WO2004074208A1 - 磁性酸化物焼結体およびこれを用いた高周波回路部品 - Google Patents

磁性酸化物焼結体およびこれを用いた高周波回路部品 Download PDF

Info

Publication number
WO2004074208A1
WO2004074208A1 PCT/JP2004/001733 JP2004001733W WO2004074208A1 WO 2004074208 A1 WO2004074208 A1 WO 2004074208A1 JP 2004001733 W JP2004001733 W JP 2004001733W WO 2004074208 A1 WO2004074208 A1 WO 2004074208A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
mol
magnetic
oxide sintered
oxide
Prior art date
Application number
PCT/JP2004/001733
Other languages
English (en)
French (fr)
Inventor
Hidenobu Umeda
Taku Murase
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003045665A external-priority patent/JP2004262682A/ja
Priority claimed from JP2003045666A external-priority patent/JP2004262683A/ja
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2004074208A1 publication Critical patent/WO2004074208A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/348Hexaferrites with decreased hardness or anisotropy, i.e. with increased permeability in the microwave (GHz) range, e.g. having a hexagonal crystallographic structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • silver (Ag) is often used as a conductor material incorporated in a sintered body in consideration of electrical resistivity, melting point, and cost. Since the melting point of silver is 100 ° C. or less, a high sintering density is generally obtained as a magnetic material for a laminated structure even at 900 ° C. Ferrites have been used.
  • Japanese Patent Application Laid-Open No. 2002-260913 Japanese Patent Application Laid-Open No. It has good magnetic properties up to a high frequency band of several hundred MHz to GHz and can be used, and it does not contain foreign phases other than Y-type hexagonal ferrite as much as possible.
  • the present invention can be fired at a low temperature, the magnetic permeability in a high frequency band is further improved.
  • the main purpose is to improve
  • the present inventors have further intensively studied the configuration of the main structure proposed above, and found that the magnetic permeability was further improved.
  • the present inventors have found a suitable composition range that can achieve the above, and have conceived the invention of the first group and the invention of the second group of the present invention.
  • the present invention is also a high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, wherein the magnetic oxide sintered body is a Y-type hexagonal ferrite of 80% or more. It occupied, and magnetic sintered oxide, as a main component, 5 to 7 mol% of copper oxide CuO conversion calculation, 57-61 mol% of iron oxide in F e 2 0 3 in terms of the MO 0 to 15 mol% (MO is at least one of NiO, ZnO, and MgO, except for MO content of 0), and the remainder is AO (AO is at least BaO or SrO includes as a one), configured to be contained 0. 5-7 wt-% of bismuth oxide (B i 2 0 3) as a sub-component.
  • the present invention is a high frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, wherein the magnetic oxide sintered body is 80% hexagonal ferrite. Occupied more, and magnetic sintered oxide, 57-61 mol% copper oxide as the main component 5-1 7 mol% in terms of CuO, an iron oxide in F e 2 0 3 in terms of, 1 ⁇ 10 0 to 15 mol% (MO is at least one of Ni0, ZnO and MgO, excluding MO content 0), and the remaining 3 ⁇ is AO (AO is BaO or SrO And at least 0.5% by weight of borosilicate glass, zinc borosilicate glass, or bismuth glass as an auxiliary component.
  • the present invention relates to a magnetic oxide sintered body occupied by 80% or more of a Y-type hexagonal ferrite, wherein the magnetic oxide sintered body has a main component 0-1 cobalt oxide with Co 0 calculated as.
  • the present invention also relates to a magnetic oxide sintered body occupied by 80% or more of a Y-type hexagonal ferrite, wherein the magnetic oxide sintered body contains acid oxide as a main component.
  • the magnetic oxide sintered body contains acid oxide as a main component.
  • O terms from 0 to 1.9 mol% (content 0 is excluded), 5 to 7 mol% of copper oxide in terms of CuO, 57 to 61 mol% of iron oxide in F e 2 0 3 in terms of the MO 0 to 1 5 mol% (MO is at least one of Ni0, ⁇ , MgO, excluding M0 content 0), and the remainder is AO (AO is at least one of BaO or SrO)
  • It is configured to contain 0.5 to 7 wt% of borosilicate glass, zinc borosilicate glass, or bismuth glass as a sub-component.
  • a calcination temperature in the production of the magnetic oxide sintered body Is between 850 ° C and 10000 ° C.
  • the present invention is a high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, wherein the magnetic oxide sintered body is a Y-type hexagonal ferrite of 80%
  • the magnetic oxide sintered body contains cobalt oxide as a main component in an amount of 0 to 1.9 mol% in terms of Co0 (excluding a content of 0), and copper oxide in an amount of 5 to 9 in terms of CuO.
  • the present invention is a high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, wherein the magnetic oxide sintered body is a Y-type hexagonal ferrite of 80% In the magnetic oxide sintered body, cobalt oxide as a main component is 0 to 1.9 mol% in terms of Co0 (excluding content 0), and copper oxide is 5 to 17 in terms of CuO.
  • MO is, N i 0, Z nO, at least one MgO, containing the MO Rate excluding 0) and the remainder as AO (AO is at least one of BaO and SrO), containing 0.5 to 7 wt% of borosilicate glass, zinc borosilicate glass or bismuth glass as a by-product It is configured to be.
  • the calcination temperature in the production of the magnetic oxide sintered body is 850 ° C to 10000 ° C.
  • FIG. 1 is a schematic drawing of the inductance element (high-frequency circuit component) used in the example.
  • BEST MODE FOR CARRYING OUT THE INVENTION the magnetic oxide sintered body of the present invention will be described in detail.
  • the magnetic oxide sintered body in the first invention group of the present invention is a ceramic sintered body, it can be manufactured by an ordinary ceramic manufacturing process.
  • the form of MO is a single form of Ni0, ZnO, or MgO, or a mixed form of at least two kinds. When two or more kinds are used as a mixture, the total mol% of the mixture may be within the above range.
  • the form of AO is a single form of BaO or SrO, or a mixed form of BaO and SrO.
  • the magnetic oxide sintered body of the present invention contains 0. 5-7 wt-% (preferably 0. 6 ⁇ 5wt%), contains.
  • the content of the B i 2 0 3 is less than 0. 5 wt%, resulting inconvenience cormorants have the more than 90% is not obtained in the theoretical density 1 000 ° C following firing tend, the content of the B 0 3 7 1:% of ultra Eru, tends to occur a disadvantage that the permeability is lowered.
  • the addition of such B i 2 0 3 subcomponent particularly, this to significantly realize low-temperature sintering What content coupled with the CuO amount of the Can be.
  • co-firing is performed with a low-melting-point electrode material such as Ag, which is inexpensive and has low electric resistance, so that an element with an integrated electrode and a closed magnetic circuit configuration can be easily manufactured.
  • subcomponent B 0 3 of the borosilicate glass instead of subcomponent B 0 3 of the borosilicate glass as a subcomponent, the borosilicate zinc glass or bismuth glass 0. 5 ⁇ 7 wt% (preferably 0. 6-5 wt%) so as to have free Is also good.
  • These glasses can also Rukoto used as a mixture with the secondary component B i 2 0 3.
  • the borosilicate glass generally indicates glass containing B 2 O 3, S i 0 2, the borosilicate zinc glass generally B 2 0 3, shows a glass containing S i 0 2, Z n O , the bismuth glass generally indicates glass containing B i 2 0 3.
  • the above components need not be the main components.
  • one of borosilicate glass, zinc borosilicate glass and bismuth glass may be used alone, or two or three of these may be used. It may be used in combination. When two or more kinds are mixed and used, the total weight% of the mixture may be within the above range.
  • the addition of such a predetermined glass for example, as a high frequency circuit components, 1 X 1 0 5 ⁇ ⁇ m or more in electrical resistivity are obtained required laminate device material.
  • the addition of the prescribed glass of the present application also exerts an effect of reducing the dielectric constant, and when the sintered body of the present invention is used as a high-frequency component, a high impedance is obtained at a high frequency and an effect of widening the impedance is obtained.
  • these glass additions require that the state at the time of addition be glass. After firing, the glass components used are present in the fired body, whether or not in a glassy state.
  • zinc borosilicate glass and borosilicate glass are preferable for more effectively realizing high resistivity and low dielectric constant.
  • bismuth glass is particularly preferable from the viewpoint that the temperature at which the relative density of 90% or more can be obtained can be lowered.
  • Devices manufactured in this way are, for example, compact and have high Q-factor inductors. It is used as a high-frequency element (high-frequency circuit component) such as a noise filter or a small-sized noise filter with a high impedance in a high-frequency band, particularly at a specific frequency.
  • a high-frequency element high-frequency circuit component
  • noise filter or a small-sized noise filter with a high impedance in a high-frequency band, particularly at a specific frequency.
  • 80% or more, particularly preferably 90% or more is formed of Y-type hexagonal ferrite.
  • “%” is calculated from the main peak ratio of the X-ray diffraction intensity.
  • the main firing temperature is low.
  • a low-melting-point electrode material such as silver (Ag)
  • the main firing temperature is low.
  • a low-melting-point electrode material such as silver (Ag)
  • the main firing temperature is low.
  • a low-melting-point electrode material such as silver (Ag)
  • Ru depends composition but, 850 ° decomposition starts from the vicinity of C B a F e 12 0 19 and B a F e 2 O 4, Y -type hexagonal ferrite Bok generation begins.
  • the amount of the CuO as a main component is preferably set to 5%. It is necessary to contain 517 mol%.
  • Such a magnetic oxide sintered body in the present invention is used as a high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, for example, as an impedance or an inductor.
  • the mixture After adding a predetermined amount of 12 O 3 and a predetermined glass, the mixture is pulverized for 15 hours with a steel pole mill, and the thus obtained hexagonal ferrite powder is granulated, and a desired pressure is applied at a pressure of 1 O OMPa. It was molded into a shape.
  • the compact was sintered in the atmosphere at the temperature shown in Table 1 for 2 hours.
  • the composition of the hexagonal ferrite sintered body is as shown in Table 1 below.
  • the magnetic permeability at a frequency of 80 OMHz at 25 ° C was measured and is shown in Table 1.
  • the permeability target is a value of 6.0 or more at a frequency of 80 OMHz.
  • the occupancy of the Y-type hexagonal ferrite was calculated from the intensity ratio of the X-ray diffraction peaks using the pulverized powder of the sintered body.
  • Example Toto 4 60 17 5.5 1-17.5-5 _ 1 1000 930 95 7.3
  • Example 1 -G 6 60 10 ⁇ 10 1 20 5 1 1 1 1 1 000 95 9.3 6.3
  • an inductance element was manufactured using the magnetic material of the present invention. That is, each raw material was weighed such that the composition after sintering had a composition as shown in the Example 11-12 sample in Table 1 above, and was wet-mixed with a steel ball mill for 15 hours. Next, this mixed powder was calcined in the air at 950 ° C. for 2 hours. Then, after the B i 2 0 3 as a subcomponent added 5 wt%, was milled 1 5 hour steel ball mill.
  • An organic binder was mixed with the calcined powder, and a uniform green sheet was formed by a doctor blade method.
  • a conductive paste prepared by mixing silver was prepared, and the coil was laminated on the above-mentioned green sheet so as to form a spiral reel.
  • a pressure was applied in the thickness direction and pressure bonding was performed to produce a green sheet laminate in which electrodes were sandwiched between magnetic materials. This was fired at 930 ° C. for 2 hours.
