WO2004070402A1 - 電気設備の高調波診断方法 - Google Patents

電気設備の高調波診断方法 Download PDF

Info

Publication number
WO2004070402A1
WO2004070402A1 PCT/JP2004/001154 JP2004001154W WO2004070402A1 WO 2004070402 A1 WO2004070402 A1 WO 2004070402A1 JP 2004001154 W JP2004001154 W JP 2004001154W WO 2004070402 A1 WO2004070402 A1 WO 2004070402A1
Authority
WO
WIPO (PCT)
Prior art keywords
harmonic
deterioration
harmonics
motor
current
Prior art date
Application number
PCT/JP2004/001154
Other languages
English (en)
French (fr)
Inventor
Hiroshi Koh
Original Assignee
Atec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atec Co., Ltd. filed Critical Atec Co., Ltd.
Priority to JP2004570946A priority Critical patent/JP3661155B2/ja
Priority to EP04708066A priority patent/EP1591795A4/en
Priority to US10/525,227 priority patent/US7275003B2/en
Publication of WO2004070402A1 publication Critical patent/WO2004070402A1/ja
Priority to HK06109826.5A priority patent/HK1087778A1/xx

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply

Definitions

  • the present invention belongs to the technical field related to electrical equipment diagnosis, and relates to a method for diagnosing harmonics of electrical equipment for an electric motor and an impeller.
  • the purpose of the diagnosis of abnormalities and deterioration of electrical equipment is as follows. Improvement of operation rate, reduction of maintenance cost such as material cost and personnel cost, reduction of cost by extending replacement cycle and reduction of inspection and maintenance, prevention of trouble, improvement of safety, improvement of reliability, improvement of productivity, improvement of quality And the like.
  • Methods for diagnosing motor abnormalities and deterioration include (1) vibration method, (2) acoustic method, (3) temperature method, (4) torque (strain) method, (5) current method, (6) waveform method, etc. There is a force The torsion method is the most commonly used of these methods, so the vibration method is described here.
  • Other diagnostic methods have already been described in patents (Japanese Patent Application No. 2000-386603, Japanese Patent Application No. 2001-265949, Japanese Patent Application No. 2001-358718, Japanese Patent Application No. 2003-030807) filed by the present inventors. Omitted.
  • Vibration method is a simple diagnosis that determines the rotational mechanical vibration of the electric motor or the load equipment including the electric motor by installing an electrodynamic type or piezoelectric type or vibration type vibration pickup as close as possible to the source of the vibration. And precise diagnosis to identify the cause and location of abnormalities and deterioration by frequency analysis of vibration. However, all of these diagnoses are limited to mechanical elements such as bearings and rotating shafts.
  • JIS standards JIS standards
  • VDI standards standards of the German Technical Association
  • a simple diagnosis determines that there is an abnormality, a detailed diagnosis is required to identify the cause and location.
  • the vibration signals generated by rotating machinery are complex, and there are few simple vibrations. Obtain meaningful information from among them and abnormal
  • the frequency analysis method is most widely used to accurately determine the presence or absence of a signal. By analyzing the frequency of the vibration signal, it is possible to identify the cause and location of the abnormality.
  • the relationship between the cause of the abnormality and the frequency of occurrence is obtained by accumulating past data over a long period of time and is not accurate.
  • Inverters have many features, such as energy savings, improved productivity, and improved operability, and have greatly contributed to the high technology of various industrial machines. Inverters are now indispensable equipment for power equipment, and their production is increasing year by year. The production volume of industrial inverters in Japan in fiscal 1999 was produced by the Ministry of International Trade and Industry (currently According to production dynamics statistics, it exceeds 1.8 million units (equivalent amount: approx. 100 billion yen).
  • the impeller is composed of electronic components such as ICs, resistors, capacitors, and transistors, as well as a number of components such as cooling fans and relays. These components cannot be used forever, and their service life and service life are greatly affected by the environment in which they are used. The service life is doubled for every 10 ° C decrease in temperature.
  • JMA Joint Electrical Manufacturers' Association
  • inverters for abnormality and deterioration diagnosis in the guidebook for “Regular inspection of general-purpose impellers” in order to prevent traps.
  • the vibration method is most widely used for diagnosis of motor and impeller abnormalities and deterioration, but since the mounting of the pickup is related to the accuracy, it must be fixed near the vibration source. Diagnosis of abnormal and deteriorated parts is performed by bearing This diagnostic method is limited to mechanical components such as the spindle, and it takes a long time to measure, and the cost of diagnosis including the measuring device is high. Therefore, this diagnostic method is mainly important for relatively large machines. Although the description of other diagnostic methods for motors is omitted, none of them can identify the cause and location of abnormalities and deterioration, as in the vibration method. Extremely expensive.
  • inverter in order to identify the cause and location of the faults and deterioration, the inverter is stopped or paused and disassembled. It has to be performed, it is extremely troublesome, takes time, and costs for diagnosis are high.
  • harmonic diagnosis methods by the present inventor are based on the rated capacity of motors and inverters, power impedance and load factor, the parallel equivalent capacity of loads other than the equipment concerned, the working voltage, and the type of harmonic countermeasures. It is an absolute method of calculating by grasping in advance, etc., and it is not always a simple method, and it takes time to diagnose. Furthermore, the relationship between the inferior place, that is, the inferior place and the harmonic was not clear. '
  • the harmonic diagnostic method for electric equipment for an electric motor and an inverter according to the present invention is performed as follows in order to solve the problem of the harmonic diagnostic based on the absolute method by the inventor.
  • a deterioration diagnosis method for determining an abnormality of the motor inverter from a current harmonic flowing through the motor inverter constituting the electric equipment, the harmonic content of each order of the current harmonic is adjusted to a predetermined order.
  • the method for diagnosing harmonics of electrical equipment according to the present invention is performed by measuring current harmonics flowing through a motor and an inverter, but does not depend on the capacity of the motor and the inverter.
  • This is a very simple diagnostic method that is not related to the parallel equivalent capacity of the loads other than the equipment, the working voltage, and the type of harmonic countermeasures.
  • the relationship between the deteriorated part of the motor dimmer and harmonics was clarified by using the principal component analysis method. Since it is possible to classify the degree of deterioration based on this, the harmonic diagnostic method of the present invention is extremely practical and has the effect of being widely used in industrial society.
  • FIG. 1 is a block diagram related to the inverter.
  • FIG. 2 is an explanatory diagram of harmonic generation.
  • 3A to 3H show an example of an oscillating current waveform and an autocorrelation function for the example.
  • 'FIG. 4 is a flowchart for diagnosing the electric motor.
  • FIGS. 5A to 5C are flowcharts of the diagnosis of the inverter. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram of an inverter. 1 is a three-phase AC power supply, and input power I 7 flows into the converter section 4 of the AC-AC converter 3 that controls the motor 2 c 5 is a smoothing capacitor, 6 is an inverter section, which is controlled by the control section 7 and the drive section 8 Output power 2 'is controlled.
  • the control section 7 and the drive section 8 are a control board and a drive board on which electronic components such as ICs, resistors, capacitors, and transistors are mounted.
  • the input current and the motor current (output current) have waveforms as shown in FIG.
  • the reason why the input current of the AC-AC converter 3 becomes as shown in FIG. 1 is that the full-wave rectification is performed by the comparator unit 4 and then the smoothing capacitor 5 is provided. This phenomenon will be described below. .
  • Figure 2 is an explanatory diagram of harmonic generation using a single phase as a sample.
  • Three-phase AC power supply Because the smoothing capacitor 5 shown in Fig. 1 is used to convert the power to DC power, a pulse-like current flows through this capacitor 5 only during charging as shown in Fig. 2.
  • is the pulse width and ⁇ is its height.
  • harmonics are generated because the current flows between the AC power supply and the DC power supply are different.
  • Equation 1 is the magnetomotive force at a distance of ⁇ (electrical angle) on the circumference from the center of the magnetomotive force of the rotor, 4 is a constant, and I u , I v , and I w are the U phase, V phase,
  • the effective value of the W-phase current, ⁇ is the angular velocity expressed as 2 ⁇ / (rad / s), where t is the frequency, and t is the time. Therefore, the combined magnetomotive force F considering the nth harmonic is as follows.
  • Equation 2 shows the following.
  • y ( x ) 0 because the smoothing capacitor 5 is ideal, and in the ideal case, no pulse current due to the charging current flows.
  • the motor is designed so that it contains no harmonic components in the magnetomotive force, so that it is designed to contain no harmonics. Waves are generated. It is well known that an inverter generates harmonics.
  • the inferior part of the electric motor can be roughly classified into a mechanical element part such as a bearing and a rotating shaft and an electric element part such as a stator winding.
  • the motor current contains an irregular vibration component.
  • this includes regular harmonic components. Therefore, to extract only the essential harmonic components from the random irregular current waveform, the autocorrelation function R ( ⁇ ) can be obtained as in the following equation.
  • Figures 3A, 3B, 3C, and 3D are examples of random current waveforms from which the fundamental wave component has been removed, and the autocorrelation functions for each are shown in Figures 3E, 3F, 3G, and 3H.
  • the smoothing capacitor 5 in Fig. 1 was described above, but if the other power elements (converter 4 and impeller 6), control 7 and drive 8 deteriorate, the output of Fig. 1
  • the harmonic component increases in the current in power 2 'and shows a unique value.
  • the inventor has found that poor inverter performance and motor deterioration are related to a plurality of specific harmonics. Next, this deterioration determination will be described.
  • FIG. 4 is a flowchart for diagnosing the electric motor.
  • step S10 the total distortion rate (THD) of harmonics included in the current in the output power 2 'in FIG. 1 is obtained.
  • the detection of the current harmonic may be performed by using a well-known device such as a clamp type measuring device or a non-contact type electromagnetic field measuring device using a search coil.
  • the harmonic order for calculating the total distortion rate is, for example, the second to the 40th order.
  • Step SI 1 calculates the exponent, and calculates the exponent value (TH k ) by dividing the harmonic content of each order by the total distortion rate obtained in step S 10.
  • the step of performing the deterioration determination is S12.
  • CH k is a criterion value of the K-th harmonic described later, and is compared with TH k obtained in step S11.
  • FIGS. 5A to 5C show flowcharts for diagnosis of the impeller.
  • Fig. 5A shows a method for diagnosing the smoothing capacitor 5 in Fig. 1 and measures the current harmonic of the input power 1 'in Fig. 1 to judge the deterioration.
  • Steps P100, P111, and P112 are the same as the contents calculated in steps S10, S11, and S12 of FIG.
  • FIG. 5B is a flow for diagnosing the converter section 4, the inverter section 6, and the control section 7 in FIG. 1.
  • the current harmonics of the output power 2 in FIG. 1 are measured to determine deterioration.
  • Steps P200, P211 and P212 are the same as the contents calculated in steps P100, P111 and P112 of FIG. 5A.
  • FIG. 5C is a flow for diagnosing the drive unit 8 in FIG. 1, in which a current harmonic of the output power 2 ′ in FIG. 1 is measured to determine deterioration.
  • step P20 the 38th harmonic content is determined, and the drive board is diagnosed (step P201 ').
  • Diagnosis of the drive substrate and 38th determination harmonics reference value CH k l. 0 (Step P 202 ') its to step 203' the CHk a 38th order harmonic content in (H 38) And judge the quality of the drive board.
  • the judgment reference value CH k shown in FIGS. 4 and 5 A, B, and C is obtained as follows.
  • K is the Kth harmonic and Ck is the diagnostic calculated value of the Kth harmonic.
  • the degree of deterioration of motors and inverters (hereinafter referred to as equipment) is classified into “normal”, “needs attention” and “defective” to make a qualitative judgment.
  • B as “Attention” indicates a slight inferiority depending on the degree of deterioration of the equipment. No deterioration) Bl, moderate deterioration (operating for about 3 months but deterioration requiring trend management) B2, severe deterioration (part replacement due to concerns about equipment trouble) And deterioration requiring preparation for repair) are classified as B3.
  • the above inspection period should be used as a guide only.
  • A, B1, B2, B3, and C are divided by multiplying the above-described determination reference value by a weight coefficient, and this coefficient will be described in an embodiment to be described later.
  • a multivariate analysis method is effective for analyzing the relationship between the current harmonics and the degraded parts of the equipment, and this will be described below.
  • the current harmonics on the input side of the impeller were measured and two main components were obtained. The results were the fifth harmonic (62) and the seventh harmonic (36), and the cumulative contribution was 98%.
  • the second harmonic (3), the third harmonic (16), the fourth harmonic (2), and the fifth harmonic 13
  • the harmonic (6) becomes the 38th harmonic (7), and the cumulative contribution ratio is 99%.
  • Inferiority of drive board (mainly deterioration of capacitor). Measure the current harmonic at the output of the inverter.
  • the number of principal components may be one, which is the 38th harmonic and the contribution ratio is 89%.
  • the current harmonics on the input side of the motor are used in the case of motor-independent operation without inverter control, and the output side of the inverter is used in the case of the motor driven by the imperter (input to the motor).
  • the smoothing capacitor is a harmonic on the inverter input side, and all others are harmonics of the inverter output measurement.
  • the diagnosis calculation value and the K-th harmonic function necessary for determining the deterioration of the motor inverter will be described with reference to specific examples as follows. It is not limited to the example. H k shown below is the Kth harmonic content.
  • F (N c ) takes the following value.
  • Tables 3 and 4 show an example in which the degraded parts of the electrical equipment and the degrees of deterioration (A, B1, B2, B3, C) described in the embodiment of the invention described above are summarized.
  • Body 1 C 3 Xf (M 3 ) (A) XI.3 (Bl) XL 3 (B2) XL 2 (B3) or more insulation of stator winding
  • Air gap C 6 Xf (M 5 ) (A) XI.3 (Bl) X1.3 (B2) XI.2 (B3) or more Non-uniform (with dust)
  • C k is the diagnostic calculated value of the K th harmonic
  • f (N s , N c , N p , N d ) is the K th harmonic function

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Inverter Devices (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

本発明は、電動機やインバータに流れる電流高調波の各次数の高調波含有率を、あらかじめ定められた次数までの高調波の総合歪み率で除した指数値、該指数値よりなる各次数の高調波関数と、前記各次数の高調波含有率から演算して得られる各次数の診断計算値とを乗じて算出した判定基準値、該判定基準値と前記指数値とを比較する事によって劣化判定を行う診断方法であって、前記判定基準値に乗みをつけて前記電動機やインバータの劣化度を区分し、更に劣化部位を前記電流高調彼の特定の高調波次数より判定する電気設備の高調波診断方法に関する。

Description

電気設備の高調波診断方法 技術分野
本発明は、 電気設備診断に係る技術分野に属し、 電動機及びインパータを対象 とした電気設備の高調波診断方法に関する。
背景技術 '
最近の電気機器設備は生産を連続化したり、 集約して高生産性を追求し、 さら に高性能で広範囲の自動化システムと共に、 インバータ等の省エネルギー機器も 書
導入し、 信頼性の高い設備、 装置にするマスプロ化があらゆる産業界に求められ ている。
このようなマスプロ設備は一般的に連続操業を原則にしており、 電気機器設備 の故障 (休止) はプロセス全体の休止につながることが多く、 ひとたび故障が発 生すると、 生産障害に加え、 需要家からの信頼低下や場合によっては災害の発生 など、 休止損失は計リ知れないものとなり、 致命的な問題になることが推測され る。
また、 新品の設備機器 (機械) を企業が購入し検収する場合にあっては、 検収 基準もしくは規格に統一されたものがなく、 現状では設備機器 (機械) が仕様通 り動作することをもって検収上げとしている。 し力、し、最近の自動化機器(機械) 類は、 多くの装置をィンターフェースケーブルにより 続した組合せシステム構 成としているため、 各システム間の整合性 (マッチング) が取れていない場合も あり、 後になってトラブルが何度も発生し、 火災事故に至ったケースもあり問題 になっている。
更に、 人の乗る運搬、 輸送設備として、 例えば鉄道車両やエレベータなどは法 令で定期点検が義務づけられているが、 電動機設備ゃィンバータを含む電力変換 装置 (A C— A Cコンバータ) については、 温度上昇や異音の発生有無を確認す る程度で安全面の問題を残している。
ここで、 電気機器設備の異常及び劣化診断の目的を述べると設備停止時間の減 少による操業率の向上、 材料費、 人件費等保全費の削減、 取替周期延長及び点検 整備削減によるコストの削減、 トラブル事前防止、 安全性向上、 信 性向上、 生 産性向上、 品質向上などを挙げられる。
以上が電気機器設備の異常及び劣化診断に関する必要性の背景と日的であるが、 ここでは先ず本発明に係る電動機並びにィンバータの異常及び劣化診断の従来技 術について、 以下 1〜 2の各項でそれぞれ簡単に述べる。
1. 電動機の異常及び劣化診断について
電動機の異常及び劣化診断方法としては、 ( 1 ) 振動法、 ( 2 ) 音響法、 ( 3 ) 温度法、 (4) トルク (ひずみ) 法、 (5) 電流法、 (6) 波形法、 などがある 力 これらの中で最もよく利用されポピュラーな方法が捩動法であるため、 ここ では振動法について述べる。 その他の診断方法については、 既に本願発明者が出 願した特許 (特願 2000— 386603、 特願 2001— 265949、 特願 2001— 358718、 特願 2003— 030807) にて述べているので記 述を省略する。
振動法は電動機もしくは電動機を含めた負荷設備の回転機械振動を、 動電型ゃ 圧電型又は変位型の振動ピックァップをできる限り振動の発生源近くに取り付け、 振動のオーバーオール値により異常判定する簡易診断と、 振動の周波数分析によ り異常及び劣化の原因、 場所を特定する精密診断とがあるが、 これらの診靳はい ずれも軸受けや回転軸等の機械要素部に限られる。
前述したように簡易診断では振動のオーバーオール値による異常か正常かの判 定基準 して、 過去のデータの蓄積と経験により自社で独自に定めているところ もあるが、 一般的には I SO規格、 J I S規格、 VD I規格 (ドイツ技休于者協会 の規格) などを参考にしている場合がほとんどである。 し力、し、 これらの規格は 平均的な評価を与えたものであり、すべての回転機械にあてはまるものではない。 例えば、 I SO及ぴ J I S規格としては、 それぞれ I SO— 2372及ぴ J I S -B 0906がある。
そして、 簡易診断により異常があると判断した場合、 その原因、 場所などを特 定するためには精密診断が必要となる。 一般に回転機械類から発生する振動信号 は複雑であり、 単純な振動はほとんどない。 その中から有意義な情報を得て異常 の有無を精密に判断するには、 周波数分析法が最も広く用いられている。 振動信 号を周波数分析することにより、 異常の原因、 場所の特定が可能となる。
これら電動機等の回転機について、 異常原因と発生振動数の関係は、 長期間に わたる過去データの蓄積により得られているものであり正確なものではない。
2 . インバータの異常及び劣化診断について
インバータは、 省エネルギー化や生産性の向上、 操作性の向上など多くの特長 があり、 各種産業機械のハイテク化に大きく貢献している。 今やインバータは動 力設備機械には必須機器となっており、 その生産量も年々増加し、 1 9 9 9年度 の日本国内における産業用インバータの生産量は、 通産省 (現経済産業省) の生 産動態統計によると 1 8 0万台を超えている (金額換算:約 1 0 0 0億円) 。 ところでインパータは、 I C、 抵抗、 コンデンサ、 トランジスタなどの電子部 品や冷却ファン、 リレーなど多数の部品によって構成されている。 これらの部品 は永久的に使用できるものではなく、 その耐用年数や寿命は使用環境によって大 きく左右され、 ほとんどの電子部品はその寿命がアルレ-ウスの法則 (1 0 °C二 倍則:周囲温度を 1 0 °C低下させるごとに寿命が 2倍に延びる) に従うので、 ィ ンバータの定期点検が必要となる。
すなわち、 インバータの異常及び劣化診断としては、 トラプルの未然防止のた め、 J EMA (日本電機工業会) では 「汎用インパータ定期点検のすすめ」 のガ イドブックで、 定期点検をすすめている。
しかし、 インパータの異常及び劣化診断においては、 異常及び劣化の原因や場 所の特定がィンバータを停止もしくは休止分解して専門技術者による特殊な測定 器を用いなければならず、 現実にはィンパータが故障するまで使用し続ける場合 が多い。'その間はインバータ機能の低下、 例えば省エネルギー機能、 保護機能や 出力特性などの異常、 また他の機器への悪影響、 例えば口ポットなどの誤動作や 電動機トラブルの発生がしばしば見られた。
発明の開示
電動機及びィンパータの異常及び劣化診断は、 電動機については振動法が最も 広く用いられているが、 ピックアップの取付けが精度に関係するため、 これを振 動発生源の近くに固定する必要がある。 また異常及び劣化個所の診断が軸受ゃ回 転軸等の機械要素部に限られ、 測定にも時間がかかり測定装置を含め診断費用も 高くつくので、 この診断方法は重要度の高レ、比較的大型機がメインとなる。 電動機について、 その他の診断方法については記述を省略したが、 いずれも振 動法のように異常及ぴ劣化原因や場所の特定ができず、 異常負荷の診断のみを行 うオンライン監視システムに至っては極めて高価なものである。
また、 インバータの異常及び劣ィ匕診断については、 前述したように異常及び劣 化原因や場所の特定を行うにはィンバータを停止もしくは休止分解して、 専門技 術者が測定器を使用して行わねばならず甚だ面倒で時間もかかり診断に要するコ ストも高くつく。
次に、 本願発明者による電動機及びインバータの劣化診断方法として、 電流中 の高調波含有率の大きさにより電動機及びィンパータの劣化の度合や、 その原因 及び場所を特定する新しい方法を特願 2 0 0 0— 3 8 6 6 0 3、 特願 2 0 0 1— 2 6 5 9 4 9及ぴ特願 2 0 0 1— 3 5 8 7 1 8にて出願している。
し力し、 本願発明者によるこれらの高調波診断法は、 電動機やインバータの定 格容量、電源ィンピーダンスや負荷率、また当該機器以外の負荷の並列等価容量、 使用電圧、 高調波対策の種類等を予め把握して計算する絶対法であり、 必ずしも 簡便な方法とは言えず診断に手間がかかった。 更に、 劣ィヒ場所すなわち劣ィヒ部位 と高調波の関係が明確ではなかった。 '
本発明に係る電動機及びィンバータを対象とした電気設備の高調波診断法は、 発明者による前述の絶対法をベースとした高調波診断が有する問題を解決するた め、 次のようにしている。
電気設備を構成する電動機ゃィンバータに流れる電流高調波より、 前記電動機 ゃィンパータの異常を判定する劣化診断方法において、 前記電流高調波の各次数 の高調波含有率を、 あらかじめ定められた次数までの電流高調波の総合歪み率で 除した指数値、 該指数値よりなる各次数の高調波関数と、 前記各次数の高調波含 有率から演算して得られる各次数の診断計算値とを乗じて算出した判定基準値、 該判定基準値と前記指数値とを比較する事によつて劣化判定を行う診断方法であ つて、 前記判定基準値に乗みをつけて前記電動機ゃィンバータの劣ィヒ度合いを区 分し、 更に劣化部位を前記電流高調波の特定の高調波次数より判定する。 本発明の電気設備の高調波診断法は、 電動機及びィンバータに流れる電流高調 波を測定する事により行うものであるが、 電動機及びインバータの容量には依存 せず、 更に電源インピーダンスや負荷率、 また当該機器以外の負荷の並列等価容 量、 使用電圧、 高調波対策の種類等に関係しない極めて簡便な診断法である。 加えて、 電動機ゃィンパータの劣化部位と高調波の関係が主成分分析法を用い る事により明らかになった。 これをもとに劣化度を区分する事が可能になったの で、 本発明の高調波診断法は極めて実用性が高く、 また広く産業社会に普及して いく効果を有するものである。 図面の簡単な説明
図 1は、 インパータに係るブロック図である。
図 2は、 高調波発生の説明図である。
図 3 A〜Hは、 振動電流波形の一例とそれに対する自己相関関数である。 ' 図 4は、 電動機の診断フローチャートである。
図 5 A〜Cは、 インパータの診断フローチャートである。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を参照して説明する。
図 1は、 インバータに係るブロック図である。 1は三相交流電源で、 入力電力 I 7 が電動機 2を制御する A C— A Cコンバータ 3のコンバータ部 4に流入する c 5は平滑コンデンサ、 6はィンバータ部でコントロール部 7及びドライブ部 8に より出力電力 2 ' が制御される。 コントロール部 7及ぴドライブ部 8は I C、 抵 抗、 コンデンサ、 トランジスタなどの電子部品を搭載したコント口ール基板及び ドライブ基板である。 また、 A C— A Cコンバータ 3が正弦波 PWM方式の場合 の入力電流と電動機電流 (出力電流) は図 1に示したような波形となる。
A C— A Cコンバータ 3の入力電流が図 1で示したようになるのは、 コンパ一 タ部 4で全波整流した後、 平滑コンデンサ 5を有しているためであり、 この現象 について次に述べる。
図 2は単相をサンプルにとりあげた高調波発生の説明図である。 三相交流電源 を直流電源に変換するのに、 図 1で示した平滑コンデンサ 5を使用するので、 こ のコンデンサ 5には充電時だけ図 2のようなパルス状の電流が流れる。 ここで τ はパルス幅、 Ηはその高さである。 このように、 交流電源と直流電源の電流の流 れ方が異なるために、 高調波が発生する。
ところで、 電動機の U相、 V相、 W相に正弦波電流を供給すると、 各相に生ず る起磁力 Fu、 Fv、 Fwはそれぞれ次式で表される。
(数式 1) .
Fu = AIU sin 6)t[cos > - (1 / 3) cos 3^ + (1 / 5) cos 5 + ...... ]
Fv = AIV sinOt一 120° )[cos(6> - 120° )-(1/3) cos3( 一 120° ) +
(1/5) cos 5(^-120°) + ...... ]
Fw = AIW sin ( ― 240° )[cos(^ - 2400 ) - (1 / 3) cos 3(θ - 240° ) +
(1/5) cos 5(^-240°) + ...... ]
数式 1は回転子の起磁力中心を基点として円周上 Θ (電気角) なる距離におけ る起磁力で、 4は定数、 また I u、 I v、 I wはそれぞれ U相、 V相、 W相の電流 の実効値、 ωは周波数を/としたとき 2 π / (r a d/ s ) で表される角速度、 tは時間である。 従って、 第 n次高調波を考慮した合成起磁力 Fは次のようにな る。
(数式 2) .
F = (3B/ 2)Fm { η{θ - ωί) + (^1>515) sin(5 + ωί) + (KU717) sin(7^ - ωί) +
ΙΛ! / 11) sin(l \θ + ωΐ) + (Kll3113) sin(13^ -ωί) + ...... } ただし、 Βは定数、 また Fmは基本波起磁力の振幅の最大値、 !^^は第!!次高 調波の卷線係数を表す。
数式 2は次のことを示している。
(1) I u= I v= I wの場合、 n = 3、 9、 1 5、 ...などの高調波は零となる。
(2) n = 5、 1 1、 1 7、 ...などの高調波は基本波と反対方向に ω/ηで回 転する。
(3) η= 7、 1 3、 1 9、 ...高調波は基本波と同じ方向に ωΖηで回転する。 —方、 図 2の電流波形を方形パルス波と仮定すると、 この/ "(X)はフーリエ級 数で表わせ次式のようになる。
(数式 3)
Figure imgf000009_0001
ここで、 x = ca t (ω :角速度、 t :時間) 、 nは高調波の次数である。 数式 3にて明らかなように、 平滑コンデンサ 5が理想、的な場合は充電電流に起因する パルス状電流が流れないため y (x) = 0となる。 この平滑コンデンサ 5が劣ィ匕し てくると、 その静電容量が低減し、 式 3の中で n= 5、 7といった低次数の高調 波成分が増加してくる。 なお、 n= 3すなわち第 3高調波は前述した式 1からも 分かるように非常に小さい (I u= I v= I wの場合は零) 。
電動機ゃィンバータの劣化状態と電流高調波との関係については本願発明者が 初めて明らかにしたものである、 その内容について述べる。
電動機は前述数式 2で示したように、 起磁力中に高調波成分を含むため、 なる ベく高調波を含まないよう設計されるが、 それでも電源電圧のアンバランス等に より理論値より大きい高調波が発生する。 また、 インバータが高調波を発生する のは周知の通りである。
次に、 電動機の劣ィ匕部について述べると、 これにはベアリングや回転軸等の機 械要素部と固定子卷線等の電気要素部に大別出来る。 特に劣化が機械要素部の場 合には電動機電流に不規則な振動成分が含まれる。 勿論この中に規則的な高調波 成分も包含される。 従って、 ランダムな不規則電流波形より、 本質的な高調波部 分だけを取り出すには、 次式のように R (τ) なる自己相関関数をとればよい。
(数式 4)
Figure imgf000009_0002
ここで、 t :時刻、 て : 1/f 0 (f 。 =回転周波数) 、 T :時間
図 3A、 図 3B、 図 3C、 図 3Dは基本波成分を除去したランダム電流波形の 一例であり、 またそれぞれに対する自己相関関数を図 3 E、 図 3F、 図 3 G、 図 3 Hに示す。図 3 A〜図 3 Hにて示すところは、自己相関関数をとることにより、 f が各瞬間ごとに全くランダムに変化しているのであれば、 Rはて =0のときだ けある値をとり、 それ以外は 0になると言うことである。 従って、 図 3A、 B、 C、 Dのような波形の場合、 図 3Dが最も高調波の相関性が高いと言える。 また、 劣化が固定子卷線等の電気要素部の場合には、 巻線導体内部の磁束の変 ィ匕によって、 導体内部だけで渦状に流れる渦電流が発生する。 この渦電流が卷線 絶縁物の劣化部分で局部発熱を誘起し、 各相電流のアンバランスを引き起こす。 その結果、 数式 1で I u≠ I v≠ I wとなり第 3次高調波が顕著に現れる。 更に第 3次高調波は劣化部分の局部発熱を一層増加せしめると言う現象を繰り返すプロ セスをたどる。
—方、 インバータの劣化については、 図 1の平滑コンデンサ 5は前述したが、 それ以外の電力素子 (コンバータ部 4及びインパータ部 6 ) やコントロール部 7 及びドライブ部 8が劣化すると、 図 1の出力電力 2 ' 中の電流に高調波成分が増 え特異な値を示す。 発明者は、 インバータの劣ィヒと電動機の劣化が複数の特定高 調波に関係している事を見出した。 次にこの劣化判定について説明する。
図 4は電動機の診断フローチャートである。 ステップ S 1 0で図 1の出力電力 2 ' 中の電流に含まれる高調波の総合歪み率 (THD) を求める。 ここで、 電流 高調波の検出はクランプ式測定器やサーチコイルによる非接触式電磁界測定器等 の周知のものを用いればよい。 総合歪み率を求める高調波次数は、 例えば第 2次 〜第 4 0次とする。 ステップ S I 1は指数計算を行うもので、 各次数の高調波含 有率をステップ S 1 0で求まった総合歪み率で除した指数値 (T Hk) を算出す るステップである
そして劣化判定を行うステップが S 1 2である。 ここで、 C Hkは後述する第 K次高調波の判定基準値であり、 ステップ S 1 1で求まつた T H kと比較する。 その結果、 電動機が正常な状態ならステップ S 1 3、 劣化状態ならステップ S 1 4へ移る。 次に、 インパータの診断フローチャートを図 5 A〜Cに示す。 図 5 A は図丄の平滑コンデンサ 5を診断するフ口一で図 1の入力電力 1 ' の電流高調波 を測定し劣化判定を行う。 ステップ P 1 0 0、 P 1 1 1及び P 1 1 2は図 4のス テツプ S 1 0、 S 1 1及び S 1 2で演算した内容と同様である。
図 5 Bは図 1のコンバータ部 4、 インパータ部 6とコントロール部 7を診断す るフローで、 図 1の出力電力 2 の電流高調波を測定し劣化判定を行う。 ステツ プ P 2 0 0、 P 2 1 1及び P 2 1 2は図 5 Aのステップ P 1 0 0、 P 1 1 1及ぴ P 1 1 2で演算した内容と同様である。 図 5 Cは図 1のドライブ部 8を診断するフローで、 図 1の出力電力 2' の電流 高調波を測定し劣化判定を行う。 ステップ P 20 で第 38次高調波含有率を 求め、 ドライブ基板の診断を行う (ステップ P 201' ) 。 ドライブ基板の診断 は第 38次高調波の判定基準値 CHk=l. 0とする (ステップ P 202' ) そ して、 ステップ 203' でこの CHkと第 38次高調波含有率 (H38) を比較し ドライブ基板の良否を判定する。
ここで、 図 4及び図 5 A、 B、 Cで記した判定基準値 CHkは次のように求め る。 Kは第 K次高調波、 Ckは第 K次高調波の診断計算値である。
電動機については
(数式 5)
CHK =CKxf(MK)
ただし、 f (Mk) は第 K次高調波関数である。
インバータについては
(数式 6)
C K^CKxf(Ns)
CHK=CKxf(Nc)
CHK=CKxf(Np)
CHK=C£xfNd) ただし、 f (NJ 、 f (Nc) 、 f (Np) は複数の第 K次高調波関数、 f (N d) =1. 0 (この場合のみ CHk= 1. 0)
数式 5と数式 6の中の Ck、 f (Mk) 、 f (Ns) 、 f (Nc) 、 f (Np) に ついては後述の実施例にて記す。
また、 電動機やインバータ (以下、機器と記す) の劣化度合い (劣化度と呼ぶ) の区分として、質的判断を下すために 「正常」、 「要注意」及び「不良」 に分け、 便宜上 「正常」 を A、 「要注意」 を B、 「不良」 は Cと表わすが、 その中で 「要 注意」 の Bは機器の劣化度に応じ、 軽度な劣ィ匕 (約半年程度は運転に支障がない 劣化) を B l、 中度な劣化 (約 3力月は運転が可能であるが傾向管理が必要な劣 化) を B2、 重度な劣化 (機器のトラブル発生が懸念されるため部品交換や修理 の準備が必要な劣化) を B 3として区分する。 但し、 劣化時よりの診断及び点検期間は機器の運転時間、 周囲温度、 通風状態 等の環境条件によって異なるため、 上記の点検期間は一応の目安とすればよレ、。 ここで、 A、 B l、 B2、 B 3、 Cは、 前述した判定基準値に重み係数を乗じ て区分するが、 この係数については後述の実施例にて記す。 次に、 電流高調波と 機器の劣化部位の関連に着目して分析するには多変量解析法が有効であるので、 これに関して以下説明する。 本発明の機器の劣化診断のように、 判定基準が初め ^ら明確に与えられていないような外的基準がない場合で、 多次元事象の特性値 間の関連性を分析するには、多変量解析に属する主成分分析法が最も適している。 この主成分分析法に関する文献は数多くあるので、 詳細な説明は省略するが、 ここでは主成分分析法の寄与率を用いて電流高調波と機器の劣化部位の関連を、 電動機とインバータに分けて述べる。 以下、 主成分の横に記した ( ) 内は寄与 率である。 また、 主成分は固有値が大きい (主成分得点の分散が大きレ、) ものを 順に取る。
1. 電動機について。
(1) 回転軸及び軸受 (電動機本体) の異常もしくは電動機の据付け不良。 主 成分を 4個求めると、 第 2次高調波 (55) 、 第 3次高調波 (9) 、 第 4次高調 波 (16) 、 第 5次高調波 ( 6 ) となり揉用主成分としては累積寄与率が 86 % となり、 一般的に採用される数値の 60%以上を充分満足させている。
(2) 固定子卷線の絶縁不良 (相間及ぴ対地間) 。 主成分を 4個求めると、 第 2次高調波 (7) 、 第 3次高調波 (61) 、 第 4次高調波 (5) 、 第 5次高調波
(22) となり累積寄与率は 95 %である。
(3) ころがり軸受及びハウジング (電動機本体) の損傷。 主成分を 4個求め ると、 第 2次高調波 (23) 、 第 3次高調波 (10) 、 第 4次高調波 (41) 、 第 5次高調波 (8) となり累積寄与率は 82%である。
(4) 固定子と回転子間エアギャップの不均一 (塵埃付着や部分過熱) 。 主成分 を 4個求めると第 2次高調波(6)、第 3次高調波(20)、第 4次高調波(8)、 第 5次高調波 (59) となり累積寄与率は 93%である。
(5) 負荷回転軸のアンバランスもしくは負荷との接続部 (カップリング) 不 良。 主成分を 5個求めると、 第 6次高調波 (5) 、 第 7次高調波 (53) 、 第 8 次高調波 (7) 、 第 9次高調波 (11) 、 第 10次高調波 (15) となり累積寄 与率は 91%であ'る。
(6)負荷側軸受部の損傷もしくは負荷側の系統(例えばポンプの配管バルブ) に異物付着。主成分を 5個求めると、第 6次高調波( 7 )、第 7次高調波(29)、 第 8次高調波 (35) 、 第 9次高調波 (13) 、 第 10次高調波 (11) となり 累積寄与率は 95%である。
(7) 負荷側回転軸の異常 (例えば軸の曲がり) もしくは負荷側の系統 (例え ばポンプの配管とバルブの接触部) の磨耗。 主成分を 5個求めると、 第 6次高調 波(5)、第 7次高調波(21)、第 8次高調波(25)、第 9次高調波(33)、 第 10次高調波 (8) となり累積寄与率は 92%である。
(8) 負荷側の歯車もしくはクラッチもしくは Vベノレト等の損傷。 主成分を 5 個求めると、第 6次高調波. (6)、第 7次高調波(23)、第 8次高調波(17)、 第 9次高調波 (15) 、 第 10次高調波 (30) となり累積寄与率は 93%であ る。
2. インパータについて。
(1) 平滑コンデンサの劣化。
ィンパータ入力側の電流高調波を測定し主成分を 2個求めると、 第 5次高調波 (62) 、 第 7次高調波 (36) となり累積寄与率は 98%である。
(2) コントロール基板の異常 (特に電解コンデンサの劣化) 。 インバータ出 力側の電流高調波を測定し主成分を 6個求めると、 第 11次高調波 (21) 、 第
13次高調波 (17) 、 第 17次高調波 (19) 、 第 19次高調波 (13) 、 第 23次高調波 (11) 、 第 25次高調波 (15) となり累積寄与率は 96%であ る。
(3) 電力素子の劣化 (特に逆変換素子の劣化) 。
インバータ出力側の電流高調波を測定し主成分を 16個求めると、 第 2次高調 波 (3) 、 3次高調波 (16) 、 第 4次高調波 (2) 、 第 5次高調波 (13) 、 第 6次高調波 (2) 、 第 7次高調波 (17) 、 第 8次高調波 (2) 、 第 9次高調 波(2)、第 10次高調波(2)、第 11次高調波(6)、第 13次高調波(4)、 第 17次高調波 (7) 、 第 19次高調波 (5) 、 第 23次高調波 (5) 、 第 25 次高調波 (6) 、 第 38次高調波 (7) となり累積寄与率は 99%である。
(4) ドライブ基板の劣ィ匕 (主としてコンデンサの劣化) 。 インパータ出力側 の電流高調波を測定する。 主成分は 1個でよく、 これを求めると第 38次高調波 であり寄与率は 89 %となる。
なお、 上記の電動機において、 インバータ制御されていない電動機単独運転の 場合は電動機の入力側の電流高調波を、 またィンパータ制御されている竃動機の 場合はインバータの出力側 (電動機の入力になる) の電流高調波を測定する。 以上をまとめると表 1及ぴ表 2のようになる。
(表 I)
電動機設備の劣化部位と電流高調波
Figure imgf000014_0001
(表 2) ィンバータ設備の劣化部位と電流高調波
Figure imgf000015_0001
但し、 平滑コンデンサはインバータ入力側の高調波で、 他はすべてインバータ 出力測の高調波である。
(実施例)
本発明の実施例として電動機ゃィンバータの劣化判定を行う際に必要な診断計 算値及び第 K次高調波関数に関して具体例をあげて説明すれば次の通りであるが、 本発明はこの実施例に限定されることはない。 なお、 以下で示す Hkは第 K次高 調波含有率である。
(1) 電動機の診断 (電動機本体の診断) 。 但し、 K=2、 3、 4、 5で∑は Κ=2〜5をとる。 Ckを求める手 1噴は次の通りである。
① M0= (∑H2 k) 1/2
② Ak = Hk/M0
③ T。 =∑Ak
④ Ck = Ak/T。
また、 ί (Mk) は次の値をとる。 但し、 I k:第 K次高調波の指数値
f (M2) =SX X (∑ I k - I )
f (M3) =S2 X (∑ I k- I 3 3)
f (M4) = S 1 X (∑ I k - I 4)
f (M5) =S2 X (∑ I k— 1 %) ここで、 ィンパータ駆動電動機の場合は S i = S 2 = 1. 0、 電動機単独 (ィン バータなし) の場合は Si-l. 1 5、 S 2= 1. 25である。
(2) 電動機の診断 (電動機負荷の診断) 伹し、 K= 6、 7、 8、 9、 1 0で ∑は K=6〜l 0をとる。 Ckを求める手 MMは次の通りである。
① M0= (∑H2 k) 1/2
② Ak = Hk/M。
③ T。=∑Ak
④ Ck = AkZT。
また、 f (Mk) は次の値をとる。 但し、 I k:第 K次高調波の指数値 f (M7) =S2X (∑ I「 I 3 7)
Figure imgf000016_0001
f (M9) =S2X (∑ I k- I 9)
f (M10) =-S,X (∑ I k— I 10)
ここで、 インバータ駆動電動機の場合は 3〗=^ 2= 1· 0電動機単独 (イン パータなし) の場合は 1. 1 5、 S2= 1. 25である。
(3) インバータの診断
3. 1. 平滑コンデンサの診断。 但し、 K=5、 7で∑は Κ= 5〜7をとる。 C kを求める手順は次の通りである。
① M0= (∑H2 k) 1/2
② Ak = Hk/M。
③ T。=∑Ak
④ Ck = Ak/T0
また、 f (Ns) は次の値をとる。 但し、 I k:第 K次高調波の指数値 f (Ns) =∑ I k
3. 2. コントロール基板の診断。 伹し、 = 1 1、 1 3、 1 7、 1 9、 23、
25で∑は 1 1〜25をとる。 Ckを求める手順は次の通りである。
① M。= (∑H2 k) 1/2
② Ak = Hk/M。
③ T。二∑Ak ④ Ck = AkZT。
また、 f (Nc) は次の値をとる。 但し、 I ¾:第 K次高調波の指数値 f (Nc) =∑ I k- I 2 k: f (Nc) 11 f (Nc) 13、 f (Nc) 17、 f (N c) 19、 f (Nj 23、 f (Nj 25の 6関数値 .
3. 3. 電力素子の診断。 但し、 K=2、 3、 4、 5、 6、 7、 8、 9、 10、
1 1、 13、 17、 19、 23、 25、 38で∑は 2〜 38をとる。 Ckを求め る手順は次の通りである。 .
Figure imgf000017_0001
② Ak = Hk/M。
③ T。-∑Ak
④ Ck = Ak "T。
また、 f (Np) は次の値をとる。 但し、 I k:第 K次高調波の指数値 f (Np) =∑ I k- I 2 k : f (Np) 2、 f (Np) 3、 f (Np) 4、 f (Np)
5、 f (Np) e、 f (Np) 7、 f (Np) 8、 f (Np) 9、 f (Np) 10、 f (Np) iい f (Np) 13、 f (Np) 17、 f (Np) 19、 f (Np) 23、 f (NP) 25、 f (Np) 38の 16関数値
3. 4. ドライブ基板の診断。 ドライブ基板の診断は前述した図 5 Cの通り第
38次高調波含有率の大きさのみで判定する。 従って、 Ck=l. 0、 f (Nd)
= 1. 0となる。
次に、 電気設備の劣化部位と前述した発明の実施の形態で述べた劣化度 (A、 B l、 B2、 B3、 C) の区分をまとめた一例を表 3及び表 4に示す。
(表 3)
電動機設備の劣化部位と劣化度区分
電動機 電動機設備の 正常 要注意 (B) 不良 設備 劣化部位 (Α) (B1) (B2) (B3) (c)
回転軸 ·軸受、 C2 Xf(M2) (A) XL 3 (Bl) XI.3 (B2) XI.2 (B3)以上 本
体 1搪付け 固定子卷線の C3 Xf(M3) (A) XI.3 (Bl) XL 3 (B2) XL 2 (B3)以上 絶縁(相間もし
くは対地間)
軸受 ·ハウジン C4 Xf(M4) (A) XI.3 (Bl) XI.3 (B2) XI.2 (B3)以上 グ損傷
エアギヤップ C6 Xf(M5) (A) XI.3 (Bl) X1.3 (B2) XI.2 (B3)以上 不均一(塵埃付
着、 部分過熱)
回転軸のアン C7 Xf(M7) (A) XI.2 (Bl) X1.2 (B2) X 1.1 (B3)以上 バランス、 カツ
プリング
軸受部損傷、異 C8 Xf(M8) (A) XL 2 (Bl) X1.2 (B2) X 1.1 (B3)以上 物付着
Figure imgf000018_0001
回転軸、接触部 C9 Xf(M9) (A) XL 2 (Bl) X1.2 (B2) X 1.1 (B3)以上 磨耗
歯車、ベルト系 C10 Xf(M10) (A) XI.2 (Bl) X1.2 (B2) X 1.1 (B3)以上 損傷
伹し, Ck:第 K次高調波の診断計算値、 f (Mk) :第 K次高調波関数
(表 4)
ィンバータ設備の劣化部位と劣化度区分
Figure imgf000018_0002
但し、 C k:第 K次高調波の診断計算値、 f (Ns、 Nc、 Np、 Nd) :第 K次 高調波関数
なお、 表 4において Ck、 f (Ns、 Nc、 Np、 Nd) の数はそれぞれ平滑コン デンサで 2個、 コント口ール基板で 6個、 電力素子で 1 6個、 ドライブ基板は 1 個ある。 従って、 劣化度区分を行う場合、 ドライブ基板を除き個別に劣化度を求 め平均する。 例えば、 A= 0、 B l = l、 B 2 = 2、 B 3 = 3 , C = 4とし算術 平均をとる (少数点第 1位四捨五入) 。
以上のように、 電流高調波を測定する事により電気設備の電動機ゃィンバータ の劣化部位が特定でき、 また劣化度が区分できる。

Claims

請 求 の 範 囲
1 . 電気設備を構成する電動機やインバータに流れる電流高調波より、 前記電動 機ゃィンバータの異常を判定する劣ィヒ診断方法において、 前記電流高調波の各次 数の高調波含有率を、 あらかじめ定められた次数までの電流高調波の総合歪み率 で除した指数値、 該指数値よりなる各次数の高調波関数と、 前記各次数の高調波 含有率から演算して得られる各次数の診断計算値とを乗じて算出した判定基準値、 該判定基準値と前記指数値とを比較する事によって劣化判定を行う診断方法であ つて、 前記判定基準値に乗みをつけて前記電動機ゃィンバータの劣化度合いを区 分し、 更に劣化部位を前記電流高調波の特定の高調波次数より判定する亊を特徴 とする電気設備の高調波診断方法。
2 . 特定の高調波次数が、 奇数次及び偶数次の高調波である事を特徴とする請求 項 1記載の電気設備の高調波診断方法。
3 . 劣化度合いを区分が正常、 要注意及び不良として区分されていることを特徴 とする請求項 1記載の電気設備の高調波診断方法。
4 . 奇数次及び偶数次が第 2次、 第 3次、 第 4次、 第 5次、 第 6次、 第 7次、 第 8次、第 9次、第 1 0次、第 1 1次、第 1 3次、第 1 7次、第 1 9次、第 2 3次、 第 2 5次、 第 3 8次である事を特徴とする請求項 2記載の電気設備の高調波診断 方法。 、
5 . 要注意は機器の劣化度に応じ軽度な劣化、 中度な劣化及び重度な劣化として 区分されるのを特徴とする請求項 3記載の電気設備の高調波診断方法。
PCT/JP2004/001154 2003-02-07 2004-02-04 電気設備の高調波診断方法 WO2004070402A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004570946A JP3661155B2 (ja) 2003-02-07 2004-02-04 電気設備の高調波診断方法
EP04708066A EP1591795A4 (en) 2003-02-07 2004-02-04 METHOD FOR DIAGNOSING ELECTRICAL INSTALLATION THROUGH HARMONICS
US10/525,227 US7275003B2 (en) 2003-02-07 2004-02-04 Harmonic diagnosing method for electric facility
HK06109826.5A HK1087778A1 (en) 2003-02-07 2006-09-04 Method of harmonic diagnosis for electric equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003030807 2003-02-07
JP2003-30807 2003-02-07
JP2003036362 2003-02-14
JP2003-36362 2003-02-14

Publications (1)

Publication Number Publication Date
WO2004070402A1 true WO2004070402A1 (ja) 2004-08-19

Family

ID=32852687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001154 WO2004070402A1 (ja) 2003-02-07 2004-02-04 電気設備の高調波診断方法

Country Status (6)

Country Link
US (1) US7275003B2 (ja)
EP (1) EP1591795A4 (ja)
JP (1) JP3661155B2 (ja)
KR (1) KR100616272B1 (ja)
HK (1) HK1087778A1 (ja)
WO (1) WO2004070402A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236876A (ja) * 2007-03-19 2008-10-02 Toshiba Corp 電力品質評価システム
JP2015173543A (ja) * 2014-03-11 2015-10-01 株式会社東芝 電力負荷推定装置、電力負荷推定システム、電力負荷推定方法及び電力負荷推定プログラム
JP2015215275A (ja) * 2014-05-13 2015-12-03 株式会社日立製作所 劣化診断システム
WO2019116471A1 (ja) * 2017-12-13 2019-06-20 三菱電機株式会社 電力変換装置および空気調和機
JP2020153743A (ja) * 2019-03-19 2020-09-24 株式会社戸上電機製作所 地絡要因推定装置、データ生成装置、地絡要因推定方法、データ生成方法及び地絡継電器
JP6800352B1 (ja) * 2019-07-24 2020-12-16 東芝三菱電機産業システム株式会社 キャパシタ診断装置及びキャパシタ診断方法
US10883895B2 (en) 2016-12-15 2021-01-05 Mitsubishi Electric Corporation Abnormality diagnostic device for power transmission mechanism and abnormality diagnostic method for power transmission mechanism
JP2021052572A (ja) * 2019-09-20 2021-04-01 富士電機株式会社 モデル生成装置、電力変換装置及び電力制御システム
WO2023073870A1 (ja) * 2021-10-28 2023-05-04 三菱電機株式会社 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023084600A1 (ja) * 2021-11-09 2023-05-19 三菱電機株式会社 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
JP7354442B1 (ja) * 2021-11-25 2023-10-02 東芝三菱電機産業システム株式会社 無停電電源装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7847579B2 (en) * 2007-06-28 2010-12-07 Gm Global Technology Operations, Inc. Systems and methods to evaluate permanent magnet motors
JP4877397B2 (ja) * 2010-01-22 2012-02-15 株式会社デンソー 電流センサの異常診断装置、およびセンサの異常診断装置
KR101140613B1 (ko) * 2010-04-05 2012-05-02 한국전기연구원 전동기의 온-사이트 결함 진단 방법
CN102928709B (zh) * 2012-10-31 2015-08-12 广东电网公司东莞供电局 基于三相谐波的电容器组故障检测方法及***
GB2534406B (en) * 2015-01-23 2017-01-11 Rolls Royce Plc Fault detection and diagnosis
US9791343B2 (en) * 2015-02-12 2017-10-17 General Electric Company Methods and systems to derive engine component health using total harmonic distortion in a knock sensor signal
CN107845999A (zh) * 2017-11-30 2018-03-27 中电科芜湖钻石飞机制造有限公司 一种基于电流总谐波系数的电机故障检测***及方法
CN111856171A (zh) * 2019-04-24 2020-10-30 中矿龙科能源科技(北京)股份有限公司 基于谐波法的变频器和电力电容器故障诊断***
CN114026776B (zh) * 2019-07-05 2022-07-05 三菱电机株式会社 异常诊断***及异常诊断方法
WO2022137291A1 (ja) * 2020-12-21 2022-06-30 東芝三菱電機産業システム株式会社 寿命判定装置およびそれを備えた電源装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183686A (ja) * 1997-09-01 1999-03-26 Nippon Steel Corp 機械設備の異常診断方法およびその装置
JP2002189064A (ja) * 2000-12-20 2002-07-05 Ko Gijutsu Kenkyusho:Kk 電気機器設備の異常診断方法
JP2003075516A (ja) * 2001-09-03 2003-03-12 Ko Gijutsu Kenkyusho:Kk 電気機器の劣化診断法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4761703A (en) * 1987-08-31 1988-08-02 Electric Power Research Institute, Inc. Rotor fault detector for induction motors
US5739698A (en) * 1996-06-20 1998-04-14 Csi Technology, Inc. Machine fault detection using slot pass frequency flux measurements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183686A (ja) * 1997-09-01 1999-03-26 Nippon Steel Corp 機械設備の異常診断方法およびその装置
JP2002189064A (ja) * 2000-12-20 2002-07-05 Ko Gijutsu Kenkyusho:Kk 電気機器設備の異常診断方法
JP2003075516A (ja) * 2001-09-03 2003-03-12 Ko Gijutsu Kenkyusho:Kk 電気機器の劣化診断法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1591795A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008236876A (ja) * 2007-03-19 2008-10-02 Toshiba Corp 電力品質評価システム
JP2015173543A (ja) * 2014-03-11 2015-10-01 株式会社東芝 電力負荷推定装置、電力負荷推定システム、電力負荷推定方法及び電力負荷推定プログラム
JP2015215275A (ja) * 2014-05-13 2015-12-03 株式会社日立製作所 劣化診断システム
US10883895B2 (en) 2016-12-15 2021-01-05 Mitsubishi Electric Corporation Abnormality diagnostic device for power transmission mechanism and abnormality diagnostic method for power transmission mechanism
JP7049363B2 (ja) 2017-12-13 2022-04-06 三菱電機株式会社 電力変換装置および空気調和機
WO2019116471A1 (ja) * 2017-12-13 2019-06-20 三菱電機株式会社 電力変換装置および空気調和機
JPWO2019116471A1 (ja) * 2017-12-13 2020-11-19 三菱電機株式会社 電力変換装置および空気調和機
JP2020153743A (ja) * 2019-03-19 2020-09-24 株式会社戸上電機製作所 地絡要因推定装置、データ生成装置、地絡要因推定方法、データ生成方法及び地絡継電器
JP6800352B1 (ja) * 2019-07-24 2020-12-16 東芝三菱電機産業システム株式会社 キャパシタ診断装置及びキャパシタ診断方法
WO2021014604A1 (ja) * 2019-07-24 2021-01-28 東芝三菱電機産業システム株式会社 キャパシタ診断装置及びキャパシタ診断方法
JP2021052572A (ja) * 2019-09-20 2021-04-01 富士電機株式会社 モデル生成装置、電力変換装置及び電力制御システム
JP7363567B2 (ja) 2019-09-20 2023-10-18 富士電機株式会社 モデル生成装置、電力変換装置及び電力制御システム
WO2023073870A1 (ja) * 2021-10-28 2023-05-04 三菱電機株式会社 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023084600A1 (ja) * 2021-11-09 2023-05-19 三菱電機株式会社 電力変換装置、モータ駆動装置及び冷凍サイクル適用機器
JP7354442B1 (ja) * 2021-11-25 2023-10-02 東芝三菱電機産業システム株式会社 無停電電源装置

Also Published As

Publication number Publication date
JP3661155B2 (ja) 2005-06-15
EP1591795A1 (en) 2005-11-02
EP1591795A4 (en) 2011-07-06
KR100616272B1 (ko) 2006-08-28
US7275003B2 (en) 2007-09-25
JPWO2004070402A1 (ja) 2006-05-25
KR20050044320A (ko) 2005-05-12
HK1087778A1 (en) 2006-10-20
US20060009932A1 (en) 2006-01-12

Similar Documents

Publication Publication Date Title
WO2004070402A1 (ja) 電気設備の高調波診断方法
JP3561882B2 (ja) 電気機器の劣化診断法
Siddiqui et al. Health monitoring and fault diagnosis in induction motor-a review
JP3671367B2 (ja) 電気機器設備の異常診断方法
CN100487475C (zh) 用于检测感应电机中电动机内部故障的方法和装置
JP2010288352A (ja) 設備の異常診断方法
JP5733913B2 (ja) 回転機械系の異常診断方法
US11378947B2 (en) System and methods of failure prediction and prevention for rotating electrical machinery
WO2014156386A1 (ja) 電動機の診断装置および開閉装置
RU2300116C2 (ru) Способ диагностики электродвигателей переменного тока и связанных с ними механических устройств
US6498992B1 (en) Defect diagnosis method and defect diagnosis apparatus
JP7109656B2 (ja) 電動機設備の異常診断装置、電動機設備の異常診断方法、および電動機設備の異常診断システム
RU2339049C1 (ru) Способ диагностики электродвигателя переменного тока и связанных с ним механических устройств
JP3671369B2 (ja) 電気機器の異常及び劣化診断装置
Irfan et al. An assessment on the non-invasive methods for condition monitoring of induction motors
KR100969243B1 (ko) 모터와 발전기 전력징후가 표시하는 설비상태의 전달함수를 이용한 회전 설비구성품 결함 판단방법
KR102186563B1 (ko) 모터 상태 예측 시스템
CN100443907C (zh) 用于电气设备的谐波诊断方法
JP2015004694A (ja) 回転機械系の異常診断方法
Mayisela et al. Application of reliability-centred maintenance for dc traction motors-a review
Immovilli et al. Currents and vibrations in asynchronous motor with externally induced vibration
WO2021166329A1 (ja) インバータの劣化監視診断方法
JP4332800B2 (ja) 電気設備の稼動状態並びに異常劣化診断法
Nasajpour-Esfahani et al. Determining Motor Failure Using Power Output and Wavelength
Yelpale et al. Fuzzy-based Induction Motor Fault Diagnosis Decision-Making System for Motor Current Signature Analysis

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004570946

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047005096

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006009932

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10525227

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004708066

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048037284

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004708066

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10525227

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020047005096

Country of ref document: KR