BLZ6 mice to create a genetic background for C57BLZ6 mice. It can be used advantageously because it can be replaced with a BL / 6 mouse.
また、 ES細胞を樹立する場合、一般には受精後 3. 5日目の胚盤胞を使用する が、 これ以外に 8細胞期胚を採卵し胚盤胞まで培養して用いることにより効率よ く多数の初期胚を取得することができる。  In addition, when ES cells are established, blastocysts 3.5 days after fertilization are generally used.However, it is more efficient to collect embryos at the 8-cell stage and culture them up to blastocysts. Many early embryos can be obtained.
また、 雌雄いずれの ES細胞を用いてもよいが、 通常雄の ES細胞の方が生殖 系列キメラを作出するのに都合が良い。 また、 煩雑な培養の手間を削減するため にもできるだけ早く雌雄の判別を行なうことが望ましい。  Although either male or female ES cells may be used, male ES cells are generally more convenient for producing a germline chimera. It is also desirable to discriminate between males and females as soon as possible in order to reduce the complexity of culturing.
ES細胞の雌雄の判定方法としては、 例えば、 PCR法により Y染色体上の性 決定領域の遺伝子を増幅、 検出する方法が、 その 1例として挙げることがでぎる t この方法を使用すれば、 従来、 核型分析をするのに約 106個の細胞数を要して いたのに対して、 1コロニー程度の E S細胞数 (約 50個) で済むので、 培養初 期における ES細胞の第一次セレクションを雌雄の判別で行なうことが可能であ り、 早期に雄細胞の選定を可能にしたことにより培養初期の手間は大幅に削減で さる。 For sex identification methods of ES cells, for example, amplifying the gene in the sex-determining region on the Y chromosome by PCR process and detected, be mentioned as its example is The use of Degiru t this method, conventional , for example G-banding method, it requires about 10 6 cells for karyotype analysis, since requires the number of ES cells approximately 1 colony (about 50), the first ES cells in culture Initial Subsequent selection can be carried out by gender discrimination, and the early selection of male cells can greatly reduce the labor required for the initial culture.
また、 第二次セレクションとしては、 例えば、 G—バンデイング法による染色 体数の確認等により行うことができる。 得られる ES細胞の染色体数は正常数の 100%が望ましいが、 樹立の際の物理的操作等の関係上困難な場合は、 ES細 胞の遺伝子をノックアウトした後、 正常細胞 (例えば、 マウスでは染色体数が 2 n = 40である細胞) に再びクローニングすることが望ましい。  The secondary selection can be performed, for example, by confirming the number of chromosomes by the G-banding method. It is desirable that the number of chromosomes in the obtained ES cells is 100% of the normal number. However, if it is difficult due to physical operations at the time of establishment, after knocking out the gene of the ES cells, normal cells (for example, in mice) It is desirable to clone again into cells with 2 n = 40 chromosomes.
このようにして得られた胚幹細胞株は、 通常その増殖性は大変良いが、 個体発 生できる能力を失いやすいので、 注意深く継代培養することが必要である。 例え ば、 S TO繊維芽細胞のような適当なフィーダ一細胞上で L I F (1 - 1000 OU/ml) 存在下に炭酸ガス培養器内 (好ましくは、 5%炭酸ガス、 95%空気ま たは 5%酸素、 5%炭酸ガス、 90 %空気) で約 37 °Cで培養するなどの方法で 培養し、 継代時には、 例えば、 トリプシン ZEDTA溶液 (通常 0. 001-0. 5%トリプシン/ 0. 1 - 5mM EDTA、好ましくは約 0. 1%トリプシン Z1 mM EDTA)処理により単細胞化し、新たに用意したフィーダ一細胞上に播種 する方法などがとられる。 このような継代は、 通常 1— 3日毎に行なうが、 この 際に細胞の観察を行い、 形態的に異常な細胞が見受けられた場合は、 その培養細 胞は放棄することが望まれる。 Embryonic stem cell lines obtained in this way usually have very good growth potential, but must be carefully subcultured because they tend to lose their ability to generate individuals. For example, on a suitable feeder cell, such as STO fibroblasts, in a CO 2 incubator (preferably 5% CO 2, 95% air or Incubate the cells at about 37 ° C in 5% oxygen, 5% carbon dioxide, 90% air, etc. At the time of subculture, for example, trypsin ZEDTA solution (usually 0.001-0.5% trypsin / 0%) 1-5 mM EDTA, preferably about 0.1% trypsin Z1 A single cell is prepared by treatment with mM EDTA) and seeded on a newly prepared feeder cell. Such subculture is usually performed every 1 to 3 days. At this time, cells are observed, and if morphologically abnormal cells are found, it is desirable to discard the cultured cells.
ES細胞は、 適当な条件により、 高密度に至るまで単層培養するか、 または細 胞集塊を形成するまで浮遊培養することにより、頭頂筋、内臓筋、心筋などの種々 のタイプの細胞に分化させることが可能であり 〔M. J. Evans及び M. H. Kaufman, ネイチヤー (Nature) 第 292巻、 154頁、 1981年; G. R. Martin プロシーディン グス ·ォブ ·ナショナル ·アカデミー ·ォブ ·サイエンス ·ュ一エスエー (Proc. Natl. Acad. Sci. U. S.A.) 第 78巻、 7634頁、 1981年; T. C. Doetschman ら、 ジ ヤーナル ·ォブ ·ェンブリオロジー ·アンド ·ェクスペリメンタル ·モルフォロ ジー、 第 87巻、 27頁、 1985年〕 、 E S細胞を分化させて得られる C D 100遺伝 子発現不全細胞は、 インビト口における CD 100の細胞生物学的検討において 有用である。  ES cells can be transformed into various types of cells, such as parietal, visceral, and cardiac muscle, by monolayer culture up to high density or suspension culture until cell clumps are formed under appropriate conditions. [MJ Evans and MH Kaufman, Nature, 292, 154, 1981; GR Martin Proceedings of the National Academy of Sciences (SA). Proc. Natl. Acad. Sci. USA) 78, 7634, 1981; TC Doetschman et al., Journal of Obembliology and Experimental Morphology, 87, 27, 1985. However, CD100 gene expression deficient cells obtained by differentiating ES cells are useful in the cell biology of CD100 in the in vivo mouth.
不活性化 CD 100遺伝子配列を有するトランスジエニック非ヒト動物 (以下、 遺伝子発現不全非ヒト動物と称す場合がある) とは、 例えば、 前記の不活性化 C D 100遺伝子配列を有する非ヒト動物胚幹細胞由来の細胞を用いて遺伝子工学 的に作出されたものであり、 例えば、 生殖細胞および体細胞に胚形成初期に該不 活性化 CD 100遺伝子配列を導入された非ヒト動物である。  A transgenic non-human animal having an inactivated CD100 gene sequence (hereinafter sometimes referred to as a non-human gene-deficient non-human animal) is, for example, a non-human animal embryo having the inactivated CD100 gene sequence. It is created by genetic engineering using stem cell-derived cells, and is, for example, a non-human animal in which the inactivated CD100 gene sequence has been introduced into germ cells and somatic cells at an early stage of embryogenesis.
該非ヒト動物としては、 前記と同様のものが用いられる。  As the non-human animal, the same one as described above is used.
CD 100遺伝子をノックアウトさせるには、 前記の夕ーゲッティングベクタ —をマウス胚幹細胞またはマウス卵細胞に導入し、 夕ーゲッティングベクターの 不活性化された CD 100遺伝子配列を遺伝子相同組換えにより、 マウス胚幹細 胞またはマウス卵細胞の染色体上の CD 100遺伝子と入れ換えることにより行 うことができる。  To knock out the CD100 gene, the above-mentioned evening-targeting vector is introduced into mouse embryonic stem cells or mouse egg cells, and the inactivated CD100 gene sequence of the evening-targeting vector is homologously recombined by gene homologous recombination. This can be achieved by replacing the CD100 gene on the chromosome of mouse embryonic stem cells or mouse egg cells.
CD 1 00遺伝子がノックアウトされた細胞は、 CD 1 00遺伝子上またはそ の近傍の D N A配列をプローブとしたサザンハイブリダイゼ一ション解析または 夕ーゲッティングベクタ一上の DNA配列と、 夕一ゲッティングベクタ一に使用 したマウス由来の CD 1 00遺伝子以外の近傍領域の DNA配列とをプライマー とした P C R法による解析で判定することができる。 Cells in which the CD100 gene was knocked out were compared with the DNA sequence on the Southern hybridization analysis or the evening vector using the DNA sequence on or near the CD100 gene as a probe. Primers with the DNA sequence of the neighboring region other than the mouse CD100 gene used for the It can be determined by analysis using the PCR method.
非ヒト動物胚幹細胞を用いた場合は、 遺伝子相同組換えにより、 C D 1 0 0遺 伝子が不活性化された細胞株をクローニングし、 その細胞を胚形成の初期の適当 な時期、 例えば、 8細胞期の非ヒト動物胚または胚盤胞に注入し、 作製したキメ ラ胚を偽妊娠させた該非ヒト動物の子宮に移植する。  When non-human animal embryonic stem cells are used, a cell line in which the CD100 gene has been inactivated by homologous recombination is cloned, and the cells are cloned at an appropriate time in the early stage of embryogenesis, for example, The 8-cell stage non-human animal embryo or blastocyst is injected, and the prepared chimeric embryo is transplanted into the uterus of the pseudo-pregnant non-human animal.
作出された動物は正常な C D 1 0 0遺伝子座をもつ細胞と人為的に変異した C D 1 0 0遺伝子座をもつ細胞との両者から構成されるキメラ動物である。  The produced animal is a chimeric animal composed of both cells having a normal CD100 locus and cells having an artificially mutated CD100 locus.
該キメラ動物の生殖細胞の一部が変異した C D 1 0 0遺伝子座をもつ場合、 こ のようなキメラ個体と正常個体を交配することにより得られた個体群より、 全て の組織が人為的に変異を加えた C D 1 0 0遺伝子座をもつ細胞で構成された個体 を、 例えば、 コートカラーの判定等により選別することにより得られる。 このよ うにして得られた個体は、 通常、 C D 1 0 0ヘテロ発現不全個体であり、 C D 1 0 0ヘテロ発現不全個体同志を交配し、 それらの産仔から C D 1 0 0ホモ発現不 全個体を得ることができる。  When a part of the germ cells of the chimeric animal has a mutated CD100 locus, all tissues are artificially obtained from the population obtained by crossing such a chimeric individual with a normal individual. It can be obtained by selecting individuals composed of cells having the CD100 locus with mutation added thereto, for example, by judging coat color or the like. The individuals obtained in this way are usually CD100 heterozygously deficient individuals, and crossbreeding individuals with CD100 heterozygously deficient expression, and CD100 homozygous expression defects from their offspring. Individuals can be obtained.
卵細胞を使用する場合は、 例えば、 卵細胞核内にマイクロインジェクション法 で遺伝子溶液を注入することにより夕一ゲッティングベクターを染色体内に導入 したトランスジエニック非ヒト動物を得ることができ、 これらのトランスジェニ ック非ヒト動物に比べて、 遺伝子相同組換えにより C D 1 0 0遺伝子座に変異の あるものを選択することにより得られる。  When an egg cell is used, for example, a transgenic non-human animal having a chromosome into which a gettering vector has been introduced can be obtained by injecting a gene solution into a nucleus of an egg cell by a microinjection method. Compared to non-human genic animals, they can be obtained by selecting those with a mutation at the CD100 locus by genetic homologous recombination.
C D 1 0 0遺伝子発現不全非ヒト動物は、 該動物の mR N A量を公知方法を用 いて測定して間接的にその発現量を比較することにより、 正常動物と区別するこ とが可能である。  A non-human animal deficient in CD100 gene expression can be distinguished from a normal animal by measuring the mRNA level of the animal using a known method and indirectly comparing the expression level. .
このようにして C D 1 0 0遺伝子がノックアウトされている個体は、 交配によ り得られた動物個体も該遺伝子がノックアウトされていることを確認して通常の 飼育環境で飼育継代を行なうことができる。  If the CD100 gene has been knocked out in this way, the animals obtained by crossing should also be confirmed to have the gene knocked out and be subcultured in a normal breeding environment. Can be.
さらに、 生殖系列の取得および保持についても常法に従って行うことができる。 すなわち、 該不活化遺伝子配列の保有する雌雄の動物を交配することにより、 該 不活化遺伝子配列を相同染色体の両方に持つホモザィゴート動物を取得すること ができる。 得られたホモザィゴート動物は、 母親動物に対して、 正常個体 1, ホ モザィゴート複数になるような状態で飼育することにより効率的に得ることがで きる。 ヘテロザィゴート動物の雌雄を交配することにより、 該不活化遺伝子配列 を有するホモザィゴー卜およびへテロザィゴート動物を繁殖継代することができ る。 このようにして得られた該不活化遺伝子配列を有する動物の子孫も C D 1 0 0遺伝子発現不全非ヒ卜動物に含まれる。 Furthermore, the germline can be obtained and maintained according to a conventional method. That is, by mating male and female animals having the inactivated gene sequence, a homozygous animal having the inactivated gene sequence on both homologous chromosomes can be obtained. The obtained homozygous animal was compared to the mother animal by 1 normal individual It can be obtained efficiently by breeding in a state where there are multiple mosaigots. By mating male and female heterozygous animals, homozygous and heterozygous animals having the inactivated gene sequence can be bred and subcultured. The progeny of the animal having the inactivated gene sequence thus obtained is also included in the non-human animal deficient in CD100 gene expression.
このように C D 1 0 0遺伝子が不活性化された非ヒト動物胚幹細胞は、 C D 1 0 0遺伝子発現不全非ヒト動物を作出する上で、 非常に有用である。  Such non-human animal embryonic stem cells in which the CD100 gene has been inactivated are extremely useful for producing a nonhuman animal deficient in expression of the CD100 gene.
上記のように作出された C D 1 0 0遺伝子発現不全非ヒト動物は、 ① T D (T 細胞依存性) 抗原に対する抗体産生能が低下 (後述の実施例 6 ) 、 ② T細胞の増 殖性、 I L— 4産生能、 I N F—ァ産生能などの T細胞の反応性が喪失 (後述の 実施例 7 ) ③ I L一 1 2産生能などの樹状細胞の反応性が喪失 (後述の実施例 1 0 ) した非ヒト動物であり、 C D 1 0 0の欠損に起因する疾病、 例えば、 C D 1 0 0により誘導され得る種々の生物活性の欠失に基づく、 C D 1 0 0の生物活性 の不活性化に起因する疾病、 例えば、 ウィルスによる感染症または疾病 (かぜ症 候群、 インフルエンザ、 エイズ、 肝炎、 ヘルぺス、 麻疹、 水痘、 手足口病、 帯状 疱疹、 伝染性紅斑、 風疹、 突発性発疹、 ウィルス性結膜炎、 ウィルス性髄膜炎、 ウィルス肺炎、 ウィルス性脳炎、 ラッサ熱、 エボラ出血熱、 マールブルダ病、 コ ンゴ出血熱、 黄熱病、 デング熱、 狂犬病、 成人 T細胞白血病 (AT L ) 、 口タウ ィルス感染症、 ポリオ、 おたふくかぜなど) 、 細菌または真菌による感染症また は疾病 (細菌性食中毒、 細菌性下痢、 結核、 ハンセン氏病、 赤痢、 腸チフス、 コ レラ、 パラチフス、 ペスト、 破傷風、 野兎病、 ブルセラ症、 炭疽、 敗血症、 細菌 性肺炎、 皮膚真菌症など) 、 癌 (口腔癌、 咽頭癌、 ***癌、 舌癌、 歯肉癌、 鼻咽 頭癌、 食道癌、 胃癌、 小腸癌、 結腸癌を含む大腸癌、 肝臓癌、 胆のう癌、 滕臓癌、 鼻腔癌、 肺癌、 骨肉腫、 軟部組織癌、 皮膚癌、 黒色腫、 乳癌、 子宮癌、 卵巣癌、 前立腺癌、 精巣癌、 陰茎癌、 膀胱癌、 腎臓癌、 脳腫瘍、 甲状腺癌、 リンパ腫、 白 血病など) のモデルとなり得るので、 これらの疾病の原因究明及び治療法の検討 に有用である。  The non-human animal deficient in CD100 gene expression produced as described above has (1) a reduced ability to produce antibodies to the TD (T cell-dependent) antigen (Example 6 described later), (2) Loss of T cell reactivity such as IL-4 producing ability and INF-fer producing ability (Example 7 described later) (3) Loss of dendritic cell reactivity such as IL-11 producing ability (Example 1 described later) 0) a non-human animal that has a CD100 deficiency, such as a disease caused by a CD100 deficiency, for example, an inactivity of the CD100 biological activity based on the loss of various biological activities that can be induced by the CD100. Diseases caused by metamorphosis, such as viral infections or diseases (cold syndrome, influenza, AIDS, hepatitis, herpes, measles, varicella, hand, foot and mouth disease, shingles, erythema contagis, rubella, sudden rash , Viral conjunctivitis, viral meningitis, viral pneumonia, viral brain , Lassa fever, Ebola hemorrhagic fever, Marbleda disease, Congo haemorrhagic fever, yellow fever, dengue fever, rabies, adult T-cell leukemia (ATL), oral tauvirus, polio, mumps), bacterial or fungal infection or Diseases (bacterial food poisoning, bacterial diarrhea, tuberculosis, leprosy, dysentery, typhoid fever, cholera, paratyphoid, plague, tetanus, tularemia, brucellosis, anthrax, sepsis, bacterial pneumonia, dermatomycosis, etc.), cancer (Oral, pharyngeal, lip, tongue, gingival, nasopharyngeal, esophageal, stomach, small intestine, colon, including colon, liver, gallbladder, tengular, nasal, lung cancer) , Osteosarcoma, soft tissue cancer, skin cancer, melanoma, breast cancer, uterine cancer, ovarian cancer, prostate cancer, testicular cancer, penis cancer, bladder cancer, kidney cancer, brain tumor, thyroid cancer, lymphoma, white Since it can be a model of disease, etc.), it offers an effective study to investigate causes for and therapy for these diseases.
すなわち、 C D 1 0 0遺伝子発現不全非動物は、 該疾病の予防 ·治療薬のスク リーニングに用いることができる。 本発明のスクリーニング方法において用いられる C D 1 0 0遺伝子発現不全非 ヒ卜動物としては、 前記と同様のものが挙げられる。 That is, the non-animals deficient in CD100 gene expression can be used for screening for a preventive / therapeutic agent for the disease. Examples of the non-human animal deficient in CD100 gene expression used in the screening method of the present invention include the same animals as described above.
試験化合物としては、 例えば、 ペプチド、 タンパク、 非ペプチド性化合物、 合 成化合物、 発酵生産物、 細胞抽出液、 植物抽出液、 動物組織抽出液などが挙げら れ、 これら化合物は新規な化合物であってもよいし、 公知の化合物であってもよ い。  Test compounds include, for example, peptides, proteins, non-peptidic compounds, synthetic compounds, fermentation products, cell extracts, plant extracts, animal tissue extracts, etc., and these compounds are novel compounds. Or a known compound.
具体的には、 C D 1 0 0遺伝子発現不全非ヒト動物を、 試験化合物で処理し、 無処理の対照動物と比較し、 該動物の各器官、 組織、 疾病の症状等の変化を指標 として試験化合物の予防 ·治療効果を試験することができる。  Specifically, non-human animals deficient in CD100 gene expression are treated with a test compound, compared with untreated control animals, and tested using changes in the organs, tissues, disease symptoms, etc. of the animals as indices. Compounds can be tested for their prophylactic and therapeutic effects.
試験動物を試験化合物で処理する方法としては、 例えば、 経口投与、 静脈注射 などが用いられ、 試験動物の症状、 試験化合物の性質などにあわせて適宜選択す ることができる。 また、 試験化合物の投与量は、 投与方法、 試験化合物の性質な どにあわせて適宜選択することができる。  As a method for treating a test animal with a test compound, for example, oral administration, intravenous injection and the like are used, and it can be appropriately selected according to the symptoms of the test animal, the properties of the test compound, and the like. The dose of the test compound can be appropriately selected according to the administration method, the properties of the test compound, and the like.
例えば、 癌の予防 ·治療薬をスクリーニングする場合、 C D 1 0 0遺伝子発現 不全非ヒト動物に例えばキーホールリンペットへモシァニンを投与した後、 試験 物質を経時的に腹腔、 皮下、 静脈内等に投与し、 血中内のインターフェロンガン マ量や I L— 1 2量を測定することによりスクリーニングすることができる。 さらに、 腫瘍を腹腔、 皮下、 静脈内に移植し、 試験物質を経時的に腹腔、 皮下、 静脈内等に投与し、 腫瘍体積や生存期間を測定することによりスクリーニングす ることができる。  For example, when screening for a prophylactic or therapeutic agent for cancer, a non-human animal lacking the expression of the CD100 gene is administered, for example, mocyanine to a keyhole limpet, and then the test substance is administered to the abdominal cavity, subcutaneously, intravenously, etc. After administration, screening can be performed by measuring the amount of interferon gamma or IL-12 in the blood. Furthermore, screening can be performed by implanting the tumor into the abdominal cavity, subcutaneously, or intravenously, administering the test substance to the peritoneal cavity, subcutaneously, intravenously, etc. over time, and measuring the tumor volume and survival time.
本発明の C D 1 0 0遺伝子がノックアウトされた非ヒト動物を用いたスクリー ニング方法により得られる予防 ·治療薬は、 上記した試験化合物から選ばれた化 合物であり、 C D 1 0 0欠損によって引き起こされる疾患の予防 ·治療効果を有 するので、 C D 1 0 0の欠損によって引き起こされる疾病に対する安全で低毒性 な治療 '予防薬などの医薬として有用である。 また、 該化合物から誘導される化 合物も同様に用いることができる。  The prophylactic / therapeutic agent of the present invention obtained by the screening method using a non-human animal in which the CD100 gene has been knocked out is a compound selected from the test compounds described above, It is effective as a safe and low-toxic treatment for diseases caused by CD100 deficiency because it has preventive and therapeutic effects on diseases caused by it. In addition, a compound derived from the compound can also be used.
該スクリーニング方法で得られた化合物は塩を形成していてもよく、 該化合物 の塩としては、 とりわけ生理学的に許容される酸付加塩が好ましい。 この様な塩 としては、 例えば、 無機酸 (例えば、 塩酸、 リン酸、 臭化水素酸、 硫酸) との塩、 あるいは有機酸 (例えば、 酢酸、 ギ酸、 プロピオン酸、 フマル酸、 マレイン酸、 コハク酸、 酒石酸、 クェン酸、 リンゴ酸、 蓚酸、 安息香酸、 メタンスルホン酸、 ベンゼンスルホン酸) との塩などが用いられる。 The compound obtained by the screening method may form a salt, and the salt of the compound is preferably a physiologically acceptable acid addition salt. Such salts include, for example, salts with inorganic acids (eg, hydrochloric acid, phosphoric acid, hydrobromic acid, sulfuric acid), Alternatively, salts with organic acids (eg, acetic acid, formic acid, propionic acid, fumaric acid, maleic acid, succinic acid, tartaric acid, citric acid, malic acid, oxalic acid, benzoic acid, methanesulfonic acid, benzenesulfonic acid) and the like are used. .
本発明の C D 1 0 0遺伝子がノックアウトされた非ヒト動物を用いたスクリー ニング方法は上記した C D 1 0 0と C D 7 2との結合性を変化させる化合物また はその塩のスクリーニング方法 (リガンド · レセプ夕一アツセィ系) と組み合わ せて実施されてもよい。 すなわち、 本発明は C D 1 0 0遺伝子がノックアウトさ れた非ヒト動物を用いることを特徴とする、 C D 1 0 0またはその塩とその受容 体との結合性を変化させる化合物 (特に、 C D 1 0 0と C D 7 2との結合性を促 進させる化合物または C D 1 0 0に置き換わって C D 7 2に結合する化合物) ま たはその塩のスクリーニング法を提供する。  The screening method of the present invention using a non-human animal in which the CD100 gene is knocked out is performed by the above-described method for screening a compound or a salt thereof that alters the binding property between CD100 and CD72 (ligand · It may be implemented in combination with Reception (Atsui system). That is, the present invention uses a non-human animal in which the CD100 gene has been knocked out, and comprises a compound that alters the binding between CD100 or a salt thereof and its receptor (particularly, CD1 A compound that promotes the binding between CD100 and CD72 or a compound that binds to CD72 in place of CD100) or a salt thereof.
ここで、 リガンド · レセプ夕一アツセィ系を一次スクリーニングとして C D 1 0 0と C D 7 2との結合性を変化させる化合物を候補化合物として選択した後、 C D 1 0 0遺伝子がノックァゥ卜された非ヒト動物を用いた二次スクリーニング 系で該候補化合物の予防'治療効果を試験してもよいし、 C D 1 0 0遺伝子がノッ クアウトされた非ヒト動物を用いたスクリーニング系を一次スクリーニングとし て候補化合物を選択した後、 リガンド ' レセプ夕一アツセィ系の二次スクリー二 ングに付し、 得られた C D 1 0 0と C D 7 2との結合性を変化させる化合物を本 発明の予防'治療剤の候補化合物として選択してもよい。  Here, as a primary screening, the compound that alters the binding property between CD100 and CD72 was selected as a candidate compound using the ligand-receptor-Atsui system as a primary screening, and then the non-human CD100 knocked-out non-human compound was selected. The prophylactic / therapeutic effect of the candidate compound may be tested in a secondary screening system using animals, or a screening system using a non-human animal in which the CD100 gene is knocked out may be used as the primary screening for the candidate compound. After the selection, the ligand ′ is subjected to secondary screening of Receptu Atsushi system, and the obtained compound that alters the binding property between CD100 and CD72 is used as the preventive agent of the present invention. It may be selected as a candidate compound.