  • a silver paste is applied to the position of the inner conductor on the side surface of the obtained sintered body, and the external electrodes are baked, and the inductance element schematically shown in FIG.
  • FIG. 1 is drawn as a model diagram to facilitate understanding of the internal structure of the device.
  • reference numeral 1 denotes an inner conductor.
  • reference numeral 10 denotes a terminal conductor
  • reference numeral 20 denotes a ferrite
  • an inductance element was manufactured using the magnetic material of the present invention. That is, each raw material was weighed so that the composition after sintering had a composition as shown in Example 1-1-1-12 samples in Table 1 above, and was wet-mixed with a steel pole mill for 15 hours. Next, this mixed powder was calcined in the air at 950 ° C. for 2 hours. Next, 3 wt% of bismuth glass was added as an auxiliary component, and the mixture was ground for about 5 hours with a steel pole mill.
  • An organic binder was mixed with the calcined powder, and a uniform green sheet was formed by a Doc Yuichi blade method.
  • a conductive paste prepared by mixing silver is prepared, and is placed on the green sheet.
  • the coils were stacked in a spiral shape.
  • a pressure was applied in the thickness direction to perform compression bonding to produce a green sheet laminate in which electrodes were sandwiched between magnetic materials. This was fired at 930 ° C for 2 hours.
  • a silver paste is applied to the position of the inner conductor on the side surface of the obtained sintered body, and the external electrodes are baked, and the inductance element schematically shown in FIG.
  • FIG. 1 is drawn as a model diagram to facilitate understanding of the internal structure of the device.
  • reference numeral 1 denotes an inner conductor.
  • reference numeral 10 denotes a terminal conductor
  • reference numeral 20 denotes a ferrite
  • the present invention has extremely good magnetic properties up to a high frequency band of several hundred MHz to GHz, and contains as little as possible a foreign phase other than the Y-type hexagonal ferrite at 1 000 ° C or less, particularly around 900 ° C. Can be fired (low-temperature firing is possible).
  • the magnetic oxide sintered body in the second invention group of the present invention is a ceramic sintered body, it can be manufactured by an ordinary ceramic manufacturing process.
  • cobalt oxide as a main component is 0 to 1.9 mol% in terms of CoO (except for the content 0, and the preferable range is 0.1 to 1 mol%). . 0 mol%), in 5 to 1 7 mol% (rather preferably is calculated as CuO of copper oxide, 5.
  • the form of MO is a single form of N i 0, ⁇ M, or M g ⁇ , or a mixed form of at least two kinds. When two or more types are used in combination, The total mol% should be within the above range t
  • the form of AO is BaO or Sr0 alone, or a mixed form of BaO and SrO.
  • the magnetic oxide sintered body of the present invention contains 0. 5-7 wt-% (preferably 0. 6 ⁇ 5wt%), contains.
  • Such bismuth oxide B i 2 0 3 is mixed in the form of additives during the oxide As can be seen from the examples described later, remains in the form of sintered also generally the oxide. If the content of the main component is more than 1.9 mol%, there arises a problem that the desired magnetic permeability cannot be obtained. In the present invention, the lower limit of the content% of C0 ⁇ is a value that does not include zero, and it has been experimentally confirmed that the effect of addition of 0.01% by mole is confirmed.
  • the calcination temperature tends to be inconvenience of exceeding 1 000 ° C, and if the sintering temperature exceeds 17 mol%, the magnetic permeability decreases. Inconvenience tends to occur.
  • Fe 2 0 3 is or becomes less than 57 mol%, Fe 2 0 3 is the result permeability or exceed 61 mol% tends to not have coupling occurs decreases.
  • the content of the B i 2 0 3 is less than 0. 5 wt%, resulting inconvenience cormorants have the more than 90% is not obtained in the theoretical density 1 000 ° C following firing tends tends to content of the B 0 3 7 ⁇ ⁇ 1% and super Eru, disadvantageously permeability is lowered occurs.
  • Such addition of the Bi 2 O 3 subcomponent in particular, can significantly realize low-temperature sintering in combination with the above content of CuO.
  • co-firing is performed with a low-melting-point electrode material such as Ag, which is inexpensive and has low electric resistance, so that an element with an integrated electrode and a closed magnetic circuit configuration can be easily manufactured.
  • subcomponent B i 2 0 3 of the borosilicate glass instead of subcomponent B i 2 0 3 of the borosilicate glass as a subcomponent, borosilicate zinc glass or bismuth glass 0. 5-7 wt-% (preferably 0. 6 ⁇ 5wt%) as a free Is also good. These glasses can also Rukoto used as a mixture with the secondary component B i 2 0 3.
  • the borosilicate glass generally indicates glass containing B 2 0 3, S i 0 2, zinc borosilicate glass Las and generally B 2 0 3, shows a glass containing S i 0 2, Z n 0 , and the bismuth glass generally indicates glass containing B i 2 0 3.
  • the above components need not be the main components.
  • one of borosilicate glass, zinc borosilicate glass and bismuth glass may be used alone, or two or three of these may be used. You may mix and use. When two or more kinds are mixed and used, the total weight% of the mixture may be within the above range.
  • a high electrical resistivity high electrical resistivity
  • a low dielectric constant low dielectric constant
  • the addition of the prescribed glass of the present application also exerts an effect of reducing the dielectric constant, and when the sintered body of the present invention is used as a high-frequency component, a high impedance is obtained at a high frequency and an effect of widening the impedance is obtained.
  • these glass additions require that the state at the time of addition be glass. After firing, the glass components used are present in the fired body, whether or not in a glassy state.
  • zinc borosilicate glass and borosilicate glass are preferable for more effectively realizing high resistivity and low dielectric constant.
  • bismuth glass is particularly preferable from the viewpoint that the temperature at which the relative density of 90% or more can be obtained can be lowered.
  • the element manufactured in this way is, for example, a small inductor having a high Q value, or a small high-frequency element (high-frequency circuit component) such as a noise filter having a large impedance in a high frequency band, particularly at a specific frequency. Used.
  • 80% or more, particularly preferably 90% or more is formed of Y-type hexagonal ferrite.
  • “%” is calculated from the main peak ratio of the X-ray diffraction intensity.
  • the occupation ratio of the Y-type hexagonal ferrite is less than 80%, there is a disadvantage that a high magnetic permeability cannot be obtained at a high frequency. This makes it difficult to obtain a high-frequency circuit product having a high inductance impedance.
  • the main firing temperature is low, and in order to make the Y-type hexagonal ferrite after sintering 80% or more, Y It is necessary to generate 80% or more of hexagonal ferrite.
  • Ru depends composition but, 850 ° B a F e, 2 0 I9 and B a F e 2 0 4 decomposition starts from the vicinity of C, Y-type hexagonal ferrite Bok generation begins.
  • B a F e l2 0 1s and B a F e 2 0 4 of decomposition product of if Y-type hexagonal ferrite Bok be sufficiently proceed does not proceed. Therefore, it is necessary to set the calcination temperature to 850 ° C or more, especially 850 to 10000 ° C, in order to make the ⁇ -type hexagonal ferrite 80% or more. Further, it is necessary to contain the CuO amount preferably in the range of 5.5 to 17 mol%. If the calcination temperature is less than 850 ° C or the CuO content is out of the above range, it becomes difficult to produce Y-type hexagonal ferrite exceeding 80%.
  • the amount of Cu 0 as a main component is preferably 5. It is necessary to contain 5 to 17 mol%.
  • Such a magnetic oxide sintered body in the present invention is used as a high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, for example, as an impedance or an inductor.
  • the hexagonal ferrite powder thus obtained was granulated and formed into a desired shape at a pressure of 1 OOMPa.
  • Table 2 shows the measured magnetic permeability at a frequency of 800 MHz at 25 ° C.
  • the magnetic permeability aims at a value of 6.0 or more at a frequency of 80 MHz.
  • the occupancy of the Y-type hexagonal ferrite was calculated from the intensity ratio of the X-ray diffraction peaks using the pulverized powder of the sintered body.
  • Example 2-Part 21 60 0.5 8 11 ⁇ 20.5 ⁇ -One 0.6 'One 1000 975 95 7.0
  • Example Two-Part 22 60 0.5 8 11- ⁇ 20.5 ⁇ One ⁇ Three One 1000 930 95 7.3
  • Example Two-Part 23 60 0.5 8 "--20.5-1 1 7 1 1000 930 95 6.8
  • Example 2-24 24 0.5 0.5-1 20.5 1---0.6 1000 975 95 7.7
  • Example 2-25 60 0.5 8-1 20.5- ⁇ ⁇ -3 1000 930 95 9.0
  • Example 2-1-26 60 0.5 8-1 20.5- ⁇ 1 7 1000 930 95 8.2
  • Example 2-1-27 60 0.5 8 ⁇ 1 20.5-5-- ⁇ 900 930 85 6.2
  • Comparative Example 2-Table 1 60 2.5 8 ⁇ ⁇ 18.5 ⁇ 5 1 ⁇ 1 1000 930 95 4.8
  • Comparative Example 2-1 -2 62 0.5 6 11 ⁇ 1 20.5 1 5 ⁇ ⁇ -1000 930 95 5.5O Comparative Example 2+ 3 56 0.5 12
  • each raw material was weighed such that the composition after sintering had a composition as shown in Example 2-I-10 sample in Table 2 above, and was wet-mixed for 15 hours with a steel ball mill.
  • this mixed powder was calcined in the air at 950 ° C. for 2 hours.
  • the B i 2 0 3 as a subcomponent added 5 wt%, and 1 5 hour Kona ⁇ the steel-made ball mill.
  • An organic binder was mixed with the calcined powder, and a uniform green sheet was formed by a doctor blade method.
  • FIG. 1 is drawn as a model diagram to facilitate understanding of the internal structure of the device.
  • reference numeral 11 denotes an inner conductor (Ag coil)
  • reference numeral 10 denotes a terminal conductor
  • reference numeral 20 denotes a ferrite.
  • an inductance element was manufactured using the magnetic material of the present invention. That is, each raw material was weighed such that the composition after sintering had a composition as shown in Example 2-I-19 sample in Table 2 above, and was wet-mixed with a steel ball mill for 15 hours. Next, this mixed powder was calcined in the air at 950 ° C. for 2 hours. Next, 5 wt% of bismuth glass was added as an auxiliary component, and the mixture was ground with a steel ball mill for 15 hours.
  • An organic binder was mixed with the calcined powder, and a uniform green sheet was formed by a doctor blade method.
  • a conductive paste prepared by mixing silver is prepared and placed on the green sheet.
  • the coils were stacked in a spiral ⁇ .
  • a pressure was applied in the thickness direction to perform compression bonding to produce a green sheet laminate in which electrodes were sandwiched between magnetic materials. This was fired at 930 ° C. for 2 hours.
  • a silver paste is applied to the position of the inner conductor on the side surface of the obtained sintered body, and an external sound electrode is baked, and the inductance element shown schematically in FIG.
  • FIG. 1 is drawn as a model diagram to facilitate understanding of the internal structure of the device.
  • reference numeral 1 denotes an inner conductor.
  • reference numeral 10 denotes a terminal conductor
  • reference numeral 20 denotes a ferrite
  • the present invention has extremely good magnetic properties up to a high frequency band of several hundred MHz to GHz, and contains as little as possible a foreign phase other than the Y-type hexagonal ferrite at a temperature of 100 ° C. or less. Can be fired at around 0 ° C (low-temperature firing is possible).
  • the magnetic oxide sintered body of the present invention is used as a high-frequency circuit component having a structure in which a conductor is embedded in a magnetic oxide sintered body, for example, as an impedance or an inductor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Y型六方晶フェライトで80%以上占有されてなる磁性酸化物焼結体であって、該磁性酸化物焼結体は、主成分として酸化銅をCuO換算で5~17モル%、酸化鉄をFe2O3換算で57~61モル%、MOを0~15モル%(MOは、NiO,ZnO,MgOの少なくとも1種であり、MOの含有率0は除く)、残部をAO(AOは、BaOまたはSrOの少なくとも1種)として含み、副成分として酸化ビスマス(Bi2O3)、硼珪酸ガラス、硼珪酸亜鉛ガラスまたはビスマスガラスを含有してなるように構成されているので、数百MHz~GHzといった高周波帯域まで極めて磁気特性が良好であり、かつY型六方晶フェライト以外の異相をできるだけ含まず1000℃以下特に、900℃付近で焼成可能である磁性酸化物焼結体およびこれを用いた高周波回路部品を提供することができる。

Description

明 細 書 磁性酸化物焼結体およびこれを用いた高周波回路部品 技術分野
本発明は、 高周波回路部品用に使用される磁性酸化物焼結体およびそれを用い た高周波回路部品に関する。 背景技術
近年、 電子機器の小型化や高周波化に伴い、 高周波帯域において高いインダク 夕ンス、 インピーダンスを持つ電子部品の需要が高まっている。 小型で高いイン ダクタンス、 インピーダンスを得るためには、 いわゆる印刷工法ゃシ一卜工法に よつて磁性体中に導電体を内蔵した積層構造のコィルを作製することが望まし 、。 積層構造とすることでコイルの巻数を多くすることができ、 構造も閉磁路とな るため高いインダクタンス、 インピーダンスが得られる。
焼結体に内蔵される導電体材料としては、 電気抵抗率、 融点、 コストの点を考 慮して一般に銀 (A g ) が多く用いられている。 銀の融点は 1 0 0 0 °C以下であ るため、 積層構造用の磁性体材料としては、 従来より一般に、 9 0 0 °Cの焼成で も高い焼結密度が得られる N i Z n系フェライ卜が用いられてきた。
しかしながら、 N i Z n系フェライ卜は磁気異方性が低いために数百 M H zの 周波数で自然共鳴を起こしてしまい、 G H zの周波数帯域で使用することができ なかった。
高周波仕様として、 非磁性体を用いた空心コイルが用いられることもあるが、 非磁性体を用いると高いィンダクタンスゃィンピーダンスを得ることが困難にな る。
この一方で六方晶フェライ卜は、 六角板状結晶の面内方向とこの面に垂直な方 向とでは磁気的異方性が異なっているため、 自然共鳴を起こしにくく、 G H zの 周波数帯域まで高い透磁率を持つという特徴をもっている。 しかしながら、 この ものは、 所望の焼結密度や磁気特性を得るためには焼成温度を高くする必要があ る。
これまで生成温度の高い六方晶フェライ卜において、 低融点酸化物を用いるこ とで A gの融点以下で焼成するという低温焼結化の試みもなされているが、 軟磁 性相の生成率が低く、 六方晶フェライ卜の磁気特' I生を十分に発揮することは困難 であった。
このような実状のもと、 本出願にかかる発明者らはすでに、 特開 2 0 0 2 _ 2 6 0 9 1 3号公報、 特開 2 0 0 2— 2 6 0 9 1 4号公報として、 数百 M H z〜G H zといった高周波帯域まで磁気特性が良好で使用可能であり、 かつ Y型六方晶 フェライ卜以外の異相をできるだけ含まず 1 0 0 0 °C以下特に、 9 0 0 °C付近で 焼成可能である磁性酸化物焼結体およびこれを用いた高周波回路部品を提案して いる。
しかしながら、 本出願に係る技術分野においては、 上記提案に満足することな くさらなる磁気特性等の改善が望まれておリ、 本発明では低温焼成可能であるこ とはもとより、 高周波帯域におけるさらなる透磁率の向上を図ることを主目的と している。
高周波帯域における透磁率をさらに向上させることにより、例えば、 ( i )イン ダク夕ンス部品として用いた場合に、 より高いィンダクタンスを得ることができ る、 また ( i i ) ノイズフィルタ部品として用いた場合に、 高いインピーダンス 特性を得ることができる。 発明の開示
このような実状のもとに本発明の第 1グループの発明および第 2グループの発 明は創案されたものであり、 その目的は、 上記の課題を解決し、 数百 M H z〜G H zといった高周波帯域まで透磁率特性が極めて良好で、 かつ Y型六方晶フェラ ィ卜以外の異相をできるだけ含まず 1 0 0 0 °C以下特に、 9 0 0 °C付近で焼成可 能である磁性酸化物焼結体およびこれを用いた高周波回路部品を提供することに ある。
このような課題を解決するために、 本発明者らが、 上記従来提案していた主組 成の構成についてさらに継続的に鋭意研究を進めたところ、 さらに透磁率の向上 を図ることが出来る好適な組成範囲を見出し、 本発明の第 1のグループの発明、 および第 2のグループの発明に想到したものである。
(第 1のグループの発明)
すなわち、 第 1のグループの発明において、 本発明は、 Y型六方晶フェライ卜 で 80 %以上占有されてなる磁性酸化物焼結体であって、該磁性酸化物焼結体は、 主成分として酸化銅を C u O換算で 5~1 7モル%、 酸化鉄を F e 203換算で 5 7~61モル%、 MOを 0〜 1 5モル% (MOは、 N i 0, Z n 0, Mg Oの少 なくとも 1種であり、 MOの含有率 0は除く)、残 ¾5を AO (AOは、 B aOまた は S rOの少なくとも 1種) として含み、 副成分として酸化ビスマス (B i 203) を 0. 5〜7wt %を含有してなるように構成される。
また、 本発明は、 丫型六方晶フェライ卜で 80%以上占有されてなる磁性酸ィ匕 物焼結体であって、 該磁性酸化物焼結体は、 主成分として酸化銅を CuO換算で 5〜1 7モル%、 酸化鉄を F e 203換算で 57〜61モル%、 1/10を0〜1 5モ ル% (MOは、 N i 0, Z n 0, M g Oの少なくとも 1種であり、 MOの含有率 0は除く)、残部を AO (AOは、 BaOまたは S rOの少なくとも 1種) として 含み、副成分として硼珪酸ガラス、硼珪酸亜鉛ガラスまたはビスマスガラスを 0. 5〜7 wt %含有してなるように構成される。
本発明の好ましい態様として、 前記磁性酸化物焼結体の製造における仮焼温度 は 850°C〜1 000°Cとされる。
また、 本発明は、 磁性酸化物焼結体中に導電体が埋設された構造を備える高周 波回路部品であって、 前記磁性酸化物焼結体は、 Y型六方晶フェライトで 80% 以上占有され、 かつ、 該磁性酸化物焼結体は、 主成分として、 酸化銅を CuO換 算で 5〜1 7モル%、 酸化鉄を F e203換算で 57〜61モル%、 MOを 0〜1 5モル% (MOは、 N i O, Z nO, M g Oの少なくとも 1種であり、 MOの含 有率 0は除く)、残部を AO (AOは、 BaOまたは S rOの少なくとも 1種) と して含み、 副成分として酸化ビスマス (B i 203) を 0. 5〜7wt%を含有し てなるように構成される。
また、 本発明は、 磁性酸化物焼結体中に導電体が埋設された構造を備える高周 波回路部品であって、 前記磁性酸化物焼結体は、 丫型六方晶フェライ卜で 80% 以上占有され、 かつ、 該磁性酸化物焼結体は、 主成分として酸化銅を CuO換算 で 5〜1 7モル%、 酸化鉄を F e 203換算で 57〜61モル%、 1^10を0〜1 5 モル% (MOは、 N i 0, Z nO, M g Oの少なくとも 1種であり、 MOの含有 率 0は除く)、残 3^を AO (AOは、 BaOまたは S rOの少なくとも 1種) とし て含み、 副成分として硼珪酸ガラス、 硼珪酸亜鉛ガラスまたはビスマスガラスを 0. 5〜7wt%含有してなるように構成される。
本発明の好ましい態様として、 前記磁性酸化物焼結体の製造における仮焼温度 は 850°C~ 1 000°Cとされる。
本発明の好ましい態様として、 前記導電体が銀 (Ag) を主成分として構成さ れる。
(第 2のグループの発明)
また、 第 2のグループの発明において、 本発明は、 Y型六方晶フェライ卜で 8 0%以上占有されてなる磁性酸化物焼結体であって、 該磁性酸化物焼結体は、 主 成分として酸化コバルトを Co 0換算で 0〜1. 9モル% (含有率 0は除く)、酸 化銅を CuO換算で 5〜1 7モル%、酸化鉄を F e203換算で 57〜61モル%、 MOを 0〜1 5モル% (MOは、 N i 0, Z n 0, M g Oの少なくとも 1種であ リ、 MOの含有率 0は除く)、残部を AO (AOは、 BaOまたは S r 0の少なぐ とも 1種) として含み、 副成分として酸ィ匕ビスマス (B i 203) を 0. 5〜7w t %を含有してなるように構成される。
また、 本発明は、 Y型六方晶フェライ卜で 80%以上占有されてなる磁性酸ィ匕 物焼結体であって、 該磁性酸化物焼結体は、 主成分として酸ィヒコバル卜を C 0 O 換算で 0〜1.9モル%(含有率 0は除く)、酸化銅を CuO換算で 5〜1 7モル%、 酸化鉄を F e203換算で 57〜61モル%、 MOを 0〜1 5モル% (MOは、 N i 0, Ζ ηΟ, MgOの少なくとも 1種であり、 M 0の含有率 0は除く)、残部を AO (AOは、 B aOまたは S rOの少なくとも 1種) として含み、 副成分とし て硼珪酸ガラス、 硼珪酸亜鉛ガラスまたはビスマスガラスを 0. 5〜7wt%含 有してなるように構成される。
本発明の好ましい態様として、 前記磁性酸化物焼結体の製造における仮焼温度 は850°〇〜1 000°Cとされる。
また、 本発明は、 磁性酸化物焼結体中に導電体が埋設された構造を備える高周 波回路部品であって、 前記磁性酸化物焼結体は、 Y型六方晶フェライ卜で 80% 以上占有され、 かつ、 該磁性酸化物焼結体は、 主成分として酸化コバル卜を Co 0換算で 0〜1 · 9モル% (含有率 0は除く)、酸化銅を C uO換算で 5〜1 7モ ル%、 酸化鉄を F e203換算で 57〜61モル%、 MOを 0〜1 5モル% (MO は、 N i 0, Z nO, MgOの少なくとも 1種であり、 MOの含有率 0は除く)、 残部を AO (AOは、 BaOまたは S rOの少なくとも 1種) として含み、 副成 分として酸化ビスマス (B i 203) を 0. 5〜7wt%を含有してなるように構 成される。
また、 本発明は、 磁性酸化物焼結体中に導電体が埋設された構造を備える高周 波回路部品であって、 前記磁性酸化物焼結体は、 Y型六方晶フェライ卜で 80% 以上占有され、 かつ、 該磁性酸化物焼結体は、 主成分として酸化コバルトを Co 0換算で 0〜1. 9モル% (含有率 0は除く)、酸化銅を CuO換算で 5~1 7モ ル%、 酸化鉄を F e203換算で 57~61モル%、 MOを 0〜1 5モル% (MO は、 N i 0, Z nO, MgOの少なくとも 1種であり、 MOの含有率 0は除く)、 残部を AO (AOは、 BaOまたは S rOの少なくとも 1.種) として含み、 副成 分として硼珪酸ガラス、 硼珪酸亜鉛ガラスまたはビスマスガラスを 0. 5〜7w t %含有してなるように構成される。
本発明の好ましい態様として、 前記磁性酸化物焼結体の製造における仮焼温度 は 850°C〜1 000°Cとされる。
本発明の好ましい態様として、 前記導電体が銀 (Ag) を主成分として構成さ れる。 図面の簡単な説明
図 1は、 実施例で用いたインダクタンス素子 (高周波回路部品) の概略図面で ある。 発明を実施するための最良の形態 以下、 本発明の磁性酸化物焼結体について詳細に説明する。
( 1 ) 第 1の発明グループについての説明
本発明の第 1の発明グループにおける磁性酸化物焼結体はセラミック焼結体で あるために通常のセラミック作製プロセスで製造することができる。
本発明の第 1の発明グループにおける磁性酸化物焼結体は、 主成分として酸化 銅を CuO換算で 5〜1 7モル% (好ましくは、 5. 5〜1 2モル%)、 酸化鉄を F e203換算で 57〜61モル% (好ましくは、 59〜61モル%)、 MOを 0〜 1 5モル%、 好ましくは 1〜1 5モル%、 特に好ましくは 5〜1 5モル% ( O は、 N i 0, Ζ ηΟ, MgOの少なくとも 1種であり、 MOの含有率 0は除く)、 残部を AO (AOは、 8&0または3 rOの少なくとも 1種) として含んでいる。
MOの形態は、 N i 0, ZnO, あるいは M g Oの単独形態、 または少なくと も 2種以上の混在形態である。 2種以上を混合して用いる場合には、 混合した総 計モル%が上記の範囲に入るようにすればよい。
AOの形態は、 BaOあるいは S rOの単独形態、 または BaOと S rOの混 在形態である。
また、本発明の磁性酸化物焼結体は、 副成分として酸化ビスマス B 03を 0. 5〜7wt% (好ましくは 0. 6〜5wt%)、 含有している。
このような酸化ビスマス B i 203は、 後述する実施例からもわかるように添加 時に当該酸化物の形態で混入され、焼結後も一般に当該酸化物の形態で残存する。 上記主成分の含有割合において、 CuOが 5モル%未満となると、 仮焼き温度 が 1 000°Cを超えるという不都合が生じる傾向にあり、 CuOが 1 7モル%を 超えると、 透磁率が低下するという不都合が生じる傾向にある。
また、 F e23が 57モル%未満となつたり、 F e203が 6 Ίモル%を超えたり すると透磁率が低下するという不都合が生じる傾向にある。
上記の副成分の含有割合において、 上記 B i 203の含有量が 0. 5wt%未満 となると、 1 000°C以下の焼成で理論密度の 90%以上が得られなくなるとい う不都合が生じる傾向にあり、 上記 B 03の含有量が7 1:%を超ぇると、 透 磁率が低下するという不都合が生じる傾向にある。 このような B i 203副成分の 添加は、 特に、 上記の CuO量の含有と相俟って低温焼結を顕著に実現させるこ とができる。 磁気特性向上の相乗効果もある。 焼成温度が低くなると、 安価で電 気抵抗の低い A gのような低融点の電極材料を内蔵した形で同時焼成し、 電極一 体型の閉磁路構成の素子を容易に製造できる。
上記の副成分 B 03に変えて、 副成分として硼珪酸ガラス、 硼珪酸亜鉛ガラ スまたはビスマスガラスを 0 . 5〜7 w t % (好ましくは 0. 6〜5 w t %) 含 有するようにしてもよい。 これらのガラスは上記副成分 B i 203と混合して用い ることもできる。
硼珪酸ガラスとは、 一般に B 2O3、 S i 02を含むガラスを示し、 硼珪酸亜鉛ガ ラスとは、 一般に B 203、 S i 02、 Z n Oを含むガラスを示し、 ビスマスガラス とは、 一般に B i 203を含むガラスを示す。 これらの各ガラスの定義において上 記の各成分が主成分である必要はな t、。
これらの副成分のガラスの含有形態としては、 硼珪酸ガラス、 硼珪酸亜鉛ガラ スおよびビスマスガラスの中の 1種を単独で用いても良いし、 また、 これらの中 の 2種または 3種を昆合して用いてもよい。 2種以上を混合して用いる場合には、 混合した総計重量%が上記の範囲に入るようにすればよい。 このようなガラスを 添加することにより、 高電気抵抗率化 (電気抵抗率を高くすること) および低誘 電率化 (誘電率を低くすること) を得ることができる。 従って、 このような所定 のガラスの添加により、 高周波回路部品としての例えば、 積層部品材料に必要な 1 X 1 05Ω · m以上の電気抵抗率が得られる。
さらに、 本願所定のガラスの添加により、 誘電率を低減させる効果も発現し、 本発明焼結体を高周波部品として用いた場合、 高い周波数において高いインピー ダンスを得ることや、 インピーダンスの広帯域化に効果がある。 なお、 これらの ガラス添加は添加時における状態がガラスであることが必要である。 焼成後、 用 いたガラス成分は、 ガラス状態の有無を問わず焼成体の中に存在する。
これらのガラスの中では、特に、硼珪酸亜鉛ガラスや硼珪酸ガラスが高抵抗率、 低誘電率をより効果的に実現させるために好ましい。 また、 同じガラス添加量で 比較した場合、 9 0 %以上の相対密度が得られる温度を下げることができるとい う観点からは、 特に、 ビスマスガラスが好ましい。
このようにして製造された素子は、 例えば、 小型でかつ高い Q値を持つインダ クタ、 あるいは小型で高周波帯の特に特定周波数でのインピーダンスが大きいノ ィズフィルタ一等の高周波素子 (高周波回路部品) として利用される。
上記の MOとして Z n 0を用いて、 このものを 0〜1 5wt% (含有率 0は除 く) 含有させた場合には、 透磁率を各段と向上させることができ、 高周波回路部 品を作製したときの高インピーダンス化 (高いインピーダンスを得ること) およ びインピーダンスの広帯域化に特に好ましい効果を発揮する。 また、 MOとして N i Oや MgOを用いて、 0〜1 5wt% (含有率 0は除く) 含有させた場合に は、 透磁率を向上させることはもとより、 共鳴周波数を高くする効果がある。 従 つて、 高周波回路部品として、 高いインピーダンスとインピーダンスの帯域を制 御するのに特に好ましい効果を発揮する。
さらに本発明における磁性酸化物焼結体は、その 80%以上、特に好ましくは、 90%以上が Y型六方晶フェライ卜で形成されている。 ここに言う 「%」 は、 ェ ックス線回折強度のメインピーク比から算出したものである。
Y型六方晶フェライ卜の占有割合が 80%未満となると、 高周波において高い 透磁率を得ることができなるという不者合が生じる。 これにより、 高いインダク 夕ンスゃィンピーダンスを持つ高周波回路部品を得ることが困難となる。
銀 (Ag) のような低融点電極材料と同時焼成する場合、 本焼成温度が低くな るため、 焼結後の Y型六方晶フェライ卜を 80%以上とするためには、 仮焼時に 丫型六方晶フェライ卜を 80%以上生成しておく必要がある。 組成によって異な るが、 850°C付近から B a F e12019および B a F e2O4の分解が始まり、 Y型 六方晶フェライ卜の生成が始まる。
しかしながら、 B a F e120,9および B a F e 204の分解が十分に進まなければ Y型六方晶フェライ卜の生成が進まない。従って、丫型六方晶フェライ卜を 80% 以上とするために、 仮焼温度を 850°C以上、 特に、 850〜1 000°Cとする 必要がある。 さらに、 CuO量を、 好ましくは 5. 5〜1 7モル%含有させるこ とが必要となる。 仮焼温度が 850°C未満となつたり、 CuO量が上記の範囲を 外れると、 80%を超える丫型六方晶フェライ卜の生成が困難となる。 また、 仮 焼き温度が 1 000°Cを超えて高くなリ過ぎると、 細かい粉碎粉が得られなくな つてしまう。 細かい粉砕粉の作製は、 低温焼成には極めて重要な技術である。 このような観点から、 上述のごとく仮焼温度を 850 1 000°Cにおいて、 丫型六方晶フェライ卜の生成率を高くするためには、 主成分としての前記 C u O 量を、 好ましくは 5. 5 1 7モル%含有させることが必要となる。
このような本発明における磁性酸化焼結体は、 磁性酸化物焼結体中に導電体が 埋設された構造を備える高周波回路部品、 例えば、 インピーダ、 インダクタとし て用いられる。
以下、 具体的実施例を挙げて本発明をさらに詳細に説明する。
[実験例 1 - 1 ]
(実施例サンプルおよび比較例サンプルの作製)
焼結後の組成が下記表 1に示すような組成となるように各原料を秤量し、 鋼鉄 製ボールミルで 1 5時間湿式混合した。 次に、 この混合粉を大気中、 表 1に記載 された温度で 2時間仮焼きした。 次いで、 表 1に示されるごとく副成分として B
12O3や所定のガラスを所定量添加した後、 鉄鋼製ポールミルで 1 5時間粉砕し このようにして得られた六方晶フェライ卜粉を造粒して、 1 O OMPaの圧力 で所望の形状に成形した。
この成形体を大気中、 表 1に示される温度で 2時間焼結した。 六方晶フェライ 卜焼結体の組成は下記表 1に示すとおりであり、 これらの各サンプルについて、
25°Cにおける周波数 80 OMH zの透磁率を測定して表 1に示した。 透磁率は 周波数 80 OMH zの周波数において 6. 0以上の値を目標としている。
なお、 Y型六方晶フェライトによる占有率は、 焼結体の粉砕粉を用いて、 X線 回折ピークの強度比よリ算出した。
表 1
主成分 (mol%) 添加成分 (wt» 仮焼 焼成 Y型の
サンプル 透磁率
L Λ 77Χ7Λ ¾tH¾ I t3 占有率
Ν ο . Fe203 CuO ZnO NiO MgO BaO SrO Bi203 3ΐ oUUMH 力'ラス 力"ラス 鉛力'ラス (°c) (°c) (%)
実施例 1-1-1 60 5 15 一 一 20 ― 5 1000 930 95 10.4 実施例 1-1-2 60 10 10.5 19.5 5 一 一 ― 1000 930 95 7.9 実施例 1-1 - 3 60 15 5.5 一 一 19.5 一 5 ' 一 ― 1000 930 . 95 7.8 実施例トト 4 60 17 5.5 一 17.5 一 5 _ 一 1000 930 95 7.3 実施例 1-卜 5 61 15 2 一 22 一 5 一 一 1000 930 95 6.2 実施例 1-ト 6 60 10 ― 10 一 20 5 一 一 一 1000 930 95 6.3 実施例 1-1-7 60 10 ― _ 10 20 ― 5 ― ― ― 1000 930 95 6.8 実施例 1-卜 8 60 10 10 ― _ 10 10 5 ― ― 1000 930 95 8.0 実施例 1-卜 9 60 10 10 ― ― 20 一 0.6 ― 一 1000 975 95 7.2
O 実施例 1-卜 10 60 10 10 ― ― 20 ― 7 一 ― ― 1000 930 95 6.8 実施例 1 -ト 11 60 10 10 ― - 20 - - 0.6 ― 一 1000 975 95 7.0 実施例 1-卜 12 60 10 10 一 ― 20 一 ― 3 ― ― 1000 930 95 7.4 実施例 1 -卜 13 60 10 10 - - 20 - 一 7 ― 一 1000 930 95 6.8 実施例 1-卜 14 60 10 10 20 0.6 1000 975 95 6.3 実施例 1- Η5 60 10 10 20 3 1000 930 95 6.9 実施例 1-卜 16 60 10 10 20 7 1000 930 95 6.1 実施例 1-H7 60 10 10 20 0.6 1000 975 95 7.1 実施例 1-1-18 60 10 10 20 3 1000 930 95 7.4 実施例 1 - 19 60 10 10 20 7 1000 930 95 6.6 実施例卜 I - 20 60 10 10 20 5 900 930 83 6.0
表 1 (続き)
主成分 (mol¾) 添加成分 (wtt) 1 t 焼成 Y型の
サンプル 透磁率 レ スつ
L マス 皿/: 占有率
N o . Fe203 CuO ZnO NiO gO BaO SrO Bi203 at oUUMHz
ラス j ラス 鉛 ラス (°c) (。c) (%)
比較例 1-1-1 62 10 10 18 5 1000 930 95 4.9 比較例 1-1-2 56 11 11 22 5 1000 930 95 3.8 比較例 1-1 - 3 60 3 15 22 5 " 1000 930 95 4.8 比較例 1-1-4 60 20 5 15 5 1000 930 95 4.3 比較例 1 -ト 5 60 5 20 15 5 1000 930 95 4.7 比較例 1-1-6 60 5 20 15 5 一 1000 930 95 4.2 比較例 1-1-7 60 5 20 15 3 1000 930 95 4.7 比較例 1-ト 8 60 10 10 20 0.3 3 1000 930 95 3.0 比較例 1-1-9 60 10 10 20 10 1000 930 95 4.6 比較例 1 -10 60 10 10 20 0.3 1000 930 95 3.2 比較例 1-1-11 60 10 10 20 10 1000 930 95 4.3 比較例 1-1-12 60 10 10 20 0.3 1000 930 95 3.4 比較例 1-1-13 60 10 10 20 5 1000 800 77 3.4
[実験例 1 - I I]
次に、 本発明の磁性体を用いてインダクタンス素子を作製した。 すなわち、 焼 結後の組成が上記表 1の実施例 1一 I一 2サンプルに示されるような組成となる ように各原料を秤量し、 鋼鉄製ボールミルで 1 5時間湿式混合した。 次に、 この 混合粉を大気中、 9 5 0 °Cで 2時間仮焼きした。 次いで、 副成分として B i 203 を 5 w t %添加した後、 鉄鋼製ボールミルで 1 5時間粉砕した。
この仮焼き粉末に有機バインダーを混合し、 ドクターブレード法により均一な グリーンシ一卜を形成した。
次いで、 銀を混合してなる導電性ペーストを用意し、 先のグリーンシート上に コイルをスパイラリレ状となるように積層した。 厚み方向に圧力を加えて圧着し、 磁性体に電極がサンドイッチされたグリーンシー卜積層体を作製した。 これを 9 3 0 °Cで 2時間焼成した。 得られた焼結体の側面の内部導電体の位置に銀ペース 卜を塗布し、 外部電極を焼き付け、 図 1に概略的に示されるインダクタンス素子
(高周波回路部品) とした。 なお、 図 1は素子内部構造の理解を容易にするため にモデル図として描かれている。 図 1において、 符号 1 1はインナーコンダクタ
(A gコイル) であり、 符号 1 0はターミナルコンダクタであり、 符号 2 0はフ ェライ卜を示している。
得られたインダクタンス素子のインピーダンスおよび透磁率を 8 0 O M H zで 測定したところ、本発明のものではインピーダンスが 4 3 6 Ω (透磁率は 7 . 9 ) という極めて優れた特性が得られた。
[実験例 1 - I I I]
次に、 本発明の磁性体を用いてインダクタンス素子を作製した。 すなわち、 焼 結後の組成が上記表 1の実施例 1 - 1 - 1 2サンプルに示されるような組成とな るように各原料を秤量し、 鋼鉄製ポールミルで 1 5時間湿式混合した。 次に、 こ の混合粉を大気中、 9 5 0 °Cで 2時間仮焼きした。 次いで、 副成分としてビスマ スガラスを 3 w t %添加した後、 鉄鋼製ポールミルで Ί 5時間粉碎した。
この仮焼き粉末に有機バインダーを混合し、 ドク夕一ブレード法により均一な グリーンシートを形成した。
次いで、 銀を混合してなる導電性ペース卜を用意し、 先のグリーンシート上に コイルをスパイラル状となるように積層した。 厚み方向に圧力を加えて圧着し、 磁性体に電極がサンドィツチされたグリーンシー卜積層体を作製した。 これを 9 30°Cで 2時間焼成した。 得られた焼結体の側面の内部導電体の位置に銀ペース 卜を塗布し、 外部電極を焼き付け、 図 1に概略的に示されるインダクタンス素子
(高周波回路部品) とした。 なお、 図 1は素子内部構造の理解を容易にするため にモデル図として描かれている。 図 1において、 符号 1 1はインナーコンダクタ
(Agコイル) であり、 符号 1 0はターミナルコンダクタであり、 符号 20はフ ェライ卜を示している。
得られたインダクタンス素子のインピーダンスおよび透磁率を 80 OMH zで 測定したところ、 本発明のものではインピーダンスが 408Ω (透磁率は 7. 4) という極めて優れた特性が得られた。
上記の結果より本発明の第 1の発明グループの効果は明らかである。すなわち、 本発明は、 数百 M H z~GH zといった高周波帯域まで極めて磁気特性が良好で あり、 かつ Y型六方晶フェライ卜以外の異相をできるだけ含まず 1 000°C以下 特に、 900°C付近で焼成可能 (低温焼成可能) である。
(2) 第 2の発明グループについての説明
本発明の第 2の発明グループにおける磁性酸化物焼結体はセラミック焼結体で あるために通常のセラミック作製プロセスで製造することができる。
本発明の第 2の発明グループにおける磁性酸化物焼結体は、 主成分として酸化 コバルトを CoO換算で 0〜1. 9モル% (含有率 0は除くとともに、 好ましい 範囲は、 0. 1〜1. 0モル%)、 酸化銅を CuO換算で 5~1 7モル% (好まし くは、 5. 5-1 2モル%)、 酸化鉄を F e203換算で 57〜61モル% (好まし くは、 59〜61モル%)、 MOを 0~1 5モル%、好ましくは 1〜1 5モル%、 特に好ましくは 5〜1 5モル% (MOは、 N i 0, Z nO, MgOの少なくとも 1種であり、 MOの含有率 0は除く)、残部を AO (AOは、 8 &0または3 r 0 の少なくとも 1種) として含んでいる。
MOの形態は、 N i 0, Ζ ηΟ, あるいは M g Οの単独形態、 または少なくと も 2種以上の混在形態である。 2種以上を混合して用いる場合には、 混合した総 計モル%が上記の範囲に入るようにすればよ t
AOの形態は、 B aOあるいは S r 0の単独形態、 または B aOと S rOの混 在形態である。
また、 本発明の磁性酸化物焼結体は、 副成分として酸化ビスマス B 03を0. 5〜7wt % (好ましくは 0. 6〜5wt%)、 含有している。
このような酸化ビスマス B i 203は、 後述する実施例からもわかるように添加 時に当該酸化物の形態で混入され、焼結後も一般に当該酸化物の形態で残存する。 上記主成分の含有割合において、 〇00が1. 9モル%を超えると、 本願所望 の透磁率が得られないという不都合が生じる。 本発明において、 C οθの含有モ ル%下限値は、 零を含まない値であり、 実験的には、 0. 01モル%まで添加の 効果が確認されている。
また、 CuOが 5モル%未満となると、 仮焼き温度が 1 000°Cを超えるとい う不都合が生じる傾向にぁリ、 じリ0が1 7モル%を超えると、 透磁率が低下す るという不都合が生じる傾向にある。
また、 Fe203が 57モル%未満となったり、 Fe203が 61モル%を超えたり すると透磁率が低下するという不者合が生じる傾向にある。
上記の副成分の含有割合において、 上記 B i 203の含有量が 0. 5wt%未満 となると、 1 000°C以下の焼成で理論密度の 90%以上が得られなくなるとい う不都合が生じる傾向にあり、 上記 B 03の含有量が7\^1%を超ぇると、 透 磁率が低下するという不都合が生じる傾向にある。 このような B i 203副成分の 添加は、 特に、 上記の CuO量の含有と相俟って低温焼結を顕著に実現させるこ とができる。 磁気特性向上の相乗効果もある。 焼成温度が低くなると、 安価で電 気抵抗の低い A gのような低融点の電極材料を内蔵した形で同時焼成し、 電極一 体型の閉磁路構成の素子を容易に製造できる。
上記の副成分 B i 203に変えて、 副成分として硼珪酸ガラス、 硼珪酸亜鉛ガラ スまたはビスマスガラスを 0. 5〜7wt% (好ましくは 0. 6~5wt %) 含 有するようにしてもよい。 これらのガラスは上記副成分 B i 203と混合して用い ることもできる。
硼珪酸ガラスとは、 一般に B203、 S i 02を含むガラスを示し、 硼珪酸亜鉛ガ ラスとは、 一般に B 203、 S i 02、 Z n 0を含むガラスを示し、 ビスマスガラス とは、 一般に B i 203を含むガラスを示す。 これらの各ガラスの定義において上 記の各成分が主成分である必要はな L、。
これらの副成分のガラスの含有形態としては、 硼珪酸ガラス、 硼珪酸亜鉛ガラ スおよびビスマスガラスの中の 1種を単独で用いても良いし、 また、 これらの中 の 2種または 3種を混合して用いてもよい。 2種以上を混合して用いる場合には、 混合した総計重量%が上記の範囲に入るようにすればよい。 このようなガラスを 添加することにより、 高電気抵抗率ィヒ (電気抵抗率を高くすること) および低誘 電率化 (誘電率を低くすること) を得ることができる。 従って、 このような所定 のガラスの添加により、 高周波回路部品としての例えば、 積層部品材料に必要な 1 X 1 0 5Ω ■ m以上の電気抵抗率が得られる。
さらに、 本願所定のガラスの添加により、 誘電率を低減させる効果も発現し、 本発明焼結体を高周波部品として用いた場合、 高い周波数において高いインピー ダンスを得ることや、 インピーダンスの広帯域化に効果がある。 なお、 これらの ガラス添加は添加時における状態がガラスであることが必要である。 焼成後、 用 いたガラス成分は、 ガラス状態の有無を問わず焼成体の中に存在する。
これらのガラスの中では、特に、硼珪酸亜鉛ガラスや硼珪酸ガラスが高抵抗率、 低誘電率をより効果的に実現させるために好ましい。 また、 同じガラス添加量で 比較した場合、 9 0 %以上の相対密度が得られる温度を下げることができるとい う観点からは、 特に、 ビスマスガラスが好ましい。
このようにして製造された素子は、 例えば、 小型でかつ高い Q値を持つインダ クタ、 あるいは小型で高周波帯の特に特定周波数でのインピーダンスが大きいノ ィズフィルタ一等の高周波素子 (高周波回路部品) として利用される。
上記の M 0として Z n 0を用いて、 このものを 0〜1 5 w t % (含有率 0は除 く) 含有させた場合には、 透磁率を各段と向上させることができ、 高周波回路部 品を作製したときの高インピーダンス化 (高いインピーダンスを得ること) およ びインピーダンスの広帯域化に特に好ましい効果を発揮する。 また、 M 0として N 1 0ゃ[^1 ^ 0を用ぃて、 0〜1 5 w t % (含有率 0は除く) 含有させた場合に は、 透磁率を向上させることはもとより、 共鳴周波数を高くする効果がある。 従 つて、 高周波回路部品として、 高いインピーダンスとインピーダンスの帯域を制 御するのに特に好ましい効果を発揮する。
さらに本発明における磁性酸化物焼結体は、その 80%以上、特に好ましくは、 90%以上が Y型六方晶フェライ卜で形成されている。 ここに言う 「%」 は、 ェ ックス線回折強度のメインピーク比から算出したものである。
Y型六方晶フェライ卜の占有割合が 80%未満となると、 高周波において高い 透磁率を得ることができなるという不都合が生じる。 これにより、 高いインダク タンスゃィンピーダンスを持つ高周波回路き品を得ることが困難となる。
銀 (Ag) のような低融点電極材料と同時焼成する場合、 本焼成温度が低くな るため、 焼結後の Y型六方晶フェライ卜を 80%以上とするためには、 仮焼時に Y型六方晶フェライ卜を 80%以上生成しておく必要がある。 組成によって異な るが、 850°C付近から B a F e,20I9および B a F e204の分解が始まり、 Y型 六方晶フェライ卜の生成が始まる。
しかしながら、 B a F el201sおよび B a F e 204の分解が十分に進まなければ Y型六方晶フェライ卜の生成が進まない。従って、丫型六方晶フェライ卜を 80% 以上とするために、 仮焼温度を 850°C以上、 特に、 850〜1 000°Cとする 必要がある。 さらに、 CuO量を、 好ましくは 5. 5~1 7モル%含有させるこ とが必要となる。 仮焼温度が 850°C未満となつたり、 CuO量が上記の範囲を 外れると、 80%を超える Y型六方晶フェライトの生成が困難となる。 また、 仮 焼き温度が 1 000°Cを超えて高くなリ過ぎると、 細かい粉碎粉が得られなくな つてしまう。 細かい粉砕粉の作製は、 低温焼成には極めて重要な技術である。 このような観点から、 上述のごとく仮焼温度を 850〜1 000°Cにおいて、 Y型六方晶フェライ卜の生成率を高くするためには、 主成分としての前記 C u 0 量を、 好ましくは 5. 5〜1 7モル%含有させることが必要となる。
このような本発明における磁性酸化焼結体は、 磁性酸化物焼結体中に導電体が 埋設された構造を備える高周波回路部品、 例えば、 インピーダ、 インダクタとし て用いられる。
以下、 具体的実施例を挙げて本発明をさらに詳細に説明する。
[実験例 2— I] (実施例サンプルおよび比較例サンプルの作製)
焼結後の組成が下記表 2に示すような組成となるように各原料を秤量し、 鋼鉄 製ボールミルで 1 5時間湿式混合した。 次に、 この混合粉を大気中、 表 2に記載 された温度で 2時間仮焼きした。 次いで、 表 2に示されるごとく副成分として B
1 203や所定のガラスを所定量添加した後、 鉄鋼製ポールミルで 1 5時間粉碎し た。
このようにして得られた六方晶フェライト粉を造粒して、 1 O O M P aの圧力 で所望の形状に成形した。
この成形体を大気中、 表 2に示される温度で 2時間焼結した。 六方晶フェライ 卜焼結体の組成は下記表 2に示すとおりであり、 これらの各サンプルについて、
2 5 °Cにおける周波数 8 0 0 M H zの透磁率を測定して表 2に示した。 透磁率は 周波数 8 0 O M H zの周波数において 6 . 0以上の値を目標としている。
なお、 Y型六方晶フェライ卜による占有率は、 焼結体の粉砕粉を用いて、 X線 回折ピークの強度比よリ算出した。
表 2
主成分 (tno ) 添加成分 (wt%) 仮焼 焼成 Y型の
サンプル 透磁率 0. t、'又マ λ 硼挂酸 硼珪酸亜 占有率 at RnflMH7
Fe203 CoO CuO ZnO 議 MgO BaO SrO Bi203
力'ラス ラス 鉛 ラス CO (°c) (%)
実施例 2-1-1 60 0.3 8 12.4 ― ― 19.3 一 5 一 ― - 1000 930 95 10.5 実施例 2- 1 - 2 60 0.5 8 12 - - 19.5 一 5 - 一 一 1000 930 95 9.8 実施例 2 - 1 - 3 60 1 8 11.5 - - 19.5 - 5 一 ― 1000 930 95 7.0 実施例 2-ト 4 60 1.5 8 11 - - 19.5 - 5 - ― ― 1000 930 95 6.2 実施例 2 -卜 5 60 1.8 8 10.7 一 ― 19.5 一 5 - ― ― 1000 930 95 6.0 実施例 2-卜 6 60 0.01 8 12.49 一 19.5 5 - ― 一 1000 930 95 8.2 実施例 2- 1 - 7 61 0.5 8 11 - - 19.5 一 5 一 ― - 1000 930 95 10.2 実施例 2-ト 8 57 0.5 8 11 - - 23.5 ― 5 一 ― 一 1000 930 95 6.8 実施例 2 -ト 9 60 0.5 5 14 - 一 20.5 - 5 - 一 - 1000 930 95 12.0 οο 実施例 2 -卜 10 60 0.5 10 9 一 - 20.5 - 5 一 - 一 1000 930 95 10.0 実施例 2-ト11 60 0.5 16 1 - 一 22.5 - 5 一 一 一 1000 930 95 6.0 実施例 2 - 12 60 0.5 11 5 - 一 23.5 - 5 ― 一 ― 1000 930 95 6.1 実施例 2-1-13 60 ' 0.5 7 15 - ' - 17.5 - 5 - 一 ― 1000 930 95 9.0 実施例 2+14 60 0.5 8 10 21.5 5 1000 930 95 7.0 実施例 2- 1 -15 60 0.5 8 10 11.5 10 5 1000 930 95 8.4 実施例 2-卜 16 60 0.5 8 11 20.5 0.6 1000 975 95 7.5 実施例 2-1-17 60 0.5 8 11 20.5 7 1000 930 95 8.6 実施例 2-卜 18 60 0.5 8 11 20.5 0.6 1000 975 95 7.8 実施例 2 -卜 19 60 0.5 8 11 20.5 5 1000 930 95 9.5 実施例 2-1 - 20 60 0.5 8 11 20.5 7 1000 930 95 8.8
表 2 (続き)
4 主成分 (mol¾) 添加成分 (wt%) 仮焼 焼成 Y型の
"*4- ^ノ ,—ノ fル 逸磁丰
ビスマス 硼珪酸 硼珪酸亜 J 占有率
Ν ο. Fe203 CoO CuO ZnO NiO MgO BaO SrO Βί203 at 800MHz
ラス 力'、ラス 鉛 ラス (°c) (°c) (%)
実施例 2-卜 21 60 0.5 8 11 ― 20.5 ― - 一 0.6 ' 一 1000 975 95 7.0 実施例 2-卜 22 60 0.5 8 11 - ― 20.5 ― 一 ― 3 一 1000 930 95 7.3 実施例 2 -ト 23 60 0.5 8 " - ― 20.5 ― 一 一 7 一 1000 930 95 6.8 実施例 2-卜 24 60 0.5 8 ― 一 20.5 一 - ― - 0.6 1000 975 95 7.7 実施例 2-卜 25 60 0.5 8 - 一 20.5 ― ― ― - 3 1000 930 95 9.0 実施例 2-1-26 60 0.5 8 - 一 20.5 - ― 一 7 1000 930 95 8.2 実施例 2-1-27 60 0.5 8 ― 一 20.5 - 5 - - ― 900 930 85 6.2 比較例 2-卜 1 60 2.5 8 ― ― 18.5 ― 5 一 ― 一 1000 930 95 4.8 比較例 2- 1 -2 62 0.5 6 11 ― 一 20.5 一 5 ― ― - 1000 930 95 5.5O 比較例 2+3 56 0.5 12 ― 一 20.5 5 一 一 ― 1000 930 95 5.3 比較例 2-卜 4 61 0.5 3 " - 24.5 ― 5 一 - - 1000 930 95 4.0 比較例 2-1-5 60 0.5 20 1 - 一 18.5 一 5 一 - - 1000 930 95 3.5 比較例 2-1 - 6 60 0.5 5 20 ― - 14.5 - 5 一 一 一 1000 930 95 5.4 比較例 2-1-7 60 0.5 5 20 14.5 3 1000 930 95 4.5 比較例 2-1-8 60 0.5 5 20 14.5 3 1000 930 95 4.9 比較例 2-ト 9 60 0.5 8 20.5 0.3 1000 930 95 3.2 比較例 2-卜 10 60 0.5 8 20.5 10 1000 930 95 5.2 比較例 2-H1 60 0.5 8 20.5 0.3 1000 930 95 3.6 比較例 2-卜 12 60 0.5 8 20.5 10 1000 930 95 4.8 比較例 2-1-13 60 0.5 8 20.5 5 850 930 77 3.8
[実験例 2 - 1 1 ]
次に、 本発明の磁性体を用いてインダクタンス素子を作製した。 すなわち、 焼 結後の組成が上記表 2の実施例 2— I - 1 0サンプルに示されるような組成とな るように各原料を秤量し、 鋼鉄製ボールミルで 1 5時間湿式混合した。 次に、 こ の混合粉を大気中、 9 5 0 °Cで 2時間仮焼きした。 次いで、 副成分として B i 2 03を 5 w t %添加した後、 鉄鋼製ポールミルで 1 5時間粉碎した。
この仮焼き粉末に有機バインダーを混合し、 ドクターブレード法により均一な グリーンシ一卜を形成した。
次いで、 銀を混合してなる導電性ペース卜を用意し、 先のグリーンシー卜上に コイルをスパイラル状となるように積層した。 厚み方向に圧力を加えて圧着し、 磁性体に電極がサンドィツチされたグリーンシー卜積層体を作製した。 これを 9 3 0 °Cで 2時間焼成した。 得られた焼結体の側面の内部導電体の位置に銀ペース 卜を塗布し、 外部電極を焼き付け、 図 1に概略的に示されるインダクタンス素子 (高周波回路部品) とした。 なお、 図 1は素子内部構造の理解を容易にするため にモデル図として描かれている。 図 1において、 符号 1 1はインナーコンダクタ (A gコイル) であり、 符号 1 0はターミナルコンダクタであり、 符号 2 0はフ ェライ卜を示している。
得られたインダクタンス素子のインピーダンスおよび透磁率を 8 0 O M H zで 測定したところ、 本発明のものではインピーダンスが 5 5 2 Ω (透磁率は 1 0 . 0 ) という極めて優れた特性が得られた。
[実験例 2— I I I]
次に、 本発明の磁性体を用いてインダクタンス素子を作製した。 すなわち、 焼 結後の組成が上記表 2の実施例 2— I - 1 9サンプルに示されるような組成とな るように各原料を秤量し、 鋼鉄製ボールミルで 1 5時間湿式混合した。 次に、 こ の混合粉を大気中、 9 5 0 °Cで 2時間仮焼きした。 次いで、 副成分としてビスマ スガラスを 5 w t %添加した後、 鉄鋼製ボールミルで 1 5時間粉碎した。
この仮焼き粉末に有機バインダーを混合し、 ドクターブレード法により均一な グリーンシ一卜を形成した。
次いで、 銀を混合してなる導電性ペース卜を用意し、 先のグリーンシー卜上に コイルをスパイラル^^となるように積層した。 厚み方向に圧力を加えて圧着し、 磁性体に電極がサンドィツチされたグリーンシー卜積層体を作製した。 これを 9 3 0 °Cで 2時間焼成した。 得られた焼結体の側面の内部導電体の位置に銀ペース 卜を塗布し、 外音電極を焼き付け、 図 1に概略的に示されるインダクタンス素子
(高周波回路部品) とした。 なお、 図 1は素子内部構造の理解を容易にするため にモデル図として描かれている。 図 1において、 符号 1 1はインナーコンダクタ
( A gコイル) であリ、 符号 1 0はターミナルコンダクタであり、 符号 2 0はフ ェライ卜を示している。
得られたインダクタンス素子のインピーダンスおよび透磁率を 8 0 O M H zで 測定したところ、 本発明のものではインピーダンスが 5 2 4 Ω (透磁率は 9 . 5 ) という極めて優れた特性が得られた。
上記の結果よリ本発明の第 2の発明グループの効果は明らかである。すなわち、 本発明は、 数百 M H z〜G H zといった高周波帯域まで極めて磁気特性が良好で あり、 かつ Y型六方晶フェライ卜以外の異相をできるだけ含まず 1 0 0 0 °C以下 特に、 9 0 0 °C付近で焼成可能 (低温焼成可能) である。 産業上の利用可能性
本発明における磁性酸化焼結体は、 磁性酸化物焼結体中に導電体が埋設された 構造を備える高周波回路部品、 例えば、 インピーダ、 インダクタとして用いられ る。

Claims

請 求 の 範 囲
1. Y型六方晶フェライ卜で 80 %以上占有されてなる磁性酸化物焼結体 であって、
該磁性酸化物焼結体は、 主成分として酸化銅を CuO換算で 5〜1 7モル%、 酸化鉄を F e203換算で 57〜61モル%、 MOを 0〜1 5モル% (MOは、 N ! O, Z n 0, MgOの少なくとも〗種であり、 MOの含有率 0は除く)、残部を AO (AOは、 B aOまたは S r 0の少なくとも 1種) として含み、
副成分として酸化ビスマス (B i 203) を 0. 5〜7wt%を含有してなるこ とを特徴とする磁性酸化物焼結体。
2. Y型六方晶フェライ卜で 80 %以上占有されてなる磁性酸化物焼結体 であって、
該磁性酸化物焼結体は、 主成分として酸化銅を C u 0換算で 5〜 1 7モル%、 酸化鉄を F e203換算で 57〜61モル%、 1^10を0~1 5モル% (MOは、 N i 0, ZnO, MgOの少なくとも 1種であり、 MOの含有率 0は除く)、残部を AO (AOは、 B aOまたは S r 0の少なくとも 1種) として含み、
副成分として硼珪酸ガラス、 硼珪酸亜鉛ガラスまたはビスマスガラスを 0. 5 〜 7 w t %含有してなることを特徴とする磁性酸化物焼結体。
3. 前記磁性酸化物焼結体の製造における仮焼温度が 850 °C- 1 00 0°Cである請求項 1に記載の磁性酸化物焼結体。
4. 前記磁性酸化物焼結体の製造における仮焼温度が 850°C- 1 00 0 °Cである請求項 2に記載の磁性酸化物焼結体。
5. 磁性酸化物焼結体中に導電体が埋設された構造を備える高周波回路部 αであって、
前記磁性酸化物焼結体は、 Υ型六方晶フェライ卜で 80%以上占有され、かつ、 該磁性酸化物焼結体は、主成分として、酸化銅を C u O換算で 5〜 1 7モル%、 酸化鉄を F e203換算で 57〜61モル%、 MOを 0〜1 5モル% (MOは、 N i 0, Z nO, MgOの少なくとも 1種であり、 MOの含有率 0は除く)、残部を AO (AOは、 B aOまたは S rOの少なくとも 1種) として含み、
副成分として酸ィ匕ビスマス (B i 203) を 0. 5〜7wt%を含有してなるこ とを特徴とする高周波回路部品。
6. 磁性酸化物焼結体中に導電体が埋設された構造を備える高周波回路部 品であって、
前記磁性酸化物焼結体は、 Y型六方晶フェライ卜で 80%以上占有され、かつ、 該磁性酸化物焼結体は、 主成分として酸化銅を C u 0換算で 5〜 1 7モル%、 酸化鉄を F e203換算で 57〜61モル%、 MOを 0〜1 5モル% (MOは、 N i 0, ZnO, MgOの少なくとも Ί種であり、 ΜΟの含有率 0は除く)、残部を
AO (AOは、 BaOまたは S rOの少なくとも 1種) として含み、
副成分として硼珪酸ガラス、 硼珪酸亜鉛ガラスまたはビスマスガラスを 0. 5
〜7 w t %含有してなることを特徴とする高周波回路部品。
7. 前記磁性酸化物焼結体の製造における仮焼温度が 850 °C〜 1 00 0°Cである請求項 5に記載の高周波回路部品。
8. 前記磁性酸化物焼結体の製造における仮焼温度が 850 °C〜 1 00 0 °Cである請求項 6に記載の高周波回路部品。
9. 前記導電体が銀 (Ag) を主成分とする請求項 5に記載の高周波回路 部品。
1 0. 前記導電体が銀 (Ag) を主成分とする請求項 6に記載の高周波回 路部品。 1 Ί . Y型六方晶フェライ卜で 80 %以上占有されてなる磁性酸化物焼結 体であって、
該磁性酸化物焼結体は、 主成分として酸化コバル卜を C 00換算で 0〜 1. 9 モル% (含有率 0は除く)、酸化銅を C uO換算で 5〜1 7モル%、酸化鉄を Fe 203換算で 57〜61モル%、 [^10を0〜1 5モル% (MOは、 N i 0, Z nO, MgOの少なくとも 1種であり、 MOの含有率 0は除く)、残部を AO (AOは、 B aOまたは S rOの少なくとも 1種) として含み、
副成分として酸化ビスマス (B i 203) を 0. 5〜7wt%を含有してなるこ とを特徴とする磁性酸化物焼結体。
1 2. Y型六方晶フェライ卜で 80%以上占有されてなる磁性酸化物焼結体 であって、
該磁性酸化物焼結体は、 主成分として酸ィ匕コバル卜を C 00換算で 0〜 1. 9 モル% (含有率 0は除く)、酸化銅を CuO換算で 5〜1 7モル%、酸化鉄を Fe 203換算で 57〜61モル%、 MOを 0〜1 5モル% (MOは、 N i 0, Z n 0, MgOの少なくとも 1種であり、 MOの含有率 0は除く)、残部を AO (AOは、 B aOまたは S r 0の少なくとも 1種). として含み、
副成分として硼珪酸ガラス、 硼珪酸亜鉛ガラスまたはビスマスガラスを 0. 5 〜 7 w t 含有してなることを特徴とする磁性酸化物焼結体。
1 3. 前記磁性酸化物焼結体の製造における仮焼温度が 850 °C〜 1 00 0°Cである請求項 1 1に記載の磁性酸化物焼結体。
1 4. 前記磁性酸化物焼結体の製造における仮焼温度が 850°C〜 1 00 0 °Cである請求項 Ί 2に記載の磁性酸化物焼結体。
1 5 磁性酸化物焼結体中に導電体が埋設された構造を備える高周波回路部 品であって、
前記磁性酸化物焼結体は、 Y型六方晶フェライ卜で 80%以上占有され、かつ、 該磁性酸化物焼結体は、 主成分として酸化コバルトを CoO換算で 0〜1. 9 モル% (含有率 0は除く)、酸化銅を CuO換算で 5〜1 7モル%、酸化鉄を F e 203換算で 57〜61モル%、 MOを 0〜1 5モル% (MOは、 N i 0, Z n O, MgOの少なくとも 1種であり、 MOの含有率 0は除く)、残部を AO (AOは、 B a 0または S r Oの少なくとも 1種) として含み、
副成分として酸化ビスマス (B i 203) を 0. 5〜7 wt %を含有してなるこ とを特徴とする高周波回路部品。
1 6. 磁性酸化物焼結体中に導電体が埋設された構造を備える高周波回路 部品であって、
前記磁性酸化物焼結体は、 Y型六方晶フェライ卜で 80%以上占有され、かつ、 該磁性酸化物焼結体は、 主成分として酸化コバル卜を C 00換算で 0〜 1. 9 モル% (含有率 0は除く)、酸化銅を CuO換算で 5〜1 7モル%、酸化鉄を Fe 203換算で 57〜61モル%、 MOを 0〜 1 5モル% (MOは、 N i 0, Z n 0, MgOの少なくとも 1種であり、 MOの含有率 0は除く)、残部を AO (AOは、 B aOまたは S r 0の少なくとも 1種) として含み、
副成分として硼珪酸ガラス、 硼珪酸亜鉛ガラスまたはビスマスガラスを 0. 5 〜7 w t %含有してなることを特徴とする高周波回路部品。
1 7. 前記磁性酸化物焼結体の製造における仮焼温度が 850 °C〜 1 00 0 °Cである請求項 Ί 5に記載の高周波回路部品。
1 8. 前記磁性酸化物焼結体の製造における仮焼温度が 850°C〜 Ί 00 0 °Cである請求項 1 6に記載の高周波回路部品。
1 9. 前記導電体が銀 (Ag) を主成分とする請求項 1 5に記載の高周波 回路部品。
20. 前記導電体が銀 (Ag) を主成分とする請求項 1 6に記載の高周波 回路部品。
PCT/JP2004/001733 2003-02-24 2004-02-17 磁性酸化物焼結体およびこれを用いた高周波回路部品 WO2004074208A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-45666 2003-02-24
JP2003045665A JP2004262682A (ja) 2003-02-24 2003-02-24 磁性酸化物焼結体およびこれを用いた高周波回路部品
JP2003045666A JP2004262683A (ja) 2003-02-24 2003-02-24 磁性酸化物焼結体およびこれを用いた高周波回路部品
JP2003-45665 2003-02-24

Publications (1)

Publication Number Publication Date
WO2004074208A1 true WO2004074208A1 (ja) 2004-09-02

Family

ID=32911436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001733 WO2004074208A1 (ja) 2003-02-24 2004-02-17 磁性酸化物焼結体およびこれを用いた高周波回路部品

Country Status (2)

Country Link
TW (1) TW200502192A (ja)
WO (1) WO2004074208A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095301A1 (de) * 2004-03-30 2005-10-13 Siemens Aktiengesellschaft Glas-keramik-zusammensetzung, elektrisches bauelement mit der glas-keramik-zusammensetzung und keramischer mehrschichtkörper mit dem elektrischen bauelement
CN107256749A (zh) * 2017-06-28 2017-10-17 合肥博之泰电子科技有限公司 一种电磁材料的制备方法
CN107324791A (zh) * 2017-05-17 2017-11-07 马鞍山起劲磁塑科技有限公司 一种提高磁瓦机械强度的加工方法
CN109867517A (zh) * 2019-03-28 2019-06-11 天通控股股份有限公司 一种wpc及nfc兼用高频高磁导率低损耗镍锌铁氧体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087877A (ja) * 2000-07-11 2002-03-27 Tdk Corp 磁性フェライト、積層型フェライト部品及びその製造方法
EP1193723A1 (en) * 2000-04-28 2002-04-03 TDK Corporation Magnetic ferrite powder, magnetic ferrite sinter, layered ferrite part, and process for producing layered ferrite part
JP2003007523A (ja) * 2001-06-22 2003-01-10 Osamu Kimura 高周波用磁性材料
US20030091841A1 (en) * 2001-08-27 2003-05-15 Hiroshi Marusawa High frequency magnetic material and high frequency circuit element including the same
JP2003173908A (ja) * 2001-12-07 2003-06-20 Osamu Kimura 高周波用磁性材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1193723A1 (en) * 2000-04-28 2002-04-03 TDK Corporation Magnetic ferrite powder, magnetic ferrite sinter, layered ferrite part, and process for producing layered ferrite part
JP2002087877A (ja) * 2000-07-11 2002-03-27 Tdk Corp 磁性フェライト、積層型フェライト部品及びその製造方法
JP2003007523A (ja) * 2001-06-22 2003-01-10 Osamu Kimura 高周波用磁性材料
US20030091841A1 (en) * 2001-08-27 2003-05-15 Hiroshi Marusawa High frequency magnetic material and high frequency circuit element including the same
JP2003173908A (ja) * 2001-12-07 2003-06-20 Osamu Kimura 高周波用磁性材料

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095301A1 (de) * 2004-03-30 2005-10-13 Siemens Aktiengesellschaft Glas-keramik-zusammensetzung, elektrisches bauelement mit der glas-keramik-zusammensetzung und keramischer mehrschichtkörper mit dem elektrischen bauelement
CN107324791A (zh) * 2017-05-17 2017-11-07 马鞍山起劲磁塑科技有限公司 一种提高磁瓦机械强度的加工方法
CN107324791B (zh) * 2017-05-17 2020-12-22 马鞍山起劲磁塑科技有限公司 一种提高磁瓦机械强度的加工方法
CN107256749A (zh) * 2017-06-28 2017-10-17 合肥博之泰电子科技有限公司 一种电磁材料的制备方法
CN109867517A (zh) * 2019-03-28 2019-06-11 天通控股股份有限公司 一种wpc及nfc兼用高频高磁导率低损耗镍锌铁氧体及其制备方法

Also Published As

Publication number Publication date
TW200502192A (en) 2005-01-16

Similar Documents

Publication Publication Date Title
KR101210772B1 (ko) 육방정 페라이트 및 그것을 이용한 안테나 및 통신 기기
JP3693398B2 (ja) セラミックス磁性体材料およびこれを用いた高周波用回路部品
JP3876790B2 (ja) 高周波回路素子
KR100423961B1 (ko) 자성 산화물 소결체 및 이것을 이용한 고주파 회로부품
JP2010018482A (ja) フェライト及びその製造方法
KR102232105B1 (ko) 페라이트 조성물 및 적층 전자 부품
JP4576727B2 (ja) 酸化物磁性体磁器組成物およびそれを用いたインダクタ部品
WO2006098462A1 (ja) 誘電体磁器組成物及びその製造方法
KR101218984B1 (ko) 세라믹 전자부품용 자성체 조성물, 그 제조방법 및 이를 이용한 세라믹 전자부품
JP4736311B2 (ja) 磁性フェライトおよびそれを用いた磁性素子
JP4074440B2 (ja) 磁性酸化物焼結体およびこれを用いた高周波回路部品
JP4870920B2 (ja) 誘電体磁器組成物及び電子部品
JP3975051B2 (ja) 磁性フェライトの製造方法、積層型チップフェライト部品の製造方法及びlc複合積層部品の製造方法
WO2004074208A1 (ja) 磁性酸化物焼結体およびこれを用いた高周波回路部品
JPWO2013115064A1 (ja) 磁性体材料およびそれを用いて形成したコアを備える巻線型コイル部品
JPH0891919A (ja) 酸化物磁性材料組成物とその製造方法、ならびにインダクタ、積層チップインダクタ、および複合積層部品
JP2004262682A (ja) 磁性酸化物焼結体およびこれを用いた高周波回路部品
JP4074438B2 (ja) 磁性酸化物焼結体およびこれを用いた高周波回路部品
JP2001010820A (ja) フェライト組成物、フェライト焼結体、積層型電子部品およびこれらの製造方法
JP4074439B2 (ja) 磁性酸化物焼結体およびこれを用いた高周波回路部品
JP4074437B2 (ja) 磁性酸化物焼結体およびこれを用いた高周波回路部品
JP4449091B2 (ja) 磁性フェライト材料、積層型チップフェライト部品、複合積層型部品および磁心
JP4556668B2 (ja) フェライト材料及びインダクタ素子
JP2004262683A (ja) 磁性酸化物焼結体およびこれを用いた高周波回路部品
JP2004143042A (ja) マイクロ波用磁性体材料とその製造方法およびこれを用いた高周波回路部品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase