WO2004073970A1 - 成形可能な制電性樹脂成形品 - Google Patents

成形可能な制電性樹脂成形品 Download PDF

Info

Publication number
WO2004073970A1
WO2004073970A1 PCT/JP1997/004528 JP9704528W WO2004073970A1 WO 2004073970 A1 WO2004073970 A1 WO 2004073970A1 JP 9704528 W JP9704528 W JP 9704528W WO 2004073970 A1 WO2004073970 A1 WO 2004073970A1
Authority
WO
WIPO (PCT)
Prior art keywords
antistatic
fiber
resin
molded article
molded product
Prior art date
Application number
PCT/JP1997/004528
Other languages
English (en)
French (fr)
Inventor
Makoto Ihira
Masato Sakai
Original Assignee
Makoto Ihira
Masato Sakai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makoto Ihira, Masato Sakai filed Critical Makoto Ihira
Priority to US09/117,947 priority Critical patent/US6214451B1/en
Publication of WO2004073970A1 publication Critical patent/WO2004073970A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/904Artificial leather
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/926Thickness of individual layer specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249942Fibers are aligned substantially parallel
    • Y10T428/249945Carbon or carbonaceous fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/24995Two or more layers

Definitions

  • the present invention relates to an antistatic resin molded article which imparts antistatic properties to a surface and does not substantially increase the surface ratio even by molding.
  • Antistatic Gato resin moldings are used for applications where antistatic properties are imparted to the surface of the molded product to release static electricity trapped on the surface and to avoid adhesion and accumulation of dust and dust on the surface of the molded product. Is
  • a conductive fine particle such as a shrine gong, a conductive fine particle such as a woven fabric, or a fiber was made to hang down uniformly to achieve a desired effect.
  • the formation of particles between the particles and the mutual interaction of the fibers causes a reduction in the electrical resistance of the ⁇ product.
  • the surface of the molded product may be applied only.
  • the conventional antistatic resin plate is formed by laminating the above antistatic film after forming a thermoplastic resin plate, so that the surface exhibits a polished antistatic property, and the surface resistivity is 10 1. A fine plate of 1 ⁇ /] or less is obtained.
  • the shelf thus formed is further heated and deformed to expand the surface area as in the case of bending or a true shape, the surface resistivity after secondary forming becomes blind, and There was a problem that the conductivity was reduced.
  • the surface resistivity is exposed by the tensile force of the antistatic resin plate to ⁇ . This is due to the fact that the stretch of the resin containing the conductive particles and fibers reduces the mutual key between the conductive particles and fibers, It is also considered that the mutual distance between the particles increases.
  • an object of the present invention is to provide an antistatic resin molded article that can be cut so that the secondary processing after imparting the antistatic property does not substantially increase the surface resistivity. Things. Disclosure of the invention
  • the antistatic resin molded article of the present invention is an antiryu's national molded article composed of a thermoplastic resin base material and a grease polished on one of the surfaces of the resin.
  • the insulative resin is formed by a film that is distributed in a meandering and continuous contact and / or conductive space during the course of plastics. Even if this molded product undergoes deformation such as stretching or bending of the antistatic resin layer due to subsequent thermal processing, it will be difficult to make meandering long outfittings. It is not possible to maintain the distance between each other that can be in contact or conduction with each other, so that Naruto can also maintain the antistatic properties of the resin layer. According to (1), it is possible to obtain an antistatic resin molded article having both antistatic property and antistatic property at the same time. is there.
  • conductive long fibers carbon fibers, metals, conductive organic fibers and the like can be used, and the long and thin fibers which are as thin as possible are easily entangled with each other, and are preferable because they are easily twisted and bent.
  • ultra-fine long-woven fibers are particularly preferred.
  • Replacement forms (Rule 26) It is.
  • the long carbon fibers of the super rice field are easily entangled with each other and easily aggregated into a shape, and have a property.
  • a large number of fibers are released from the hair ball fiber aggregate, and the fibers are aggregated in the thermoplastic shelf.
  • the fiber aggregates in the resin layer are brought into contact with each other and / or the conductive intervals are maintained, and the resin layer is provided with antistatic properties.
  • the carbon fiber of the present invention has a large wire diameter and is rigid, and there is no entanglement between fibers.
  • the long fiber used in the present invention particularly the ultra-fine fiber, has an ultra-fine weave, and Since the length is longer than that, even in the resin layer, the fibers are entangled and dispersed.
  • the super-hashida carbon fibers entangled in a pill shape are easily dispersed in a pill shape and are easily entangled.
  • the wire diameter should be 3.5 to 500 nm and the aspect ratio (ratio of length to iron diameter) should be 100 to 300 nm.
  • a rice field is desirable. A large number of ⁇ * fibers released from the fiber aggregate and leaked.
  • a coating film of a resin coating liquid containing conductive fibers In order to maintain the state of the conductive fibers in the technical layer in a small amount in a wide area II, a coating film of a resin coating liquid containing conductive fibers; Formed. Neutralization of the shelf layer even if it is deformed due to the formation of a coating film due to 3 ⁇ 4 & 3 ⁇ 4 3 ⁇ 4 ⁇ ;;; ⁇ ⁇ ⁇ .
  • FIG. 1A is a diagrammatic aggregate of graphitic fibers used in the present invention
  • FIG. 1B is a diagram illustrating a state in which the graphitic aggregate is folded.
  • FIG. 2 is a conceptual diagram showing a state of a united state of graphitic fibers dispersed in an antistatic resin layer.
  • the antistatic resin molded article for molding of the present invention comprises a thermoplastic resin base and an antistatic resin layer, and the thermoplastic resin base is a thermoplastic resin more suitable for the use of the molded article.
  • Resins are selected from, for example, olefin resins such as polyethylene and polypropylene, vinyl resins such as polyvinyl chloride and polymethyl methacrylate, and polyester resins such as polycarbonate, polyethylene terephthalate, unsaturated polyester, and aromatic polyester. and so on. Among them, excellent chemical resistance and urn property
  • Polyvinyl chloride having a content of 70 to 8 (TC) is preferably used.
  • the form of the base material is plate, sheet, film, tube, other, wire, strip, rod, etc. This restriction is particularly limited as long as it is suitable for the use of the molded product and the formation of the antistatic resin layer. Although not preferred, it is preferable to return from what is suitable for later development. In particular, plates or sheets are preferably applied, as they can be used for shaping.
  • the resin layer is a coating film formed by dispersing conductive long fibers, preferably conductive 'fel carbon fibers' in a mature plastic body, and forming a coating on the surface of the molded product.
  • conductive long fibers preferably conductive 'fel carbon fibers'
  • this mechanical layer is made from the thermoplastic mechanism is that this resin layer can be formed by two processes.
  • This resin layer is made of the same or a different type of thermoplastic resin as that of the above-mentioned thermoplastic resin.
  • the above resin which can be formed into a coating liquid in order to easily disperse the fibers, is preferred from the viewpoint of adhesion to the substrate. It is also possible to use difficult resins, but especially when it is difficult to form a coating liquid from the same resin or the same resin is inferior in weather resistance, surface hardness, abrasion resistance, etc. Sometimes, it is a different type of thermoplastic resin that can form a coating liquid, has better weather resistance and surface hardness ⁇ abrasion resistance than the same type of resin, and the coating liquid harder adheres to the base resin. It is selected from high strength resins.
  • the coating liquid for the antistatic resin layer may be, for example, polyvinyl chloride, a copolymer thereof, or an acrylic resin when the resin resin is polychlorinated butyl, a volatile solvent having high compatibility, for example, methyl
  • a solution prepared by dissolving in isobutyl ketone, methyl ethyl ketone, cyclohexanone, or the like is used. Polychlorinated even when the resin substrate is polycarbonate
  • This resin layer is formed as a coating film on the ⁇ surface, for example, on any surface or both surfaces of the substrate.
  • a coating film by directly applying it to the substrate surface with a gravure roll or the like, or by performing divebing.
  • conductive & g fibers used in the present invention woven fibers, metal fibers such as stainless steel and copper, and organic fibers containing copper sulfide and the like are used. These Kiwei are meandering and have a conductive and / or conductive spacing at one of the other. It is useful that the diameter of each fiber is 5 or less in order to bend and make contact or conduct in the resin layer.
  • a long ⁇ -kii fiber which is long with respect to I » is preferable, and as the long-carbon fiber, a thin fiber is particularly preferably used.
  • a fiber contains the indeterminate wisteria fiber and graphite fibers, and the Kira Nagato fiber also uses fibers and fibers that are inconsistent with the amorphous fiber and graphite. Is done.
  • Each of these is preferably a fiber of delta ⁇ and having a tta which forms an aggregate by intermingling with the fiber.
  • the element ⁇ is the graphite SII, which is a graphite material with a circular cross-section in which graphite layers are laminated coaxially with Weisuke. It is a long fiber whose diameter is less than 1 m.
  • Such a graphite fiber is disclosed in the specification of Japanese Patent Publication No. 3-64606, but its production method is described as follows.
  • This is a woven fiber formed by depositing a coaxial graphite layer on the fiber axis by the reaction of iron group metal or its oxide in the flow.
  • This fiber preferably has a structure in which the C axis of the layer of graphite is perpendicular to the fiber axis, and the precipitation of amorphous particles is reduced.
  • the diameter of the super « ⁇ ; ⁇ 3 ⁇ 4 fiber is less than 1 jm
  • Replacement forms (Rule 26) Preferably it is 3.5 to 500 nm.
  • the long carbon fiber of super fiber may have a smaller wire diameter so that it is easier to assemble in the resin layer, but if it is less than 3.5 iim, it will be easily cut during molding, and if the wire diameter exceeds 500 nm, the fiber will It tends to be rigid and disadvantageous for gathering.
  • the ultra-low-density fiber has an aspect ratio (ratio of length to wire diameter) of 5 or more, which facilitates the interlocking of fibers.
  • the fibers are more likely to form aggregates.
  • the aspect ratio is preferably set to 100 to 300, and if the aspect ratio is less than 100, it is difficult to form an aggregate.
  • the conductive interval cannot be maintained, and the contact g between the aggregates in the coating film may be released in the daring of mature molding of the molded article, and the antistatic property may be reduced.
  • the aspect ratio is S000 or more, the aggregate of the fibers becomes too large, and the contact between the aggregates and the maintenance of the conductive interval are reduced depending on the added amount.
  • the ultrafine long fiber 1 has a small wire diameter and a high aspect ratio, so that Fibers 1 and 1 are entangled.
  • the diameter 2 has a diameter a of about 0, 2 to about 10 jm, and indicates a form in which the outer periphery of the hair ball is wound in a meandering manner.
  • the Fig. 1B the vocational fiber aggregate 2 also comes into contact with each other and conducts with each other. Forming o
  • the resin liquid permeates into the water to dissolve the cohesion between the pills, and the pills are dispersed and uniformly dispersed.
  • the solvent in the coating solution volatilizes, and thereafter, even in the cured resin layer, the pills release a part of the textile to the surroundings, and the surrounding areas are adjacent to each other. While the pills cross or approach each other, the pill-shaped carbon fiber aggregates 2 conduct, and the electrical resistance of the resin layer decreases.
  • the antistatic resin layer is formed by dissolving a thermoplastic resin in a volatile solvent to form a solution, dispersing the upper carbon fiber in the solution to form a coating solution, applying the coating solution to the surface, and volatilizing the solvent. Cured to form a coating.
  • Coating on the substrate surface is performed by knife edge coating, roll coating,
  • the reason why the antistatic resin layer is ⁇ in the present invention is that the antistatic layer is formed on the surface of the base material while maintaining the dispersion state of the aggregate of fibers in the resin layer.
  • the amount of the long carbon fiber added to the antistatic resin layer is preferably 1 to 8% by weight.
  • the amount is less than 8, antistatic properties cannot be obtained, and if the amount is 8% or more, the surface resistivity does not decrease so much despite the large amount of addition. Particularly preferred is 3-8 S *%. It is good to prepare a coating solution by adding a solvent so that the coating amount of the long fiber is 0.2 to 0.8% by weight with respect to the coating solution. This is because, within this range, the coating liquid has an appropriate viscosity and uniform coating can be performed.
  • the thickness of which is 3 ⁇ 4m of ⁇ cured by ⁇ evaporated antistatic resin layer, 0 1 ⁇ :. 1 and 0 m, thereby, the molded article surface ⁇ ratio, 1 0 4 to 1 0 1 ⁇ ⁇ can be easily obtained.
  • the thickness is less than 0.1, a sufficiently low surface resistivity cannot be obtained, and when the molded product is subjected to secondary processing and stretched, the thickness of the ar is further reduced and the antistatic performance cannot be maintained. Above 10 / jm, the surface resistivity is almost the same as the surface resistivity at lO jtim, so that a thick film exceeding 1 is meaningless.
  • the use of light rinse is antistatic.
  • black long ⁇ -protein for polishing it is a Hashida and the amount of tl can be as low as 1 to 8%. Taking into account the material and thickness of the molded article, it is possible to obtain a molded article having a total light transmittance of about 30 to 90%.
  • the base material and the resin layer are made of a thermoplastic resin and the displacement is a thermoplastic resin, it is possible to perform a double drag depending on the application. .
  • the secondary processing includes bending, which is performed by heating the molded product, press molding, true-shape molding, compressed air molding, professional molding, and »forming, and the like. In the case of squeezing, thickening, and the accompanying area expansion, the surface resistivity hardly changes to _w, but rather tends to decrease unless extreme processing is performed. It has excellent antistatic properties.
  • the surface resistivity tends to decrease when the molding magnification is set to 2 to 5 times. This is because, as shown in FIG. 2, when the antistatic resin layer is compressed in the up and down direction in the vertical shape, the non-conducting aggregates distributed above and below the resin layer come into close contact with each other. Alternatively, the spacing becomes conductive and the distance between the fibers becomes conductive and the number of conductive points increases, so that it is considered that the surface resistivity decreases due to the shape.
  • the transparent resin is used for » and the anti-static molded article with high transparency is maintained even if it is added at the same time.
  • the Xinjiang product of the present invention is characterized in that the base material is colored on a transparent resin and the fiber is coated with a fiber, and the color is adjusted to a desired value of f in advance. It is possible to obtain a molded product that combines the antistatic property with an excellent oily layer and an intact SI with good SI.
  • a powder of polyvinyl chloride as a thermoplastic resin was added to cyclohexanone as a solvent, and graphite fiber rigging (Hypyrion Power Talisys in Yuichi National Co., Ltd., product name “Graphite Fibrils” average line) was added.
  • a diameter of 10 nm and an average length of 10 ⁇ ) were added at various concentrations to form a coating solution.
  • Using a polyvinyl chloride sheet with a thickness of 2.O mm as a resin base material apply the above coating solution to the surface of the sheet using a barco and dry it to a thickness of 2 or 4 to obtain two levels. As a result, an antistatic coating film was formed. Next, this sheet was heated to 20 ° C. to perform vacuum forming. Molding magnification for true shape (original before molding)
  • Comparative Example 1 was formed antistaticity polychlorinated Bulle sheet using particulate tin oxide S n 0 2 system of the braking ® paint.
  • Comparative Example 1 is cyclohexane to cyclohexanone above polyvinyl chloride 9 child amount%, S n 0 2 (catalyst IMakoto Co., Ltd., product name "ELC OM TL 3 5" particle size 2 0 0 nm or less) was added to form a coating liquid, and applied to the same polyvinyl chloride sheet as in the example to form a coating film. Similarly, the surface resistivity was measured before and after vacuum forming to obtain a coating. .
  • Molding ratio 1 indicates before vacuum forming
  • Molded articles comprising Ait fibrous 1 0 7 - a 1 0 surface resistivity of 9 Omega D, has sufficient antistatic properties.
  • the molded article comprising a particulate S n 0 2 of Comparative Example 1, in approximately 1 0 ⁇ ⁇ / ⁇ about the surface resistivity, have summer below ⁇ .
  • sufficient antistatic Has the property Molded article comprising a needle-like titanium oxide of Comparative Example 2, in 1 0 6 ⁇ 1 0 7 ⁇ / mouth about, has sufficient antistatic properties.
  • the surface WC ratio decreases as the film thickness increases.
  • the molded products of Comparative Examples 1 and 2 have a surface fSit rate of 10 ⁇ / ⁇ or more from a molding magnification of 3.0 and have no antistatic properties.
  • Comparative Example 2 between ⁇ particulate ones than particles of Comparative for acicular debt 1 will be able to maintain a slightly Zhong to approach (2 XI 0 8 ⁇ / mouth twice molding magnification However, the molding magnification is up to 2 times, which is not practical.)
  • the molding magnification is about 10 times It is considered that the antistatic property can be maintained until the molding resistance is increased, and Table 3 shows that the surface resistance is reduced due to the new molding magnification up to 5 times, and the preferable molding magnification is up to 7 times. is there.
  • the film thickness is preferably about 0.1 to 1: 1, preferably 1 to 8 / im. In. Table 4
  • Substrate Transparent rigid PVC thickness 3 mm In this way, the antistatic resin molded article of the present invention can be used, especially when only a small amount of a suitable amount of graphitic fabric is used, and only an extremely thin layer is formed. Excellent surface antistatic properties can be obtained stably even during processing.
  • the antistatic resin layer formed on the surface of the fiber is dispersed in the form of a thermoplastic resin in which the conductive pendants meander and are in contact with each other or with a conductive interval maintained. Since the coating film has the above-mentioned characteristics, it is possible to obtain a molded product for thermoforming which can be subjected to secondary processing molding while maintaining the antistatic property of the molded product.
  • an antistatic resin molded article coated with a film made of Tancho charcoal as a conductive material is required to maintain the ability to control the surface of the molded article even when the molded article is used. ⁇ ⁇
  • the antistatic resin layer is made by applying a coating liquid containing graphitic fiber, making it easier to provide antistatic properties to molded products. .
  • a sufficient amount of antistatic property can be exhibited by adding a small amount of graphite to the resin, and a transparent molded article can be obtained by using a transparent material. The antistatic property is imparted to the antistatic resin layer.
  • conductive fibers especially ultra-fine
  • the antistatic resin product of the present invention is used in the fields of synthetic resin Sit * molding, processing, and molding, such as heat processing, rolling or pulling, and ⁇ processing. Since the static electricity does not decrease, it is not necessary to apply the antistatic paint after molding. As a result, it is possible to economically obtain a molded article of a fiber, which has not been able to obtain sufficient antistatic properties, not to mention a molded article having a simple shape.

Description

明 細 書 成形可能な制電性樹脂成形品 技術分野
本発明は、表面に制電性を付与して、成形加工によっても表面 率の実質的 な増加を伴わない制電性樹脂成形品に関する。 背景技術
制電性合藤脂成形品は、成形品の表面に制電性を付与して、 表面で籠する 静電気を逃がして、成形品表面での埃、粉塵の付着や堆積を嫌う用途に使担され
—し
合編脂成形品に制電性を付与するには、 «は、謝匕鑼などの導電性微粒子 や織などの導 の微粒子あるいは纖を欏旨に して均一に垂させて t、 た。 これら粒子間ないし纖簡の相互薩により制雜が生じ、 β品の電気抵 沆を低下きせるものである。
また、成形品の表層部だけに導電性の粒子や纖維を含有させることにより、成 形品表面にだけ を することも行われ このような倒としては、機旨基 板の表面に、合成欄 II旨に導電性の粒子ゃ||維を含有させて形成した塗縢ゃフィル ムを添着して形成したものがあり、制電性樹脂板などとして利用されている。 上記従来の制電性樹脂板は、熱可塑性の樹脂 ί板を成形した後で上記制電性の フィルムを積層形成することにより、表面が磨な制電性を示し、表面抵抗率 1 0 1 1 Ω/ ]以下の德旨板か得られる。
しかし、 このように形成した棚板を、 さらに加熱して曲げ加工や真誠形の ように面域を拡大するが如き変形をさせると、二次成形後の表面抵抗率か盲くな り、制電性が低下すると言う問題があった。表面抵抗率は^^に制電性樹脂板の 引張 «によって 口するが、 この原因は、導電性粒子や繊維を«した樹脂の 伸びにより導電性の粒子や繊維の相互擁鍵が少なくなり、 また、粒子間相互 距離が大きくなるためであると考えられる。
1
差替え用紙(規則 26) さらに、成形過程の変形量が大きくて塑性 »を生ずるような ¾ ^には、繊維 状の導電材料は変形方向に配向してしまうので、 さらに繊維間の相互接触や導通 可能な間隔保持の嫌が少なくなり、 表面抵抗率が高くなることか5 められる。 この傾向は、導電材料が剛直な »維である ¾ ^ほど生じやす ゝものである。 このように、制電性樹脂板がその後に二次加工などの成形加工に供されると、 加工後の成形品の表面抵抗率が高くなって制電性が低下するのでは、 その用途が 限られる。 このような場合には、通常の熱可塑性樹脂板から成形加工した後に、 制電性塗料を成形品の表面所望部位に塗布することで制電性を付与することは可 能であるけれども、制電性塗料の塗布のための工程が必要となり、 しかも、複雑 な形杭の成形品では均質で表面性状の な,形成が困難で、均一な制電性の 付与ができない。
本発明は、上記問題に钂み、制電性付与後の二次加工によっても表面抵抗率の 実質的な増加を伴わないような截减形可能な制電性樹脂成形品を提供しょうとす るものである。 発明の開示
本発明の制電性樹脂成形品は、熱可塑性樹脂基材と、戴樹脂雄の何れかの表 面に ¾tされお制 ®隨脂磨とから成る制竜'國旨成形品であるが 上記制 ¾性 樹脂廇は、 塑1¾謹 e中に導 sの; ¾纖維が曲がりくねって且 "^いに接触及 び/若しくは導通性を有する間隔を保持して分散している豳膜により形成されて なるものである。 この成形品がその後の熱加工によつて制電性樹脂層の £ΕΤない し引張り、 曲げなどの変形を受けても、 曲がりくねった長艤維が難ぐになろう とするのみでお互いの接触や導通可能な間隔を保てなくなることがなく、従って 、成藤も、樹脂層の制電性を保持することができる。 これにより、加餐戚形な どの! ¾][1ェによっても制電性を有する成形性と制電性とを同時に保持した制電 性樹脂成形品とすることができるのである。
このような導電性の長繊維には、炭素繊維、金属 、導電化された有機繊維 、等か 用可能で、できるだけ細くて長い繊維がお互いに絡み合って接触し易く 、 また曲がりくねり易いので好ましい。特に好ましいのは、超極細の長織繊維
2
差替え用紙 (規則 26) である。超鳊田の長炭素繊維はお互 t、に絡み合って 状に集合し易 、性質があ り、該毛玉 維集合体から多数の繊維が放出していて、熱可塑性棚旨中にその 維集合体を多数均一に分散させることにより、樹脂層中の繊維集合体を 相互に接触させ及び/若しくは導通可能な間隔を保持させ、該榭脂層に制電性を 付与する。
の炭素繊維は線径が大きくて剛直であり、繊維同士の絡み合いがないので あるが、本発明に使用する長繊維、特に超極細 繊維は、織維が超極細で、即 ち、線径に比して長さが長いので樹脂層中でも各^ ¾繊維が絡み合った で分 散する。毛玉状に絡み合った超橋田炭素繊維は、毛玉状として分散し易くて絡み 合いも容易になされる。 繊維を 状集合体とするためには、線径が 3. 5 〜5 0 0 nmで、 ァスぺクト比(鐡径に対する長さの比)が 1 0 0〜3 0 0 0の 超 «田であることが望ましい。 この 織維集合体からは多数の^ *纖維 が放出した漏をなし、 ¾ϊ状の集合体同士か 近している状態では、 から 漏犹に突出延伸して、る炭素纖が、樹脂層中で相互に誦して或いは種可 能な閬隔を備して、 電気的に囊状態を形成している。
本発明は、少ない量で機旨層中での導電性通維の広 II囲の: 態を維持す るために、導電性; IS維を添加した樹脂塗液の塗膜を基材表面に形成した。塗膜 形成後に二 &¾ェのため加截して変形しても 棚旨層中 性; 維の isみ合 いは解けずに短諮したまま傺持でき、力 o による制 の低下は少ない。 m 長鍾艤維を添加した塗膜では、加工により制電性が低下するどころか、 むしろ 、適度な加工成形に伴う塗膜の適度の圧下によつて、塗膜中で毛玉 合体同士 な 、しは集合体から出ている多数の炭素纖維同士の や導通可能に接近する頻 度が高くなり、 制電性が高くなる効果か ¾められる。 図面の簡単な説明
図 1 Aは本発明に使用するグラフアイト質繊維の 状集合体、 図 1 Bは 状集合体が «した状態を、示 ¾図である。
図 2は、制電性樹脂層中に分散したグラフアイト質繊維の 機合体の状態 を示 «念図である。
3
差替え用紙 (規則 26) 発明を実施するための最良の形態
本発明の成形用制電性樹脂成形品は、熱可塑性樹脂基材と制電性樹脂層とから なるものであるが、熱可塑性樹脂基材は、 その成形品の用途により適した熱可塑 性樹脂から選ばれ、例示すると、 ポリエチレン、 ポリプロピレンなどォレフィン 系樹脂、 ポリ塩化ビニル、 ポリメチルメタクリレートなどビニル系樹脂、 ポリ力 —ボネート、 ポリエチレンテレフ夕レート、 不飽和ポリエステル、 芳香族ポリエ ステルなどエステル系樹脂などがある。 このなかで、 耐薬品性に優れ、 urn性も
7 0〜8 (TCで、 も有するポリ塩化ビニルが好ましく用いられる。
基材の形態は、板、 シート、 フィルム、管、 その他、線、条、棒などがあり、 この »は、成形品の用途と制電性樹脂層の形成に適したものであれば特に制限 されないが、好ましくは、後に蒙减形するのに適したものから還ばれる。特に、 板又はシートが、 形に利用できるので、好ましく適用される。
制鼇隨脂層は、熟可塑剛旨中に導電性の長繊維、好ましくは導電' fel炭素 織維の毛玉 維^^体を分散させて成る塗膜であつて、成形品の表面に制電性 を^するものであるが、 この機旨層を熱可塑 機旨から «するのは、 この樹 脂層も二 ¾Λ工による成形を可能にするためである。
この樹脂層は、上記の »を構成する上記熱可塑性樹脂と同種又は異種の熱可 mm-imt o特に この 脂磨が塗膜から纖されるので 鐘腿成の 樹脂は、基 «脂と同種の樹脂であって、且 *0«電1«纖維を容易に分散させる ために塗液に形成可能なものが、基材との接着 の点から..好ましい。難の樹 脂を使用することも可能であるが、特に、 同種の橱脂からは塗液の形成が困難で あるとき或は同種の樹脂が耐候性、 表面硬度、耐磨耗性等において劣るときは、 異種の熱可塑性樹脂であって、塗液の形成が可能で、 同種の樹脂より耐候性や表 面硬度ゃ耐磨耗'酵に優れ、 塗液硬ィ は基材樹脂との接着力の大きい樹脂のな かから選ばれる。
制電性樹脂層の塗液は、 樹脂謝がポリ塩ィ匕ビュルの場合には、 ポリ塩化ビニ ル、 その共重合体やアクリル樹脂を、 相溶性が高い揮発性の溶媒、 例えば、 メチ ルイソブチルケトン、 メチルェチルケトン、 シクロへキサノンなどに溶解して塗 液にしたものが利用される。樹脂基材がポリカーボネートの場合にも、 ポリ塩化
4
差替え用紙 (規則 26) ビニルやその共童合体やアクリル樹脂の上記塗液が使用され、 また、樹脂謝が ァクリル機旨の場合はァクリル樹脂の上記塗液が使用される。
この樹脂層は、 δ 表面、例えば基板の何れかの表面又は両面に塗膜として形 成されている。塗膜の形成は基材表面に直接グラビアロール等で塗布したり、 デ イツビングにて行う方法もある。 また、熱可塑性樹脂フィルムの表面に導電性長 繊維を含む謹を形成し、 このフィルムの裏面を上記の基材に添着する方法もあ る。 この場合には、基材表面にこのフィルムの裏面を接着剤を介在して接着する 方法や直接に加熱プレスや口一ルプレスで熱 する方法等が採用される。 本発明に使用する導電' &g繊維は、織繊維、 ステンレスや銅等の金属繊維、 硫化銅等を含有した有機織維等が使用される。 これらの畿維は曲がりくねつてい てお互いがいずれかで接臓び/若しくは導通性を有する間隔を保っていて、導 通性を有している。各纖維の径は 5 以下であることが、樹脂層中で曲がり くねって接触させたり導通可能に させるために有用である。
導 長纖維として、 I»に対して に長い長 β畿維が好ましく、長炭素 纖維には、特に、 細としたものが好ましく使用される。 このような; ^素 ¾ 緇は、不定藤素麵維とグラフアイト質艤維の を含み、 きらに長藤纖維 には、素纖維に不定形 とグラフアイトと力洪存するような 織維も使用さ れる。 これらは、 いずれも鍾 δ の纖であって、纖維同士纖れて翁み合い により集合体を形成する ttaを有するものが好ましい。
導 の; ¾素 βとして、最も良いのは、構^ ±はグラフアイト質 SIIであ つて、縝維輔に同軸状にグラフアイト層が積層形成された断面円形のグラフアイ ト質の極細状の長纖維であり、 その隸径が 1 m以下のものである。
このようなグラフアイト質纖維は、特公平 3— 6 4 6 0 6号公報明細書中にそ の製法が開示されて 、るが、 芳議又は非芳碰炭ィは素と水素との混^;流中 で鉄族金属又はその酸化物の 応により繊維軸に同軸状のグラファイト層が 析出されて形成された 田な織維である。 この繊維はグラフアイトの層 ^^晶の C軸が織維軸と直交する構造であり、不定形^ ¾の析出が少なくなされているも のが好ましい。
特に、超 «ΙΒの;^ ¾繊維の通は、線径(単一繊維の直径)が 1 j m以下、
5
差替え用紙 (規則 26) 好ましくは 3. 5〜5 0 0 nmである。
超纖の長炭素繊維は、線径の小さい方が樹脂層中で集合し易くてよいが、 3 . 5 iim未満では成形時に切断されやすく、 線径が 5 0 0 nmを超えると、 繊維 が剛直になりやすく、 集合するのに不利となる。
超禱田の; 繊維は、 ァスぺクト比(線径に対する長さの比) を 5以上にし て、 繊維の鏈れゃ鉻み合いを容易にする。 その結果、繊維は集合体が形成しやす くなる。特に、 ァスぺクト比 1 0 0〜3 0 0 0とするのが好ましく、 ァスぺクト 比 1 0 0未満では、集合体を形成し難 各繊維相互の接顧度が低下したり、 或 I,、は導通可能な間隔が保持できず、 成形品の熟成形の縢に塗膜中の集合体間の 接触 g各が解けて、 制電性が低下するおそれもある。他方、 ァスぺクト比 S 0 0 0以上のときは、 纖維の集合体が大きくなりすぎ、 添加量の割りに集合体間 の接触や導通可能な間隔保持の が低下する。
図 1 Aに示すように、 超極細の長 «繊維 1は、 線径が小さく且つァスぺクト 比が大きいので、纖 1、 1同士が絡 つて、顕翻的纖では、 ¾¾tに集 合し、赣¾¾¾¾^係 2は、 直径 aが 0 , 2〜1 0 j m程度の寸法で、 この 毛玉の周囲から曲がりくねった艤維 1力 «状に放出した形鏺を示す。 そして、 毛玉 維集合体 2も、 図 1 Bに示すように、多数集まって相互に接触し又相互 に導 31 ^能な閬隔を傑持しながら童なり合って藝集した義集体 8を形成している o
このような凝集した ¾¾ 合体 2を塗液中に添加すると、 ¾ϊ中に樹脂液が 浸透して毛玉間相互の凝集が解けて毛玉が分散して均一に «するようになる。 これを樹脂表面に塗布すると塗液中の溶剤が揮発し、 その後には、硬化した欐脂 層中においても毛玉がその織維の一部を周囲に放出する状態となり、 相互に隣接 する周囲の毛玉同士がその織維を交叉 しあるいは接近させながら、 毛玉状の 炭素繊維集合体 2間が導通し、 樹脂層の電気抵抗が低下するのである。
制電性樹脂層の形成は、熱可塑性樹脂を揮発 溶剤に溶解して溶液にし、 この 溶液中に上 炭素繊維を分散させて塗液を作り、 上記 表面に塗布して、 溶 剤を揮散させて硬化させて塗膜にする。
基材表面への塗布は、 ナイフエッジコ一ティング、 ロールコーティング、 スプ
6
差替え ffi紙 (規則 26) レーコーティング等か J用可能であるが、 謝が表耐坦な平板であるときは、 ロールコーティングによるグラビア印刷法が塗布厚み一定に調整できて良い。 本発明が制電性樹脂層を βとするのは、 ^繊維の集合体の分散挽態を樹 脂層中に維持したまま基材表面に制電層を形成するためである。
制電性樹脂層中の長炭素繊維の添加量は、 1〜 8 ¾¾%纖とするのがよい。
未満では、 制電性が得られず、 8童量%以上では、 添加量の多い割りに 表面抵抗率がそれほど低下しないからである。特に好ましいのは 3〜8 S*%で ある。塗液に対しては長 纖維の^ ¾量が 0. 2〜0. 8重量%となるように 溶剤を添加して均一塗布するように塗液を調製するのが良 I、。 この範囲であれば 塗液が適度な粘度を有し均一な塗布ができるからである。
そして、 β蒸発して硬化した棱の ¾mである制電性樹脂層の厚みは、 0 . 1 〜: 1 0 mとし、 これにより、 成形品の表面 β率が、 1 0 4 〜1 0 1 ι ΩΖΠ程 度を容易に得ることができる。 厚み 0 . 1 未満では、 充分低い表面抵抗率が 得られず、 また、 成形品を二次加工して延伸することで、 更に ar摸の厚みが減少 し制電性能を維持できなくなる。 1 0 /jm以上では表面抵抗率は、 l O jtimでの 表面抵抗率とほぼ同程度であって、 そこで 1 を超える厚膜としても無意味 である。 また、 塗膜の厚みを増すと、 透視性力 くなるので、 この点からも 1 0 m ¾下が好まし 基村に!!明濯 を用いると 制電性 1旨磨に黒色の長 β 識維を用いているにもかかわらず ®橋田であると同時に猶 tl量も 1〜8童量% と少なくてすむので、 基材の材質、 厚みを考え併せると約 3 0〜9 0 %の全光線 透過率の透視性を有する成形品となすことができる。
このように表面に制電性樹脂層を形成した成形品は、 基材及ぴ樹脂層が L、ずれ も熱可塑性樹脂であるので、 その用途に応じて、 ニ^ draェをすることができる。 二次加工には、 成形品を加熱して行う曲げ加工、 プレス成形、 真誠形、圧空成 形、 プロ一成形、 »し成形などがあり、 これらニ^]卩ェにより表面の当該樹脂 層には、 引 ¾形、 厚みき、 とこれに伴う面積拡張が生じるけれども、 過激な 加工をするのでなければ、 表面抵抗率は殆ど _wすることなく、 むしろ低下傾向 にあり、 二¾πェ後も充分な制電性を有している。
このように加熱加工により表面抵抗率が実質的に上昇しないのは、 制電性樹脂
7
差替え 用紙 (規則 26) 層中に分散して互 t、に接触状態あるいは導通性を有する間隔にある 合体 は、各 繊維が曲がりくねってもつれや絡み合っているので、麵形により変 形を受けて各集合体が離れても絡み合ゥた繊維同士は接触を維持し或いは導通性 を有する間隔を保持したまま曲がりくねった繊維が単に伸びるだけであり、導通 状態は変わらないからである。 しかし、余り大きな変形を受けて曲がりくねった 繊維の伸びの限度以上になると «Iが切断されさらに繊維間の導通性を有する間 隔が保持できなくなる。 このため、変形即ち成形倍率は 1 0. 0倍までとすべき である。 また、毛玉鶴合体を分散させた樹脂層の場合、成形倍率を 2〜5倍に すると表面抵抗率が低下する傾向にある。 これは、 図 2に示すように、 «形時 に制電性樹脂層が上下方向に圧縮されると、樹脂層の上下に分布して導通してい なかつた各集合体が互いに接近して接触し或 、は導通性を有する間隔になり、線 維間が導通し導通点が増加するので、 «形により表面抵抗率が低下すると考え られる。
そして、 »に透明樹脂を用 、た透 1¾を有する制電性 旨成形品も同欉にニ ¾加ェしても制 m¾を維持しているので、 制 ¾ 、:¾加: D 、達 を兼ね備 えた成形品を得ることができる。 さらに、本発明の疆品は、 基材を透明性樹脂 に着色斉 ίを纖口して予め所望の^ f に調色しておくことにより、 制電性と、二次 加工性と きらに 制電' «脂層のすぐれた ¾¾¾と相俟って意 Hした 損 わない SIみのある IIとを兼ね備えた成形品を得ることができる。
溶媒としてのシクロへキサノンに、熱可塑性樹脂としてポリ塩化ビニルの粉末 を添加して し、 この 中にグラフアイト質艤維(ハイピリオン力タリシス イン夕一ナショナル社 品名 「グラフアイトフイブリルズ」平均線径 1 0 nm、平均長さ 1 0 πι)を種々濃度を変えて添加して、 塗液を形成した。 樹脂基材として厚み 2. O mmのポリ塩化ビニルシートを用い、 その表面に、 上記の塗液をバーコ一夕で乾燥 厚力 ¾算 2 と 4 の二水準となるよう に塗布して觀硬化させて、 制電性塗膜を形成した。次いで、 このシートを、 2 0 o °cに加熱して真空成形加工を行った。真誠形の際の成形倍率(成形前の原
8
差替え 用紙 (規則 26) 板面積に対する成纖の面積の比) は 2〜: I 0とし、真空成形の前と後で測定し た表面抵抗率を対比した。
塗膜中のグラフアイト質繊維の添加量が、 4. 5重量%の試料(実施例 1 ) と 3. 8童量%の難(実施例 2) について、真空成形前後の表面抵抗率の測定試 験結果を表 1にまとめた。
また、比較例 1として、微粒子状酸化錫 S n 02系の制 ®性塗料を使用して制 電性のポリ塩化ビュルシートを形成した。 この比較例 1は、 シクロへキサノンに 上記のポリ塩化ビニルを 9童量%、 S n 02 (触媒ィ誠(株)製、品名 「E L C OM TL 3 5」粒径 2 0 0 nm以下) を 1 5重量%添加して塗液を調製して 、実施例と同じポリ塩化ビニルシートに塗布して塗膜を形成し、 同様に真空成形 の前後で表面抵抗率を実測して:嫩した。
比較例 2として、針状の導電性酸化チタンを含有した制電性塗料(大日精化 ( 株) li , 「ネオコンコート S 2】 2 0」) を同様にポリ塩化ビニルシートに塗 布して塗膜を形成し、 同樣に、真空成形の前後の表面抵抗率を比較した。 表 1
Figure imgf000011_0001
注) 成形倍率 1は、 真空成形前を指す
表 1から、塗膜形成後で真空成形前(成形倍率 1 ) にあっては雄例のグラフ
9
差替え用紙(規則 26) アイト質繊維を含む成形品が 1 0 7 - 1 0 9 Ω Dの表面抵抗率であり、十分な 制電性を有している。 これに対して、比較例 1の微粒子状 S n 02を含む成形品 は、 ほぼ 1 0 β Ω/Π程度の表面抵抗率で、 鍾例より低くなつていて、.より十 分な制電性を有する。比較例 2の針状酸化チタンを含む成形品は、 1 0 6〜1 0 7 Ω /口程度で、十分な制電性を有する。 まだ、 実施例、 比較例共に膜厚が厚く なると表面 WC率が低下している。
これらの麵を真空成形すると、比較例 1、 2の成形品は、成形倍率 3. 0か らその表面 fSit率が 1 0 Ω/Ώ以上に上昇し制電性を有さなくなるけれども、 本発明のグラフアイト質纖維の使用の麵例は、成形倍率 5 , 0でも表面抵抗率 が成形前よりもむしろ低下する廳がみられ、表面抵抗率が 1 0 7 下と なった。 このような結果となった原因として、 この真空成形の過程では、成形品 の伸びと同時に塗膜も伸びて薄くなるから、 あるいは、成形品が に して 賺も圧下されるから、鍾例においては、 曲がりくねった纖維が伸びるだけで 繼 ϊ閬の聽や導 ¾r能な間譲ま保たれ、 さらに、 議中に分散するグラフアイ ト質艤維の集合体が位置を変えずに偏平に変形して長くなり、上下に分布してい て接触して I、なかつた集合体相互間の鐘や導通可能な接近が新たに起り、 これ らより»な 、し導通可能な接近の頻度が高くなつたためと解される。
これに ¾して、 比核例 1においては難子状 S n 08であるため 謹縢が伸び ると β子状 S n 02 の«や がなくなり、 表面進率が増加するものと考 えられる。 また比較例 2においても、針状の導電性酸化チタンを用いているため ¾ 塗膜が伸びると導電性謝匕チタンの相互距] 1が広がり接触や導通に要する接近 がなくなると同時に、 針状黢化チ夕ンか衷形方向に配向して上下の誦ゃ接近も なくなるためと考えられる。 しかし、 比較例 2は、 針状であるため比較倒 1の徽 粒子状のものより粒子間は若干鍾ないし接近を保つことができるのであろう ( 成形倍率 2倍では 2 X I 0 8 Ω /口であるが、 これとて成形倍率が 2倍までであ り、実用的でない。 )。
塗膜中の上記グラフアイト質繊維 「グラフアイトフイブリルズ」 の添加量を変 えて作製した制電性ポリ塩化ビニルシートを使用して、 塗膜中の黝瞻と真空成 形前後の表面抵抗率との関係の測定結果を表 2に示してある。表 2より、添加量
1 0
差替え用紙 (規則 26) が 0. 9 3 wt%では制電性を有さず、 L 3 ¾^%になって の制電性を有する ようになり、 添加量の下限は l wt%であることがわかる。 また、 励 II量を 8. 6 wt%にしても 7 wt%と略同じ表面抵抗率を示し、 これ以上の添加量の馳 tlは無意 味であることがわかる。 この結果より、長 ¾繊維 「グラフアイトフイブリルズ 」 の添加範囲が、 1〜8龍%の範囲であれば適度な制 性を付与できることが わかる。 表 2
Figure imgf000013_0001
次に、 塗膜中の 「グラフアイトフィプリルズ J の翻口量が 4. 5龍部で、 塗 膜厚みが 4. 1 mの樹脂層を有するポリ塩化ビニルシートを用いて、 真空成形 による成形 と表面抵»との閼係を求 表 3に示した 0該表より、成形倍 率が 7倍になると^ P表面抵抗率が職 [Iし、 1 0倍になると 1 0 l gQ/CJK上と なって制電性を有さなくなることがわかる。 これは、纖維が曲がりくねっていて も 7倍もの成形倍率で加工すると、 纖維が伸びて樹脂の変形に対応してやや追従 しづらくなつて接触や導通可能な接近ができなくなるものも出てくることによる ものと考えられる。 このことより、 後述の表 4から判るように制電性を保持でき る成形倍率の可能性は膜厚が厚くなると増加する傾向にあることと実際的な成形 作業性を考え併せると、 成形倍率は 1 0倍程度までが制電性を保持できるであろ うと考えられる。 また、 この表 3より、 成形倍率が 5倍まではニ Πェにより表 面抵»が低下しており、 好ましい成形倍率は 7倍までである。
1 1
差替え 用紙 (規則 26) 表 3
Figure imgf000014_0001
添加量 (固形分) 4 . 5 wt¾
4 . 1 u m
次に、 「グラフアイトフイブリルズ」の塗膜中の励口量を 4. 5童量部に固定 し、 厚を変化させ 膜厚の表面抵 ¾に及ぼす効果について調ぺ、 表 4に示 した。表 4より、廳が厚くなるほど表面抵赫が低下し、 この傾向は、成形倍 率力高い場合にも成り立つことカ碎 IJる。 しカヽし、膜厚を 1 5 mにしても 8 m のときとほとんど変わらない表面抵抗率を示し、 1 0 |i IE程度で十分である。 ま た、膜厚が 0. 3 imと薄いと 1 0 1 s Ω/ロ以上で十分な制電性を有さな I'、が 3倍の成形をなすことで 1 0 ι β ΩΖΕ]と低下し制電性を十分有するようになる。 また、塗膜中の添加量を職 tlさせると表面抵 が低下する傾向にあることを考 え併せると、膜厚としては、 0. 1〜: 1 程度が良く、好ましくは l〜8 /i mであ 。 表 4
Figure imgf000014_0002
さらに、膜厚と透視性の関係について調べ、 その結果を表 5に示した。膜厚が 厚くなると ®見性は低下するものの、 2. 3 jtim厚では 5 7* 1 %の全雄透過 性を有し、十分成形品を通して應できるものであることがわかる。 このものは
1 2
差替え 用紙 (規則 26) 、 表 4に示すように、 1 08 Ω /口の表面抵»を有し、二次加工性も十分有し ているものである。
Figure imgf000015_0001
注) 基材 透明硬質 P V C 厚み 3 m m このようにして、本発明の制電性樹脂成形品は、特に、少量のグラフアイト質 織維の適量の配合使用で、 しかも極めて薄い の形成だけで、加工に対しても 安定して優れた表面制電性を得ることができるのである。
本発明は、觀 I纖の表面に形成する制電性樹脂層は熱可塑性観旨中に導電性 の長垂が曲がりくねって且つ相互接触して、又は導通性を有する間隔を保持し て分散している塗膜としたので、成形品の制電性を維持しながら二次加工成形が できるような熱成形用制 纏旨成形品とすることができる。
さらに、 導電' として 田の長炭 «¾維を用いて塗膜とした制電性樹 脂成形品は、該成形品をニ πェしても、成形品表面の制義能を維持すること がで ¾る ο
制電性樹脂層に含む導∞料に超極細状でァスぺクト比の大きいグラフアイト 質纖維を使用することにより、 状集合体とすることができるので、成形品の 表面制電性を効率良く無でき、 また、制電性樹脂層を、 グラフアイト質繊維を 含む塗液を塗布して成る翻陽としたので、成形品の制電性付与の作業を簡便にな すことができる。 また、 グラフアイト a維を少量^ inすることで十分な制電性 を発揮でき、透明 を用いることで透視性を有する成形品を得ることができる 制電性樹脂層に制電性を付与するのに、導電性繊維として、特に、極細状のグ
1 3
差替え用紙 (規則 26) ラファイト垂維を少量 »することにより扁性が良好な成形品を得ることが でき、 さらに を着色剤により予め することにより成形品は所望の色彩に 調色し得て、 しかも、種々の溧みがあって且つ意図した色調を損なわない色彩を 具備した成形品を容易に得ることができる。 產業上の利用可能性
本発明の制電性樹脂 品は、合成樹脂の Sit *成形,加工及 t ^画する分野 で、ニ¾¾]ェである加熱加工、圧下ないし引張り、 师 加工等の成形加工に供さ れても制電 低下しないので、成形後の制電塗料の塗布が不要となる。 これに よって、単純な形の成形品は言うに及ばず、今までに十分な制電性の得られなか つた纖な赚の成形品を経済的に得ることができる。
1
差替え用紙 (規則 26)

Claims

1 . 熱可塑性樹脂基材と、該樹脂基材の表面に被着された制電'隱脂層とから 成る «形可能な制電性樹脂成形品であつて、
上記制電性樹脂層は熟可塑性樹脂中に導電性の長繊維が曲がりくねって且つ互 いに »及び/若しくは導通性を有する間隔を保って分散している塗膜であるこ とを特徵とする成形可能な制電¾©脂成形品。
2. 熱可塑性樹脂基材と、該樹脂雄の表面に被着された制電性樹脂層とから 成る «形可能な制電性樹脂成形品であって、
上記制 隱脂層は熱 性機 e中に導電性の超禱田の; w素艤維が! «し且 つ互いに »及び z若しくは導通性を有する閭隔を保っている塗膜であることを 特徵とする成形可能な制電性樹脂成形品。
3. 上記の超極細の長^ *艤維が、 ||¾ 3. 5 nm- 5 0 0 nmでァスぺクト 比 1 0 0〜3 0 0 0の範囲にある钃維の毛玉 体若しくはこれが凝集し た凝集体であることを特徵とする請求の範囲 2記載の制電 1»脂成形品。
4. 上記の β細の長 纖維が、 グラフアイト β維であって、纖 1¾に同 軸状にグラフアイト層が穑廇形成された断面円形のグラフアイト質の線径が 1 m以下であることを特徵とする請求の載囲 2 βの制電性機成形品。
5. 上記の超極細の長^ ¾纖維が、 ISS 3. 5 ηπ!〜 5 0 0 nmでァスぺクト 比 1 0 0〜3 0 0 0の範囲にあることを特徵とする請求の範囲 4 ΙΕ¾の制電性樹 脂成型品。
6. 上記の超 «田の長炭素繊維が、 毛玉状繊«合体若しくはこれが した凝 集体であることを特徴とする請求の範囲 4又は 5 の制 樹脂成型品。
1 5
差替え用紙 (規則 26)
7. 上記制電性樹脂層が、超極田の長鱅繊維を 1〜 8 含む厚さ 0. 1〜 1 0 j mの^ mであることを特徵とする請求の範囲 2ないし 6何れか記載の制電 性樹脂成形品。
8. 請求の範囲 2ないし 7何れか記載の制電性樹脂成形品を 1 . 1〜: 1 0. 0の 成形倍率で 减形して、 その成形品が 1 0 1 1 Ω/Ό以下の表面抵抗率を有する制 電性樹脂成形品。
1 6 差替え用紙(規則 26)
PCT/JP1997/004528 1996-12-10 1997-12-10 成形可能な制電性樹脂成形品 WO2004073970A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/117,947 US6214451B1 (en) 1996-12-10 1997-12-10 Formable antistatic resin molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP32943796 1996-12-10
JP8/329437 1996-12-10

Publications (1)

Publication Number Publication Date
WO2004073970A1 true WO2004073970A1 (ja) 2004-09-02

Family

ID=18221371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004528 WO2004073970A1 (ja) 1996-12-10 1997-12-10 成形可能な制電性樹脂成形品

Country Status (2)

Country Link
US (1) US6214451B1 (ja)
WO (1) WO2004073970A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257638A1 (en) * 2003-01-30 2006-11-16 Glatkowski Paul J Articles with dispersed conductive coatings
JP2004230690A (ja) * 2003-01-30 2004-08-19 Takiron Co Ltd 制電性透明樹脂板
JP2006310154A (ja) * 2005-04-28 2006-11-09 Bussan Nanotech Research Institute Inc 透明導電膜および透明導電膜用コーティング組成物
US8741387B2 (en) * 2008-10-24 2014-06-03 United Technologies Corporation Process and system for distributing particles for incorporation within a composite structure
CN101939256B (zh) * 2009-03-05 2013-02-13 昭和电工株式会社 碳纤维聚集体和其制造方法
US10787591B2 (en) * 2012-04-30 2020-09-29 The Boeing Company Composites including silicon-oxy-carbide layers and methods of making the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125730A (ja) * 1988-07-27 1990-05-14 Toyo Alum Kk 電磁波シールド性を有する成形用シート及びそのシートを用いた成形体
JPH03274140A (ja) * 1990-03-26 1991-12-05 Furukawa Electric Co Ltd:The 電磁波シールド性プラスチック成形品の製造方法
JPH0621683A (ja) * 1992-06-30 1994-01-28 Yazaki Corp 電磁波遮蔽体及びその製造法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540624A (en) * 1984-04-09 1985-09-10 Westinghouse Electric Corp. Antistatic laminates containing long carbon fibers
US4579902A (en) * 1984-12-05 1986-04-01 Celanese Corporation Permanently antistatic thermoplastic molding composition
JP3503649B2 (ja) * 1993-10-29 2004-03-08 日本ゼオン株式会社 帯電防止組成物、樹脂組成物、及びそれからなる成形品

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125730A (ja) * 1988-07-27 1990-05-14 Toyo Alum Kk 電磁波シールド性を有する成形用シート及びそのシートを用いた成形体
JPH03274140A (ja) * 1990-03-26 1991-12-05 Furukawa Electric Co Ltd:The 電磁波シールド性プラスチック成形品の製造方法
JPH0621683A (ja) * 1992-06-30 1994-01-28 Yazaki Corp 電磁波遮蔽体及びその製造法

Also Published As

Publication number Publication date
US6214451B1 (en) 2001-04-10

Similar Documents

Publication Publication Date Title
KR100484574B1 (ko) 투명 도전 적층체 및 그 제조 방법
KR101728565B1 (ko) 투명 전도성 복합 필름
JP3903159B2 (ja) 導電性成形体の製造方法
JP3398587B2 (ja) 成形可能な制電性樹脂成形品
JP2007112133A (ja) 導電性成形体
JP2007229989A (ja) 導電性成形体及びその製造方法
JP6124099B1 (ja) 導電積層体、それを用いた成型体、静電容量式タッチセンサーおよび面状発熱体、ならびに成型体の製造方法
JP2006035771A (ja) 導電層転写シート
CN102053735A (zh) 触摸屏输入指套
JP2006035773A (ja) 粘接着性導電成形体
WO2004073970A1 (ja) 成形可能な制電性樹脂成形品
JP2020094170A (ja) 成形フィルム用導電性組成物、成形フィルムおよびその製造方法、成形体およびその製造方法
CN102053739B (zh) 触摸屏输入指套
JP4087508B2 (ja) 制電性樹脂成形品及びその二次成形品
JP2003258490A (ja) 電磁波シールド材及びその製造方法
JPS61127198A (ja) 導電性複合体
TW201247531A (en) Method for making transparent carbon nanotube composite film
JPH0682947B2 (ja) 導電性複合体の製造方法
CN102023730B (zh) 触摸屏输入指套
JP2664940B2 (ja) 膨脹黒鉛複合シートの製造方法
WO2021172086A2 (ja) 透明導電性フィルム
KR20230117607A (ko) 투명 도전성 필름의 제조 방법
JP4697360B2 (ja) 透明導電フィルム
JP7485629B2 (ja) 透明導電性フィルム
CN102043490B (zh) 触摸屏输入指套

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09117947

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): US