本発明の C D 1 0 0遺伝子がノックアウトされた非ヒト動物を用いたスクリー ニング方法により得られる化合物またはその塩を上述の治療 ·予防薬として使用 する場合、 常套手段に従って実施することができ、 例えば、 必要に応じて糖衣を 施した錠剤、 カプセル剤、 エリキシル剤、 マイクロカプセル剤などとして経口的 に、 あるいは水もしくはそれ以外の薬学的に許容し得る液との無菌性溶液、 また は懸濁液剤などの注射剤の形で非経口的に使用できる。 例えば、 該化合物または その塩を生理学的に認められる担体、 香味剤、 賦形剤、 べヒクル、 防腐剤、 安定 剤、 結合剤などとともに一般に認められた製薬実施に要求される単位用量形態で 混和することによって製造することができる。 これら製剤における有効成分量は 指示された範囲の適当な容量が得られるようにするものである。 錠剤、 カプセル剤などに混和することができる添加剤としては、 例えば、 ゼラ チン、 コーンスターチ、 トラガント、 アラビアゴムのような結合剤、 結晶性セル ロースのような賦形剤、 コーンスターチ、 ゼラチン、 アルギン酸などのような膨 化剤、 ステアリン酸マグネシウムのような潤滑剤、 ショ糖、 乳糖またはサッカリ ンのような甘味剤、 ペパーミント、 ァカモノ油またはチェリーのような香味剤な どが用いられる。 調剤単位形態がカプセルである場合には、 前記タイプの材料に さらに油脂のような液状担体を含有することができる。 注射のための無菌組成物 は注射用水のようなべヒクル中の活性物質、 胡麻油、 椰子油などのような天然産 出植物油などを溶解または懸濁させるなどの通常の製剤実施に従って処方するこ とができる。 When the compound or a salt thereof obtained by the screening method using a non-human animal in which the CD100 gene of the present invention has been knocked out is used as the above-mentioned therapeutic or prophylactic agent, it can be carried out according to conventional means. As needed, orally coated as tablets, capsules, elixirs, microcapsules, etc., coated with sugar, aseptic solution or suspension with water or other pharmaceutically acceptable liquids It can be used parenterally in the form of injections. For example, the compound or a salt thereof is mixed with a physiologically acceptable carrier, flavoring agent, excipient, vehicle, preservative, stabilizer, binder and the like in a unit dosage form required for generally accepted pharmaceutical practice. Can be manufactured. The amount of the active ingredient in these preparations is such that an appropriate dose in the specified range can be obtained. Additives that can be incorporated into tablets, capsules, etc. include, for example, binders such as gelatin, corn starch, tragacanth, gum arabic, excipients such as crystalline cellulose, corn starch, gelatin, alginic acid, etc. Swelling agents such as magnesium stearate, sweeteners such as sucrose, lactose or saccharin, and flavoring agents such as peppermint, cocoa oil or cherry. When the preparation unit form is a capsule, a liquid carrier such as oil and fat can be further contained in the above-mentioned type of material. Sterile compositions for injection can be formulated according to standard pharmaceutical practice, such as dissolving or suspending the active substance in vehicles such as water for injection, and naturally occurring vegetable oils such as sesame oil and coconut oil. it can.
注射用の水溶液としては、 例えば、 生理食塩水、 ブドウ糖やその他の補助薬を 含む等張液 (例えば、 D—ソルビトール、 D—マンニトール、 塩化ナトリウムな ど) などが挙げられ、 適当な溶解補助剤、 例えば、 アルコール (例えば、 ェ夕ノ ールなど) 、 ポリアルコール (例えば、 プロピレングリコール、 ポリエチレング リコールなど) 、 非イオン性界面活性剤 (例えば、 ポリソルベート 8 0 TM、 H C O— 5 0など) などと併用してもよい。 油性液としては、 例えば、 ゴマ油、 大 豆油などが挙げられ、 溶解補助剤として安息香酸ベンジル、 ベンジルアルコール などと併用してもよい。 また、 緩衝剤 (例えば、 リン酸塩緩衝液、 酢酸ナトリウ ム緩衝液など) 、 無痛化剤 (例えば、 塩化ベンザルコニゥム、 塩酸プロ力インな ど) 、 安定剤 (例えば、 ヒト血清アルブミン、 ポリエチレングリコールなど) 、 保存剤 (例えば、 ベンジルアルコール、 フエノールなど) 、 酸化防止剤などと配 合してもよい。 調整された注射液は通常、 適当なアンプルに充填される。  Aqueous injection solutions include, for example, physiological saline, isotonic solutions containing glucose and other adjuvants (eg, D-sorbitol, D-mannitol, sodium chloride, etc.). , For example, alcohols (for example, ethanol), polyalcohols (for example, propylene glycol, polyethylene glycol, etc.), nonionic surfactants (for example, polysorbate 80TM, HCO-50, etc.) You may use together. Examples of the oily liquid include sesame oil and soybean oil, and may be used in combination with a solubilizing agent such as benzyl benzoate or benzyl alcohol. In addition, buffers (eg, phosphate buffer, sodium acetate buffer, etc.), soothing agents (eg, benzalkonium chloride, proactive hydrochloride, etc.), stabilizers (eg, human serum albumin, polyethylene glycol, etc.) ), Preservatives (eg, benzyl alcohol, phenol, etc.), antioxidants and the like. The prepared injection solution is usually filled into a suitable ampoule.
このようにして得られる製剤は安全で低毒性であるので、 例えば、 ヒトまたは 温血動物 (例えば、 マウス、 ラット、 ゥサギ、 ヒッジ、 ブ夕、 ゥシ、 ゥマ、 トリ、 ネコ、 ィヌ、 サル、 チンパンジーなど) に対して投与することができる。  The preparations obtained in this way are safe and low toxic and can be used, for example, in humans or in warm-blooded animals (eg mice, rats, puppies, sheep, bush, pussi, puma, birds, cats, dogs, Monkeys, chimpanzees, etc.).
該化合物またはその塩の投与量は、 症状などにより差異はあるが、 経口投与の 場合、 一般的に成人 (体重 6 0 k gとして) においては、 一日につき約 0. 1〜 1 0 0 m g、 好ましくは約 1 . 0〜5 0 m g、 より好ましくは約 1 . 0〜2 0 m g である。 非経口的に投与する場合は、 その 1回投与量は投与対象、 対象臓器、 症 状、 投与方法などによっても異なるが、 例えば、 注射剤の形では通常成人 (60 k gとして) においては、 一日につき約 0. 0 1〜3 0mg程度、 好ましくは約 0. 1〜2 Omg程度、 より好ましくは約 0. 1〜1 Omg程度を静脈注射によ り投与するのが好都合である。 他の動物の場合も、 60 k g当たりに換算した量 を投与することができる。 The dose of the compound or a salt thereof varies depending on the symptoms and the like. However, in the case of oral administration, in general, for an adult (assuming a body weight of 60 kg), about 0.1 to 100 mg per day, Preferably, it is about 1.0 to 50 mg, more preferably about 1.0 to 20 mg. When administered parenterally, the single dose depends on the subject, target organ, and disease. For example, in the form of an injection, usually about 0.01 to 30 mg, preferably about 0.1 to 2 Omg per day for an adult (60 kg) in the form of an injection More preferably, about 0.1 to 1 Omg is administered by intravenous injection. For other animals, the equivalent dose per 60 kg can be administered.
さらに、 本発明は、 CD 1 0 0遺伝子発現不全非ヒト動物に、 試験化合物を投 与し、 レポーター遺伝子の発現を検出することを特徴とする CD 1 0 0プロモー 夕一活性を促進または阻害する化合物またはその塩のスクリーニング方法を提供 する。  Further, the present invention provides a test compound administered to a non-human animal deficient in CD100 gene expression, and detects or suppresses the expression of a reporter gene, thereby promoting or inhibiting CD100 promoter activity. A method for screening a compound or a salt thereof is provided.
本発明のスクリーニング方法において用いられる CD 1 0 0遺伝子発現不全非 ヒト動物としては、 前記した CD 1 0 0遺伝子発現不全非ヒト動物の中でも、 レ ポー夕一遺伝子を導入することにより不活性化された CD 1 0 0遺伝子配列を有 し、 該レポーター遺伝子が CD 1 0 0プロモーターの制御下で発現し得るものが 用いられる。  Among the non-human animals deficient in CD100 gene expression used in the screening method of the present invention, the non-human animals deficient in CD100 gene expression described above are inactivated by introducing a reporter gene. The CD100 gene sequence is used, and the reporter gene can be expressed under the control of the CD100 promoter.
試験化合物としては、 前記と同様のものが挙げられる。  Examples of the test compound include the same compounds as described above.
レポーター遺伝子としては、 前記と同様のものが用いられ、 )3—ガラクトシダ —ゼ遺伝子 ( l a c Z) がさらに好ましく用いられる。  As the reporter gene, the same one as described above is used, and the) 3-galactosidase gene (lacZ) is more preferably used.
CD 1 0 0の構造遺伝子をレポーター遺伝子で置換された CD 1 0 0発現動物 では、 レポーター遺伝子が CD 1 0 0プロモーターの支配下に存在するので、 レ ポーター遺伝子がコードする物質の発現をトレースすることにより、 CD 1 0 0 プロモーターの活性を検出することができる。  In a CD100-expressing animal in which the CD100 structural gene has been replaced with a reporter gene, the expression of the substance encoded by the reporter gene is traced because the reporter gene is under the control of the CD100 promoter. Thus, the activity of the CD100 promoter can be detected.
例えば、 CD 1 00をコードする遺伝子領域の一部を大腸菌由来の i3—ガラク トシダ一ゼ遺伝子 ( 1 a c Z) で置換している場合、 本来、 CD 1 0 0の発現す る組織で、 CD 1 0 0の代わりに i3 _ガラクトシダーゼが発現する。 従って、 例 えば、 5—プロモー 4—クロ口一 3—インドリル _ ]3—ガラクトピラノシド (X - g a l ) のような 3—ガラクトシダーゼの基質となる試薬を用いて染色するこ とにより、 簡便に CD 1 0 0の動物生体内における発現状態を観察することがで きる。 具体的には、 CD 1 00欠損マウスまたはその組織切片をダルタルアルデ ヒドなどで固定し、 ダルベッコリン酸緩衝生理食塩液 (PB S) で洗浄後、 X— g a lを含む染色液で、 室温または 7°C付近で、 約 30分ないし 1時間反応させ た後、組織標本を ImM. EDTAZPBS溶液で洗浄することによって、 β—ガ ラクトシダーゼ反応を停止させ、 呈色を観察すればよい。 また、 常法に従い、 1 a c Zをコードする mRN Aを検出してもよい。 For example, when a part of the gene region encoding CD100 is replaced by an i3-galactosidase enzyme gene (1acZ) derived from Escherichia coli, a tissue that expresses CD100 originally should I3_galactosidase is expressed instead of 100. Therefore, for example, by staining with a reagent that serves as a substrate for 3-galactosidase, such as 5-promo 4-cyclo-3-3-indolyl_] 3-galactopyranoside (X-gal), it is easy to perform staining. Thus, the expression state of CD100 in an animal body can be observed. Specifically, a CD100-deficient mouse or a tissue section thereof is fixed with Daltar aldehyde or the like, washed with Dulbecco's phosphate buffered saline (PBS), and then X- After reacting with the staining solution containing gal at room temperature or around 7 ° C for about 30 minutes to 1 hour, the β-galactosidase reaction was stopped by washing the tissue specimen with ImM.EDTAZPBS solution. Observe the color. In addition, mRNA encoding 1 ac Z may be detected according to a conventional method.
このように、 CD 100遺伝子発現不全非ヒ卜動物は、 CD 100プロモー夕 —を促進または阻害不活化する化合物またはその塩をスクリーニングする上で極 めて有用であり、 CD 100発現不全に起因する各種疾患の原因究明または予 防 ·治療薬の開発に大きく貢献することができる。  Thus, non-human animals deficient in CD100 gene expression are extremely useful in screening for compounds or salts thereof that promote or inhibit CD100 promoter activity, and that are caused by CD100 deficiency. It can greatly contribute to investigating the causes of various diseases or developing preventive and therapeutic drugs.
上記スクリーニング方法を用いて得られる化合物またはその塩は、 上記した試 験化合物から選ばれた化合物であり、 CD 100プロモーター活性を促進または 阻害する化合物である。  The compound or a salt thereof obtained by using the above-mentioned screening method is a compound selected from the above-mentioned test compounds and is a compound that promotes or inhibits CD100 promoter activity.
CD 100プロモーター活性を促進する化合物またはその塩は、 CD 100の 発現を促進し、 CD 100の機能を宂進することができるので、 例えば、 ウィル スによる感染症または疾病 (かぜ症候群、 インフルエンザ、 エイズ、 肝炎、 ヘル ぺス、 麻疹、 水痘、 手足口病、 帯状疱疹、 伝染性紅斑、 風疹、 突発性発疹、 ウイ ルス性結膜炎、 ウィルス性髄膜炎、 ウィルス肺炎、 ウィルス性脳炎、 ラッサ熱、 エボラ出血熱、 マールブルダ病、 コンゴ出血熱、 黄熱病、 デング熱、 狂犬病、 成 人 T細胞白血病 (ATL) 、 口夕ウィルス感染症、 ポリオ、 おたふくかぜなど) 、 細菌または真菌による感染症または疾病 (細菌性食中毒、 細菌性下痢、 結核、 八 ンセン氏病、 赤痢、 腸チフス、 コレラ、 パラチフス、 ペスト、 破傷風、 野兎病、 ブルセラ症、 炭疽、 敗血症、 細菌性肺炎、 皮膚真菌症など) 、 癌 (口腔癌、 咽頭 癌、 ***癌、 舌癌、 歯肉癌、 鼻咽頭癌、 食道癌、 胃癌、 小腸癌、 結腸癌を含む大 腸癌、 肝臓癌、 胆のう癌、 塍臓癌、 鼻腔癌、 肺癌、 骨肉腫、 軟部組織癌、 皮膚癌、 黒色腫、 乳癌、 子宮癌、 卵巣癌、 前立腺癌、 精巣癌、 陰茎癌、 膀胱癌、 腎臓癌、 脳腫瘍、 甲状腺癌、 リンパ腫、 白血病など) などの各種疾病に対する安全で低毒 性な治療 ·予防剤などの医薬として有用である。  Compounds or salts thereof that promote CD100 promoter activity can promote the expression of CD100 and enhance the function of CD100. For example, infections or diseases caused by virus (cold syndrome, influenza, AIDS, etc.) , Hepatitis, herpes, measles, chickenpox, hand, foot and mouth disease, shingles, infectious erythema, rubella, sudden rash, viral conjunctivitis, viral meningitis, viral pneumonia, viral encephalitis, Lassa fever, Ebola hemorrhagic fever , Marbruda's disease, Congo haemorrhagic fever, yellow fever, dengue fever, rabies, adult T-cell leukemia (ATL), oral mucosal virus infection, polio, mumps, etc., bacterial or fungal infections or diseases (bacterial food poisoning, bacteria) Sexual diarrhea, tuberculosis, Hachisen's disease, dysentery, typhoid fever, cholera, paratyphoid, plague, tetanus, tularemia, burse Large, including cancer, anthrax, sepsis, bacterial pneumonia, dermatomycosis, etc., cancer (oral cancer, pharyngeal cancer, lip cancer, tongue cancer, gingival cancer, nasopharyngeal cancer, esophageal cancer, stomach cancer, small intestine cancer, colon cancer) Intestinal cancer, liver cancer, gallbladder cancer, kidney cancer, nasal cavity cancer, lung cancer, osteosarcoma, soft tissue cancer, skin cancer, melanoma, breast cancer, uterine cancer, ovarian cancer, prostate cancer, testicular cancer, penis cancer, bladder cancer It is useful as a drug such as a safe and low-toxic therapeutic / prophylactic agent for various diseases such as kidney cancer, brain tumor, thyroid cancer, lymphoma, leukemia, etc.
—方、 CD 100プロモーター活性を阻害する化合物またはその塩は、 CD 1 00の発現を阻害し、 CD 100の機能を阻害することができるので、 例えば、 異常抗体産生または過度の抗体産生によってもたらされる疾病 (例、 アトピー性 喘息、 アレルギー性鼻炎、 アトピー性皮膚炎、 アレルギー性気管支炎、 肺ァスぺ ルギールス症、 寄生虫疾患、 木村氏病、 高 I g E症候群、 W i s k o t t— A 1 d r i c h症候群、 胸腺形成不全症、 Ho d k i n病、 肝硬変、 急性肝炎、 慢性 関節リューマチ、 インシュリン依存性糖尿病、 全身性エリトマト一デス、 強皮症、 不妊症、 子宮内膜症、 自己免疫性甲状腺疾患重症筋無力症、 橋本病、 B a s e d ow病、 悪性貧血、 Ad d i s on病、 男性不妊症、 多発性硬化症、 Go od p a s t u r e症候群、 天疱瘡、 類天疱瘡、 重症筋無力症、 水晶体性眼炎、 交感性 眼炎、 自己免疫性溶血性貧血、 特発性血小板減少症、 自己免疫性白血球減少症、 Fe l t y症候群、 自己免疫性リンパ球減少症、 潰瘍性大腸炎、 S j o g r e n 症候群、 全身性自己免疫疾患、 原発性胆汁性肝硬変症、 ルポイド肝炎などの各種 疾病に対する安全で低毒性な治療 ·予防剤などの医薬として有用である。 上記ス クリーニング方法を用いて得られる化合物またはその塩を上述の治療 ·予防剤と して使用する場合、 前記と同様に実施することができる。 〔CD 100遺伝子転移動物〕 On the other hand, compounds or salts thereof that inhibit CD100 promoter activity can inhibit the expression of CD100 and inhibit the function of CD100, for example, resulting from abnormal or excessive antibody production. Diseases (eg, atopic Asthma, allergic rhinitis, atopic dermatitis, allergic bronchitis, pulmonary aspergillosis, parasitic disease, Kimura's disease, high IgE syndrome, Wiskott—A 1 drich syndrome, thymic hypoplasia, Hodkin disease, cirrhosis, acute hepatitis, rheumatoid arthritis, insulin-dependent diabetes mellitus, systemic lupus erythematosus, scleroderma, infertility, endometriosis, autoimmune thyroid disease myasthenia gravis, Hashimoto's disease, B asedow disease, pernicious anemia, Ad dison disease, male infertility, multiple sclerosis, Good pasture syndrome, pemphigus, pemphigoid, myasthenia gravis, lens ophthalmitis, sympathetic ophthalmitis, autoimmunity Hemolytic anemia, Idiopathic thrombocytopenia, Autoimmune leukopenia, Felty syndrome, Autoimmune lymphopenia, Ulcerative colitis, S jogren syndrome, Systemic autoimmune disease, Primary biliary cirrhosis Disease, rupoi It is useful as a drug for safe and low toxic treatment and prevention of various diseases such as hepatitis. When a compound or a salt thereof obtained by the above-mentioned screening method is used as the above-mentioned therapeutic / prophylactic agent, it can be carried out in the same manner as described above. (CD100 transgenic animal)
外来性 CD 100遺伝子またはその変異遺伝子を組み込んだ DNAを有するト ランスジエニック非ヒト動物 (以下、 CD 100遺伝子転移動物と略記する) は、 未受精卵、 受精卵、 ***およびその始原細胞を含む生殖細胞などに対して、 好ま しくは、 非ヒト動物の発生における胚形成初期の段階 (さらに好ましくは、 単細 胞または受精卵細胞の段階で、 かつ一般に 8細胞期以前) に、 リン酸カルシウム 法、 電気パルス法、 リポフエクシヨン法、 凝集法、 マイクロインジェクション法、 パーティクルガン法、 DEAE—デキストラン法などにより目的とする CD 10 0遺伝子を転移することによって作出することができる。 また、 該 CD 100遺 伝子転移方法により、 体細胞、 生体の臓器、 組織細胞などに目的とする外来性 C D 100遺伝子を転移し、 細胞培養、 組織培養などに利用することもでき、 さら に、 これら細胞を上述の生殖細胞と自体公知の細胞融合法により融合させること により CD 100遺伝子転移動物を作出することもできる。  Transgenic non-human animals having DNA incorporating the exogenous CD100 gene or its mutant gene (hereinafter abbreviated as CD100 transgenic animals) include unfertilized eggs, fertilized eggs, spermatozoa and their progenitor cells For germ cells, etc., preferably at the early stage of embryogenesis in non-human animal development (more preferably at the stage of monocytic or fertilized egg cells and generally before the 8-cell stage), calcium phosphate It can be produced by transferring the target CD100 gene by the pulse method, lipofection method, agglutination method, microinjection method, particle gun method, DEAE-dextran method, or the like. In addition, the exogenous CD100 gene of interest can be transferred to somatic cells, organs of living organisms, tissue cells, and the like by the CD100 gene transfer method, and can be used for cell culture, tissue culture, and the like. The CD100 gene-transferred animal can also be produced by fusing these cells with the above-mentioned germ cells by a cell fusion method known per se.
非ヒト動物としては、 前記と同様のものが用いられる。  As the non-human animal, the same one as described above is used.
外来性 CD 100遺伝子とは、 非ヒト動物の体内に存在している CD 100遺 伝子ではなく、 いったん動物から単離 ·抽出された CD 100遺伝子、 あるいは、 遺伝子工学的手法を用いてクローニングされた CD 100 cDNAなどが用いら れる。 An exogenous CD100 gene is a CD100 gene found in the body of a non-human animal. Instead of using genes, CD100 genes once isolated and extracted from animals, or CD100 cDNA cloned using genetic engineering techniques are used.
具体的には、 前記した配列番号: 2または配列番号: 4で表わされる塩基配列 を有する遺伝子などが用いられる。  Specifically, a gene having the base sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4 described above is used.
CD 100遺伝子の変異遺伝子 (以下、 変異 CD 100遺伝子と略記する) と しては、 元の CD 100遺伝子の塩基配列に変異 (例えば、 突然変異など) が生 じたもの、 具体的には、 塩基の付加、 欠損、 他の塩基への置換などが生じた CD 100遺伝子などが用いられ、 また、 CD 100遺伝子の異常遺伝子 (以下、 異 常 CD 100遺伝子と略記する) も含まれる。  As the mutant gene of the CD100 gene (hereinafter, abbreviated as mutant CD100 gene), a gene in which a mutation (for example, mutation) has occurred in the base sequence of the original CD100 gene, specifically, The CD100 gene in which additions, deletions, substitutions with other bases and the like have occurred is used, and also includes an abnormal gene of the CD100 gene (hereinafter, abbreviated as abnormal CD100 gene).
該異常 CD 100遺伝子としては、 異常な CD 100を発現させる CD 100 遺伝子を意味し、 例えば、 正常な CD 100の機能を抑制する CD 100を発現 させる CD 100遺伝子などが用いられる。  The abnormal CD100 gene means a CD100 gene that expresses abnormal CD100. For example, a CD100 gene that expresses CD100 that suppresses normal CD100 function and the like are used.
外来性 CD 100遺伝子は、 対象とする動物と同種あるいは異種のどちらの動 物由来のものであってもよい。  The exogenous CD100 gene may be derived from an animal of the same or different species as the animal of interest.
外来性 CD 100遺伝子またはその変異遺伝子を組み込んだ DN Aとしては、 外来性 CD 100遺伝子またはその変異遺伝子を含有する DN Aであればいかな るものであってもよい。  Any DNA incorporating the exogenous CD100 gene or its mutant gene may be used as long as it contains the exogenous CD100 gene or its mutant gene.
CD 100遺伝子を対象動物に転移させるにあたっては、 該 CD 100遺伝子 を動物細胞で発現させうるプロモーターの下流に結合した DNAコンストラクト として用いるのが一般に有利である。 例えば、 ヒト CD 100遺伝子を転移させ る場合、 これと相同性が高い CD 100遺伝子を有する各種非ヒト動物 (例えば、 ゥサギ、 ィヌ、 ネコ、 モルモット、 ハムスター、 ラット、 マウスなど) 由来の C D 100遺伝子を発現させうる各種プロモ一夕一の下流に、 ヒト CD 100遺伝 子を結合した DNAコンストラクト (例、 ベクターなど) を対象動物の受精卵、 例えば、 マウス受精卵へマイクロインジェクションすることによって CD 100 遺伝子を高発現する CD 100遺伝子転移動物を作出することができる。  In transferring the CD100 gene to a target animal, it is generally advantageous to use the CD100 gene as a DNA construct linked downstream of a promoter capable of expressing in animal cells. For example, when transferring the human CD100 gene, CD100 derived from various non-human animals having a CD100 gene highly homologous thereto (eg, egret, dog, cat, guinea pig, hamster, rat, mouse, etc.) Downstream of various promoters capable of expressing the gene, a DNA construct (eg, a vector, etc.) linked to the human CD100 gene is microinjected into a fertilized egg of a target animal, such as a mouse fertilized egg, by microinjecting the CD100. It is possible to create a CD100 transgenic animal that highly expresses the gene.
CD 100発現用ベクターとしては、 大腸菌由来のプラスミド、 枯草菌由来の プラスミド、 酵母由来のプラスミド、 λファージなどのバクテリオファージ、 モ ロニー白血病ウィルスなどのレトロウイルス、 ワクシニアウィルスまたはバキュ ロウィルスなどの動物ウィルスなどが用いられる。 なかでも、 大腸菌由来のブラ スミド、 枯草菌由来のプラスミドまたは酵母由来のプラスミドなどが好ましく用 いられる。 Examples of CD100 expression vectors include plasmids derived from E. coli, plasmids derived from Bacillus subtilis, plasmids derived from yeast, bacteriophages such as Retroviruses such as Ronny leukemia virus, animal viruses such as vaccinia virus or baculovirus are used. Among them, a plasmid derived from Escherichia coli, a plasmid derived from Bacillus subtilis or a plasmid derived from yeast are preferably used.
上記の CD 100遺伝子発現調節を行なうプロモーターとしては、 例えば、 ゥ ィルス (例、 シミアンウィルス、 サイトメガロウィルス、 モロニ一白血病ウィル ス、 J Cウィルス、 乳癌ウィルス、 ポリオウイルスなど) に由来するプロモ一夕 一、 各種動物 (ヒト、 ゥサギ、 ィヌ、 ネコ、 モルモット、 ハムスター、 ラッ卜、 マウスなど) および鳥類 (ニヮトリなど) 由来のものとしては、 アルブミン、 ィ ンスリン I I、 ゥロプラキン I I、 エラス夕ーゼ、 エリスロポエチン、 エンドセ リン、 筋クレアチンキナーゼ、 グリア線維性酸性タンパク質、 ダルタチオン S— トランスフェラ一ゼ、 血小板由来成長因子 3、 ケラチン Kl, K 1 0および K1 4、 コラーゲン I型および I I型、 サイクリック AMP依存タンパク質クキナー ゼ i3 Iサブユニット、 ジストロフィン、 酒石酸抵抗性アルカリフォスファターゼ、 心房ナトリウム利尿性因子、 内皮レセプターチ口シンキナーゼ (一般に T i e 2 と略される) 、 ナトリウムカリウムアデノシン 3リン酸化酵素 (Na, K一 AT P a s e) 、 ニューロフィラメント軽鎖、 メタロチォネィン Iおよび I I A、 メ 夕口プロティナーゼ 1組織インヒビ夕一、 MHCクラス I抗原 (H— 2 L) 、 H 一 r a s、 レニン、 ドーパミン /3—水酸化酵素、 甲状腺ペルォキシダ一ゼ (TP O) 、 ポリペプチド鎖延長因子 1ひ (EF- 1 α) 、 βァクチン、 αおよび; 3ミオ シン重鎖、 ミオシン軽鎖 1および 2、 ミエリン基礎タンパク質ク、 チログロブリ ン、 Thy— 1、 免疫グロブリン、 H鎖可変部 (VNP) 、 血清アミロイド Pコ ンポーネント、 ミオグロビン、 トロポニン C、 平滑筋 αァクチン、 プレブロェン ケフアリン Α、 バソプレシンなどのプロモーターなどが用いられるが、 好ましく は全身で高発現することが可能なサイトメガロウィルスプロモーター、 ヒトポリ ペプチド鎖延長因子 l a (EF- 1 α) のプロモーター、 ヒトおよびニヮトリ 3 ァクチンプロモーターなどを用いることができる。 また、 特定の臓器や組織で高 発現することが可能なインシュリンプロモーター、 アルブミンプロモーター、 ィ ミュノグロプリンプロモーターなども用いることができる。 上記べクタ一は、 C D 1 0 0遺伝子転移動物において目的とするメッセンジャ — R N Aの転写を終結する配列 (一般に夕一ミネ夕一と呼ばれる) を有している ことが好ましく、 例えば、 ウィルス由来、 各種哺乳動物および鳥類由来の各 C D 1 0 0遺伝子の配列を用いることができ、 好ましくは、 シミアンウィルスの S V 4 0夕一ミネ夕一などが用いられる。 Examples of the promoter that regulates the expression of the CD100 gene include promoters derived from viruses (eg, Simian virus, cytomegalovirus, Moroni leukemia virus, JC virus, breast cancer virus, poliovirus, etc.). , Various animals (humans, egrets, dogs, cats, guinea pigs, hamsters, rats, mice, etc.) and birds (chicken, etc.) , Endothelin, muscle creatine kinase, glial fibrillary acidic protein, daltathione S-transferase, platelet-derived growth factor 3, keratin Kl, K10 and K14, collagen type I and type II, cyclic AMP-dependent protein Cukkinaze i3 I subunit Dystrophin, Tartrate-Resistant Alkaline Phosphatase, Atrial Natriuretic Factor, Endothelial Receptor Thiocycin Kinase (Generally Abbreviated as Tie2), Sodium Potassium Adenosine 3 Phosphorylase (Na, K-ATPase), Neurofilament Light chain, metallothionein I and IIA, male proteinase 1 tissue inhibitor, MHC class I antigen (H-2L), H-ras, renin, dopamine / 3-hydroxylase, thyroid peroxidase (TPO) ), Polypeptide chain elongation factor 1 (EF-1α), β-actin, α and; 3 myosin heavy chain, myosin light chain 1 and 2, myelin basic protein, thyroglobulin, Thy-1, immunoglobulin, H chain variable region (VNP), serum amyloid P component, myoglobin, troponin C, smooth muscle α-actin, pre- Promoters such as Roenkephalin Α and vasopressin are used, and preferably, a cytomegalovirus promoter capable of high expression over the whole body, a promoter of human polypeptide chain elongation factor la (EF-1α), human and chicken 3 A Kuching promoter or the like can be used. Further, an insulin promoter, an albumin promoter, an immunoglobulin promoter, and the like, which can be highly expressed in a specific organ or tissue, can also be used. The vector preferably has a sequence that terminates the transcription of the messenger RNA of interest in a CD100 transgenic animal (generally referred to as Yuichi Minei Yuichi). The sequences of the respective CD100 genes derived from various mammals and birds can be used, and preferably, the simian virus SV40 / Mine / Yuichi is used.
その他、 目的 C D 1 0 0遺伝子をさらに高発現させる目的で遺伝子のスプライ シングシグナル、 イミュノグロブリン遺伝子などのェンハンサ一領域、 真核細胞 の遺伝子のィントロンの一部などをプロモーター領域の 5 '上流、プロモー夕一領 域と翻訳領域間あるいは翻訳領域の 3 '下流に連結することも目的により可能で ある。  In addition, a gene splicing signal, a gene enhancer region such as an immunoglobulin gene, a part of an intron of a eukaryotic cell gene, etc., 5 ′ upstream of the promoter region, for the purpose of further expressing the target CD100 gene, It is also possible to link between the promoter region and the translation region or 3 ′ downstream of the translation region depending on the purpose.
正常な C D 1 0 0の翻訳領域は、 各種動物 (例えば、 ゥサギ、 ィヌ、 ネコ、 モ ルモット、 ハムスター、 ラット、 マウス、 ヒトなど) 由来の肝臓、 腎臓、 甲状腺 細胞、 線維芽細胞由来 D N Aおよび市販の各種ゲノムライブラリ一よりゲノム遺 伝子の全てあるいは一部として、 または肝臟、 腎臓、 甲状腺細胞、 線維芽細胞由 来 R N Aより公知の方法により調製された相補 C D 1 0 0遺伝子を原料として取 得することが出来る。 また、 外来性異常 C D 1 0 0遺伝子は、 上記の細胞または 組織より得られた正常 C D 1 0 0の翻訳領域を点突然変異誘発法により変異させ ることにより作製することができる。  The normal CD100 translation region includes DNAs derived from liver, kidney, thyroid cells, fibroblasts, and the like from various animals (eg, egrets, dogs, cats, guinea pigs, hamsters, rats, mice, humans, etc.). All or part of the genomic genes from various commercially available genomic libraries, or the complementary CD100 gene prepared by known methods from liver, kidney, thyroid cells, or fibroblast-derived RNA, as a raw material Can be obtained. The exogenous abnormal CD100 gene can be prepared by mutating the translation region of normal CD100 obtained from the above cells or tissues by point mutagenesis.
該翻訳領域は転移動物において発現しうる D N Aコンストラクトとして、 前記 のプロモー夕一の下流および所望により転写終結部位の上流に連結させる通常の 遺伝子工学的手法により作製することができる。  The translation region can be prepared as a DNA construct that can be expressed in a transgenic animal by a conventional genetic engineering technique in which it is ligated downstream of the above promoter and, if desired, upstream of the transcription termination site.
受精卵細胞段階における C D 1 0 0遺伝子の転移は、 対象動物の生殖細胞およ び体細胞のすべてに存在するように確保される。 C D 1 0 0遺伝子転移後の作出 動物の生殖細胞において、 C D 1 0 0遺伝子が存在することは、 作出動物の後代 がすべて、 その生殖細胞および体細胞のすべてに C D 1 0 0遺伝子を保持するこ とを意味する。 C D 1 0 0遺伝子を受け継いだこの種の動物の子孫はその生殖細 胞および体細胞のすべてに C D 1 0 0遺伝子を有する。  Transfer of the CD100 gene at the fertilized egg cell stage is ensured to be present in all germ cells and somatic cells of the subject animal. Production after CD100 gene transfer The presence of the CD100 gene in the germ cells of the animal means that all progeny of the produced animal retain the CD100 gene in all of its germ cells and somatic cells Means this. Progeny of this type of animal that has inherited the CD100 gene have the CD100 gene in all of its germ cells and somatic cells.
外来性正常 C D 1 0 0遺伝子を転移させた非ヒト動物は、 交配により C D 1 0 0遺伝子を安定に保持することを確認して、 該 C D 1 0 0遺伝子保有動物として 通常の飼育環境で継代飼育することが出来る。 受精卵細胞段階における CD 10 0遺伝子の転移は、 対象動物の生殖細胞および体細胞の全てに過剰に存在するよ うに確保される。 CD 100遺伝子転移後の作出動物の生殖細胞において CD 1 00遺伝子が過剰に存在することは、 作出動物の子孫が全てその生殖細胞および 体細胞の全てに CD 100遺伝子を過剰に有することを意味する。 CD 100遺 伝子を受け継いだこの種の動物の子孫はその生殖細胞および体細胞の全てに C D 100遺伝子を過剰に有する。 導入 CD 100遺伝子を相同染色体の両方に持つ ホモザィゴート動物を取得し、 この雌雄の動物を交配することによりすべての子 孫が該 CD 100遺伝子を過剰に有するように繁殖継代することができる。 この ようにして得られた子孫も本発明の動物に含まれる。 The non-human animal to which the exogenous normal CD 100 gene was transferred was confirmed to stably maintain the CD 100 gene by mating, and as a CD 100 gene-carrying animal, It can be reared in a normal breeding environment. Transfer of the CD100 gene at the fertilized egg cell stage is ensured to be present in excess in all germ and somatic cells of the subject animal. Excess of the CD100 gene in the germ cells of the produced animal after the CD100 gene transfer means that all offspring of the produced animal have an excess of the CD100 gene in all of their germ cells and somatic cells. . The offspring of this type of animal that has inherited the CD100 gene have an excess of the CD100 gene in all of their germ and somatic cells. By obtaining homozygous animals having the introduced CD100 gene on both homologous chromosomes and mating the male and female animals, all offspring can be bred to have the CD100 gene in excess. The progeny thus obtained is also included in the animal of the present invention.
このように得られた外来性 CD 100遺伝子またはその変異遺伝子を組み込ん だ DNAを有するトランスジエニック非ヒト動物は、 T細胞のインターフェロン ガンマ産生能および増殖性が上昇し、 T細胞の反応性が亢進した非ヒト動物であ る (後述の実施例 1 1) 。  The transgenic non-human animal having the DNA incorporating the exogenous CD100 gene or its mutant gene obtained in this way has an increased T cell interferon gamma production ability and proliferative property, and has an enhanced T cell reactivity. This is a non-human animal (Example 11 described later).
正常 CD 100遺伝子を有する非ヒト動物は、 正常 CD 100遺伝子が高発現 させられており、 内在性の正常 CD 100遺伝子の機能を促進することにより最 終的に CD 100機能亢進症を発症することがあり、 その病態モデル動物として 利用することができる。 例えば、 正常 CD 100遺伝子転移動物を用いて、 CD 100機能亢進症や、 CD 100関連疾患、 例えば、 異常抗体産生または過度の 抗体産生によってもたらされる疾病 (例、 アトピー性喘息、 アレルギー性鼻炎、 アトピー性皮膚炎、 アレルギー性気管支炎、 肺ァスペルギールス症、 寄生虫疾患、 木村氏病、 高 I g E症候群、 Wi s k o t t—A l d r i c h症候群、 胸腺形成 不全症、 Hodk i n病、 肝硬変、 急性肝炎、 慢性関節リューマチ、 インシユリ ン依存性糖尿病、 全身性エリトマト一デス、 強皮症、 不妊症、 子宮内膜症、 自己 免疫性甲状腺疾患重症筋無力症、 橋本病、 Ba s e d ow病、 悪性貧血、 Add i s o n病、 男性不妊症、 多発性硬化症、 Good p a s t u r e症候群、 天疱 瘡、 類天疱瘡、 重症筋無力症、 水晶体性眼炎、 交感性眼炎、 自己免疫性溶血性貧 血、 特発性血小板減少症、 自己免疫性白血球減少症、 Fe 1 t y症候群、 自己免 疫性リンパ球減少症、 潰瘍性大腸炎、 S j o g r e n症候群、 全身性自己免疫疾 患、 原発性胆汁性肝硬変症、 ルポイド肝炎などの各種疾病の病態機序の解明およ びこれらの疾患の治療方法の検討を行なうことが可能である。 Non-human animals that have the normal CD100 gene have high expression of the normal CD100 gene, and ultimately develop CD100 hyperactivity by promoting the function of the endogenous normal CD100 gene. And can be used as a disease model animal. For example, using normal CD100 transgenic animals, CD100 hyperactivity and CD100-related diseases, such as diseases caused by abnormal or excessive antibody production (eg, atopic asthma, allergic rhinitis, atopy) Dermatitis, allergic bronchitis, pulmonary aspergillosis, parasitic disease, Kimura's disease, high IgE syndrome, Wiskott-Aldrich syndrome, thymic dysplasia, Hodkin's disease, liver cirrhosis, acute hepatitis, chronic joint Rheumatism, inulin-dependent diabetes mellitus, systemic lupus erythematosus, scleroderma, infertility, endometriosis, autoimmune thyroid disease myasthenia gravis, Hashimoto's disease, Basedow's disease, pernicious anemia, Add ison's disease , Male infertility, multiple sclerosis, Good pasture syndrome, pemphigus, pemphigoid, myasthenia gravis, lens ophthalmitis, sympathetic ophthalmitis, autoimmune hemolytic anemia, idiopathic Platelet thrombocytopenia, autoimmune leukopenia, Fe 1 ty syndrome, autoimmune 疫性 lymphopenia, ulcerative colitis, S Jogren syndrome, systemic autoimmune sputum It is possible to elucidate the pathophysiology of various diseases such as illness, primary biliary cirrhosis, and lupus hepatitis, and to study treatment methods for these diseases.
また、 外来性正常 CD 100遺伝子を転移させた動物は、 遊離 CD 100の増 加症状を有することから、 上記 CD 100関連疾患に対する治療薬のスクリー二 ング試験にも利用可能である。 例えば、 上記マウスにジニトロフエニルォバルブ ミンなどの外来抗原などを接種し、 一方で試験物質を適宜投与することにより外 来抗原に対する抗体価が下がるかどうかを測定することによつて阻害物質のスク リーニングを行うことが可能である。 より具体的には自己免疫疾患等で上昇する と考えられるインターフェロンガンマなどの血中サイトカイン量を測定すること によっても可能である。  In addition, since the animal in which the exogenous normal CD100 gene has been transferred has an increased symptom of free CD100, it can be used for a screening test for a therapeutic agent for the above-mentioned CD100-related disease. For example, the above mice are inoculated with a foreign antigen such as dinitrophenylovalbumin, and on the other hand, the test substance is administered as appropriate to determine whether the antibody titer against the foreign antigen decreases, thereby determining the inhibitory activity of the inhibitor. Screening is possible. More specifically, it can also be measured by measuring the amount of blood cytokines such as interferon gamma, which is considered to increase in autoimmune diseases and the like.
一方、 外来性異常 CD 100遺伝子を有する非ヒト動物は、 交配により CD 1 00遺伝子を安定に保持することを確認して該 CD 100遺伝子保有動物として 通常の飼育環境で継代飼育することが出来る。 さらに、 目的 CD 100遺伝子を 前述のプラスミドに組み込んで原科として用いることができる。 プロモーターと の DNAコンストラクトは、 通常の CD 100遺伝子工学的手法によって作製す ることができる。  On the other hand, a non-human animal having an exogenous abnormal CD 100 gene can be subcultured in a normal breeding environment as an animal having the CD 100 gene after confirming that the CD 100 gene is stably maintained by mating. . Furthermore, the target CD100 gene can be inserted into the above-mentioned plasmid and used as a source substance. The DNA construct with the promoter can be prepared by a conventional CD100 genetic engineering technique.
受精卵細胞段階における異常 CD 100遺伝子の転移は、 対象動物の生殖細胞 および体細胞の全てに存在するように確保される。 CD 100遺伝子転移後の作 出動物の生殖細胞において異常 CD 100遺伝子が存在することは、 作出動物の 子孫が全てその生殖細胞および体細胞の全てに異常 CD 100遺伝子を有するこ とを意味する。 CD 100遺伝子を受け継いだこの種の動物の子孫は、 その生殖 細胞および体細胞の全てに異常 CD 100遺伝子を有する。 導入 CD 100遺伝 子を相同染色体の両方に持つホモザィゴート動物を取得し、 この雌雄の動物を交 配することによりすべての子孫が該 CD 100遺伝子を有するように繁殖継代す ることができる。  Transfer of the abnormal CD100 gene at the fertilized egg cell stage is ensured to be present in all germ and somatic cells of the subject animal. The presence of the abnormal CD100 gene in the germ cells of the animal after the CD100 gene transfer means that all offspring of the animal produce the abnormal CD100 gene in all of its germ cells and somatic cells. The offspring of such animals that have inherited the CD100 gene have an abnormal CD100 gene in all of their germ and somatic cells. By obtaining a homozygous animal having the introduced CD100 gene on both homologous chromosomes, and breeding the male and female animals, it is possible to breed all the offspring so as to have the CD100 gene.
異常 CD 100遺伝子を有する非ヒト動物は、 異常 CD 100遺伝子が高発現 させられており、 内在性の正常 CD 100遺伝子の機能を阻害することにより最 終的に CD 100機能不応症となることがあり、 その病態モデル動物として利用 することができ、 例えば、 異常 CD 100遺伝子転移動物を用いて、 CD 100 機能不応症の病態機序の解明およびこの疾患の治療方法の検討を行なうことが可 能である。 Non-human animals that have an abnormal CD100 gene have high expression of the abnormal CD100 gene, and may eventually become refractory to CD100 by inhibiting the function of the endogenous normal CD100 gene. Yes, it can be used as a model animal of the disease state. It is possible to elucidate the pathophysiology of dysfunction and to examine treatment methods for this disease.
また、 具体的な利用可能性としては、 異常 C D 1 0 0遺伝子高発現動物は、 C D 1 0 0機能不応症における異常 C D 1 0 0による正常 C D 1 0 0機能阻害 (dominant negat ive作用) を解明するモデルとなる。 また、 外来異常 C D 1 0 0 遺伝子を転移させた動物は、 正常 C D 1 0 0の機能が損なわれることから、 ウイ ルスによる感染症または疾病 (かぜ症候群、 インフルエンザ、 エイズ、 肝炎、 へ ルぺス、 麻疹、 水痘、 手足口病、 帯状疱疹、 伝染性紅斑、 風疹、 突発性発疹、 ゥ ィルス性結膜炎、 ウィルス性髄膜炎、 ウィルス肺炎、 ウィルス性脳炎、 ラッサ熱、 エボラ出血熱、 マールブルダ病、 コンゴ出血熱、 黄熱病、 デング熱、 狂犬病、 成 人 T細胞白血病 (A T L ) 、 ロタウィルス感染症、 ポリオ、 おたふくかぜなど) 、 細菌または真菌による感染症または疾病 (細菌性食中毒、 細菌性下痢、 結核、 八 ンセン氏病、 赤痢、 腸チフス、 コレラ、 パラチフス、 ペスト、 破傷風、 野兎病、 ブルセラ症、 炭疽、 敗血症、 細菌性肺炎、 皮膚真菌症など) に対する抵抗性が弱 まったり、 癌 (口腔癌、 咽頭癌、 ***癌、 舌癌、 歯肉癌、 鼻咽頭癌、 食道癌、 胃 癌、 小腸癌、 結腸癌を含む大腸癌、 肝臓癌、 胆のう癌、 塍臓癌、 鼻腔癌、 肺癌、 骨肉腫、 軟部組織癌、 皮膚癌、 黒色腫、 乳癌、 子宮癌、 卵巣癌、 前立腺癌、 精巣 癌、 陰茎癌、 膀胱癌、 腎臓癌、 脳腫瘍、 甲状腺癌、 リンパ腫、 白血病など) の増 殖性が促進される動物のモデルになると考えられ、 これらの疾病に対する治療薬 のスクリーニング試験にも利用可能である。  In addition, as a specific possibility, animals with abnormally high CD100 gene expression can inhibit normal CD100 function (dominant negative effect) by abnormal CD100 in CD100 refractory disease. A model to elucidate. In addition, since the function of normal CD100 is impaired in animals transfected with the foreign CD100 gene, infection or disease caused by virus (cold syndrome, influenza, AIDS, hepatitis, virus, etc.) , Measles, chickenpox, hand-foot-and-mouth disease, shingles, erythema contaminated, rubella, idiopathic rash, virulent conjunctivitis, viral meningitis, viral pneumonia, viral encephalitis, Lassa fever, Ebola hemorrhagic disease, Marbleda disease, Congo hemorrhage Fever, yellow fever, dengue, rabies, adult T cell leukemia (ATL), rotavirus infection, polio, mumps, etc., bacterial or fungal infections or diseases (bacterial food poisoning, bacterial diarrhea, tuberculosis, Illness, dysentery, typhoid fever, cholera, paratyphoid, plague, tetanus, tularemia, brucellosis, anthrax, sepsis, bacterial pneumonia Resistance to dermatomycosis, etc., or cancer (oral cancer, pharyngeal cancer, lip cancer, tongue cancer, gingival cancer, nasopharyngeal cancer, esophageal cancer, stomach cancer, colon cancer including small intestine cancer, colon cancer, liver cancer) Cancer, gallbladder cancer, kidney cancer, nasal cavity cancer, lung cancer, osteosarcoma, soft tissue cancer, skin cancer, melanoma, breast cancer, uterine cancer, ovarian cancer, prostate cancer, testicular cancer, penis cancer, bladder cancer, kidney cancer, It is considered to be a model for animals in which the proliferative potential of brain tumors, thyroid cancer, lymphomas, leukemias, etc.) is promoted, and can be used for screening tests for therapeutic drugs against these diseases.
本発明の外来性 C D 1 0 0遺伝子またはその変異遺伝子を組み込んだ D N Aを 有するトランスジエニック非ヒト動物を用いたスクリーニング方法は上記した C D 1 0 0と C D 7 2との結合性を変化させる化合物またはその塩のスクリーニン グ方法 (リガンド · レセプターアツセィ系) と組み合わせて実施されてもよい。 すなわち、 本発明は外来性 C D 1 0 0遺伝子またはその変異遺伝子を組み込んだ D N Aを有するトランスジエニック非ヒト動物を用いることを特徴とする、 C D 1 0 0またはその塩とその受容体との結合性を変化させる化合物 (特に、 C D 1 0 0と C D 7 2との結合性を阻害する化合物) またはその塩のスクリーニング法 を提供する。 ここで、 リガンド · レセプ夕一アツセィ系を一次スクリーニングとして CD 1 00と CD 72との結合性を変化させる化合物を候補化合物として選択した後、 外来性 CD 100遺伝子またはその変異遺伝子を組み込んだ DNAを有するトラ ンスジエニック非ヒト動物を用いた二次スクリーニング系で該候補化合物の予 防'治療効果を試験してもよいし、外来性 CD 100遺伝子またはその変異遺伝子 を組み込んだ DNAを有するトランスジエニック非ヒト動物を用いたスクリー二 ング系を一次スクリーニングとして候補化合物を選択した後、 リガンド, レセプ 夕一アツセィ系の二次スクリーニングに付し、 得られた CD 100と CD 72と の結合性を変化させる化合物を本発明の予防 ·治療剤の候補化合物として選択し てもよい。 The screening method using a transgenic non-human animal having a DNA into which the exogenous CD100 gene or its mutant gene has been incorporated according to the present invention provides a compound that alters the binding property between CD100 and CD72 described above. Alternatively, it may be carried out in combination with a method for screening a salt thereof (ligand / receptor atsei system). That is, the present invention is characterized by using a transgenic non-human animal having a DNA into which an exogenous CD100 gene or its mutant gene has been incorporated, wherein the binding between CD100 or a salt thereof and its receptor is performed. Provided is a method for screening a compound that alters the sex (particularly, a compound that inhibits the binding between CD100 and CD72) or a salt thereof. Here, after the ligand / receptor atsushi system was used as the primary screening and a compound that alters the binding between CD100 and CD72 was selected as a candidate compound, DNA incorporating the exogenous CD100 gene or its mutant gene was selected. The prophylactic / therapeutic effect of the candidate compound may be tested in a secondary screening system using a transgenic non-human animal having a transgenic non-human animal. The screening system using human animals is used as a primary screen to select candidate compounds, and then subjected to a secondary screening of ligand, receptor, and Yuichi Atsushi system to change the binding between the obtained CD100 and CD72. The compound may be selected as a candidate compound for the prophylactic or therapeutic agent of the present invention.
また、 上記 2種類の CD 100遺伝子転移動物のその他の利用可能性として、 例えば、  Other potential uses of the two types of CD100 transgenic animals include, for example,
①組織培養のための細胞源としての使用、  ① Use as a cell source for tissue culture,
② CD 100遺伝子転移動物の組織中の CD 100遺伝子もしくは RNAを直接 分析するか、 または CD 100遺伝子高発現組織を分析することによる、 CD 1 ② CD 100 gene or RNA in the tissues of CD 100 transgenic animals can be analyzed directly, or by analyzing tissues with high expression of CD 100 gene.
00により特異的に発現あるいは活性化するタンパク質との関連性についての解 析、 Analysis of the relationship with proteins specifically expressed or activated by
③ CD 100遺伝子を有する組織の細胞を標準組織培養技術により培養し、 これ らを使用して、 一般に培養困難な組織からの細胞の機能の研究、  ③ Cells of the tissue having the CD100 gene are cultured by standard tissue culture techniques, and these are used to study the function of cells from tissues that are generally difficult to culture.
④上記③記載の細胞を用いることによる細胞の機能を高めるような薬剤のスクリ 一二ング、 および 薬 剤 Screening of drugs that enhance cell function by using the cells described in ③ above, and
⑤変異 CD 100の単離精製およびその抗体作製などが考えられる。  単 離 Isolation and purification of mutant CD100 and production of its antibody can be considered.
さらに、 CD 100遺伝子転移動物を用いて、 CD 100機能不応症を含む、 CD 100関連疾患の臨床症状を調べることができ、 また、 CD 100関連疾患 モデルの各臓器におけるより詳細な病理学的所見が得られ、 新しい治療方法の開 発、 さらには、 該疾患による二次的疾患の研究および治療に貢献することができ る。  In addition, CD100 transgenic animals can be used to examine the clinical symptoms of CD100-related diseases, including CD100 dysfunction, and to provide more detailed pathological findings in each organ of the CD100-related disease model. Thus, it can contribute to the development of new treatment methods and the research and treatment of secondary diseases caused by the diseases.
また、 CD 100遺伝子転移動物から各臓器を取り出し、 細切後、 卜リブシン などのタンパク質分解酵素により、 CD 100遺伝子転移細胞の取得、 その培養 またはその培養細胞の系統化を行なうことが可能である。 さらに、 CD 100産 生細胞の特定化、 分化あるいは増殖との関連性、 またはそれらにおけるシグナル 伝達機構を調べ、 それらの異常を調べることなどができ、 CD 100およびその 作用解明のための有効な研究材料となる。 In addition, each organ is removed from the CD100 transgenic animal, cut into small pieces, and CD100 transgenic cells are obtained using a proteolytic enzyme such as tribcine, and cultured. Alternatively, it is possible to systematize the cultured cells. Furthermore, it is possible to investigate the specificity of CD100-producing cells, their relationship to differentiation or proliferation, or their signal transduction mechanisms, and to investigate their abnormalities.This is an effective study to elucidate CD100 and its effects. Material.
さらに、 CD 100遺伝子転移動物を用いて、 CD 100機能不応症を含む、 CD 100関連疾患の治療薬の開発を行なうために、 上述の検査法および定量法 などを用いて、 有効で迅速な該疾患治療薬のスクリーニング法を提供することが 可能となる。  Furthermore, in order to develop therapeutic agents for CD100-related diseases, including CD100 dysfunction, using CD100 transgenic animals, the above-mentioned test methods and quantification methods are used to develop effective and rapid It becomes possible to provide a screening method for a therapeutic agent for a disease.
また、 CD 100遺伝子転移動物または外来性 CD 100遺伝子発現ベクター を用いて、 CD 100関連疾患の CD 100遺伝子治療法を検討、 開発すること が可能である。 遺伝子治療法を検討する際には、 例えば、 レトロウイルスベクタ ―、 アデノウイルスベクター、 AAVベクター、 ヘルぺスウィルスベクタ一など のウィルスベクタ一あるいは、 膜融合リボソーム法などが用いられる。  In addition, it is possible to examine and develop a CD100 gene therapy method for a CD100-related disease using a transgenic CD100 animal or an exogenous CD100 gene expression vector. When studying a gene therapy method, for example, a virus vector such as a retrovirus vector, an adenovirus vector, an AAV vector, a herpes virus vector, or a membrane fusion ribosome method is used.
本明細書および図面において、 塩基やアミノ酸などを略号で表示する場合、 I UP AC - I UB Commision on Biochemical Nomenclature による田各号あるい は当該分野における慣用略号に基づくものであり、 その例を下記する。 またアミ ノ酸に関し光学異性体があり得る場合は、 特に明示しなければ L体を示すものと する。  In the present specification and drawings, when bases and amino acids are indicated by abbreviations, the abbreviations are based on tags or common abbreviations in the art according to IUPAC-I UB Commision on Biochemical Nomenclature. I do. If there is an optical isomer of the amino acid, the L-form is indicated unless otherwise specified.
DNA :デォキシリボ核酸  DNA: Deoxyribonucleic acid
cDNA :相補的デォキシリボ核酸  cDNA: Complementary deoxyribonucleic acid
A :アデニン  A: Adenine
T :チミン  T: Thymine
G :グァニン  G: Guanin
C :シ卜シン  C: Shitoshin
Y :チミンまたはシトシン  Y: thymine or cytosine
N :チミン、 シトシン、 アデニンまたはグァニン  N: Thymine, cytosine, adenine or guanine
R :アデニンまたはグァニン  R: adenine or guanine
M :シトシンまたはアデニン  M: cytosine or adenine
W :チミンまたはアデニン s シトシンまたはグァニンW: Thymine or adenine s cytosine or guanine
RNA リボ核酸 RNA ribonucleic acid
mRNA メッセンジャーリボ核酸 d ATP デォキシアデノシン三リン酸 dTTP デォキシチミジン三リン酸 dGTP デォキシグアノシン三リン酸 d CTP デォキシシチジン三リン酸 ATP アデノシン三リン酸 mRNA Messenger ribonucleic acid d ATP Deoxyadenosine triphosphate dTTP Deoxythymidine triphosphate dGTP Deoxyguanosine triphosphate d CTP Deoxycytidine triphosphate ATP Adenosine triphosphate
EDTA エチレンジァミン四酢酸 SD S ドデシル硫酸ナトリウムEDTA Ethylenediaminetetraacetic acid SD S Sodium dodecyl sulfate
E I A ェンザィムィムノアッセィE I A Enzymimnoassy
G 1 yまたは G グリシン G 1 y or G glycine
A 1 aまたは A ァラニン A 1 a or A alanine
Va 1または V バリン Va 1 or V valine
し 611またはし ロイシン 611 or leucine
I 1 eまたは I  I 1 e or I
S e rまたは S セリン S e r or S serine
Th rまたは T スレオニン Th r or T threonine
Cy sまたは C Cy s or C
^ 6 または1^ メチォニン ^ 6 or 1 ^ methionine
G 1 uまたは E グルタミン酸 G 1 u or E glutamic acid
As pまたは D ァスパラギン酸 Asp or D Aspartic acid
Ly sまたは K リジン Lys or K lysine
A r gまたは R アルギニン A r g or R Arginine
H i sまたは H ヒスチジン H is or H histidine
Ph eまたは F フエ二ルァラニン  Ph e or F phenylalanine
Ty rまたは Y チロシン Ty r or Y tyrosine
T r pまたは W トリプトファン Trp or W tryptophan
P r oまたは P プロリン As nまたは N :ァスパラギン Pro or P proline As n or N: Asparagine
G 1 nまたは Q : グルタミン  G 1 n or Q: Glutamine
p G 1 u : ピログルタミン酸  pG1u: pyroglutamic acid
Me : メチル基  Me: methyl group
Et :ェチル基  Et: ethyl group
B u :ブチル基  B u: butyl group
P h : フエニル基  P h: phenyl group
TC :チアゾリジン— 4 (R) —カルボキサミド基  TC: thiazolidine—4 (R) —carboxamide group
Bom :ベンジルォキシメチル  Bom: benzyloxymethyl
NMP : N—メチルピロリ ドン  NMP: N-methylpyrrolidone
PAM : フエニルァセトアミドメチル  PAM: phenylacetamidomethyl
また、 本明細書中で繁用される置換基、 保護基および試薬を下記の記号で表記 する。  The substituents, protecting groups and reagents frequently used in the present specification are represented by the following symbols.
To s : p—トルエンスルフォニル  To s: p-toluenesulfonyl
HONB : N—ヒドロキシ一 5—ノルボルネンー 2 3—ジカルボキシイミドHONB: N-Hydroxy-5-norbornene-23-dicarboximide
B z 1 :ベンジル B z 1: benzyl
C 12-B z 1 :ジクロ口ベンジル C 1 2 -B z 1: benzyl dichloride
Z :ベンジルォキシカルボニル  Z: benzyloxycarbonyl
B r -Z : 2—ブロモベンジルォキシカルボニル  B r -Z: 2-bromobenzyloxycarbonyl
C 1 -Z : 2—クロルべンジルォキシカルボニル C 1 -Z: 2-chlorobenzyloxycarbonyl
Bo c : t—ブチルォキシカルボニル  Bo c: t-butyloxycarbonyl
HOBT: 1—ヒドロキシベンズトリアゾール  HOBT: 1-hydroxybenztriazole
TFA: トリフルォロ酢酸 TFA: trifluoroacetic acid
Fmo c : N— 9 _フルォレニルメトキシカルボニル Fmo c: N—9_fluorenylmethoxycarbonyl
DNP :ジニトロフエニル DNP: dinitrophenyl
B urn:夕一シャリーブトキシメチル B urn: Yuichi Shary Butoxymethyl
T r t: トリチル Trt: Trityl
B S A:ゥシ血清アルブミン CHAPS : 3— [ (3—コラミドプロピル) ジメチルアンモニォ]一 1—プロパ ンスルホナート BSA: Serum albumin CHAPS: 3 — [(3-colamidopropyl) dimethylammonio] 1-1—propanesulfonate
E 64: (L— 3—trans—カルボキォキシラン— 2—カルボニル) L—ロイシル —ァグマチン  E 64: (L-3-trans-carboxysilane-2-carbonyl) L-leucyl-agmatine
DNP-OVA:ジニトロフエニルォバルブミン  DNP-OVA: dinitrophenylovalbumin
DNP-B S A:ジニトロフエ二ルゥシ血清アルブミン  DNP-BSA: Dinitrophenyl serum albumin
EL I S A:ェンザィムリンクドイミュノソ一ベントアツセィ  EL I S A: Enzyme Linked Immuno-Vent Technology
E I A:ェンザィムイミュノソ一ベントアツセィ  EIA: Enzyme Immunity Event
PBS : フォスフェートバッファードサリーン  PBS: phosphate buffered salen
LPS : リポポリサッカライド  LPS: Lipopolysaccharide
c o n A:コンカナバリン A c o n A: Concanavalin A
本願明細書の配列番号は以下の配列を示す。  SEQ ID NOs in the present specification indicate the following sequences.
〔配列番号: 1〕 マウス CD 100のアミノ酸配列を示す。  [SEQ ID NO: 1] This shows the amino acid sequence of mouse CD100.
〔配列番号: 2〕 マウス CD 100の塩基配列を示す。  [SEQ ID NO: 2] This shows the nucleotide sequence of mouse CD100.
〔配列番号: 3〕 ヒト CD 100のアミノ酸配列を示す。  [SEQ ID NO: 3] This shows the amino acid sequence of human CD100.
〔配列番号: 4〕 ヒト CD 100の塩基配列を示す。  [SEQ ID NO: 4] This shows the base sequence of human CD100.
〔配列番号: 5〕 マウス CD 72のアミノ酸配列を示す。  [SEQ ID NO: 5] This shows the amino acid sequence of mouse CD72.
〔配列番号: 6〕 マウス CD 72の塩基配列を示す。  [SEQ ID NO: 6] This shows the nucleotide sequence of mouse CD72.
〔配列番号: 7〕 ヒト CD 72のアミノ酸配列を示す。  [SEQ ID NO: 7] This shows the amino acid sequence of human CD72.
〔配列番号: 8〕 ヒト C D 72の塩基配列を示す。  [SEQ ID NO: 8] This shows the base sequence of human CD72.
〔配列番号: 9〕 参考例 1に記載される mCD 100— F cを作製するために使 用された N端側のプライマーの塩基配列を示す。  [SEQ ID NO: 9] This shows the base sequence of the N-terminal primer used for preparing mCD100-Fc described in Reference Example 1.
〔配列番号: 10〕 参考例 1に記載される mCD l 00— F cを作製するために 使用された C端側のプライマ一の塩基配列を示す。 実施例  [SEQ ID NO: 10] This shows the base sequence of the C-terminal primer used for producing mCD100-Fc described in Reference Example 1. Example
以下に参考例および実施例を示して、 本発明をより詳細に説明するが、 これら は本発明の範囲を限定するものではない。 参考例 1 CD 40刺激により発現が増強される CD 100の単離 Hereinafter, the present invention will be described in more detail with reference to Reference Examples and Examples, but these do not limit the scope of the present invention. Reference Example 1 Isolation of CD100 whose expression is enhanced by CD40 stimulation
1X 108個のマウス B細胞株 WEH I 231細胞を抗 CD 40抗体、 HM4 0-3 (ファーミンジェン社) を用いて 8時間刺激した。 刺激しない細胞とした 細胞より全 R N Aをグァニジンイソチオシァネートフエノール法により単離し、 mRNAを O l i go (dT) 結合マグネチックビーズ (プロメガ) を用いて精 製した。 PCR-SELECT c DNA サブトラクシヨンキット(クローンテツ ク) を用いて、 cDNA合成およびサブトラクシヨンクロ一ニングを行った。 C D40刺激によって生じた c DNA断片は直接 T/Aベクター (インビトロジェ ン) に挿入した。 得られた塩基配列を比較した結果、 ジャーナルォブバイオロジ カルケミストリー(Journal of Biological Chemistry 271, 33376 - 33381 (1996)) に記載される CD 100遺伝子が単離された。 1 × 10 8 mouse B cell lines WEH I 231 cells were stimulated with an anti-CD40 antibody, HM40-3 (Pharmingen) for 8 hours. Total RNA was isolated from cells that were not stimulated by the guanidine isothiocyanate phenol method, and mRNA was purified using Oligo (dT) -coupled magnetic beads (Promega). CDNA synthesis and subtraction cloning were performed using a PCR-SELECT cDNA subtraction kit (CloneTech). The cDNA fragment generated by CD40 stimulation was directly inserted into a T / A vector (Invitrogen). As a result of comparing the obtained nucleotide sequences, the CD100 gene described in Journal of Biological Chemistry 271, 33376-33381 (1996) was isolated.
後述の実施例 1、 3に記載される mCD 100— Fc はマウス CD 100に可 溶化型ヒト I gGl F c 部分を融合させた蛋白質である。具体的にはセンス方 向の S a 1 I s i t e ¾r含むプライマー (gctgtcgactgtgtgcccgt tgctgaaggcct) 〔配列番号: 9〕 とアンチセンス方向の B amH I s i t eを含むプライマー (gacggatcctacttactttgctt tgcttgct tgagatacaccgtcttctctga) 〔配歹 iJ番号: 10〕 の組み合わせからなるオリゴヌクレオチドを用いて、 ?じ1 法にょり〇040で 刺激した WE H I 231細胞から抽出したマウス CD 100 c DNAより分泌型 マウス CD 100 c DNAを調製した。 得られた S a 1 I一 B amH I断片を p EFBo sヒト I gG l F cカセットの S a 1 I— B amH I断片 DNA断片 に挿入し、 mCD 100- F c蛋白質を発現する遺伝子を作製した。その遺伝子を 電気穿孔法(バイオラッドジーンパルサーを用いて、 0. 25 kV、 960m i c r o F Dで行う)により P 3 U 1プラズマサイトーマに導入し形質転換細胞を作 製した。具体的には、 50 gの H i ndlllで切断した pEFBo s一 mCD 1 00— F cプラスミド DNAと B amH Iで切断した pMC 1 n e oベクターで 107個の細胞を形質転換した。 10%の牛胎児血清と0. 3mg/mlの G4 18を含む RPM I培養液で 10日間培養した後、 G418に耐性のコロニーを 単離してクローン化した。 mCD 100— F c蛋白質はプロテイン Aセファロ— ス (アマ一シャムフアルマシア) により培養液中より精製した。 後述の実施例 1に記載されるピオチン化 mCD I O O- F cはピオチン化キッ ト (ベ—リンガーマンハイム) により、 mCD 100-F c にピオチンを結合し たものである。 実施例 2に記載される CD 100を発現する CHO細胞に関して は CD 100遺伝子が CHO細胞内に導入された形質転換細胞であり、 CD 10 0蛋白質を発現する。 具体的には CD 100 c DNA全長を p EFBOS V e c t o rに組み込み、 pMC 1 n e o ベクターと共に、リボフェク夕ミンプラス(ラ ィフテクノロジー) を用いて CHO細胞に導入した。 G418 0. 3mg/m 1 存在下で、 10日後、 G418耐性の細胞を選択した。 参考例 2 CD 100と結合する分子 CD 72の単離 MCD100-Fc described in Examples 1 and 3 below is a protein obtained by fusing a soluble human IgGI Fc portion to mouse CD100. Specifically, a primer (gctgtcgactgtgtgcccgttgctgaaggcct) containing S a1 I site ¾r in the sense direction [SEQ ID NO: 9] and a primer containing a BamHI site in the antisense direction (gacggatcctacttactttgctt tgcttgct tgagatacaccgtcttctctga) [10] ] Using an oligonucleotide consisting of a combination of? Secretory mouse CD100 cDNA was prepared from mouse CD100 cDNA extracted from WE HI 231 cells stimulated with the same method. The resulting Sa1I-BamHI fragment was inserted into the SaII-BamHI fragment DNA fragment of the pEFBos human IgGlFc cassette, and the gene that expresses the mCD100-Fc protein was inserted. Produced. The gene was introduced into P3U1 plasmacytoma by electroporation (using a Bio-Rad Gene Pulser at 0.25 kV and 960 micro FD) to produce transformed cells. More specifically, the 50 g pEFBo s one mCD 1 00- F c plasmid DNA and pMC 1 neo vector cleaved with B amH I 10 7 cells which were digested with H i ndlll of transformed. After culturing for 10 days in RPMI medium containing 10% fetal calf serum and 0.3 mg / ml G418, colonies resistant to G418 were isolated and cloned. The mCD100-Fc protein was purified from the culture broth by Protein A Sepharose (Amersham Sharmpharmacia). The biotinylated mCDIOO-Fc described in Example 1 described below is obtained by binding biotin to mCD100-Fc using a biotinylated kit (Boehringer Mannheim). The CHO cell expressing CD100 described in Example 2 is a transformed cell in which the CD100 gene has been introduced into the CHO cell, and expresses the CD100 protein. Specifically, the full-length CD100 cDNA was incorporated into pEFBOS Vector, and introduced into CHO cells together with the pMC1neo vector using ribofectamine minplus (Life Technology). After 10 days in the presence of 0.3 mg / m 1 of G418, cells resistant to G418 were selected. Reference Example 2 Isolation of CD72, a molecule that binds to CD100
C57BL/6マウス由来 2 B 4細胞を 10 %牛胎児血清を含む RPM I 16 40 培養液を用いて培養し、 1 X 106 e e l 1 s Zm 1の 2 B 4細胞を 2 n g / /1111の(: 0 ] 八で18 時間刺激した。細胞より全 RNAをグァニジンイソチォ シァネート密度勾配遠心により単離し、 全 RNA より o 1 i g o (dT)結合マ グネチックビーズ (プロメガ) を用いて、 mRNAを選択した。 o 1 i go (d T)を含む 2 本鎖 c DNAを S u p e r S c r i p t ll c DNA合成キット(ラ ィフテクノロジ—)を用いて合成した。その c DNAに B s t X Iアダプタ一(ィ ンビトロジェン) を付加し、 1 %ァガロースゲル電気泳動法により分画した。 1. 0 k b 以上の c DNAを回収し、 B s t X Iで切断した pME 18 Sベクターに 挿入した。その挿入した DN Aを用いて、電気穿孔法(バイオラッドジーンパルサ 一を用いて、 2. 5 kV、 25 FDで行う)により大腸菌 DH 10B細胞(ライ フテクノロジ—) を形質転換した。 2 X 107個の独立したクローンより成る大 腸菌より得られたプラスミドを用いて、 COS 7細胞をリボフェク夕ミンプラス を用いて形質転換した。 形質転換 3日後、 細胞を回収し、 5%牛胎児血清、 2. 5 H g/m 1 F c b l o c k, 5 u g/m 1 ピオチン化 mC D 100— F c を含む PBSで 5 x 106 c e 1 1 s/m 1の濃度に再懸濁し、 氷上で 1時間静 置した。 細胞を氷冷 PBSで洗浄し、 M— 280ストレプトアビジンが結合した ダイナビーズを含む PB Sに懸濁した。懸濁 30分後、細胞を Magn e t i c P a r t i c l e Con c e n t r a t o rを用いて氷冷 P B Sで 10回洗浄 した。 染色体外プラスミド DNAを H i r (Proceeding of Nat ional Academy sciences of USA 84, 3365-3369 (1987)) を用いて抽出した。 そのプラスミド D NAを大腸菌 DH10 B細胞に電気穿孔法(バイオラッドジーンパルサーを用い て、 2. 5 kV、 25 FDで行う)で挿入しプロトプラスト融合法により 2回目、 3回目、 4回目の形質転換を行った。 上記の磁力による抽出を 4回繰り返した。 その結果、 1. 4 kb の明らかなバンドが認められた。 この 1. 4 k bの cDN Aクローンについて塩基配列を解析した結果、マウス CD 72の c DNA全長〔配 列番号: 6〕 であった。 The C57BL / 6 mice 2 B 4 cells were cultured with RPM I 16 40 culture medium containing 10% fetal bovine serum, 1 X 10 6 eel 1 s Zm 1 of 2 B 4 cells 2 ng / / 1111 (: 0) Stimulation for 18 hours at 8. Total RNA was isolated from the cells by guanidine isothionate density gradient centrifugation, and mRNA was analyzed from the total RNA using o1igo (dT) -bound magnetic beads (Promega). O Double-stranded cDNA containing 1 igo (d T) was synthesized using Superscript II cDNA synthesis kit (Life Technology) and Bst XI adapter was added to the cDNA. The DNA was fractionated by 1% agarose gel electrophoresis, and the cDNA of 1.0 kb or more was recovered and inserted into pME18S vector cut with BstXI. E. DH 10B cells (using Bio-Rad Gene Pulser at 2.5 kV, 25 FD) by electroporation (A) Lee off Technology -..) Was transformed with 2 X 10 7 independent by using the plasmid obtained from E. coli consisting of clones, COS 7 cells were transformed with the Ribofeku evening Minpurasu transformation 3 One day later, the cells were harvested and 5x10 6 ce 11 s / PBS containing 5% fetal calf serum, 2.5 Hg / m 1 F cblock, 5 ug / m 1 biotinylated mCD 100-F c The cells were resuspended to a concentration of 1 ml and left on ice for 1 hour The cells were washed with ice-cold PBS and suspended in PBS containing M-280 streptavidin-bound Dynabeads. Wash cells 10 times with ice-cold PBS using Magnetic P article Concentrator did. Extrachromosomal plasmid DNA was extracted using Hir (Proceeding of National Academy of Sciences of USA 84, 3365-3369 (1987)). The plasmid DNA was inserted into Escherichia coli DH10 B cells by electroporation (performed at 2.5 kV, 25 FD using a Bio-Rad Gene Pulser), and the second, third, and fourth transformations were performed by protoplast fusion. Was done. The above magnetic extraction was repeated four times. As a result, a clear band of 1.4 kb was observed. As a result of analyzing the nucleotide sequence of this 1.4 kb cDNA clone, it was found to be the full-length mouse CD72 cDNA [SEQ ID NO: 6].
実施例 1に記載される CD 72を発現する CHO細胞に関しては CD 72遺伝 子が CHO細胞内に導入された形質転換細胞であり、 CD 72蛋白質を発現する。 具体的には CD 72を組み込んだ p ME 18 Sベクターを pMC 1 n e o べク 夕一と共に、 リボフェク夕ミンプラス (ライフテクノロジ一) を用いて CHO細 胞に導入した。 G41 8 0. 3mg/m 1 存在下で、 10日後、 G41 8耐性 の細胞を選択した。 実施例 1 CD 100と CD 72との結合  As for the CHO cell expressing CD72 described in Example 1, the CD72 gene is a transformed cell introduced into the CHO cell, and expresses the CD72 protein. Specifically, the pME18S vector incorporating CD72 was introduced into CHO cells together with pMC1neo vector using Ribofectmin Plus (Life Technology 1). After 10 days in the presence of 0.38 mg / m 1 of G418, G418-resistant cells were selected. Example 1 Binding of CD 100 and CD 72
mCD 1 00 -F cはピオチン化キットを用いてピオチン化した。 フローサイ トメトリーによる解析を行うために、 106個の対照の CHO細胞と CD 72を発 現する CHO形質転換細胞を 5 gZm 1の F cブロック (ファーミンジェン) を含む染色緩衝液 ( 2 %牛胎児血清、 0. 02 %アジ化ナトリウム、 2 mM塩化 カルシウム、 ImM塩化マグネシウムを含む PBS) 中で、 1時間氷上でビォチ ン化 mCD 100_F c (40 ^ gZm l) と反応させた。 染色緩衝液で洗浄後、 細胞を F I TC標識ストレプトアビジン (べクトンディッキンソン) で 20分染 色した。 細胞を染色緩衝液で洗浄後、 フローサイトメーターで F I TC標識スト レプトアビジンが結合する細胞を解析した。 mCD100-Fc was biotinylated using a biotinylation kit. To perform analysis by flow cytometry, staining buffer (2% bovine containing 10 6 control CHO cells and CD 72 CHO transformed cells originating current to the 5 gZm 1 F c block (Pharmingen) The cells were reacted with biotinylated mCD100_Fc (40 ^ gZml) in ice for 1 hour in fetal serum, PBS containing 0.02% sodium azide, 2 mM calcium chloride, and ImM magnesium chloride. After washing with staining buffer, cells were stained with FITC-labeled streptavidin (Becton Dickinson) for 20 minutes. After washing the cells with the staining buffer, the cells to which FITC-labeled streptavidin was bound were analyzed using a flow cytometer.
図 1にその結果を示す。 左側の図は対照の CHO細胞、 右側の図は CD 72を 発現している CHO細胞の結果を示す。 点線は m CD 100— F cを添加しなか つた場合、 実線は mCD 1 00— F cを添加した場合の結果を示す。 図中横軸は 1細胞当たりの蛍光強度を、 縦軸は細胞数を相対的に示す。 左図の CHO細胞で は、 ピオチン化 mCD 1 00— F cを添加しても蛍光強度は変化しなかった。 こ れは CHO細胞がピオチン化 mCD 1 00 -F cと結合しないことを示す。 右側 の CD 72を発現する CH〇細胞では、 ピオチン化 m CD 100 _F cを添加す ると (実線)、 添加しない場合 (点線) に比べて蛍光強度が強くなつた。 これはビ ォチン化 mCD 100— F cが CD 72を発現する C H〇細胞表面上の C D 72 と結合することを示す。 実施例 2 マウス CD 100のクラススィッチ増強作用 Figure 1 shows the results. The diagram on the left shows the results for control CHO cells, and the diagram on the right shows the results for CHO cells expressing CD72. The dotted line shows the result when mCD100-Fc was not added, and the solid line shows the result when mCD100-Fc was added. In the figure, the horizontal axis shows the fluorescence intensity per cell, and the vertical axis shows the cell number relatively. In the CHO cell shown on the left The fluorescence intensity did not change even when the biotinylated mCD100-Fc was added. This indicates that the CHO cells do not bind to the biotinylated mCD100-Fc. In CH〇 cells expressing CD72 on the right, the fluorescence intensity was increased when piotinylated mCD100_Fc was added (solid line) as compared to the case without the addition (dotted line). This indicates that the biotinylated mCD100-Fc binds to CD72 on the surface of CH〇 cells expressing CD72. Example 2 Class switch enhancing action of mouse CD100
1 X 105 e e l I s /we 1 1 に調製した C 57 B L/ 6マウス脾臓由来 休止 B細胞を抗 CD 40モノクローナル抗体または I L— 4 l O O un i t s /m 1 とパラホルムアルデヒドで固定した CD 100を発現する CHO細胞(2 X 104 e e l I s /we 1 1 )を共に平底 96穴マイクロ夕イタ一プレートに 添加し、 7日間培養した。 I gM または I gG l免疫グロブリンの産生を EL I SA法により測定した。 具体的には、 培養液または対照の I gM, I gGを 0. 1M炭酸緩衝液 (pH9. 6) を用いて希釈し、 E I A用 96穴ィムノプレート (マキシソープ:ヌンク社) の各ゥエルに 100 1ずつ注入して約 4 :でー晚 放置して添着した。 各ゥエルを緩衝液 A (0. 1 5M N a C 1を含む pH7. 0 の 0. 02 Mリン酸緩衝液)で洗浄後、緩衝液 B (0. 1 %BSA、 0. 1 5M N aC lを含む pH7. 0の 0. 02 Mリン酸緩衝液) で希釈した酵素標識した抗 I gM, I gG 1抗体溶液 1 00 ^ 1を加えて 25ででさらに約 2時間反応させ た。 各ゥエルを緩衝液 Αで洗浄し、 アルカリフォスファタ一ゼ基質溶液 (lmg /m 1フォスファタ一ゼ基質 (シグマ)、 10 OmM T r i s (pH 9. 5)、 1 0 OmM NaC 5mM MgC 12) を 100 1加え 25 :で 30分間反 応させた。 マイクロプレート用自動比色計を用い、 405 nmにおける吸光度を 測定した。 別に、 既知量の I gM, I gG 1を添着して、 吸光度と抗体量の定量 曲線を取ることにより、 各反応液中の抗体量を定量した。 Resting B cells derived from spleen of C57BL / 6 mouse prepared in 1 X 10 5 eel I s / we 11 fixed CD100 with anti-CD40 monoclonal antibody or IL-4 lOOun its / m1 and paraformaldehyde CHO cells (2 × 10 4 eelIs / we 11) expressing E. coli were added to a flat-bottomed 96-well microplate and cultured for 7 days. The production of IgM or IgGl immunoglobulin was measured by the ELISA method. Specifically, the culture solution or control IgM or IgG was diluted with 0.1 M carbonate buffer (pH 9.6), and added to each well of an EIA 96-well immunoplate (Maxisorp: Nunc). The mixture was injected one at a time, and the mixture was allowed to stand for about 4: 4. After washing each well with buffer A (0.02 M phosphate buffer at pH 7.0 containing 0.15 M NaC1, buffer B (0.1% BSA, 0.15 M NaC1) The solution was added with an enzyme-labeled anti-IgM / IgG1 antibody solution (100 ^ 1) diluted with 0.02M phosphate buffer (pH 7.0) containing l and reacted at 25 for about 2 hours. Washed each Ueru with buffer Alpha, alkaline phosphatase Ichize substrate solution (lmg / m 1 Fosufata Ichize substrate (Sigma), 10 OmM T ris (pH 9. 5), 1 0 OmM NaC 5mM MgC 1 2) Was added and the reaction was continued for 30 minutes at 25 :. The absorbance at 405 nm was measured using an automatic colorimeter for microplate. Separately, a known amount of IgM or IgG1 was impregnated, and the amount of antibody in each reaction solution was quantified by taking a quantification curve of the absorbance and the amount of antibody.
実験は、 (1) CD 100非発現 CHO細胞非存在下で培養液 (Me d i um) のみ添加した場合、 (2) CD 1 00発現 CHO細胞存在下で培養液(Me d i u m)のみ添加した場合、 (3) CD 1 00発現 CHO細胞非存在下で抗 CD 40抗 体 (a CD 40)、 I L一 4を添加した場合、 (4) C D 100発現 C HO細胞存 在下で抗 CD 40抗体(a CD 40)、 I L— 4を添加した場合に分けて I gM量、 I gG 1量を比較した。図 2にその結果を示す。横軸は左からそれぞれ(1)、(2)、 (3)、 (4) の結果を、 縦軸は吸光度より定量した抗体量 (単位 ng/ml) を示す。 無添加対照群 (1) に比較して、 CD 100が存在する場合 (2)、 I gM, I g G1共に抗体産生に影響を及ぼさない。 無添加対照群 (1) に比べて、 抗 CD 4 0抗体と I L— 4で刺激した場合 (3)、 I gM, I gG 1 共に抗体産生を誘導 する。 CD 100 存在下で抗 CD 40抗体と I L一 4で刺激した場合 (4)、 抗 CD 40抗体と I L一 4で刺激した場合に比べて、 I gM 産生はやや減少気味な のに対して、 I gGl産生は (3) に比べてさらに強く上昇した。 このことは、 B細胞より産生、 分泌される抗体のクラスが I gMから I gG 1ヘスィツチされ る現象、 いわゆるクラススィツチが誘導されたことを示している。 実施例 3 CD 100 の生体内抗体産生増強作用 The experiments were performed under the following conditions: (1) When only culture medium (Medium) was added in the absence of CHO cells expressing no CD100, (2) When only culture medium (Medium) was added in the presence of CHO cells expressing CD100 (3) Anti-CD40 in the absence of CD100-expressing CHO cells (A CD40), when IL-14 was added, and (4) IgM amount when the anti-CD40 antibody (a CD40) and IL-4 were added in the presence of CD100-expressing CHO cells. The amount of IgG1 was compared. Figure 2 shows the results. The horizontal axis shows the results of (1), (2), (3), and (4), respectively, from the left, and the vertical axis shows the antibody amount (unit: ng / ml) quantified from the absorbance. When CD100 is present (2), both IgM and IgG1 do not affect antibody production as compared to the control group without additives (1). When stimulated with anti-CD40 antibody and IL-4 (3), both IgM and IgG1 induce antibody production compared to the control group without additives (1). When stimulated with anti-CD40 antibody and IL-14 in the presence of CD100 (4), IgM production was slightly reduced compared to when stimulated with anti-CD40 antibody and IL-14. IgGl production increased more strongly than in (3). This indicates that the phenomenon in which the class of antibodies produced and secreted from B cells is switched from IgG to IgG1 is called a class switch. Example 3 CD100 enhances in vivo antibody production
100 gのアルミで調製した D i n i t r o ph e ny l ov a l bum i n (DNP-OVA) を C 57 B LZ 6マウス腹腔内に接種し、 免疫した。 免疫 後、 ヒト I gGl ミエローマ蛋白質、あるいは mCD 100- F c を 200 g/d ay, 10 日間投与した。 DNP- OVA投与 6日後、 10日後に血清を 採集した。 DNP に特異的な抗体の抗体価を DNP— BS Aを用いた EL I S A 法により測定した。 具体的には、免疫後のマウスの血清を 0. 1M炭酸緩衝液(p H9. 6) を用いて希釈し、 DNP— BSAでコートした E I A用 96穴ィムノ プレート (マキシソープ:ヌンク社) の各ゥエルに 100 1ずつ注入して 4で でー晚放置して添着した。各ゥエルを緩衝液 A (0. 15M NaC 1を含む pH 7. 0の 0. 02 Mリン酸緩衝液) で洗浄後、 緩衝液 B (25%ブロックエース (大日本製薬) 、 0. 15M NaC 1を含む pH7. 0の 0. 02 Mリン酸緩衝 液) で希釈したアルカリフォスファタ—ゼで標識した抗マウス I gM, I gGl, 抗体溶液 100 / 1を加えて 25 でさらに 2時間反応させ、 ゥエルに添着して いる抗 DNP抗体に結合させた。 各ゥエルを緩衝液 Aで洗浄し、 アルカリフォス ファタ—ゼ基質溶液を 100 1加え 25 °Cで 30分間反応させ、 マイクロプレ ート用自動比色計を用い 405nmにおける吸光度を測定した。 DNP特異的抗体 を定量した。 C57B LZ6 mice were inoculated intraperitoneally with Dnitronitrophenol (DNP-OVA) prepared with 100 g of aluminum and immunized. After immunization, human IgGl myeloma protein or mCD100-Fc was administered at 200 g / day for 10 days. Serum was collected 6 days and 10 days after DNP-OVA administration. The antibody titer of the antibody specific to DNP was measured by ELISA using DNP-BSA. Specifically, the serum of the mouse after immunization was diluted with 0.1 M carbonate buffer (pH 9.6) and coated with a DNP-BSA-coated 96-well EIA plate for EIA (Maxisorp: Nunc). 100 1 was injected into each well, and left for 4 hours to attach. After washing each well with buffer A (0.02 M phosphate buffer containing 0.15 M NaC 1 and pH 7.0), buffer B (25% Block Ace (Dainippon Pharmaceutical), 0.15 M NaC 1) Anti-mouse IgM, IgGl, antibody solution 100/1 labeled with alkaline phosphatase diluted with 0.02M phosphate buffer (pH 7.0), add 100/1 antibody solution, and react at 25 for 2 hours. The antibody was bound to the anti-DNP antibody attached to the well. Wash each well with buffer A, add 100 1 of alkaline phosphatase substrate solution, and react at 25 ° C for 30 minutes. The absorbance at 405 nm was measured using an automatic colorimeter for printing. DNP-specific antibodies were quantified.
図 3にその結果を示す。 左側の図は DNP— OVA投与 6日後、 右側の図は 1 0日後の血清中に含まれる DNPに対する抗体価を示す。横軸の口はヒト I gG 1 ミエ口一マ蛋白質を、 酾は mCD 100- F cを投与した場合の抗体価を示す。 縦軸 An t i一 DNPは DNPに対する抗体価を示す。 投与 12日後の対照群の マウスの血清中に含まれる DNPに対する抗体量の 1000分の 1を l un i t とした。 CD 100 (mCD 100-F c) を投与した場合、 6日目の抗体価は、 対照のヒト I gG l ミエローマ蛋白質を投与した場合の 6日目の抗体価を 3倍 以上上回るものであり、 対照のヒト I gG l ミエ口一マ蛋白質を投与した場合 の 10日目の抗体価を上回るものであった。 このことから、 CD 100は抗原特 異的な抗体産生の誘導能に重要な働きがあることを示している。 実施例 4 CD 100ノックアウトマウスの作出  Figure 3 shows the results. The figure on the left shows the antibody titer to DNP contained in the serum 6 days after administration of DNP-OVA, and the figure on the right shows the antibody titer after 10 days. The abscissa indicates the antibody titer when the human IgG 1 myeloma protein was administered, and 酾 indicates the antibody titer when mCD100-Fc was administered. The vertical axis Anti-DNP indicates the antibody titer to DNP. One thousandth of the amount of the antibody against DNP contained in the serum of the mice of the control group 12 days after the administration was defined as lunit. When CD100 (mCD100-Fc) was administered, the antibody titer on day 6 exceeded the antibody titer on day 6 when the control human IgGl myeloma protein was administered by at least three times. The antibody titer was higher than the antibody titer on day 10 when the control human IgGI myeloma protein was administered. This indicates that CD100 plays an important role in the ability to induce antigen-specific antibody production. Example 4 Creation of CD100 knockout mouse
CD 100 c DNA配列に由来する 2種類のプローブ (全長および 1— 120 Two types of probes derived from the CD100 cDNA sequence (full length and 1-120)
0 b pまで)を用いて 129ZS vJマウス肝臓由来ゲノムライブラリー(ストラ テジーン) から約 12 k bの CD 100ゲノム DNA断片を含むファージクロー ンを単離した。 この DNA断片内で、 開始コドンが存在する第 1ェクソンの一部 を含む 1. 6 Kb部分をネオマイシン耐性遺伝子 (母子保健センターより分与) と置き換えた (セル (Ce l 1) 51巻 (1987年) 503— 512頁)。 さら に、 ヘルぺスシンプレックスウィルス由来チミジンキナーゼ遺伝子 (HSV— T K) をネガティブ選択のために CD 100ゲノム遺伝子下流に挿入し (ネィチヤ - (Na t u r e) 336巻 (1988年) 348— 352頁)、 夕ーゲッティン グプラスミド DNAを構築した。 この夕一ゲッティングプラスミド DNA 50 gを電気穿孔法により 1 X 106個の E 14— 1胚幹細胞内に形質導入した。 遺 伝子を導入した胚幹細胞について、 G418 (0. 4mg/m 1 ; ライフテクノ ロジ一) およびガンシクロビル (2 M;シンテックス社) による二重選択を行 つた。 1000個の耐性コロニーから CD 100遺伝子上に相同組み換えが生じ ているものをサザンブロット法により選択した結果、 相同組み換えが生じている 2クローンの胚幹細胞を同定した。 A phage clone containing a CD100 genomic DNA fragment of about 12 kb was isolated from a 129ZS vJ mouse liver-derived genomic library (Strategene) using 0 bp). In this DNA fragment, the 1.6 Kb portion including the part of the first exon where the initiation codon is present was replaced with a neomycin resistance gene (distributed from the Maternal and Child Health Center) (Cell (Cel 1), 51 (1987) Year) 503-512). Furthermore, a thymidine kinase gene (HSV-TK) derived from the herpes simplex virus was inserted downstream of the CD100 genomic gene for negative selection (Neichia-(Nature) 336 (1988) 348-352). Evening A plasmid DNA was constructed. 50 g of this evening gettering plasmid DNA was transduced into 1 × 10 6 E14-1 embryonic stem cells by electroporation. Embryonic stem cells into which the gene was introduced were double-selected with G418 (0.4 mg / m 1; Life Technology) and ganciclovir (2 M; Syntex). The homologous recombination on the CD100 gene was selected from the 1000 resistant colonies by Southern blotting. Two clones of embryonic stem cells were identified.
CD 100変異クロ一ン由来の胚幹細胞を C 57 BLZ6マウス (静岡実験動 物協会、 6 - 8週齢) の胚盤胞に接種した後、 I CR仮親 (静岡実験動物協会、 6— 8週齢) に移した。 毛並みのァグーチ色の度合いで子のキメリズムを判定し、 雄キメラをさらに C 57 BLZ 6雌マウスと交配させたノックアウトマウスを作 出した。 産出された子について、 CD 100遺伝子がノックアウトしているかど うかをサザンブロット法により解析した。 マウス尻尾よりゲノム DNAを単離、 B amH Iで消化した後、 ァガロースゲル電気泳動を行った。 泳動した DNAは ナイロンフィルター (アマシャムフアルマシア) に転写した後、 放射標識したプ ローブ (CD 100プロモー夕一領域、 0. 2Kb) とー晚ハイブリダィズした。 フィルタ一は 0. l xSSC, 0. 1 %SDS中、 65 で 1時間洗浄した後、 オートラジオグラフィーを行った。  Embryonic stem cells derived from CD100 mutant clones were inoculated into blastocysts of C57BLZ6 mice (Shizuoka Experimental Animals Association, 6-8 weeks old), and then ICR foster parents (Shizuoka Experimental Animals Association, 6-8 weeks) Aged). The chimerism of offspring was determined based on the degree of fur coat color, and a knockout mouse was produced in which the male chimera was further bred to C57BLZ6 female mice. The offspring were analyzed by Southern blot to determine whether the CD100 gene had been knocked out. Genomic DNA was isolated from the tail of the mouse, digested with BamHI, and then subjected to agarose gel electrophoresis. The electrophoresed DNA was transferred to a nylon filter (Amersham Pharmacia), and then hybridized with a radiolabeled probe (CD 100 Promoter, 0.2 Kb). The filter was washed for 1 hour with 65 in 0.1 × SSC, 0.1% SDS, and then subjected to autoradiography.
図 4にその結果を示す。 Aは上からそれぞれ CD 100野生型遺伝子、 CD 1 00夕ーゲティングベクターの遺伝子地図、 予想される組み換えが起こった場合 の CD 100遺伝子地図を示す。 5' 非翻訳領域のェクソンを灰色枠で、 翻訳領 域のェクソンを黒枠で示す。 Bは B amH I制限酵素で切断を受ける位置、 Eは E c oR I制限酵素で切断を受ける位置を示す。 Ne oはネオマイシン耐性遺伝 子を H S V— T Kはへルぺスシンプレックスウィルス由来チミジンキナーゼ遺伝 子を矢印はこれらの遺伝子の転写方向を表す。 プローブはサザンブロッ卜で用い たプローブの位置を示す。 B amH I切断によるサザンブロットを行った場合、 プローブに結合する遺伝子長は野性型遺伝子では 2. 6Kb, 組み換え体では 1. 2 Kbが予定される。  Figure 4 shows the results. A shows a CD100 wild-type gene, a CD100 gene targeting vector gene map, and a CD100 gene map when expected recombination has occurred, respectively, from the top. Exons in the 5 'untranslated region are shown in gray boxes, and exons in the translated region are shown in black boxes. B indicates a position to be cleaved by BamHI restriction enzyme, and E indicates a position to be cleaved by EcoRI restriction enzyme. Neo indicates the neomycin resistance gene, HSV-TK indicates the thymidine kinase gene derived from herpes simplex virus, and the arrow indicates the transcription direction of these genes. Probe indicates the position of the probe used in the Southern blot. When Southern blotting with BamHI digestion is performed, the length of the gene binding to the probe is expected to be 2.6 Kb for the wild-type gene and 1.2 Kb for the recombinant.
Bは野性型 (+ノ + )、 ヘテロ接合体 (+ Z—)、 変異遺伝子のホモ接合体 (一 /-) 遺伝子型をサザンプロット法で解析した結果を示す。 野性型では 2. 6K bの断片のみ、 ヘテロ接合体では 2. 61:]3と 1. 2 Kbの 2種類の断片、 変異 遺伝子のホモ接合体では 1. 2 Kbの断片のみが認められた。 プローブに結合す る遺伝子長は野性型遺伝子では 2. 6Kb、 組み換え体では 1. 2 Kbが予定さ れたので、 作出したマウスが CD 100遺伝子座が予想される長さに置き換えら れたノックァゥトマウスであることを示す。 Cはノックァゥトマウスが CD 100分子を細胞上に発現していないことを確 認した結果を示す。 野性型マウス ( + Z + ) および、 CD 100ノックアウトマ ウス 、—/一、 より調製した脾臓細胞をピオチン化抗マウス CD 100抗体/ F I TC標識ストレプトアビジンおよびフィコエリスリン標識抗 B 220 (マウス B細胞の細胞表面マーカー) 抗体で二重染色した後、 フローサイトメトリーで解 祈した結果を示す。 図中縦軸、 横軸はそれぞれ、 B 220、 CD 100分子の細 胞表面上の産生量について、 細胞当りの蛍光強度として対数表示で示す。 野性型 マウスでは CD 100陽性細胞が認められるのに対して、 ノックァゥトマウスで は CD 100陽性細胞が認められなかった。 したがって、 ノックアウトマウスで は CD 100分子が細胞上に発現されていないことが確認された。 実施例 5 ノックァゥトマウスおよび野性型マウスリンパ球の CD 5表面抗原に 関する解析 B shows the results of Southern blot analysis of the wild-type (+ no +), heterozygotes (+ Z-), and homozygotes (1-/-) genotypes of the mutant gene. In the wild type, only a 2.6 Kb fragment was found; in heterozygotes, only two fragments of 2.61: 3 and 1.2 Kb were found; in the homozygous mutant gene, only a 1.2 Kb fragment was found. . The length of the gene that binds to the probe is planned to be 2.6 Kb for the wild-type gene and 1.2 Kb for the recombinant, so the knockout in which the created mouse was replaced with the expected length of the CD100 locus Indicates a mouse. C shows the result of confirming that knockout mice do not express the CD100 molecule on cells. Spleen cells prepared from wild-type mouse (+ Z +) and CD100 knockout mouse,-/-, were treated with anti-mouse CD100 antibody / FITC-labeled streptavidin and phycoerythrin-labeled anti-B220 (mouse B). (Cell surface marker of cells) Shows the result of double-staining with antibodies and flow cytometry. In the figure, the ordinate and abscissa indicate the production amounts of B220 and CD100 molecules on the cell surface in logarithmic representation as the fluorescence intensity per cell, respectively. CD100-positive cells were observed in wild-type mice, whereas no CD100-positive cells were observed in knockout mice. Therefore, it was confirmed that the CD100 molecule was not expressed on the cells in the knockout mouse. Example 5 Analysis of CD5 surface antigen of knockout mouse and wild type mouse lymphocytes
腹腔細胞は 2 % F C S、 10 UZm 1へパリンを含むリン酸緩衝液で腹腔を洗 い採集した。 腹腔または脾臓より調製した細胞懸濁液を F I TC標識抗 B 220 抗体およびフィコエリスリン標識抗 CD 5抗体 (各ファーミンジェン) により二 重染色した後解析した結果を示す。 B 220はマウス B細胞の細胞表面マ一カー である。 CD 5は自己抗体産生に関するマーカーとして知られている (オートィ ミュニティ、 30巻 ( 1999年) 63— 69頁)。  Peritoneal cells were collected by washing the peritoneal cavity with a phosphate buffer containing 2% FCS and 10 UZm1 heparin. The results of double staining of a cell suspension prepared from the abdominal cavity or spleen with a FTC-labeled anti-B220 antibody and a phycoerythrin-labeled anti-CD5 antibody (Pharmingen) are shown. B220 is a cell surface marker for mouse B cells. CD5 is known as a marker for autoantibody production (Autoimmunity, 30 (1999) 63-69).
結果を図 5に示す。 + +は野性型マウス、 一/一は CD 100ノックアウト マウスを示す。 図中横軸、 縦軸はそれぞれ、 B 220、 CD 5分子の細胞表面上 の産生量について、 細胞当りの蛍光強度として対数表示で示す。 両細胞マーカー 陽性細胞分画を図中枠線内で示す。 腹腔細胞の場合、 B 220、 CD 5両陽性細 胞の割合は野性型マウスでは 14. 6 %であったのに対してノックァゥトマウス では 7. 49%で減少していた。 脾臓細胞の場合、 B 220、 CD5両陽性細胞 の割合は野性型マウスでは 1. 5 %であったのに対してノックアウトマウスでは 0. 93%でこちらも減少していた。 これらの結果は CD 100が CD 5分子発 現に寄与していることを示唆している。 したがって、 CD 100の機能を阻害す ることができれば、 自己免疫疾患の際に発現が増強されるとされる CD 5を抑え 自己免疫疾患の治療に役立つ可能性があると推定される。 実施例 6 TD (T細胞依存性) 抗原に対する抗体産生 Fig. 5 shows the results. ++ indicates a wild type mouse, and 1/1 indicates a CD100 knockout mouse. In the figure, the horizontal axis and the vertical axis respectively show the production amounts of B220 and CD5 molecules on the cell surface in logarithmic representation as the fluorescence intensity per cell. The cell fraction positive for both cell markers is shown in the frame in the figure. In the case of peritoneal cells, the ratio of both B220 and CD5 positive cells was 14.6% in wild-type mice, but decreased to 7.49% in knockout mice. In spleen cells, the ratio of both B220 and CD5 positive cells was 1.5% in wild-type mice and 0.93% in knockout mice, which also decreased. These results suggest that CD100 contributes to CD5 molecule expression. Therefore, if the function of CD100 can be inhibited, CD5, which is considered to be upregulated in autoimmune diseases, will be suppressed. It is presumed that it may be useful for treating autoimmune diseases. Example 6 Antibody production against TD (T cell-dependent) antigen
8週齢の CD 100ノックァゥトマウスおよび野性型マウス(n = 4または 5) を 100 gの NP— CGG (4—ヒドロキシ— 3—ニトロフエ二ルァセチルチ キンガンマグロプリン標識体)を含むアルミニウム塩で 2回(2回目は 28日後) 腹腔内に免疫した (n= 5)。 採血は免疫前と免疫後 14, 21, 28, 35, 7 2日目に行った。 NP12 標識ゥシ血清アルブミン ( 12個の 4—ヒドロキシ— 3—ニトロフエニルァセチル基が標識された BSA) および NP2 標識ゥシ血清 アルブミンでコートされたプレートを用いることにより NP (ニトロフエニル基) に結合性の全 I gGおよび、 その中でも高親和性に結合する I gGをそれぞれ E L I S A法により定量した。 96穴マイクロプレート (ヌンク) に NP12 標識 ゥシ血清アルブミンまたは NP2 標識ゥシ血清アルブミンを一晩 4 °Cでコート した。 洗浄後、 200 ^ 1 穴のブロッキング溶液 (5 OmM T r i s—HC 1 (pH8. 1)、 ImM MgC l 2、 0. 15M NaC 1 % BSA、 0. 05% Twe e n 20) を加え、 室温で 1時間静置した。 ブロッキング溶 液で希釈した 100 1ノ穴の検体を室温で 1. 5時間静置した。 0. 05%T we e η 20 を含む Ρ Β Sで 3回洗浄後、アルカリフォスファターゼ標識ャギ抗 マウス I gG 1抗体を添加した。 1時間後、 洗浄し、 フォスファタ一ゼ基質 (シ グマ) を添加し 405 nmの吸光度で検出した。 Eight-week-old CD100 knockout mice and wild-type mice (n = 4 or 5) were treated twice with 100 g of NP-CGG (4-hydroxy-3-nitrophenylacetylacetyl chicken gamma glopurine-labeled) containing aluminum salt. (Second day after 28 days) Immunization was performed intraperitoneally (n = 5). Blood was collected before immunization and on days 14, 21, 28, 35, and 72 after immunization. NP 12 labeled © Shi serum albumin (12 4-hydroxy - 3-nitrophenyl § BSA cetyl group is labeled) and NP 2 labeled © shea serum albumin NP by using a plate coated (nitrophenyl group ) Were quantified by ELISA for total IgG that binds to, and among them, IgG that binds to high affinity. It was coated overnight at 4 ° C the NP 12 labeled © shea serum albumin or NP 2 labeled © shea serum albumin 96-well microtiter plates (Nunc). After washing, 200 ^ 1 hole in blocking solution (5 OmM T ris-HC 1 (pH8. 1), ImM MgC l 2, 0. 15M NaC 1% BSA, 0. 05% Twe en 20) was added, at room temperature It was left for one hour. A 100-well sample diluted with the blocking solution was allowed to stand at room temperature for 1.5 hours. After washing three times with ΒΔS containing 0.05% Tween η 20, an alkaline phosphatase-labeled goat anti-mouse IgG1 antibody was added. After one hour, the plate was washed, a phosphatase substrate (Sigma) was added, and detection was performed at an absorbance of 405 nm.
結果を図 6に示す。 Aは NP12 標識ゥシ血清アルブミン結合性の I gG量の 経時的変化を示す。 Bは NP2 標識ゥシ血清アルブミン結合性の I gG量の経時 的変化を示す。 Cは NP2 標識ゥシ血清アルブミン結合性の I gG量と NP12 標識ゥシ血清アルブミン結合性の I gG量との比を経時的に示す。 縦軸は A, B では抗体量を示す。 Cではそれらの比として示す。 横軸は初回免疫日を 0日とし て免疫後の経過日数を示す。 〇は CD 100ノックァゥトマウスを△は野性型マ ウスを用いた場合の結果を示す。 Fig. 6 shows the results. A represents a time course of NP 12 labeled © shea serum albumin binding of I gG amount. B shows the time course of NP 2 labeled © shea serum albumin binding of I gG amount. C over time shows the ratio of NP 2 labeled © shea serum albumin binding of I gG amount and NP 12 labeled © shea serum albumin binding of I gG amount. The vertical axis indicates the amount of antibody in A and B. In C, the ratio is shown. The horizontal axis shows the number of days elapsed after immunization with the first immunization day as 0 day. 〇 shows the results when CD100 knockout mice were used, and △ shows the results when wild-type mice were used.
図 6 A, 6 Bに示すとおりノックァゥトマウスでは野性型マウスと比較して産 生抗体量は減少しており、 CD 100ノックアウトマウスでは TD (T細胞依存 性) 抗原に対する抗体産生能が損なわれていることが認められた。 特に高親和性 抗体の方が低親和性抗体と比較して大きく産生量が低下していた。 図 6 Cに示す とおり野性型マウスでは経時的に N P 2/N P j 2比が増加した。 これは時間経過 と共により高親和性の抗体を産生する B細胞群に成熟している過程を示すが、 ノ ックァゥトマウスでは NP2ZNP12比の増加は野性型マウスと比較して緩やか であり、 高親和性抗体産生への成熟化の機構が損なわれていることが示された。 TD (T細胞依存性) 抗原に対する抗体産生能つまり TD反応の低下は、 感染症 などに対する抵抗性が弱くなることが知られている (イミュノデフェシヤンシー レビュー、 3巻: (1988年) 101— 121頁)。 したがって、 CD 100の 投与または CD 100の作用を増強させる物質は感染症などに対する新たな治療 薬となる可能性がある。 実施例 7 CD 100ノックアウトマウスにおける T細胞の反応性の喪失 As shown in FIGS. 6A and 6B, the amount of antibody produced in knockout mice was lower than that in wild-type mice, while TD (T cell-dependent Sex) It was recognized that the ability to produce antibodies to the antigen was impaired. In particular, the production of the high affinity antibody was significantly lower than that of the low affinity antibody. Over time NP 2 / NP j 2 ratio is increased in wild-type mice as shown in Figure 6 C. It shows a process that mature B cell populations that produce higher affinity antibodies over time, the increase in NP 2 ZNP 12 ratio was Roh Kkuautomausu is moderate as compared to wild type mice, high The mechanism of maturation to affinity antibody production was shown to be impaired. It is known that a decrease in the ability to produce antibodies to the TD (T cell-dependent) antigen, that is, the TD response, results in weaker resistance to infectious diseases and the like (Immunodeficiency Review, 3: 1988). — P. 121). Therefore, administration of CD100 or a substance that enhances the action of CD100 may be a new therapeutic agent for infectious diseases and the like. Example 7 Loss of T cell reactivity in CD100 knockout mice
8週齢の野性型マウスおよび CD 100ノックアウトマウスに完全フロインド アジュバントに懸濁した KLH (キーホールリンペットへモシァニン) を T細胞 を脾臓より採集する場合は腹腔内に、 所属リンパ節より採集する場合はフットパ ッドに免疫した。 免疫 9日後、 CD4陽性 T細胞を CD4標識マグネットビーズ (Magn e t i c Ce l l S o r t i ng, ミルテンィバイオテック) によ り脾臓または所属リンパ節より調製した。 1 X 105個の細胞を、放射線処理(3 000 r a d) した野性型マウス脾臓細胞 (5 x 105) 存在下、 種々の濃度の KLHで 3日間刺激した。 細胞増殖性を検討する場合、 2 C iのトリチウムチ ミジンを 12時間添加し、 細胞内の放射活性を測定した。 3日間の細胞培養上清 中の I L— 4 (インターロイキン 4) および I FN—ァ (インターフェロンガン マ) 量は EL I SAキット (R&Dシステム) により測定した。 KLH (keyhole limpet hemocyanin) suspended in complete Freund's adjuvant in 8-week-old wild-type mice and CD100 knockout mice. Immunized the footpad. Nine days after immunization, CD4-positive T cells were prepared from spleen or regional lymph nodes using CD4-labeled magnetic beads (Magnetic Cell Sorting, Milteny Biotech). The 1 X 10 5 cells, radiation treatment (3 000 rad) and wildtype mouse spleen cells (5 x 10 5) presence were stimulated 3 days with various concentrations of KLH. When examining cell proliferation, 2Ci of tritiated thymidine was added for 12 hours, and intracellular radioactivity was measured. The amounts of IL-4 (interleukin 4) and IFN-α (interferon gamma) in the cell culture supernatant for 3 days were measured using an ELISA kit (R & D system).
結果を図 7に示す。 Aは脾臓由来 CD 4陽性 T細胞の KLH刺激による増殖性 の野性型マウスと CD 100ノックアウトマウスでの比較を示す。 Bは所属リン パ節由来 CD 4陽性 T細胞の KLH刺激による増殖性の野性型マウスと CD 10 0ノックアウトマウスでの比較を示す。 〇は野性型マウス、 △は CD 100ノッ クァゥトマウスの結果を示す。 縦軸は細胞内放射活性を増殖性の指標として表す。 横軸は添加した KLH量を示す。 Cは所属リンパ節由来 CD 4陽性 T細胞の KL H刺激による増殖性、 I L— 4および I FN—ァ産生能の野性型マウスと CD 1Fig. 7 shows the results. A shows the comparison between CD4 positive T cells derived from spleen and KLH-stimulated proliferating wild type mice and CD100 knockout mice. B shows a comparison of proliferating wild-type mice and CD100 knockout mice proliferating by KLH stimulation of CD4 positive T cells derived from the associated lymph node. 〇 indicates the results of wild-type mice, and △ indicates the results of CD100 knockout mice. The vertical axis represents intracellular radioactivity as an index of proliferation. The horizontal axis shows the amount of KLH added. C: Proliferation of CD4-positive T cells derived from regional lymph nodes by KLH stimulation, IL-4 and IFN-producing wild type mice and CD1
00ノックァゥトマウスでの比較および、 CD 100添加による影響について示 す。 mCD 100— F cは免疫翌日より連続 6日間、 50 us/mo u s eを静 脈内に投与した。 4 gZm 1の KLHを用いた場合の結果を示す。 横軸 + _/ +、 —Z—は野性型マウス、 ノックアウトマウスを示す。 CD 100— Fcは十が添 加した場合、 —が添加しなかった場合を示す。 縦軸は左より増殖性、 I L一 4量、The following shows a comparison between 00 knockout mice and the effect of adding CD100. mCD100-Fc was administered intravenously at 50 us / mouse for 6 consecutive days from the day after immunization. The result when 4 gZm1 of KLH is used is shown. The horizontal axis + _ / +, -Z- indicates wild type mice and knockout mice. CD 100—Fc indicates the case where 10 was added, and the case where — was not added. The vertical axis is proliferative from the left, IL-14 amount,
1 NF量を表す。 1 Indicates the amount of NF.
図 7 Aに示すとおり脾臓由来 T細胞の KLHに対する反応性はノックァゥトマ ウスにおいて野性型マウスと比較して低下した。 図 7 Bに示すとおり、 リンパ節 由来の T細胞ではさらに反応性の低下がノックァゥトマウスで認められ、 KLH 量を増加させても反応性が認められなかった。 図 7 Cに示すとおり、 ノックァゥ トマウスにおいて、 04陽性丁細胞の I L— 4および I NF—ァの産生能は野 性型マウスに比べて著しく低下し、 両因子はほとんど産生されていないことが認 められた。 さらに、 可溶性 CD 100を加えることによって反応性の低下は回復 し、 ノックァゥ卜マウスにおけるこれらの異常は CD 100を介したものである ことが確認された。  As shown in FIG. 7A, the reactivity of spleen-derived T cells to KLH was reduced in knockout mice compared to wild type mice. As shown in FIG. 7B, further reduction in reactivity was observed in lymph node-derived T cells in knockout mice, and no reactivity was observed even when the amount of KLH was increased. As shown in FIG. 7C, in the knockout mice, the production ability of IL-4 and INF-α of the 04-positive cells was significantly reduced as compared with the wild-type mice, and it was confirmed that both factors were hardly produced. Was called. Furthermore, the addition of soluble CD100 restored the decrease in reactivity, confirming that these abnormalities in knockout mice were mediated by CD100.
抗原提示細胞が活性化されることにより、 抗腫瘍性 T細胞の活性化が誘導され、 抗腫瘍免疫が生じることが報告されている。 その際、 抗腫瘍性 T細胞では増殖性 の上昇、 I L— 4および I NF—ァの産生能の亢進が認められる。 本実施例の結 果より、 抗原特異的な T細胞の活性化についてノックァゥトマウスでは増殖性、 I L— 4産生能、 I NF—ァ産生能いずれの指標からも大きく低下した。 これは、 CD 100が抗腫瘍性 T細胞の活性化に深く関与していることを示唆している。 実際、 抗原提示細胞上または活性化 T細胞上には CD 100の受容体である CD 72が発現している (ァニユアルソーラシックサージエリ一、 61巻: (199 6年) 252— 258頁)。 したがって、 CD 100はこれらの細胞に直接働いて、 T細胞を活性化し、 抗腫瘍活性を発揮できるものと推測される。 実施例 8 MRL/ 1 p r自己免疫疾患モデルマウス血清中に含まれる可溶性 C D 100および抗単鎖 DN A抗体量の検討 It has been reported that activation of antigen-presenting cells induces the activation of antitumor T cells, thereby generating antitumor immunity. At that time, anti-tumor T cells show increased proliferation and enhanced production of IL-4 and INF-α. According to the results of this example, the activation of antigen-specific T cells was significantly reduced in knockout mice from the indicators of proliferative ability, IL-4 producing ability, and INF-creating ability. This suggests that CD100 is deeply involved in the activation of antitumor T cells. In fact, CD72, a receptor for CD100, is expressed on antigen presenting cells or activated T cells (Annual Solar Surgery, Vol. 61, (1996), pp. 252-258). . Therefore, it is presumed that CD100 can act directly on these cells to activate T cells and exert antitumor activity. Example 8 Soluble C contained in serum of MRL / 1pr autoimmune disease model mouse Examination of D100 and anti-single-chain DNA antibodies
C 57 BLノ 6、 B a 1 /c, MRLZn、 MR LZ 1 p rマウスは S L C (静岡実験動物協同組合) より購入した。 採血は 16週齢のマウスより眼底から 採集した。 可溶性 CD 100と F 1 a gとのマウス融合蛋白質は抗 CD 40抗体 で刺激した WEH 1 -231細胞から調製した CD 100 c DNAより PCR法 により作製した。プライマ一は 5 '端の配列として S a 1 I部位を含む 5— gctgt cgactgtgtgcccgttgctgaaggcct 〔配列番号: 9〕 を 3' 端の配列として B amH I部 F 1 a g配歹リを含む 5 -gacggatcc tact tact ttgctt tgct tgct tgagatacac cgtcttctctga 〔配列番号: 10〕 を用いた。 PCRで生じた S a 1 I -B amH I断片を pEFBo s human I g G 1 F c カセッ卜の S a l I— B am H I部分に組み込んだ。 107個の P 3U 1形質細胞腫に H i n d IIIで切断した 50mgの CD 100— F l a gプラスミド DNAと B amH Iで切断した 5 m gの pMC 1 n e oベクタ一を電気穿孔法により導入した。 遺伝子が導入された 細胞を 10%の牛胎児血清および 0. 3mg/mlの G418を含む RPMI 1 640培養液で選択した。 CD 100— F 1 a g蛋白質は抗 F 1 a g抗体標識ァ ガロース (シグマ) を用いて精製した。 C57BL-6, Ba1 / c, MRLZn, MRLZ1pr mice were purchased from SLC (Shizuoka Experimental Animal Cooperative). Blood was collected from the fundus of 16-week-old mice. A mouse fusion protein of soluble CD100 and F1ag was prepared by PCR from CD100 cDNA prepared from WEH1-231 cells stimulated with anti-CD40 antibody. The primer 1 contains the S a 1 I site as the 5′-end sequence. ttgctt tgct tgct tgagatacac cgtcttctctga [SEQ ID NO: 10] was used. The Sa1I-BamHI fragment generated by PCR was incorporated into the SalI—BamHI portion of the pEFBos human IgG1Fc cassette. Was introduced by 10 7 P 3U 1 to plasmacytoma of 50mg cleaved with H ind III CD 100- F lag plasmid DNA and B AMH pMC from 5 mg taken at I 1 neo vector scratch electroporation. The transfected cells were selected in RPMI 1640 medium containing 10% fetal calf serum and 0.3 mg / ml G418. The CD100-F1ag protein was purified using anti-F1ag antibody-labeled agarose (Sigma).
可溶性 CD 100を検出するためのサンドイッチ EL I S A法は次の通りに行 つた。 96穴マイクロプレート (ヌンク) にラット抗マウス CD 100抗体 (ク ローン BMA— 12、 5 g/m 1 ) をー晚 4 でコートした。 洗浄後、 200 1 穴のブロッキング溶液(5 OmM T r i s— HC 1 (pH8. 1)、 lm M MgC l 2、 0. 15M NaC l、 1 % BSA、 0. 05% Twe e n 20) を加え、 室温で 1時間静置した。 ブロッキング溶液で希釈した 100 1 穴の検体および標準試料 (可溶性 CD 100と F 1 a gとのマウス融合蛋白 質) を室温で 1. 5時間静置した。 0. 05%Twe e n 20 を含む PBSで 3 回洗浄後、 2 zgZmlのピオチン化ラット抗マウス CD 100抗体 (クローン BMA- 8) を添加した。 1時間後、 アルカリフォスファタ一ゼ標識ストレプト アビヂン (シグマ) を添加し、 洗浄後、 フォスファタ一ゼ基質 (シグマ) を添加 し可溶性 CD 100分子を 405 nmの吸光度で検出した。 抗単鎖 DNAは以下 のように調製した。 ゥシ胸腺 DNA (シグマ) を S 1ヌクレアーゼ (シグマ) で 処理し二重鎖 DNAを得た。 二重鎖 DN Aを 1 5分煮沸後、 氷冷することにより 単鎖 DNAを得た。 5 g/m 1の単鎖 DNAを 96穴マイクロプレートに添着 し、マウス血清を添加し、アルカリフォスファターゼ標識抗マウス I gG抗体(サ ザンバイオテクノロジー) を添加した。 なお、 モノクローナル抗体 BMA— 8、 BMA— 1 2の作製は以下の通りに行った。 100 gの CD 1 00— F cを皮 下に、 一週間毎に計 4回投与し、 免疫した。免疫に用いたアジュバントは 1回目は フロイント完全アジュバントを 2回目以降はフロイント不完全アジュバントを用 いた。 さらにラット屠殺五日前に同じ量を静脈内に投与した。 ラット脾臓より B 細胞を調製し、 ミエローマ細胞と融合させた。 融合細胞より CD 100に対する 抗体を産生するクローン BMA— 8、 BMA— 1 2を選択した。 クローンをラッ ト腹腔内に移植し、 腹水中より抗体を精製した。 The sandwich ELISA method for detecting soluble CD100 was performed as follows. A 96-well microplate (Nunc) was coated with rat anti-mouse CD100 antibody (Clone BMA-12, 5 g / m 1) with 晚 -4. After washing, 200 1 hole in blocking solution (5 OmM T ris- HC 1 ( pH8. 1), lm M MgC l 2, 0. 15M NaC l, 1% BSA, 0. 05% Twe en 20) was added, It was left at room temperature for 1 hour. A 100-well sample and standard sample (mouse fusion protein of soluble CD100 and F1ag) diluted with a blocking solution were allowed to stand at room temperature for 1.5 hours. After washing three times with PBS containing 0.05% Tween 20, 2 zgZml of a biotinylated rat anti-mouse CD100 antibody (clone BMA-8) was added. One hour later, alkaline phosphatase-labeled streptavidin (Sigma) was added. After washing, a phosphatase substrate (Sigma) was added, and soluble CD100 molecules were detected at an absorbance of 405 nm. Anti-single-stranded DNA was prepared as follows.ゥ Cysteine thymus DNA (Sigma) with S1 nuclease (Sigma) This was treated to obtain double-stranded DNA. The double-stranded DNA was boiled for 15 minutes and then cooled on ice to obtain single-stranded DNA. 5 g / ml single-stranded DNA was attached to a 96-well microplate, mouse serum was added, and alkaline phosphatase-labeled anti-mouse IgG antibody (Southern Biotechnology) was added. The monoclonal antibodies BMA-8 and BMA-12 were prepared as follows. 100 g of CD100-Fc was subcutaneously administered once a week for a total of four times and immunized. The adjuvant used for immunization was Freund's complete adjuvant for the first time, and Freund's incomplete adjuvant for the second and subsequent times. The same amount was administered intravenously five days before the rat was sacrificed. B cells were prepared from rat spleen and fused with myeloma cells. Clones BMA-8 and BMA-12 producing antibodies to CD100 were selected from the fused cells. The clone was transplanted into a rat intraperitoneal cavity, and the antibody was purified from ascites.
結果を表 1に示す。  Table 1 shows the results.
〔表 1〕 可溶性 CD 100 (ng/ml) 単鎖 DNA (吸光度) [Table 1] Soluble CD100 (ng / ml) single-stranded DNA (absorbance)
C57BL/6 (n = 7) < 12 -C57BL / 6 (n = 7) <12-
Ba l b/c (n = 8) < 12 一 Ba l b / c (n = 8) <12 one
MRL/n (n= 10) < 12 0. 005  MRL / n (n = 10) <12 0.005
MRL/ 1 p r (n = 20) 166 ± 172 ― 0. 184±0. 6 表 1にはマウス系統と可溶性 CD 1 00量、 単鎖 DNA量との関係を示す。 M MRL / 1 pr (n = 20) 166 ± 172 ― 0.184 ± 0.6 Table 1 shows the relationship between the mouse strain and the amount of soluble CD100 and single-stranded DNA. M
RL/ 1 p rマウスは MRL/nマウスより選抜された自己免疫疾患モデルマウ スである。 血清中に含まれる可溶性 CD 1 00量は C 57 BLZ6、 B a 1 b/ c、 MR LZn正常マウスでは検出限界 (12 n gZm l ) 以下であつたが、 自 己免疫疾患様症状を示す MR LZ 1 p r自己免疫疾患マウスでは非常に上昇して いた( 166 n g/m 1 )。 同様に、 自己免疫疾患に伴う自己抗体量の指標となる 抗単鎖 DNA抗体量は MRLZ 1 rマウスでは MR L/nマウスに比べて非常 に増加しており、 MRLZ 1 p rマウスが自己免疫疾患様の症状を呈しているこ と力 抗単鎖 DN A抗体量からも明らかであった。 これらの結果より、 MRLZ 1 p r自己免疫疾患マウスにおいては、 CD 100の産生異常が関与している可 能性が高く、 CD 100の阻害剤が慢性関節リユーマチ等の自己免疫疾患に有効 であることが動物実験から示された。 実施例 9 MRL/ 1 rマウスにおける加齢に伴う可溶性 CD 100および自 己抗体量の増加 The RL / 1pr mouse is an autoimmune disease model mouse selected from MRL / n mice. Serum soluble CD100 in serum was C57BLZ6, Ba1b / c, MR.LZn normal mice were below the detection limit (12 ngZml), but MR showing autoimmune disease-like symptoms. It was extremely elevated in mice with LZ 1 pr autoimmune disease (166 ng / m 1). Similarly, the amount of anti-single-chain DNA antibody, which is an indicator of the amount of autoantibodies associated with autoimmune diseases, is much higher in MRLZ1r mice than in MRL / n mice, and MRLZ1pr mice It was also evident from the amount of anti-single-chain DNA antibody. These results suggest that abnormal production of CD100 may be involved in MRLZ 1pr autoimmune disease mice. Animal studies have shown that CD100 inhibitors are highly potent and are effective against autoimmune diseases such as rheumatoid arthritis. Example 9 Age-related increase in soluble CD100 and autoantibody levels in MRL / 1r mice
8— 20週齢のマウスを用いて可溶性 CD 1 00量 (A) と抗単鎖 DNA抗体 量 (B) を測定した。 採血は眼底から採集した。 可溶性 CD 1 00を検出するた めのサンドィツチ EL I S A法は次の通りに行った。 96穴マイクロプレート(ヌ ンク) にラット抗マウス CD 1 00抗体 (BMA— 1 2、 5 β g/m 1 ) をー晚 4 でコートした。 洗浄後、 200 1 Z穴のブロッキング溶液 (5 OmM T r i s— HC 1 (pH 8. 1)、 1 mM MgC l 2、 0. 1 5M NaC l、 l % BSA、 0. 05% Twe e n 20) を加え、 室温で 1時間静置した。 ブロッ キング溶液で希釈した 1 00 1 Z穴の検体および標準試料 (可溶性 CD 1 00 と FLAG配列とのマウス融合蛋白質)を室温で 1. 5時間静置した。 0. 05% Twe e n 20を含む PBSで 3回洗浄後、 2 g Zm 1のピオチン化ラット抗 マウス CD 100抗体 (BMA— 8) を添加した。 1時間後、 アルカリフォスフ ァ夕ーゼ標識ストレプトアビヂン (シグマ) を添加し、 洗浄後、 フォスファタ一 ゼ基質 (シグマ) を添加し可溶性 CD 1 00分子を 405 nmの吸光度で検出し た。 抗単鎖 DNAは以下のように調製した。 ゥシ胸腺 DNA (シグマ) を S 1ヌ クレアーゼ (シグマ) で処理し二重鎖 DNAを得た。 二重鎖 DNAを 1 5分煮沸 後、 氷冷することにより単鎖 DNAを得た。 5 g/m 1の単鎖 DNAを 96穴 マイクロプレートに添着し、 マウス血清を添加し、 アルカリフォスファタ一ゼ標 識抗マウス I gG抗体 (サザンバイオテクノロジー) を添加した。 The amount of soluble CD100 (A) and the amount of anti-single-chain DNA antibody (B) were measured using 8-20 week old mice. Blood was collected from the fundus. A sandwich ELISA for detecting soluble CD100 was performed as follows. A 96-well microplate (nucleated) was coated with rat anti-mouse CD100 antibody (BMA-12, 5 βg / m1) with-晚 4. After washing, 200 1 Z well blocking solution (5 OmM Tris—HC1 (pH 8.1), 1 mM MgCl 2 , 0.15 M NaCl, l% BSA, 0.05% Tween 20) Was added and left at room temperature for 1 hour. The specimen and standard sample (mouse fusion protein of soluble CD100 and FLAG sequence) in the 1001 Z well diluted with the blocking solution were allowed to stand at room temperature for 1.5 hours. After washing three times with PBS containing 0.05% Tween 20, 2 g Zm1 of a biotinylated rat anti-mouse CD100 antibody (BMA-8) was added. One hour later, alkaline phosphatase-labeled streptavidin (Sigma) was added. After washing, a phosphatase substrate (Sigma) was added, and soluble CD100 molecules were detected at an absorbance of 405 nm. Anti-single-stranded DNA was prepared as follows.ゥ The thymus DNA (Sigma) was treated with S1 nuclease (Sigma) to obtain double-stranded DNA. The double-stranded DNA was boiled for 15 minutes and then cooled on ice to obtain a single-stranded DNA. 5 g / ml single-stranded DNA was attached to a 96-well microplate, mouse serum was added, and alkaline phosphatase-labeled anti-mouse IgG antibody (Southern Biotechnology) was added.
結果を図 8に示す。 Aは血清中の可溶性 CD 100量を、 Bは血清中の抗単鎖 DNA抗体量を示す。 横軸はマウスの週齢を表す。 Bの縦軸は抗体量を表す。 2 2週齢のマウスの血清から得られた数値を 1として、 各検体の数値がどの程度の 倍率になったかで表示した。 血清中の可溶性 CD 1 00量は 8週齢の MRL/ 1 p rマウスでは検出感度以下であつたが、 週齢とともに上昇し、 1 6週齢では 1 16±89 ngZm 1に達した。 同様に、 自己免疫疾患の病状進行の指標となる 抗単鎖 DN A抗体量も週齢とともに上昇した。 これらの結果より血清中の可溶性 CD 100量の上昇は MRLZ 1 p rマウスにおける自己免疫疾患の進行状況と 経時的に相関することが判明した。 この結果からも、 MRL/ l p r自己免疫疾 患マウスにおいては、 CD 100の産生異常が関与している可能性が高く、 CD 100の阻害剤が慢性関節リューマチ等の自己免疫疾患に有効であることが示さ れた。 実施例 10 CD 100ノックァゥトマウスにおける樹状細胞の反応性の喪失 8週齢の野性型マウスおよび CD 100ノックァゥトマウスより骨髄細胞を採 集した。 骨髄細胞を GM— CSFの存在下で 6日間培養することにより樹状細胞 を調製した。 96穴プレートに 2 X 105個/穴の樹状細胞を播種し、 抗マウス CD 40抗体(HM— 40- 3 (ファーミンジェン)、 2 g/m 1 ) または L P S (リポポリサッカライド、 10 ig/m l) を添加し、 72時間培養した。 培 養上清中の I L一 12量を EL I SAキット (アマシャムフアルマシア) により 測定した。 Fig. 8 shows the results. A shows the amount of soluble CD100 in serum, and B shows the amount of anti-single-chain DNA antibody in serum. The horizontal axis represents the age of mice. The vertical axis of B represents the amount of the antibody. 22 The numerical value obtained from the serum of the 2-week-old mouse was set to 1, and the numerical value of each sample was indicated by the magnification. The amount of soluble CD100 in the serum was below the detection sensitivity in 8-week-old MRL / 1pr mice, but increased with the age of the week and reached 116 ± 89 ngZm1 at the age of 16 weeks. Similarly, it is an indicator of the progression of an autoimmune disease The amount of anti-single-chain DNA antibody also increased with age. From these results, it was found that an increase in the amount of soluble CD100 in serum correlated with the progress of the autoimmune disease in MRLZ1pr mice over time. From these results, it is highly probable that abnormal production of CD100 is involved in MRL / lpr autoimmune diseased mice, indicating that CD100 inhibitors are effective for autoimmune diseases such as rheumatoid arthritis. It has been shown. Example 10 Loss of Dendritic Cell Reactivity in CD100 Knockout Mice Bone marrow cells were collected from 8-week-old wild type mice and CD100 knockout mice. Dendritic cells were prepared by culturing bone marrow cells in the presence of GM-CSF for 6 days. Seed 2 x 10 5 cells / well in a 96-well plate and incubated with anti-mouse CD40 antibody (HM-40-3 (Pharmingen), 2 g / m 1) or LPS (lipopolysaccharide, 10 ig / ml) and cultured for 72 hours. The amount of IL-12 in the culture supernatant was measured using an ELISA kit (Amersham Pharmacia).
結果を図 9に示す。 野性型マウスの結果を白で、 ノックアウトマスの結果を斜 線で表す。 I L一 12量を縦軸に表す。 野性型マウス由来の樹状細胞に抗 CD 4 0抗体または LPSで刺激をかけた場合、 I L一 12産生量は上昇し、 樹状細胞 は活性化された。 しかし、 ノックアウトマウス由来の樹状細胞を用いた場合、 I L一 12産生量は減少し、 樹状細胞の活性化は損なわれた。 抗原提示細胞が活性 化される I L一 12が放出されることにより、 抗腫瘍性 T細胞の活性化が誘導さ れ、 抗腫瘍免疫が生じることが報告されている (ネイチヤー、 393巻: (19 98年) 413— 414頁)。本実施例の結果より、樹状細胞の活性化についてノ ックアウトマウスでは大きく低下した。 これは、 CD 100が樹状細胞の活性化 に深く関与していることを示唆している。 したがって、 CD 100は樹状細胞を 活性化し、 抗腫瘍活性を発揮できるものと推測される。 実施例 1 1 CD 100トランスジエニックマウスにおける T細胞の反応性亢進 B細胞特異的にマウス CD 100を発現させるため、 イミュノグロプリン V領 域重鎖遺伝子プロモーター、 イミュノグロプリン重鎖遺伝子イントロンェンハン サーおよびイミュノグロブリン κ鎖ェンハンサーよりなる E ベクタ一に全長あ るいは細胞内領域を欠失させた膜型マウス CD 100 c DN Aを組み込んだコ ンストラクトを作製した。 この遺伝子断片を C 57 BLZ6マウスの受精卵に導 入することによりトランスジエニックマウスを作製した。 Fig. 9 shows the results. The results for wild-type mice are shown in white, and the results for knockout trout are shown as hatched lines. The vertical axis represents IL-12. When dendritic cells derived from wild-type mice were stimulated with an anti-CD40 antibody or LPS, the production of IL-112 increased and the dendritic cells were activated. However, when dendritic cells derived from knockout mice were used, the production of IL-112 decreased, and the activation of dendritic cells was impaired. It has been reported that the release of IL-12, which activates antigen-presenting cells, induces the activation of antitumor T cells and produces antitumor immunity (Nature, 393: (19) 1998) 413-414). According to the results of this example, the activation of dendritic cells was significantly reduced in knockout mice. This suggests that CD100 is deeply involved in dendritic cell activation. Therefore, it is presumed that CD100 can activate dendritic cells and exert antitumor activity. Example 11 1 Hyperactivity of T cells in CD100 transgenic mice To express mouse CD100 specifically in B cells, immunoglobulin V region Membrane-type mouse CD100 cDNA with the full-length or intracellular region deleted in the E vector consisting of the heavy chain gene promoter, the immunoglobulin heavy chain gene intron enhancer, and the immunoglobulin kappa chain enhancer. An integrated construct was created. Transgenic mice were prepared by introducing this gene fragment into fertilized eggs of C57BLZ6 mice.
8週齢の野性型マウスおよび CD 100ノックアウトマウスに完全フロインド アジュバントに懸濁した KLH (キーホールリンペットへモシァニン、 10 g /マウス) を腹腔内に免疫した。 免疫 9日後、 CD 4陽性 T細胞を CD 4標識マ グネットビ一ズ (Magn e t i c C e l l S o r t i ng、 ミルテンィバイ ォテック) により所属リンパ節より調製した。 1 x 105個の細胞を、 放射線処 理 (3000 r ad) した野性型マウス脾臓細胞 (5 x 105) 存在下、 種々の 濃度の KLHで 3日間刺激した。 細胞増殖性を検討する場合、 2 C iのトリチ ゥムチミジンを 12時間添加し、 細胞内の放射活性を測定した。 3日間の細胞培 養上清中の I FN— r (インターフェロンガンマ) 量は EL I S Aキット (R& Dシステム) により測定した。 Eight weeks old wild-type mice and CD100 knockout mice were immunized intraperitoneally with KLH (keyhole limpet hemocyanin, 10 g / mouse) suspended in complete Freund's adjuvant. Nine days after the immunization, CD4-positive T cells were prepared from the regional lymph nodes using CD4-labeled magnetic beads (Magnetic Cell Sorting, Milten Biotech). 1 × 10 5 cells were stimulated with various concentrations of KLH for 3 days in the presence of irradiated (3000 rad) wild-type mouse spleen cells (5 × 10 5 ). When examining cell proliferation, 2 Ci of thymidine thymidine was added for 12 hours, and intracellular radioactivity was measured. The amount of IFN-r (interferon gamma) in the cell culture supernatant for 3 days was measured using an ELISA kit (R & D system).
結果を図 10に示す。 左図は I NF—ァ産生量、 右図は増殖性を示す。 〇は野 性型マウス、 秦は CD 100トランスジエニックマウスの結果を示す。 横軸は添 加した KLH量を示す。 増殖性は細胞内放射活性を指標として表す。  The results are shown in FIG. The left figure shows the amount of I NF-α production, and the right figure shows the proliferation. 〇 shows the results of wild-type mice, and Hata shows the results of CD100 transgenic mice. The horizontal axis shows the added KLH amount. Proliferation is represented by intracellular radioactivity as an index.
図 10に示すとおり、 トランスジエニックマウスにおいて、 CD4陽性 T細胞 の I NF—ァ産生量および増殖性は野性型マウスに比べて上昇した。 これは KL Hに特異的な T細胞が活性化されたことを示す。 抗原提示細胞が活性化されるこ とにより、 抗腫瘍性 T細胞の活性化が誘導され、 抗腫瘍免疫が生じることが報告 されている (ネイチヤー、 393巻: ( 1998年) 413— 414頁)。 その際、 抗腫瘍性 T細胞では増殖性の上昇および I N F—ァの産生能の亢進が認められる。 本実施例の結果より、 抗原特異的な T細胞の活性化についてトランスジヱニック マウスでは I NF—ァ産生量および増殖性のいづれの指標も上昇した。 これは、 CD 100が抗腫瘍性 T細胞の活性化に深く関与していることを示唆している。 実際、 抗原提示細胞上または活性化 T細胞上には CD 100の受容体である CD 72が発現している (ァニユアルソーラシックサージエリー、 61巻: (199 6年) 2 5 2— 2 5 8頁)。 したがって、 C D 1 0 0はこれらの細胞に直接働いて、 T細胞を活性化し、 抗腫瘍活性を発揮できるものと推測される。 また、 このトラ ンスジエニックモデルマウスは C D 1 0 0産生亢進による免疫反応過敏な状態に あると考えられる。 したがって、 C D 1 0 0亢進によって生じる推定される免疫 不全症などの疾患のモデルになると考えられる。 産業上の利用可能性 As shown in FIG. 10, in transgenic mice, the amount of I NF-α production and proliferation of CD4-positive T cells increased as compared to wild-type mice. This indicates that T cells specific for KLH were activated. It has been reported that the activation of antigen-presenting cells induces the activation of antitumor T cells, thereby generating antitumor immunity (Nachiya, 393: (1998) pp. 413-414). . At that time, an increase in proliferation and an increase in the ability to produce INF-a are observed in the antitumor T cells. From the results of this example, transgenic mice also showed an increase in INF-α production and an index of proliferative activity for antigen-specific T cell activation. This suggests that CD100 is deeply involved in the activation of antitumor T cells. In fact, CD72, a receptor for CD100, is expressed on antigen presenting cells or activated T cells (Anyual Solar Surgery, Vol. 61: (199 6 years) 25 2—2 58 pages). Therefore, it is presumed that CD100 acts directly on these cells to activate T cells and exert antitumor activity. In addition, this transgenic model mouse is considered to be in an immune reaction hypersensitivity state due to enhanced CD100 production. Therefore, it is considered to be a model for diseases such as putative immunodeficiency caused by enhanced CD100. Industrial applicability
本発明の C D 7 2またはその塩および C D 1 0 0またはその塩を用いることを 特徴とする C D 7 2またはその塩と C D 1 0 0またはその塩との結合性を変化さ せる化合物またはその塩のスクリーニング方法は、 ウィルスによる感染症または 疾病 (かぜ症候群、 インフルエンザ、 エイズ、 肝炎、 ヘルぺス、 麻疹、 水痘、 手 足口病、 帯状疱疹、 伝染性紅斑、 風疹、 突発性発疹、 ウィルス性結膜炎、 ウィル ス性髄膜炎、 ウィルス肺炎、 ウィルス性脳炎、 ラッサ熱、 エボラ出血熱、 マール ブルダ病、 コンゴ出血熱、 黄熱病、 デング熱、 狂犬病、 成人 T細胞白血病 (AT L ) 、 ロタウィルス感染症、 ポリオ、 おたふくかぜなど) 、 細菌または真菌によ る感染症または疾病 (細菌性食中毒、 細菌性下痢、 結核、 ハンセン氏病、 赤痢、 腸チフス、 コレラ、 パラチフス、 ペスト、 破傷風、 野兎病、 ブルセラ症、 炭疽、 敗血症、 細菌性肺炎、 皮膚真菌症など) 、 癌 (口腔癌、 咽頭癌、 ***癌、 舌癌、 歯肉癌、 鼻咽頭癌、 食道癌、 胃癌、 小腸癌、 結腸癌を含む大腸癌、 肝臓癌、 胆の う癌、 塍臓癌、 鼻腔癌、 肺癌、 骨肉腫、 軟部組織癌、 皮膚癌、 黒色腫、 乳癌、 子 宮癌、 卵巣癌、 前立腺癌、 精巣癌、 陰茎癌、 膀胱癌、 腎臓癌、 脳腫瘍、 甲状腺癌、 リンパ腫、 白血病など) などの予防 ·治療薬などとして用いることができる C D 7 2ァゴニスト、 異常抗体産生または過度の抗体産生によってもたらされる疾病 (アトピー性喘息、 アレルギー性鼻炎、 アトピー性皮膚炎、 アレルギー性気管支 炎、 肺ァスペルギールス症、 寄生虫疾患、 木村氏病、 高 I g E症候群、 W i s k o t t - A 1 d r i c h症候群、 胸腺形成不全症、 H o d k i n病、 肝硬変、 急 性肝炎、 慢性関節リューマチ、 インシュリン依存性糖尿病、 全身性エリ トマト一 デス、 強皮症、 不妊症、 子宮内膜症、 自己免疫性甲状腺疾患重症筋無力症、 橋本 病、 B a s e d o w病、 悪性貧血、 A d d i s o n病、 男性不妊症、 多発性硬化 症、 Good p a s t u r e症候群、 天疱瘡、 類天疱瘡、 重症筋無力症、 水晶体 性眼炎、 交感性眼炎、 自己免疫性溶血性貧血、 特発性血小板減少症、 自己免疫性 白血球減少症、 Fe 1 t y症候群、 自己免疫性リンパ球減少症、 潰瘍性大腸炎、 S j og r e n症候群、 全身性自己免疫疾患、 原発性胆汁性肝硬変症、 ルポィド 肝炎など) などの予防 ·治療薬などとして用いることができる CD 72アンタゴ ニス卜のスクリーニング方法として有用である。 A compound or a salt thereof that changes the binding property between CD72 or a salt thereof and CD100 or a salt thereof, characterized by using the CD72 or a salt thereof and the CD100 or a salt thereof of the present invention. Screening methods include viral infections or diseases (cold syndrome, influenza, AIDS, hepatitis, herpes, measles, varicella, hand-foot-and-mouth disease, shingles, erythema flu, rubella, sudden rash, viral conjunctivitis , Viral meningitis, viral pneumonia, viral encephalitis, Lassa fever, Ebola hemorrhagic fever, Mar Burda disease, Congo hemorrhagic fever, yellow fever, dengue fever, rabies, adult T cell leukemia (ATL), rotavirus infection, polio , Mumps, etc., bacterial or fungal infections or diseases (bacterial food poisoning, bacterial diarrhea, tuberculosis, leprosy, dysentery, typhoid fever, Cholera, paratyphoid, plague, tetanus, tularemia, brucellosis, anthrax, sepsis, bacterial pneumonia, dermatomycosis, etc., cancer (oral, pharyngeal, lip, tongue, gingival, nasopharyngeal, esophageal) Cancer, stomach cancer, small intestine cancer, colon cancer including colon cancer, liver cancer, gall bladder cancer, kidney cancer, nasal cavity cancer, lung cancer, osteosarcoma, soft tissue cancer, skin cancer, melanoma, breast cancer, child cancer, CD72 agonist that can be used as a prophylactic or therapeutic agent for ovarian, prostate, testicular, penile, bladder, kidney, brain, thyroid, lymphoma, leukemia, etc. Diseases caused by antibody production (e.g., atopic asthma, allergic rhinitis, atopic dermatitis, allergic bronchitis, pulmonary aspergillosis, parasitic disease, Kimura's disease, high IgE syndrome, Wisk ott-A 1 drich syndrome, thymic dysplasia, Hodkin's disease, cirrhosis, acute hepatitis, rheumatoid arthritis, insulin-dependent diabetes mellitus, systemic lupus tomatoes, scleroderma, infertility, endometriosis, Autoimmune thyroid disease myasthenia gravis, Hashimoto's disease, Basedow's disease, pernicious anemia, Addison's disease, male infertility, multiple sclerosis Syndrome, Good pasture syndrome, pemphigus, pemphigoid, myasthenia gravis, lens ophthalmitis, sympathetic ophthalmitis, autoimmune hemolytic anemia, idiopathic thrombocytopenia, autoimmune leukopenia, Fe 1 ty syndrome, autoimmune lymphopenia, ulcerative colitis, Sjogren's syndrome, systemic autoimmune disease, primary biliary cirrhosis, lupus hepatitis, etc.) It is useful as a screening method for CD72 antagonists.

Claims

請 求 の 範 囲 The scope of the claims
1. CD 100またはその塩および CD 72またはその塩を用いることを特徴 とする、 CD 100またはその塩と CD 72またはその塩との結合性を変化させ る化合物またはその塩のスクリーニング法。 1. A method for screening a compound or a salt thereof that changes the binding property between CD100 or a salt thereof and CD72 or a salt thereof, comprising using CD100 or a salt thereof and CD72 or a salt thereof.
2. CD 100またはその塩および CD 72またはその塩を用いることを特徴 とする、 CD 100またはその塩と CD 72またはその塩との結合性を変化させ る化合物またはその塩のスクリーニング用キット。 2. A screening kit for a compound or a salt thereof that changes the binding property between CD100 or a salt thereof and CD72 or a salt thereof, comprising using CD100 or a salt thereof and CD72 or a salt thereof.
3. 請求項 1記載のスクリーニング法または請求項 2記載のスクリーニング用 キットを用いて得られる、 CD 100またはその塩と CD 72またはその塩との 結合性を変化させる化合物またはその塩。 3. A compound or a salt thereof, obtained by using the screening method according to claim 1 or the screening kit according to claim 2, which alters the binding property between CD100 or a salt thereof and CD72 or a salt thereof.
4. CD 100またはその塩の活性を促進または阻害する請求項 3記載の化合 物またはその塩。 4. The compound or a salt thereof according to claim 3, which promotes or inhibits the activity of CD100 or a salt thereof.
5. 請求項 3記載の化合物またはその塩を含有する医薬。 5. A medicament comprising the compound according to claim 3 or a salt thereof.
6. 抗体産生誘導剤、 または抗体異常産生に起因する疾患の予防 ·治療剤である 請求項 5記載の医薬。 6. The medicament according to claim 5, which is an agent for inducing antibody production or an agent for preventing or treating a disease caused by abnormal antibody production.
7. 抗体異常産生に起因する疾患がアレルギーまたは自己免疫疾患である請求 項 6記載の医薬。 7. The medicament according to claim 6, wherein the disease caused by abnormal antibody production is an allergy or an autoimmune disease.
8. CD 100またはその塩、 あるいは CD 100またはその塩および試験化 合物を CD72の発現細胞に添加し、 発現細胞より産生もしくは分泌された抗体 量の変化を測定することを特徴とする請求項 1記載のスクリーニング法。 8. CD100 or a salt thereof, or CD100 or a salt thereof and a test compound are added to CD72-expressing cells, and the change in the amount of antibody produced or secreted from the expressing cells is measured. The screening method according to 1.
9. T細胞の反応性が喪失した、 CD 100遺伝子がノックアウトされた非ヒ 卜動物。 9. A non-human animal in which T cell reactivity has been lost and the CD100 gene has been knocked out.
10. CD 100遺伝子がノックアウトされた非ヒト動物を用いることを特徴 とする CD 100の欠損に起因する疾病の予防 ·治療薬のスクリーニング法。 10. A method for screening a drug for preventing or treating a disease caused by CD100 deficiency, which comprises using a non-human animal in which the CD100 gene has been knocked out.
1 1. CD 100遺伝子がノックアウトされた非ヒト動物を用いることを特徴 とする、 CD 100またはその塩とその受容体との結合性を変化させる化合物ま たはその塩のスクリーニング法。 1 1. A method for screening a compound or a salt thereof that alters the binding between CD100 or a salt thereof and a receptor thereof, comprising using a non-human animal in which the CD100 gene has been knocked out.
12. 受容体が CD 72またはその塩である請求項 1 1記載のスクリーニング 法。 12. The screening method according to claim 11, wherein the receptor is CD72 or a salt thereof.
13. 外来性 CD 100遺伝子またはその変異遺伝子を組み込んだ DNAを有 することを特徴とする T細胞の反応性が亢進したトランスジエニック非ヒ卜動物 または該 D N Aを有するその子孫。 13. A transgenic non-human animal with enhanced T cell reactivity, characterized by having a DNA into which an exogenous CD100 gene or its mutant gene has been incorporated, or a progeny thereof having the DNA.
14. 外来性 CD 100遺伝子またはその変異遺伝子を組み込んだ DNAを有 するトランスジエニック非ヒト動物または該 DN Aを有するその子孫を用いるこ とを特徴とする CD 100の亢進に起因する疾病の予防 ·治療薬のスクリーニン グ法。 14. Use of a transgenic non-human animal having a DNA into which an exogenous CD100 gene or its mutant gene has been incorporated, or a progeny thereof having the DNA, to prevent a disease caused by CD100 enhancement. · Therapeutic drug screening method.
15. 外来性 CD 100遺伝子またはその変異遺伝子を組み込んだ DNAを有 するトランスジエニック非ヒト動物または該 DNAを有するその子孫を用いるこ とを特徴とする、 CD 100またはその塩とその受容体との結合性を変化させる 化合物またはその塩のスクリーニング法。 15. A transgenic non-human animal having a DNA into which an exogenous CD100 gene or its mutant gene has been incorporated, or a progeny thereof having the DNA, wherein CD100 or a salt thereof and a receptor thereof are used. A method for screening a compound or a salt thereof that changes the binding property of a compound.
16. 受容体が CD 72またはその塩である請求項 15記載のスクリーニング 法。 16. The screening method according to claim 15, wherein the receptor is CD72 or a salt thereof.
PCT/JP2000/003558 1999-06-03 2000-06-01 Screening method with the use of cd100 WO2000075655A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU49526/00A AU4952600A (en) 1999-06-03 2000-06-01 Screening method with the use of cd100

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/157111 1999-06-03
JP15711199 1999-06-03

Publications (1)

Publication Number Publication Date
WO2000075655A1 true WO2000075655A1 (en) 2000-12-14

Family

ID=15642478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003558 WO2000075655A1 (en) 1999-06-03 2000-06-01 Screening method with the use of cd100

Country Status (2)

Country Link
AU (1) AU4952600A (en)
WO (1) WO2000075655A1 (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2260858A2 (en) 2003-11-06 2010-12-15 Seattle Genetics, Inc. Monomethylvaline compounds capable of conjugation to ligands
EP2286844A2 (en) 2004-06-01 2011-02-23 Genentech, Inc. Antibody-drug conjugates and methods
WO2011031870A1 (en) 2009-09-09 2011-03-17 Centrose, Llc Extracellular targeted drug conjugates
WO2011056983A1 (en) 2009-11-05 2011-05-12 Genentech, Inc. Zirconium-radiolabeled, cysteine engineered antibody conjugates
WO2011130598A1 (en) 2010-04-15 2011-10-20 Spirogen Limited Pyrrolobenzodiazepines and conjugates thereof
WO2011156328A1 (en) 2010-06-08 2011-12-15 Genentech, Inc. Cysteine engineered antibodies and conjugates
WO2012074757A1 (en) 2010-11-17 2012-06-07 Genentech, Inc. Alaninyl maytansinol antibody conjugates
WO2012155019A1 (en) 2011-05-12 2012-11-15 Genentech, Inc. Multiple reaction monitoring lc-ms/ms method to detect therapeutic antibodies in animal samples using framework signature pepides
WO2013130093A1 (en) 2012-03-02 2013-09-06 Genentech, Inc. Biomarkers for treatment with anti-tubulin chemotherapeutic compounds
WO2014057074A1 (en) 2012-10-12 2014-04-17 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
WO2014140862A2 (en) 2013-03-13 2014-09-18 Spirogen Sarl Pyrrolobenzodiazepines and conjugates thereof
WO2014140174A1 (en) 2013-03-13 2014-09-18 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
WO2014159981A2 (en) 2013-03-13 2014-10-02 Spirogen Sarl Pyrrolobenzodiazepines and conjugates thereof
WO2015023355A1 (en) 2013-08-12 2015-02-19 Genentech, Inc. 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment
WO2015095223A2 (en) 2013-12-16 2015-06-25 Genentech, Inc. Peptidomimetic compounds and antibody-drug conjugates thereof
WO2015095227A2 (en) 2013-12-16 2015-06-25 Genentech, Inc. Peptidomimetic compounds and antibody-drug conjugates thereof
WO2015095212A1 (en) 2013-12-16 2015-06-25 Genentech, Inc. 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment
WO2016037644A1 (en) 2014-09-10 2016-03-17 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
WO2016040856A2 (en) 2014-09-12 2016-03-17 Genentech, Inc. Cysteine engineered antibodies and conjugates
WO2016040825A1 (en) 2014-09-12 2016-03-17 Genentech, Inc. Anthracycline disulfide intermediates, antibody-drug conjugates and methods
WO2016090050A1 (en) 2014-12-03 2016-06-09 Genentech, Inc. Quaternary amine compounds and antibody-drug conjugates thereof
EP3088004A1 (en) 2004-09-23 2016-11-02 Genentech, Inc. Cysteine engineered antibodies and conjugates
US9562049B2 (en) 2012-12-21 2017-02-07 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US9567340B2 (en) 2012-12-21 2017-02-14 Medimmune Limited Unsymmetrical pyrrolobenzodiazepines-dimers for use in the treatment of proliferative and autoimmune diseases
WO2017059289A1 (en) 2015-10-02 2017-04-06 Genentech, Inc. Pyrrolobenzodiazepine antibody drug conjugates and methods of use
WO2017064675A1 (en) 2015-10-16 2017-04-20 Genentech, Inc. Hindered disulfide drug conjugates
WO2017068511A1 (en) 2015-10-20 2017-04-27 Genentech, Inc. Calicheamicin-antibody-drug conjugates and methods of use
WO2017165734A1 (en) 2016-03-25 2017-09-28 Genentech, Inc. Multiplexed total antibody and antibody-conjugated drug quantification assay
EP3235820A1 (en) 2014-09-17 2017-10-25 Genentech, Inc. Pyrrolobenzodiazepines and antibody disulfide conjugates thereof
WO2017201449A1 (en) 2016-05-20 2017-11-23 Genentech, Inc. Protac antibody conjugates and methods of use
WO2017205741A1 (en) 2016-05-27 2017-11-30 Genentech, Inc. Bioanalytical method for the characterization of site-specific antibody-drug conjugates
WO2017214024A1 (en) 2016-06-06 2017-12-14 Genentech, Inc. Silvestrol antibody-drug conjugates and methods of use
WO2018031662A1 (en) 2016-08-11 2018-02-15 Genentech, Inc. Pyrrolobenzodiazepine prodrugs and antibody conjugates thereof
US9919056B2 (en) 2012-10-12 2018-03-20 Adc Therapeutics S.A. Pyrrolobenzodiazepine-anti-CD22 antibody conjugates
US9931415B2 (en) 2012-10-12 2018-04-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US9931414B2 (en) 2012-10-12 2018-04-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
WO2018065501A1 (en) 2016-10-05 2018-04-12 F. Hoffmann-La Roche Ag Methods for preparing antibody drug conjugates
US9950078B2 (en) 2013-10-11 2018-04-24 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US9956299B2 (en) 2013-10-11 2018-05-01 Medimmune Limited Pyrrolobenzodiazepine—antibody conjugates
US10010624B2 (en) 2013-10-11 2018-07-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US10029018B2 (en) 2013-10-11 2018-07-24 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
WO2019060398A1 (en) 2017-09-20 2019-03-28 Ph Pharma Co., Ltd. Thailanstatin analogs
US10392393B2 (en) 2016-01-26 2019-08-27 Medimmune Limited Pyrrolobenzodiazepines
US10420777B2 (en) 2014-09-12 2019-09-24 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US10544223B2 (en) 2017-04-20 2020-01-28 Adc Therapeutics Sa Combination therapy with an anti-axl antibody-drug conjugate
US10543279B2 (en) 2016-04-29 2020-01-28 Medimmune Limited Pyrrolobenzodiazepine conjugates and their use for the treatment of cancer
WO2020049286A1 (en) 2018-09-03 2020-03-12 Femtogenix Limited Polycyclic amides as cytotoxic agents
WO2020086858A1 (en) 2018-10-24 2020-04-30 Genentech, Inc. Conjugated chemical inducers of degradation and methods of use
WO2020123275A1 (en) 2018-12-10 2020-06-18 Genentech, Inc. Photocrosslinking peptides for site specific conjugation to fc-containing proteins
US10695439B2 (en) 2016-02-10 2020-06-30 Medimmune Limited Pyrrolobenzodiazepine conjugates
US10695433B2 (en) 2012-10-12 2020-06-30 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
WO2020157491A1 (en) 2019-01-29 2020-08-06 Femtogenix Limited G-a crosslinking cytotoxic agents
US10736903B2 (en) 2012-10-12 2020-08-11 Medimmune Limited Pyrrolobenzodiazepine-anti-PSMA antibody conjugates
US10751346B2 (en) 2012-10-12 2020-08-25 Medimmune Limited Pyrrolobenzodiazepine—anti-PSMA antibody conjugates
US10780096B2 (en) 2014-11-25 2020-09-22 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
US10799595B2 (en) 2016-10-14 2020-10-13 Medimmune Limited Pyrrolobenzodiazepine conjugates
US11059893B2 (en) 2015-04-15 2021-07-13 Bergenbio Asa Humanized anti-AXL antibodies
US11135303B2 (en) 2011-10-14 2021-10-05 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US11160872B2 (en) 2017-02-08 2021-11-02 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
WO2022023735A1 (en) 2020-07-28 2022-02-03 Femtogenix Limited Cytotoxic agents
US11318211B2 (en) 2017-06-14 2022-05-03 Adc Therapeutics Sa Dosage regimes for the administration of an anti-CD19 ADC
US11352324B2 (en) 2018-03-01 2022-06-07 Medimmune Limited Methods
US11370801B2 (en) 2017-04-18 2022-06-28 Medimmune Limited Pyrrolobenzodiazepine conjugates
US11517626B2 (en) 2016-02-10 2022-12-06 Medimmune Limited Pyrrolobenzodiazepine antibody conjugates
US11524969B2 (en) 2018-04-12 2022-12-13 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof as antitumour agents
US11612665B2 (en) 2017-02-08 2023-03-28 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US11649250B2 (en) 2017-08-18 2023-05-16 Medimmune Limited Pyrrolobenzodiazepine conjugates
US11702473B2 (en) 2015-04-15 2023-07-18 Medimmune Limited Site-specific antibody-drug conjugates

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATHARYN T. HALL ET AL.: "Human CD100 a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation", PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 11780 - 11785, XP002932673 *
WILLIAM H. ROBINSON ET AL.: "Extensive polymorphism in the extra cellular domain of the mouse B cell differentiation antigen Lyb-2 CD72", THE JOURNAL OF IMMUNOLOGY, vol. 149, no. 3, 1992, pages 880 - 886, XP002932674 *

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3434275A1 (en) 2003-11-06 2019-01-30 Seattle Genetics, Inc. Assay for cancer cells based on the use of auristatin conjugates with antibodies
EP2260858A2 (en) 2003-11-06 2010-12-15 Seattle Genetics, Inc. Monomethylvaline compounds capable of conjugation to ligands
EP2486933A1 (en) 2003-11-06 2012-08-15 Seattle Genetics, Inc. Monomethylvaline compounds conjugated with antibodies
EP2489364A1 (en) 2003-11-06 2012-08-22 Seattle Genetics, Inc. Monomethylvaline compounds onjugated to antibodies
EP3858387A1 (en) 2003-11-06 2021-08-04 Seagen Inc. Monomethylvaline compounds capable of conjugation to ligands
EP3120861A1 (en) 2003-11-06 2017-01-25 Seattle Genetics, Inc. Intermediate for conjugate preparation comprising auristatin derivatives and a linker
EP2478912A1 (en) 2003-11-06 2012-07-25 Seattle Genetics, Inc. Auristatin conjugates with anti-HER2 or anti-CD22 antibodies and their use in therapy
EP2286844A2 (en) 2004-06-01 2011-02-23 Genentech, Inc. Antibody-drug conjugates and methods
EP3088004A1 (en) 2004-09-23 2016-11-02 Genentech, Inc. Cysteine engineered antibodies and conjugates
WO2011031870A1 (en) 2009-09-09 2011-03-17 Centrose, Llc Extracellular targeted drug conjugates
WO2011056983A1 (en) 2009-11-05 2011-05-12 Genentech, Inc. Zirconium-radiolabeled, cysteine engineered antibody conjugates
WO2011130598A1 (en) 2010-04-15 2011-10-20 Spirogen Limited Pyrrolobenzodiazepines and conjugates thereof
WO2011156328A1 (en) 2010-06-08 2011-12-15 Genentech, Inc. Cysteine engineered antibodies and conjugates
WO2012074757A1 (en) 2010-11-17 2012-06-07 Genentech, Inc. Alaninyl maytansinol antibody conjugates
WO2012155019A1 (en) 2011-05-12 2012-11-15 Genentech, Inc. Multiple reaction monitoring lc-ms/ms method to detect therapeutic antibodies in animal samples using framework signature pepides
US11135303B2 (en) 2011-10-14 2021-10-05 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
WO2013130093A1 (en) 2012-03-02 2013-09-06 Genentech, Inc. Biomarkers for treatment with anti-tubulin chemotherapeutic compounds
US11701430B2 (en) 2012-10-12 2023-07-18 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US10780181B2 (en) 2012-10-12 2020-09-22 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US11771775B2 (en) 2012-10-12 2023-10-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
EP2839860A1 (en) 2012-10-12 2015-02-25 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
US11690918B2 (en) 2012-10-12 2023-07-04 Medimmune Limited Pyrrolobenzodiazepine-anti-CD22 antibody conjugates
US9931414B2 (en) 2012-10-12 2018-04-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US9931415B2 (en) 2012-10-12 2018-04-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US10994023B2 (en) 2012-10-12 2021-05-04 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US9919056B2 (en) 2012-10-12 2018-03-20 Adc Therapeutics S.A. Pyrrolobenzodiazepine-anti-CD22 antibody conjugates
WO2014057074A1 (en) 2012-10-12 2014-04-17 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
US9889207B2 (en) 2012-10-12 2018-02-13 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US10335497B2 (en) 2012-10-12 2019-07-02 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US10799596B2 (en) 2012-10-12 2020-10-13 Adc Therapeutics S.A. Pyrrolobenzodiazepine-antibody conjugates
US11779650B2 (en) 2012-10-12 2023-10-10 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US10751346B2 (en) 2012-10-12 2020-08-25 Medimmune Limited Pyrrolobenzodiazepine—anti-PSMA antibody conjugates
US10736903B2 (en) 2012-10-12 2020-08-11 Medimmune Limited Pyrrolobenzodiazepine-anti-PSMA antibody conjugates
US10722594B2 (en) 2012-10-12 2020-07-28 Adc Therapeutics S.A. Pyrrolobenzodiazepine-anti-CD22 antibody conjugates
US10695433B2 (en) 2012-10-12 2020-06-30 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US10646584B2 (en) 2012-10-12 2020-05-12 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US9567340B2 (en) 2012-12-21 2017-02-14 Medimmune Limited Unsymmetrical pyrrolobenzodiazepines-dimers for use in the treatment of proliferative and autoimmune diseases
US9562049B2 (en) 2012-12-21 2017-02-07 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
WO2014140862A2 (en) 2013-03-13 2014-09-18 Spirogen Sarl Pyrrolobenzodiazepines and conjugates thereof
WO2014140174A1 (en) 2013-03-13 2014-09-18 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
WO2014159981A2 (en) 2013-03-13 2014-10-02 Spirogen Sarl Pyrrolobenzodiazepines and conjugates thereof
WO2015023355A1 (en) 2013-08-12 2015-02-19 Genentech, Inc. 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment
US9956299B2 (en) 2013-10-11 2018-05-01 Medimmune Limited Pyrrolobenzodiazepine—antibody conjugates
US9950078B2 (en) 2013-10-11 2018-04-24 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US10010624B2 (en) 2013-10-11 2018-07-03 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US10029018B2 (en) 2013-10-11 2018-07-24 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
WO2015095227A2 (en) 2013-12-16 2015-06-25 Genentech, Inc. Peptidomimetic compounds and antibody-drug conjugates thereof
WO2015095212A1 (en) 2013-12-16 2015-06-25 Genentech, Inc. 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment
WO2015095223A2 (en) 2013-12-16 2015-06-25 Genentech, Inc. Peptidomimetic compounds and antibody-drug conjugates thereof
WO2016037644A1 (en) 2014-09-10 2016-03-17 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
US10188746B2 (en) 2014-09-10 2019-01-29 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
WO2016040856A2 (en) 2014-09-12 2016-03-17 Genentech, Inc. Cysteine engineered antibodies and conjugates
US10420777B2 (en) 2014-09-12 2019-09-24 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof
WO2016040825A1 (en) 2014-09-12 2016-03-17 Genentech, Inc. Anthracycline disulfide intermediates, antibody-drug conjugates and methods
EP3235820A1 (en) 2014-09-17 2017-10-25 Genentech, Inc. Pyrrolobenzodiazepines and antibody disulfide conjugates thereof
US10780096B2 (en) 2014-11-25 2020-09-22 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
WO2016090050A1 (en) 2014-12-03 2016-06-09 Genentech, Inc. Quaternary amine compounds and antibody-drug conjugates thereof
US11059893B2 (en) 2015-04-15 2021-07-13 Bergenbio Asa Humanized anti-AXL antibodies
US11702473B2 (en) 2015-04-15 2023-07-18 Medimmune Limited Site-specific antibody-drug conjugates
WO2017059289A1 (en) 2015-10-02 2017-04-06 Genentech, Inc. Pyrrolobenzodiazepine antibody drug conjugates and methods of use
WO2017064675A1 (en) 2015-10-16 2017-04-20 Genentech, Inc. Hindered disulfide drug conjugates
WO2017068511A1 (en) 2015-10-20 2017-04-27 Genentech, Inc. Calicheamicin-antibody-drug conjugates and methods of use
US10392393B2 (en) 2016-01-26 2019-08-27 Medimmune Limited Pyrrolobenzodiazepines
US11517626B2 (en) 2016-02-10 2022-12-06 Medimmune Limited Pyrrolobenzodiazepine antibody conjugates
US10695439B2 (en) 2016-02-10 2020-06-30 Medimmune Limited Pyrrolobenzodiazepine conjugates
EP4273551A2 (en) 2016-03-25 2023-11-08 F. Hoffmann-La Roche AG Multiplexed total antibody and antibody-conjugated drug quantification assay
WO2017165734A1 (en) 2016-03-25 2017-09-28 Genentech, Inc. Multiplexed total antibody and antibody-conjugated drug quantification assay
US10543279B2 (en) 2016-04-29 2020-01-28 Medimmune Limited Pyrrolobenzodiazepine conjugates and their use for the treatment of cancer
WO2017201449A1 (en) 2016-05-20 2017-11-23 Genentech, Inc. Protac antibody conjugates and methods of use
WO2017205741A1 (en) 2016-05-27 2017-11-30 Genentech, Inc. Bioanalytical method for the characterization of site-specific antibody-drug conjugates
WO2017214024A1 (en) 2016-06-06 2017-12-14 Genentech, Inc. Silvestrol antibody-drug conjugates and methods of use
WO2018031662A1 (en) 2016-08-11 2018-02-15 Genentech, Inc. Pyrrolobenzodiazepine prodrugs and antibody conjugates thereof
WO2018065501A1 (en) 2016-10-05 2018-04-12 F. Hoffmann-La Roche Ag Methods for preparing antibody drug conjugates
US10799595B2 (en) 2016-10-14 2020-10-13 Medimmune Limited Pyrrolobenzodiazepine conjugates
US11612665B2 (en) 2017-02-08 2023-03-28 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US11813335B2 (en) 2017-02-08 2023-11-14 Medimmune Limited Pyrrolobenzodiazepine-antibody conjugates
US11160872B2 (en) 2017-02-08 2021-11-02 Adc Therapeutics Sa Pyrrolobenzodiazepine-antibody conjugates
US11370801B2 (en) 2017-04-18 2022-06-28 Medimmune Limited Pyrrolobenzodiazepine conjugates
US10544223B2 (en) 2017-04-20 2020-01-28 Adc Therapeutics Sa Combination therapy with an anti-axl antibody-drug conjugate
US11318211B2 (en) 2017-06-14 2022-05-03 Adc Therapeutics Sa Dosage regimes for the administration of an anti-CD19 ADC
US11938192B2 (en) 2017-06-14 2024-03-26 Medimmune Limited Dosage regimes for the administration of an anti-CD19 ADC
US11649250B2 (en) 2017-08-18 2023-05-16 Medimmune Limited Pyrrolobenzodiazepine conjugates
WO2019060398A1 (en) 2017-09-20 2019-03-28 Ph Pharma Co., Ltd. Thailanstatin analogs
US11352324B2 (en) 2018-03-01 2022-06-07 Medimmune Limited Methods
US11524969B2 (en) 2018-04-12 2022-12-13 Medimmune Limited Pyrrolobenzodiazepines and conjugates thereof as antitumour agents
WO2020049286A1 (en) 2018-09-03 2020-03-12 Femtogenix Limited Polycyclic amides as cytotoxic agents
WO2020086858A1 (en) 2018-10-24 2020-04-30 Genentech, Inc. Conjugated chemical inducers of degradation and methods of use
WO2020123275A1 (en) 2018-12-10 2020-06-18 Genentech, Inc. Photocrosslinking peptides for site specific conjugation to fc-containing proteins
WO2020157491A1 (en) 2019-01-29 2020-08-06 Femtogenix Limited G-a crosslinking cytotoxic agents
WO2022023735A1 (en) 2020-07-28 2022-02-03 Femtogenix Limited Cytotoxic agents

Also Published As

Publication number Publication date
AU4952600A (en) 2000-12-28

Similar Documents

Publication Publication Date Title
WO2000075655A1 (en) Screening method with the use of cd100
US11576356B2 (en) Genetically modified non-human animals and methods of use thereof
US20060275803A1 (en) Rat and mouse members of the CRISP family of genes
JP2004533811A (en) Type 2 cytokine receptor and nucleic acid encoding type 2 cytokine receptor
US20080039416A1 (en) Methods for Treating Disease by Modulating an Osmotic Stress Pathway
WO2002006482A1 (en) Receptor protein specifically recognizing bacterial dna
WO2001044475A1 (en) Novel polypeptide and dna thereof
WO2001002564A1 (en) Novel polypeptide and dna thereof
WO2004048565A1 (en) Apoptosis-associated protein and use thereof
WO2001046415A1 (en) Novel tachykinin-like polypeptides and use thereof
WO2000071581A1 (en) Novel polypeptide
WO2001000799A1 (en) Novel protein and dna thereof
WO2004041850A1 (en) Novel fprl1 ligands and use thereof
JP4090092B2 (en) Novel Fas ligand-like protein and its DNA
JP2001050951A (en) Screening method using cd100
KR102658190B1 (en) Humanized SIRPA-IL15 knock-in mouse and method of using the same
JP2001048803A (en) Pharmaceutical
JP4320355B2 (en) Novel Fas ligand-like protein and its DNA
JP2001029090A (en) Novel polypeptide
JP2004075569A (en) Il20 receptor and new use of il20
JP2001299364A (en) New polypeptide and dna encoding the same
WO2004095023A1 (en) Novel method of screening
JP2002348299A (en) Irap binding protein
JP2001149083A (en) New polypeptide and dna encoding the same
WO2004041301A1 (en) Antidiuretics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AU AZ BA BB BG BR BY CA CN CR CU CZ DM DZ EE GD GE HR HU ID IL IN IS JP KG KR KZ LC LK LR LT LV MA MD MG MK MN MX MZ NO NZ PL RO RU SG SI SK TJ TM TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP