WO2004069534A1 - Laminated resin formed body and method for producing same - Google Patents

Laminated resin formed body and method for producing same Download PDF

Info

Publication number
WO2004069534A1
WO2004069534A1 PCT/JP2004/001387 JP2004001387W WO2004069534A1 WO 2004069534 A1 WO2004069534 A1 WO 2004069534A1 JP 2004001387 W JP2004001387 W JP 2004001387W WO 2004069534 A1 WO2004069534 A1 WO 2004069534A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin molded
laminated resin
fuel
adhesive
Prior art date
Application number
PCT/JP2004/001387
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Inamoto
Takeshi Inaba
Shigehito Sagisaka
Hidenori Ozaki
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2005504915A priority Critical patent/JPWO2004069534A1/en
Publication of WO2004069534A1 publication Critical patent/WO2004069534A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer

Definitions

  • the present invention relates to a laminated resin molded article and a method for producing the same.
  • Fluororesins are used in various applications because of their excellent properties such as heat resistance, chemical resistance, weather resistance, electrical insulation, low friction, and non-adhesion. Nevertheless, fluororesins are expensive and have poor mechanical strength and dimensional stability, so that lamination of fluororesins with other organic or inorganic materials is being studied.
  • fluoropolymers are inherently poor in affinity with other materials due to their non-adhesiveness and chemical resistance, so even if you try to laminate with other materials other than fluororesins by heat fusion, The bonding strength is insufficient, and even if a certain level of bonding strength is obtained, the bonding strength is not reproducible depending on the type of the material to be bonded, and it is difficult to always obtain a stable bonding strength.
  • the bonding strength is insufficient, and even if a certain level of bonding strength is obtained, the bonding strength is not reproducible depending on the type of the material to be bonded, and it is difficult to always obtain a stable bonding strength.
  • the method of bonding fluororesin and other materials other than fluororesin is as follows: (1) The surface of the mating material to be bonded is treated by sand plaster treatment or the like to physically increase the surface area and bond.
  • the methods (1) and (2) each require a processing step, which complicates the process, resulting in poor productivity, and limits the type and shape of the mating material to be bonded. Furthermore, the adhesive strength is insufficient, and the resulting resin laminate tends to have external problems such as coloring and scratches.
  • Examples of the adhesive used in the method (3) include a hydrocarbon-based adhesive.
  • Charcoal As a resin laminate using a hydride-based adhesive, a polyvinylidene fluoride layer or an ethylene / tetrafluoroethylene copolymer layer is used as an inner layer, and an ethylene novyl alcohol copolymer layer is used as an outer layer, and an inner layer is used.
  • a fuel tube using an ethylene-z-ester acrylate copolymer as an adhesive between the outer layer and the outer layer is known (for example, see Japanese Patent Application Laid-Open No. 5-247478).
  • hydrocarbon-based adhesives have insufficient adhesive strength and insufficient heat resistance of the adhesive itself. Coloring etc. occurs, and the resulting resin laminate has insufficient heat resistance, chemical resistance, water resistance, etc. of the adhesive layer, so the adhesive strength is reduced due to usage conditions such as temperature, humidity, and fuel type. In addition, there has been a problem that the adhesive strength is greatly reduced due to a change with time.
  • a resin laminate comprising a layer made of a tetrafluoroethylene copolymer having a carbonate group at the polymer terminal as an inner layer, a layer made of polyethylene having an epoxy group as an intermediate layer, and a layer made of polyethylene as an outer layer. It is disclosed (see, for example, International Publication No. 98858973 pamphlet).
  • a layer composed of an ethylene / butyl acetate copolymer in which the vinyl acetate unit X mol% and the degree of conversion ⁇ % satisfy XY Using a layer composed of an ethylene / butyl acetate copolymer in which the vinyl acetate unit X mol% and the degree of conversion ⁇ % satisfy XY.
  • a layer made of a fluororesin having a hydroxyl group is bonded to a layer made of polyethylene, the adhesive strength does not decrease over time, and such an ethylene-butyl acetate copolymer has relatively low fuel oil resistance. It is described as being excellent (see, for example, International Publication No. 01 / 141,401 pamphlet.).
  • the outermost layer of the fuel tube is a layer made of polyethylene
  • polyethylene has poor creep resistance, so cracks are likely to occur in places where long-term stress is applied, such as connector insertion parts, and the elastic modulus of polyethylene Due to the relatively high ratio, the tube was difficult to bend and the low-temperature impact resistance was poor.
  • the fuel permeation rate of the fluororesin used is too high compared to the fuel permeation rate of the ethylene / butyl alcohol copolymer, and there has been a problem that delamination occurs during long-term use.
  • a fuel tube using a layer made of polyamide 12 with excellent mechanical properties such as tensile strength a layer made of an ethylene / butyl alcohol copolymer is used as an intermediate layer, and a polyamide A structure in which a layer consisting of 6 is used as the innermost layer is disclosed (for example, see Japanese Patent Application Laid-Open No. 3-176683).
  • polyamide-based resin is used for the innermost layer, even if the innermost layer is made thin, long-term use of fuel will cause oligomers, monomers and plasticizers to elute, causing clogging of the filter around the engine. There was a problem of causing.
  • the innermost layer made of polyamide 6 should be made as thin as possible.
  • the layer made of the alcohol copolymer is liable to crack due to the brittleness of the material, resulting in insufficient burst resistance and low-temperature impact resistance required for the fuel tube.
  • no means has been shown to solve this problem.
  • a fuel tube in which a layer made of an ethylenenovinyl alcohol copolymer is the innermost layer is disclosed (for example, see Japanese Patent Application Laid-Open No. 3-177684).
  • Ethylene butyl alcohol copolymer is in contact with fuel, so chemical resistance is insufficient.
  • Ethylene vinyl alcohol copolymer absorbs water in air and fuel due to its water absorption, so chemical permeability is low. There was a problem that it declined.
  • a resin laminate containing a fluororesin and an ethylene butyl alcohol copolymer does not discolor during molding and maintains interlayer adhesion for a long time.
  • it overcomes the problem that cracks are likely to occur in the layer made of ethylene / vinyl alcohol copolymer when the shape is changed. No impact resistance, especially low temperature impact resistance, was obtained.
  • the object of the present invention is that it does not deteriorate during molding processing, and is excellent in fuel oil resistance, non-elution property, creep resistance, heat resistance, low-temperature impact resistance, etc., interlayer adhesive strength ⁇ fuel permeability resistance It is another object of the present invention to provide a laminated resin molded article capable of suppressing the temporal deterioration of low-temperature impact resistance and suppressing the fuel permeability.
  • the present invention provides a laminated resin molded article including a layer (A) made of a polyamide resin, a layer (B) made of a thermoplastic resin having excellent fuel permeability resistance, and a layer (C) made of an adhesive fluororesin. Wherein the layer (A), the layer (B) and the layer (C) are laminated in this order.
  • the laminated resin molded article of the present invention includes a layer (A) composed of a polyamide resin, a layer (B) composed of a thermoplastic resin having excellent fuel permeability, and a layer (C) composed of an adhesive fluororesin.
  • thermoplastic resin having excellent fuel permeation resistance which forms the layer (B) constituting the laminated resin molded article of the present invention, is a resin made of a thermoplastic polymer having excellent fuel permeation resistance.
  • the thermoplastic polymer having excellent fuel permeability resistance is a polymer having relatively large cohesive energy between polymer chains and / or within polymer chains.
  • thermoplastic polymer having excellent fuel permeation resistance a polymer having a high crystallinity or a polymer having a polar functional group and a large intermolecular force is preferable, and has a high crystallinity and a polar functional group. And a polymer having a large intermolecular force.
  • Xmm / m 2 / day More preferably, it is 0.5 (g Xmm / mVd ay) or less.
  • the polar functional group which may be possessed by the thermoplastic polymer having excellent fuel permeation resistance is a functional group having polarity and capable of participating in adhesion to an adhesive fluororesin.
  • the polar functional group may be the same functional group as the adhesive functional group described later as the adhesive fluororesin has, or may be a different functional group.
  • the polar functional group is not particularly limited, and examples thereof include an amino group, a cyano group, a sulfide group, a hydroxy group, and the like, in addition to those described below as the adhesive functional group. Among them, an amino group, a carbonyl group ⁇ / Oxy groups, cyano groups, sulfide groups, and hydroxyl groups are preferred, and hydroxyl groups are more preferred.
  • thermoplastic resin having excellent fuel permeation resistance is not particularly limited, but in terms of excellent gas permeation resistance, a resin composed of an ethylene / vinyl alcohol copolymer; a polyacrylonitrile resin [PAN]; a polyethylene terephthalate resin [P ET], polybutylene terephthalate resin [PBT], polyethylene naphthalate resin [PEN], polybutylene naphthalate resin [PBN], liquid crystal polyester [LC
  • PVF polyvinylidene fluoride resin
  • PVDF polyvinylidene fluoride resin
  • the thermoplastic resin having excellent fuel permeation resistance preferably has low-temperature impact resistance and has an Izod impact strength at 140 ° C of 2.5 kJ / m 2 or more. Preferably, there is. 2. If it is less than 5 k jZm 2, tends to be insufficient cold ⁇ of laminated resins obtained molded article. A more preferred lower limit is 3. a 5 k J Zm 2, still more preferred lower limit is 4. a 5 k J / m 2.
  • the above Izod impact strength depends on the application, but as a normally conceivable application, a value within the above range is required. For example, it may be 20 k jZm 2 or less.
  • the above-mentioned Izod impact strength is a value measured and measured in accordance with ASTM D 256-84.
  • the above-mentioned Izod impact strength is based on a U-F IMP ACT TESTER (manufactured by Ueshima Seisakusho). Set the measurement sample taken out of the thermostat at 40 ° C on the table, immediately shake it down with a hammer with a load of 1.33 kg at a strike speed of 3.4 em / s, and It is a value calculated by converting the impact energy (kgf ⁇ cm) into joules (J) and dividing by the sample cross-sectional area (m 2 ).
  • the resin consisting of an ethylene / vinyl alcohol copolymer is preheated at 220 to 230 ° C. for 20 minutes, and 30 MPa at 3 MPa. After pressurizing for 2 seconds and cooling with water, a pressed sheet with a thickness of 3.2 mm was obtained, cut into a width of 12 mm and a length of 50 mm, and a 2.54 mm deep notch was inserted. Obtained by holding in the tank for 4 hours.
  • the thermoplastic resin having excellent fuel permeation resistance forming the layer (B) in the present invention is a resin composed of an ethylene butyl alcohol copolymer
  • the resin composed of the ethylene / vinyl alcohol copolymer may be a low-temperature resin.
  • the resin comprising an ethylene-vinyl alcohol copolymer having low-temperature impact resistance include a resin to which a plasticizer is added, a resin in which two or more polyamide resins are mixed, a resin in which a hydroxy-functionalized polyetheramine is mixed, and the like.
  • examples of such a resin include, for example, JP-A-8-269260, JP-A-53-88067, JP-A-59-20345, and JP-A-52-141785. And the like.
  • Examples of commercially available resins made of ethylene and vinyl alcohol copolymers having improved low-temperature impact resistance include EVAL XEP505B (manufactured by Kuraray Co., Ltd.).
  • Izod impact strength at of preferably 2. 5 k jZm 2 or more, more preferably 3. 5 k J / m 2 or more, more preferably is used as 4. is 5 k jZm 2 or more, within the above range if the value, and may be for example 20 k J Zni 2 below.
  • thermoplastic resin having excellent fuel permeability which forms the layer (B) constituting the laminated resin molded article of the present invention
  • a resin composed of an ethylene / vinyl alcohol copolymer The alcohol copolymer is obtained by vulcanizing an ethylene / vinyl acetate copolymer obtained from ethylene and vinyl acetate.
  • the blending ratio of ethylene and butyl acetate to be copolymerized is appropriately determined according to the ratio of the number of moles of butyl acetate units defined by the following formula.
  • the ethylene / butyl alcohol copolymer is obtained by curing an ethylene / butyl acetate copolymer having X mol% of vinyl acetate units at a degree of polymerization of ⁇ / 0 .
  • the X mole% of the vinyl acetate unit and the ⁇ % of the degree of conversion satisfy XXY / 100 ⁇ 7. If XX ⁇ 100 or 7, the permeation resistance and the interlaminar adhesive strength may be insufficient.
  • XXYZ10010 is more preferred, and XXY / 100 ⁇ 50 is even more preferred.
  • the value of XXY / 100 is an index of the hydroxyl group content of the ethylene / butyl alcohol copolymer, and the large value of XXYZYZ 100 indicates that the ethylene / butyl alcohol copolymer has a large value. It means that the content of hydroxyl groups is high.
  • the hydroxyl group is a group that can participate in adhesion between the layer made of the thermoplastic resin having excellent fuel permeability resistance and a mating material to be laminated. When the content of the hydroxyl group is high, the obtained laminated resin is obtained. The interlayer adhesion of the molded body is improved.
  • the “partner to be laminated” refers to a material that is laminated in contact.
  • the “vinyl acetate unit X mol%” means that the vinyl acetate unit occupies the total number of moles [N] of the added ethylene and vinyl acetate in the molecule of the ethylenedivinyl alcohol copolymer.
  • Xi (%) (N / N) X 100
  • Means the average value of the molar content Xi represented by The above-mentioned mol acetate unit mol% is a value obtained by measuring using infrared absorption spectroscopy [IR].
  • butyl acetate unit means a part of the molecular structure of the ethylene / vinyl alcohol copolymer, which is derived from the acetate acetate.
  • the above-mentioned butyl acetate unit may be hydrogenated to have a hydroxyl group, or may be one which has not been tested and has an acetoxyl group.
  • degree of degradation is a percentage representing the ratio of the number of hydrogenated vinyl acetate units to the sum of the number of vinylated vinyl acetate units and the number of unpurified vinyl acetate units. It is.
  • the degree of degradation described above is a value obtained by measurement using infrared absorption spectroscopy [IR].
  • the ethylene / vinyl alcohol copolymer preferably has a melt flow rate [MFR] at 200 ° C. of 0.5 to: L 00 g / 10 minutes. Whether it is less than 0.5 g / 10 minutes or more than 100 g / 10 minutes, the melt viscosity of the ethylene / vinyl alcohol copolymer and the adhesive fluororesin forming the layer (C) Since the difference from the melt viscosity of the layer becomes large, the thickness of the layer (C) and / or the thickness of the layer (B) may be uneven during molding, which is not preferable.
  • a preferred lower limit is 1 g / 10 minutes, and a preferred upper limit is 50 gZ10 minutes.
  • MFR is a value obtained by measuring under the conditions of a load of 5 kg, an orifice diameter of 2 mm, and a land length of 8 mm.
  • thermoplastic resin having excellent resistance to fuel permeation may be added in a range not impairing the object of the present invention, for example, various additives such as a stabilizer such as a heat stabilizer, a reinforcing agent, a filler, an ultraviolet absorber, and a pigment.
  • the layer (B) may be formed by using together with an agent. By forming the layer (B) together with such an additive, properties such as thermal stability, hardness, abrasion resistance, chargeability, and weather resistance of the obtained laminated resin molded article can be improved.
  • the adhesive fluororesin that forms the layer (C) constituting the laminated resin molded article of the present invention includes at least an adhesive with the layer (B) made of a thermoplastic resin having excellent fuel permeability resistance. Those having properties are preferred.
  • the above-mentioned adhesive fluororesin for example, by having an adhesive functional group, it is possible to change Z or a site on a molecular structure different from the adhesive functional group into a structure that exhibits adhesiveness by heating. Thus, those having adhesive properties can be mentioned.
  • a resin having an adhesive functional group is preferable from the viewpoint of excellent adhesiveness.
  • the term “adhesive functional group” means a functional group that can participate in adhesion to a thermoplastic resin having excellent fuel permeation resistance.
  • the above-mentioned adhesive functional group is one which can react with the polar functional group of the thermoplastic resin having excellent fuel permeation resistance constituting the above-mentioned layer (B) or capable of performing an intermolecular interaction such as a hydrogen bond.
  • the “J having a carbonyl group” is a concept including a case where the J is a carbonyl group itself. That is, the adhesive functional group may be a carbonyl group.
  • the organic group for R in the above formula is, for example, Ci Cs. C 2 -C 2 having alkyl group, an ether bond.
  • Alkyl group and the like preferably Ci Cs alkyl group, C 2 -C 4 alkyl group having ether binding.
  • the halogenoformyl group is represented by —COY (where Y represents a Group VII atom), and includes, for example, one COF, one COC1, and the like.
  • the number of the above adhesive functional groups depends on the type and shape of the mating material to be laminated, the purpose and application of bonding, the required adhesive strength, the type of tetrafluoroethylene-based copolymer described below, and the bonding method Can be selected as appropriate.
  • the adhesive fluororesin may be composed of a polymer having an adhesive functional group at either a polymer chain terminal or a side chain. It may be composed of a polymer having both side chains. When the polymer has an adhesive functional group at its terminal, it may be present at both ends of the polymer chain, or may be present at only one of the ends.
  • the adhesive fluororesin has the adhesive functional group
  • the fluororesin made of a polymer having an adhesive functional group at the polymer chain end deteriorates heat resistance, mechanical properties, and chemical resistance. It is preferable because it is advantageous in terms of productivity and cost.
  • the adhesive fluororesin is made of a polymer having a monomer unit derived from a fluorine-containing ethylenic monomer.
  • the adhesive fluororesin may be composed of a polymer having a monomer unit derived from a fluorine-containing ethylenic monomer and a fluorine-free ethylenic monomer unit.
  • the “unit” of the polymer constituting the adhesive fluororesin means a part derived from a monomer, which is a part of the molecular structure of the polymer. For example, tetrafurfuryl O b ethylene units, - CF 2 - CF 2 - represented by.
  • the fluorine-containing ethylenic monomer is a butyl group-containing monomer having a fluorine atom and not having an adhesive functional group, for example, tetrafluoroethylene [TFE], vinylidene fluoride [VdF] , Black mouth trifluoroethylene [CTFE], fluorine fluoride / VF [VF], hexafenoleo mouth propylene [HFP], hexafenoleo mouth isobutene, perfluoro (alkyl butyl ether) [PAVE], the following general formula (i ):
  • X 2 represents a hydrogen atom or a fluorine atom
  • X 3 represents a hydrogen atom, a fluorine atom or a chlorine atom
  • n represents an integer of 1 to 10.
  • the fluorine-free ethylenic monomer is a vinyl group-containing monomer having no fluorine atom and no adhesive functional group.
  • examples thereof include ethylene [Et], propylene, 1-butene, 2 —Butene, butyl chloride, vinylidene chloride and the like.
  • the adhesive fluororesin is not particularly limited, but preferably has relatively low crystallinity and the resulting laminated resin molded article has excellent impact resistance.
  • Examples of such an adhesive fluororesin include tetrafluoroethylene-based resins. What consists of a polymer [TFE-type copolymer] is preferable.
  • the TFE-based copolymer is a polymer having a TFE unit.
  • the TFE-based copolymer may include, together with the TFE unit, one or more monomer units derived from other fluorine-containing ethylenic monomers other than TFE, and / or a fluorine-free ethylenic monomer. It may have one or more monomer units derived from.
  • TFE-based copolymer examples include, for example, a TFE / Et / HFP copolymer, a TFE / Et copolymer, a TFE / VdF / HFP copolymer, and a TFE / ⁇ ⁇ E copolymer.
  • TFE / HF P / PAVE copolymer and the like can be suitably used.
  • Polyvinylidene fluoride is generally said to have high crystallinity and poor impact resistance, but can be suitably used by copolymerizing a small amount of a modified monomer with VdF.
  • the adhesive fluororesin is made of a polymer having an adhesive functional group in a side chain
  • the adhesive functional group-containing ethylenic monomer is used in accordance with the intended adhesive fluororesin. It can be obtained by copolymerizing a fluorine-containing ethylenic monomer of a different type and blend with a fluorine-free ethylenic monomer if desired.
  • the term “adhesive functional group-containing ethylenic monomer” means a vinyl group-containing monomer having an adhesive functional group, which may or may not have a fluorine atom. This is a different concept from the above-mentioned “fluorine-containing ethylenic monomer” and “fluorine-free ethylenic monomer” in that it has an adhesive functional group.
  • the adhesive fluororesin has an adhesive functional group at a polymer chain terminal and is composed of a polymer in which the adhesive functional group is a carbonyl group, as described later, peroxycarbonate is used. Can be used as a polymerization initiator.
  • the adhesive fluororesin must have a melt viscosity that allows it to flow at a temperature at which the coextruded material can be melted without being thermally decomposed, for example, when the laminated resin molded article is formed by coextrusion. Is preferred.
  • the temperature range at which the polyamide resin can be suitably heated and melted is about 200 ° C to 300 ° C. It is preferable to have a melt viscosity capable of flowing in the step.
  • the melting point of the adhesive fluororesin is preferably from 150 to 270 ° C. If the temperature is lower than 150 ° C, it may be difficult to keep the fuel permeability low. If the temperature exceeds 270 ° C, the type of the mating material to be laminated may be limited, which is not preferable.
  • the lower limit of the melting point is more preferably 190 ° C.
  • the upper limit is more preferably 250 ° C.
  • the upper limit is more preferably 230 ° C.
  • the melt flow rate [MFR] of the adhesive fluororesin is preferably 1 to 100 gZl0 minutes. Whether it is less than 1 g / 10 min or more than 100 g / 10 min, the melt viscosity of the adhesive fluororesin and the thermoplastic viscosity of the layer (B), which is excellent in fuel permeability, is excellent.
  • the thickness of the layer (C) and the thickness of the layer (C) and the thickness of the layer (B) or the thickness of the layer (B) may be uneven during molding. A more preferred upper limit is 50 g / 10 minutes.
  • the above MFR is a value obtained by measuring at a specific measurement temperature under the conditions of a load of 5 kg, an orifice diameter of 2 mm, and a land length of 8 mm.
  • the above specific measurement temperature has a melting point of 2
  • a high melting point type adhesive fluororesin having a temperature of 00 ° C or more and 270 ° C or less, it is 297 ° C
  • a low melting point type adhesive resin having a melting point of 150 ° C or more and less than 200 ° C.
  • the temperature is 265 ° C.
  • the above-mentioned adhesive fluororesin is a high melting point type having a melting point of not less than 200 ° C and not more than 270 ° C when the fuel permeability of the obtained laminated resin molded article is to be kept low.
  • ⁇ 1 is 0.1 to 100 gZl 0 minutes can be suitably used.
  • the melting point is 150 ° C or more and less than 200 ° C.
  • a low melting point type having an MFR at 265 ° C. of 0.1 to 100 g / l 0 minutes can be suitably used.
  • As the fuel permeation resistance of the adhesive fluororesin it is preferable that the fuel permeation rate at 60 ° C.
  • test pseudo fuel type CE 10 be 20 (g Xmm / mday) or less. More preferably, it is 10 (g Xmm / m 2 / day) or less, even more preferably 2 (g Xmm / m 2 / day) or less.
  • the test pseudo fuel type CE10 is the same as described above.
  • the thermoplastic resin with excellent fuel permeability that forms the layer (B) conforms to the pseudo fuel type CE10 for testing.
  • Ratio of fuel permeation rate [Zb] at 60 ° C [ZcZZb] to fuel permeation rate [Zc] at 60 ° C for test pseudo fuel type CE10 of adhesive fluororesin forming layer (C) [ZcZZb] Is preferably 100 or less.
  • the above Z c / Zb is the same as or equivalent to the thermoplastic resin having excellent fuel permeability that forms the layer (B) and the adhesive fluororesin that forms the layer (C). .
  • Preferred specific examples of the adhesive fluororesin in the present invention include those comprising the following copolymer (I) and those comprising the following copolymer (II).
  • R f 2 represents CF 3 or OR f 1
  • R f 1 represents.
  • the copolymer (I) for example, at least, tetrafurfuryl O b ethylene unit 20-80 mole 0/0, Echiren unit 20-8 0 mole 0/0, and, copolymerizable with these other single And copolymers composed of 0 to 60 mol% of monomer units.
  • the mole% of each monomer unit is based on the above-mentioned adhesive functional group-containing ethylenic monomer in the total number of moles of the monomer units constituting the molecular chain of the copolymer.
  • the number of moles excluding the number of moles of the derived monomer units is defined as 100 mole%, and the ratio of each monomer unit to the 100 mole%.
  • the other monomer units in the copolymer (I) are optional components, and are appropriately subjected to copolymerization according to the intended use of the obtained laminated resin molded article.
  • Examples of the other copolymerizable monomers include hexafluoropropylene, trichlorofluoroethylene, propylene, and the following general formula (iiii):
  • X 1 and X 2 are the same or different and each represent a hydrogen atom or a fluorine atom
  • X 3 represents a hydrogen atom, a fluorine atom or a chlorine atom
  • n is an integer of 1 to 10.
  • R f 1 represents a perfluoroalkyl group having 1 to 5 carbon atoms.
  • R f 1 represents a perfluoroalkyl group having 1 to 5 carbon atoms.
  • Adhesive fluororesins made of a copolymer such as the above copolymer (I) are excellent in heat resistance, chemical resistance, weather resistance, electrical insulation, low chemical liquid permeability, and non-adhesiveness. Since the melting point can be lowered relatively easily, co-extrusion with an organic material having a relatively low melting point and no heat resistance becomes possible, which is preferable because a laminated resin molded article can be easily obtained. Above all,
  • (I-1) At least 30 to 70 mol of tetrafluoroethylene units 0 /. , E Ji Ren units 20 to 55 mole 0/0, and a copolymer consisting of monomer units 0-10 mol% represented by the general formula (iii),
  • (1-3) At least 30 to 70 mol of tetrafluoroethylene units 0 /. 20 to 55 mol% of ethylene units, and 0 to 10 mol of monomer units represented by the above general formula (iv). / 0 is preferred.
  • Each of the monomer units represented by the general formula (iV) in (1-3) is an optional component, and is appropriately subjected to copolymerization according to the intended use of the obtained laminated resin molded article.
  • (I 1 -1) at least, tetrafurfuryl O b ethylene units 65-95 mole 0/0, ⁇ Pi, to hexa consisting Full O b propylene unit 5-35 mol% copolymer, the Tet rough Ruo b ethylene units the preferable lower limit of a 75 mole 0/0, a preferred upper limit of Kisafuruo port propylene units into the is 25 mole 0/0,
  • (II -4) at least, Te trouble O b ethylene units 30 to 80 mole 0/0, the sum of the ⁇ beauty, the hexa full O b propylene units and vinylidene fluoride Rai de unit 20 To 70 mol%.
  • the method for producing the adhesive fluororesin in the present invention is not particularly limited, and a known method can be used.
  • an adhesive fluororesin consisting of a polymer having an adhesive functional group on the side chain, the fluorine-containing ethylenic monomer and adhesive functional group of the type and composition appropriate for the target adhesive fluororesin It can be obtained by copolymerizing the containing ethylenic monomer and, if desired, a fluorine-free ethylenic monomer.
  • Suitable adhesive functional group-containing ethylenic monomers include those having a carbonyl group as the adhesive functional group, such as perfluoroacrylic acid fluoride, 1-fluoroacrylic acid fluoride, acrylic acid fluoride, 1 Monomers containing fluorine, such as trifluormethacrylic acid fluoride and perfluorobutenoic acid; and monomers containing no fluorine, such as acrylic acid, methacrylic / leic acid, acrylic acid chloride, and vinylene carbonate, respectively No.
  • the above-mentioned peroxycarbonates include diisopropylpropyl peroxycarbonate, di-n-propyl peroxydicarbonate, t-butyl peroxysop, pinolecarbonate, bis (4-t Xyl) veroxy dicarbonate, di-2-ethylhexyl peroxy dicarbonate and the like are preferred.
  • the amount of peroxycarbonate used depends on the type and composition of the desired adhesive fluororesin, the molecular weight, the polymerization conditions, and the type of peroxycarbonate used. The amount is 0.05 to 20 parts by mass relative to 0 parts by mass, a particularly preferred lower limit is 0.1 parts by mass, and a particularly preferred upper limit is 10 parts by mass.
  • the polymerization method for obtaining the adhesive fluororesin is not particularly limited, and includes, for example, solution polymerization, bulk polymerization, and emulsion polymerization.
  • a suspension polymerization in an aqueous medium using peroxycarbonate as a polymerization initiator is preferred.
  • a fluorine-based solvent can be added to water and used.
  • the fluorine-based solvent used in the suspension polymerization CH 3 CC 1 F 2, CH 3 CC 1 2 F, CF 3 CF 2 CC 1 2 H, CF 2 C 1 CF 2 C FHC 1 etc.
  • hydrochloride port Furuoro alkane Chlorofluoroalkanes such as CF 2 C 1 CFC 1 CF 2 CF 3 , CF 3 CFC 1 CFC 1 CF 3 ; CF 3 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 2 CF per full O b alkanes such as 3; perf Ruo b Per full O b cycloalkanes cyclobutane like.
  • PA full O b alkanes, par Fluorocycloalkanes are preferred.
  • the use amount of the fluorinated solvent is preferably 10 to 100% by mass based on water from the viewpoint of suspendability and economy.
  • the polymerization temperature is not particularly limited,
  • the polymerization pressure is appropriately determined according to other polymerization conditions such as the type and amount of the solvent to be used, the vapor pressure, the polymerization temperature, and the like, but may be usually from 0 to 9.8 MPaG.
  • a usual chain transfer agent for example, a hydrocarbon such as isopentane, n-pentane, n-hexane, cyclohexane, etc .; Alcohols; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride and methyl chloride may be used.
  • the adhesive fluororesin may be used together with various additives such as a stabilizer such as a heat stabilizer, a reinforcing agent, a filler, a UV absorber, and a pigment within a range not impairing the object of the present invention. ) May be formed.
  • a stabilizer such as a heat stabilizer, a reinforcing agent, a filler, a UV absorber, and a pigment within a range not impairing the object of the present invention.
  • the layer made of the adhesive fluororesin in the present invention is composed of the above-mentioned adhesive fluororesin and other components blended as required. If necessary, the layer made of the adhesive fluororesin (C) Can be electrically conductive.
  • the term “conductive” means that flammable volatile organic substances such as fuel and organic solvents come into contact with the insulator for a long time. There is a danger that the static charge will accumulate and ignite, but it means that it has electrical characteristics to such an extent that this static charge does not accumulate. When the layer (C) has conductivity, the possibility of ignition is reduced even when the flammable volatile organic substance comes into contact with an insulator such as an adhesive fluororesin in the layer (C). .
  • the layer (C) is preferably conductive when used in contact with combustible volatile organic substances.
  • the layer (C) made of the adhesive fluororesin is made conductive, it is preferable to mix a conductive material such as carbon black and acetylene black.
  • the compounding amount is preferably 20% by mass or less, more preferably 15% by mass or less of the above-mentioned adhesive fluororesin.
  • the lower limit of the blending amount may be an amount that provides the above-described electrical characteristics to such an extent that the static charge is not accumulated.
  • the layer (A) constituting the laminated resin molded article of the present invention is made of a thermoplastic resin different from the adhesive fluororesin used for the layer (C).
  • the thermoplastic resin used for the layer (A) is not particularly limited, and examples thereof include a polyacetal resin such as a polyurethane resin, a polyester resin, a polyamide resin, a polyaramid resin, a polyamide imide resin, and a polyphenylene oxide resin [PPO].
  • thermoplastic resin acrylic resin, styrene resin, acrylonitrile / butadiene nostyrene resin [ABS], vinyl chloride resin, cellulose resin, polyether ether ketone resin [PEEK], polysulfone resin, polyether sal Examples include a polyethylene resin [PES], a polyetherimide resin, and a polyphenylene sulfide resin, and a vinyl acetate resin may be used as long as the resin is different from the above-mentioned ethylene / butyl alcohol copolymer.
  • the thermoplastic resin used in the layer (A) is excellent in adhesiveness to other materials and mechanical toughness, and polyamide resin is preferable in that the obtained laminated resin molded article can be made flexible. preferable.
  • thermoplastic resins having excellent fuel permeability resistance those used for the layer (B) are not used simultaneously as the thermoplastic resin for the layer (A).
  • the resin used as the thermoplastic resin having excellent heat resistance is selected from the viewpoint of suppressing the fuel permeability to be lower than the resin used as the thermoplastic resin for the layer (A), while the resin used for the layer (A) is used as the thermoplastic resin.
  • the resin is selected from the viewpoint of maintaining the mechanical strength of the laminated resin molded article of the present invention. From these viewpoints, when a polyester resin, a PPS resin, or a resin made of an ethylene Z-Butyl alcohol copolymer is selected as the thermoplastic resin having excellent fuel permeation resistance of the layer (B), the heat of the layer (A) is obtained. It is preferable to select a polyamide resin as the plastic resin.
  • the layer (A) made of the polyamide resin has excellent mechanical properties such as tensile strength, burst resistance, low-temperature impact resistance, and flexibility. It can be.
  • the polyamide-based resin is made of a crystalline polymer having an amide bond [1-NHCO—] as a repeating unit in the molecule.
  • a resin composed of a crystalline polymer in which an amide bond is bonded to an aliphatic structure or an alicyclic structure, a so-called nylon resin.
  • nylon resins include nylon 6, nylon 66, nylon 11, nylon 12, nylon 61, nylon 61, nylon 66, nylon 66/1, nylon 46, and metal.
  • Examples include a silylendiamine / adipic acid copolymer, and at least two kinds of blends thereof.
  • the polyamide resin used as the thermoplastic resin of the layer (A) also preferably has low-temperature impact resistance.
  • Methods for improving the low-temperature impact resistance of the polyamide resin include, for example, impact resistance including a mixture of a general-purpose rubber and a halogenated copolymer of alkyl styrene with isomonoolefin having 4 to 7 carbon atoms.
  • Examples of such a resin include, for example, Japanese Patent Publication No. 11507979, US Pat. No. 4,174,358, Japanese Patent Publication No. 2003-516457, US Pat. No. 5,610,223, and French Patent Invention No. 2640632. And US Patent Application Publication No. 09 / 293,195.
  • polyamide resins having improved low-temperature impact resistance include, for example, UBESTA 3030MI 1 (manufactured by Ube Industries, Ltd.), A4877, and A4878 (both manufactured by Daicel Degussa). .
  • the polyamide resin preferably has an Izod impact strength at ⁇ 40 ° C. of 7 kJ / m 2 or more . When it is less than 7 kJ / m 2 , the low-temperature impact resistance of the obtained laminated resin molded article tends to be insufficient. A more preferred lower limit is 10 kJZm 2 , and a still more preferred lower limit is 35 kJ / m 2 .
  • the Izod impact strength depends on the application, but as a normally conceivable application, it may be, for example, 80 kjZm 2 or less as long as it is within the above range.
  • the Izod impact strength is as described above for the thermoplastic resin having excellent fuel permeation resistance. .
  • a polyamide resin having an Izod impact strength at _40 ° C within the above range is used, and the Izod impact strength at -40 ° C is within the above range.
  • the use of a thermoplastic resin having excellent fuel permeation resistance means that either one of them may be employed, but it is preferable to employ both in terms of enhancing the low-temperature impact resistance.
  • the polyamide resin forming the layer (A) that forms the laminated resin molded article of the present invention has a structure in which an amide bond is not repeated as a repeating unit. It may be made of a high polymer. Examples of such a polyamide resin include polyamide elastomers such as nylon 6-polyester copolymer, nylon 6 / polyether copolymer, nylon 12-polyester copolymer, nylon 12 / polyether copolymer, and the like. Or And the like.
  • polyamide elastomers are obtained by block copolymerization of a nylon oligomer and a polyester oligomer via an ester bond, or block copolymerization of a nylon oligomer and a polyether oligomer via an ether bond. It was obtained by Examples of the polyester oligomer include polycaprolactone and polyethylene adipate. Examples of the polyether oligomer include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. As the above-mentioned polyamide-based elastomer, a nylon 6Z polytetramethylene dalicol copolymer and a nylon 12Z polytetramethylene glycol copolymer are preferable.
  • nylon 6, nylon 66, nylon 11, nylon 12, nylon 61 can be used because sufficient mechanical strength can be obtained even when the polyamide resin is a thin layer.
  • Nylon 6 6 Z 12, Nylon 6 Polyester copolymer, Nylon 6 / Polyester copolymer, Nylon 12 Z Polyester copolymer, Nylon 1 2 It is preferably at least one selected from the group consisting of a Z polyester copolymer and a blend of at least two of these.
  • the melting point of the polyamide resin is not particularly limited.
  • the polyamide resin when a laminated resin molded article is formed by coextrusion, the polyamide resin is not thermally decomposed at a temperature at which the material to be coextruded can be melted.
  • the temperature may be any of the above.
  • the molecular weight of the polyamide-based resin is not particularly limited as long as the molecular weight is such that the desired mechanical strength can be obtained.
  • the polyamide resin may be used together with various additives such as a stabilizer such as a heat stabilizer, a strengthening agent, a filler, an ultraviolet absorber, and a pigment within a range not impairing the object of the present invention. ) May be formed.
  • a stabilizer such as a heat stabilizer
  • a strengthening agent such as a heat stabilizer
  • a filler such as a heat absorber
  • an ultraviolet absorber such as an ultraviolet absorber
  • a pigment within a range not impairing the object of the present invention.
  • properties such as thermal stability, surface hardness, abrasion resistance, electrification, and weather resistance of the obtained laminated resin molded article can be improved.
  • the laminated resin molded body of this effort has a layer (A) made of polyamide resin, A layer (B) composed of a thermoplastic resin having excellent properties and a layer (C) composed of an adhesive fluororesin are laminated in this order.
  • the laminated resin molded article may be composed of only the layer (A), the layer (B), and the layer (C). Both the layer (A) and the layer (B) may be used.
  • Other layers different from the above-mentioned layer (C) may be laminated with the above-mentioned layer (A), the above-mentioned layer (B) and the above-mentioned layer (C).
  • the “other layer different from the layer (A), the layer (B), and the layer (C)” may be simply referred to as “other layer”.
  • the other layers may be one kind or two or more kinds.
  • the laminated resin molded article of the present invention may be one in which an adhesive layer is adhesively laminated as the other layer between the layer (B) and the layer (C).
  • the layer (B) and the layer (C) can be in contact with each other because of excellent adhesion between the layer (B) and the layer (C) without any intervention.
  • the initial adhesive strength between the layer (B) and the layer (C) is 2 ON, cm or more. Is preferred.
  • the above-mentioned initial adhesive strength is more preferably 25 NZ cm or more in practical use.
  • the laminated resin molded article has the initial adhesive strength of 20 N / cm or more and the adhesive strength after fuel immersion of 20 NZcm, the initial adhesive strength of 25 NZcm or more, and the adhesive strength after fuel immersion. More preferably, the strength is 25 NZ cm.
  • the initial adhesive strength and the adhesive strength after immersion in the fuel are values obtained by measuring by a measuring method described later.
  • the laminated resin molded article of the present invention has a sufficient adhesive force between the layer (A) and the layer (B), but has an adhesive force between the layer (A) and the layer (B).
  • another layer described above may be interposed between the layer (A) and the layer (B) as an adhesive layer (D).
  • the adhesive layer (D) can be used as the layer (A) and the layer (B) without using the same.
  • the adhesive strength of this is sufficient, it is preferable to use it especially when the polyamide resin of the layer (A) is nylon 11 or nylon 12.
  • the adhesive layer (D) is preferably made of nylon 1 in the layer (A).
  • the resin is interposed between the layer (A) and the layer (B).
  • the resin that can be used for the adhesive layer (D) is not particularly limited as long as it has adhesiveness to both the layer (A) and the layer (B).
  • polyolefins such as polyethylene and polypropylene Polyolefin which is modified with maleic anhydride or the like; an adhesive fluororesin which can be used for the layer (C); in this case, an adhesive fluororesin used for the layer (C) and an adhesive used for the layer (D)
  • an adhesive fluororesin which can be used for the layer (C)
  • an adhesive fluororesin used for the layer (C) and an adhesive used for the layer (D)
  • the adhesive layer (D) is preferably an adhesive fluororesin, a polyamide resin, or a mixture of an adhesive fluororesin and a polyamide resin.
  • thermoplastic polymer forming the layer (B) made of a thermoplastic resin having excellent fuel permeability a polymer having a polar functional group and a large intermolecular force is used, so that there are many water-absorbing polymers. Due to the effect of this water absorption, the fuel resistance decreases, and the low-temperature impact resistance decreases. Therefore, shielding the layer (B) from moisture is very effective in suppressing a change with time in the physical properties of the laminated resin molded product. Since the fluororesin has a high barrier property against water, the use of the adhesive fluororesin for the adhesive layer (D) means that the layer (B) is sandwiched between the fluororesin layers, and that the layer (B) can be used over time. This is advantageous in that it has an effect of suppressing excessive water absorption and can suppress a temporal decrease in fuel permeability resistance and low-temperature impact resistance of the laminated resin laminate.
  • the layer (A) preferably has a higher amine value.
  • the laminated resin molded article of the present invention is intended to protect the laminated resin molded article from vibration, impact, etc., on the surface of the layer (A) opposite to the layer (B). In addition, it may have the above-mentioned other layers such as an elastomer layer.
  • the elastomer constituting the above-mentioned elastomer layer may be a thermoplastic elastomer.
  • the laminated resin molded article of the present invention includes a conductive layer (E) as the other layer.
  • the conductive layer (E) is in contact with the surface of the layer (C) made of the adhesive fluororesin opposite to the surface (B) made of the thermoplastic resin having excellent fuel permeability. May be used.
  • the “conductive layer (E)” is a conductive layer made of a fluororesin.
  • the conductive layer (E) is a layer made of a fluororesin, but is conceptually different from the layer (C) as is apparent from one embodiment of the other layers.
  • the fluororesin used for the conductive layer (E) may be an adhesive fluororesin or a fluororesin different from the adhesive fluororesin.
  • the laminated resin molded article containing the conductive layer (E) is particularly preferably a fuel tube, a fuel hose or a fuel tank to be described later. In this case, the conductive layer (E) is used in view of utilizing conductivity. ) Is preferably located at the position in contact with the fuel, usually at the innermost layer.
  • the laminated resin molded article of the present invention is formed by laminating the above-mentioned layer (A), layer (B) and layer (C), it has excellent interlayer adhesion, and also has an adhesive property for forming the layer (C). It has properties such as excellent fuel oil resistance, chemical resistance, heat resistance, weather resistance, electrical insulation, non-adhesiveness, and non-elution properties possessed by the fluoropolymer.
  • the fuel permeability of the laminate was merely the sum of the fuel permeability of each single layer.
  • the layer (A) made of a polyamide-based resin together with the layer (B) made of a thermoplastic resin having excellent fuel permeation resistance, the laminated resin molded article has a The fuel permeability can be kept much lower than the sum of the fuel permeability of each single layer.
  • the thickness of the layer (C) which is usually made of an expensive adhesive fluororesin, can be made relatively thin.
  • the laminated resin molded article is provided with the layer (A) made of the polyamide resin, thereby suppressing the occurrence of cracks and facilitating bending. Shapes and convoluted shapes can be produced, and even when these shapes are used, fuel permeability and the like are kept low and crack resistance is excellent.
  • the laminated resin molded article of the present invention has a low-temperature impact resistance as a polyamide resin constituting the layer (A).
  • a material that has high impact resistance and low-temperature impact resistance as the thermoplastic resin of layer (B) that has excellent fuel permeability, the low-temperature impact resistance of the entire tube is greatly improved. It is possible to improve the thickness of the layer (C) made of the adhesive fluororesin.
  • Thinning the layer (C) made of the adhesive fluororesin is advantageous in terms of cost because it can reduce the amount of fluororesin, which is generally considered expensive, and it is a standard for fuel tubes. Accordingly, when the overall thickness is determined, or when the predetermined thickness is used for an intended use, the layer (B) can be thickened, and the fuel permeation resistance of the entire laminated resin molded article can be improved.
  • the layer (C) made of the adhesive fluororesin is preferably not more than 25% of the total thickness of the laminated resin molded article.
  • the thickness of the entire laminated resin molded article of the present invention is 1 mm , 0.25 mm or less, more preferably 0.15 mm, and still more preferably about 0.1 mm.
  • the layer (B) made of a thermoplastic resin having excellent fuel permeability is used together with the layer (B) made of a thermoplastic resin having excellent fuel permeability.
  • the layer (A) made of a polyamide-based resin, it is possible to improve the fuel permeation resistance of the entire laminated resin molded article.
  • the layer (C) composed of the adhesive fluororesin can be made to be 10% or less of the total thickness of the laminated resin molded article. Even in such a case, the low-temperature impact resistance test described in SAE-J2260 can be used. A laminate that does not crack can be obtained.
  • the overall thickness of the laminated resin molded article of the present invention is lmm
  • the layer (C) made of the adhesive fluororesin is thinned to 0.1 mm
  • the layer (C) made of fluororesin and the layer (B) made of thermoplastic resin having excellent fuel permeability are laminated with a strong adhesive force
  • the above layer (A) is used as the outer layer.
  • a fuel tube is used, a tube that does not crack in the low-temperature impact resistance test described in SAE-J2260 is produced.
  • the laminated resin molded article of the present invention can have various shapes such as a film shape, a sheet shape, a tube shape, a hose shape, a bottle shape, and a tank shape.
  • the above film shape, sheet shape, tube shape and hose shape are corrugated. ed) shape or convoluted shape.
  • tubes, hoses and tanks can be suitably used for fuel.
  • the layer (C) is preferably in a position in contact with the fuel, that is, usually the innermost layer.
  • the layer (A) is an outer layer
  • the layer (B) is an intermediate layer
  • the layer (C) has a positional relationship between the layer (A) and the layer (B) with the inner layer.
  • the “outer layer”, “inner layer”, and “intermediate layer” refer to the above-mentioned layers (A), (B), and ⁇ in the shapes having the concept of inside and outside such as tubes, hoses, and tanks.
  • the layer (C) may have another layer on the surface on the side opposite to the layer (B).
  • the above-mentioned laminated resin molded article comprises a layer (A) made of a polyamide resin as an outer layer, a layer (C) made of an adhesive fluororesin as an inner layer, and a thermoplastic resin having excellent fuel permeability resistance. It is preferable that the layer (B) be an intermediate layer.
  • This laminated resin molded article is particularly preferable when used as a fuel tube, a fuel hose, or a fuel tank. It is sometimes referred to as “laminate resin molding for fuel”.) In this case, it is more preferable that the layer (B) and the layer (C) are in contact with each other. In the laminated resin molded article, the layer (B) and the layer (C) are in contact with each other, and are composed of only the layer (A), the layer (B), and the layer (C). You can.
  • the laminated resin molded article is a laminated resin molded article further including an adhesive layer (D).
  • the adhesive layer (D) is different from the layer (A) made of a polyamide resin in heat resistance excellent in fuel permeation resistance. Those present between the layer (B) and the layer made of a plastic resin are more preferable.
  • the laminated resin molded article is a laminated resin molded article including the above layer (A) as an outer layer, the above layer (C) as an inner layer, and the above layer (B) as an intermediate layer. A) and the above layer (B )) And the adhesive layer (D), and is particularly preferable when used as a fuel tube, a fuel hose or a fuel tank.
  • the laminated resin molded article can further improve the adhesive strength between the above-mentioned shunn (A) and the above-mentioned layer (B).
  • the polyamide resin of the layer (A) is nylon 12, as described above, it can be sufficient.
  • the layer (B) and the layer (C) are in contact with each other.
  • the laminated resin molded article is a laminated resin molded article further including the above-mentioned conductive layer (E), wherein the conductive layer (E) is a layer of an adhesive fluororesin (C) which has a resistance to heat resistance.
  • the layer may be in contact with the surface opposite to the layer (B) made of a thermoplastic resin having excellent fuel permeability.
  • This laminated resin molded product is particularly preferable when used as a fuel tube, a fuel hose or a fuel tank.
  • the laminated resin molded article may not include the adhesive layer (D), but preferably has the adhesive layer (D) between the layer (A) and the layer (B). It is preferable that the layer (B) is in contact with the above-mentioned layer (C).
  • the conductive layer (E) is preferably the innermost layer in the laminated resin molded article. Since the laminated resin molded article includes the conductive layer (E), the layer (C) does not need to be conductive, but the layer (C) may be
  • the above-mentioned laminated resin molded article is suitable not only for a fuel that can be suitably used particularly for a fuel tube, a fuel hose or a fuel tank, but also for applications in contact with combustible volatile organic substances other than fuel. Can be used.
  • the method for producing the laminated resin molded article of the present invention is not particularly limited, and is appropriately selected according to the type and properties of the resin forming each layer.
  • Examples of the above method include a method of co-extrusion of the material constituting each layer in a multilayer form, a method of separately molding the material constituting each layer into a sheet or film shape, and then pressing the obtained layers under heating.
  • a method of laminating by heat fusion is exemplified.
  • the die temperature of multi-layer coextrusion the resin Since the temperature is preferably as high as possible within the range not decomposing, the temperature is preferably higher than 225 ° C, more preferably 230 ° C or more. Conventionally, when multi-layer co-extrusion using an ethylene / butyl alcohol copolymer was performed at a die temperature of 250 ° C. or less, in the method for producing a laminated resin molded article of the present invention, 250 ° C. Molding can be performed at a temperature exceeding. When a conductive material is not used for the innermost layer, the die temperature is preferably 240 to 260 ° C.
  • the innermost layer is made of a conductive material
  • molding at a die temperature exceeding 250 ° C is preferable from the viewpoint of suppressing melt fracture and lowering the resistance value, and more preferably at 260 ° C or higher.
  • the upper limit is preferably 300 ° C., more preferably 290 ° C., and even more preferably 280 ° C., from the viewpoint of suppressing the decomposition and deterioration of the thermoplastic resin having excellent fuel permeability.
  • the same die temperature can be used when the above layer (B) is made of ethylene butyl alcohol copolymer.
  • the laminated resin molded article is excellent in fuel oil resistance, solvent resistance, chemical resistance, non-elution property, etc., and can suppress fuel permeability to a low level. Can be used for contacting applications.
  • the fuel is not particularly limited, and includes, for example, a fuel oil such as gasoline, petroleum, light oil, or heavy oil; a pseudo fuel such as Fue 1C; a peroxyside-containing fuel obtained by mixing the above fuel oil, pseudo fuel, or the like with peroxide; An alcohol-containing fuel obtained by mixing a fuel oil, a pseudo fuel, or the like with methanol, ethanol, or the like can be given.
  • the fuel may be a gaseous fuel such as methane, natural gas, and dimethyl ether.
  • the laminated resin molded article can be suitably used for suppressing the permeation of the alcohol-containing fuel.
  • the solvent is not particularly limited as long as it is mainly composed of a solvent usually used as a solvent.
  • the solvent include organic acids such as acetic acid, formic acid, cresol and phenol; alcohols such as methanol and ethanol; ethylenediamine; Amines such as diethylenetriamine and ethanolamine; amides such as dimethylacetamide; esters such as ethyl acetate and butyl acetate; hydrocarbons such as hexane; ketones such as acetone and dimethyl ketone; Of which one or a mixture of two or more And the following.
  • the solvent may be one obtained by dissolving a resin or the like in a solvent generally used as the above solvent, such as a paint.
  • the laminated resin molded article can be suitably used as the solvent, particularly for applications in contact with combustible volatile organic substances.
  • the laminated resin molded body is a layer (a) made of a thermoplastic resin having excellent fuel permeability resistance.
  • the laminated resin molded article can be used for the following applications.
  • the laminated resin molded article has excellent impact resistance, particularly low-temperature impact resistance in addition to non-elution and flexibility, it can be suitably used as a tube or a hose.
  • the laminated resin molded article is excellent in fuel oil resistance and the like, and has low fuel permeability. It can be particularly preferably used as a hose or a fuel hose.
  • a tube that does not crack in the low-temperature impact resistance test described in SAE-J2260 can be provided from the viewpoint of low-temperature impact resistance.
  • the laminated resin molded article has excellent impact resistance, particularly low-temperature impact resistance in addition to non-elution, flexibility, and the like, and thus can be suitably used as a tank.
  • a conventional product in which a resin laminate having a top layer made of polyethylene or the like is joined to form a tank has a problem in that the contents leak from the joint surface where the layers made of polyethylene or the like are adhered due to low adhesion.
  • the layers (C) composed of the adhesive fluororesin are compatible with each other and bonded. Because of its excellent strength, even when used as a tank, the contents are unlikely to leak from the joint surface of the laminated resin molded product.
  • the laminated resin molded article has excellent fuel oil resistance and low fuel permeability
  • the above-mentioned tank can be particularly suitably used as a fuel tank.
  • the above-mentioned laminated resin molded article when the above-mentioned layer (C) has conductivity, or when the above-mentioned conductive layer (E) has excellent fuel permeation resistance among the surfaces of the above-mentioned layer (C).
  • the conductive layer (C) and the conductive layer (E) are preferably the innermost layer in the laminated resin molded article.
  • Such a laminated resin molded body does not accumulate electrostatic charge even when in contact with the above-mentioned flammable volatile organic substance, and has a low possibility of ignition.
  • the surface resistance value of the inner surface of the tube is set to SAE-J2260. According to the test method provided, a laminate having a value of less than ⁇ / sq can be provided.
  • N 500 AW / 8 d f (a)
  • the infrared absorption spectrum analysis was performed 40 times using a Perkin-Elmer FTIR spectrometer 176 OX (manufactured by PerkinElmer Inc.). Based on the obtained IR spectrum, the base line was automatically determined by Perkin-ElmerSpecctrumfoorwindowsVer.1.4C.
  • the melting peak when the temperature was raised at a rate of 10 ° 0 minutes was recorded, and the temperature corresponding to the maximum value was defined as the melting point (Tm).
  • a 1 cm wide test piece was cut from the tubular resin molded article, and a 180 ° peel test was performed at a speed of 25 mmZ on a Tensilon universal testing machine. The maximum 5-point average in the elongation-tensile strength graph was calculated. It was determined as the initial bond strength (NZcm).
  • the resin pellets to be used for each layer of the tube-shaped laminated resin molded product were placed in a mold with a diameter of 120 mm and heated by a press machine (fluorocarbon resin: 260 ° C, other resins other than fluorocarbon resin: 230 ° C ) And melt-pressed at a pressure of about 2.9 MPa to obtain a sheet having a thickness of 0.1 mm.
  • Tables 1 and 2 show the values of the fuel permeation rate of each resin single layer used in the calculation of the fuel permeation rate of the entire laminated resin molded product in Tables 5 and 8.
  • the tube-shaped laminated resin molded product was cut to a length of 40 cm, a SUS 316 reservoir tank with a capacity of 12 Oml was attached with a swage port, and the permeation amount of CE 10 was measured in accordance with SAE J17737.
  • the fuel permeation rate (g Xmm / day / m 2 ) was calculated from the measured thickness of the tubular resin molded article.
  • the calculated value P of the fuel permeation rate of the laminated resin molded article was calculated by the following formula based on the actually measured value of the fuel permeation rate of the single layer measured by the method described above.
  • the mixture was evaporated in a flask, dried for 24 hours in a constant temperature bath at 80 ° C, and the mass of the eluted material was measured.
  • the mass of the eluted material, the surface area of the laminated resin molding in the liquid contact portion, and the mass of the fuel The dissolution rate (g / l 00 ml / m 2 ) was calculated from.
  • Table 2 shows the trade names of the ethylene Z butyl alcohol copolymer used in the experimental examples, the values of X mol% of vinyl acetate units, the degree of oxidation Y%, and XXY / 100.
  • Table 3 shows the physical properties of the fluororesin used in the experimental examples.
  • TFE tetrafluoroethylene
  • Et ethylene
  • VdF vinylidene fluoride
  • HFP hexafluoropropylene
  • HF-P e perfluoro (1,1,5-trihydryl 1-pentene)
  • PMVE perfluoro (methyl vinyl ether).
  • the polyamide resins used in the experimental examples are as follows.
  • PA 12 Vestamid X7297 (manufactured by Degussa AG) and A4878 (manufactured by Daicel Degussa) were used. BESNP40TL (manufactured by Atofina) was used as Polyamide 11 [PA11]. UBE nylon 1018 I (manufactured by Ube Industries) was used as polyamide 6 [PA6].
  • nylon 6 (trade name: UBE nylon 10181, manufactured by Ube Industries) and nylon 1 2 (trade name: UBE STA3030B, manufactured by Ube Industries)
  • the polyethylene resins used in the experimental examples were low-density polyethylene [LDPE] (trade name: Petrocene 292, manufactured by Tosoh Corporation) and maleic anhydride-modified polystyrene [modified PE] (trade name: ADMER NF 528) , Manufactured by Mitsui Chemicals, Inc.).
  • the resins consisting of the ethylene / butyl alcohol copolymer used in the experimental examples were EVAL F101A (Kuraray), Mersen H 6051 (Tosoichi), Technolink K200 (Taoka Chemical). ), And Mersen H6410M (manufactured by Tohso I) and Xepar XEP505B (manufactured by Kuraray).
  • Experimental Example 1 25 Using a four-layer, four-layer tube co-extrusion device equipped with a multi-manifold die, the resins shown in Table 5, Table 6, Table 7, and Table 8 were respectively applied to four extruders. The supplied resin was continuously molded into a tube-shaped laminated resin molded article having an outer diameter of 8 mm and an inner diameter of 6 mm. Table 58 shows the molding conditions and the evaluation results of the obtained tubes.
  • PA12A Vestamid X 7297 (Degusa AG)
  • PA12B A4878 (Daicel Degussa)
  • PA11 BESNP 40 TL (Atofina)
  • PA 6 Nylon 6 (trade name: UBE nylon 101 81, manufactured by Ube Industries)
  • PAmix Nylon 6 (trade name: UBE nylon 1018 1, manufactured by Ube Industries) and nylon 1 2 (trade name: UBESTA 3030 B) (Made by Ube Industries)
  • LDPE Petrocene 292 (manufactured by Toso Corporation)
  • E VOH 1 EVAL F 10 1 A (Kuraray)
  • EVOH3 Techno Link K 200 (Taoka Chemical Co., Ltd.)
  • E VOH4 Mersen H6410M (manufactured by Tohso I)
  • E VOH 5 Evar XE P 505 B (manufactured by Kuraray)
  • Table 5 shows that the interlayer adhesion of the laminated resin molded article of Experimental Example 14 using the XYZ / l 00 ⁇ 7 ethylene / butyl alcohol copolymer for the middle layer and the adhesive fluororesin for the inner layer It was good even after immersion.
  • Experimental Example 23 in which an ethylene-Z-Bier alcohol copolymer of XXYZ100 ⁇ 7 was used for the intermediate layer in Table 7 and a fluororesin having no adhesive functional group was used for the inner layer, no interlayer was bonded at all.
  • Experimental Example 2 in Table 5 and Experimental Example 20 in Table 7 both used EVOH 1 for the intermediate layer and adhesive fluoroplastic FB for the inner layer, and the thickness of each layer was the same, but the outer layer was LDPE.
  • the fuel permeation rate of the whole tube was almost the same as the value calculated from the fuel permeation rate of each single layer.However, when the polyamide resin was used for the outer layer, the fuel permeation rate was particularly low. I understood.
  • Experimental Examples 1 to 11 and 14 in Table 5 using a polyamide resin for the outer layer each single-layer fuel was used regardless of the presence or absence of the adhesive layer and the thickness of each layer. The measured fuel permeation rate was much lower than the calculated value based on the permeation rate.
  • the fuel permeability is suppressed to be much lower than the sum of the fuel permeability of each layer, and the interlayer adhesive strength, fuel oil resistance, non-elution property, and low-temperature impact resistance are started to be used.
  • An excellent laminated resin molded product can be obtained over time and after elapse of time. Since the above-mentioned laminated resin molded article has the above-mentioned excellent characteristics, the fuel tube and the fuel It can be suitably used for applications such as fuel hoses and fuel tanks. ,

Abstract

A laminated resin formed body is disclosed which does not change in quality during formation and is excellent in fuel oil resistance, non-dissolving property, creep resistance, heat resistance, and low-temperature impact resistance. The laminated resin formed body has a low fuel permeability, and deterioration with age of interlayer adhesion, fuel permeation resistance or low-temperature impact resistance can be suppressed in this laminated resin formed body. The laminated resin formed body which comprises a layer (A) composed of a polyamide resin, a layer (B) composed of a thermoplastic resin with excellent fuel permeation resistance, and a layer (C) composed of an adhesive fluororesin is characterized in that the layer (A), layer (B) and layer (C) are arranged in this order.

Description

明細書  Specification
積層樹脂成形体及びその製造方法 技術分野  LAMINATED RESIN MOLDED BODY AND ITS MANUFACTURING METHOD
本発明は、 積層樹脂成形体及びその製造方法に関する。 背景技術  The present invention relates to a laminated resin molded article and a method for producing the same. Background art
フッ素樹脂は、 耐熱性、 耐薬品性、 耐候性、 電気絶縁性、 低摩擦性、 非粘着性 等の特性に優れているため、 種々の用途に用いられている。 にもかかわらず、 フ ッ素樹脂は、 高価であり、 また、 機械的強度や寸法安定性に劣るので、 フッ素樹 脂と他の有機材料又は無機材料とを積層することが検討されている。  Fluororesins are used in various applications because of their excellent properties such as heat resistance, chemical resistance, weather resistance, electrical insulation, low friction, and non-adhesion. Nevertheless, fluororesins are expensive and have poor mechanical strength and dimensional stability, so that lamination of fluororesins with other organic or inorganic materials is being studied.
しカゝしながら、 元来、 フッ素樹脂はその非粘着性ゃ耐薬品性と相まって他材と の親和性に劣るので、 フッ素樹脂以外のその他の材料と加熱溶融接着による積層 を試みても、 接着強度が不充分であり、 また、 ある程度の接着強度が得られたと しても接着する相手材の種類によっては接着力に再現性がなく、 常に安定した接 着強度を得ることは困難であった。  However, fluoropolymers are inherently poor in affinity with other materials due to their non-adhesiveness and chemical resistance, so even if you try to laminate with other materials other than fluororesins by heat fusion, The bonding strength is insufficient, and even if a certain level of bonding strength is obtained, the bonding strength is not reproducible depending on the type of the material to be bonded, and it is difficult to always obtain a stable bonding strength. Was.
フッ素樹脂とフッ素榭脂以外のその他の材料とを接着する方法としては、 ( 1 ) 接着する相手材の表面をサンドプラスター処理等により処理して物理的 に表面積を増加して接着する方法、  The method of bonding fluororesin and other materials other than fluororesin is as follows: (1) The surface of the mating material to be bonded is treated by sand plaster treatment or the like to physically increase the surface area and bond.
( 2 ) フッ素樹脂をナトリウム -エッチング、 プラズマ処理、 光化学的処理等 の表面処理に供した後接着する方法、  (2) A method in which a fluororesin is subjected to a surface treatment such as sodium-etching, plasma treatment, photochemical treatment and the like, and then bonded.
( 3 ) 接着剤を用いて接着する方法  (3) Method of bonding with adhesive
等が挙げられる。 And the like.
( 1 ) 及び (2 ) の方法は、 それぞれ処理工程が必要であり、 工程が複雑にな るので生産性が悪く、 また、 接着する相手材の種類や形状が限定される。 更に、 接着力が不充分であり、 得られる樹脂積層体に着色、 傷等の外観上の問題が生じ やすい。  The methods (1) and (2) each require a processing step, which complicates the process, resulting in poor productivity, and limits the type and shape of the mating material to be bonded. Furthermore, the adhesive strength is insufficient, and the resulting resin laminate tends to have external problems such as coloring and scratches.
( 3 ) の方法に使用する接着剤としては、 炭化水素系接着剤が挙げられる。 炭 化水素系接着剤を用いた樹脂積層体としては、 ポリビニリデンフルオラィド層又 はエチレン/テトラフルォロエチレン共重合体層を内層とし、 エチレンノビュル アルコール共重合体層を外層とし、 内層と外層との間にエチレン zアクリル酸ェ ステノレ共重合体を接着剤として用いた燃料用チューブが知られている (例えば、 特開平 5— 2 4 7 4 7 8号公報参照。 ) 。 Examples of the adhesive used in the method (3) include a hydrocarbon-based adhesive. Charcoal As a resin laminate using a hydride-based adhesive, a polyvinylidene fluoride layer or an ethylene / tetrafluoroethylene copolymer layer is used as an inner layer, and an ethylene novyl alcohol copolymer layer is used as an outer layer, and an inner layer is used. A fuel tube using an ethylene-z-ester acrylate copolymer as an adhesive between the outer layer and the outer layer is known (for example, see Japanese Patent Application Laid-Open No. 5-247478).
しかしながら、 炭化水素系接着剤は、 接着力が不充分であるとともに、 接着剤 自体の耐熱性が不充分であるので、 フッ素樹脂を成形加工する際に高温下におく と、 分解して剥離や着色等が起こり、 また、 得られる樹脂積層体は、 接着剤層の 耐熱性、 耐薬品性、 耐水性等が不充分であるので、 温度や湿度、 燃料種といった 使用条件により接着力が低下し、 また、 経時変化によっても接着力が大きく低下 するという問題があった。  However, hydrocarbon-based adhesives have insufficient adhesive strength and insufficient heat resistance of the adhesive itself. Coloring etc. occurs, and the resulting resin laminate has insufficient heat resistance, chemical resistance, water resistance, etc. of the adhesive layer, so the adhesive strength is reduced due to usage conditions such as temperature, humidity, and fuel type. In addition, there has been a problem that the adhesive strength is greatly reduced due to a change with time.
重合体末端にカーボネート基を有するテトラフルォロエチレン共重合体からな る層を内層とし、 エポキシ基を有するポリエチレンからなる層を中間層とし、 ポ リエチレンからなる層を外層とする樹脂積層体が開示されている (例えば、 国際 公開 9 8 Z 5 8 9 7 3号パンフレッ ト参照。 ) 。  A resin laminate comprising a layer made of a tetrafluoroethylene copolymer having a carbonate group at the polymer terminal as an inner layer, a layer made of polyethylene having an epoxy group as an intermediate layer, and a layer made of polyethylene as an outer layer. It is disclosed (see, for example, International Publication No. 98858973 pamphlet).
しかしながら、 エポキシ基を有するポリエチレンからなる層を中間層として用 いて、 重合体末端にカーボネート基を有するテトラフルォロエチレン共重合体か らなる層とポリエチレンからなる層とを積層した場合、 初期接着強度は高レヽもの の、 経時的に接着強度が低下する傾向があり、 また、 エポキシ基を有するポリエ チレンは、 耐燃料油性が低く、 樹脂積層体を燃料用チューブや燃料用タンク等に 用いると、 溶解するという問題があった。 更に、 バリア層がフッ素樹脂層だけで は樹脂積層体が燃料透過性に劣るという問題もあった。  However, when a layer made of polyethylene having an epoxy group is used as an intermediate layer and a layer made of a tetrafluoroethylene copolymer having a carbonate group at the polymer terminal and a layer made of polyethylene are laminated, the initial adhesion is reduced. Although the strength is high, the adhesive strength tends to decrease over time.Polyethylene having an epoxy group has low fuel oil resistance, and when a resin laminate is used for a fuel tube, a fuel tank, or the like. However, there was a problem of dissolution. Further, there has been a problem that the resin laminate is inferior in fuel permeability only when the fluorocarbon resin layer is used as the barrier layer.
酢酸ビニル単位 Xモル%及ぴ鹼化度 γ %が、 X Y./ 1 0 0≥ 1 0 . 0を満足 するエチレン/酢酸ビュル共重合体からなる層を用いて、 重合体末端にカーボネ —ト基を有するフッ素樹脂からなる層とポリエチレンからなる層とを接着した場 合、 接着強度が経時的に低下せず、 また、 このようなエチレン Ζ酢酸ビュル共重 合体は耐燃料油性に比較的優れていることが記載されている (例えば、 国際公開 0 1 / 1 4 1 4 1号パンフレツト参照。 ) 。 しかしながら、 燃料用チューブにおいて、 最外層がポリエチレンからなる層で ある場合、 ポリエチレンが耐クリープ性に劣るので、 コネクター差し込み部分の ような長期応力がかかる部位ではクラックを生じやすく、 また、 ポリエチレンの 弾性率が比較的高いことにより、 チューブを曲げ加工しづらく、 また低温耐衝撃 性に劣るという問題があった。 また、 使用しているフッ素樹脂の燃料透過速度が エチレン/ビュルアルコール共重合体の燃料透過速度に比べて高すぎ、 長期使用 中に層間剥離が起こるという問題があつた。 Using a layer composed of an ethylene / butyl acetate copolymer in which the vinyl acetate unit X mol% and the degree of conversion γ% satisfy XY. When a layer made of a fluororesin having a hydroxyl group is bonded to a layer made of polyethylene, the adhesive strength does not decrease over time, and such an ethylene-butyl acetate copolymer has relatively low fuel oil resistance. It is described as being excellent (see, for example, International Publication No. 01 / 141,401 pamphlet.). However, when the outermost layer of the fuel tube is a layer made of polyethylene, polyethylene has poor creep resistance, so cracks are likely to occur in places where long-term stress is applied, such as connector insertion parts, and the elastic modulus of polyethylene Due to the relatively high ratio, the tube was difficult to bend and the low-temperature impact resistance was poor. In addition, the fuel permeation rate of the fluororesin used is too high compared to the fuel permeation rate of the ethylene / butyl alcohol copolymer, and there has been a problem that delamination occurs during long-term use.
最外層としてポリエチレンの代わりに引張り強さ等の機械的性質に優れたポリ アミド 1 2からなる層を用いた燃料用チューブとして、 エチレン/ビュルアルコ ール共重合体からなる層を中間層とし、 ポリアミド 6からなる層を最内層とする ものが開示されている (例えば、 特開平 3— 1 7 7 6 8 3号公報参照。 ) 。 しか しながら、 ポリアミド系樹脂は、 最内層に用いた場合、 最内層を薄層としても、 燃料を長期にわたって使用するとオリゴマー、 モノマー及び可塑剤の溶出を起こ し、 エンジン周りのフィルターの目詰まりを引き起こすという問題があった。 オリゴマー、 モノマー及び可塑剤の溶出を最小限にするために、 最内層である ポリアミド 6からなる層の厚さをできる限り薄くすると、 チューブの形体変更や 衝搫ゃ応力による変形に際し、 エチレン/ビュルアルコール共重合体からなる層 がその材料の脆さからクラックを生じやすく、 燃料チューブに求められる耐バー スト性ゃ低温耐衝撃性が不充分になるという問題があった。 この問題を解決する 手段は、 従来、 何ら示されていない。  As the outermost layer, instead of polyethylene, a fuel tube using a layer made of polyamide 12 with excellent mechanical properties such as tensile strength, a layer made of an ethylene / butyl alcohol copolymer is used as an intermediate layer, and a polyamide A structure in which a layer consisting of 6 is used as the innermost layer is disclosed (for example, see Japanese Patent Application Laid-Open No. 3-176683). However, when polyamide-based resin is used for the innermost layer, even if the innermost layer is made thin, long-term use of fuel will cause oligomers, monomers and plasticizers to elute, causing clogging of the filter around the engine. There was a problem of causing. In order to minimize the elution of oligomers, monomers and plasticizers, the innermost layer made of polyamide 6 should be made as thin as possible. There is a problem that the layer made of the alcohol copolymer is liable to crack due to the brittleness of the material, resulting in insufficient burst resistance and low-temperature impact resistance required for the fuel tube. Heretofore, no means has been shown to solve this problem.
エチレンノビニルアルコール共重合体からなる層を最内層とする燃料用チュー ブが開示されているが (例えば、 特開平 3— 1 7 7 6 8 4号公報参照。 ) 、 この 燃料用チユーブは、 ェチレン ビュルアルコール共重合体が燃料と接するので耐 薬品性が不充分であり、 また、 エチレンノビ-ルアルコール共重合体がその吸水 性ゆえに大気中や燃料中の水分を吸収するので耐薬品透過性が低下するという問 題があった。  A fuel tube in which a layer made of an ethylenenovinyl alcohol copolymer is the innermost layer is disclosed (for example, see Japanese Patent Application Laid-Open No. 3-177684). Ethylene butyl alcohol copolymer is in contact with fuel, so chemical resistance is insufficient.Ethylene vinyl alcohol copolymer absorbs water in air and fuel due to its water absorption, so chemical permeability is low. There was a problem that it declined.
このように、 従来、 フッ素樹脂とエチレン ビュルアルコール共重合体とを含 む榭脂積層体であって、 成形加工時に着色せず、 長期にわたって層間接着性を維 持することができ、 耐燃料油性、 非溶出性、 耐クリープ性及び耐熱性を満足した 上で、 形体変更時にェチレン /ビニルアルコール共重合体からなる層にクラック を生じやすいという問題を克服し、 耐衝撃性、 特に低温耐衝撃性が得られたもの はなかった。 発明の要約 As described above, conventionally, a resin laminate containing a fluororesin and an ethylene butyl alcohol copolymer does not discolor during molding and maintains interlayer adhesion for a long time. In addition to satisfying the fuel oil resistance, non-elution properties, creep resistance and heat resistance, it overcomes the problem that cracks are likely to occur in the layer made of ethylene / vinyl alcohol copolymer when the shape is changed. No impact resistance, especially low temperature impact resistance, was obtained. Summary of the Invention
本発明の目的は、 上記現状に鑑み、 成形加工時に変質せず、 耐燃料油性、 非溶 出性、 耐クリープ性、 耐熱性、 低温耐衝撃性等に優れ、 層間接着力ゃ耐燃料透過 性、 低温耐衝擊性の経時的低下を抑制し、 燃料透過性を低く抑えることが可能で ある積層樹脂成形体を提供することにある。  In view of the above situation, the object of the present invention is that it does not deteriorate during molding processing, and is excellent in fuel oil resistance, non-elution property, creep resistance, heat resistance, low-temperature impact resistance, etc., interlayer adhesive strength 燃料 fuel permeability resistance It is another object of the present invention to provide a laminated resin molded article capable of suppressing the temporal deterioration of low-temperature impact resistance and suppressing the fuel permeability.
本発明は、 ポリアミド系樹脂からなる層 (A) 、 耐燃料透過性に優れた熱可塑 性樹脂からなる層 (B ) 、 及び、 接着性フッ素樹脂からなる層 (C ) を含む積層 樹脂成形体であって、 上記層 (A) 、 上記層 (B ) 及び上記層 (C ) は、 この順 に積層していることを特徴とする積層樹脂成形体である。 発明の詳細な開示  The present invention provides a laminated resin molded article including a layer (A) made of a polyamide resin, a layer (B) made of a thermoplastic resin having excellent fuel permeability resistance, and a layer (C) made of an adhesive fluororesin. Wherein the layer (A), the layer (B) and the layer (C) are laminated in this order. Detailed Disclosure of the Invention
以下に本発明を詳述する。  Hereinafter, the present invention will be described in detail.
本発明の積層樹脂成形体は、 ポリアミド系樹脂からなる層 (A) 、 耐燃料透過 性に優れた熱可塑性樹脂からなる層 (B ) 及び接着性フッ素樹脂からなる層 (C ) を含むものである。  The laminated resin molded article of the present invention includes a layer (A) composed of a polyamide resin, a layer (B) composed of a thermoplastic resin having excellent fuel permeability, and a layer (C) composed of an adhesive fluororesin.
本発明の積層樹脂成形体をなす上記層 (B ) を形成するものである耐燃料透過 性に優れた熱可塑性樹脂は、 耐燃料透過性に優れた熱可塑性ポリマーからなる樹 脂である。 上記耐 '燃料透過性に優れた熱可塑性ポリマーは、 ポリマー鎖同士及び /又はポリマー鎖内での凝集エネルギーが比較的大きいポリマーである。  The thermoplastic resin having excellent fuel permeation resistance, which forms the layer (B) constituting the laminated resin molded article of the present invention, is a resin made of a thermoplastic polymer having excellent fuel permeation resistance. The thermoplastic polymer having excellent fuel permeability resistance is a polymer having relatively large cohesive energy between polymer chains and / or within polymer chains.
上記耐燃料透過性に優れた熱可塑性ポリマーとしては、 結晶化度が高いポリマ 一、 又は、 極性官能基を有し分子間力が大きいポリマーが好ましく、 結晶化度が 高く、 かつ、 極性官能基を有し分子間力が大きいポリマーがより好ましい。 上記耐燃料透過性に優れた熱可塑性ポリマーの耐燃料透過性としては C E 1 0 ( イソオクタン: トルエン =50 : 50 (容量比) の混合物にエタノール 10容量As the thermoplastic polymer having excellent fuel permeation resistance, a polymer having a high crystallinity or a polymer having a polar functional group and a large intermolecular force is preferable, and has a high crystallinity and a polar functional group. And a polymer having a large intermolecular force. The fuel permeation resistance of the thermoplastic polymer excellent in fuel permeation resistance is CE 10 ( Isooctane: toluene = 50: 50 (volume ratio) mixture in ethanol 10 volumes
%を混合した試験用疑似燃料種) に対する 60°Cにおける燃料透過速度が 1 (gPercentage of fuel permeation at 60 ° C to the test fuel type
Xmm/m2/d a y) 以下であることが好ましい。 より好ましくは、 0. 5 ( g Xmm/mVd a y ) 以下である。 Xmm / m 2 / day). More preferably, it is 0.5 (g Xmm / mVd ay) or less.
上記耐燃料透過性に優れた熱可塑性ポリマーが有していてもよい極性官能基は、 極性を有し接着性フッ素樹脂との接着に関与し得る官能基である。 上記極性官能 基は、 接着性フッ素樹脂が有するものとして後述する接着性官能基と同じ官能基 であってもよいが異なる官能基であってもよい。  The polar functional group which may be possessed by the thermoplastic polymer having excellent fuel permeation resistance is a functional group having polarity and capable of participating in adhesion to an adhesive fluororesin. The polar functional group may be the same functional group as the adhesive functional group described later as the adhesive fluororesin has, or may be a different functional group.
上記極性官能基としては特に限定されず、 例えば、 接着性官能基として後述す るもののほか、 アミノ基、 シァノ基、 スルフイ ド基、 ヒ ドロキシル基等が挙げら れ、 なかでも、 アミノ基、 カルボニ^/ォキシ基、 シァノ基、 スルフイド基、 ヒド 口キシル基が好ましく、 ヒドロキシル基がより好ましい。  The polar functional group is not particularly limited, and examples thereof include an amino group, a cyano group, a sulfide group, a hydroxy group, and the like, in addition to those described below as the adhesive functional group. Among them, an amino group, a carbonyl group ^ / Oxy groups, cyano groups, sulfide groups, and hydroxyl groups are preferred, and hydroxyl groups are more preferred.
上記耐燃料透過性に優れた熱可塑性樹脂としては特に限定されないが、 耐ガス 透過性に優れる点で、 エチレン/ビニルアルコール共重合体からなる樹脂;ポリ アクリロニトリル樹脂 〔PAN〕 ;ポリエチレンテレフタレート樹脂 〔P ET〕 、 ポリブチレンテレフタレート樹脂 〔PBT〕 、 ポリエチレンナフタレート樹脂 〔 PEN] 、 ポリプチレンナフタレート樹脂 〔PBN〕 、 液晶ポリエステル 〔LC The thermoplastic resin having excellent fuel permeation resistance is not particularly limited, but in terms of excellent gas permeation resistance, a resin composed of an ethylene / vinyl alcohol copolymer; a polyacrylonitrile resin [PAN]; a polyethylene terephthalate resin [P ET], polybutylene terephthalate resin [PBT], polyethylene naphthalate resin [PEN], polybutylene naphthalate resin [PBN], liquid crystal polyester [LC
P〕 等の芳香環含有ポリエステ/レ樹脂;ポリフエ二レンサルファイド樹脂 〔PPP] and other aromatic ring-containing polyester / polyester resins; polyphenylene sulfide resin [PP
S〕 ;ポリグリコール酸樹脂 〔PGA〕 ;ポリビュルクロライド樹脂 〔PVC〕 ;ポリビニリデンク口ライド樹脂 [P VDC] ;ポリビエルフルオラィド榭脂 〔S]; Polyglycolic acid resin [PGA]; Polyvinyl chloride resin [PVC]; Polyvinylidene mouth resin [P VDC]; Polyvinyl fluoride resin [
PVF) ;ポリビ-リデンフルオラィド樹脂 〔PVDF〕 等が好ましく、 なかで も、 エチレン zビュルアルコール共重合体からなる樹脂がより好ましい。 PVF); polyvinylidene fluoride resin [PVDF] and the like are preferable, and among them, a resin composed of an ethylene z-butyl alcohol copolymer is more preferable.
上記耐燃料透過性に優れた熱可塑性樹脂は、 低温耐衝擊性を有するものである ことが好ましく、 一 40°Cでのアイゾット衝撃強度が 2. 5 k J /m 2以上であ るものであることが好ましい。 2. 5 k jZm2未満であると、 得られる積層樹 脂成形体の低温耐衝擊性が不充分となりやすい。 より好ましい下限は、 3. 5 k J Zm2であり、 更に好ましい下限は、 4. 5 k J/m2である。 上記アイゾッ ト衝撃強度は、 用途によるが通常考え得る用途としては、 上記範囲内の値であれ ば、 例えば 20 k jZm2以下であってもよい。 The thermoplastic resin having excellent fuel permeation resistance preferably has low-temperature impact resistance and has an Izod impact strength at 140 ° C of 2.5 kJ / m 2 or more. Preferably, there is. 2. If it is less than 5 k jZm 2, tends to be insufficient cold耐衝擊性of laminated resins obtained molded article. A more preferred lower limit is 3. a 5 k J Zm 2, still more preferred lower limit is 4. a 5 k J / m 2. The above Izod impact strength depends on the application, but as a normally conceivable application, a value within the above range is required. For example, it may be 20 k jZm 2 or less.
上記アイゾット衝撃強度は、 ASTM D 256-84に準拠して測定し得ら れる値であり、 本明細書において、 上記アイゾッ ト衝撃強度は、 U—F IMP ACT TESTER (上島製作所社製) の試験台に一 40°Cの恒温槽から取り 出した測定用サンプルをセッ トし、 直ちに、 荷重 1. 33 k gのハンマーを用い て打擊速度 3. 4 em/sで振り下ろし、 破壌したときの衝撃エネルギー (k g f ■ cm) をジュール (J) 換算し、 サンプル断面積 (m2) で割ることにより 算出される値である。 The above-mentioned Izod impact strength is a value measured and measured in accordance with ASTM D 256-84. In this specification, the above-mentioned Izod impact strength is based on a U-F IMP ACT TESTER (manufactured by Ueshima Seisakusho). Set the measurement sample taken out of the thermostat at 40 ° C on the table, immediately shake it down with a hammer with a load of 1.33 kg at a strike speed of 3.4 em / s, and It is a value calculated by converting the impact energy (kgf ■ cm) into joules (J) and dividing by the sample cross-sectional area (m 2 ).
上記測定用サンプルは、 例えばェチレン /ビニルアルコール共重合体からなる 樹脂を用いる場合、 上記エチレンノビニルアルコール共重合体からなる樹脂を 2 20〜230°Cで 20分間予熱し、 3 M P aで 30秒加圧後水冷することにより、 厚み 3. 2 mmのプレスシートを得た後、 幅 1 2 mm, 長さ 50mmに切削し、 深さ 2. 54mmのノツチを入れ、 — 40 °Cの恒温槽に 4時間保持することによ つて得られる。  For example, when a resin consisting of an ethylene / vinyl alcohol copolymer is used for the measurement sample, the resin consisting of the ethylenenovinyl alcohol copolymer is preheated at 220 to 230 ° C. for 20 minutes, and 30 MPa at 3 MPa. After pressurizing for 2 seconds and cooling with water, a pressed sheet with a thickness of 3.2 mm was obtained, cut into a width of 12 mm and a length of 50 mm, and a 2.54 mm deep notch was inserted. Obtained by holding in the tank for 4 hours.
本発明における上記層 (B) を形成する耐燃料透過性に優れた熱可塑性樹脂が エチレン ビュルアルコール共重合体からなる樹脂である場合、 上記ェチレン/ ビニルアルコール共重合体からなる樹脂としては、 低温耐衝擊性を有するものが 好ましい。 低温耐衝撃性を有するエチレン ビニルアルコール共重合体からなる 樹脂としては、 例えば、 可塑剤を添加したもの、 2種以上のポリアミド系樹脂を 混合したもの、 ヒドロキシ官能化ポリエーテルアミンを混合したもの等が挙げら れ、 このような樹脂としては、 例えば、 特開平 8— 269260号公報、 特開昭 53-88067号公報、 特開昭 59— 20345号公報、 特開昭 52— 141 78 5号公報記載のもの等が挙げられる。  In the case where the thermoplastic resin having excellent fuel permeation resistance forming the layer (B) in the present invention is a resin composed of an ethylene butyl alcohol copolymer, the resin composed of the ethylene / vinyl alcohol copolymer may be a low-temperature resin. Those having impact resistance are preferred. Examples of the resin comprising an ethylene-vinyl alcohol copolymer having low-temperature impact resistance include a resin to which a plasticizer is added, a resin in which two or more polyamide resins are mixed, a resin in which a hydroxy-functionalized polyetheramine is mixed, and the like. Examples of such a resin include, for example, JP-A-8-269260, JP-A-53-88067, JP-A-59-20345, and JP-A-52-141785. And the like.
低温耐衝撃性を改善したェチレ、ノ /ビュルアルコール共重合体からなる樹脂と して市販されているものとしては、 例えば、 ェバール XE P 505 B (クラレ社 製) 等が挙げられる。  Examples of commercially available resins made of ethylene and vinyl alcohol copolymers having improved low-temperature impact resistance include EVAL XEP505B (manufactured by Kuraray Co., Ltd.).
上記エチレン Zビュルアルコール共重合体からなる樹脂としては、 用途による 1 上記耐燃料透過性に優れた熱可塑性榭脂について上述したように、 一 40 °C でのアイゾット衝撃強度が好ましくは 2. 5 k jZm2以上、 より好ましくは 3. 5 k J/m2以上、 更に好ましくは 4. 5 k jZm2以上であるものが用いられ、 上記範囲内の値であれば、 例えば 20 k J Zni2以下であってもよい。 As the resin composed of the ethylene Z butyl alcohol copolymer, as described above for the thermoplastic resin having excellent fuel permeation resistance, depending on the application, Izod impact strength at of preferably 2. 5 k jZm 2 or more, more preferably 3. 5 k J / m 2 or more, more preferably is used as 4. is 5 k jZm 2 or more, within the above range if the value, and may be for example 20 k J Zni 2 below.
本発明の積層榭脂成形体をなす上記層 (B) を形成するものである耐燃料透過 性に優れた熱可塑性樹脂がエチレン/ビニルアルコール共重合体からなる樹脂で ある場合、 上記エチレン/ビュルアルコール共重合体は、 エチレン及び酢酸ビニ ルから得られたェチレン /酢酸ビニル共重合体を鹼化して得られるものである。 共重合するエチレン及び酢酸ビュルの配合比としては、 後述する式によって規定 される酢酸ビュル単位のモル数の割合に応じて適宜決定される。  When the thermoplastic resin having excellent fuel permeability, which forms the layer (B) constituting the laminated resin molded article of the present invention, is a resin composed of an ethylene / vinyl alcohol copolymer, The alcohol copolymer is obtained by vulcanizing an ethylene / vinyl acetate copolymer obtained from ethylene and vinyl acetate. The blending ratio of ethylene and butyl acetate to be copolymerized is appropriately determined according to the ratio of the number of moles of butyl acetate units defined by the following formula.
上記エチレン/ビュルアルコール共重合体は、 酢酸ビュル単位が Xモル%であ るエチレン/酢酸ビュル共重合体を鹼化度 γο/0にて鹼化することよりなる上記ェ チレン/ビュルアルコール共重合体の製造において、 上記酢酸ビュル単位 Xモル %及び上記鹼化度丫%が X X Y/100≥ 7を充足するものであることが好まし レ、。 X X ΥΖ 100く 7であると、 耐然料透過性、 層間接着力が不充分になるこ とがある。 XXYZl 00 10がより好ましく、 XXY/100≥ 50が更に 好ましい。 上記 XXY/100の値は、 上記エチレン/ビュルアルコール共重合 体が有するヒドロキシル基の含有率の指標であり、 上記 X X YZ 100の値が大 きいことは、 上記エチレン zビュルアルコール共重合体が有するヒドロキシル基 の含有率が高いことを意味する。 上記ヒドロキシル基は、 上記耐燃料透過性に優 れた熱可塑性樹脂からなる層と積層する相手材との接着に関与し得る基であり、 上記ヒドロキシル基の含有率が高いと、 得られる積層樹脂成形体の層間接着性が 向上する。 本明細書において、 上記 「積層する相手材」 は、 接触して積層してい る材料のことをいう。 The ethylene / butyl alcohol copolymer is obtained by curing an ethylene / butyl acetate copolymer having X mol% of vinyl acetate units at a degree of polymerization of γο / 0 . In the production of the union, it is preferable that the X mole% of the vinyl acetate unit and the 丫% of the degree of conversion satisfy XXY / 100≥7. If XX ΥΖ 100 or 7, the permeation resistance and the interlaminar adhesive strength may be insufficient. XXYZ10010 is more preferred, and XXY / 100≥50 is even more preferred. The value of XXY / 100 is an index of the hydroxyl group content of the ethylene / butyl alcohol copolymer, and the large value of XXYZYZ 100 indicates that the ethylene / butyl alcohol copolymer has a large value. It means that the content of hydroxyl groups is high. The hydroxyl group is a group that can participate in adhesion between the layer made of the thermoplastic resin having excellent fuel permeability resistance and a mating material to be laminated. When the content of the hydroxyl group is high, the obtained laminated resin is obtained. The interlayer adhesion of the molded body is improved. In the present specification, the “partner to be laminated” refers to a material that is laminated in contact.
本明細書において、 上記 「酢酸ビニル単位 Xモル%」 とは、 上記エチレンダビ ニルアルコール共重合体の分子における付加されたェチレン及ぴ酢酸ビニルの合 計モル数 〔N〕 に占める、 酢酸ビニル単位が由来する酢酸ビエルのモル数 〔Ni 〕 の割合であって、 下記式  In the present specification, the “vinyl acetate unit X mol%” means that the vinyl acetate unit occupies the total number of moles [N] of the added ethylene and vinyl acetate in the molecule of the ethylenedivinyl alcohol copolymer. The ratio of the number of moles of derived biel acetate [Ni], which is represented by the following formula
Xi (%) = (Nノ N) X 100 で表されるモル含有率 X iの平均値を意味する。 上記酢酸ビュル単位 モル%は、 赤外吸収分光 〔I R〕 を用いて測定することにより得られる値である。 Xi (%) = (N / N) X 100 Means the average value of the molar content Xi represented by The above-mentioned mol acetate unit mol% is a value obtained by measuring using infrared absorption spectroscopy [IR].
本明細書において、 上記 「酢酸ビュル単位」 とは、 上記エチレン/ビュルアル コール共重合体の分子構造上の一部分であつて、 酢酸ビュルに由来する部分を意 味する。 上記酢酸ビュル単位は、 鹼化されてヒドロキシル基を有することとなつ てもよいし、 験化しておらずァセトキシル基を有しているものであってもよい。 上記 「鹼化度」 は、 鹼化された酢酸ビニル単位の数と鹼化されていない酢酸ビ ニル単位の数との合計に対する、 鹼化された酢酸ビュル単位の数の割合を表す百 分率である。 上記鹼化度は、 赤外吸収分光 〔I R〕 を用いて測定することにより 得られる値である。  In the present specification, the term "butyl acetate unit" means a part of the molecular structure of the ethylene / vinyl alcohol copolymer, which is derived from the acetate acetate. The above-mentioned butyl acetate unit may be hydrogenated to have a hydroxyl group, or may be one which has not been tested and has an acetoxyl group. The above “degree of degradation” is a percentage representing the ratio of the number of hydrogenated vinyl acetate units to the sum of the number of vinylated vinyl acetate units and the number of unpurified vinyl acetate units. It is. The degree of degradation described above is a value obtained by measurement using infrared absorption spectroscopy [IR].
上記ェチレン /ビュルアルコール共重合体であつて、 X及び Yが上記式を満足 するものとしては、 例えばェバール F 1 0 1 (クラレ社製、 酢酸ビエル単位 X = 6 8. 0モル0 /0;験化度 Y= 9 5 %; X X Υ/ 1 0 0 = 6 4. 6) 、 メルセン Η 6 0 5 1 (東ソ一社製、 酢酸ビュル単位 Χ= 1 1. 2モル0 /0;鹼化度 Υ= 1 00 %; XXY/ 1 0 0 = 1 1. 2) 、 テクノリンク Κ 2 0 0 (田岡化学社製、 酢酸 ビニル単位 Χ= 1 1. 2モル0 /0 ;鹼化度 Υ= 8 5 %; XXYZ l 0 0 = 9. 5 2 ) 等の市販品が挙げられる。 Shall apply in the Echiren / Bulle alcohol copolymers, those wherein X and Y satisfy the above formula, for example Ebaru F 1 0 1 (manufactured by Kuraray Co., Ltd., acid Biel units X = 6 8. 0 mole 0/0; Kenkado Y = 9 5%; XX Υ / 1 0 0 = 6 4. 6), Melthene Eta 6 0 5 1 (Tosoh one company Ltd., acetate Bulle unit chi = 1 1. 2 mole 0/0; 鹼degree Υ = 1 00%; XXY / 1 0 0 = 1 1. 2), Techno link kappa 2 0 0 (Taoka chemical Co., Ltd., vinyl acetate units chi = 1 1. 2 mole 0/0; 鹼化degree Upsilon XXYZ 10 = 9.5 2).
上記エチレン/ビニルアルコール共重合体は、 2 0 0°Cにおけるメルトフロー レート [MF R] が 0. 5〜: L 00 g/ 1 0分であるものが好ましい。 0. 5 g / 1 0分未満であっても、 1 0 0 g/ 1 0分を超えても、 エチレン/ビニルアル コール共重合体の溶融粘度と、 層 (C) をなす接着性フッ素榭脂の溶融粘度との 差が大きくなるので、 成形時に上記層 (C) の厚み及び 又は上記層 (B) の厚 みにムラが生じることがあり好ましくない。 好ましい下限は 1 g/ 1 0分であり、 好ましい上限は 5 0 gZl 0分である。 なお、 本明細書において、 MFRは、 5 k g荷重、 オリフィス径 2 mm、 ランド長 8 mmの条件で測定して得られた値で ある。  The ethylene / vinyl alcohol copolymer preferably has a melt flow rate [MFR] at 200 ° C. of 0.5 to: L 00 g / 10 minutes. Whether it is less than 0.5 g / 10 minutes or more than 100 g / 10 minutes, the melt viscosity of the ethylene / vinyl alcohol copolymer and the adhesive fluororesin forming the layer (C) Since the difference from the melt viscosity of the layer becomes large, the thickness of the layer (C) and / or the thickness of the layer (B) may be uneven during molding, which is not preferable. A preferred lower limit is 1 g / 10 minutes, and a preferred upper limit is 50 gZ10 minutes. In this specification, MFR is a value obtained by measuring under the conditions of a load of 5 kg, an orifice diameter of 2 mm, and a land length of 8 mm.
上記耐燃料透過性に優れた熱可塑性樹脂は、 本発明の目的を損なわない範囲で、 例えば熱安定剤等の安定剤、 補強剤、 充填剤、 紫外線吸収剤、 顔料等の各種添加 剤とともに用いて上記層 (B) を形成してもよい。 このような添加剤とともに層 (B) を形成することにより、 得られる積層樹脂成形体の熱安定性、 硬度、 耐摩 耗性、 帯電性、 耐候性等の性質を向上することができる。 The above-mentioned thermoplastic resin having excellent resistance to fuel permeation may be added in a range not impairing the object of the present invention, for example, various additives such as a stabilizer such as a heat stabilizer, a reinforcing agent, a filler, an ultraviolet absorber, and a pigment. The layer (B) may be formed by using together with an agent. By forming the layer (B) together with such an additive, properties such as thermal stability, hardness, abrasion resistance, chargeability, and weather resistance of the obtained laminated resin molded article can be improved.
本発明の積層樹脂成形体を構成する上記層 (C) を形成するものである接着性 フッ素樹脂としては、 少なくとも、 上記耐燃料透過性に優れた熱可塑性樹脂から なる層 (B) との接着性を有するものが好ましい。 上記接着性フッ素樹脂として は、 例えば、 接着性官能基を有することにより、 及ぴ Z又は、 接着性官能基とは 異なる分子構造上の部位が加熱により接着性を発揮する構造に変化することによ り、 接着性を有するもの等が挙げられる。 上記接着性フッ素樹脂としては、 接着 性に優れる点で、 接着性官能基を有するものが好ましい。 本明細書において、 「 接着性官能基」 とは、 上記耐燃料透過性に優れた熱可塑性樹脂との接着に関与し 得る官能基を意味する。  The adhesive fluororesin that forms the layer (C) constituting the laminated resin molded article of the present invention includes at least an adhesive with the layer (B) made of a thermoplastic resin having excellent fuel permeability resistance. Those having properties are preferred. As the above-mentioned adhesive fluororesin, for example, by having an adhesive functional group, it is possible to change Z or a site on a molecular structure different from the adhesive functional group into a structure that exhibits adhesiveness by heating. Thus, those having adhesive properties can be mentioned. As the adhesive fluororesin, a resin having an adhesive functional group is preferable from the viewpoint of excellent adhesiveness. In the present specification, the term “adhesive functional group” means a functional group that can participate in adhesion to a thermoplastic resin having excellent fuel permeation resistance.
上記接着性官能基としては、 上記層 (B) をなす耐燃料透過性に優れた熱可塑 性樹脂が有する極性官能基と反応し得るか又は水素結合等の分子間相互作用をし 得るものであれば特に限定されないが、 カルボニル基 [― C (=0) 一] を有す るものであることが好ましい。 本明細書において、 上記 「カルボ二ル基を有する J とは、 カルボニル基そのものである場合をも含む概念である。 即ち、 上記接着 性官能基は、 カルボニル基であってもよい。  The above-mentioned adhesive functional group is one which can react with the polar functional group of the thermoplastic resin having excellent fuel permeation resistance constituting the above-mentioned layer (B) or capable of performing an intermolecular interaction such as a hydrogen bond. There is no particular limitation as long as it has a carbonyl group [—C (= 0) one]. In the present specification, the “J having a carbonyl group” is a concept including a case where the J is a carbonyl group itself. That is, the adhesive functional group may be a carbonyl group.
上記力ルポ二ル基を有する接着性官能基としては、 例えば、 カルボニル基、 力 ーボネート基、 ハロゲノホルミノレ基、 ホルミル基、 力ルポキシル基、 カルボエル 才キシ基 [一 C ( = 0) 。一] 、 酸無水物基 [一 C (=o) O-C ( = o) 一] 、 イソシァネート基、 アミド基 [-C (=0) -NH-] 、 イミド基 [-C (=0 ) -NH-C (=0) 一] 、 ウレタン結合 [一 NH— C (=0) O— ] 、 力ルバ モイル基 [NH2-C (=0) -] 、 力ルバモイルォキシ基 [NH2-C (=0 ) O-] 、 ゥレイ ド基 [NH2— C (=0) 一 NH— ] 、 ォキサモイル基 [NH 2-C (=o) — C ( = O) 一] 等が挙げられる。 上記力ルポエル基としては、 導入が容易であり、 反応性が高い点から、 カーボネート基の一部であるもの、 ハ ロゲノホルミル基の一部であるものが好ましい。 上記カーボネート基は、 一般に [一 oc (=o) o—] で表される結合を有す る基であり、 _OC (=O) 0_R基 (式中、 Rは、 有機基、 I族原子、 I I族 原子、 又は、 V I I族原子を表す。 ) で表されるものである。 上記式中の Rにお ける有機基としては、 例えば Ci Cs。アルキル基、 エーテル結合を有する C2 〜C 2。アルキル基等が挙げられ、 好ましくは Ci Csアルキル基、 エーテル結 合を有する C2〜C4アルキル基等である。 上記カーボネート基としては、 例え ば、 一 OC (=0) O— CH3、 一 OC (=0) O— C3H7、 —OC (=0) O -C8H17, -OC (=0) 0— CH2CH2OCH2CH3等が挙げられる。 上記ハロゲノホルミル基は、 —COY (式中、 Yは、 V I I族原子を表す。 ) で表されるものであり、 例えば一 CO F、 一 COC 1等が挙げられる。 Examples of the adhesive functional group having a carbonyl group include a carbonyl group, a carbonate group, a halogenoforminole group, a formyl group, a carbonyl group, and a carboxy group [-1C (= 0)]. 1], acid anhydride group [1 C (= o) OC (= o) 1], isocyanate group, amide group [-C (= 0) -NH-], imide group [-C (= 0) -NH -C (= 0) one], urethane bond [one NH- C (= 0) O-] , a force Luba carbamoyloxy group [NH 2 -C (= 0) -], the force Rubamoiruokishi group [NH 2 -C (= 0) O-], a peridode group [NH 2 —C (= 0) -NH—], an oxamoyl group [NH 2-C (= o) —C (= O)-], and the like. From the viewpoint of easy introduction and high reactivity, those which are part of a carbonate group and those which are part of a halogenoformyl group are preferred as the above-mentioned lipophilic group. The above carbonate group is a group having a bond generally represented by [1 oc (= o) o—], and a _OC (= O) 0_R group (where R is an organic group, a group I atom, It represents a group II atom or a group VII atom. The organic group for R in the above formula is, for example, Ci Cs. C 2 -C 2 having alkyl group, an ether bond. Alkyl group and the like, preferably Ci Cs alkyl group, C 2 -C 4 alkyl group having ether binding. Examples of the carbonate groups include, for example, one OC (= 0) O—CH 3 , one OC (= 0) O—C 3 H 7 , —OC (= 0) O -C 8 H 17 , -OC (= 0) 0—CH 2 CH 2 OCH 2 CH 3 and the like. The halogenoformyl group is represented by —COY (where Y represents a Group VII atom), and includes, for example, one COF, one COC1, and the like.
上記接着性官能基の数は、 積層する相手材の種類、 形状、 接着の目的、 用途、 必要とされる接着力、 後述するテトラフルォロエチレン系共重合体の種類と接着 方法等の違いにより適宜選択されうる。  The number of the above adhesive functional groups depends on the type and shape of the mating material to be laminated, the purpose and application of bonding, the required adhesive strength, the type of tetrafluoroethylene-based copolymer described below, and the bonding method Can be selected as appropriate.
上記接着性フッ素樹脂は、 接着性官能基を有するものである場合、 接着性官能 基をポリマー鎖末端又は側鎖の何れかに有する重合体からなるものであってもよ いし、 ポリマー鎖末端及び側鎖の両方に有する重合体からなるものであってもよ レ、。 ポリマー鎮末端に接着性官能基を有する場合は、 ポリマー鎖の両方の末端に 有していてもよいし、 いずれか一方の末端にのみ有していてもよい。 上記接着性 フッ素樹脂としては、 上記接着性官能基を有するものである場合、 ポリマー鎖末 端に接着性官能基を有する重合体からなるものが、 耐熱性、 機械特性及び耐薬品 性を低下させず、 また、 生産性、 コスト面で有利であるので、 好ましい。  When the adhesive fluororesin has an adhesive functional group, the adhesive fluororesin may be composed of a polymer having an adhesive functional group at either a polymer chain terminal or a side chain. It may be composed of a polymer having both side chains. When the polymer has an adhesive functional group at its terminal, it may be present at both ends of the polymer chain, or may be present at only one of the ends. When the adhesive fluororesin has the adhesive functional group, the fluororesin made of a polymer having an adhesive functional group at the polymer chain end deteriorates heat resistance, mechanical properties, and chemical resistance. It is preferable because it is advantageous in terms of productivity and cost.
上記接着性フッ素樹脂は、 フッ素含有エチレン性単量体に由来する単量体単位 を有する重合体からなるものである。 上記接着性フッ素樹脂としては、 フッ素含 有エチレン性単量体に由来する単量体単位とフッ素非含有エチレン性単量体単位 とを有する重合体からなるものであってよい。 本明細書において、 上記接着性フ ッ素樹脂をなす重合体についての 「単位」 は、 重合体の分子構造の一部分であつ て、 単量体に由来する部分を意味する。 例えば、 テトラフルォロエチレン単位は、 — CF2— CF2—で表される。 上記フッ素含有エチレン性単量体は、 フッ素原子を有し、 接着性官能基を有し ないビュル基含有単量体であり、 例えば、 テトラフルォロエチレン 〔TFE〕 、 フッ化ビニリデン 〔VdF〕 、 クロ口 トリフルォロエチレン 〔CTFE〕 、 フッ 化ビュ /レ 〔VF〕 、 へキサフノレオ口プロピレン 〔HFP〕 、 へキサフノレオ口イソ ブテン、 パーフルォロ (アルキルビュルエーテル) 〔PAVE〕 類、 下記一般式 ( i ) : The adhesive fluororesin is made of a polymer having a monomer unit derived from a fluorine-containing ethylenic monomer. The adhesive fluororesin may be composed of a polymer having a monomer unit derived from a fluorine-containing ethylenic monomer and a fluorine-free ethylenic monomer unit. In the present specification, the “unit” of the polymer constituting the adhesive fluororesin means a part derived from a monomer, which is a part of the molecular structure of the polymer. For example, tetrafurfuryl O b ethylene units, - CF 2 - CF 2 - represented by. The fluorine-containing ethylenic monomer is a butyl group-containing monomer having a fluorine atom and not having an adhesive functional group, for example, tetrafluoroethylene [TFE], vinylidene fluoride [VdF] , Black mouth trifluoroethylene [CTFE], fluorine fluoride / VF [VF], hexafenoleo mouth propylene [HFP], hexafenoleo mouth isobutene, perfluoro (alkyl butyl ether) [PAVE], the following general formula (i ):
CH2 = CX2 (CF2) nX3 ( i ) CH 2 = CX 2 (CF 2 ) n X 3 (i)
(式中、 X2は、 水素原子又はフッ素原子を表し、 X3は、 水素原子、 フッ素原 子又は塩素原子を表し、 nは、 1〜10の整数を表す。 ) で表される単量体等が 挙げられる。 (Wherein, X 2 represents a hydrogen atom or a fluorine atom, X 3 represents a hydrogen atom, a fluorine atom or a chlorine atom, and n represents an integer of 1 to 10.) Body and the like.
上記フッ素非含有エチレン性単量体は、 フッ素原子を有さず、 接着性官能基を 有しないビ ル基含有単量体であり、 例えば、 エチレン 〔E t〕 、 プロピレン、 1—ブテン、 2—プテン、 塩化ビュル、 塩化ビニリデン等が挙げられる。  The fluorine-free ethylenic monomer is a vinyl group-containing monomer having no fluorine atom and no adhesive functional group. Examples thereof include ethylene [Et], propylene, 1-butene, 2 —Butene, butyl chloride, vinylidene chloride and the like.
上記接着性フッ素樹脂としては特に限定されないが、 結晶性が比較的低く、 得 られる積層樹脂成形体が耐衝擊性に優れるものが好ましく、 このようなものとし ては、 テトラフルォロエチレン系共重合体 〔TFE系共重合体〕 からなるものが 好ましい。 本明細書において、 上記 TFE系共重合体は、 TFE単位を有する重 合体である。 上記 TFE系共重合体は、 TFE単位とともに、 TFE以外のその 他のフッ素含有エチレン性単量体に由来する単量体単位の 1種若しくは 2種以上 及び/又はフッ素非含有エチレン性単量体に由来する単量体単位の 1種若しくは 2種以上を有するものであってもよい。 上記 TFE系共重合体としては、 例えば、 TFE/E t/HF P共重合体、 TFE/E t共重合体、 TFE/V d F/HF P共重合体、 TFE/ΡΑλ^ E共重合体、 TFE/HF P/PAVE共重合体等 を好適に用いることができる。 なお、 ポリビニリデンフルオラィドは、 一般に、 結晶性が高く、 耐衝擊性に劣るといわれるが、 微量の変性モノマーを V d Fと共 重合させることにより好適に用いることができる。  The adhesive fluororesin is not particularly limited, but preferably has relatively low crystallinity and the resulting laminated resin molded article has excellent impact resistance. Examples of such an adhesive fluororesin include tetrafluoroethylene-based resins. What consists of a polymer [TFE-type copolymer] is preferable. In the present specification, the TFE-based copolymer is a polymer having a TFE unit. The TFE-based copolymer may include, together with the TFE unit, one or more monomer units derived from other fluorine-containing ethylenic monomers other than TFE, and / or a fluorine-free ethylenic monomer. It may have one or more monomer units derived from. Examples of the TFE-based copolymer include, for example, a TFE / Et / HFP copolymer, a TFE / Et copolymer, a TFE / VdF / HFP copolymer, and a TFE / ΡΑλ ^ E copolymer. , TFE / HF P / PAVE copolymer and the like can be suitably used. Polyvinylidene fluoride is generally said to have high crystallinity and poor impact resistance, but can be suitably used by copolymerizing a small amount of a modified monomer with VdF.
上記接着性フッ素樹脂は、 側鎖に接着性官能基を有する重合体からなるもので ある場合、 接着性官能基含有ェチレン性単量体を目的の接着性フッ素樹脂に応じ た種類と配合のフッ素含有エチレン性単量体と、 所望によりフッ素非含有ェチレ ン性単量体とを共重合させることによって得ることができる。 なお、 上記 「接着 性官能基含有エチレン性単量体」 とは、 接着性官能基を有するビニル基含有単量 体を意味し、 フッ素原子を有していてもよいし、 有していなくてもよいが、 接着 性官能基を有しているという点において、 上述した 「フッ素含有エチレン性単量 体」 及び 「フッ素非含有エチレン性単量体」 とは異なる概念である。 When the adhesive fluororesin is made of a polymer having an adhesive functional group in a side chain, the adhesive functional group-containing ethylenic monomer is used in accordance with the intended adhesive fluororesin. It can be obtained by copolymerizing a fluorine-containing ethylenic monomer of a different type and blend with a fluorine-free ethylenic monomer if desired. The term “adhesive functional group-containing ethylenic monomer” means a vinyl group-containing monomer having an adhesive functional group, which may or may not have a fluorine atom. This is a different concept from the above-mentioned “fluorine-containing ethylenic monomer” and “fluorine-free ethylenic monomer” in that it has an adhesive functional group.
上記接着性フッ素樹脂は、 ポリマー鎖末端に接着性官能基を有するものであつ て、 接着性官能基がカルボニル基である重合体からなるものである場合、 後述す るように、 パーォキシカーボネートを重合開始剤として用いて得ることができる。 上記接着性フッ素樹脂は、 例えば共押出により上記積層樹脂成形体を成形する 場合、 共押出する材料が熱分解せずに溶融し得る温度において、 流動することが 可能な溶融粘度を持っていることが好ましい。 ポリアミド系樹脂と共押出により 積層する場合、 上記ポリアミド系樹脂を好適に加熱溶融接着し得る温度の範囲は 約 200°C~300°Cであるので、 上記接着性フッ素樹脂は、 この温度の範囲に おいて流動することができる溶融粘度を有していることが好ましい。  When the adhesive fluororesin has an adhesive functional group at a polymer chain terminal and is composed of a polymer in which the adhesive functional group is a carbonyl group, as described later, peroxycarbonate is used. Can be used as a polymerization initiator. The adhesive fluororesin must have a melt viscosity that allows it to flow at a temperature at which the coextruded material can be melted without being thermally decomposed, for example, when the laminated resin molded article is formed by coextrusion. Is preferred. When laminating with a polyamide resin by co-extrusion, the temperature range at which the polyamide resin can be suitably heated and melted is about 200 ° C to 300 ° C. It is preferable to have a melt viscosity capable of flowing in the step.
上記接着性フッ素樹脂の融点は、 150〜 270 °Cであることが好ましい。 1 50°C未満であると、 燃料透過性を低く抑えることが困難になる場合があり、 2 70°Cを超えると、 積層する相手材の種類が限定される場合があり、 好ましくな い。 上記融点は、 より好ましい下限が 190°Cであり、 より好ましい上限が 25 0°Cであり、 更に好ましい上限は 230°Cである。  The melting point of the adhesive fluororesin is preferably from 150 to 270 ° C. If the temperature is lower than 150 ° C, it may be difficult to keep the fuel permeability low. If the temperature exceeds 270 ° C, the type of the mating material to be laminated may be limited, which is not preferable. The lower limit of the melting point is more preferably 190 ° C., the upper limit is more preferably 250 ° C., and the upper limit is more preferably 230 ° C.
上記接着性フッ素樹脂のメルトフローレート [MFR] は、 l〜100 gZl 0分であることが好ましい。 1 g/10分未満であっても、 100 g/ 10分を 超えても、 接着性フッ素樹脂の溶融粘度と、 上記層 (B) をなす耐燃料透過性に 優れた熱可塑性樹脂の溶融粘度との差が大きくなるので、 成形時に上記層 (C) の厚み及ぴ Z又は上記層 (B) の厚みにムラが生じることがあり好ましくない。 より好ましい上限は 50 g/10分である。 本明細書において、 上記 MFRは、 特定の測定温度において、 5 k g荷重、 オリフィス径 2mm、 ランド長 8mmの 条件で測定することにより得られる値である。 上記特定の測定温度は、 融点が 2 00°C以上、 270°C以下である高融点タイプの接着性フッ素樹脂の場合、 29 7 °Cであり、 融点が 150 °C以上、 200 °C未満である低融点タイプの接着性フ ッ素樹脂の場合、 265°Cである。 The melt flow rate [MFR] of the adhesive fluororesin is preferably 1 to 100 gZl0 minutes. Whether it is less than 1 g / 10 min or more than 100 g / 10 min, the melt viscosity of the adhesive fluororesin and the thermoplastic viscosity of the layer (B), which is excellent in fuel permeability, is excellent. The thickness of the layer (C) and the thickness of the layer (C) and the thickness of the layer (B) or the thickness of the layer (B) may be uneven during molding. A more preferred upper limit is 50 g / 10 minutes. In the present specification, the above MFR is a value obtained by measuring at a specific measurement temperature under the conditions of a load of 5 kg, an orifice diameter of 2 mm, and a land length of 8 mm. The above specific measurement temperature has a melting point of 2 In the case of a high melting point type adhesive fluororesin having a temperature of 00 ° C or more and 270 ° C or less, it is 297 ° C, and a low melting point type adhesive resin having a melting point of 150 ° C or more and less than 200 ° C. In the case of basic resin, the temperature is 265 ° C.
上記接着性フッ素樹脂としては、 得られる積層樹脂成形体の燃料透過性を低く 抑える場合、 融点が 200 °C以上、 270 °C以下である高融点タイプであり、 2 97°〇にぉける^^1 が0. l〜100 gZl 0分であるものを好適に使用する ことができ、 接着性フッ素樹脂と積層する相手材が耐熱性に乏しい場合、 融点が 150°C以上、 200°C未満である低融点タイプであり、 265°Cにおける MF Rが 0. l〜100 g/l 0分であるものを好適に使用することができる。 上記接着性フッ素樹脂の耐燃料透過性としては試験用疑似燃料種 C E 10での 60°Cにおける燃料透過速度が 20 (g Xmm/m d a y) 以下であること が好ましい。 より好ましくは、 10 (g Xmm/m2/d a y) 以下、 更に好ま しくは、 2 (g Xmm/m2/d a y) 以下である。 上記試験用擬似燃料種 CE 10は、 上述したものと同じである。 The above-mentioned adhesive fluororesin is a high melting point type having a melting point of not less than 200 ° C and not more than 270 ° C when the fuel permeability of the obtained laminated resin molded article is to be kept low. ^ 1 is 0.1 to 100 gZl 0 minutes can be suitably used.If the mating material laminated with the adhesive fluororesin has poor heat resistance, the melting point is 150 ° C or more and less than 200 ° C. A low melting point type having an MFR at 265 ° C. of 0.1 to 100 g / l 0 minutes can be suitably used. As the fuel permeation resistance of the adhesive fluororesin, it is preferable that the fuel permeation rate at 60 ° C. of the test pseudo fuel type CE 10 be 20 (g Xmm / mday) or less. More preferably, it is 10 (g Xmm / m 2 / day) or less, even more preferably 2 (g Xmm / m 2 / day) or less. The test pseudo fuel type CE10 is the same as described above.
層 (B) と接着性フッ素樹脂からなる層 (C) とが接している場合、 層 (B) を形成する耐燃料透過性に優れた熱可塑性樹脂の試験用疑似燃料種 CE 10に対 する 60°Cにおける燃料透過速度 〔Zb〕 と、 層 (C) を形成する接着性フッ素 樹脂の試験用疑似燃料種 CE 10に対する 60°Cにおける燃料透過速度 〔Z c] との比 〔Z cZZb〕 は、 100以下であることが好ましい。 層 (B) と層 (C ) とが接している場合、 上記 Z c/Z bは、 100を超えると、 燃料と接触させ て使用する際に、 層 (B) と層 (C) との間に液だまりが生じやすい。 上記 Z c /Z bのより好ましい上限は、 50、 更に好ましい上限は、 30である。  When the layer (B) and the layer (C) made of the adhesive fluororesin are in contact with each other, the thermoplastic resin with excellent fuel permeability that forms the layer (B) conforms to the pseudo fuel type CE10 for testing. Ratio of fuel permeation rate [Zb] at 60 ° C [ZcZZb] to fuel permeation rate [Zc] at 60 ° C for test pseudo fuel type CE10 of adhesive fluororesin forming layer (C) [ZcZZb] Is preferably 100 or less. When the layer (B) and the layer (C) are in contact with each other, if the value of Zc / Zb exceeds 100, when the layer (B) and the layer (C) are used in contact with the fuel, A liquid pool is likely to occur in between. A more preferred upper limit of the above Z c / Z b is 50, and a still more preferred upper limit is 30.
上記 Z c/Zbは、 層 (B) を形成する耐燃料透過性に優れた熱可塑性樹脂と 層 (C) を形成する接着性フッ素樹脂とで同じ又は同等程度であることが特に好 ましい。  It is particularly preferable that the above Z c / Zb is the same as or equivalent to the thermoplastic resin having excellent fuel permeability that forms the layer (B) and the adhesive fluororesin that forms the layer (C). .
本発明における接着性フッ素樹脂の好ましい具体例としては、 下記共重合体 ( I) からなるもの、 下記共重合体 (I I) からなるもの等が挙げられる。  Preferred specific examples of the adhesive fluororesin in the present invention include those comprising the following copolymer (I) and those comprising the following copolymer (II).
( I ) 少なくとも、 テトラフルォロエチレン及びエチレンを重合してなる共重合 体、 (I) a copolymer obtained by polymerizing at least tetrafluoroethylene and ethylene body,
( I I ) 少なくとも、 テトラフルォロエチレン及び下記一般式 (i i )  (II) at least tetrafluoroethylene and the following general formula (ii)
CF2 = CF— R f 2 ( i i ) CF 2 = CF— R f 2 (ii)
(式中、 R f 2は、 CF3又は OR f 1を表し、 R f 1は、 炭素数 1〜 5のパーフ ルォロアルキル基を表す。 ) で表される少なくとも 1種以上の単量体を重合して なる共重合体。 (Wherein, R f 2 represents CF 3 or OR f 1, R f 1 represents. A perf Ruoroarukiru group of from 1 to 5 carbon) polymerizing at least one or more monomers represented by The copolymer obtained.
上記共重合体 (I) としては、 例えば、 少なくとも、 テトラフルォロエチレン 単位 20〜 80モル0 /0、 ェチレン単位 20〜 8 0モル0 /0、 及び、 これらと共重合 可能なその他の単量体単位 0〜 60モル%からなる共重合体等が挙げられる。 本 明細書において、 各単量体単位についてのモル%は、 共重合体の分子鎖を構成す る単量体単位の合計モル数のうち、 上述の接着性官能基含有エチレン性単量体に 由来する単量体単位のモル数を除いたモル数を 1 00モル%とし、 この 1 00モ ル%中に占める各単量体単位の割合である。 上記共重合体 (I ) におけるその他 の単量体単位は、 任意成分であり、 得られる積層榭脂成形体の用途に応じて適宜 共重合に供する。 As the copolymer (I), for example, at least, tetrafurfuryl O b ethylene unit 20-80 mole 0/0, Echiren unit 20-8 0 mole 0/0, and, copolymerizable with these other single And copolymers composed of 0 to 60 mol% of monomer units. In the present specification, the mole% of each monomer unit is based on the above-mentioned adhesive functional group-containing ethylenic monomer in the total number of moles of the monomer units constituting the molecular chain of the copolymer. The number of moles excluding the number of moles of the derived monomer units is defined as 100 mole%, and the ratio of each monomer unit to the 100 mole%. The other monomer units in the copolymer (I) are optional components, and are appropriately subjected to copolymerization according to the intended use of the obtained laminated resin molded article.
上記共重合可能なその他の単量体としては、 へキサフルォロプロピレン、 トリ クロ口フルォロエチレン、 プロピレン、 下記一般式 ( i i i ) :  Examples of the other copolymerizable monomers include hexafluoropropylene, trichlorofluoroethylene, propylene, and the following general formula (iiii):
CX = CX2 (C F2) nX3 ( i i i ) CX = CX 2 (CF 2 ) n X 3 (iii)
(式中、 X1及び X2は、 同一又は異なって、 水素原子若しくはフッ素原子を表 し、 X3は、 水素原子、 フッ素原子又は塩素原子を表し、 nは、 1〜1 0の整数 を表す。 ) で表される単量体、 下記一般式 ( i V) : (In the formula, X 1 and X 2 are the same or different and each represent a hydrogen atom or a fluorine atom, X 3 represents a hydrogen atom, a fluorine atom or a chlorine atom, and n is an integer of 1 to 10. A) a monomer represented by the following general formula (iV):
C F2 = C F-OR f 1 ( i v) CF 2 = C F-OR f 1 (iv)
(式中、 R f 1は、 炭素数 1 ~ 5のパーフルォロアルキル基を表す。 ) で表され る単量体等が挙げられ、 通常これらの 1種又は 2種以上が用いられる。 (Wherein, R f 1 represents a perfluoroalkyl group having 1 to 5 carbon atoms). One or more of these monomers are usually used.
上記共重合体 (I ) のような共重合体からなる接着性フッ素樹脂は、 耐熱性、 耐薬品性、 耐候性、 電気絶縁性、 低薬液透過性、 非粘着性に優れており、 更に、 比較的容易に融点を下げることが可能であるので、 融点が比較的低く耐熱性がな い有機材料との共押出が可能となり積層樹脂成形体を得やすいことから好ましい。 なかでも、 Adhesive fluororesins made of a copolymer such as the above copolymer (I) are excellent in heat resistance, chemical resistance, weather resistance, electrical insulation, low chemical liquid permeability, and non-adhesiveness. Since the melting point can be lowered relatively easily, co-extrusion with an organic material having a relatively low melting point and no heat resistance becomes possible, which is preferable because a laminated resin molded article can be easily obtained. Above all,
(I— 1) 少なくとも、 テトラフルォロエチレン単位 30〜70モル0/。、 ェチ レン単位 20〜55モル0 /0、 及び、 上記一般式 (i i i) で表される単量体単位 0〜 10モル%からなる共重合体、 (I-1) At least 30 to 70 mol of tetrafluoroethylene units 0 /. , E Ji Ren units 20 to 55 mole 0/0, and a copolymer consisting of monomer units 0-10 mol% represented by the general formula (iii),
(1 -2) テトラフルォロエチレン単位 30〜 70モル0 /0、 エチレン単位 20 〜55モル%、 へキサフルォロプロピレン単位 1〜30モル0 /0、 並びに、 上記テ トラフルォロエチレンとも上記エチレンとも上記へキサフノレオ口プロピレンとも 異なるその他の単量体単位 0〜 10モル%からなる共重合体、 (1 -2) tetrafluoropropoxy O b ethylene units 30-70 mole 0/0, ethylene units 20-55 mol%, the hexa full O b propylene units 1 to 30 mol 0/0, and, the tape trough Ruo b Ethylene A copolymer comprising 0 to 10 mol% of other monomer units different from the above-mentioned ethylene and the above-mentioned hexahenoleo- mouth propylene,
(1 -3) 少なくとも、 テトラフルォロエチレン単位 30~70モル0/。、 ェチ レン単位 20~55モル%、 及ぴ、 上記一般式 ( i V) で表される単量体単位 0 ~10モル。 /0からなる共重合体が好ましい。 なお、 上記共重合体 (1— 1) にお ける上記一般式 (i i i) で表される単量体単位、 共重合体 (1—2) における その他の単量体単位、 及び、 共重合体 (1—3) における上記一般式 (i V) で 表される単量体単位は、 いずれも任意成分であり、 得られる積層樹脂成形体の用 途に応じて適宜共重合に供する。 (1-3) At least 30 to 70 mol of tetrafluoroethylene units 0 /. 20 to 55 mol% of ethylene units, and 0 to 10 mol of monomer units represented by the above general formula (iv). / 0 is preferred. The monomer unit represented by the general formula (iii) in the copolymer (1-1), the other monomer units in the copolymer (1-2), and the copolymer Each of the monomer units represented by the general formula (iV) in (1-3) is an optional component, and is appropriately subjected to copolymerization according to the intended use of the obtained laminated resin molded article.
上記共重合体 (I I) としては、 例えば  As the above copolymer (II), for example,
(I 1 -1) 少なくとも、 テトラフルォロエチレン単位 65〜95モル0 /0、 及 ぴ、 へキサフルォロプロピレン単位 5〜35モル%からなる共重合体、 上記テト ラフルォロエチレン単位の好ましい下限は 75モル0 /0であり、 上記へキサフルォ 口プロピレン単位の好ましい上限は 25モル0 /0である、 (I 1 -1) at least, tetrafurfuryl O b ethylene units 65-95 mole 0/0, 及Pi, to hexa consisting Full O b propylene unit 5-35 mol% copolymer, the Tet rough Ruo b ethylene units the preferable lower limit of a 75 mole 0/0, a preferred upper limit of Kisafuruo port propylene units into the is 25 mole 0/0,
( I 1 -2) 少なくとも、 テトラフルォロエチレン単位 70〜97モル%、 並 びに、 へキサフルォロプロピレン単位及び上記一般式 ( i V) で表される単量体 単位の合計 3 ~ 30モル%からなる共重合体、  (I 1 -2) at least 70 to 97 mol% of tetrafluoroethylene units, and a total of 3 to 4 of hexafluoropropylene units and the monomer units represented by the above general formula (iV) A copolymer consisting of 30 mol%,
(I 1— 3) 少なくとも、 テトラフルォロエチレン単位 70-95モル0 /0、 並 びに、 へキサフルォロプロピレン単位及び上記一般式 (i V) で表される単量体 単位の合計 5 ~ 30モル%からなる共重合体、 (I 1-3) at least the sum of tetrafurfuryl O b ethylene units 70-95 mole 0/0, the parallel beauty, the hexa full O b propylene units and monomer units represented by the general formula (i V) A copolymer consisting of 5 to 30 mol%,
(I I -4) 少なくとも、 テトラブルォロエチレン単位 30〜80モル0 /0、 及 び、 へキサフルォロプロピレン単位とビニリデンフルオラィド単位との合計 20 〜 7 0モル%からなる共重合体等が挙げられる。 (II -4) at least, Te trouble O b ethylene units 30 to 80 mole 0/0, the sum of the及beauty, the hexa full O b propylene units and vinylidene fluoride Rai de unit 20 To 70 mol%.
本発明における接着性フッ素樹脂の製造方法としては特に限定されず、 公知の 方法を使用し得る。 側鎖に接着性官能基を有する重合体からなる接着性フッ素樹 脂を製造する場合、 目的とする接着性フッ素樹脂に合わせた種類及び配合のフッ 素含有エチレン性単量体と接着性官能基含有エチレン性単量体と、 所望により、 フッ素非含有エチレン性単量体とを共重合することにより得ることができる。 好 適な接着性官能基含有エチレン性単量体としては、 接着性官能基がカルボニル基 を有するものである場合、 パーフルォロアクリル酸フルオラィド、 1一フルォロ ァクリル酸フルオラィド、 ァクリル酸フルオラィド、 1一トリフルォロメタクリ ル酸フルオラィド、 パーフルォロブテン酸等のフッ素を有する単量体;アクリル 酸、 メタタリ/レ酸、 アクリル酸クロライド、 ビニレンカーボネート等のフッ素を 有さない単量体がそれぞれ挙げられる。  The method for producing the adhesive fluororesin in the present invention is not particularly limited, and a known method can be used. When manufacturing an adhesive fluororesin consisting of a polymer having an adhesive functional group on the side chain, the fluorine-containing ethylenic monomer and adhesive functional group of the type and composition appropriate for the target adhesive fluororesin It can be obtained by copolymerizing the containing ethylenic monomer and, if desired, a fluorine-free ethylenic monomer. Suitable adhesive functional group-containing ethylenic monomers include those having a carbonyl group as the adhesive functional group, such as perfluoroacrylic acid fluoride, 1-fluoroacrylic acid fluoride, acrylic acid fluoride, 1 Monomers containing fluorine, such as trifluormethacrylic acid fluoride and perfluorobutenoic acid; and monomers containing no fluorine, such as acrylic acid, methacrylic / leic acid, acrylic acid chloride, and vinylene carbonate, respectively No.
ポリマー鎖末端に接着性官能基を有する重合体からなる接着性フッ素樹脂を得 るためには種々の方法を採用することができるが、 接着性官能基がカルボ-ル基 を有するものである場合、 パーォキシカーボネートを重合開始剤として用いて上 述の各単量体を重合する方法が、 経済性の面、 耐熱性、 耐薬品性等品質の面で好 ましい。  Various methods can be used to obtain an adhesive fluororesin composed of a polymer having an adhesive functional group at the polymer chain end, but when the adhesive functional group has a carboyl group The method of polymerizing each of the above-mentioned monomers using peroxycarbonate as a polymerization initiator is preferable in terms of economy, heat resistance, chemical resistance and the like.
上記パーォキシカーボネートとしては、 ジィソプロピルパーォキジカーボネー ト、 ジ一 n—プロピルパーォキシジカーボネート、 t一ブチルパーォキシィソプ 口ピノレカーボネート、 ビス (4一 tーブチノレシク口へキシル) バーオキシジカー ボネート、 ジー 2—ェチルへキシルパーォキシジカーボネート等が好ましい。 パーォキシカーボネートの使用量は、 目的とする接着性フッ素樹脂の種類や組 成、 分子量、 重合条件、 使用するパーォキシカーボネートの種類によって異なる が、 好ましくは、 得られる接着性フッ素樹脂 1 0 0質量部に対して 0 . 0 5 ~ 2 0質量部であり、 特に好ましい下限は 0 . 1質量部であり、 特に好ましい上限は 1 0質量部である。  The above-mentioned peroxycarbonates include diisopropylpropyl peroxycarbonate, di-n-propyl peroxydicarbonate, t-butyl peroxysop, pinolecarbonate, bis (4-t Xyl) veroxy dicarbonate, di-2-ethylhexyl peroxy dicarbonate and the like are preferred. The amount of peroxycarbonate used depends on the type and composition of the desired adhesive fluororesin, the molecular weight, the polymerization conditions, and the type of peroxycarbonate used. The amount is 0.05 to 20 parts by mass relative to 0 parts by mass, a particularly preferred lower limit is 0.1 parts by mass, and a particularly preferred upper limit is 10 parts by mass.
上記接着性フッ素樹脂を得るための重合方法としては特に限定されず、 例えば 溶液重合、 塊状重合、 乳化重合等が挙げられるが、 工業的にはフッ素系溶媒を用 い、 重合開始剤としてパーォキシカーボネートを使用した水性媒体中での懸濁重 合が好ましい。 懸濁重合においては、 フッ素系溶媒を水に添カ卩して使用し得る。 懸濁重合に用いるフッ素系溶媒としては、 CH3CC 1 F2、 CH3CC 12F、 CF3CF2CC 12H、 C F2C 1 C F2C FHC 1等のハイドロクロ口フルォロ アルカン類; CF2C 1 CFC 1 CF2CF3、 C F 3 C F C 1 C F C 1 C F 3等の クロロフルォロアルカン類; CF 3CF2CF 2CF3, CF3CF2CF2CF2C F3, CF3CF2CF2CF2CF2CF3等のパーフルォロアルカン類;パーフ ルォロシクロブタン等のパーフルォロシクロアルカン類等が挙げられ、 なかでも、 パーフルォロアルカン類、 パーフルォロシクロアルカン類が好ましい。 フッ素系 溶媒の使用量は、 懸濁性、 経済性の面から、 水に対して 10〜100質量%とす ることが好ましい。 The polymerization method for obtaining the adhesive fluororesin is not particularly limited, and includes, for example, solution polymerization, bulk polymerization, and emulsion polymerization. A suspension polymerization in an aqueous medium using peroxycarbonate as a polymerization initiator is preferred. In suspension polymerization, a fluorine-based solvent can be added to water and used. The fluorine-based solvent used in the suspension polymerization, CH 3 CC 1 F 2, CH 3 CC 1 2 F, CF 3 CF 2 CC 1 2 H, CF 2 C 1 CF 2 C FHC 1 etc. hydrochloride port Furuoro alkane Chlorofluoroalkanes such as CF 2 C 1 CFC 1 CF 2 CF 3 , CF 3 CFC 1 CFC 1 CF 3 ; CF 3 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 2 CF per full O b alkanes such as 3; perf Ruo b Per full O b cycloalkanes cyclobutane like. Among them, PA full O b alkanes, par Fluorocycloalkanes are preferred. The use amount of the fluorinated solvent is preferably 10 to 100% by mass based on water from the viewpoint of suspendability and economy.
上記接着性フッ素樹脂を得るための重合において、 重合温度は特に限定されず、 In the polymerization for obtaining the adhesive fluororesin, the polymerization temperature is not particularly limited,
0〜100°Cでよい。 重合圧力は、 用いる溶媒の種類、 量及び蒸気圧、 重合温度 等の他の重合条件に応じて適宜定められるが、 通常 0〜9. 8MP a Gであって よい。 It may be 0 to 100 ° C. The polymerization pressure is appropriately determined according to other polymerization conditions such as the type and amount of the solvent to be used, the vapor pressure, the polymerization temperature, and the like, but may be usually from 0 to 9.8 MPaG.
上記接着性フッ素樹脂を得るための重合において、 分子量調整のために、 通常 の連鎖移動剤、 例えばイソペンタン、 n—ペンタン、 n—へキサン、 シクロへキ サン等の炭化水素;メタノール、 エタノール等のアルコール;四塩化炭素、 クロ 口ホルム、 塩化メチレン、 塩化メチル等のハロゲン化炭化水素を用いてもよい。 上記接着性フッ素樹脂は、 本発明の目的を損なわない範囲で、 例えば、 熱安定 剤等の安定剤、 補強剤、 充填剤、 紫外線吸収剤、 顔料等の各種添加剤とともに用 いて上記層 (C) を形成してもよい。 このような添加剤とともに層 (C) を形成 することにより、 得られる積層樹脂成形体の熱安定性、 表面硬度、 耐摩耗性、 帯 電性、 耐候性等の性質を向上することができる。  In the polymerization for obtaining the adhesive fluororesin, a usual chain transfer agent, for example, a hydrocarbon such as isopentane, n-pentane, n-hexane, cyclohexane, etc .; Alcohols; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride and methyl chloride may be used. The adhesive fluororesin may be used together with various additives such as a stabilizer such as a heat stabilizer, a reinforcing agent, a filler, a UV absorber, and a pigment within a range not impairing the object of the present invention. ) May be formed. By forming the layer (C) together with such an additive, properties such as thermal stability, surface hardness, abrasion resistance, electrification, and weather resistance of the obtained laminated resin molded article can be improved.
本 明における接着性フッ素樹脂からなる層は、 上述の接着性フッ素樹脂及ぴ 必要に応じて配合されるその他の成分からなり、 必要に応じて、 上記接着性フッ 素樹脂からなる層 (C) は、 導電性のものとすることができる。 上記 「導電性」 とは、 燃料、 有機溶剤等の可燃性の揮発性有機物が絶縁体と長期間接触した場合 に静電荷が蓄積して引火するおそれがあるが、 この静電荷が蓄積しない程度の電 気特性を有することを意味する。 上記層 (C) が導電性を有するものである場合、 可燃性の揮発性有機物が上記層 (C) における接着性フッ素樹脂のような絶縁体 と接触しても、 引火する可能性が低下する。 上記層 (C ) は、 可燃性の揮発性有 機物と接する用途に用いる場合、 導電性であるものが好ましい。 上記接着性フッ 素樹脂からなる層 (C ) を導電性のものとする場合、 カーボンブラック、 ァセチ レンブラック等の導電性材料を配合することが好ましい。 その配合量は、 上記接 着性フッ素樹脂の 2 0質量%以下であることが好ましく、 1 5質量%以下である ことがより好ましい。 配合量の下限は、 上述した静電荷が蓄積しない程度の電気 特性を付与する量であればよい。 The layer made of the adhesive fluororesin in the present invention is composed of the above-mentioned adhesive fluororesin and other components blended as required. If necessary, the layer made of the adhesive fluororesin (C) Can be electrically conductive. The term “conductive” means that flammable volatile organic substances such as fuel and organic solvents come into contact with the insulator for a long time. There is a danger that the static charge will accumulate and ignite, but it means that it has electrical characteristics to such an extent that this static charge does not accumulate. When the layer (C) has conductivity, the possibility of ignition is reduced even when the flammable volatile organic substance comes into contact with an insulator such as an adhesive fluororesin in the layer (C). . The layer (C) is preferably conductive when used in contact with combustible volatile organic substances. When the layer (C) made of the adhesive fluororesin is made conductive, it is preferable to mix a conductive material such as carbon black and acetylene black. The compounding amount is preferably 20% by mass or less, more preferably 15% by mass or less of the above-mentioned adhesive fluororesin. The lower limit of the blending amount may be an amount that provides the above-described electrical characteristics to such an extent that the static charge is not accumulated.
本発明の積層樹脂成形体をなす上記層 (A) は、 上記層 (C ) に用いた接着性 フッ素樹脂と異なる熱可塑性樹脂からなるものである。 上記層 (A) に用いる熱 可塑性樹脂としては特に限定されず、 例えば、 ポリウレタン樹脂、 ポリエステル 樹脂、 ポリアミド系榭脂、 ポリアラミド樹脂、 ポリアミ ドイミ ド樹脂、 ポリフエ 二レンオキサイド樹脂 [ P P O] 等のポリアセタール樹脂、 ポリカーボネート榭 月旨、 アクリル系樹脂、 スチレン系樹脂、 ァクリロニトリル/ブタジエンノスチレ ン樹脂 [A B S ] 、 塩化ビニル系榭脂、 セルロース系樹脂、 ポリエーテルエーテ ルケトン樹脂 [ P E E K] 、 ポリスルホン樹脂、 ポリエーテルサルホン樹脂 [ P E S ] 、 ポリエーテルイミド樹脂、 ポリフエ二レンスルフイド樹脂等が挙げられ、 上記エチレン/ビュルアルコール共重合体と異なるものであれば酢酸ビュル系樹 脂を用いてもよい。 上記層 (A) に用いる熱可塑性榭脂としては、 他材との接着 性及び機械的強靱性に優れるものであり、 得られる積層樹脂成形体を可撓性にし 得る点で、 ポリアミド系樹脂が好ましい。  The layer (A) constituting the laminated resin molded article of the present invention is made of a thermoplastic resin different from the adhesive fluororesin used for the layer (C). The thermoplastic resin used for the layer (A) is not particularly limited, and examples thereof include a polyacetal resin such as a polyurethane resin, a polyester resin, a polyamide resin, a polyaramid resin, a polyamide imide resin, and a polyphenylene oxide resin [PPO]. , Polycarbonate resin, acrylic resin, styrene resin, acrylonitrile / butadiene nostyrene resin [ABS], vinyl chloride resin, cellulose resin, polyether ether ketone resin [PEEK], polysulfone resin, polyether sal Examples include a polyethylene resin [PES], a polyetherimide resin, and a polyphenylene sulfide resin, and a vinyl acetate resin may be used as long as the resin is different from the above-mentioned ethylene / butyl alcohol copolymer. The thermoplastic resin used in the layer (A) is excellent in adhesiveness to other materials and mechanical toughness, and polyamide resin is preferable in that the obtained laminated resin molded article can be made flexible. preferable.
本発明の積層樹脂成形体において、 耐燃料透過性に優れた熱可塑性樹脂のうち、 層 (B ) に用いているものは、 層 (A) における熱可塑性樹脂として同時に用い ない。 耐燃料透過性に優れた熱可塑性樹脂のうち 1種又は 2種以上を選択して形 成した層 (B ) と、 熱可塑性樹脂のうち 1種又は 2種以上を選択して形成した層 (A) とを有する本発明の積層樹脂成形体において、 上記層 (B ) に耐燃料透過 性に優れた熱可塑性樹脂として用いる樹脂は、 層 (A) に熱可塑性樹脂として用 いる樹脂よりも燃料透過性を低く抑える観点で選択し、 一方、 層 (A) に熱可塑 性樹脂として用いる樹脂は、 本発明の積層樹脂成形体の力学的な強度を保持する 観点で選択する。 これらの観点から、 上記層 (B ) の耐燃料透過性に優れた熱可 塑性樹脂としてポリエステル樹脂、 P P S樹脂又はエチレン Zビュルアルコール 共重合体からなる樹脂を選択した場合、 層 (A) の熱可塑性樹脂としてはポリア ミド系樹脂を選択することが好ましく、 上記ポリアミド系樹脂からなる層 (A) は、 引っ張り強度、 耐バースト性、 低温耐衝擊性、 可撓性等の力学物性に優れた ものとすることができる。 In the laminated resin molded article of the present invention, among the thermoplastic resins having excellent fuel permeability resistance, those used for the layer (B) are not used simultaneously as the thermoplastic resin for the layer (A). A layer (B) formed by selecting one or more of thermoplastic resins having excellent fuel permeability resistance, and a layer (B) formed by selecting one or more of thermoplastic resins ( A) In the laminated resin molded article of the present invention having The resin used as the thermoplastic resin having excellent heat resistance is selected from the viewpoint of suppressing the fuel permeability to be lower than the resin used as the thermoplastic resin for the layer (A), while the resin used for the layer (A) is used as the thermoplastic resin. The resin is selected from the viewpoint of maintaining the mechanical strength of the laminated resin molded article of the present invention. From these viewpoints, when a polyester resin, a PPS resin, or a resin made of an ethylene Z-Butyl alcohol copolymer is selected as the thermoplastic resin having excellent fuel permeation resistance of the layer (B), the heat of the layer (A) is obtained. It is preferable to select a polyamide resin as the plastic resin. The layer (A) made of the polyamide resin has excellent mechanical properties such as tensile strength, burst resistance, low-temperature impact resistance, and flexibility. It can be.
上記ポリアミド系樹脂は、 分子内に繰り返し単位としてアミ ド結合 [一 N H C O— ] を有する結晶性高分子からなるものである。 このようなものとしては、 例 えば、 アミド結合が脂肪族構造又は脂環族構造と結合している結晶性高分子から なる樹脂、 いわゆるナイロン樹脂が挙げられる。 ナイロン樹脂としては、 例えば、 ナイロン 6、 ナイロン 6 6、 ナイロン 1 1、 ナイロン 1 2、 ナイロン 6 1 0、 ナ ィロン 6 1 2、 ナイロン 6 6 6、 ナイロン 6 6 / 1 2、 ナイロン 4 6、 メタキ シリレンジァミン/アジピン酸共重合体、 及び、 これらのうち少なくとも 2種の プレンド物等が挙げられる。  The polyamide-based resin is made of a crystalline polymer having an amide bond [1-NHCO—] as a repeating unit in the molecule. Examples of such a resin include a resin composed of a crystalline polymer in which an amide bond is bonded to an aliphatic structure or an alicyclic structure, a so-called nylon resin. Examples of nylon resins include nylon 6, nylon 66, nylon 11, nylon 12, nylon 61, nylon 61, nylon 66, nylon 66/1, nylon 46, and metal. Examples include a silylendiamine / adipic acid copolymer, and at least two kinds of blends thereof.
本発明の積層樹脂成形体を燃料チューブとして用いる場合の大きな課題の一つ が低温耐衝撃性の改良である。 そのため、 層 (A) の熱可塑性樹脂として用いる 上記ポリアミド樹脂においても、 低温耐衝撃性を有するものが好ましい。  One of the major problems when using the laminated resin molded article of the present invention as a fuel tube is improvement in low-temperature impact resistance. Therefore, the polyamide resin used as the thermoplastic resin of the layer (A) also preferably has low-temperature impact resistance.
上記ポリアミド系樹脂の低温耐衝撃性を改善する方法としては、 例えば、 汎用 ゴム及ぴ炭素数 4〜 7のィソモノォレフインとアルキルスチレンのハロゲン化コ ポリマーとの混合物を含む耐衝擊性改良剤を混合する方法;ポリブテン又はオル ガノシロキサン混合物の何れかを配合する方法;第 2相としてポリアミドマトリ ックスに結合する枝分かれ又は直鎖ポリマー粒子を混合する方法;ハ口ブチル組 成物を溶融ブレンドする方法;エポキシ官能性及ぴカルボキシル官能性を含む含 ポリ (ジオルガノシロキサン) ゴム粉末を混合する方法;ポリ (ジオルガノシロ キサン) を相溶ィヒさせる方法;ポリ (ジオルガノシロキサン) 化合物、 無機充填 剤、 シリコーン添加剤等の耐衝撃性改良剤と相溶化剤をナイ口ンにブレンドする 方法等が挙げられる。 このような樹脂としては、 例えば、 特表平 1 1一 5079 79号公報、 米国特許第 4174358号明細書、 特表 2003— 516457 号公報、 米国特許第 5610223号明細書、 仏国特許発明第 2640632号 明細書、 米国特許出願公開第 09/29391 5号明細書記載のもの等が挙げら れる。 Methods for improving the low-temperature impact resistance of the polyamide resin include, for example, impact resistance including a mixture of a general-purpose rubber and a halogenated copolymer of alkyl styrene with isomonoolefin having 4 to 7 carbon atoms. A method of mixing either a polybutene or an organosiloxane mixture; a method of mixing branched or linear polymer particles that bind to a polyamide matrix as a second phase; Method of blending; Method of mixing poly (diorganosiloxane) rubber powder containing epoxy and carboxyl functions; Method of making poly (diorganosiloxane) compatible; Poly (diorganosiloxane) compound, inorganic filling And a method of blending an impact modifier such as a silicone additive, and a compatibilizer into a nylon resin. Examples of such a resin include, for example, Japanese Patent Publication No. 11507979, US Pat. No. 4,174,358, Japanese Patent Publication No. 2003-516457, US Pat. No. 5,610,223, and French Patent Invention No. 2640632. And US Patent Application Publication No. 09 / 293,195.
低温耐衝撃性を改善したポリアミド系榭脂として、 市販されているものとして は、 例えば、 UBESTA 3030MI 1 (宇部興産社製) 、 A 4877、 A 4878 (ともにダイセル ·デグサ社製) 等が挙げられる。  Commercially available polyamide resins having improved low-temperature impact resistance include, for example, UBESTA 3030MI 1 (manufactured by Ube Industries, Ltd.), A4877, and A4878 (both manufactured by Daicel Degussa). .
上記ポリアミド系樹脂は、 ― 40°Cでのアイゾット衝擊強度が 7 k J /m2以 上であるものであることが好ましい。 7 k J/m2未満であると、 得られる積層 樹脂成形体の低温耐衝擊性が不充分になりやすい。 より好ましい下限は、 10 k jZm2であり、 更に好ましい下限は、 35 k J/m2である。 上記アイゾット 衝撃強度は、 用途によるが通常考え得る用途としては、 上記範囲内の値であれば、 例えば 80 k jZm2以下であってもよい。 The polyamide resin preferably has an Izod impact strength at −40 ° C. of 7 kJ / m 2 or more . When it is less than 7 kJ / m 2 , the low-temperature impact resistance of the obtained laminated resin molded article tends to be insufficient. A more preferred lower limit is 10 kJZm 2 , and a still more preferred lower limit is 35 kJ / m 2 . The Izod impact strength depends on the application, but as a normally conceivable application, it may be, for example, 80 kjZm 2 or less as long as it is within the above range.
上記アイゾット衝撃強度は、 耐燃料透過性に優れた熱可塑性樹脂について上述 した通りである。 .  The Izod impact strength is as described above for the thermoplastic resin having excellent fuel permeation resistance. .
本発明の積層榭脂成形体において、 _40°Cでのアイゾット衝撃強度が上述の 範囲内であるポリアミド系樹脂を用いることと、 一 40°Cでのアイゾット衝撃強 度が上述の範囲内である耐燃料透過性に優れた熱可塑性樹脂を用いることとは、 何れか一方を採用すればよいが、 低温耐衝撃性を高める点で、 両方とも採用する ことが好ましい。  In the laminated resin molded article of the present invention, a polyamide resin having an Izod impact strength at _40 ° C within the above range is used, and the Izod impact strength at -40 ° C is within the above range. The use of a thermoplastic resin having excellent fuel permeation resistance means that either one of them may be employed, but it is preferable to employ both in terms of enhancing the low-temperature impact resistance.
本発明の積層樹脂成形体をなす上記層 (A) を形成するものであるポリアミド 系樹脂は、 また、 アミド結合を繰り返し単位として有しない構造が分子の一部に プロック共重合又はグラフト共重合されている高分子からなるものであってもよ い。 このようなポリアミド系樹脂としては、 例えば、 ナイロン 6ダポリエステル 共重合体、 ナイロン 6/ポリエーテル共重合体、 ナイロン 12ノポリエステル共 重合体、 ナイロン 12/ポリエーテル共重合体等のポリアミド系エラストマ一か らなるもの等が挙げられる。 これらのポリアミド系エラストマ一は、 ナイロンォ リゴマーとポリエステルオリゴマーがエステル結合を介してブロック共重合する ことにより得られたもの、 又は、 ナイロンオリゴマーとポリエーテルオリゴマー とがエーテル結合を介してプロック共重合することにより得られたものである。 上記ポリエステルオリゴマーとしては、 例えば、 ポリ力プロラクトン、 ポリェチ レンアジペート等が挙げられ、 上記ポリエーテルオリゴマーとしては、 例えば、 ポリエチレングリコール、 ポリプロピレングリコール、 ポリテトラメチレングリ コール等が挙げられる。 上記ポリアミ ド系エラストマ一としては、 ナイロン 6 Z ポリテトラメチレンダリコール共重合体、 ナイロン 1 2 Zポリテトラメチレング リコール共重合体が好ましい。 The polyamide resin forming the layer (A) that forms the laminated resin molded article of the present invention has a structure in which an amide bond is not repeated as a repeating unit. It may be made of a high polymer. Examples of such a polyamide resin include polyamide elastomers such as nylon 6-polyester copolymer, nylon 6 / polyether copolymer, nylon 12-polyester copolymer, nylon 12 / polyether copolymer, and the like. Or And the like. These polyamide elastomers are obtained by block copolymerization of a nylon oligomer and a polyester oligomer via an ester bond, or block copolymerization of a nylon oligomer and a polyether oligomer via an ether bond. It was obtained by Examples of the polyester oligomer include polycaprolactone and polyethylene adipate. Examples of the polyether oligomer include polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. As the above-mentioned polyamide-based elastomer, a nylon 6Z polytetramethylene dalicol copolymer and a nylon 12Z polytetramethylene glycol copolymer are preferable.
上記ポリアミド系樹脂としては、 ポリアミド系樹脂からなる層が薄層でも充分 な機械的強度が得られることから、 なかでも、 ナイロン 6、 ナイロン 6 6、 ナイ ロン 1 1、 ナイロン 1 2、 ナイロン 6 1 0、 ナイロン 6 1 2、 ナイロン 6 , 6 6 . ナイロン 6 6 Z 1 2、 ナイロン 6ノポリエステル共重合体、 ナイロン 6 /ポリエ 一テル共重合体、 ナイロン 1 2 Zポリエステル共重合体、 ナイロン 1 2 Zポリェ 一テル共重合体、 及び、 これらのうち少なくとも 2種のブレンド物からなる群よ り選択される少なくとも 1種であることが好ましい。  Among the above polyamide resins, nylon 6, nylon 66, nylon 11, nylon 12, nylon 61 can be used because sufficient mechanical strength can be obtained even when the polyamide resin is a thin layer. 0, Nylon 6 12, Nylon 6, 6. Nylon 6 6 Z 12, Nylon 6 Polyester copolymer, Nylon 6 / Polyester copolymer, Nylon 12 Z Polyester copolymer, Nylon 1 2 It is preferably at least one selected from the group consisting of a Z polyester copolymer and a blend of at least two of these.
本発明において上記ポリアミ ド系榭脂の融点としては特に限定されず、 例えば 共押出により積層樹脂成形体を成形する場合、 共押出する材料が溶融し得る温度 において上記ポリアミド系樹脂が熱分解しない程度の温度であればよい。 ポリア ミド系樹脂の分子量としても特に限定されず、 目的とする機械的強度が得られる 程度の分子量であればよい。  In the present invention, the melting point of the polyamide resin is not particularly limited.For example, when a laminated resin molded article is formed by coextrusion, the polyamide resin is not thermally decomposed at a temperature at which the material to be coextruded can be melted. The temperature may be any of the above. The molecular weight of the polyamide-based resin is not particularly limited as long as the molecular weight is such that the desired mechanical strength can be obtained.
上記ポリアミド系樹脂は、 本発明の目的を損なわない範囲で、 例えば、 熱安定 剤等の安定剤、 捕強剤、 充填剤、 紫外線吸収剤、 顔料等の各種添加剤とともに用 いて上記層 (A) を形成してもよい。 このような添加剤とともに層 (A) を形成 することにより、 得られる積層樹脂成形体の熱安定性、 表面硬度、 耐摩耗性、 帯 電性、 耐候性等の特性を向上することができる。  The polyamide resin may be used together with various additives such as a stabilizer such as a heat stabilizer, a strengthening agent, a filler, an ultraviolet absorber, and a pigment within a range not impairing the object of the present invention. ) May be formed. By forming the layer (A) together with such an additive, properties such as thermal stability, surface hardness, abrasion resistance, electrification, and weather resistance of the obtained laminated resin molded article can be improved.
本努明の積層樹脂成形体は、 ポリアミド系樹脂からなる層 (A) 、 耐燃料透過 性に優れた熱可塑性樹脂からなる層 (B) 及び接着性フッ素樹脂からなる層 (C ) がこの順に積層しているものである。 The laminated resin molded body of this effort has a layer (A) made of polyamide resin, A layer (B) composed of a thermoplastic resin having excellent properties and a layer (C) composed of an adhesive fluororesin are laminated in this order.
上記積層樹脂成形体は、 上記層 (A) 、 上記層 (B) 及び上記層 (C) のみか ら構成されるものであってもよいし、 上記層 (A) とも上記層 (B) とも上記層 (C) とも異なるその他の層が上記層 (A) 、 上記層 (B) 及び上記層 (C) と 積層されたものであってもよい。 本明細書において、 上記 「層 (A) とも層 (B ) とも層 (C) とも異なるその他の層」 を単に 「その他の層」 ということがある。 上記その他の層は、 1種又は 2種以上であってよい。  The laminated resin molded article may be composed of only the layer (A), the layer (B), and the layer (C). Both the layer (A) and the layer (B) may be used. Other layers different from the above-mentioned layer (C) may be laminated with the above-mentioned layer (A), the above-mentioned layer (B) and the above-mentioned layer (C). In this specification, the “other layer different from the layer (A), the layer (B), and the layer (C)” may be simply referred to as “other layer”. The other layers may be one kind or two or more kinds.
本発明の積層樹脂成形体は、 上記層 (B) と上記層 (C) との間に上記その他 の層として接着性の層を接着積層したものであってもよいが、 接着性の層を介在 させなくても上記層 (B) と上記層 (C) との接着性に優れる点で、 上記層 (B ) と上記層 (C) とが接しているものとすることができる。 上記積層樹脂成形体 は、 上記層 (B) と上記層 (C) とが接しているものである場合、 上記層 (B) と上記層 (C) との初期接着強度が 2 ON, cm以上であるものが好ましい。 上 記初期接着強度は、 実用上、 25 NZ cm以上がより好ましい。 上記積層樹脂成 形体は、 上記初期接着強度が 20 N/ c m以上、 燃料浸漬後の接着強度が 20 N Zcmであるものがより好ましく、 上記初期接着強度が 25 NZ cm以上、 燃料 浸漬後の接着強度が 25 NZ cmであるものが更に好ましい。 本明細書において、 上記初期接着強度及び上記燃料浸漬後の接着強度は、 後述の測定方法により測定 して得られた値である。  The laminated resin molded article of the present invention may be one in which an adhesive layer is adhesively laminated as the other layer between the layer (B) and the layer (C). The layer (B) and the layer (C) can be in contact with each other because of excellent adhesion between the layer (B) and the layer (C) without any intervention. When the layer (B) and the layer (C) are in contact with each other, the initial adhesive strength between the layer (B) and the layer (C) is 2 ON, cm or more. Is preferred. The above-mentioned initial adhesive strength is more preferably 25 NZ cm or more in practical use. More preferably, the laminated resin molded article has the initial adhesive strength of 20 N / cm or more and the adhesive strength after fuel immersion of 20 NZcm, the initial adhesive strength of 25 NZcm or more, and the adhesive strength after fuel immersion. More preferably, the strength is 25 NZ cm. In the present specification, the initial adhesive strength and the adhesive strength after immersion in the fuel are values obtained by measuring by a measuring method described later.
本発明の積層樹脂成形体は、 上述のように、 上記層 (A) と上記層 (B) との 接着力が充分であるが、 上記層 (A) と上記層 (B) との接着力を更に向上する ために、 上記層 (A) と上記層 (B) との間に上述のその他の層を接着層 (D) として介在させたものであってもよい。 上記接着層 (D) は、 上記層 (A) のポ リアミド系樹脂がナイロン 6やナイロン 6とナイロン 12とのプレンド物である 場合、 用いなくとも上記層 (A) と上記層 (B) との接着力は充分であるが、 特 に上記層 (A) のポリアミド系樹脂がナイロン 1 1、 ナイロン 12である場合、 用いることが好ましい。 上記接着層 (D) は、 特に、 上記層 (A) にナイロン 1 1、 ナイロン 1 2を用い、 上記層 (B ) にエチレン Zビュルアルコール共重合体 からなる榭脂を用いる場合、 上記層 (A) と上記層 (B ) との間に介在させるこ とが好ましい。 上記接着層 (D) に用い得る樹脂としては、 上記層 (A) と上記 層 (B ) の両方との接着性を有するものであれば特に限定されず、 例えば、 ポリ エチレン、 ポリプロピレン等のポリオレフインを無水マレイン酸等で変性した変 性ポリオレフイン;上記層 (C ) に用い得る接着性フッ素樹脂、 但しこの場合、 上記層 (C ) に用いる接着性フッ素樹脂と上記層 (D ) に用いる接着性フッ素樹 脂を同一のものとする必要はない;上述した上記層 (A) として用い得るポリア ミド系樹脂及びこれらのうちの 2種以上を混合したプレンド物;等が挙げられる。 積層樹脂成形体の耐熱性の観点からは、 接着層 (D ) は接着性フッ素樹脂、 ポ リアミ ド榭脂、 又は、 接着性フッ素樹脂とポリアミド樹脂との混合物であること が好ましい。 As described above, the laminated resin molded article of the present invention has a sufficient adhesive force between the layer (A) and the layer (B), but has an adhesive force between the layer (A) and the layer (B). In order to further improve the above, another layer described above may be interposed between the layer (A) and the layer (B) as an adhesive layer (D). When the polyamide resin of the layer (A) is a blend of nylon 6 or a blend of nylon 6 and nylon 12, the adhesive layer (D) can be used as the layer (A) and the layer (B) without using the same. Although the adhesive strength of this is sufficient, it is preferable to use it especially when the polyamide resin of the layer (A) is nylon 11 or nylon 12. The adhesive layer (D) is preferably made of nylon 1 in the layer (A). 1. When nylon 12 is used and a resin made of an ethylene Z butyl alcohol copolymer is used for the layer (B), it is preferable that the resin is interposed between the layer (A) and the layer (B). . The resin that can be used for the adhesive layer (D) is not particularly limited as long as it has adhesiveness to both the layer (A) and the layer (B). For example, polyolefins such as polyethylene and polypropylene Polyolefin which is modified with maleic anhydride or the like; an adhesive fluororesin which can be used for the layer (C); in this case, an adhesive fluororesin used for the layer (C) and an adhesive used for the layer (D) It is not necessary to use the same fluorine resin; examples thereof include a polyamide resin which can be used as the above-mentioned layer (A) and a blended product obtained by mixing two or more of these resins. From the viewpoint of the heat resistance of the laminated resin molded product, the adhesive layer (D) is preferably an adhesive fluororesin, a polyamide resin, or a mixture of an adhesive fluororesin and a polyamide resin.
耐燃料透過性に優れた熱可塑性樹脂からなる層 (B ) を形成する熱可塑性ポリ マーには、 極性官能基を有し分子間力が大きいポリマーが用いられるため、 吸水 しゃすいものが多い。 この吸水の影響により、 耐燃料透過性が低下したり、 低温 耐衝撃性が低下する。 したがって、 上記層 (B ) を水分から遮断することは積層 樹脂成形体の物性の経時変化を抑制する上で非常に有効である。 フッ素樹脂は水 分に対するバリア性が高いため、 接着層 (D) に接着性フッ素樹脂を用いること は、 上記層 (B ) をフッ素樹脂層で挟み込むことになり、 上記層 (B ) の経時的 な吸水を抑える効果があり、 積層樹脂積層体の耐燃料透過性、 低温耐衝擊性の経 時的低下を抑制し得る点で好ましい。  As the thermoplastic polymer forming the layer (B) made of a thermoplastic resin having excellent fuel permeability, a polymer having a polar functional group and a large intermolecular force is used, so that there are many water-absorbing polymers. Due to the effect of this water absorption, the fuel resistance decreases, and the low-temperature impact resistance decreases. Therefore, shielding the layer (B) from moisture is very effective in suppressing a change with time in the physical properties of the laminated resin molded product. Since the fluororesin has a high barrier property against water, the use of the adhesive fluororesin for the adhesive layer (D) means that the layer (B) is sandwiched between the fluororesin layers, and that the layer (B) can be used over time. This is advantageous in that it has an effect of suppressing excessive water absorption and can suppress a temporal decrease in fuel permeability resistance and low-temperature impact resistance of the laminated resin laminate.
上記接着層 (D ) として接着性フッ素樹脂を用いる場合、 層 (A) のァミン価 が高い方が好ましい。  When an adhesive fluororesin is used for the adhesive layer (D), the layer (A) preferably has a higher amine value.
本努明の積層樹脂成形体は、 上記積層樹脂成形体を振動や衝撃等から保護する ことを主目的として、 上記層 (A) の表面のうち上記層 (B ) とは反対側の表面 上に、 エラストマ一層等上記その他の層を有するものであってもよい。 上記エラ ストマ一層を構成するエラストマ一は熱可塑性エラストマ一であってもよい。 本発明の積層樹脂成形体は、 上記その他の層として導電層 (E) を含むもので あって、 上記導電層 (E) は、 接着性フッ素樹脂からなる層 (C) の表面のうち、 耐燃料透過性に優れた熱可塑性樹脂からなる層 (B) とは反対側の表面に接して いるものであってもよい。 本明細書において、 上記 「導電層 (E) 」 は、 導電性 であって、 フッ素樹脂からなる層である。 上記導電層 (E) は、 フッ素樹脂から なる層であるが、 上記その他の層の一態様であることから明らかであるように、 概念上、 上記層 (C) とは異なるものである。 上記導電層 (E) に用いるフッ素 樹脂は、 接着性フッ素樹脂であってもよいし、 接着性フッ素樹脂とは異なるフッ 素樹脂であってもよい。 上記導電層 (E) を含む積層樹脂成形体は、 後述の燃料 用チューブ、 燃料用ホース又は燃料用タンクであるものが特に好ましく、 この場 合、 導電性を活かす点で、 上記導電層 (E) を燃料に接する位置、 通常、 最内層 に有するものが好ましい。 The laminated resin molded article of the present invention is intended to protect the laminated resin molded article from vibration, impact, etc., on the surface of the layer (A) opposite to the layer (B). In addition, it may have the above-mentioned other layers such as an elastomer layer. The elastomer constituting the above-mentioned elastomer layer may be a thermoplastic elastomer. The laminated resin molded article of the present invention includes a conductive layer (E) as the other layer. The conductive layer (E) is in contact with the surface of the layer (C) made of the adhesive fluororesin opposite to the surface (B) made of the thermoplastic resin having excellent fuel permeability. May be used. In the present specification, the “conductive layer (E)” is a conductive layer made of a fluororesin. The conductive layer (E) is a layer made of a fluororesin, but is conceptually different from the layer (C) as is apparent from one embodiment of the other layers. The fluororesin used for the conductive layer (E) may be an adhesive fluororesin or a fluororesin different from the adhesive fluororesin. The laminated resin molded article containing the conductive layer (E) is particularly preferably a fuel tube, a fuel hose or a fuel tank to be described later. In this case, the conductive layer (E) is used in view of utilizing conductivity. ) Is preferably located at the position in contact with the fuel, usually at the innermost layer.
本発明の積層樹脂成形体は、 上述の層 (A) 、 層 (B) 及び層 (C) が積層さ れてなるので、 層間接着性に優れ、 また、 上記層 (C) を形成する接着性フッ素 樹脂が有する優れた耐燃料油性、 耐薬品性、 耐熱性、 耐候性、 電気絶縁性、 非粘 着性、 非溶出性等の性質を有している。  Since the laminated resin molded article of the present invention is formed by laminating the above-mentioned layer (A), layer (B) and layer (C), it has excellent interlayer adhesion, and also has an adhesive property for forming the layer (C). It has properties such as excellent fuel oil resistance, chemical resistance, heat resistance, weather resistance, electrical insulation, non-adhesiveness, and non-elution properties possessed by the fluoropolymer.
また、 燃料透過性に関しては、 従来、 積層体の燃料透過性は各単層の燃料透過 性の和にすぎなかった。 しかしながら、 上記積層樹脂成形体は、 上記耐燃料透過 性に優れた熱可塑性樹脂からなる層 (B) とともに、 ポリアミド系樹脂からなる 層 (A) を設けたことにより、 上記積層樹脂成形体全体の燃料透過性を各単層の 燃料透過性の和よりはるかに低く抑えることが可能となる。 また、 上記層 (B) を設けることにより、 通常高価な接着性フッ素樹脂からなる上記層 (C) の厚さ を比較的薄くすることが可能である。 更に、 上記積層榭脂成形体は、 上記ポリア ミ ド系樹脂からなる層 (A) を設けることにより、 クラックの発生が抑えられ、 曲げ加工が容易となるので、 容易に後述の蛇腹 (c o r r u g a t e d) 形状や 渦巻き (c o n v o l u t e d) 形状を作ることが可能で、 しかも、 これらの形 状にした場合でも燃料透過性等が低く抑えられ、 耐クラック性に優れるものであ る。  Further, regarding fuel permeability, conventionally, the fuel permeability of the laminate was merely the sum of the fuel permeability of each single layer. However, by providing the layer (A) made of a polyamide-based resin together with the layer (B) made of a thermoplastic resin having excellent fuel permeation resistance, the laminated resin molded article has a The fuel permeability can be kept much lower than the sum of the fuel permeability of each single layer. By providing the layer (B), the thickness of the layer (C), which is usually made of an expensive adhesive fluororesin, can be made relatively thin. Further, the laminated resin molded article is provided with the layer (A) made of the polyamide resin, thereby suppressing the occurrence of cracks and facilitating bending. Shapes and convoluted shapes can be produced, and even when these shapes are used, fuel permeability and the like are kept low and crack resistance is excellent.
本発明の積層樹脂成形体は、 層 (A) をなすポリアミド系榭脂として低温耐衝 撃性を有するものを用い、 層 (B) をなす耐燃料透過性に優れた熱可塑性樹脂と して低温耐衝撃性を有するものを用いることにより、 チューブ全体としての低温 耐衝撃性を大幅に改善し、 接着性フッ素樹脂からなる層 (C) の薄層化を可能と するものである。 The laminated resin molded article of the present invention has a low-temperature impact resistance as a polyamide resin constituting the layer (A). By using a material that has high impact resistance and low-temperature impact resistance as the thermoplastic resin of layer (B) that has excellent fuel permeability, the low-temperature impact resistance of the entire tube is greatly improved. It is possible to improve the thickness of the layer (C) made of the adhesive fluororesin.
上記接着性フッ素樹脂からなる層 (C) の薄層化は、 一般に高価といわれるフ ッ素樹脂の量を削減することができコスト面で有利であるほか、 例えば燃料チュ ーブのように規格により全体の厚みが決まっていたり、 所定の厚みが好ましい用 途に用いる場合に、 層 (B) を厚くすることができ、 積層樹脂成形体全体として の耐燃料透過性を向上することができる。  Thinning the layer (C) made of the adhesive fluororesin is advantageous in terms of cost because it can reduce the amount of fluororesin, which is generally considered expensive, and it is a standard for fuel tubes. Accordingly, when the overall thickness is determined, or when the predetermined thickness is used for an intended use, the layer (B) can be thickened, and the fuel permeation resistance of the entire laminated resin molded article can be improved.
上記接着性フッ素樹脂からなる層 (C) は、 積層樹脂成形体全体の厚みの 25 %以下であることが好ましく、 例えば、 本発明の積層榭脂成形体全体の厚さが 1 mmである場合、 0. 25 mm以下、 より好ましくは 0. 1 5mm、 更に好まし くは 0. 1mm程度にまで薄層化することができる。 接着性フッ素樹脂からなる 層 (C) を 0. 1 mmにまで薄層化した場合であっても、 上述のように耐燃料透 過性に'優れた熱可塑性樹脂からなる層 (B) とともに、 ポリアミド系樹脂からな る層 (A) を設けたことにより、 積層樹脂成形体全体として耐燃料透過性を向上 することができる。 上記接着性フッ素樹脂からなる層 (C) は、 積層樹脂成形体 全体の厚みの 10%以下にすることもでき、 その場合であっても、 SAE— J 2 260記載の低温耐衝擊性試験で割れが発生しない積層体を得ることができる。 例えば、 本発明の積層樹脂成形体全体の厚さが lmmである場合に、 上記接着 性フッ素樹脂からなる層 (C) を 0. 1mmにまで薄層化した場合であっても、 上記接着性フッ素樹脂からなる層 (C) と上記耐燃料透過性に優れた熱可塑性樹 脂からなる層 (B) とが強固な接着力で積層していることにより、 上記層 (A) を外層とする燃料チューブとした場合に、 SAE— J 2260記載の低温耐衝撃 性試験で割れが発生しないチューブができる。  The layer (C) made of the adhesive fluororesin is preferably not more than 25% of the total thickness of the laminated resin molded article. For example, when the thickness of the entire laminated resin molded article of the present invention is 1 mm , 0.25 mm or less, more preferably 0.15 mm, and still more preferably about 0.1 mm. Even when the layer (C) made of the adhesive fluororesin is thinned to 0.1 mm, as described above, the layer (B) made of a thermoplastic resin having excellent fuel permeability is used together with the layer (B) made of a thermoplastic resin having excellent fuel permeability. By providing the layer (A) made of a polyamide-based resin, it is possible to improve the fuel permeation resistance of the entire laminated resin molded article. The layer (C) composed of the adhesive fluororesin can be made to be 10% or less of the total thickness of the laminated resin molded article. Even in such a case, the low-temperature impact resistance test described in SAE-J2260 can be used. A laminate that does not crack can be obtained. For example, when the overall thickness of the laminated resin molded article of the present invention is lmm, even when the layer (C) made of the adhesive fluororesin is thinned to 0.1 mm, Since the layer (C) made of fluororesin and the layer (B) made of thermoplastic resin having excellent fuel permeability are laminated with a strong adhesive force, the above layer (A) is used as the outer layer. When a fuel tube is used, a tube that does not crack in the low-temperature impact resistance test described in SAE-J2260 is produced.
本発明の積層樹脂成形体は、 フィルム形状、 シート形状、 チューブ形状、 ホー ス形状、 ボトル形状、 タンク形状等の各種形状とすることができる。 上記フィル ム形状、 シート形状、 チューブ形状及びホース形状は、 蛇腹 (c o r r u g a t e d) 形状又は渦巻き (c o n v o l u t e d) 形状であってもよい。 このうち、 チューブ、 ホース及ぴタンクは、 燃料用として好適に用いることができる。 上記 積層樹脂成形体が燃料用チューブ、 燃料用ホース又は燃料用タンクである場合、 上述の層 (C) は、 燃料に接する位置、 即ち、 通常、 最内層であるものが好まし い。 従って、 この場合、 上記層 (A) は外層、 上記層 (B) は中間層となり、 上 記層 (C) は、 上記層 (A) と上記層 (B) との位置関係としては内層となる。 本明細書において、 上記 「外層」 「内層」 「中間層」 は、 チューブ、 ホース、 タ ンク等の内側 '外側の概念を伴う形状において、 上記層 (A) 、 上記層 (B) 及 ぴ上記層 ( C ) の 3層のうちどの層が内側か外側か又はこの二者の間に位置する かを表すにすぎず、 上記積層樹脂成形体は、 上述のように、 上記層 (A) の表面 のうち上記層 (B) とは反対側の表面上、 上記層 (A) と上記層 (B) との間、 上記層 (B) と上記層 (C) との間、 及び/又は、 上記層 (C) の表面のうち上 記層 (B) とは反対側の表面上にそれぞれその他の層を有するものであってもよ い。 The laminated resin molded article of the present invention can have various shapes such as a film shape, a sheet shape, a tube shape, a hose shape, a bottle shape, and a tank shape. The above film shape, sheet shape, tube shape and hose shape are corrugated. ed) shape or convoluted shape. Of these, tubes, hoses and tanks can be suitably used for fuel. When the laminated resin molded article is a fuel tube, a fuel hose, or a fuel tank, the layer (C) is preferably in a position in contact with the fuel, that is, usually the innermost layer. Therefore, in this case, the layer (A) is an outer layer, the layer (B) is an intermediate layer, and the layer (C) has a positional relationship between the layer (A) and the layer (B) with the inner layer. Become. In the present specification, the “outer layer”, “inner layer”, and “intermediate layer” refer to the above-mentioned layers (A), (B), and ぴ in the shapes having the concept of inside and outside such as tubes, hoses, and tanks. It merely indicates which of the three layers of the layer (C) is located inside or outside or between the two, and the laminated resin molded article, as described above, On the surface of the surface opposite to the layer (B), between the layer (A) and the layer (B), between the layer (B) and the layer (C), and / or The layer (C) may have another layer on the surface on the side opposite to the layer (B).
上記積層樹脂成形体は、 ポリアミド系樹脂からなる層 (A) を外層とし、 接着 性フッ素榭脂からなる層 (C) を内層とし、 及び、 耐燃料透過性に優れた熱可塑 性樹脂からなる層 (B) を中間層とするものが好ましく、 この積層樹脂成形体は、 燃料用チューブ、 燃料用ホース又は燃料用タンクとして用いる場合、 特に好まし い (この積層樹脂成形体を、 以下、 「燃料用積層樹脂成形体」 ということがある。 ) 。 この場合、 上記層 (B) と上記層 (C) とが接しているものがより好ましい。 上記積層樹脂成形体は、 上記層 (B) と上記層 (C) とが接しており、 上記層 ( A) 、 上記層 (B) 及び上記層 (C) のみから構成されているものであってもよ い。  The above-mentioned laminated resin molded article comprises a layer (A) made of a polyamide resin as an outer layer, a layer (C) made of an adhesive fluororesin as an inner layer, and a thermoplastic resin having excellent fuel permeability resistance. It is preferable that the layer (B) be an intermediate layer. This laminated resin molded article is particularly preferable when used as a fuel tube, a fuel hose, or a fuel tank. It is sometimes referred to as “laminate resin molding for fuel”.) In this case, it is more preferable that the layer (B) and the layer (C) are in contact with each other. In the laminated resin molded article, the layer (B) and the layer (C) are in contact with each other, and are composed of only the layer (A), the layer (B), and the layer (C). You can.
上記積層樹脂成形体は、 更に、 接着層 (D) を含む積層樹脂成形体であって、 上記接着層 (D) は、 ポリアミド系樹脂からなる層 (A) と耐燃料透過性に優れ た熱可塑性樹脂からなる層 (B) との間に存在するものが更に好ましい。 この積 層樹脂成形体は、 上記層 (A) を外層とし、 上記層 (C) を内層とし、 及び、 上 記層 (B) を中間層とする積層樹脂成形体であって、 上記層 (A) と上記層 (B ) との間に上記接着層 (D ) を有するものであり、 燃料用チューブ、 燃料用ホー ス又は燃料用タンクとして用いる場合、 特に好ましい。 この積層樹脂成形体は、 上記接着層 (D ) を有することにより、 上記脣 (A) と上記層 (B ) との接着力 がより向上したものとすることができ、 この接着力は、 上述のように特に上記層 (A) のポリアミド系樹脂がナイロン 1 2である場合であっても充分なものにす ることができる。 この積層樹脂成形体においても、 上記層 (B ) と上記層 (C) とが接していることが好ましい。 The laminated resin molded article is a laminated resin molded article further including an adhesive layer (D). The adhesive layer (D) is different from the layer (A) made of a polyamide resin in heat resistance excellent in fuel permeation resistance. Those present between the layer (B) and the layer made of a plastic resin are more preferable. The laminated resin molded article is a laminated resin molded article including the above layer (A) as an outer layer, the above layer (C) as an inner layer, and the above layer (B) as an intermediate layer. A) and the above layer (B )) And the adhesive layer (D), and is particularly preferable when used as a fuel tube, a fuel hose or a fuel tank. By having the above-mentioned adhesive layer (D), the laminated resin molded article can further improve the adhesive strength between the above-mentioned shunn (A) and the above-mentioned layer (B). In particular, even when the polyamide resin of the layer (A) is nylon 12, as described above, it can be sufficient. Also in this laminated resin molded product, it is preferable that the layer (B) and the layer (C) are in contact with each other.
上記積層樹脂成形体は、 更に、 上述の導電層 ( E ) を含む積層樹脂成形体であ つて、 上記導電層 (E ) は、 接着性フッ素樹脂からなる層 (C ) の表面のうち、 耐燃料透過性に優れた熱可塑性樹脂からなる層 (B ) とは反対側の表面に接して いるものであってもよい。 この積層樹脂成形体は、 燃料用チューブ、 燃料用ホー ス又は燃料用タンクとして用いる場合、 特に好ましい。 この積層樹脂成形体は、 上記接着層 (D ) を含まないものであってもよいが、 上記接着層 (D ) を上記層 (A) と上記層 (B ) との間に有するものが好ましく、 また、 上記層 (B ) と上 記層 (C ) とが接しているものが好ましい。 上記導電層 (E ) は、 上記積層樹脂 成形体における最内層であることが好ましい。 上記積層樹脂成形体は、 上記導電 層 (E ) を含むものであるので、 上記層 (C) が導電性である必要はないが、 上 記層 (C ) が導電性であってもよい。  The laminated resin molded article is a laminated resin molded article further including the above-mentioned conductive layer (E), wherein the conductive layer (E) is a layer of an adhesive fluororesin (C) which has a resistance to heat resistance. The layer may be in contact with the surface opposite to the layer (B) made of a thermoplastic resin having excellent fuel permeability. This laminated resin molded product is particularly preferable when used as a fuel tube, a fuel hose or a fuel tank. The laminated resin molded article may not include the adhesive layer (D), but preferably has the adhesive layer (D) between the layer (A) and the layer (B). It is preferable that the layer (B) is in contact with the above-mentioned layer (C). The conductive layer (E) is preferably the innermost layer in the laminated resin molded article. Since the laminated resin molded article includes the conductive layer (E), the layer (C) does not need to be conductive, but the layer (C) may be conductive.
上記積層樹脂成形体は、 特に燃料用チューブ、 燃料用ホース又は燃料用タンク に好適に用いることができる力 燃料のみならず、 燃料以外の可燃性の揮発性有 機物に接する用途にも好適に用いることができる。  The above-mentioned laminated resin molded article is suitable not only for a fuel that can be suitably used particularly for a fuel tube, a fuel hose or a fuel tank, but also for applications in contact with combustible volatile organic substances other than fuel. Can be used.
本発明の積層樹脂成形体を製造する方法としては、 特に限定されず、 各層をな す樹脂の種類、 性質等に応じて、 適宜選択される。 上記方法としては、 例えば、 各層をなす材料を多層共押出する方法、 各層をなす材料を別々にシート状又はフ イルム状等の形状に成形した後、 得られた各層を加熱下で加圧して熱融着するこ とにより積層する方法等が挙げられる。  The method for producing the laminated resin molded article of the present invention is not particularly limited, and is appropriately selected according to the type and properties of the resin forming each layer. Examples of the above method include a method of co-extrusion of the material constituting each layer in a multilayer form, a method of separately molding the material constituting each layer into a sheet or film shape, and then pressing the obtained layers under heating. A method of laminating by heat fusion is exemplified.
し力 しながら、 多層共押出する方法が、 製造の効率の観点からは最も好ましい。 多層共押出のダイ温度としては、 より高い接着剥離強度を得るために、 樹脂が 分解しない範囲でできるだけ高い方が好ましいので、 2 2 5 °Cを越える温度とす ることが好ましく、 2 3 0 °C以上が好ましい。 従来、 エチレン/ビュルアルコー ル共重合体を用いて多層共押出する場合、 ダイ温度 2 5 0 °C以下で行っていたが、 本発明の積層樹脂成形体製造方法においては、 2 5 0 °Cを越える温度で成形する こともできる。 最内層に導電材料を用いない場合、 ダイ温度 2 4 0〜2 6 0 °Cで あることが好ましい。 最内層を導電材料とする場合は、 メルトフラクチャ一の抑 制と抵抗値を低く抑制するという観点からむしろ 2 5 0 °Cを越えるダイ温度での 成形が好ましく、 2 6 0 °C以上がより好ましい。 耐燃料透過性に優れた熱可塑性 樹脂の分解 ·劣化を押さえる意味から上限としては 3 0 0 °Cが好ましく、 2 9 0 °Cがより好ましく、 2 8 0 °Cが更に好ましい。 However, a multilayer co-extrusion method is most preferable from the viewpoint of production efficiency. As for the die temperature of multi-layer coextrusion, the resin Since the temperature is preferably as high as possible within the range not decomposing, the temperature is preferably higher than 225 ° C, more preferably 230 ° C or more. Conventionally, when multi-layer co-extrusion using an ethylene / butyl alcohol copolymer was performed at a die temperature of 250 ° C. or less, in the method for producing a laminated resin molded article of the present invention, 250 ° C. Molding can be performed at a temperature exceeding. When a conductive material is not used for the innermost layer, the die temperature is preferably 240 to 260 ° C. When the innermost layer is made of a conductive material, molding at a die temperature exceeding 250 ° C is preferable from the viewpoint of suppressing melt fracture and lowering the resistance value, and more preferably at 260 ° C or higher. preferable. The upper limit is preferably 300 ° C., more preferably 290 ° C., and even more preferably 280 ° C., from the viewpoint of suppressing the decomposition and deterioration of the thermoplastic resin having excellent fuel permeability.
上記層 (B ) としてエチレン ビュルアルコール共重合体とする場合も、 同様 のダイ温度を使用することができる。  The same die temperature can be used when the above layer (B) is made of ethylene butyl alcohol copolymer.
上記積層樹脂成形体は、 上述のように、 耐燃料油性、 耐溶剤性、 耐薬品性、 非 溶出性等に優れ、 燃料透過性を低く抑えることができるものであるので、 燃料、 溶剤等と接する用途に用いることができる。  As described above, the laminated resin molded article is excellent in fuel oil resistance, solvent resistance, chemical resistance, non-elution property, etc., and can suppress fuel permeability to a low level. Can be used for contacting applications.
上記燃料としては特に限定されず、 例えば、 ガソリン、 石油、 軽油、 重油等の 燃料油; F u e 1 C等の擬似燃料;上記燃料油、 擬似燃料等とパーォキサイド とを混合したパーォキサイド含有燃料;上記燃料油、 擬似燃料等とメタノール、 エタノール等とを混合したアルコ^^レ含有燃料等が挙げられる。 上記燃料は、 ま た、 メタン、 天然ガス、 ジメチルエーテル等のガス状燃料であってもよい。 上記 積層樹脂成形体は、 上記アルコール含有燃料の透過を抑えるものとして好適に用 いることができる。  The fuel is not particularly limited, and includes, for example, a fuel oil such as gasoline, petroleum, light oil, or heavy oil; a pseudo fuel such as Fue 1C; a peroxyside-containing fuel obtained by mixing the above fuel oil, pseudo fuel, or the like with peroxide; An alcohol-containing fuel obtained by mixing a fuel oil, a pseudo fuel, or the like with methanol, ethanol, or the like can be given. The fuel may be a gaseous fuel such as methane, natural gas, and dimethyl ether. The laminated resin molded article can be suitably used for suppressing the permeation of the alcohol-containing fuel.
上記溶剤としては、 溶剤として通常用いるものを主成分とするものであれば特 に限定されず、 例えば、 酢酸、 蟻酸、 クレゾール、 フエノール等の有機酸類;メ タノール、 エタノール等のアルコール類;エチレンジアミン、 ジエチレントリア ミン、 エタノールァミン等のアミン類;ジメチルァセトアミド等のアミド類;酢 酸ェチル、 酢酸プチル等のエステル類;へキサン等の炭化水素類; アセトン、 ジ メチルケトン等のケトン類;これらのうち 1種又は 2種以上の混合物等を主成分 とするものが挙げられる。 本明細書において、 上記溶剤は、 塗料等のように、 上 記溶剤として通常用いるものに樹脂等を溶解させて得られたものであってもよい。 上記積層樹脂成形体は、 上記溶剤として、 なかでも、 可燃性の揮発性有機物と接 する用途に好適に用いることができる。 The solvent is not particularly limited as long as it is mainly composed of a solvent usually used as a solvent. Examples of the solvent include organic acids such as acetic acid, formic acid, cresol and phenol; alcohols such as methanol and ethanol; ethylenediamine; Amines such as diethylenetriamine and ethanolamine; amides such as dimethylacetamide; esters such as ethyl acetate and butyl acetate; hydrocarbons such as hexane; ketones such as acetone and dimethyl ketone; Of which one or a mixture of two or more And the following. In the present specification, the solvent may be one obtained by dissolving a resin or the like in a solvent generally used as the above solvent, such as a paint. The laminated resin molded article can be suitably used as the solvent, particularly for applications in contact with combustible volatile organic substances.
上記積層樹脂成形体は、 上記耐燃料透過性に優れた熱可塑性樹脂からなる層 ( The laminated resin molded body is a layer (a) made of a thermoplastic resin having excellent fuel permeability resistance.
B ) を有することによりガス透過性が低く、 上記接着性フッ素樹脂からなる層 (B), the gas permeability is low, and the layer made of the adhesive fluororesin (
C ) を有することにより耐酸性、 耐水性、 非溶出性等に優れるものであるので、 飲食物等と接する用途に用いても飲食物に臭いが移らず、 飲食物を安定に輸送、 保存等することができる。 C), it is excellent in acid resistance, water resistance, non-eluting property, etc., so even if it is used for contact with food, etc., the smell does not transfer to the food and drink, and the food is transported and stored stably. can do.
上記積層樹脂成形体としては、 以下の用途等に用いることができる。  The laminated resin molded article can be used for the following applications.
チューブ、 ホースとしては、 気体、 液体用として広く用いることができる力 特に、 水用チューブ又は水用ホース、 燃料電池用チューブ又は燃料電池用ホース、 地下埋設可燃性流体用チューブ又は地下埋設可燃性流体用ホース、 自動車燃料用 チューブ若しくは自動車燃料用ホース等の燃料用チューブ又は燃料用ホース、 溶 剤用チューブ又は溶剤用ホース、 塗料用チューブ又は塗料用ホース、 自動車のラ ジエーターホース、 エアコンホース、 ブレーキホース、 電線被覆材、 飲食物用チ ユーブ又は飲食物用ホース、 医療用カテーテルや医療用チューブ、 香水等の香り を閉じ込めるチューブ、 ボトル、 容器、 タンク類; 自動車のラジエータータンク、 ガソリンタンク等の燃料用タンク、 溶剤用タンク、 塗料用タンク、 半導体用薬液 容器等の薬液容器、 飲食物用タンク等  For tubes and hoses, power that can be widely used for gas and liquid, especially for water tubes or water hoses, fuel cell tubes or fuel cell hoses, underground flammable fluid tubes or underground flammable fluids Hoses, fuel tubes such as automotive fuel tubes or automotive fuel hoses, fuel hoses, solvent tubes or solvent hoses, paint tubes or paint hoses, automotive radiator hoses, air conditioner hoses, brakes Hoses, electric wire coverings, food and drink tubes or food and drink hoses, medical catheters and medical tubes, tubes, bottles, containers, and tanks that contain fragrance such as perfume; fuel for automobile radiator tanks, gasoline tanks, etc. Tanks, solvent tanks, paint tanks, semiconductor chemicals The chemical liquid container such as a container, food and drink for the tank, etc.
フィルム、 シート類;食品用フィルム、 食品用シート、 薬品用フィルム、 薬品用 シート、 ダイャフラムポンプのダイャフラムゃ各種パッキン等  Films and sheets; food films, food sheets, chemical films, chemical sheets, diaphragm pump diaphragms, various packings, etc.
その他;キャブレターのフランジガスケット、 燃料ポンプの Oリング等の各種自 動車用シール、 油圧機器のシール等の各種機械関係シール、 ギア等  Others: Various mechanical seals such as carburetor flange gaskets, fuel pump O-rings, seals for hydraulic equipment, etc., gears, etc.
上記積層樹脂成形体は、 上述のように、 非溶出性、 可撓性等に加え、 耐衝擊性、 特に低温耐衝撃性に優れるものであるので、 チューブ又はホースとして好適に用 いることができる。 上記積層樹脂成形体は、 上述のように、 耐燃料油性等に優れ、 燃料透過性が低いものであるので、 上記チューブ若しくはホースは、 燃料用チュ ープ又は燃料用ホースと .して特に好適に用いることができる。 燃料用チューブと して用いる場合も、 低温耐衝撃性の観点からは S A E— J 2 2 6 0に記載の低温 耐衝撃性試験により割れが発生しないチューブを提供することができる。 As described above, since the laminated resin molded article has excellent impact resistance, particularly low-temperature impact resistance in addition to non-elution and flexibility, it can be suitably used as a tube or a hose. . As described above, the laminated resin molded article is excellent in fuel oil resistance and the like, and has low fuel permeability. It can be particularly preferably used as a hose or a fuel hose. When used as a fuel tube, a tube that does not crack in the low-temperature impact resistance test described in SAE-J2260 can be provided from the viewpoint of low-temperature impact resistance.
上記積層樹脂成形体は、 上述のように、 非溶出性、 可撓性等に加え、 耐衝撃性、 特に低温耐衝撃性に優れるものであるので、 タンクとして好適に用いることがで きる。 最內層がポリエチレン等である樹脂積層体を接合してタンク形状にした従 来品は、 ポリエチレン等の層同士を張り合わせた接合面からその低接着性により 内容物が漏れるという問題があった。 本発明の積層樹脂成形体は、 上記接着性フ ッ素樹脂からなる層 (C ) を最内層とするものである場合、 接着性フッ素樹脂か らなる層 (C) 同士が相溶性があり接着力にも優れるので、 タンクとして用いて も積層樹脂成形体の接合面から内容物が漏れにくい。  As described above, the laminated resin molded article has excellent impact resistance, particularly low-temperature impact resistance in addition to non-elution, flexibility, and the like, and thus can be suitably used as a tank. A conventional product in which a resin laminate having a top layer made of polyethylene or the like is joined to form a tank has a problem in that the contents leak from the joint surface where the layers made of polyethylene or the like are adhered due to low adhesion. In the laminated resin molded article of the present invention, when the layer (C) composed of the adhesive fluororesin is used as the innermost layer, the layers (C) composed of the adhesive fluororesin are compatible with each other and bonded. Because of its excellent strength, even when used as a tank, the contents are unlikely to leak from the joint surface of the laminated resin molded product.
上記積層樹脂成形体は、 上述のように、 耐燃料油性に優れ、 燃料透過性が低い ものであるので、 上記タンクは、 燃料用タンクとして特に好適に用いることがで きる。  As described above, since the laminated resin molded article has excellent fuel oil resistance and low fuel permeability, the above-mentioned tank can be particularly suitably used as a fuel tank.
上記積層樹脂成形体は、 上述の層 (C ) が導電性を有するものである場合、 又 は、 上述の導電層 (E ) が上記層 (C ) の表面のうち、 耐燃料透過性に優れた熱 可塑性樹脂からなる層 (B ) とは反対側の表面に接しているものである場合、 上 述の可燃性の揮発性有機物と接する用途に特に好適に用いることができる。 この 用途では、 上記導電性の層 (C ) や導電層 (E ) は積層樹脂成形体において最内 層であることが好ましい。 このような積層樹脂成形体は、 上記可燃性の揮発性有 機物と接しても静電荷が蓄積せず、 引火する可能性が低い。  In the above-mentioned laminated resin molded article, when the above-mentioned layer (C) has conductivity, or when the above-mentioned conductive layer (E) has excellent fuel permeation resistance among the surfaces of the above-mentioned layer (C). When it is in contact with the surface opposite to the layer (B) made of a thermoplastic resin, it can be particularly suitably used for the purpose of contacting with the above-mentioned flammable volatile organic substance. In this application, the conductive layer (C) and the conductive layer (E) are preferably the innermost layer in the laminated resin molded article. Such a laminated resin molded body does not accumulate electrostatic charge even when in contact with the above-mentioned flammable volatile organic substance, and has a low possibility of ignition.
本発明の積層樹脂積層体としては、 上記層 (C ) 又は導電層 (E ) を内層にし て自動車用燃料チューブとして使用する場合、 チューブ内面の表面抵抗値が S A E - J 2 2 6 0に定められた試験法に従い Ι Μ Ω / s q未満である積層体を提供 することができる。 発明を実施するための最良の形態  In the laminated resin laminate of the present invention, when the above layer (C) or conductive layer (E) is used as an inner layer to be used as a fuel tube for automobiles, the surface resistance value of the inner surface of the tube is set to SAE-J2260. According to the test method provided, a laminate having a value of less than ΙΩ / sq can be provided. BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例を掲げて本発明を更に詳しく説明するが、 本発明は のみに限定されるものではない。 なお、 各種パラメーターの測定は以下のとおり に行った。 Hereinafter, the present invention will be described in more detail with reference to Examples. It is not limited to only. The measurement of various parameters was performed as follows.
(1) カーボネート基の個数の測定  (1) Measurement of the number of carbonate groups
接着性フッ素樹脂の白色粉末又は接着性フッ素樹脂の溶融押出しペレットの切 断片を室温で圧縮成形し、 厚さ 50〜200 μΐηのフィルムを作成した。 このフ イルムの赤外吸収スペク トル分析によってカーボネート基 〔一 OC (=ο) Ο— 〕 のカルボニル基由来のピークが 1809 cm— 1 ( V c=0) の吸収波長に現れる ので、 その V c = 0ピークの吸光度を測定し、 下記式 (a) により接着性フッ素 樹脂をなす重合体の主鎖炭素数 106個あたりのカーボネート基の個数 Nを算出 した。 A piece of white powder of the adhesive fluororesin or a melt-extruded pellet of the adhesive fluororesin was compression-molded at room temperature to prepare a film having a thickness of 50 to 200 μΐη. Since the peak derived from the carbonyl group of the full Ilm infrared absorption spectrum carbonate groups by analysis [one OC (= ο) Ο-] appears at the absorption wavelength of 1809 cm- 1 (V c = 0 ), the V c = 0 and measuring the absorbance of the peaks was calculated and the number N of the main chain carbonate groups of 10 per 6 carbon atoms, the polymer forming the adhesive fluororesin by the following formula (a).
N= 500 AW/ 8 d f (a)  N = 500 AW / 8 d f (a)
A :カーボネート基 〔一 OC ( = 0) O—〕 由来の v c = 0ピークの吸光度 ε :カーボネート基 〔一 OC (=θ) Ο—〕 由来の V c =。ピークのモル吸光度 係数。 モデル化合物から ε = 1 70 ( 1 ■ c m~l - m o 1 _1) とした。 A: a carbonate group [one OC (= 0) O-] absorbance v c = 0 peak attributable epsilon: carbonate group [one OC (= θ) Ο-] derived from V c =. The molar absorbance coefficient of the peak. From the model compound, ε = 170 (1 ■ cm ~ l -mo 1 _1 ).
W:接着性フッ素樹脂の組成から計算される単量体の平均分子量 W: Average molecular weight of monomer calculated from composition of adhesive fluororesin
d : フィルムの密度 (gZcm3) d: Film density (gZcm 3 )
f : フイノレムの厚さ (mm)  f: Thickness of finolem (mm)
なお、 赤外吸収スペク トル分析は、 P e r k i n— E l me r FT I Rスぺ クトロメーター 1 76 OX (パーキンエルマ一社製) を用いて 40回スキャンし た。 得られた I Rスぺク トノレを P e r k i n— E l me r S p e c t r um f o r w i n d ow s V e r . 1 · 4 Cにて自動でベースラインを判定させ. The infrared absorption spectrum analysis was performed 40 times using a Perkin-Elmer FTIR spectrometer 176 OX (manufactured by PerkinElmer Inc.). Based on the obtained IR spectrum, the base line was automatically determined by Perkin-ElmerSpecctrumfoorwindowsVer.1.4C.
1809 c m一1のピークの吸光度を測定した。 なお、 フィルムの厚さはマイク 口メーターにて測定した。 (2) フルォロホルミル基の個数の測定 1809 The absorbance was measured cm one first peak. The thickness of the film was measured with a microphone mouth meter. (2) Measurement of the number of fluoroformyl groups
上記 (1) と同様にして得られたフィルムの赤外スぺク トル分析により、 フル ォロホルミル基 〔一 c (=O) F〕 の力ルポニル基由来のピークが 1880 cm — 1 (vc=0) の吸収波長に現れるので、 その vc=0ピークの吸光度を測定した。 上記式 (a) において、 Aをフルォロホルミル基由来の vc =。ピークの吸光度 とし、 フルォロホルミル基由来の V c=0ピークのモル吸光度係数をモデル化合 物により E = 600 (1 · cm—1■ mo 1 とした以外は、 上記式 (a) を 用いて上述の (1) カーボネート基の個数の測定と同様にしてフルォロホルミル 基の個数を測定した。 According to the infrared spectrum analysis of the film obtained in the same manner as in the above (1), the peak derived from the fluoroformyl group [1-c (= O) F] derived from the liponyl group was 1880 cm — 1 (v c = Since it appears at the absorption wavelength of 0 ), the absorbance of the vc = 0 peak was measured. In the above formula (a), A is vc = derived from a fluoroformyl group. The absorbance of the peak, except that the E = 600 (1 · cm- 1 ■ mo 1 by model compound the molar extinction coefficient of V c = 0 peak attributable Furuorohorumiru groups described above using the above formula (a) (1) The number of fluoroformyl groups was measured in the same manner as the measurement of the number of carbonate groups.
(3) フッ素樹脂の組成の測定 (3) Measurement of fluororesin composition
19F— NMR分析により測定した。 (4) 融点 (Tm) の測定 Measured by 19 F-NMR analysis. (4) Measurement of melting point (Tm)
セイコー型示差走査熱量計 〔DSC〕 を用い、 10°0 分の速度で昇温したと きの融解ピークを記録し、 極大値に対応する温度を融点 (Tm) とした。  Using a Seiko type differential scanning calorimeter [DSC], the melting peak when the temperature was raised at a rate of 10 ° 0 minutes was recorded, and the temperature corresponding to the maximum value was defined as the melting point (Tm).
(5) メルトフローレート (MFR) の測定 (5) Melt flow rate (MFR) measurement
メルトインデクサ一 (東洋精機製作所社製) を用い、 各測定温度において、 5 k g荷重下で直径 2 mm、 長さ 8 mmのノズルから単位時間 ( 10分間) あたり に流出するポリマーの質量 (g) を測定した。  Using a melt indexer (manufactured by Toyo Seiki Seisaku-sho, Ltd.), the mass (g) of polymer flowing out from a nozzle with a diameter of 2 mm and a length of 8 mm under a load of 5 kg per unit time (10 minutes) at each measurement temperature Was measured.
(6) 初期接着強度の測定 (6) Measurement of initial adhesive strength
チューブ状の積層樹脂成形体から 1 cm幅のテストピースを切り取り、 テンシ ロン万能試験機にて、 25mmZ分の速度で 180° 剥離試験を行い、 伸ぴ量— 引張強度グラフにおける極大 5点平均を初期接着強度 (NZcm) として求めた。  A 1 cm wide test piece was cut from the tubular resin molded article, and a 180 ° peel test was performed at a speed of 25 mmZ on a Tensilon universal testing machine. The maximum 5-point average in the elongation-tensile strength graph was calculated. It was determined as the initial bond strength (NZcm).
(7) 燃料浸漬後の接着強度の測定 (7) Measurement of adhesive strength after fuel immersion
CM15 (イソオクタン: トルエン =50 : 50 (容量比) の混合物にメタノ ール 15容量%を混合した燃料) に、 チューブ状の積層樹脂成形体を 60°Cで 1 68時間浸漬した後、 上記 (6) と同様にして接着強度 (NZcm) を測定し、 燃料浸漬後の接着強度とした。 (8) 燃料透過速度の測定 After immersing the tubular laminated resin molded article in CM15 (fuel in which 15% by volume of methanol is mixed with a mixture of isooctane: toluene = 50: 50 (volume ratio)) at 60 ° C. for 168 hours, the above ( The adhesive strength (NZcm) was measured in the same manner as in 6), and the measured value was taken as the adhesive strength after fuel immersion. (8) Measurement of fuel permeation rate
単層の燃料透過速度の測定 Measurement of single layer fuel permeation rate
チューブ状の積層樹脂成形体の各層に用いる樹脂のペレットを、 それぞれ、 直 径 120mmの金型に入れ、 加熱したプレス機 (フッ素樹脂: 260°C、 フッ素 樹脂以外のその他の樹脂: 230°C) にセットし、 約 2. 9 MP aの圧力で溶融 プレスして、 厚さ 0. 1 mmのシートを得た。 CE 10 (イソオクタン: トルェ ン =50 : 50 (容量比) の混合物にエタノール 10容量%を混合した試験用疑 似燃料) を 18 m 1投入した内径 4 Omrnc 高さ 2 Ommの SUS 316製の 透過速度測定用カップに得られたシートを入れ、 60°Cにおける質量変化を 40 0時間まで測定した。 時間あたりの質量変化、 接液部のシートの表面積及ぴシー トの厚さから燃料透過速度 (g Xmm/d a y/m2) を算出した。 The resin pellets to be used for each layer of the tube-shaped laminated resin molded product were placed in a mold with a diameter of 120 mm and heated by a press machine (fluorocarbon resin: 260 ° C, other resins other than fluorocarbon resin: 230 ° C ) And melt-pressed at a pressure of about 2.9 MPa to obtain a sheet having a thickness of 0.1 mm. CE 10 (pseudo fuel for testing, which is a mixture of isooctane: toluene = 50: 50 (volume ratio) mixed with 10% by volume of ethanol) for 18 m1 was injected. 4 Omrnc Inside diameter 4 Omrnc Height 2 Omm SUS 316 permeation The obtained sheet was put in a speed measurement cup, and the mass change at 60 ° C. was measured up to 400 hours. The fuel permeation rate (g Xmm / day / m 2 ) was calculated from the mass change per unit time, the surface area of the sheet in contact with the liquid, and the thickness of the sheet.
なお、 表 5及び表 8で積層樹脂成形体全体の燃料透過速度の計算に使用した各 樹脂単層の燃料透過速度の値を表 1に示した。 Tables 1 and 2 show the values of the fuel permeation rate of each resin single layer used in the calculation of the fuel permeation rate of the entire laminated resin molded product in Tables 5 and 8.
単層の燃料透過速度 Single layer fuel permeation rate
樹脂名称  Resin name
(g X rr»mZm2Zday) (g X rr »mZm 2 Zday)
F— A 27  F—A 27
F-B 7.5  F-B 7.5
F-C 12  F-C 12
F— D 27  F—D 27
F-E 1  F-E 1
F-F 7.5  F-F 7.5
F-G 7.5  F-G 7.5
PA12A 300  PA12A 300
PA6 120  PA6 120
変性 PE 4500  Modified PE 4500
Pamix 200  Pamix 200
し DPE 280  DPE 280
EVOH1 0.3  EVOH1 0.3
EVOH5 0.3  EVOH5 0.3
積層樹脂成形体の燃料透過速度の測定 Measurement of fuel permeation rate of laminated resin molding
チューブ状の積層樹脂成形体を 40 cmの長さにカットし、 容量 1 2 Om lの SUS 316製リザーバータンクをスエージ口ックで取りつけ、 SAE J 1 73 7に準じて CE 10の透過量を測定し、 チューブ状の積層樹脂成形体の肉厚より、 燃料透過速度 (g Xmm/d a y/m2) を算出した。 The tube-shaped laminated resin molded product was cut to a length of 40 cm, a SUS 316 reservoir tank with a capacity of 12 Oml was attached with a swage port, and the permeation amount of CE 10 was measured in accordance with SAE J17737. The fuel permeation rate (g Xmm / day / m 2 ) was calculated from the measured thickness of the tubular resin molded article.
積層樹脂成形体の燃料透過速度の計算値 Pは、 上述の方法で測定した単層の燃 料透過速度の実測値をもとに以下の式で算出した。  The calculated value P of the fuel permeation rate of the laminated resin molded article was calculated by the following formula based on the actually measured value of the fuel permeation rate of the single layer measured by the method described above.
1/P= ( 1 A/PA) + ( 1 ΒΒ) + ( l c/Pc) 1 / P = (1 A / P A ) + (1 Β / Ρ Β ) + (lc / Pc)
P :積層樹脂成形体の燃料透過速度 (計算値) (g XmmZd a y/m2) 1 A、 1 B、 l c :各単層の厚さ (mm) P: Fuel permeation rate (calculated value) of the laminated resin molding (g XmmZd ay / m 2) 1 A, 1 B, l c: thickness of each single layer (mm)
PA、 PB、 Pc:各単層の燃料透過速度 (g Xmm/d a yZm2) (9) 溶出率の測定 · P A , P B , P c : Fuel permeation rate of each monolayer (g Xmm / day yZm 2 ) (9) Dissolution rate measurement
チューブ状の積層樹脂成形体を lmの長さにカツトし、 金属製のクイックコネ クタ一を両端に装着し、 一方の端に金属製の封をした後、 CE 10 (イソォクタ ン: トルエン =50 : 50 (容量比) の混合物にエタノール 10容量0 /0を混合し た試験用疑似燃料) を投入し、 他方の端も同様に封をした。 同様にして燃料を投 入したチューブ状の積層樹脂成形体を 3本準備し、 60°( で48時間、 積層樹脂 成形体と燃料とを接触させた。 48時間経過後、 取り出した燃料をナスフラスコ に入れて蒸発させ、 更に、 24時間、 80°Cの恒温槽で乾燥して、 溶出物の質量 を測定した。 溶出物の質量、 接液部の積層樹脂成形体の表面積、 燃料の質量から 溶出率 (g/l 00m l /m2) を算出した。 Cut the tube-shaped laminated resin molded product to the length of lm, attach a metal quick connector to both ends, seal the metal end on one end, and then CE10 (isooctane: toluene = 50) : 50 mixture poured ethanol 10 volumes 0/0 the combined test simulated fuel) to the (volume ratio), it was sealed in the same manner the other end. Similarly, three tube-shaped laminated resin molded articles into which fuel was injected were prepared, and the laminated resin molded article was brought into contact with the fuel at 60 ° (at 48 hours. After 48 hours, the removed fuel was eggplanted. The mixture was evaporated in a flask, dried for 24 hours in a constant temperature bath at 80 ° C, and the mass of the eluted material was measured.The mass of the eluted material, the surface area of the laminated resin molding in the liquid contact portion, and the mass of the fuel The dissolution rate (g / l 00 ml / m 2 ) was calculated from.
(10) 低温耐衝擊性試験 (10) Low temperature impact resistance test
SAE— J 2260に準拠して行った。 即ち、 予め一 40°Cで 4時間冷却した チューブ状の積層樹脂成形体を 10本準備し、 一 40 °C雰囲気下で 0. 9 12 K g、 半径 15. 88mmの球形の錘を 305mmの高さからチューブ上に落下す る操作を 10本全てに対して繰り返し、 チューブの内側及び外側から目視により 割れの有無を観察した。 10本全てに割れがなければ合格 (〇) 、 1本でも割れ が認められれば不合格 (X) と判定した。  Performed according to SAE-J2260. That is, 10 tube-shaped laminated resin molded articles previously cooled at 140 ° C for 4 hours were prepared, and 0.912 kg in a 140 ° C atmosphere, a spherical weight having a radius of 15.88 mm and a diameter of 305 mm were prepared. The operation of falling from the height onto the tube was repeated for all ten tubes, and the presence or absence of cracks was visually observed from inside and outside the tube. If no cracks were found in all ten pieces, it was judged as acceptable (〇), and if even one crack was found, it was judged as failed (X).
また、 実験例 24及び実験例 25については、 低温耐衝撃性の経時変化を測定 するための加速試験として、 チューブ状の積層樹脂成形体に C E 10を封入し、 そのチューブの外側を 40 °Cの水に 1力月浸漬した後、 上記と同様に低温耐衝擊 性試験を行った。 合成例 1 接着性フッ素樹脂 F— Aの合成  In Experiments 24 and 25, as an accelerated test to measure the time-dependent change in low-temperature impact resistance, CE 10 was sealed in a tube-shaped laminated resin molded product, and the outside of the tube was heated to 40 ° C. After immersion for 1 month in water, a low-temperature impact resistance test was performed in the same manner as described above. Synthesis Example 1 Synthesis of Adhesive Fluororesin F—A
オートクレープに蒸留水 380 Lを投入し、 充分に窒素置換を行った後、 1一 フノレオロー 1 , 1ージクロロエタン 75 k g、 へキサフノレオ口プロピレン 1 55 k g及ぴパーフルォロ (1, 1, 5—トリハイドロー 1一ペンテン) 0, 5 k g を仕込み、 系内を 35°C、 攪拌速度 200 r pmに保った。 その後、 テトラフル ォロエチレンを 0. 7MP aまで圧入し、 更に引き続いてエチレンを 1. 0MP aまで圧入した後、 ジー n—プロピルパーォキシジカーボネート 2. 4 k gを投 入して重合を開始した。 重合の進行と共に系内圧力が低下するので、 テトラフル ォロエチレン/エチレン/へキサフルォロプロピレン = 40. 5/44. 5/1 5. 0モル%の混合ガスを連続して供給し、 系内圧力を 1. OMP aに保った。 そして、 パーフルォロ (1, 1, 5—トリノ、イ ド口一 1 ^ンテン) を合計量 1. 5 k gとなるように連続して仕込み、 20時間、 攪拌を継続した。 放圧して大気 圧に戻した後、 反応生成物を水洗、 乾燥して 205 k gの粉末 (接着性フッ素榭 脂 F— A) を得た。 得られた粉末の分析結果を表 3に示した。 合成例 2 接着性フッ素樹脂 F— Bの合成 After pouring 380 L of distilled water into the autoclave and sufficiently purging it with nitrogen, 11 phenololeol 1, 1 dichloroethane 75 kg, hexane phenolic propylene 155 kg and perfluoro (1, 1, 5-trihydrol) 0,5 kg , And the system was maintained at 35 ° C and a stirring speed of 200 rpm. Thereafter, tetrafluoroethylene was injected to 0.7 MPa, ethylene was further injected to 1.0 MPa, and then 2.4 kg of di-n-propyl peroxydicarbonate was injected to initiate polymerization. As the pressure in the system decreases as the polymerization proceeds, a mixed gas of tetrafluoroethylene / ethylene / hexafluoropropylene = 40.5 / 44.5 / 5/1 5.0 mol% is continuously supplied. The pressure was kept at 1. OMPa. Then, perfluoro (1,1,5-trino, 1-inch) was continuously charged to a total amount of 1.5 kg, and stirring was continued for 20 hours. After the pressure was released to atmospheric pressure, the reaction product was washed with water and dried to obtain 205 kg of a powder (adhesive fluororesin F—A). Table 3 shows the analysis results of the obtained powder. Synthesis Example 2 Synthesis of Adhesive Fluororesin F—B
合成例 1と同様にして、 表 3に示した配合で接着性フッ素樹脂 F— Bを得た。 得られた重合体の分析結果を表 3に示した。 合成例 3 接着性フッ素樹脂 F— Cの合成  In the same manner as in Synthesis Example 1, adhesive fluororesin FB was obtained with the composition shown in Table 3. Table 3 shows the analysis results of the obtained polymer. Synthesis Example 3 Synthesis of Adhesive Fluororesin FC
オートクレープに蒸留水 400 Lを投入し、 充分に窒素置換を行った後、 パー フルォロシクロブタン 320 k g、 へキサフノレオ口プロピレン 80 k g、 テトラ フルォロエチレン 1 9 k g及びフッ化ビニリデン 6 k gを仕込み、 系内を 35°C、 攪拌速度 180 r pmに保った。 その後、 ジ一 n—プロピルパーォキシジカーボ ネート 5 k gを投入して重合を開始した。 重合の進行と共に系内圧力が低下する ので、 テトラフルォロェチレン /フッ化ビニリデン /へキサフルォ口プロピレン = 50/40/10モル%の混合ガスを連続して供給し、 系内圧力を一定に保つ た。 攪拌を 30時間継続した後、 放圧して大気圧に戻し、 反応生成物を水洗、 乾 燥して 1 95 k gの粉末 (接着性フッ素樹脂 F— C) を得た。 得られた粉末の分 析結果を表 3に示した。 合成例 4 接着性フッ素樹脂 F— Dの合成 オートクレープに蒸留水 400 Lを投入し、 充分に窒素置換を行った後、 1一 フスレオロー 1 , 1ージク口ロェタン 75 k g、 へキサフスレオ口プロピレン 190 k g、 パーフノレオ口 (1, 1, 5—トリハイド口一 1一ペンテン) 1. 5 k gを 仕込み、 系内を 35°C、 攪拌速度 200 r pmに保った。 その後、 テトラフルォ 口エチレンを 0. 7MP aまで圧入し、 更に引き続いてエチレンを 1. OMP a まで圧入し、 その後にジー n—プロピルパーォキシジカーボネート 2. 6 k gを 投入して重合を開始した。 重合の進行と共に系内圧力が低下するので、 テトラフ ルォロエチレン Zエチレン Zへキサフルォロプロピレン =40. 5/42. 5/ 17. 0モル%の混合ガスを連続して供給し、 系内圧力を 1. OMP aに保って 30時間攪拌を継続した。 放圧して大気圧に戻した後、 反応生成物を水洗、 乾燥 して 178 k gの粉末を得た。 次に、 得られた粉末を単軸押出機 (商品名: VS 50— 24、 田辺ブラスティック機械社製) を用いてシリンダ温度 320°Cで押 出してペレット (接着性フッ素樹脂 F— D) を得た。 得られたペレットの分析結 果を表 3に示した。 合成例 5 接着性フッ素樹脂 F— Eの合成 After pouring 400 L of distilled water into the autoclave and sufficiently purging with nitrogen, charge 320 kg of perfluorocyclobutane, 80 kg of propylene with hexahenoleo mouth, 19 kg of tetrafluoroethylene, and 6 kg of vinylidene fluoride. The temperature was kept at 35 ° C and the stirring speed at 180 rpm. Thereafter, 5 kg of di-n-propyl peroxydicarbonate was charged to initiate polymerization. As the pressure in the system decreases as the polymerization proceeds, a mixed gas of tetrafluoroethylene / vinylidene fluoride / hexafluoro propylene = 50/40/10 mol% is continuously supplied to keep the system pressure constant. Keep After stirring was continued for 30 hours, the pressure was released to atmospheric pressure, and the reaction product was washed with water and dried to obtain 195 kg of powder (adhesive fluororesin FC). Table 3 shows the analysis results of the obtained powder. Synthesis Example 4 Synthesis of Adhesive Fluororesin F—D After pouring 400 L of distilled water into the autoclave and sufficiently purging it with nitrogen, 11-Fusleolose 1, 1-Jig-bore roetane 75 kg, Hexaphthreo-port propylene 190 kg, Perphnoleo-port (1, 1, 5-trihide port) 1-11 pentene) 1.5 kg was charged, and the system was kept at 35 ° C and the stirring speed at 200 rpm. Thereafter, ethylene was injected to 0.7 MPa in tetrafluoroethylene, and then ethylene was injected to 1.0 MPa, and then 2.6 kg of di-n-propyl peroxydicarbonate was injected to initiate polymerization. . Since the pressure in the system decreases as the polymerization proceeds, a mixed gas of tetrafluoroethylene Z ethylene Z hexafluoropropylene = 40.5 / 42.5 / 5 / 17.0 mol% is continuously supplied, and the system pressure is reduced. 1. The stirring was continued for 30 hours while maintaining the OMPa. After releasing the pressure to atmospheric pressure, the reaction product was washed with water and dried to obtain 178 kg of powder. Next, the obtained powder is extruded at a cylinder temperature of 320 ° C using a single screw extruder (trade name: VS 50-24, manufactured by Tanabe Plastic Machinery Co., Ltd.) and pellets (adhesive fluororesin F-D) are extruded. Got. Table 3 shows the results of analysis of the obtained pellets. Synthesis Example 5 Synthesis of Adhesive Fluororesin F—E
オートクレープに蒸留水 25 k gを投入し、 充分に窒素置換を行った後、 パー フルォロシクロブタン 50 k g及ぴパーフルォロ (メチノレビ二ルェ一テル) 10 k gを仕込み、 系内を 35°C、 攪拌速度を 215 r pmに保った。 その後、 テト ラフルォロエチレンを 0. 78MP aまで圧入し、 その後にジ一 n—プロピルパ ーォキシジカーボネ一 M 50 k gを投入して重合を開始した。 重合の進行と共 に系内圧力が低下するので、 パーフルォロシクロブタン /テトラフルォロェチレ ンゾパーフルォロメチルビ-ルエーテル = 10/76. 6/13. 4モル0 /0の混 合ガスを連続して供給し、 系内圧力を 0. 78MP aに保って 30時間攪拌を継 続した。 放圧して大気圧に戻した後、 反応生成物を水洗、 乾燥して 30 k gの粉 末 (接着性フッ素樹脂 F— E) を得た。 得られた粉末の分析結果を表 3に示した。 合成例 6 フッ素樹脂 F— Fの合成 合成例 2で得られた接着性フッ素樹脂 F _ Bの粉末 9 . 5 k g、 2 8 %アンモ ユア水 7 0 0 g及び蒸留水 1 0 Lをオートクレープに仕込み、 攪拌しながら系を 加熱し、 8 0 °Cに保って 7時間攪拌を継続した。 そして、 内容物を水洗、 乾燥処 理して粉末 9 . 5 k gを得た。 このような処理を施すことによって、 重合体が有 する活性な官能基 (カーボネート基とフルォロホルミル基) を反応性の低いアミ ド基に変換した。 なお、 このアミド基への変換が定量的に進んだことは赤外スぺ クトル分析により確認した。 処理後のフッ素樹脂 F— Fの分析結果を表 3に示し た。 合成例 7 接着性フッ素樹脂 F— Gの合成 Pour 25 kg of distilled water into the autoclave and sufficiently purge with nitrogen.Add 50 kg of perfluorocyclobutane and 10 kg of perfluoro (methinolevinyl ether), and stir the system at 35 ° C. The speed was kept at 215 rpm. Thereafter, tetrafluoroethylene was injected to 0.78 MPa, and thereafter, 50 kg of di-n-propyl peroxydicarbonate M was charged to initiate polymerization. Since system inside pressure at progression co polymerization is lowered, per full O b cyclobutane / tetrafluoropropoxy O Roe Chile emission zone per full O b methyl bi -.. Ether = 10/76 6/13 of 4 mol 0/0 The mixed gas was continuously supplied, and stirring was continued for 30 hours while maintaining the pressure in the system at 0.78 MPa. After the pressure was released to atmospheric pressure, the reaction product was washed with water and dried to obtain 30 kg of powder (adhesive fluororesin F-E). Table 3 shows the analysis results of the obtained powder. Synthesis Example 6 Synthesis of Fluororesin F—F The autoclave was charged with 9.5 kg of the adhesive fluororesin F_B powder obtained in Synthesis Example 2, 700 g of 28% ammonia water and 10 L of distilled water, and the system was heated with stirring. The stirring was continued for 7 hours while maintaining the temperature at 80 ° C. Then, the contents were washed with water and dried to obtain 9.5 kg of powder. By performing such treatment, the active functional groups (carbonate group and fluoroformyl group) of the polymer were converted into amide groups having low reactivity. It was confirmed by infrared spectrum analysis that the conversion to the amide group had progressed quantitatively. Table 3 shows the results of analysis of the fluororesin FF after the treatment. Synthesis Example 7 Synthesis of Adhesive Fluororesin FG
合成例 1で得られた接着性フッ素樹脂 F— Bの粉末 8 8 k gと、 アセチレンブ ラック 1 2 k gとをへンシェノレミキサーで混合した後、 二軸押出機にて溶融混練 してペレツ トを得た。 得られたペレツ トの分析結果を表 3に示した。  After mixing 88 kg of the powder of the adhesive fluororesin FB obtained in Synthesis Example 1 and 12 kg of acetylene black with a henshenole mixer, the mixture was melt-kneaded with a twin-screw extruder and pelletized. I got it. Table 3 shows the analysis results of the obtained pellets.
表 2に、 実験例において使用したエチレン Zビュルアルコール共重合体の商品 名、 酢酸ビニル単位 Xモル%、 鹼化度 Y %、 及び、 X X Y/ 1 0 0の値を示した。 Table 2 shows the trade names of the ethylene Z butyl alcohol copolymer used in the experimental examples, the values of X mol% of vinyl acetate units, the degree of oxidation Y%, and XXY / 100.
表 2 Table 2
Figure imgf000040_0001
表 3に、 実験例において使用したフッ素樹脂の物性を示した。
Figure imgf000040_0001
Table 3 shows the physical properties of the fluororesin used in the experimental examples.
なお、 表 3において、 TFEは、 テトラフルォロエチレンを表し、 E tは、 ェ チレンを表し、 V d Fは、 フッ化ビニリデンを表し、 HF Pは、 へキサフルォロ プロピレンを表し、 HF— P eは、 パーフルォロ (1, 1, 5—トリハイ ドロー 1一ペンテン) を表し、 PMVEは、 パーフルォロ (メチルビニルエーテル) を 表す。 In Table 3, TFE represents tetrafluoroethylene, Et represents ethylene, VdF represents vinylidene fluoride, HFP represents hexafluoropropylene, and HF-P e represents perfluoro (1,1,5-trihydryl 1-pentene), and PMVE represents perfluoro (methyl vinyl ether).
接着性フッ素樹脂 カルボニル基 Adhesive fluorocarbon carbonyl group
単量体組成 (モル%) (個/ 1 X 106個主鎖炭素) MFR 合成例 融点 C) Monomer composition (mol%) (pcs / 1 X 10 6 main chain carbons) MFR Synthesis example Melting point C)
(g/1 Omin.) 名称 カーボネー卜 フルォロ  (g / 1 Omin.) Name Carbonate Fluoro
TFE Εΐ HFP VdF PMVE HF-ΡΘ  TFE Εΐ HFP VdF PMVE HF-ΡΘ
ホルミル基  Formyl group
1 F-A 40.8 44.8 13.9 一 一 0.5 300 3 162.5 52 1 F-A 40.8 44.8 13.9 1-1 0.5 300 3 162.5 52
2 F-B 46.2 43.8 9.5 ― ― 0.5 <JJ 5 194.3 412 F-B 46.2 43.8 9.5 ― ― 0.5 <JJ5 194.3 41
3 F-C 51.3 ― 9.8 38.9 ― 0.5 311 3 169.2 493 F-C 51.3 ― 9.8 38.9 ― 0.5 311 3 169.2 49
4 F-D 40.5 45 14 ― 一 0.5 67 67 170.2 424 F-D 40.5 45 14 ― 1 0.5 67 67 170.2 42
5 F-E 84.5 ― ― 一 15.5 ― 330 3 210.0 335 F-E 84.5--15.5-330 3 210.0 33
6 F-F 46.1 43.8 9.5 ― ― 0.5 検出されず 検出されず 193.5 456 F-F 46.1 43.8 9.5 ― ― 0.5 Not detected Not detected 193.5 45
7 F-G 46.2 43.8 9.5 ― ― 0.5 250 9 194.3 5.2 7 FG 46.2 43.8 9.5 ― ― 0.5 250 9 194.3 5.2
実験例において用いたポリアミ ド系樹脂は、 以下のとおりである。 The polyamide resins used in the experimental examples are as follows.
ポリアミド 12 [PA 12) として、 Ve s t am i d X7297 (D e g u s s a AG社製) 及び A 4878 (ダイセル ·デグサ社製) を使用した。 ポ リアミド 1 1 〔PA1 1〕 として、 BESNP40TL (ァトフイナ社製) を使 用した。 ポリアミド 6 〔PA6〕 として UBEナイロン 1018 I (宇部興産社 製) を使用した。  As polyamide 12 [PA 12], Vestamid X7297 (manufactured by Degussa AG) and A4878 (manufactured by Daicel Degussa) were used. BESNP40TL (manufactured by Atofina) was used as Polyamide 11 [PA11]. UBE nylon 1018 I (manufactured by Ube Industries) was used as polyamide 6 [PA6].
ポリアミド系樹脂のブレンド物 〔PAm i x〕 としては、 ナイロン 6 (商品名 : UBEナイロン 1018 1、 宇部興産社製) とナイロン 1 2 (商品名: U B E STA3030B、 宇部興産社製) とを、 ナイロン 6 : ナイロン 12 = 50 : 5 0 (容量比) の割合でラボプラストミル (東洋精機社製) を用いて 240°Cで 1 0分間溶融混練して得られたものを使用した。  As the polyamide resin blend [PAmix], nylon 6 (trade name: UBE nylon 10181, manufactured by Ube Industries) and nylon 1 2 (trade name: UBE STA3030B, manufactured by Ube Industries), nylon 6 : Nylon 12 = 50: 50 (volume ratio) was used by using a Labo Plastomill (manufactured by Toyo Seiki Co., Ltd.) by melt-kneading at 240 ° C for 10 minutes.
実験例で使用したポリエチレン系樹脂は、 低密度ポリエチレン 〔LDPE〕 ( 商品名:ペトロセン 292、 東ソ一社製) 、 及び、 無水マレイン酸変性ポリ工 チレン 〔変性 PE〕 (商品名:ァドマー NF 528、 三井化学社製) であった。 実験例で使用したエチレン/ビュルアルコール共重合体からなる樹脂は、 エバ ール F 10 1 A (クラレ社製) 、 メルセン H 6051 (東ソ一社製) 、 テクノリ ンク K 200 (田岡化学社製) 、 メルセン H6410M (東ソ一社製) 及ぴェ パール XEP 505 B (クラレ社製) であった。  The polyethylene resins used in the experimental examples were low-density polyethylene [LDPE] (trade name: Petrocene 292, manufactured by Tosoh Corporation) and maleic anhydride-modified polystyrene [modified PE] (trade name: ADMER NF 528) , Manufactured by Mitsui Chemicals, Inc.). The resins consisting of the ethylene / butyl alcohol copolymer used in the experimental examples were EVAL F101A (Kuraray), Mersen H 6051 (Tosoichi), Technolink K200 (Taoka Chemical). ), And Mersen H6410M (manufactured by Tohso I) and Xepar XEP505B (manufactured by Kuraray).
上述したポリアミド系樹脂及ぴエチレン/ビニルアルコール共重合体からなる 樹脂のうち、 ェバール F 101 A、 ェバール XE P 505 B、 Ve s t am i d X 7297及び A 4878について、 それぞれ上述した方法により測定サンプ ルを得たのち、 ASTM D 256 - 84に準拠して— 40°Cでのアイゾット衝 撃強度を測定した。 結果を表 4に示す。 表 4 Among the above-mentioned polyamide-based resins and resins composed of ethylene / vinyl alcohol copolymer, Eval F 101 A, Eval XE P 505 B, Vestamid X 7297 and A 4878 were measured by the methods described above, respectively. After obtaining the Izod impact strength at −40 ° C. according to ASTM D 256-84. Table 4 shows the results. Table 4
Figure imgf000043_0001
実験例 1 25 マルチマ二ホールドダイを装着した 4種 4層チューブの共押出 装置を用いて、 表 5、 表 6、 表 7及び表 8に示した各樹脂を 4台の押出機にそれ ぞれ供給して外径 8 mm、 内径 6 mmのチューブ状の積層樹脂成形体を連続成形 した。 成形条件及び得られたチューブの評価結果を表 5 8に示した。
Figure imgf000043_0001
Experimental Example 1 25 Using a four-layer, four-layer tube co-extrusion device equipped with a multi-manifold die, the resins shown in Table 5, Table 6, Table 7, and Table 8 were respectively applied to four extruders. The supplied resin was continuously molded into a tube-shaped laminated resin molded article having an outer diameter of 8 mm and an inner diameter of 6 mm. Table 58 shows the molding conditions and the evaluation results of the obtained tubes.
なお、 表 5、 表 6、 表 7及び表 8において、 用いた記号は以下のとおりである。 P A 1 2 A : V e s t a m i d X 7297 (D e g u s s a AG社製) PA 12 B : A48 78 (ダイセル ·デグサ社製)  The symbols used in Tables 5, 6, 7, and 8 are as follows. PA12A: Vestamid X 7297 (Degusa AG) PA12B: A4878 (Daicel Degussa)
PA1 1 : BESNP 40 TL (アトフィナ社製)  PA11: BESNP 40 TL (Atofina)
PA 6 :ナイロン 6 (商品名 : UBEナイロン 101 8 1、 宇部興産社製) PAm i x : ナイロン 6 (商品名: UBEナイロン 1018 1、 宇部興産社製) とナイロン 1 2 (商品名: U B E S T A 3030 B、 宇部興産社製) とのプレン ド物  PA 6: Nylon 6 (trade name: UBE nylon 101 81, manufactured by Ube Industries) PAmix: Nylon 6 (trade name: UBE nylon 1018 1, manufactured by Ube Industries) and nylon 1 2 (trade name: UBESTA 3030 B) (Made by Ube Industries)
LDPE :ペトロセン 292 (東ソ一社製)  LDPE: Petrocene 292 (manufactured by Toso Corporation)
変性 P E :ァドマー NF 528 (三井化学社製) Modified PE: Adomer NF 528 (Mitsui Chemicals)
E VOH 1 :エバール F 10 1 A (クラレ社製)  E VOH 1: EVAL F 10 1 A (Kuraray)
EVOH2 : メルセン H605 1 (東ソ一社製)  EVOH2: Mersen H605 1 (manufactured by TOSOH)
EVOH3 :テクノリンク K 200 (田岡化学社製) E VOH4 : メルセン H6410M (東ソ一社製) E VOH 5 :ェバール XE P 505 B (クラレ社製) EVOH3: Techno Link K 200 (Taoka Chemical Co., Ltd.) E VOH4: Mersen H6410M (manufactured by Tohso I) E VOH 5: Evar XE P 505 B (manufactured by Kuraray)
o o o o
Figure imgf000045_0001
Figure imgf000045_0001
表 6 実験例 1 5 実験例 1 6 実験例 1 7 実験例 1 8 実験例 1 9 材料 F-G F-G F-G F-G F-G 内 シリンダ温度 °c 280〜280 280~280 280-280 280~280 280〜280 アダプター温度 。c 282 282 282 282 282 樹脂温度 。c 284 283 282 282 282 材料 EVOH1 EV0H5 EV0H5 EVOH1 EVOH5 中 シリンダ温度 °c 190~215 190~215 190~215 190-215 190〜215 間 Table 6 Experimental example 1 5 Experimental example 1 6 Experimental example 1 7 Experimental example 1 8 Experimental example 1 9 Material FG FG FG FG FG Inside cylinder temperature ° c 280 ~ 280 280 ~ 280 280-280 280 ~ 280 280 ~ 280 Adapter temperature . c 282 282 282 282 282 Resin temperature. c 284 283 282 282 282 282 Material EVOH1 EV0H5 EV0H5 EVOH1 Medium EVOH5 Cylinder temperature ° c 190 ~ 215 190 ~ 215 190 ~ 215 190-215 190 ~ 215
アダプター温度 °c 220 220 220 220 220 樹脂温度 °c 218 217 217 217 217 材料 変性 PE 変性 PE 変性 PE 変性 PE 変性 PE シリンダ温度 °c 180~220 180~220 180~220 180~220 180〜220 アダプター温度 °c 220 220 220 220 220 樹脂温度 °c 216 219 220 215 220 材料 PA12 B PA12 B PA12 B PA12 A PA12 B 外 シリンダ温度 °c 210〜235 210~235 210〜235 210〜235 210〜235 アダプタ一温度 °c 235 235 235 235 235 樹脂温度 °c 237 236 236 236 236 ダイ本体温度 °c 270 270 270 270 230 ダイ先端温度 °c 270 270 270 270 230 ライン速度 m/min 8 8 8 8 8 水温 。C 14 12 13 12 13 チューブ径 mm 7.94 7.92 7.93 7.98 7.93 内層 mm 0.20 0.10 0.15 0.25 0.1 5 中間層 mm 0.20 0.20 0.30 0.20 0.30 肉  Adapter temperature ° c 220 220 220 220 220 Resin temperature ° c 218 217 217 217 217 217 Material Modified PE Modified PE Modified PE Modified PE Modified PE Cylinder temperature ° c 180 ~ 220 180 ~ 220 180 ~ 220 180 ~ 220 180 ~ 220 Adapter temperature ° c 220 220 220 220 220 Resin temperature ° c 216 219 220 215 220 Material PA12 B PA12 B PA12 B PA12 A PA12 B Outer cylinder temperature ° c 210-235 210-235 210-235 210-235 210-235 Adapter temperature ° c 235 235 235 235 235 235 Resin temperature ° c 237 236 236 236 236 Die body temperature ° c 270 270 270 270 230 Die tip temperature ° c 270 270 270 270 270 230 Line speed m / min 8 8 8 8 8 Water temperature. C 14 12 13 12 13 Tube diameter mm 7.94 7.92 7.93 7.98 7.93 Inner layer mm 0.20 0.10 0.15 0.25 0.1 5 Intermediate layer mm 0.20 0.20 0.30 0.20 0.30 Meat
厚 接着層 mm 0.05 0.05 0.05 0.05 0.05  Thick adhesive layer mm 0.05 0.05 0.05 0.05 0.05
外層 mm 0.55 0.65 0.50 0.50 0.50 トータル mm 1.00 1.00 1.00 1.00 1.00 初期接着強度 N/cm 81.5 82.9 89.4 81.0 40.0 燃料浸潰後の接着強度 N/cm 71.1 71.5 73.2 70.0 30.0 燃 計算値 g/day/m2 1.44 1.44 0.98 1.42 0.98 過 実測値 g/ day/m2 1.15 1.01 0.61 1.05 0.61 速 Outer layer mm 0.55 0.65 0.50 0.50 0.50 Total mm 1.00 1.00 1.00 1.00 1.00 Initial bond strength N / cm 81.5 82.9 89.4 81.0 40.0 Bond strength after fuel immersion N / cm 71.1 71.5 73.2 70.0 30.0 Calculated value g / day / m 2 1.44 1.44 0.98 1.42 0.98 over Found g / day / m 2 1.15 1.01 0.61 1.05 0.61 rate
実測値/計算値 X 100 % 79 69 62 73 62 溶出 g/t00ml/m2 <0.1 ぐ 0.1 <0.1 <0.1 <0.1 低温耐衝 S性試驗 - O O O X o 抵抗値 Μ Ω /sq. 0.1 0.1 0.1 0.1 OO メルトフラクチャ一 - 発生せず 発生せず 発生せず 発生せず 充 表 7 Actual / calculated value X 100% 79 69 62 73 62 Elution g / t00ml / m 2 <0.1 pass 0.1 <0.1 <0.1 <0.1 low temperature shock resistance S-test-OOOX o Resistance ΜΩ / sq.0.1 0.1 0.1 0.1 OO Melt Fracture-Not generated Not generated Not generated Not filled Table 7
Figure imgf000047_0001
表 8
Figure imgf000047_0001
Table 8
Figure imgf000048_0001
表 5から、 中間層に XXY/l 00≥ 7のエチレン/ビュルアルコール共重合 体を用い、 内層に接着性フッ素樹脂を用いた実験例 1 14の積層樹脂成形体の 層間接着性は初期と共に燃料浸漬後においても良好であった。 一方、 表 7の中間 層に XX YZ100 < 7のエチレン Zビエルアルコール共重合体を用い、 内層に 接着性官能基をもたないフッ素樹脂を用いた実験例 23では、 層間は全く接着し ていなかった。
Figure imgf000048_0001
Table 5 shows that the interlayer adhesion of the laminated resin molded article of Experimental Example 14 using the XYZ / l 00≥7 ethylene / butyl alcohol copolymer for the middle layer and the adhesive fluororesin for the inner layer It was good even after immersion. On the other hand, in Experimental Example 23 in which an ethylene-Z-Bier alcohol copolymer of XXYZ100 <7 was used for the intermediate layer in Table 7 and a fluororesin having no adhesive functional group was used for the inner layer, no interlayer was bonded at all. Was.
また、 表 5で内層に接着性フッ素樹脂を用いた実験例 1 14の積層樹脂成形 体は、 燃料へのオリゴマー等の溶出はほとんどなかったが、 表 7で内層にポリア ミド系樹脂を用いた実験例 2 1〜2 2では溶出率が高かった。 In Table 5, the laminated resin molding of Experimental Example 1 14 using adhesive fluororesin for the inner layer In the body, oligomers and the like were hardly eluted into the fuel, but in Table 7, the elution rate was high in Experimental Examples 21 to 22 using a polyamide resin for the inner layer.
表 5の実験例 2と表 7の実験例 2 0とは、 どちらも中間層に E V O H 1と内層に 接着性フッ素樹脂 F- Bを用い、 各層の厚みも同一だが、 外層が L D P Eである 実験例 2 0ではチューブ全体の燃料透過速度は各単層の燃料透過速度から計算し た値とほぼ一致していたが、 外層にポリアミド系樹脂を用いた場合には燃料透過 速度が特に小さくなることがわかった。 更には、 同様に外層にポリアミド系樹脂 を用いている表 5の実験例 1〜1 1、 及び、 実験例 1 4でも、 接着層の有無や各 層の厚みに関わらず、 各単層の燃料透過速度に基づく計算値に比べて、 燃料透過 速度の実測値がはるかに低く抑えられていた。 Experimental Example 2 in Table 5 and Experimental Example 20 in Table 7 both used EVOH 1 for the intermediate layer and adhesive fluoroplastic FB for the inner layer, and the thickness of each layer was the same, but the outer layer was LDPE. In Example 20, the fuel permeation rate of the whole tube was almost the same as the value calculated from the fuel permeation rate of each single layer.However, when the polyamide resin was used for the outer layer, the fuel permeation rate was particularly low. I understood. Furthermore, in Experimental Examples 1 to 11 and 14 in Table 5 using a polyamide resin for the outer layer, each single-layer fuel was used regardless of the presence or absence of the adhesive layer and the thickness of each layer. The measured fuel permeation rate was much lower than the calculated value based on the permeation rate.
外層又は外層と中間層とに低温耐衝擊性に優れたものを用いた ¾ 6の実験例 1 5〜1 7は、 実験例 1 8に比べ、 内層を薄くしたにも関わらず積層樹脂成形体の 低温耐衝撃性は向上しており、 更に実験例 1 7では各層の中で最も低温耐衝擊性 が劣る中間層の厚みを厚くした場合でも低温耐衝撃性は良好であった。  Experimental Examples 15 to 17 of 6 in which the outer layer or the outer layer and the intermediate layer were excellent in low-temperature impact resistance were compared with Experimental Example 18 even though the inner layer was thinner. The low-temperature impact resistance was improved, and in Experimental Example 17, the low-temperature impact resistance was good even when the thickness of the intermediate layer, which had the lowest low-temperature impact resistance among the layers, was increased.
表 8で、 接着層のみが異なる実験例 2 4と実験例 2 5とを比較すると、 非フッ 素系樹脂の P A 1 2 m i xを中間層に用いた実験例 2 5では水浸漬後に低温耐 衝撃性が大幅に低下していたが、 接着性フッ素樹脂である F- Bを用いた実験例 2 4では、 水浸漬後にも全く低温耐衝搫性が低下していないことがわかった。. また、 表 6で実験例 1 7と実験例 1 9とを比較すると、 ダイ温度が比較的低い 実験例 1 9では、 チューブ表面にメルトフラクチャ一が発生し、 チューブの表面 抵抗が極めて高かったが、 ダイ温度を高くして成形した実験例 1 7では、 チュー ブ表面にはメルトフラクチャ一は発生せず、 チューブの表面抵抗も低かった。 産業上の利用可能性  In Table 8, a comparison between Experimental Examples 24 and 25, which differ only in the adhesive layer, shows that Experimental Example 25, in which PA12 mix of non-fluorocarbon resin was used for the intermediate layer, had a low-temperature impact resistance after water immersion. However, in Experimental Example 24 using FB, which is an adhesive fluororesin, it was found that the low-temperature impact resistance did not decrease at all even after immersion in water. Comparing Experimental Examples 17 and 19 with Table 6 shows that in Example 19, where the die temperature was relatively low, melt fracture occurred on the tube surface and the surface resistance of the tube was extremely high. However, in Experimental Example 17 in which the die temperature was increased, no melt fracture occurred on the tube surface, and the surface resistance of the tube was low. Industrial applicability
本発明は、 上述の構成よりなるので、 燃料透過性が各層の燃料透過性の和より はるかに低く抑えられ、 また、 層間接着力、 耐燃料油性、 非溶出性、 低温耐衝擊 性が使用開始時と共に経時後にも優れた積層樹脂成形体を得ることができる。 上 記積層樹脂成形体は、 上記の優れた特性を有しているので、 燃料用チューブ、 燃 料用ホース、 燃料用タンク等の用途に好適に用いることができる。 , Since the present invention has the above-described configuration, the fuel permeability is suppressed to be much lower than the sum of the fuel permeability of each layer, and the interlayer adhesive strength, fuel oil resistance, non-elution property, and low-temperature impact resistance are started to be used. An excellent laminated resin molded product can be obtained over time and after elapse of time. Since the above-mentioned laminated resin molded article has the above-mentioned excellent characteristics, the fuel tube and the fuel It can be suitably used for applications such as fuel hoses and fuel tanks. ,

Claims

請求の範囲 The scope of the claims
1. ポリアミド系樹脂からなる層 (A) 、 耐燃料透過性に優れた熱可塑性樹脂 からなる層 (B) 、 及び、 接着性フッ素樹脂からなる層 (C) を含む積層樹脂成 形体であって、 1. A laminated resin molded article including a layer (A) composed of a polyamide resin, a layer (B) composed of a thermoplastic resin having excellent fuel permeability, and a layer (C) composed of an adhesive fluororesin. ,
前記層 (A) 、 前記層 (B) 及び前記層 (C) は、 この順に積層している ことを特徴とする積層樹脂成形体。 The laminated resin molded body, wherein the layer (A), the layer (B), and the layer (C) are laminated in this order.
2. ポリアミド系樹脂は、 一 40°Cでのアイゾット衝撃強度が 7k J/m2以 上であるものである請求の範囲第 1項記載の積層樹脂成形体。 2. The laminated resin molded product according to claim 1, wherein the polyamide resin has an Izod impact strength at 140 ° C. of 7 kJ / m 2 or more.
3. 耐燃料透過性に優れた熱可塑性樹脂は、 一 40 °Cでのアイゾット衝擊強度 が 2. 5 k J /m2以上であるものである請求の範囲第 1又は 2項記載の積層樹 脂成形体。 3. fuel permeation excellent in thermoplastic resin, one 40 ° C in the Izod衝擊strength 2. 5 k J / m 2 or more is laminated tree of the first or second term according claims are those wherein Fat moldings.
4. 耐燃料透過性に優れた熱可塑性樹脂は、 ェチレン Zビニルアルコール共重 合体からなる樹脂である請求の範囲第 1、 2又は 3項記載の積層樹脂成形体。 4. The laminated resin molded article according to claim 1, 2, or 3, wherein the thermoplastic resin having excellent fuel permeability resistance is a resin composed of an ethylene Z-vinyl alcohol copolymer.
5. エチレンノビ-ルアルコール共重合体は、 酢酸ビエル単位が Xモル%であ るエチレン/酢酸ビュル共重合体を鹼化度¥%にて鹼化することよりなる前記ェ チレンゾビエルアルコール共重合体の製造において、 前記酢酸ビニル単位 Xモノレ %及び前記鹼化度¥%が XXYZ100≥ 7を充足するものである請求の範囲第 4項記載の積層樹脂成形体。 5. The ethylene noble alcohol copolymer is obtained by modifying an ethylene / butyl acetate copolymer having X mol% of Biel acetate units at a degree of oxidation of \%. 5. The laminated resin molded product according to claim 4, wherein, in the production of the united product, the vinyl acetate unit X monotone% and the degree of oxidization% satisfy XXYZ100≥7.
6. 層 (B) と接着性フッ素樹脂からなる層 (C) とが接している請求の範囲 第 1、 2、 3、 4又は 5項記載の積層樹脂成形体。 6. The laminated resin molded article according to claim 1, wherein the layer (B) is in contact with the layer (C) made of an adhesive fluororesin.
7. 層 (B) を形成する耐燃料透過性に優れた熱可塑性樹脂の試験用疑似燃料 種 CE 10に対する 60°Cにおける燃料透過速度 〔Z b〕 と、 層 (C) を形成す る接着性フッ素樹脂の試験用疑似燃料種 C E10に対する 60°Cにおける燃料透 過速度 〔Z c〕 との比 〔Z cZZb〕 が 100以下である請求の範囲第 6項記載 の積層樹脂成形体。 7. Pseudo fuel for testing thermoplastic resin with excellent fuel permeability that forms layer (B) Fuel permeation rate [Zb] at 60 ° C for species CE 10 and fuel permeation rate [Zc] at 60 ° C for test pseudo-fuel type C E10 of adhesive fluororesin forming layer (C) 7. The laminated resin molded product according to claim 6, wherein a ratio [Z cZZb] thereof is 100 or less.
8. 接着性フッ素樹脂は、 融点が 150〜270°Cのものである請求の範囲第 1、 2、 3、 4、 5、 6又は 7項記載の積層樹脂成形体。 8. The laminated resin molded product according to claim 1, 2, 3, 4, 5, 6, or 7, wherein the adhesive fluororesin has a melting point of 150 to 270 ° C.
9. 接着性フッ素樹脂は、 接着性官能基を有するものである請求の範囲第 1、 2、 3、 4、 5、 6、 7又は 8項記載の積層樹脂成形体。 9. The laminated resin molded article according to claim 1, 2, 3, 4, 5, 6, 7, or 8, wherein the adhesive fluororesin has an adhesive functional group.
10. ポリアミド系樹脂からなる層 (A) を外層とし、 接着性フッ素樹脂から なる層 (C) を内層とし、 及び、 耐燃料透過性に優れた熱可塑性樹脂からなる層10. Layer (A) made of polyamide resin as outer layer, layer (C) made of adhesive fluororesin as inner layer, and layer made of thermoplastic resin with excellent fuel permeability resistance
(B) を中間層とするものである請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8 又は 9項記載の積層樹脂成形体。 10. The laminated resin molded article according to claim 1, wherein (B) is used as an intermediate layer.
11. 更に、 接着層 (D) を含む積層樹脂成形体であって、 11. A laminated resin molded article further including an adhesive layer (D),
前記接着層 (D) は、 ポリアミド系樹脂からなる層 (A) と耐燃料透過性に優れ た熱可塑性樹脂からなる層 (B) との間に存在するものである請求の範囲第 10 項記載の積層樹脂成形体。 11. The adhesive layer (D) according to claim 10, wherein the adhesive layer (D) is present between a layer (A) made of a polyamide resin and a layer (B) made of a thermoplastic resin having excellent fuel permeability resistance. Laminated resin molded article.
12. 接着層 (D) は、 接着性フッ素樹脂からなる請求の範囲第 11項記載の 積層樹脂成形体。 12. The laminated resin molded article according to claim 11, wherein the adhesive layer (D) is made of an adhesive fluororesin.
13. 接着性フッ素樹脂からなる層 (C) は、 導電性である請求の範囲第 10、 1 1又は 12項記載の積層樹脂成形体。 13. The laminated resin molded product according to claim 10, 11, or 12, wherein the layer (C) made of an adhesive fluororesin is conductive.
14. 更に、 導電層 (E) を含む積層樹脂成形体であって、 前記導電層 (E) は、 接着性フッ素樹脂からなる層 (C) の表面のうち耐燃料透 過性に優れた熱可塑性樹脂からなる層 (B) とは反対側の表面に接しているもの である請求の範囲第 10、 1 1、 1 2又は 1 3項記載の積層樹脂成形体。 14. Further, a laminated resin molded article including the conductive layer (E), The conductive layer (E) is in contact with the surface of the layer (C) made of an adhesive fluororesin which is in contact with the surface on the opposite side to the layer (B) made of a thermoplastic resin having excellent fuel permeability resistance. The laminated resin molded product according to claim 10, 11, 12, or 13, wherein
15. 積層樹脂成形体は、 チューブ又はホースである請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 1 1、 1 2、 1 3又は 14項記載の積層樹脂成 形体。 15. The laminated resin molded product is a tube or a hose according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1, 12, 13 or 14. Laminated resin molded body.
16. チューブは、 燃料用チューブであり、 ホースは、 燃料用ホースである請 求の範囲第 1 5項記載の積層樹脂成形体。 16. The laminated resin molded article according to claim 15, wherein the tube is a fuel tube and the hose is a fuel hose.
1 7. 積層樹脂成形体は、 タンクである請求の範囲第 1、 2、 3、 4、 5、 6、 7、 8、 9、 1 0、 1 1、 1 2、 1 3又は 14項記載の積層樹脂成形体。 1 7. The laminated resin molded article is a tank according to claims 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, or 14 Laminated resin molded body.
18. タンクは、 燃料用タンクである請求の範囲第 1 7項記載の積層樹脂成形 体。 18. The laminated resin article according to claim 17, wherein the tank is a fuel tank.
1 9. 接着性フッ素樹脂からなる層 (C) の厚みが積層樹脂成形体全体の厚み の 25%以下であり、 低温耐衝撃性試験により割れが発生しない請求の範囲第 1 5又は 1 6項記載の積層樹脂成形体。 1 9. The claim 15 or 16 wherein the thickness of the layer (C) composed of the adhesive fluororesin is 25% or less of the total thickness of the laminated resin molded article, and no crack occurs in the low-temperature impact resistance test. The laminated resin molded article according to the above.
20. ポリアミド系樹脂からなる層 (A) 、 耐燃料透過性に優れた熱可塑性樹 脂からなる層 (B) 、 及ぴ、 接着性フッ素樹脂からなる層 (C) を含む積層樹脂 成形体を同時共押出により製造することよりなる積層樹脂成形体製造方法であつ て、 20. A laminated resin molded article including a layer (A) composed of a polyamide resin, a layer (B) composed of a thermoplastic resin having excellent fuel permeability, and a layer (C) composed of an adhesive fluororesin. A method for manufacturing a laminated resin molded article, comprising: manufacturing by co-extrusion,
前記同時共押出は、 ダイ温度を 250°Cを超える温度とするものである ことを特徴とする積層樹脂成形体製造方法。 The method for producing a laminated resin molded product, wherein the co-extrusion is performed by setting a die temperature to a temperature exceeding 250 ° C.
PCT/JP2004/001387 2003-02-10 2004-02-10 Laminated resin formed body and method for producing same WO2004069534A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005504915A JPWO2004069534A1 (en) 2003-02-10 2004-02-10 LAMINATED RESIN MOLDED BODY AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-032033 2003-02-10
JP2003032033 2003-02-10
JP2003062527 2003-03-07
JP2003-062527 2003-03-07
JP2003-193173 2003-07-07
JP2003193173 2003-07-07

Publications (1)

Publication Number Publication Date
WO2004069534A1 true WO2004069534A1 (en) 2004-08-19

Family

ID=32854110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001387 WO2004069534A1 (en) 2003-02-10 2004-02-10 Laminated resin formed body and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2004069534A1 (en)
WO (1) WO2004069534A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118520A (en) * 2005-10-31 2007-05-17 Kyoraku Co Ltd Multi-layer structure and multi-layer container
JP2009006575A (en) * 2007-06-28 2009-01-15 Nissan Motor Co Ltd Multi-layer hose
JP2012107244A (en) * 2004-10-05 2012-06-07 Arkema France Flexible semicrystalline polyamide
KR20200027974A (en) * 2017-07-12 2020-03-13 다우 글로벌 테크놀로지스 엘엘씨 Pest protection cable jacketing
EP4032430A4 (en) * 2019-09-20 2023-11-01 Daikin Industries, Ltd. Fluorine-containing copolymer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247478A (en) * 1992-03-05 1993-09-24 Nitta Moore Co Ltd Tube for transfer of fuel
WO1999045044A1 (en) * 1998-03-06 1999-09-10 Daikin Industries, Ltd. Fluorochemical adhesive material and laminate made with the same
WO2001014141A1 (en) * 1999-08-25 2001-03-01 Daikin Industries, Ltd. Fluoropolymer laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247478A (en) * 1992-03-05 1993-09-24 Nitta Moore Co Ltd Tube for transfer of fuel
WO1999045044A1 (en) * 1998-03-06 1999-09-10 Daikin Industries, Ltd. Fluorochemical adhesive material and laminate made with the same
WO2001014141A1 (en) * 1999-08-25 2001-03-01 Daikin Industries, Ltd. Fluoropolymer laminate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107244A (en) * 2004-10-05 2012-06-07 Arkema France Flexible semicrystalline polyamide
JP2007118520A (en) * 2005-10-31 2007-05-17 Kyoraku Co Ltd Multi-layer structure and multi-layer container
JP2009006575A (en) * 2007-06-28 2009-01-15 Nissan Motor Co Ltd Multi-layer hose
KR20200027974A (en) * 2017-07-12 2020-03-13 다우 글로벌 테크놀로지스 엘엘씨 Pest protection cable jacketing
JP2020530644A (en) * 2017-07-12 2020-10-22 ダウ グローバル テクノロジーズ エルエルシー Pest resistant cable jacket
US11361884B2 (en) 2017-07-12 2022-06-14 Dow Global Technologies Llc Pest-resistant cable jacketing
JP7159283B2 (en) 2017-07-12 2022-10-24 ダウ グローバル テクノロジーズ エルエルシー Insect resistant cable jacket
KR102590671B1 (en) * 2017-07-12 2023-10-19 다우 글로벌 테크놀로지스 엘엘씨 Pest-resistant cable jacketing
EP4032430A4 (en) * 2019-09-20 2023-11-01 Daikin Industries, Ltd. Fluorine-containing copolymer

Also Published As

Publication number Publication date
JPWO2004069534A1 (en) 2006-05-25

Similar Documents

Publication Publication Date Title
JP3948473B2 (en) Fluoropolymer and composition thereof
JP4780153B2 (en) LAMINATED RESIN MOLDED BODY, MULTILAYER RESIN MOLDED MANUFACTURING METHOD, AND MULTILAYER MOLDED ARTICLE
JP4576782B2 (en) Laminated resin molded product and multilayer molded product
JP2010095575A (en) Partial crystalline fluororesin and layered product
JP2007015364A (en) Laminate
JP5169942B2 (en) Laminated body
WO2001058686A1 (en) Laminated resin
JP3896837B2 (en) Thermoplastic resin composition, laminated resin molded product, multilayer molded product, and fluorine-containing resin molded product
KR100830789B1 (en) Process for Producing Multilayered Product
KR100790239B1 (en) Laminate
WO2008041643A1 (en) Blow molded body
JP5018782B2 (en) Fuel tank
JPWO2009119747A1 (en) Molded body for biodiesel fuel
JP3972917B2 (en) Laminated body
WO2004069534A1 (en) Laminated resin formed body and method for producing same
JP2010095576A (en) Partial crystalline fluororesin and layered product
JP2010234777A (en) Laminate
WO2011099414A1 (en) Fluorine-containing copolymer
JP7041384B1 (en) Fluororesin materials, laminates, tubes and methods for manufacturing tubes
JP7041386B1 (en) Fluororesin, laminate, tube and method of manufacturing tube

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504915

Country of ref document: JP

122 Ep: pct application non-entry in european phase