WO2004068604A1 - 熱スイッチ素子およびその製造方法 - Google Patents

熱スイッチ素子およびその製造方法 Download PDF

Info

Publication number
WO2004068604A1
WO2004068604A1 PCT/JP2004/000845 JP2004000845W WO2004068604A1 WO 2004068604 A1 WO2004068604 A1 WO 2004068604A1 JP 2004000845 W JP2004000845 W JP 2004000845W WO 2004068604 A1 WO2004068604 A1 WO 2004068604A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
transition body
switch element
thermal switch
transition
Prior art date
Application number
PCT/JP2004/000845
Other languages
English (en)
French (fr)
Inventor
Akihiro Odagawa
Yasunari Sugita
Hideaki Adachi
Masahiro Deguchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005504751A priority Critical patent/JP3701302B2/ja
Priority to US10/865,130 priority patent/US20040232893A1/en
Publication of WO2004068604A1 publication Critical patent/WO2004068604A1/ja
Priority to US11/605,064 priority patent/US20070069192A1/en
Priority to US12/157,954 priority patent/US20080258690A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/003Details of machines, plants or systems, using electric or magnetic effects by using thermionic electron cooling effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/15Microelectro-mechanical devices

Definitions

  • the present invention relates to a heat switch element capable of controlling heat transport and a method for manufacturing the same.
  • the above element can be applied to various fields.
  • a heat switch element to the field of cooling technology, which is a technique for transporting heat in a specific direction.
  • the element can be called a cooling element.
  • thermoelectric element an element utilizing thermoelectric phenomena
  • thermoelectric element is an element that achieves cooling without using a refrigerant, and is not only excellent in environmental protection characteristics but also requires no maintenance structure because it does not require a mechanical structure. To be unified It has excellent characteristics such as being able to.
  • a Peltier element is representative of such a thermoelectric element.
  • the efficiency of the current technology is low and it has not been applied to refrigerators and air conditioners with a few exceptions.
  • the Carnot efficiency at the operating temperature of a refrigerator or the like for example, in the range of 25 ° C to 25 ° C
  • the efficiency of Peltier devices is less than 10%.
  • thermoelectric elements other than Peltier elements have not yet been developed. Therefore, a heat switch element that can transport heat without using a refrigerant such as chlorofluorocarbon and that is different from a conventional thermoelectric element is required.
  • a thermal solid-state circuit element having a structure and function similar to those of an electric circuit element can be realized.
  • active control of the heat transporting electrons is required.
  • active control of electrons is difficult with conventional thermoelectric devices. For example, thermoelectric phenomena are considered to be phenomena associated with heat transfer by electrons drift-conducting in a material.
  • thermoelectric index ZT the characteristics (thermoelectric characteristics) of a thermoelectric element are represented by a thermoelectric index ZT.
  • Ho thermoelectric index ZT wherein S 2 T / K p (S : thermopower, T: absolute temperature, the secondary: thermal conductivity, [rho: electrical resistivity) is a value indicated by the electron transport properties of the element heat This shows that it greatly contributes to the electrical characteristics. This suggests that the electron density in the device affects the thermoelectric characteristics of the device, but it is difficult to actively control the electron transport characteristics of conventional thermoelectric devices such as Peltier devices. . Disclosure of the invention
  • the present invention has a completely different configuration from the related art. Accordingly, it is an object of the present invention to provide a heat switch element capable of controlling heat transport and a method for manufacturing the same.
  • the thermal switch element of the present invention includes a first electrode, a second electrode, and a transition body disposed between the first electrode and the second electrode, wherein the transition body has energy And a material that changes the thermal conductivity between the first electrode and the second electrode when the energy is applied to the transition body.
  • the method for manufacturing a thermal switch element includes: a first electrode; a second electrode; a transition body disposed between the first electrode and the second electrode; An insulator disposed between the body and the second electrode, wherein the transition body includes a material that undergoes an electronic phase transition when energy is applied, wherein the insulator is a vacuum, A method for manufacturing a thermal switch element, wherein thermal conductivity between the first electrode and the second electrode changes by applying the energy to a body,
  • the laminate including the transition body and the first electrode, and the second electrode are arranged at a predetermined interval such that the second electrode and the transition body face each other, whereby Forming a space between the electrode 2 and the transition body;
  • the method for manufacturing a thermal switch element of the present invention further includes an insulator among the above-described thermal switch elements of the present invention, wherein the insulator is disposed between the transition body and the second electrode. It can also be said that this is a method for manufacturing a thermal switch element in which the insulator is a vacuum.
  • the method for manufacturing a thermal switch element according to the present invention may further include a first electrode, a second electrode, and a transition body disposed between the first electrode and the second electrode. And an insulator disposed between the transition body and the second electrode, wherein the transition body includes a material that undergoes an electronic phase transition when energy is applied, and the insulator is a vacuum.
  • the method for manufacturing a thermal switch element according to the present invention may further include: a first electrode; a second electrode; a transition body disposed between the first electrode and the second electrode; And an insulator disposed between the second electrode and the second electrode, wherein the transition body includes a material that undergoes an electronic phase transition by applying energy, wherein the insulator is a vacuum,
  • the intermediate body is ruptured by extending the laminate in the stacking direction of the laminate, and the transfer body and the second electrode are separated by removing the ruptured intermediate. Forming a space between them,
  • FIG. 1A and 1B are schematic diagrams showing an example of the thermal switch element of the present invention.
  • FIG. 2 is a schematic sectional view showing another example of the thermal switch element of the present invention.
  • FIG. 3 is a schematic view showing an example of the structure of an insulator that can be used for the thermal switch element of the present invention.
  • FIG. 4 is a schematic view showing another example of the thermal switch element of the present invention.
  • FIG. 5 is a schematic view showing an example of a method of applying energy to the thermal switch element of the present invention.
  • FIG. 6 is a schematic view showing still another example of the thermal switch element of the present invention.
  • FIGS. 7A and 7B are schematic views showing another example of a method for applying energy to the thermal switch element of the present invention.
  • FIGS. 8A and 8B are schematic diagrams showing an example of a magnetic flux guide that can be used for the thermal switch element of the present invention.
  • FIG. 9 is a schematic view showing another example of the method of applying energy to the thermal switch element of the present invention.
  • FIGS. 10A and 10B are schematic views showing still another example of the method of applying energy to the thermal switch element of the present invention.
  • FIG. 11 is a schematic view showing another example of the magnetic flux guide that can be used for the thermal switch element of the present invention.
  • FIG. 12A and FIG. 12B show the energy applied to the heat switch element of the present invention. It is a schematic diagram which shows another example of the method of applying.
  • FIG. 13 is a schematic view showing still another example of the method of applying energy to the thermal switch element of the present invention.
  • FIGS. 14A and 14B are schematic diagrams showing still another example of the method of applying energy to the thermal switch element of the present invention.
  • FIG. 15 is a schematic view showing still another example of the method of applying energy to the thermal switch element of the present invention.
  • FIG. 16 is a schematic view showing still another example of the method of applying energy to the thermal switch element of the present invention.
  • FIG. 17 is a schematic view illustrating an example of a method for manufacturing a thermal switch element of the present invention.
  • FIGS. 18A to 18D are schematic process diagrams showing another example of the method for manufacturing a thermal switch element of the present invention.
  • FIG. 19 is a schematic view showing still another example of the thermal switch element of the present invention.
  • 20A to 20E are schematic process diagrams showing an example of a method for manufacturing the thermal switch element shown in FIG.
  • FIG. 21 is a schematic diagram showing still another example of the thermal switch element of the present invention.
  • FIG. 22 is a schematic diagram showing still another example of the thermal switch element of the present invention.
  • FIG. 23 is a schematic diagram showing still another example of the thermal switch element of the present invention and an example of the energy applying method in the above example.
  • FIG. 24 is a schematic diagram showing still another example of the thermal switch element of the present invention.
  • 1A and 1B show an example of the thermal switch element of the present invention.
  • 1A and 1B includes an electrode 2a, an electrode 2b, and a transition body 3 disposed between the electrode 2a and the electrode 2b.
  • the transition body 3 includes a material that undergoes an electronic phase transition by applying energy (hereinafter, also simply referred to as a “phase transition material”), and the electrodes 2 a and 2 b are applied by applying energy to the transition body 3.
  • the thermal conductivity changes during The transition body 3 is a medium that conducts heat and plays a role as a control body that controls heat transport. With such a configuration, it is possible to provide a thermal switch element 1 that can control heat transport by applying energy. Further, in the thermal switch element 1 of the present invention, heat transport can be controlled without using a refrigerant such as Freon. Furthermore, it is possible to improve efficiency compared to the case of using the conventional thermoelectric element Peltier element.
  • FIG. 1A is a schematic cross-sectional view of the thermal switch 1 shown in FIG. 1B cut along a plane A shown in FIG. 1B.
  • the form of the change in the thermal conductivity due to the application of energy to the transition body 3 is not particularly limited. For example, by applying energy to the transition body 3, heat may be more easily transferred between the pair of electrodes 2a and 2b than before applying energy, or heat may be transferred. It may be difficult to do so.
  • a state in which heat is relatively easily transferred between the electrode 2a and the electrode 2b in the thermal switch element 1 ie, a state in which the heat transfer inside the transition body 3 is relatively easy
  • electricity When the state in which heat is relatively difficult to move between the electrode 2a and the electrode 2b (ie, the state in which heat transfer in the transition body 3 ⁇ is relatively difficult) is set to the OFF state, the transition body 3
  • the thermal switch element 1 may be turned on by applying energy to the switch, or may be turned into the FF state.
  • the thermal conductivity is preferably as small as possible.
  • the change in the thermal conductivity between the electrode 2a and the electrode 2b due to the application of energy to the transition body 3 may be linear or non-linear.
  • there may be a threshold value of applied energy at which the thermal conductivity changes or a change in thermal conductivity with respect to the energy applied to the transition body 3 may have a hysteresis.
  • the form of the change in the thermal conductivity can be adjusted, for example, by selecting the phase change material included in the transition body 3.
  • the above-mentioned state in which heat is relatively easy to move is referred to as an ON state in the thermal switch element
  • the state in which heat is relatively difficult to move is referred to as an OFF state in the thermal switch element.
  • the electronic phase transition refers to a phase in which the state of electrons in a substance changes irrespective of the presence or absence of a structural phase transition (for example, a phase transition in which the structure of the substance itself changes such as a change from a solid to a liquid). Refers to metastasis. Therefore, it can be said that the transition body 3 contains a material whose electron state changes by application of energy. In the thermal switch element 1 of the present invention, the transport of heat can be controlled by changing the state of the electrons in the transition body 3.
  • the heat conduction of a solid material is indicated by the sum of the component contributed by phonon and the component contributed by electronic conduction.
  • the component contributed by phonon can be referred to as a heat component that is conducted by lattice vibration of a substance, and the easiness of conduction is also called lattice thermal conductivity.
  • the component to which electron conduction contributes can be referred to as a heat component that is conducted by the movement of electrons contained in a substance, and the easiness of conduction is also called electron thermal conductivity.
  • the thermal switch element 1 of the present invention is an element in which at least the electronic thermal conductivity of the transition body 3 changes by the application of energy because of the phase change accompanied by the change of the state. These changes in the electron thermal conductivity of the transfer body 3 due to the application of energy control the heat transport between the electrode 2a and the electrode 2b.
  • an electronic phase transition is an insulator-metal transition. That is, in the thermal switch element 1 of the present invention, the transition body 3 may undergo insulator-metal transition by application of energy.
  • the transition body 3 that has transitioned to the metal state does not necessarily need to be entirely in the metal phase, and the transition body 3 only needs to partially include the metal phase.
  • the thermal conductivity when the transition body 3 is in an insulator state is as small as possible.
  • the lattice thermal conductivity of the transition body 3 is as small as possible. It is preferable that the lattice thermal conductivity of the transition body 3 is as small as possible even when the transition body 3 does not perform the insulator-metal transition.
  • the thermal switch element 1 of the present invention by applying energy to the transition body 3, heat transfer via electrons can be controlled. At this time, it is considered that the transport of heat via thermoelectrons is controlled.
  • the transition body 3 in a state where heat is relatively easily transferred between the electrode 2 a and the electrode 2 b (a state where heat is relatively easily transferred through the transition body 3: ON state), the transition body 3 is a thermoelectron. Can be said to be relatively easy to move.
  • the transition body 3 is a state in which heat electrons are transferred. It can be said that movement is relatively difficult.
  • thermoelectrons In the thermal switch element 1 of the present invention, it is considered that such a change in the transfer state of the thermoelectrons is caused by the electronic phase transition accompanying the application of energy to the transition body 3.
  • thermionic means "electrons with heat transfer".
  • thermoelectrons often refer to electrons jumping out of the surface of a metal or semiconductor when heated.
  • the electrons transmitted through the transition body 3 in the thermal switch element 1 of the present invention are not limited to the above-mentioned general thermoelectrons, but may be any electrons that transfer heat.
  • the thermal switch element of the present invention can be realized for the first time by arranging a transition body for controlling heat transfer by applying energy between electrodes, by combining materials used for each layer such as the transition body, and by configuring and disposing each layer. It is an element that has become possible.
  • the configuration of the superconducting switch as shown in JP-01 (1989) -216582A is completely different from that of the thermal switch element of the present invention.
  • the superconducting state disclosed in JP-01 (1989)-216582A is physically similar to the superfluid state and has ideal thermal insulation properties.
  • the transition body 3 in the thermal switch element 1 of the present invention only needs to be in a state where electrons are relatively easily transferred and not in a state of normal conduction, that is, in a state of not being superconductive.
  • the energy applied to the transition body 3 is not particularly limited.
  • at least one kind of energy selected from electrical energy, light energy, mechanical energy, magnetic energy, and thermal energy may be applied. Which energy is used may be appropriately selected according to the type of the phase change material included in the transfer body 3.
  • a plurality of types of energy may be applied to the transition body 3. In this case, the plurality of types of energy may be applied simultaneously, or an order may be provided for each type of energy as necessary. May be.
  • light energy, mechanical energy Such energy may be applied.
  • the method of applying each energy is not particularly limited.
  • the application of electric energy to the transition body 3 may be performed, for example, by injecting electrons or holes (holes) into the transition body 3. Alternatively, it may be performed by inducing electrons or holes in the transition body 3.
  • the injection or induction of electrons or holes into the transition body 3 may be performed, for example, by generating a potential difference between the electrode 2a and the electrode 2b. More specifically, for example, the electrode 2a and the electrode 2b This can be done by applying a voltage between them.
  • a more specific configuration example when applying electric energy and a configuration example when applying other energy will be described later.
  • the shape and size of the thermal switch element 1 are not particularly limited, and may be arbitrarily set according to the characteristics required for the thermal switch element 1.
  • a structure in which a layered electrode 2a, a transition body 3, and an electrode 2b are stacked may be used.
  • the element area of the heat Suitsuchi element 1 is, for example, in the range of 1 X 1 0 2 nm 2 ⁇ 1 X 1 0 2 cm 2.
  • the element area is an area when the element is viewed from the lamination direction of each layer (for example, the direction of arrow B shown in FIG. 1B).
  • the transition body 3 in the thermal switch element 1 of the present invention will be described.
  • the transition body 3 may include, for example, the following materials as a phase transition material.
  • the transition body 3 may include, for example, an oxide having a composition represented by the formula A x D y O z .
  • A is an alkali metal (I a group), alkaline earth metal ([pi a group), S c, Y and rare earth elements (L a, C e, P r, N d, Sm s E u, G d, Tb, Dy, Ho, and Er)).
  • D is at least one transition element selected from the groups Ilia, IVa, Va, VIa, VIIa, VIII and Ib. (The group designations of the elements in this specification are based on I UPAC (1970).
  • the transition elements are group 3 and It is at least one transition element selected from Groups 4, 5, 6, 7, 8, 9 and 10 and 11).
  • O is oxygen.
  • the above oxides generally have a crystal structure, in which the element D basically enters the central position in the unit cell of the corresponding crystal lattice, and a plurality of oxygen atoms surround the atom at the central position. have.
  • the transition body 3 may include an oxide belonging to each of the following categories.
  • the values of x , y, and Z in the oxides belonging to each category do not necessarily have to completely satisfy the following values (including the examples).
  • a small amount of an element other than the element A and the element D may be doped.
  • the category 1 shown below is not fixed as common general technical knowledge in the technical field of the present invention, but is a category set for convenience in order to make the description of oxides easy to understand.
  • n is 0, 1, 2 or 3.
  • an oxide having a composition represented by the formula D x A y O z may contain an oxide having a composition represented by the formula D x D y 0 2. More specifically, for example, Mg 2 T i 0 4, C r 2 Mg 0 4s A 1 2 M g 0 4 (xyz index (2 1 4)) oxides having a spinel structure, such as, F e 2 C o 0 4, F e 2 F E_ ⁇ 4 (i.e., F e 3 ⁇ 4) oxide (xyz index (2 1 4)) which does not include an element a, such as may be included like.
  • n is 1, 2, 3 or 4 .
  • the oxides belonging to this category include, for example, oxides partially having oxygen intercalation.
  • n is 1, 2 or 3.
  • n 2 for example, oxides having an xyz index of (2 26) such as Sr 2 FeMo O or SmBaMn 2 O 6 can be mentioned.
  • n is 1 or 2.
  • Oxides belonging to this category include, for example, Be ⁇ , MgO, BaO, CaO, NiO, MnO, CoO, CuO, ZnO and the like.
  • one of X and y is ⁇
  • z is a value obtained by adding 1 to the value of y when X is 0, and 1 is added to the value of x when y is 0. This is the added value.
  • the oxide belonging to this category For example, T i 0 2, V0 2 , Mn_ ⁇ 2, G e 0 2, C e 0 2, P R_ ⁇ 2, S n O 2, A 1 2 0 3, V 2 0 3, C e 2 0 3, N d 2 0 3, T i 2 ⁇ 3 and S c 2 0 3, L a 2 O 3 and the like.
  • x 0 or 2
  • y 0 or 2
  • oxides such as T a 2 0 5 and the like.
  • one of X and y is 0.
  • the transition body 3 may include a plurality of types of the above-described oxides.
  • an oxide having a superlattice in which structural unit cells / small unit cells of oxides having different values of n in the same category may be included.
  • Specific categories 1 include, for example, the above-mentioned category 1 (oxides having a Ruddlesden-Pop per structure) and category 2 (oxides having oxygen intercalation). Oxidation with such a superlattice
  • the object has, for example, a crystal lattice structure in which one or more oxygen octahedral layers of element D are separated by one or more block layers containing element A and oxygen.
  • the transition body 3 may include a strongly correlated electron-based material.
  • a Mott insulator may be included.
  • the transition body 3 may include a magnetic semiconductor.
  • a semiconductor serving as a base material of the magnetic semiconductor for example, a compound semiconductor may be used.
  • a magnetic semiconductor obtained by adding at least one element selected from the group IVa to group VIII and group IVb to these compound semiconductors may be used.
  • a magnetic semiconductor having a composition represented by the formula Q i QSQ 3 may be used.
  • Q 1 is Sc, Y, rare earth element (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er), Ti.
  • Z r, H f, V , n b, T a, C r, is at least one element selected from n i and Z n
  • Q 2 is, V, C r, Mn, F e
  • C Q 3 is at least one element selected from C, N, 0, F and S.
  • Element Q 1 and element Q 2 and element The composition ratio with element Q 3 is not particularly limited.
  • a magnetic semiconductor having a composition represented by the formula RiRSR 3 may be used.
  • R 1 is at least one element selected from B, Al, G a and In
  • R 2 is at least one element selected from N and P
  • 3 is at least one element selected from the groups IVa to VIII and IVb.
  • the composition ratio of the element R 1 and the element R 2 and the element R 3 is not particularly limited.
  • R 3 is the above element R 3
  • Zn is zinc
  • O is oxygen.
  • the composition ratio of Zn, O, and element R 3 is not particularly limited.
  • a magnetic semiconductor having a composition represented by the formula TOR 3 may be used.
  • T is, T i, Z r, V , N b, F e, N i, is at least one element selected from A 1, I n and S n, R 3 the above elemental R 3 and O is oxygen.
  • the composition ratio of the elements T and O to the element R 3 is not particularly limited.
  • the transition body 3 may include a material that undergoes a metamagnetic-ferromagnetic transition by an externally applied electric field.
  • L a (F e, S i) or F e R h may be used.
  • electronic phase transition can be performed by applying electric energy to the transition body 3.
  • an electronic phase transition is performed by applying thermal energy to the transition body 3, for example, G a S b, In S b, In S e, S b 2 T e 3 , G e T e , G e 2 S b 2 T e 5 S I n S b T e, G e S e T e, S n S b 2
  • the shape and size of the transition body 3 which may include G e S b (S e, T e), T e 8 G e ⁇ 5 S b 2 S 2 are not particularly limited. It may be set arbitrarily according to the required characteristics. As shown in FIGS. 1A and 1B, in the case of the layered transition body 3, the thickness of the transition body 3 is, for example, in the range of 0.3 nm to; 3 nm or more: The range of L ⁇ m is preferable.
  • the area of the transfer body 3 (for example, the area viewed from the direction of arrow B shown in FIG. 1B) may be arbitrarily set according to the element area required for the thermal switch element 1. Further, the transition body 3 may have a plurality of layers laminated, and the thickness of each layer, the material to be included, and the like may be arbitrarily set according to the properties required for the transition body 3.
  • the material used for the electrode 2a and the electrode 2b is not particularly limited as long as the material has conductivity.
  • a material having a line resistivity of 100 ⁇ cm or less may be used, and specifically, for example, Cu, Al, Ag, ⁇ , Pt, and Tin may be used.
  • a semiconductor material may be used as needed. When a semiconductor material is used, a material having a small work function is preferable.
  • the shape and size of the electrode 2 a and the electrode 2 b are not particularly limited, and may be arbitrarily set according to the characteristics required for the thermal switch element 1. Next, a configuration example of the thermal switch element of the present invention will be described.
  • FIG. 2 is a schematic sectional view showing another example of the thermal switch element of the present invention.
  • the thermal switch element 1 shown in FIG. 2 further includes an insulator 4 with respect to the thermal switch element 1 shown in FIGS. 1A and 1B, and the insulator 4 is arranged between the transition body 3 and the electrode 2b.
  • the thermal switch element 1 since the thermal conductivity of the insulator 4 is small, the thermal conductivity of the thermal switch element 1 as a whole can be further reduced when the transition body 3 is in the OFF state. For this reason, the thermal switch element 1 with higher efficiency can be obtained.
  • a cooling element that conducts heat from one electrode to the other electrode can be provided.
  • the thermal conductivity of the insulator 4 is determined by the transition 3 in the OFF state (for example, In the case of a transition body 3 which performs a body-to-metal transition, it is preferable that the thermal conductivity of the transition body 3) in the state of an insulator is smaller than that of the transition body 3).
  • the thermal switch element 1 with higher efficiency can be obtained.
  • the gap potential sensed by electrons (thermoelectrons) conducted between the electrodes 2 a and 2 b is determined by the electronic phase of the transition body 3. It is thought to change significantly with metastasis. For example, in the ON state where heat transfer is relatively easy (for example, in the case of a transition 3 that performs an insulator-to-metal transition, the state includes a metal phase), and thermionic electrons are transferred to the transition 3 Is conducted from the end facing the insulator 4 to the electrode 2b via the insulator 4.
  • the thickness of the insulator 4 may be, for example, in a range of 50 nm or less, and from the viewpoint of heat transport efficiency, 15 nm or less. The range of is preferred.
  • the lower limit of the thickness of the insulator 4 is not particularly limited, but may be, for example, 0.3 nm or more.
  • the shape of the insulator 4 is not particularly limited, and may be arbitrarily set according to the shapes of the transition body 3 and the electrode 2b. In the thermal switch element 1 in which the insulator 4 is disposed, thermions are transmitted from the electrode 2a (or from the transition body 3) to the electrode 2b beyond the insulator 4.
  • thermions are transmitted to the electrode 2b via the insulator 4 by tunnel transmission, ballistic transmission, so-called thermionic transmission, and the like.
  • the transmission method differs depending on the material used for the insulator 4, the thickness of the insulator 4 (that is, the above-described gap potential), and the like. In other words, for example, the transmission method can be controlled by controlling the material used for the insulator 4 and the thickness of the insulator 4.
  • a vacuum may be used.
  • the vacuum may be, for example, a pressure atmosphere of about 1 Pa or less.
  • thermions are basically transmitted by thermionic.
  • thermoelectron that transmits through the tunnel.
  • the insulator 4 for example, a ceramic such as an oxide, or a general solid insulating material such as a resin may be used. At this time, it is preferable to use an insulator in an amorphous or microcrystalline state as the insulator 4.
  • the microcrystalline state in this specification refers to a state in which crystal grains having an average crystal diameter of 10 nm or less are dispersed in an amorphous substrate.
  • the insulator 4 is preferably formed as a tunnel insulator. If the insulator 4 is a tunnel insulator, thermions transporting heat will be tunneled through the insulator 4.
  • the tunnel insulator for example, a material generally having a tunnel insulating property may be used. More specifically, for example, oxides such as Al and Mg, nitrides, oxynitrides, and the like may be used.
  • the thickness of the insulator 4 is, for example, 0.5 n11! 550 nm, preferably in the range of l nm to 20 nm.
  • an inorganic polymer material may be used as the insulator 4, for example.
  • an inorganic polymer material for example, a silicate material or an aluminum silicate material may be used.
  • Fig. 3 shows an example of the structure of the inorganic polymer material.
  • an inorganic polymer such as a silicate material or an aluminum silicate material has a porous structure. Although it is a solid, it has a myriad of hollow regions 5 therein. The average diameter of the hollow region 5 is smaller than the mean free path distance of air, and the mobility of gas inside the hollow region 5 is substantially small, so that the inorganic polymer material cannot conduct heat.
  • the hollow region 5 may be filled with a gas having a low thermal conductivity, or the hollow region 5 may be evacuated to form an insulator 4 having a lower thermal conductivity. can do.
  • the inorganic polymer material shown in FIG. 3 will be described in more detail.
  • the inorganic polymer material shown in FIG. 3 includes a base material 6 that forms the entire skeleton.
  • the base material 6 is a particle having an average particle diameter of about several nanometers , and forms a skeleton of a porous structure by forming a three-dimensional network.
  • the inorganic polymer material includes a myriad of continuous hollow regions 5 having an average diameter of about several nm to several tens nm while maintaining the shape as a solid by the skeleton formed by the base material 6.
  • thermoelectrons are efficiently supplied from the electrode or the transition body into the insulator 4, and the supplied thermoelectrons are radiated and conducted inside the insulator 4.
  • the transfer of thermoelectrons at this time is thought to be performed mainly by ballistic transmission. This effect of concentrating the electric field is significant when the insulator 4 has a porous structure as shown in FIG. 3, and the insulator 4 has a porous structure as shown in FIG.
  • the voltage applied between the electrodes 2a and 2b for transmitting thermoelectrons can be reduced as compared with the case where no thermoelectrons are transmitted.
  • the inorganic polymer material shown in FIG. 3 it is considered that a part of the supplied thermoelectrons is scattered by a solid phase region such as the base material 6 forming the porous structure and loses energy.
  • the average size of the solid phase region is on the order of several nanometers, so it is considered that most of the supplied thermoelectrons can be used for heat transfer.
  • the inorganic polymer material shown in FIG. 3 further includes an electron-emitting material 7 having an average particle diameter equal to or smaller than the average diameter of the hollow region 5, and the electron-emitting material 7 is different from the base material 6. They are dispersed in the inorganic polymer so as to be in contact with each other.
  • the electron-emitting material 7 is preferably a material having a small work function. Specifically, for example, a carbon material, a Cs compound, an alkaline earth metal compound, or the like may be used. The range is about several tens of nm.
  • "e-" shown in Fig. 3 is. This indicates a state in which electrons are being re-emitted.
  • the insulator 4 is not limited to the inorganic polymer material described above, and may be an insulating material having a similar hollow region, for example, continuous holes or independent holes.
  • Such an insulating material can be formed by a method of performing powder firing after forming a powder to be a base material, or a method such as chemical foaming, physical foaming, or a sol-gel method. However, it is preferable to have countless holes having an average diameter of several nm to several tens nm. Further, an electron emitting material may be included as in the case of the inorganic polymer material. The same effect as in the case of the inorganic polymer material can be obtained.
  • a dry gel prepared by a sol-gel method may be used.
  • the dried gel has a nano-structure having a skeleton composed of particles having an average particle size of about several nm to several tens nm and a continuous hollow region having an average diameter of about 100 nm or less. It is a porous body.
  • gel materials include For example, from the viewpoint of efficiently concentrating the electric field described above, a semiconductor material or an insulating material is preferable, and among them, silica (silicon oxide) is preferably used. A method for producing a porous silica gel which is a dry gel using silica will be described later.
  • FIG. 4 shows another example of the thermal switch element of the present invention.
  • the thermal switch element 1 shown in FIG. 4 further includes an electrode 8 with respect to the thermal switch element shown in FIG. 2, and the electrode 8 is arranged between the transition body 3 and the insulator 4. With such a configuration, the thermal switch element 1 with higher efficiency can be obtained.
  • the material used for the electrode 8 may be the same as the material used for the electrode 2a and the electrode 2b described above. Among them, a material having a small work function with respect to a vacuum level (for example, 2 eV or less) is preferable. Specifically, for example, a Cs compound or an alkaline earth metal compound may be used. When such a material is used, the supply of thermoelectrons to the insulator 4 can be performed more efficiently.
  • the shape and size of the electrode 8 are not particularly limited, and may be arbitrarily set according to the characteristics required for the thermal switch element 1.
  • the thickness is in the range of, for example, the order of sub-nanometers to several ⁇ .
  • thermal switch element 1 shown in FIGS. 1, 2 and 4 as necessary.
  • FIG. 5 is a schematic diagram for explaining an example of a method of applying electric energy to the transition body 3.
  • an electrode 10 for applying energy to the transition body 3 and an insulator 9 are further included.
  • a voltage Vg may be applied between the electrode 10 and the transition body 3.
  • electrons or holes can be injected or induced in the transition body 3, and energy can be applied to the transition body 3.
  • the injected or induced electrons can directly transport heat as thermoelectrons.
  • FIG. 6 shows an example of a thermal switch element including the structure shown in FIG.
  • the thermal switch element 1 shown in FIG. 6 further includes an insulator 9 and an electrode 10 with respect to the thermal switch element 1 shown in FIG.
  • the insulator 9 and the electrode 10 are arranged so as to sandwich the insulator 9 between the transition body 3 and the electrode 10.
  • the insulator 9 and the electrode 10 do not affect the potentials of the electrodes 2a and 2b.
  • the direction of the applied voltage Vg is such that thermal electrons are generated inside the transition body 3. It is arranged to be almost perpendicular to the direction of conduction.
  • the transition body 3 can undergo an electronic phase transition.
  • the application of the voltage Vg may be performed between the electrode 10 and the electrode 2a.
  • the method of applying the voltage Vg in the thermal switch element of the present invention is not particularly limited. For example, it is only necessary to electrically connect a separately arranged voltage applying unit and the thermal switch element of the present invention.
  • the voltage applying unit may be included in, for example, the electric circuit.
  • it is possible to apply a potential difference between regions to which a voltage is to be applied in the thermal switch element of the present invention for example, between the transition body 3 and the electrode 10 in the example shown in FIG. 6).
  • the method and configuration of applying the voltage Vg should be set arbitrarily.
  • the material used for the electrode 10 is used for the electrode 2a and the electrode 2b described above.
  • the material may be the same as the material.
  • the material used for the insulator 9 is not particularly limited as long as it is an insulating material or a semiconductor material.
  • Group IIa-VIa elements including Mg, Ti, Zr, Hf, V, Nb, Ta and Cr, and lanthanides (including La, Ce), Zn , B, Al, G a and S i, with at least one element selected from the group lib to group IVb and at least one element selected from F, 0, C, N and B Compounds may be used.
  • S i ⁇ 2, A 1 2 0 3, Mg O , etc. as the semiconductor, Z n O, S r T i ⁇ 3, L a A 1 0 3 , A 1 N, S i C or the like may be used.
  • the shape, size, and the like of the insulator 9 are not particularly limited.
  • its thickness is in the range of, for example, one sub-nanometer to several t m.
  • FIGS. 7A and 7B are schematic diagrams for explaining an example of a method for applying magnetic energy to the transition body 3.
  • FIG. The structure shown in FIGS. 7A and 7B is the same as the structure shown in FIG. 5, but instead of applying the voltage V g, a current 11 flows through the electrode 10 to generate a magnetic field 12. The energy can be applied to the transition body 3 by introducing the generated magnetic field 12 to the transition body 3.
  • FIG. 7A is a schematic cross-sectional view of the structure shown in FIG. 7B cut in the same manner as FIG. 1A.
  • the thermal switch element including the structure shown in FIGS. 7A and 7B may be, for example, the thermal switch element 1 having the structure shown in FIG. 6, and instead of applying the voltage Vg, an electrode may be used.
  • a current may be passed through 10 and the generated magnetic field may be introduced into the transition body 3.
  • the transition body 3 can undergo an electronic phase transition.
  • the application of the voltage Vg and the flow of a current through the electrode 10 to generate a magnetic field and introduce it into the transition body 3 may be performed simultaneously or in a predetermined order.
  • electric energy and magnetic energy Can be applied.
  • the thickness of the insulator 9 (also referred to as the distance between the electrode 10 and the transition body 3) is, for example, in the range of several nm to several ⁇ m.
  • the insulator 9 does not necessarily have to be provided.
  • the electrode 10 and the transition body 3 may be arranged at a distance of several nm to several / im.
  • a magnetic flux guide that focuses the magnetic field generated at the electrode 10 may be placed in contact with the electrode 10 or near the electrode 10. By arranging the magnetic flux guide, the magnetic field 12 is efficiently introduced into the transition body 3, and a more efficient thermal switch element can be obtained.
  • the shape of the magnetic flux guide to be arranged is not particularly limited as long as the magnetic field generated in the electrode 10 can be focused. It can be set arbitrarily according to the characteristics required for the thermal switch element and the requirements in the manufacturing process.
  • the cross section when the magnetic flux guide 13 and the electrode 10 are combined may be rectangular, or may be trapezoidal as shown in FIG. 8B. Good.
  • more current can flow at a position closer to the transition body 3 to which the magnetic field is introduced, so that the magnetic field can be more efficiently applied to the transition body 3. Can be introduced.
  • the electrode 10 and the magnetic flux guide 13 have a shape in which they are in close contact with each other, but they need not necessarily be in close contact with each other. However, when both are in close contact, a magnetic field can be more efficiently introduced into the transition body 3.
  • FIG. 8A and FIG. 8B illustration of the electrode 2a, the electrode 2b, and the like is omitted for easy understanding. Similarly, in the following drawings, illustration of the electrodes 2a, 2b, etc. may be omitted.
  • the electrode 2a and And the electrode 2b, and if necessary, the electrode 8, the insulator 4 and the like may be arranged at any positions.
  • the material used for the magnetic flux guide 13 is not particularly limited as long as the magnetic field generated at the electrode 10 can be focused.
  • a ferromagnetic material may be used.
  • a soft magnetic alloy film containing at least one element selected from Ni, Co, and Fe may be used.
  • the ferromagnetic material used for the magnetic flux guide 13 preferably does not have an excessively large coercive force.
  • control of the magnetic field applied to the transition body 3 is reduced due to the retention of the magnetization of the magnetic flux guide 13 itself.
  • Extra energy is required to change the magnetization direction of itself, and the efficiency as a thermal switch element may be reduced.
  • FIG. 9 shows another example of a method of applying magnetic energy to the transition body 3.
  • a structure as shown in FIG. 9 may be used.
  • the electrodes 10 are arranged so as to surround the transition body 3, and the phases are opposite to the electrodes 10 facing both side surfaces (the side surfaces C and D shown in FIG. 9) of the transition body 3. Current can flow. For this reason, the magnetic field introduced into the transition body 3 can be strengthened, and a more efficient thermal switch element can be obtained.
  • FIGS. 10A and 1 ⁇ B show another example of a method of applying magnetic energy to the transition body 3.
  • a magnetic flux guide 13 is further arranged in the example shown in FIG. Further, the magnetic flux guide 13 is arranged only near the transition body 3 to which a magnetic field is introduced. In this case, the magnetic field can be more efficiently introduced into the transition body 3 without unnecessarily increasing the coercive force of the magnetic flux guide 13. 0 Breakage cut in the C-D direction shown at A FIG.
  • the magnetic flux guide 13 may be divided and arranged. In this case, an increase in the coercive force of the magnetic flux guide 13 can be further suppressed, and a magnetic field can be more efficiently introduced into the transition body 3.
  • the example shown in FIG. 11 is the same as the examples shown in FIGS. 10A and 10B except for the magnetic flux guide 13.
  • FIGS. 12A and 12B show another example of a method of applying magnetic energy to the transition body 3.
  • a magnetic field can be more efficiently introduced into the transition body 3.
  • FIG. 13 is a schematic diagram showing an example of a method for applying light energy to the transition body 3.
  • light 14 may be incident on the transition body 3.
  • the light 14 may be directly incident on the transition body 3 as shown in FIG. 14A, or the electrodes 2a and 2a may be introduced as shown in FIG. 14B.
  • Light 14 may be incident via Z or the electrode 2b.
  • the electrode on which the light 14 is incident (the electrode 2b in the example shown in FIG. 14B) is transparent to the light 14 It is necessary to have Therefore, the material used for the electrode may be selected according to the band of incident light.
  • the incident light is visible light and / or infrared light, for example, ITO (indium tin oxide) or ZnO may be used as the material of the electrode.
  • the incident light is terahertz light, for example, MgO or the like may be used as a material of the electrode.
  • the degree to which the electrode transmits light for example, the light transmittance of the electrode is not particularly limited, and may be arbitrarily determined according to the characteristics required for the heat switch element. Just set it.
  • the method of making light incident on transition body 3 is not particularly limited as long as light can be incident on transition body 3.
  • a material having a property of transmitting light incident on the transition body 3 is also used for the electrode 8 and the insulator 4, and light is incident from the electrode 2b side. Is also good.
  • FIG. 15 is a schematic diagram illustrating an example of a method of applying thermal energy to the transition body 3.
  • a heating element 15 is arranged between the transition body 3 and the electrode 10, and when a current flows through the electrode 10, a current flows through the heating element 15 and the heating element 15 Generates heat.
  • the heating element 15 may be made of a material that generates heat when a current flows, for example, a resistor. Further, another layer, for example, an insulator may be disposed between the heating element 15 and the transition element 3 as necessary.
  • the method for applying thermal energy to the transition body 3 is not limited to the example shown in FIG. 15 and is not particularly limited.
  • the heating element shown in FIG. 10 may be heated by irradiating light or radio waves to apply heat energy to the transition body 3.
  • heat energy may be applied to the transition body 3 by causing the electrode 10 itself to generate heat by a current flowing through the electrode 10.
  • FIG. 16 is a schematic diagram illustrating an example of a method of applying mechanical energy to the transition body 3.
  • the displacement body 16 is disposed between the transition body 3 and the electrode 10, and the displacement body 16 is deformed when a current flows through the electrode 10. That is, by disposing the displacement body 16, it is possible to apply a pressure, which is a kind of mechanical energy, to the transition body 3.
  • a piezoelectric material ⁇ a magnetostrictive material may be used for the displacement body 16.
  • a current flowing through the electrode 10 may be introduced into the displacement body 16.
  • a magnetostrictive material for example, What is necessary is just to introduce the magnetic field generated by the current flowing through the pole 10 into the displacement body 16.
  • the heat of the present invention In the switch element, a plurality of different types of energy can be applied to the transition body 3 simultaneously or in a predetermined order.
  • electrode 10 can be used to apply different types of energy. Note that another material may be further arranged between the layers shown in FIGS. 5 to 17 as needed.
  • the thermal switch element 1 of the present invention can also be used as a cooling element that conducts heat from one electrode selected from the electrodes 2a and 2b to the other electrode.
  • an element that conducts heat in a certain direction can be obtained by using a material having a function as an insulator for the transition body 3.
  • a material having a function as an insulator for the transition body 3 Such materials, (P r, C a) such M n 0 3 and V 0 2, also, B i 2 S r 2 C a 2 C u 3 0 1. And the like.
  • the direction of the interlayer may be used.
  • conducting heat from one electrode to the other electrode and “conducting heat in a certain direction” do not only mean a case where no heat is conducted in the opposite direction. Absent.
  • the conduction of heat from the electrode 2a to the electrode 2b and the conduction of heat from the electrode 2b to the electrode 2a may be asymmetric. Hence, a phenomenon occurs in which heat is conducted in a certain direction.
  • the heat is transferred from the electrode 2 a to the electrode 2 b by controlling the material and thickness of the insulator 4.
  • the conductivity of thermoelectrons in the direction and the direction from the electrode 2b to the electrode 2a can be made asymmetric. For this reason, an element that conducts heat in a certain direction, that is, a cooling element can be obtained.
  • the transition body 3 needs to be in the ON state.
  • a general thin film forming process may be used to form each layer constituting the thermal switch element.
  • P LD pulse laser deposition
  • IBD ion beam deposition
  • cluster f on beam and Various sputtering methods such as RF, DC, electron cyclotron resonance (ECR), helicon, inductively coupled plasma (ICP), facing targets, molecular beam epitaxy (MBE), and ion plating may be used.
  • a CVD method, a plating method, a sol-gel method, or the like may be used.
  • a method generally used for a semiconductor process or a magnetic head manufacturing process may be combined.
  • etching methods such as ion milling, reactive ion etching (RIE), and focused ion beam (FIB), steppers for forming fine patterns, and electron beam (EB) methods
  • RIE reactive ion etching
  • FIB focused ion beam
  • EB electron beam
  • a combination of photolithography technology and the like using such methods may be used.
  • CMP Chemical-Mechanical Polishing
  • cluster ion beam etching may be used.
  • material used for the substrate is not particularly limited, for example, S i and S i ⁇ 2, or the like may be used oxide single crystals such as G a A s and S r T i 0 3.
  • a method for manufacturing the thermal switch element 1 further including an insulator 4 between the transition body 3 and the electrode 2b, and the insulator 4 is a vacuum.
  • a vacuum insulator 4 (hereinafter, also referred to as a vacuum insulating portion) is formed between the transition body 3 and the electrode 2b.
  • the method is not particularly limited.
  • a space is formed between the electrode 2b and the transition body 3 by arranging the transition body 3 and the electrode 2b at a predetermined interval, and the space formed between the electrode 2b and the electrode 2b is maintained by maintaining the formed space in a vacuum.
  • An insulator 4 may be formed between the transfer body 3 and the transfer body 3. ⁇ shows an example of such a manufacturing method in FIG. 1 7
  • the electrode 2b and the laminate including the transition body 3 and the electrode 2b are arranged at predetermined intervals so that the electrode 2b and the transition body 3 face each other.
  • a space is formed between 2b and transition body 3 (step (I)).
  • Step (II) by holding the formed space to a vacuum, it is possible to form a vacuum insulating portion between the electrodes 2 a and the transition body 3 (Step (II)) 0
  • the predetermined interval in the step (I) may be, for example, a thickness required for a vacuum insulating portion to be formed, and specifically, may be, for example, a range of 50 nm or less as described above. Especially, the range of 15 nm or less is preferable.
  • the lower limit of the interval is not particularly limited, but may be, for example, 0.3 nm or more.
  • a method of arranging the laminate and the electrode 2b at a predetermined interval and forming a space between the electrode 2b and the transition body 3 is not particularly limited.
  • the laminate and / or the electrode 2b may be moved while controlling the distance between them, and the method is not particularly limited. More specifically, for example, as shown in FIG. 17, the piezoelectric body 17 is arranged so as to move the electrodes 2b and Z or the above-mentioned laminate (step (I-a)), and is arranged. What is necessary is just to deform the piezoelectric body 17 (process (I-b)).
  • the laminate and the electrode 2b can be arranged at a predetermined interval.
  • the piezoelectric body 17 is It may be expanded or contracted, or a combination of expansion and contraction may be used.
  • the method of disposing the piezoelectric body 17 is not particularly limited as long as the electrode 2b and / or the laminate can be moved.
  • the piezoelectric body 17 may be arranged so as to be in contact with the electrode 2b and / or the above-mentioned laminate. In FIG.
  • both the electrode 2 b and the laminate can be moved.
  • the piezoelectric body 17 may be arranged so as to be in contact with only one of them.
  • a general piezoelectric material may be used for the piezoelectric body 17.
  • Another layer may be arranged between the piezoelectric body 17 and the electrodes 2a and Z or the electrode 2b as needed.
  • a method for keeping the space formed in the step (I) at a vacuum is not particularly limited.
  • the space may be evacuated and hermetically sealed while maintaining the interval between the laminate and the electrode 2b.
  • the entire structure including the laminate and the electrode 2b may be placed in a vacuum atmosphere.
  • step (I) and step ( ⁇ ) may be performed simultaneously.
  • the step (I) may be performed in a vacuum atmosphere, and the space formed between the stacked body and the electrode 2b may be sealed as it is.
  • the step (I) includes a plurality of steps, the whole of the laminated body electrode 2b may be placed in a vacuum atmosphere during the step (I).
  • the vacuum may be in a state of, for example, about 1 Pa or less, as described above.
  • the thermal switch element is formed using the electrode 2b and the laminated body including the electrode 2a and the transition body 3, but the electrode 2a is arranged separately from the formation of the vacuum insulating portion.
  • the following may be performed. First, by disposing the transition body 3 and the electrode 2b at a predetermined interval such that the electrode 2b and the transition body 3 face each other, the electrode 2b and the transition body 3 are formed. A space is formed between them (step (i)). In FIG. 17, the electrode 2a is omitted. Next, a vacuum insulating portion is formed between the electrode 2b and the transition body 3 by maintaining the formed space in a vacuum (step (ii)). Next, the electrode 2a may be arranged so that the transition body 3 is arranged between the electrode 2b and the electrode 2a (step (iii)).
  • step (i) a step of arranging the piezoelectric body 17 so as to move at least one selected from the force (ia) electrode 2 b and the transition body 3, and (i- 1 b) the arranged piezoelectric body 1
  • step of forming the space between the electrode 2b and the transition body 3 by disposing the electrode 2b and the transition body 3 at a predetermined interval by deforming the electrode 7 may be included.
  • the method for arranging the electrodes 2a in the step (iii) is not particularly limited, and for example, the above-described thin film forming method may be used. Step (iii) does not necessarily need to be performed after step (ii), and may be performed, for example, at any time from step (i) to step (ii).
  • FIGS. 18A to 18D show another example of a method for manufacturing a thermal switch element 1 further including an insulator 4 between the transition body 3 and the electrode 2b, and in which the insulator 4 is a vacuum insulator. Shown in
  • a multilayer film including the electrode 2a, the transition body 3, and the electrode 2b and having the intermediate body 18 arranged in place of the vacuum insulating part is formed (step (A)). Since the intermediate 18 is arranged in place of the vacuum insulating section, the order of lamination in the multilayer film is the electrode 2a, the transition 3, the intermediate 18, and the electrode 2b.
  • a material that is more easily broken mechanically than the transition body 3 may be used for the intermediate body 18.
  • a material that is mechanically susceptible to fracture is, for example, a material that is more susceptible to fracture than a transition body when a compressive or tensile force is applied. I just need. That is, for example, a material having lower strength than the transition body 3 may be used. More specifically, for example, Bi, Pb, Ag, etc. may be used.
  • the thickness of the intermediate 18 may be, for example, a thickness necessary for a vacuum insulating portion, and is specifically as described above.
  • the intermediate 18 is broken by extending the multilayer in the stacking direction of the multilayer. Thereafter, as shown in FIG. 18C, the intermediate 18 is removed by blowing a gas 19 onto the remaining intermediate 18 to form a space between the transition 3 and the electrode 2b (step (B)) ⁇
  • Step (D) by maintaining the formed space in a vacuum, a thermal switch element in which a vacuum insulator 4 is formed between the electrode 2 b and the transition body 3 is obtained.
  • Step (D) the thickness of the vacuum insulating portion (the electrode 2 b and the transition body 3) can be made smaller than that of the method shown in FIG. Can be controlled more easily.
  • a method for forming a multilayer film is not particularly limited, and for example, the above-described film forming method may be used.
  • step (B) the method of extending the multilayer film in the laminating direction is not particularly limited.
  • a piezoelectric body 17 may be used.
  • step (B) (B-a) a step of arranging the piezoelectric body 17 so as to be in contact with at least one main surface of the multilayer film; and (B-b) a step of arranging the arranged piezoelectric body 17 Deforming (expanding and Z or shrinking) to expand the multilayer film in the stacking direction of the multilayer film and rupture the intermediate 18.
  • the method of disposing the piezoelectric body 17 is not particularly limited as long as the multilayer film can be stretched.
  • the piezoelectric body 17 may be arranged so as to be in contact with the included electrode 2b.
  • the piezoelectric body 17 may be arranged on the electrode 2a side, and the piezoelectric body 17 may be arranged on both the electrode 2a side and the electrode 2b side.
  • a general piezoelectric material may be used for the piezoelectric body 17.
  • another layer may be arranged between the piezoelectric body 17 and the electrodes 2a and / or the electrodes 2b as needed.
  • the piezoelectric body 17 in the step (B-b), in order to expand the multilayer film, the piezoelectric body 17 may be expanded or contracted, or expansion and contraction may be combined. For example, if expansion and contraction are combined so that the amount of contraction and expansion of the piezoelectric body 17 becomes the same, the same distance as the thickness of the intermediate body 18 (the distance between the transition body 3 and the electrode 2b) ) Can be formed.
  • the method for removing the intermediate 18 remaining after the crushing is not particularly limited.
  • the gas may be removed by blowing gas 19. It may be removed by spraying liquid as well as gas.
  • the type of the gas to be used is not particularly limited, and for example, a gas having reactivity with the intermediate 18 may be used.
  • the method for keeping the space formed in the step (B) at a vacuum is not particularly limited.
  • the space may be evacuated and hermetically sealed while maintaining the gap between the transition body 3 and the electrode 2b.
  • the whole including the transition body 3, the electrode 2b, and the electrode 2a may be placed in a vacuum atmosphere.
  • the step (A) and / or the step (B) and the step (C) may be performed simultaneously, for example, the steps (A) and (B) are performed in a vacuum atmosphere,
  • the space formed between the electrode and the electrode 2b may be closed as it is, and at any time during the steps (A) to (B), the transition body 3, the electrode 2a and the electrode 2b may be entirely under a vacuum atmosphere.
  • the state may be about 1 Pa or less.
  • Methods for obtaining porous silica are broadly classified into a step of preparing a wet gel and a step of drying the formed wet gel (drying step).
  • the silica wet gel can be synthesized, for example, by subjecting a mixed silica raw material to a sol-gel reaction in a solvent. At this time, a catalyst may be used if necessary.
  • the raw materials react in a solvent to form fine particles, and the formed fine particles are three-dimensionally networked to form a network skeleton.
  • the shape of the above skeleton (for example, the average diameter of pores in the formed porous silica, etc.) is controlled by selecting the composition of the raw material and the solvent, or adding a catalyst, a viscosity modifier and the like as necessary. be able to.
  • a silica raw material mixed in a solvent may be applied on a substrate and gelled by elapse of a certain time in the applied state to produce a silica wet gel.
  • the method of coating on the substrate is not particularly limited, and for example, a spin coating method, a diving method, a screen printing method, or the like may be selected according to a required film thickness, shape, and the like.
  • the temperature for producing the wet gel is not particularly limited, and may be, for example, around room temperature. If necessary, the solvent may be heated to a temperature lower than the boiling point of the solvent used.
  • Raw materials for silica include, for example, alkoxysilane compounds such as tetramethoxysilane, tetraethoxysilane, trimethoxymethylsilane, and dimethoxydimethylsilane, and oligomer compounds thereof, and sodium silicate (sodium silicate).
  • Water gala such as potassium silicate Compounds or colloidal silica may be used alone or as a mixture.
  • the solvent is not particularly limited as long as the raw materials can be dissolved to form silica.
  • common inorganic organic solvents such as water, methanol, ethanol, propanol, acetone, toluene, and hexane are used alone or as a mixture. It may be used in combination.
  • the catalyst for example, water or an acid such as hydrochloric acid, sulfuric acid, or acetic acid, or a base such as ammonia, pyridine, sodium hydroxide, or potassium hydroxide may be used.
  • an acid such as hydrochloric acid, sulfuric acid, or acetic acid
  • a base such as ammonia, pyridine, sodium hydroxide, or potassium hydroxide
  • the viscosity modifier is not particularly limited as long as it can adjust the viscosity of the solvent in which the raw materials are mixed.
  • ethylene glycol, glycerin, polyvinyl alcohol, silicone oil, and the like may be used.
  • the material may be gelled after mixing and dispersing the electron-emitting material together with the raw materials in a solvent.
  • the method for drying the wet gel is not particularly limited.
  • a normal drying method such as natural drying, heat drying, and reduced pressure drying, or a supercritical drying method or a freeze drying method may be used.
  • a supercritical drying method from the viewpoint of suppressing the shrinkage of the gel due to drying.
  • even when a normal drying method is used it is possible to suppress gel shrinkage due to drying by subjecting the surface of the solid phase component of the produced wet gel to water-repellent treatment.
  • the solvent used for preparing the wet gel may be used as it is for the solvent used for the supercritical drying.
  • the solvent contained in the wet gel may be replaced in advance with a solvent that is easier to handle in supercritical drying.
  • the solvent to be replaced is commonly used as a supercritical fluid.
  • Solvents such as methanol, ethanol, isopropyl alcohol, carbon dioxide, water, and the like.
  • the solvent contained in the wet gel may be replaced in advance with acetone, isoamyl acetate, hexane, etc., which are easily eluted in these supercritical fluids.
  • Supercritical drying may be performed, for example, in a pressure vessel such as an autoclave.
  • a pressure vessel such as an autoclave.
  • methanol used as a supercritical fluid
  • the inside of the autoclave is subjected to a pressure of 8.09 MPa and a temperature of 2 which is a critical condition of methanol.
  • the wet gel may be dried by maintaining the temperature at 39.4 ° C or higher and gradually releasing the pressure at a constant temperature.
  • drying may be performed by maintaining the pressure at 7.38 MPa and the temperature at 31.1 ° C or higher, and gradually releasing the pressure at a constant temperature.
  • drying may be performed by maintaining the pressure at 22.04 MPa and the temperature at 374.2 ° C or more, and gradually releasing the pressure while keeping the temperature constant.
  • the time required for the drying may be, for example, the time required for the solvent in the wet gel to be replaced one or more times by the supercritical fluid.
  • the surface treatment agent for the water-repellent treatment may be chemically reacted with the surface of the solid phase component of the wet gel and then dried. Since the surface tension generated in the pores of the wet gel can be reduced by the water-repellent treatment, the shrinkage of the gel during drying can be suppressed.
  • the surface treatment agent include halogen-based silane treatment agents such as trimethylchlorosilane and dimethyldichlorosilane, alkoxy-based silane treatment agents such as trimethylmethoxysilane and trimethylethoxysilane, hexanemethyldisiloxane, and dimethylsiloxane oligomer.
  • a silicone-based silane treating agent such as hexane, an amine-based silane treating agent such as hexamethyldisilazane, or an alcohol-based treating agent such as polyester pyranololecol or butyl alcohol may be used.
  • a similar nanoporous material can be obtained by using an inorganic material or an organic polymer material other than the Si force.
  • a material generally used for forming ceramitas such as aluminum oxide (alumina) may be used.
  • the electron emission material can be dispersed and formed inside the porous body by using a method such as a vapor phase synthesis method.
  • Example 1 using the S r T i O 3 as the transition body 3 was produced Unanetsu Suitsuchi element 1 by as shown in FIG 9.
  • the A 1 is the electrode 2 a and the electrode 2 b, the insulator 9 A 1 2 O 3, the electrode 1 0 Using A u.
  • FIGS. 20A to 20E show a method of manufacturing the thermal switch element 1 used in Example 1.
  • FIG. 1 is the electrode 2 a and the electrode 2 b, the insulator 9 A 1 2 O 3, the electrode 1 0 Using A u.
  • FIGS. 20A to 20E show a method of manufacturing the thermal switch element 1 used in Example 1.
  • a S r T i resist 2 0 on the crystal of O 3 is a transition body 3 (FIG. 2 OA).
  • a positive resist material was used for the resist, and a general resist coating method was used.
  • the A 1 layer 21 was deposited over the entire surface by sputtering (FIG. 20B).
  • the resist 20 and the portion of the Al layer 21 located on the resist 20 were removed by lift-off to form the electrodes 2a and 2b (FIG. 20C).
  • an insulator 9 made of A 1 2 O 3 with a scan sputtering method FIG. 2 0 D.
  • an electrode 10 made of Au was formed by sputtering (FIG. 20E), and the thermal switch element 1 shown in FIG.
  • the distance d (corresponding to the length of one side of the transition body 3) between the electrode 2a and the electrode 2b is about 5 ⁇ m
  • the thickness of the insulator 9 is about 100 nm
  • the thickness of the electrode 10 Is about 2 ⁇ m
  • the size of the transition body 3 viewed from the arrow E shown in FIG. 19 was 10 z mX 0.5 ⁇ m.
  • Electric energy is applied to the transition body 3 by applying a voltage between the electrode 10 and the transition body 3 to the thus-produced thermal switch element 1, and the electrode 2a before and after the energy application is applied.
  • the change in the thermal conductivity between the electrode 2b and the electrode 2b was examined.
  • the measurement of the thermal conductivity between the electrode 2a and the electrode 2b was performed using the Harman method.
  • the Harman method is a method of evaluating the state of heat conduction from the temperature difference between both ends of a sample caused by applying a current to the sample. More specifically, the thermal conductivity can be determined by the formula STI / ⁇ .
  • thermopower V / K
  • T the average temperature of the sample
  • I the current value (A)
  • ⁇ ⁇ (K) the temperature difference of the sample.
  • the measurement of thermal conductivity was performed at room temperature unless otherwise specified. The same applies to the following embodiments.
  • thermal switch element 1 as shown in FIG. 21 was manufactured, and similarly, a change in thermal conductivity between the electrode 2a and the electrode 2b before and after the application of energy was examined.
  • the fabrication of the thermal switch element 1 shown in FIG. 21 was performed as follows. Electrode 2 & was made of SrTiO 3 crystal (Nb: SrTiO 3 ) doped with 1 ⁇ in the range of 0.1 to 10 atomic% and sputtered on it. to form a transition body 3 consisting of S r T i 0 3 with. The transition body 3 was formed under a heating atmosphere of about 450 ° C. to 700 ° C.
  • A consists of Electrodes 2 b, A 1 2 O 3 made of an insulating material 9, consisting of A u electrodes 1 0 was formed in the same manner as the thermal switch device 1 shown in FIG 9.
  • the thickness of the transition body 3 (corresponding to the distance between the electrode 2a and the electrode 2b) is about ⁇ , and the distance between the electrode 10 and the transition body 3 via the insulator 9 is about 100 nm. did.
  • Electric energy is applied to the transition body 3 by applying a voltage between the electrode 10 and the transition body 3 to the thermal switch element 1 thus manufactured, and the electrode 2a before and after the energy application is applied.
  • the change in the thermal conductivity between the electrode 2b and the electrode 2b was examined.
  • Example 1 S r T i ⁇ 3 was used as a transition body.
  • P r! was _ x C a x) Mn O 3 (0 ⁇ x ⁇ 0. 5) such as can be obtained similar results when used in the transition body 3.
  • X 1 B a X 2 2 O 6 (X 1 such as G d B a Mn 2 O 6 is, L a, P r, N d, Sm, E u, G d, T b, D y , H o, is at least one element selected from E r, Tm and Yb, X 2 is an oxide and that the Mn and / or represented by a C o), formula (V ⁇ XS y) O x (0 ⁇ y ⁇ 0. 5, 1. 5 ⁇ x ⁇ 2. 5, X 3 is, C r, Mn, at least selected from F e, C o and N i is one element) Similar results could be obtained when the oxide represented by is used. (Example 2)
  • Example 2 Cr is 0.1 atom as transition body 3. /. ⁇ 1 ⁇ S r T i 0 3 was Dobingu in atomic percent range: with (C r S i T i 0 3), to prepare a heat Suitsuchi element 1 as shown in FIG 2.
  • a S r R U_ ⁇ comprising three electrodes 2 a on the base 2 2
  • electrodes 2 a on the C r forming a S i T i 0 3 transition body 3 made of, its top to form consists P t electrodes 2 b further.
  • the transition method 3 and the electrode 2b were also formed by the sputtering method.
  • the transition body 3 and the electrode 2a were formed under a heating atmosphere of about 450 to 700 ° C.
  • the thicknesses of the electrode 2a, the transition body 3, and the electrode 2b were about 200 nm, about 300 nm, and about 2 ⁇ m, respectively.
  • Electric energy is applied to the transition body 3 by applying a voltage between the electrode 2a and the electrode 2b to the thermal switch element 1 thus manufactured, and the electrode 2a before and after the energy is applied is applied.
  • the change in the thermal conductivity between the electrode 2b and the electrode 2b was examined.
  • the measurement of the thermal conductivity was performed in the same manner as in Example 1.
  • non-volatile heat switch element can be realized by selecting the material used for the transition body 3.
  • the use of non-volatile thermal switch elements allows the construction of thermal devices with even lower power consumption.
  • C r as the transition body Example 2: S r T i O 3 and has been used, other its, S r Z R_ ⁇ 3, (L a, S r ) T I_ ⁇ 3, Y (T i , V) 0 3, S r T i O 3 _ d (0 ⁇ d ⁇ 0. 1), use the (P r C a x) Mn O 3 (0 ⁇ x ⁇ 0.
  • Example 3 using a laminate of the S r T i ⁇ 3 and L a S r Mn 0 3 as the transition body 3, to prepare a thermal switch device 1 as shown in FIG 3.
  • Nb SrTiOa was used for the substrate 22, and the following thin films were deposited on the substrate 22 by using a laser application method. Deposition is 450. During the heating at C to 700 ° C., the heating was performed in an oxygen atmosphere of 10 to 500 mmTorr. First, the substrate 2 2 on the place S r T i 0 3 (thickness 5 0 nm), further thereon by placing L a S r Mn 0 3 (thickness 1 0 'O nm) transition Body 3 Next, place the S r R u 0 3 (thickness 1 O nm) on the transition body 3.
  • the current 1 was applied to the electrode 10 for the thermal switch element 1 thus produced.
  • a magnetic field 12 was applied to the transition body 3 by flowing 1, and the change in thermal conductivity between the electrodes 2a and 2b before and after the application of magnetic energy was examined.
  • Example 2 The measurement of the thermal conductivity was performed in the same manner as in Example 1. In addition, a current was applied to all the electrodes 10 in the same direction.
  • X 4 is at least one element selected from S r, Ca and Ba.
  • the formula X 1 B a X 2 2 0 6 (X 1 such as SmB aMn 2 O s is, L a, P r, N d, Sm, E u, G d, T b, D y, H o , Er, Tm, and Yb, and at least one element selected from the group consisting of an oxide represented by the formula (V n X Sy) O x (X 2 is Mn and / or Co). 0 ⁇ y ⁇ 0. 5, 1. 5 ⁇ x ⁇ 2. 5, X 3 is shown C r, Mn, at F e, a least one element selected from C o and N i) Similar results were obtained when oxides were used.
  • Example 4 a thermal switch element including the configuration shown in FIG. 14B was manufactured.
  • MgO was used as a substrate, and the following thin films were laminated on the substrate using a laser ablation method.
  • the lamination was performed while heating at 450 ° C. to 700 ° C. in an oxygen atmosphere of 10 mm Torr to 500 mm Torr.
  • P t (240 nm thick) by using a S r R u 0 3 sputtering-ring method on. The temperature during sputtering was 400 ° C.
  • fine machining a laminate of a S r R u O 3 and P t, to produce a heat Suitsuchi element to form the electrodes 2 a and the electrode 2 b.
  • Light energy is applied to the transition body 3 by applying a pulsed laser beam (wavelength: 532 nm) from the substrate side to the thermal switch element fabricated in this manner, and the electrodes before and after the application of light energy are applied.
  • the change in thermal conductivity between 2a and electrode 2b was investigated.
  • the measurement of the thermal conductivity was performed in the same manner as in Example 1. As a result, when no light was incident on the transition body 3, the thermal conductivity between the electrode 2a and the electrode 2b was extremely small, and was not able to be measured.
  • Example 5 using L i T a 0 3 as a substrate to produce a heat Suitsuchi element including the configuration shown in FIG. 1 5, and a thin film described below by magnetron sputtering onto a substrate.
  • First was the V 2 0 3 (thickness 5 0 nm) transition body 3 by forming a on a substrate.
  • a film of Pt (50 nm thick) was formed on the transition body 3 at 400 ° C., and the electrodes 2a and 2b were formed by fine processing.
  • an Ni—Cr alloy (thickness: 100 nm) is formed into a resistor 15 by using an electron beam evaporation method, and a Au (300 nm) film is further formed by forming an electrode 10 Was formed.
  • the resistor 15 was heated by applying a current to the electrode 10 with respect to the thermal switch element thus manufactured, and the generated heat was applied to the transition body 3.
  • the change in the thermal conductivity between the electrode 2a and the electrode 2b before and after the application of the thermal energy was examined.
  • the measurement of the thermal conductivity was performed in the same manner as in Example 1.
  • V 2 0 3 As the transition body Embodiment 5, other, VO x (1. 5 ⁇ ⁇ 2. 5), N i (S, S e) 2, E uN i ⁇ 3, SmN i ⁇ 3, (Y, X 4) V0 3, S r T i O 3 _ d (0 ⁇ d ⁇ 0. 1), (P r x _ x C a x) Mn O a (0 ⁇ x ⁇ 0 The same results were obtained when .5) was used for transferer 3. However, X 4 is at least one element selected from S r, C a fe and B a.
  • X 1 B a X 2 2 O 6 (X 1 is La, Pr, Nd, Sm, Eii, Gd, Tb, Dy, Ho, Er, Tm and X 2 is at least one element selected from Y b, and X 2 is Mn and Z or Co), or an oxide represented by the formula (Vi— y X 3 y ) O x (0 ⁇ y ⁇ 0. 5, 1. 5 ⁇ x ⁇ 2. 5, X 3 is, C r, M n, F e, oxide represented by C o and at least selected from n i is one element) Similar results could be obtained when using.
  • Example 6 the thermal switch element 1 as shown in FIG. 24 was manufactured.
  • L i T a O 3 (thickness 0. 8 ⁇ m) which is one of piezoelectric materials as the displacement body 1 6
  • a thin film shown below using a sputtering-ring method on the displacement body 1 6 .
  • I went in.
  • La V0 3 (thickness 100 nm) was placed on the displacement body 16 to obtain a transition body 3.
  • a 1 (thickness l OOO nm) was arranged on the transition body 3 to form electrodes 2 a and 2 b.
  • an electrode 10 was formed by disposing A 1 (thickness l nm) on the surface of the displacement body 16 opposite to the surface in contact with the transition body 3.
  • the electrode 10 was formed into a comb shape as shown in FIG. 24 using a photolithographic technique.
  • the interval between the comb-shaped electrodes 10 was 2 m.
  • X 4 is at least one element selected from S r, C a and B a, and a formula such as S mB a Mn 2 O 6 , X 1 B a X 2 2 O 6 (X 1 is , L a, P r, N d, S m, E u, G d, T b, D y, H o, is at least one element selected from E r, T m and Y b, X 2 Is an oxide of the formula (V — y X 3 y ) O x (0 ⁇ y ⁇ 0.5, 1.5 ⁇ x ⁇ 2.5, X 3 Is , Cr, Mn, Fe, Co, and Ni are at least one element), the same result could be obtained.
  • Example 6 L i T a 0 3 a force S which was used as the displacement body 1 6, other, L i N B_ ⁇ 3 and (B a, S r) T i ⁇ 3, P b (Z r , it was possible to obtain T i) 0 3 similar results when using such.
  • Example 7 the thermal switch element 1 including the insulator 4 as shown in FIG. 2 was manufactured.
  • the first consisting of S r T i 0 3 on a substrate to form a S r R u 0 3 (thickness 2 0 0 eta m) the placed electrode 2 a.
  • S r T i ⁇ 3 on the electrode 2 a doped in the range of C r a 0.1 atomic% to 1 0 atom 0/0 (C r: S r T i 0 3, thickness 3 00 nm ) was arranged to form transition body 3.
  • the laser ablation method substrate temperature in the range of 450 ° C to 700 ° C was used to form the electrode 2a and the transition body 3.
  • porous silica layer (thickness: about 0.1 ⁇ ) was disposed on the transition body 3 by using the above-described sol-gel method to obtain an insulator 4.
  • a specific method for producing the porous silica layer will be described.
  • a solution containing a silica raw material a solution was prepared by mixing tetramethoxysilane, ethanol, and an aqueous ammonia solution (0.1 N) at a molar ratio of 1: 3: 4 .
  • diamond particles having an average particle diameter of about 10 ⁇ m were dispersed as an electron emitting material.
  • spin-coating was performed on transition body 3 so as to have a thickness of about 0.1 / m. Thereafter, the coated silica sol was polymerized and gelled by drying.
  • the swollen gel prepared as described above was washed with ethanol, the solvent was replaced, and then supercritical drying using carbon dioxide was performed to prepare a porous silica layer.
  • the supercritical drying was performed under the conditions of a pressure of 12 MPa and a temperature of 50 ° C., and after elapse of 4 hours, the pressure was gradually released to atmospheric pressure, and then the temperature was lowered to room temperature.
  • the dried sample was subjected to an annealing treatment at 400 ° C. under a nitrogen atmosphere to remove the adsorbed substances on the porous silica layer.
  • the porosity of the produced porous silica layer was about 92% when evaluated using the Brunauer-Emmett-Teller method (BET method). In addition, when the average pore diameter of the porous silicon layer was estimated by the same method, it was about 20 nm.
  • BET method Brunauer-Emmett-Teller method
  • the laminate of the electrode 2a, the transition body 3 and the insulator 4 thus produced was subjected to an annealing treatment at 400 ° C. in a hydrogen atmosphere.
  • an annealing treatment the surface of the diamond particles contained in the porous silica layer is hydrogenated, and the diamond particles can be more activated as an electron emitting material.
  • Pt thickness: 200 nm
  • Electric energy is applied to the transition body 3 by applying a voltage between the electrode 2a and the electrode 2b to the thermal switch element 1 thus manufactured, and the electrode 2a before and after the energy is applied is applied.
  • the change in the thermal conductivity between the electrode 2b and the electrode 2b was examined.
  • the measurement of the thermal conductivity was performed in the same manner as in Example 1.
  • Example 7 a thermal switch element 1 including the insulator 4 and the electrode 8 as shown in FIG. 4 was manufactured, and the same evaluation was performed.
  • the first consisting of S r T i ⁇ 3 on the substrate to form a S r R U_ ⁇ 3 (thickness 2 0 0 eta m) the placed electrode 2 a.
  • Cr is 0.1 atom 0 /.
  • a transition body 3 was formed by arranging S r T i ⁇ 3 (C r: S r T i O 3 , thickness 300 nm) doped in a range of 110 at%. Then, on the transition body 3 (S r, C a, B a) C0 3 ( thickness 5 0 nm) arranged electrodes 8 formed, further porous silica layer thereon (thickness 0.
  • the electrode 2a, the transition body 3 and the electrode 8 were formed by a laser application method (substrate temperature in the range of 450 ° C to 700 ° C). Finally, using a sputtering method, Pt (thickness: 20000 nm) was arranged on the insulator 4 to form an electrode 2b, and a thermal switch element 1 as shown in FIG. 4 was produced.
  • Electric energy is applied to the transition body 3 by applying a voltage between the electrode 2a and the electrode 2b to the thermal switch element 1 thus manufactured, and the electrode 2a before and after the energy is applied is applied. Heat transfer between electrode 2 b The change in conductivity was investigated. The measurement of the thermal conductivity was performed in the same manner as in Example 1.
  • the electrode 2a was brought into contact with Au kept at 30 ° C, and the temperature change of the electrode 2a was measured. A decrease phenomenon was observed, and the function as a heat switch element and a cooling element via the insulator 4 was confirmed.
  • Example 7 the porous silica layer having a thickness of about 0.1 ⁇ m was formed as the insulator 4.
  • the thickness of the insulator 4 was 0.05 ⁇ m to: L of about 0 ⁇ m. Similar results were obtained in the range.
  • the thickness of the insulator 4 is not limited to the above range because the optimum thickness of the insulator 4 is considered to vary depending on the structure of the element, the material used, and the like.
  • Example 7 (Sr, C a, B a) CO 3 was used as the electrode 8, but (S r, C a, B a) 10, C s _0, C s — S b , C s —T e, C s —F, R b —0, R b —C s —0, Ag, and one C s —O, etc., were able to obtain similar results.
  • Example 8 using the C a 3 C o 4 0 9 as the transition body 3, to prepare a heat Suitsuchi element 1 as shown in FIG 2.
  • a sapphire (A 1 2 0 3) as the substrate 2 2, sputtering To form a N a C o 2 0 6 made of the electrode 2 a on the substrate 2 2 using a ring method.
  • a transition body 3 consisting of C a 3 C o 4 0 9 on the electrode 2 a, to form a N a C o of two 0 6 electrodes 2 b further thereon.
  • the sputtering method was also used to form the transition body 3 and the electrode 2b.
  • the transition body 3 and the electrode 2a were formed under a heating atmosphere of about 450 ° C. to 850 ° C.
  • the thicknesses of the electrode 2a, the transition body 3, and the electrode 2b were about 200 nm, about 300 nm, and about 2 ⁇ m, respectively.
  • Electric energy is applied to the transition body 3 by applying a voltage between the electrode 2a and the electrode 2b to the thermal switch element 1 thus manufactured, and the electrode 2a before and after the energy is applied is applied.
  • the change in the thermal conductivity between the electrode 2b and the electrode 2b was examined.
  • the measurement of the thermal conductivity was performed in the same manner as in Example 1.
  • non-volatile heat switch element can be realized by selecting a material used for the transition body 3.
  • the use of non-volatile thermal switching elements allows the construction of thermal devices with even lower power consumption.
  • thermo switch element having a configuration completely different from that of the related art, capable of controlling heat transport by applying energy, and a method of manufacturing the same.
  • the heat switch element of the present invention can be used in a heat dissipating part of a semiconductor chip such as a CPU used for an information terminal, a heat transfer part such as a refrigerator-freezer or an air conditioner, which is a typical heat engine, and a heat wiring part.
  • a heat dissipating part of a semiconductor chip such as a CPU used for an information terminal
  • a heat transfer part such as a refrigerator-freezer or an air conditioner, which is a typical heat engine
  • a heat wiring part a heat wiring part.
  • Any part can be used without particular limitation as long as it is a part that transports heat, such as a heat flow control part. In this case, it can be used not only for the part that needs to control heat transport but also for the part that does not need to control heat and that simply transports heat.

Landscapes

  • Semiconductor Memories (AREA)
  • Thermally Actuated Switches (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

従来とは全く異なる構成を有し、エネルギーの印加によって熱の輸送が制御できる熱スイッチ素子とその製造方法とを提供する。第1の電極(2a)と、第2の電極(2b)と、第1の電極(2a)と第2の電極(2b)との間に配置された転移体(3)とを含み、転移体(3)は、エネルギーを印加することによって電子相転移する材料を含み、転移体(3)へのエネルギーの印加によって、第1の電極(2a)と第2の電極(2b)との間の熱伝導度が変化する素子とする。

Description

明 細 書 熱スィツチ素子およびその製造方法 技術分野
本発明は、 熱の輸送を制御できる熱スィツチ素子およびその製造方法 に関する。 背景技術
熱の輸送を制御できる熱スィツチ素子が存在すれば、 様々な分野に上 記素子を応用することが可能である。 例えば、 特定の方向へ熱を輸送す る技術である冷却技術の分野に熱スィツチ素子を応用することも可能で あり、 この場合、 上記素子は冷却素子と呼ぶこともできる。
従来の冷却技術は、 冷媒の圧縮■膨張サイクルを利用した技術と、 熱 電現象を利用した技術とに大別される。 冷媒の圧縮 ·膨張サイクルを利 用する場合、 冷媒の圧縮には主にコンプレッサーが用いられている。 こ の技術は、 長年に渡るコンプレッサーの技術改良などによって効率に優 れているため、 冷凍機、 冷蔵庫、 エアコンディショナーなどの民生機器 に対しても広く応用されている。 しかしながら、 冷媒の多くにフロンが 用いられており、 その対環境特性に問題が指摘されている。 現在、 冷媒 としてフロン以外の代替品が検討されているが、 圧縮■膨張サイクルに よってフロンと同等もしくはそれ以上の熱輸送特性を示す冷媒材料は未 だ開発されていない。
一方、 熱電現象を利用した素子 (熱電素子) は、 冷媒を用いることな く冷却を実現する素子であり、 対環境特性に優れるばかりではなく、 メ 力二カルな構造を必要としないためメンテナンスフリ一化を図ることが できるなど優れた特性を有している。 このような熱電素子としてペルチ ェ素子が代表的である。 しかしながら、 現在の技術では効率が低く、 一 部の例外を除き、 冷蔵庫やエアコンディショナ一などには応用されてい ない。 例えば、 冷媒を用いた場合、 冷蔵庫などの使用温度 (例えば、 一 2 5 °C〜 2 5 °Cの範囲) におけるカルノー効率は約 3 0 %〜 5 0 %程度 の範囲であるとされるが、 ペルチェ素子の効率は 1 0 %にも満たない。 また、 ペルチェ素子以外の有望な熱電素子は未だ開発されていない。 このため、 フロンなどの冷媒を用いることなく熱の輸送が可能であり 、 かつ、 従来の熱電素子とは異なる熱スィッチ素子が求められている。 また、 熱スィッチ素子を熱伝導体、 断熱体、 発熱体などと組み合わせ ることにより、 電気回路素子と類似した構造、 機能などを有する熱固体 回路素子を実現することもできる。 熱の輸送を制御するためには、 熱を 輸送する電子の能動的な制御が必要となる。 しかしながら、 従来の熱電 素子では、 能動的な電子の制御は困難である。 例えば、 熱電現象は、 材 料中をドリフト伝導する電子による熱移動に伴う現象であると考えられ ている。 熱電素子の特性 (熱電特性) は、 一般に、 熱電指数 Z Tによつ て表され、 Z Tが大きいほど素子の効率が高くなる。 熱電指数 Z Tほ、 式 S 2 T / K p ( S :熱電能、 T :絶対温度、 に :熱伝導度、 ρ :電気 比抵抗) によって示される値であり、 素子における電子の輸送特性が熱 電特性に対して大きく寄与していることを示している。 このことから、 素子中の電子密度などが素子の熱電特性に影響を与えていると考えられ るが、 ペルチェ素子など従来の熱電素子において電子の輸送特性を能動 的に制御することは困難である。 発明の開示
このような状況を鑑み、 本発明は、 従来とは全く異なる構成を有する ことにより、 熱の輸送を制御できる熱スィッチ素子と、 その製造方法と を提供することを目的とする。
本発明の熱スィッチ素子は、 第 1の電極と、 第 2の電極と、 前記第 1 の電極と前記第 2の電極との間に配置された転移体とを含み、 前記転移 体は、 エネルギーを印加することによって電子相転移する材料を含み、 前記転移体への前記エネルギーの印加によって、 前記第 1の電極と前記 第 2の電極との間の熱伝導度が変化する素子である。
次に、 本発明の熱スィッチ素子の製造方法は、 第 1の電極と、 第 2の 電極と、 前記第 1の電極と前記第 2の電極との間に配置された転移体と 、 前記転移体と前記第 2の電極との間に配置された絶縁体とを含み、 前 記転移体はエネルギーを印加することによって電子相転移する材料を含 み、 前記絶縁体が真空であり、 前記転移体への前記エネルギーの印加に よって前記第 1の電極と前記第 2の電極との間の熱伝導度が変化する熱 スィツチ素子の製造方法であって、
( I ) 転移体および第 1の電極を含む積層体と、 第 2の電極とを、 前 記第 2の電極と前記転移体とが面するように所定の間隔で配置すること によって、 前記第 2の電極と前記転移体との間に空間を形成する工程と
(I I) 前記空間を真空に保持することによって、 前記第 2の電極と前 記転移体との間に絶縁体を形成する工程とを含んでいる。
本発明の熱スィツチ素子の製造方法は、 上述した本発明の熱スィツチ 素子のなかでも、 絶縁体をさらに含み、 前記転移体と前記第 2の電極と の間に前記絶縁体が配置されており、 前記絶縁体が真空である熱スィッ チ素子の製造方法であるともいえる。
また、 本発明の熱スィッチ素子の製造方法は、 第 1の電極と、 第 2の 電極と、 前記第 1の電極と前記第 2の電極との間に配置された転移体と 、 前記転移体と前記第 2の電極との間に配置された絶縁体とを含み、 前 記転移体はエネルギーを印加することによって電子相転移する材料を含 み、 前記絶縁体が真空であり、 前記転移体への前記エネルギーの印加に よって前記第 1の電極と前記第 2の電極との間の熱伝導度が変化する熱 スィツチ素子の製造方法であって、
( i ) 転移体と第 2の電極とを、 前記第 2の電極と前記転移体とが面 するように所定の間隔で配置することによって、 前記第 2の電極と前記 転移体との間に空間を形成する工程と、
( i i) 前記空間を真空に保持することによって、 前記第 2の電極と前 記転移体との間に絶縁体を形成する工程と、 .
( i i i) 前記転移体が前記第 2の電極と第 1の電極との間に配置され るように、 前記第 1の電極を配置する工程とを含んでいてもよい。
また、 本発明の熱スィッチ素子の製造方法は、 第 1の電極と、 第 2の 電極と、 前記第 1の電極と前記第 2の電極との間に配置された転移体と 、 前記転移体と前記第 2の電極との間に配置された絶縁体とを含み、 前 記転移体はエネルギーを印加することによって電子相転移する材料を含 み、 前記絶縁体が真空であり、 前記転移体への前記エネルギーの印加に よって前記第 1の電極と前記第 2の電極との間の熱伝導度が変化する熱 スィツチ素子の製造方法であって、
( A ) 第 1の電極と、 転移体と、 前記転移体よりも力学的に破壌しや すい材料を含む中間体と、 第 2の電極とをこの順序で含む積層体を形成 する工程と、
( B ) 前記積層体の積層方向に前記積層体を伸長することによって前 記中間体を破壌し、 前記破壌した中間体を除去することによって前記転 移体と前記第 2の電極との間に空間を形成する工程と、
( C ) 前記空間を真空に保持することによって、 前記第 2の電極と前 記転移体との間に絶縁体を形成する工程とを含んでいてもよい。 図面の簡単な説明
図 1 Aおよぴ図 1 Bは、 本発明の熱スィツチ素子の一例を示す模式図 である。
図 2は、 本発明の熱スィツチ素子の別の一例を示す模式断面図である 図 3は、 本発明の熱スィツチ素子に用いることができる絶縁体の構造 の一例を示す模式図である。
図 4は、 本発明の熱スィ ッチ素子のまた別の一例を示す模式図である 図 5は、 本発明の熱スィツチ素子にエネルギーを印加する方法の-—例 を示す模式図である。
図 6は、 本発明の熱スィツチ素子のさらにまた別の一例を示す模式図 である。
図 7 Aおよび図 7 Bは、 本発明の熱スィツチ素子にエネルギーを印加 する方法の別の一例を示す模式図である。
図 8 Aおよぴ図 8 Bは、 本発明の熱スィツチ素子に用いることができ る磁束ガイ ドの一例を示す模式図である。
図 9は、 本発明の熱スィ ッチ素子にエネルギーを印加する方法のまた 別の一例を示す模式図である。
図 1 0 Aおよび図 1 0 Bは、 本発明の熱スィツチ素子にエネルギーを 印加する方法のさらにまた別の一例を示す模式図である。
図 1 1は、 本発明の熱スィツチ素子に用いることができる磁束ガイ ド の別の一例を示す模式図である。
図 1 2 Aおよぴ図 1 2 Bは、 本発明の熱スィツチ素子にエネルギーを 印加する方法のさらにまた別の一例を示す模式図である。
図 1 3は、 本発明の熱スィッチ素子にエネルギーを印加する方法のさ らにまた別の一例を示す模式図である。
図 1 4 Aおよび図 1 4 Bは、 本発明の熱スィツチ素子にエネルギーを 印加する方法のさらにまた別の一例を示す模式図である。
図 1 5は、 本発明の熱スィッチ素子にエネルギーを印加する方法のさ らにまた別の一例を示す模式図である。
図 1 6は、 本発明の熱スィッチ素子にエネルギーを印加する方法のさ らにまた別の一例を示す模式図である。
図 1 7は、 本発明の熱スィッチ素子の製造方法の一例を示す模式図で ある。
図 1 8 A〜図 1 8 Dは、 本発明の熱スィツチ素子の製造方法の別の一 例を示す模式工程図である。
図 1 9は、 本発明の熱スィッチ素子のさらにまた別の一例を示す模式 図である。
図 2 0 A〜図 2 0 Eは、 図 1 9に示す熱スィツチ素子の製造方法の一 例を示す模式工程図である。
図 2 1は、 本発明の熱スィツチ素子のさらにまた別の一例を示す模式 図である。
図 2 2は、 本発明の熱スィッチ素子のさらにまた別の一例を示す模式 図である。
図 2 3は、 本発明の熱スィッチ素子のさらにまた別の一例と、 上記一 例におけるエネルギーの印加方法の一例を示す模式図である。
図 2 4は、 本発明の熱スィツチ素子のさらにまた別の一例を示す模式 図である。 発明の実施形態
以下、 図面を参照しながら本発明の実施の形態について説明する。 な お、 以下の実施の形態において、 同一の部分に同一の符号を付して、 重 複する説明を省略する場合がある。
図 1 Aおよび図 1 Bに、 本発明の熱スィッチ素子の一例を示す。 図 1 Aおよぴ図 1 Bに示す熱スィッチ素子 1は、 電極 2 aと、 電極 2 bと、 電極 2 aと電極 2 bとの間に配置された転移体 3とを含んでいる。 転移 体 3は、 エネルギーを印加することによって電子相転移する材料 (以下 、 単に 「相転移材料」 ともいう) を含んでおり、 転移体 3へのエネルギ 一の印加によって電極 2 aおよび電極 2 bの間の熱伝導度が変化する。 転移体 3は、 熱を伝導する媒体であるとともに、 熱の輸送を制御する制 御体としての役割を担っている。 このような構成によって、 エネルギー の印加によって熱の輸送を制御できる熱スィツチ素子 1とすることがで きる。 また、 本発明の熱スィッチ素子 1では、 フロンなどの冷媒を用い ずに熱の輸送を制御することができる。 さらに、 従来の熱電素子である ペルチェ素子を用いた場合に比べて効率を向上させることが可能であり
、 本発明の熱スィツチ素子を組み込んだ熱デバイス全体としてのェネル ギー消費量を低減することも可能である。 なお、 図 1 Aは、 図 1 Bに示 す熱スィツチ 1を図 1 Bに示す平面 Aで切断した模式断面図である。 本発明の熱スィ ッチ素子 1では、 転移体 3へのエネルギーの印加に伴 う熱伝導度の変化の形態は特に限定されない。 例えば、 転移体 3にエネ ルギーを印加することによって、 エネルギーを印加する前よりも一対の 電極 2 aと電極 2 bとの間を熱が移動しやすい状態になってもよいし、 熱が移動しにくい状態になってもよい。 換言すれば、 熱スィッチ素子 1 における電極 2 aと電極 2 bとの間を相対的に熱が移動しやすい状態 ( 即ち、 転移体 3内部の熱の移動が相対的に容易な状態) を O N状態、 電 極 2 aと電極 2 bとの間を相対的に熱が移動しにくい状態 (即ち、 転移 体 3內部の熱の移動が相対的に困難な状態) を O F F状態とした場合に 、 転移体 3にエネルギーを印加することによって熱スィツチ素子 1が O N状態となっても、 〇 F F状態となってもよい。 なお、 上述の O F F状 態においては、 上記熱伝導度ができるだけ小さいことが好ましい。 また 、 転移体 3へのエネルギーの印加に伴う電極 2 aと電極 2 bとの間の熱 伝導度の変化は、 線形的であっても非線形的であってもよい。 例えば、 熱伝導度が変化する印加エネルギーの閾値が存在してもよいし、 転移体 3に印加するエネルギーに対して熱伝導度の変化がヒステリシスを有し ていてもよい。 これら熱伝導度の変化の形態は、 例えば、 転移体 3が含 む相転移材料を選択することによって調節することができる。 なお、 本 明細書において、 上記相対的に熱が移動しやすい状態を熱スィツチ素子 における O N状態、 上記相対的に熱が移動しにくい状態を熱スィツチ素 子における O F F状態とする。
ここで、 電子相転移とは、 構造相転移 (例えば、 固体から液体への変 化など物質の構造そのものが変化する相転移) の有無に関わらず物質中 の電子の状態が変化するような相転移をいう。 このため、 転移体 3は、 エネルギーの印加によって電子の状態が変化する材料を含んでいるとも いえる。 本発明の熱スィッチ素子 1では、 転移体 3内の電子の状態の変 化によって、 熱の輸送が制御できる。
一般に、 固体物質の熱伝導は、 フオノンが寄与する成分と、 電子伝導 が寄与する成分との和によって示される。 フオノンが寄与する成分とは 、 物質の格子振動によって伝導される熱成分ということができ、 その伝 導しやすさを格子熱伝導度ともいう。 電子伝導が寄与する成分とは、 物 質に含まれる電子の移動によって伝導される熱成分ということができ、 その伝導しやすさを電子熱伝導度ともいう。 電子相転移は物質中の電子 の状態の変化を伴う相転移であるため、 本発明の熱スィツチ素子 1は、 エネルギーの印加によって少なく とも転移体 3の電子熱伝導度が変化す る素子であるということもできる。 これら、 エネルギーの印加に伴う転 移体 3の電子熱伝導度の変化によって、 電極 2 aと電極 2 bとの間の熱 の輸送が制御されることになる。
このような電子相転移の一例として、 絶縁体一金属転移が挙げられる 。 即ち、 本発明の熱スィッチ素子 1では、 転移体 3がエネルギーの印加 によって絶縁体一金属転移してもよい。 金属状態へ転移した転移体 3は 、 その全体が金属相である必要は必ずしもなく、 転移体 3が部分的に金 属相を含んでいればよい。 熱スィッチ素子としての特性の観点から、 こ のような転移を行う場合、 転移体 3が絶縁体の状態にある際の熱伝導度 はできるだけ小さいことが好ましい。 換言すれば、 転移体 3の格子熱伝 導度ができるだけ小さいことが好ましい。 なお、 転移体 3の格子熱伝導 度ができるだけ小さいことが好ましいのは、 転移体 3が絶縁体一金属転 移を行わない場合においても同様である。
このように、 本発明の熱スィッチ素子 1では、 転移体 3にエネルギー を印加することによって、 電子を介した熱の輸送を制御することができ る。 このとき、 熱電子を介した熱の輸送が制御されていると考えられる 。 換言すれば、 電極 2 aと電極 2 bとの間を相対的に熱が移動しやすい 状態 (転移体 3を相対的に熱が移動しやすい状態: O N状態) において 、 転移体 3は熱電子の移動が相対的に容易な状態にあるといえる。 電極 2 aと電極 2 bとの間を相対的に熱が移動しにくい状態 (転移体 3を相 対的に熱が移動'しにくい状態: O F F状態) においては、 転移体 3は熱 電子の移動が相対的に困難な状態にあるといえる。 本発明の熱スィツチ 素子 1では、 このような熱電子の移動状態の変化が、 転移体 3へのエネ ルギ一の印加に伴う電子相転移によって引き起こされると考えられる。 ここで、 熱電子とは 「熱移動を伴う電子」 を意味している。 一般に、 熱電子は、 金属や半導体を加熱した際にその表面から飛び出す電子をい う場合が多い。 本発明の熱スィツチ素子 1における転移体 3を伝達する 電子は、 上記一般的にいう熱電子に限定されず、 熱の移動を伴う電子で あればよい。 本発明の熱スィッチ素子は、 エネルギーの印加によって熱 の輸送を制御する転移体を電極間に配置したことや、 転移体などの各層 に用いる材料の組み合わせ、 各層の構成、 配置などによって初めて実現 が可能となった素子である。
従って、 例えば、 JP- 01 (1989) -216582Aに示されているような超伝導 スィッチと、 本発明の熱スィッチ素子とは構成が全く異なっていると考 えられる。 JP-01 ( 1989) - 216582Aに開示されている超伝導の状態とは、 超流動状態と物理的に類似しており、 理想的な熱絶縁の性質を有してい る。 このため、 上記引例に開示されている超伝導スィッチでは、 本発明 の熱スィツチ素子で可能である熱輸送の制御は困難であると考えられる 。 これに対して、 本発明の熱スィッチ素子 1における転移体 3は、 電子 の移動が相対的に容易な状態において、 常伝導、 即ち、 超伝導でない状 態であればよい。
本発明の熱スィツチ素子 1において、 転移体 3に印加するエネルギー は特に限定されない。 例えば、 電気エネルギー、 光エネルギー、 力学ェ ネルギー、 磁気エネルギーおよび熱エネルギーから選ばれる少なく とも 1種のエネルギーを印加すればよい。 どのエネルギーを用いるかは、 転 移体 3に含まれている相転移材料の種類に応じて適宜選択すればよい。 なお、 複数の種類のエネルギーを転移体 3に印加してもよく、 この場合 、 上記複数の種類のエネルギーを同時に印加してもよいし、 必要に応じ てエネルギーの種類ごとに順序を設けて印加してもよい。 例えば、 転移 体 3へ電気エネルギーを印加した後に、 光エネルギー、 力学エネルギー などのエネルギーを印加してもよい。 それぞれのエネルギーの印加方法 は特に限定されない。
転移体 3への電気エネルギーの印加は、 例えば、 転移体 3へ電子また はホール (正孔) を注入することによって行ってもよい。 また、 転移体 3に電子またはホールを誘起することによって行ってもよい。 転移体 3 への電子やホールの注入または誘起は、 例えば、 電極 2 aおよび電極 2 b間に電位差を生じさせることによって行えばよく、 より具体的には、 例えば、 電極 2 aおよび電極 2 b間に電圧を印加することによって行う ことができる。 その他、 電気エネルギーを印加する場合のより具体的な 構成例、 他のエネルギーを印加する場合の構成例などについては後述す る。
熱スィ ッチ素子 1の形状、 サイズなどは特に限定されず、 熱スィ ッチ 素子 1として必要な特性に応じて任意に設定すればよい。 例えば、 図 1 Aおよび図 1 Bに示すように、 層状の電極 2 a、 転移体 3および電極 2 bを積層した構造であってもよい。 このような積層構造である場合、 熱 スィツチ素子 1の素子面積は、 例えば、 1 X 1 02 nm2〜 1 X 1 02 c m2の範囲である。 なお、 素子面積とは、 各層の積層方向 (例えば、 図 1 Bに示す矢印 Bの方向) から素子を眺めたときの面積である。
本発明の熱スィツチ素子 1における転移体 3について説明する。 転移 体 3は、 例えば、 相転移材料として以下に示す材料を含めばよい。
転移体 3は、 例えば、 式 AxDyOzで示される組成を有する酸化物を 含んでいてもよい。 ここで、 Aは、 アルカリ金属 ( I a族) 、 アルカリ 土類金属 (Π a族) 、 S c、 Yおよび希土類元素 (L a、 C e、 P r、 N d、 Sms E u、 G d、 T b、 D y、 H o、 E r ) から選ばれる少な く とも 1種の元素である。 Dは、 Ilia族、 IV a族、 V a族、 VI a族、 V II a族、 VIII族および I b族から選ばれる少なく とも 1種の遷移元素で ある (本明細書における元素の族表示は、 I UPAC ( 1 9 70) に基 づいている。 I UPAC ( 1 9 8 9 ) に基づく族表示によれば、 上記遷 移元素は、 3族、 4族、 5族、 6族、 7族、 8族、 9族、 1 0族おょぴ 1 1族から選ばれる少なくとも 1種の遷移元素となる) 。 Oは酸素であ る。 上記酸化物は一般に結晶構造を有しており、 対応する結晶格子の単 位胞における中心位置には基本的に元素 Dが入り、 中心位置にある原子 の周囲を複数の酸素原子が囲んだ構造を有している。
x、 yおよび zは、 正の数であれば特に限定されない。 なかでも、 以 下に示す組み合わせを満たす数値であることが好ましく、 この組み合わ せによって上記酸化物は複数のカテゴリーに分類できる。 転移体 3は、 以下に示す各カテゴリーに属する酸化物を含んでいてもよい。 各カテゴ リーに属する酸化物における x、 yおよび Zの値は、 以下に示す値 (例 示を含む) を完全に満たしている必要は必ずしもなく、 例えば、 酸素が 一部欠損した酸化物であってもよいし、 元素 Aおよび元素 D以外の元素 (例えば、 IIa〜V b族元素など) が少量ドープされていてもよい。 な お、 以下に示すカテゴリ一は本発明の技術分野において技術常識として 固定化されているものではなく、 酸化物の説明を分かりやすくするため に便宜上設定したカテゴリーである。
一カテゴリー 1一
x、 yおよび zは、 x = n+ 2、 y = n + 1および z = 3 n + 4を満 たす数値である。 ここで、 nは、 0、 1、 2または 3である。
このカテゴリーに属する酸化物には、 例えば、 S r 2R u 04や (L a , S r ) 2 C o 04などの x y z指数が (2 1 4) の酸化物、 S r 3R u 2O7や (L a , S r ) 3Mn 207などの x y z指数が (3 2 7) の 酸化物が挙げられる。 これらの酸化物は、 いわゆる Ruddlesden- Popper 構造を示す酸化物である。 なお、 11 = 0のとき、 本カテゴリーの酸化物には、 元素 Aの位置に元 素 Dが配置された、 および/または、 元素 Dの位置に元素 Aが配置され た酸化物が含まれていてもよい。 例えば、 式 Dx Ay O zで示される組成 を有する酸化物や、 式 DxDy 02で示される組成を有する酸化物などが 含まれていてもよい。 より具体的には、 例えば、 Mg 2T i 04、 C r 2 Mg 04s A 1 2M g 04 (x y z指数 (2 1 4) ) などのスピネル型構 造を有する酸化物、 F e 2C o 04、 F e 2F e〇4 (即ち、 F e 34) などの元素 Aを含まない酸化物 (x y z指数 (2 1 4) ) などが含まれ ていてもよい。
—カテゴリー 2 _
x、 yおよび zは、 x = n+ l、 y = n + 1およぴ z = 3 n + 5を、満 たす数値である。 ここで、 nは、 1、 2、 3または4である。 このカテ ゴリーに属する酸化物には、 例えば、 部分的に酸素のインターカレーシ ョンを有する酸化物が挙げられる。
一カテゴリー 3—
X、 yおよび zは、 X = n、 y = nおよび z = 3 nを満たす数値であ る。 ここで、 nは、 1、 2または 3である。 このカテゴリーに属する酸 化物には、 n = lのとき、 例えば、 S r T i 03、 B a T i 〇 3、 KN b 03、 L i N b 03、 S r Mn〇 3、 S r R u O 3などのぺロブスカイ ト型結晶構造を有する酸化物が挙げられる。 また、 n = 2のとき、 例え ば、 S r 2F eMo Oい S m B a M n 2 O 6などの x y z指数が (2 2 6) である酸化物が挙げられる。
一カテゴリー 4一
x、 yおよび zは、 x = n + l、 y = nおよび z = 4 n + 1を満たす 数値である。 ここで、 nは、 1または 2である。 このカテゴリーに属す る酸化物には、 n = 1のとき、 例えば、 A 1 2 T i O 5、 Y 2 M o O 5な どの x y z指数が (2 1 5) の酸化物が挙げられる。 また、 n== 2のと き、 例えば、 S r B i 2T a 209などの酸化物が挙げられる。
一カテゴリー 5—
x、 yおよび zは、 x = 0または 1、 y = 0または 1、 z = lを満た す数値である。 ここで、 Xおよび yから選ばれるいずれか一方が 0であ る。 このカテゴリーに属する酸化物には、 例えば、 B e〇、 Mg O、 B a O、 C a O、 N i O、 MnO、 C o O、 C u O、 Z n Oなどが挙げら れる。
一カテゴリー 6—
Xおよび yは、 x = 0、 1または 2、 y = 0、 1または 2を満たす数 値である。 ここで、 Xおよび yから選ばれるいずれか一方が◦であり、 zは、 Xが 0のとき、 yの値に 1を加えた値であり、 yが 0のとき、 x の値に 1を加えた値である。 このカテゴリーに属する酸化物には、 例え ば、 T i 02、 V02、 Mn〇2、 G e 02、 C e 02、 P r〇2、 S n O 2、 A 1 203、 V203、 C e 203、 N d 203、 T i 23、 S c 203 、 L a 2 O 3などが挙げられる。
一その他のカテゴリ
例えば、 x = 0または 2、 y = 0または 2、 および、 z = 5のとき、 Nb 205、 V 205、 T a 205などの酸化物が挙げられる。 ただし、 X および yから選ばれるいずれか一方が 0である。
転移体 3は、 上述した酸化物を複数の種類含んでいてもよい。 例えば 、 同一のカテゴリーの中で nの値が異なる酸化物の構造単位胞ゃ小単位 胞が組み合わさった超格子を有する酸化物を含んでいてもよい。 具体的 なカテゴリ一としては、 例えば、 上述のカテゴリー 1 (Ruddlesden-Pop per型構造を示す酸化物) やカテゴリー 2 (酸素のインターカレーショ ンを有する酸化物) などが挙げられる。 このような超格子を有する酸化 物は、 例えば、 単独または複数の元素 Dの酸素八面体層が、 元素 Aと酸 素とを含む 1つ以上のプロック層により分離した結晶格子構造を有して いる。
また、 転移体 3は、 強相関電子系材料を含んでいてもよい。 例えば、 モット絶縁体を含んでいてもよい。
また、 転移体 3は、 磁性半導体を含んでいてもよい。 磁性半導体の母 材となる半導体には、 例えば、 化合物半導体を用いればよい。 具体的に は、 例えば、 G a A s、 G a S e、 A l A s、 I nA s、 A 1 P、 A 1 S b、 G a P、 G a S b、 I n P、 I n S b、 I n 2T e 3、 Z n O、 Z n S、 Z n S e、 Z n T e、 C d S e、 C d T e、 C d S b、 H g S 、 H g S e、 H g T e、 S i C、 G e S e、 P b S、 B i 2T e 3、 S b 2 S e 3、 Mg 2 S i、 Mg 2 S n、 Mg 3 S b 2.、 T i Oい C u I n S e 2 s C u H g I n 4 Z n I n 2 S e 4、 C d S n A s 2、 A g i n T e 2、 A g S b S e 2、 G a N、 A 1 N、 G a A 1 Ns BN、 A 1 B N、 G a I n N A sなどの I一 V族、 I—VI族、 II— IV族、 II一 V族、 Π— VI族、 III— V族、 III一 VI族、 IV—IV族、 I —III一 VI族、 I 一 V 一 VI族、 II一 ΠΙ— VI族、 π— ιν_ V族化合物半導体を母材として用い 、 これらの化合物半導体に IV a族〜 VIII族および IV b族から選ばれる少 なくとも 1種の元素を加えた磁性半導体を用いればよい。
あるいは、 式 Q i Q S Q 3で示される組成を有する磁性半導体を用いて もよい。 ここで、 Q1は、 S c、 Y、 希土類元素 (L a、 C e、 P r、 N d、 Sm、 E u、 G d、 T b、 D y、 H o、 E r ) 、 T i、 Z r、 H f 、 V、 N b、 T a、 C r、 N iおよび Z nから選ばれる少なく とも 1 種の元素であり、 Q2は、 V、 C r、 Mn、 F e、 C oぉょぴN iカ ら 選ばれる少なく とも 1種の元素であり、 Q3は、 C、 N、 0、 Fおよび Sから選ばれる少なく とも 1種の元素である。 元素 Q1と元素 Q2と元 素 Q 3との組成比は特に限定されない。
あるいは、 式 RiRSR3で示される組成を有する磁性半導体を用いて もよい。 ここで、 R 1は、 B、 A l、 G aおよび I nから選ばれる少な く とも 1種の元素であり、 R2は、 Nおよび Pから選ばれる少なく とも 1種の元素であり、 R3は、 IV a族〜 VIII族おょぴ IVb族から選ばれる 少なく とも 1種の元素である。 元素 R1と元素 R 2と元素 R 3との組成比 は特に限定されない。
あるいは、 式 Z n OR 3で示される組成を有する磁性半導体を用いて もよい。 ここで、 R 3は上述の元素 R 3であり、 Z nは亜鉛、 Oは酸素 である。 Z nと Oと元素 R 3との組成比は特に限定されない。
あるいは、 式 T O R 3で示される組成を有する磁性半導体を用いても よい。 ここで、 Tは、 T i、 Z r、 V、 N b、 F e、 N i、 A 1, I n および S nから選ばれる少なく とも 1種の元素であり、 R3は上述の元 素 R3であり、 Oは酸素である。 元素 Tと Oと元素 R3との組成比は特 に限定されない。
また、 転移体 3が、 外部から与えられた電界によってメタ磁性ー強磁 性転移する材料を含んでいてもよい。 例えば、 L a (F e , S i ) や F e R hなどを用いればよい。 この場合、 転移体 3に電気エネルギーを印 加することによって電子相転移させることができる。
また、 転移体 3に熱エネルギーを印加することによつて電子相転移さ せる場合、 例えば、 G a S b、 I n S b、 I n S e、 S b 2T e 3、 G e T e、 G e 2 S b 2 T e 5S I n S b T e、 G e S e T e、 S n S b 2
T e 4、 I n S b G e、 A g I n S b T e、 (G e , S n ) S b T e
G e S b (S e, T e ) 、 T e 8 G e丄 5 S b 2 S 2などを含んでもよい 転移体 3の形状、 サイズなどは特に限定されず、 熱スィッチ素子 1と して必要な特性に応じて任意に設定すればよい。 図 1 Aおよぴ図 1 Bに 示すように層状の転移体 3である場合、 転移体 3の厚さは、 例えば、 0 . 3 n m〜; L 0 0 μ mの範囲であり、 0 . 3 n m〜: L μ mの範囲が好ま しい。 転移体 3の面積 (例えば、 図 1 Bに示す矢印 Bの方向から見た面 積) は、 熱スィッチ素子 1として必要な素子面積に応じて任意に設定す ればよい。 また、 転移体 3は、 複数の層が積層していてもよく、 各層の 厚さ、 含まれる材料などは、 転移体 3として必要な特性に応じて任意に 設定すればよい。
電極 2 aおよび電極 2 bに用いる材料は、 導電性を有する材料であれ ば特に限定されない。 例えば、 線抵抗率が 1 0 0 μ Ω c m以下の材料を 用いればよく、 具体的には例えば、 C u、 A l、 A g、 Α ιι、 P t、 T i Nなどを用いればよい。 また、 必要に応じて半導体材料を用いてもよ い。 半導体材料を用いる場合は、 仕事関数が小さい材料が好ましい。 な お、 電極 2 aおよび電極 2 bの形状、 サイズなども特に限定されず、 熱 スィツチ素子 1として必要な特性に応じて任意に設定すればよい。 次に、 本発明の熱スィツチ素子の構成例について説明する。
図 2は、 本発明の熱スィツチ素子の別の一例を示す模式断面図である 。 図 2に示す熱スィッチ素子 1は、 図 1 Aおよび図 1 Bに示す熱スイツ チ素子 1に対して絶縁体 4をさらに含み、 転移体 3と電極 2 bとの間に 絶縁体 4が配置されている。 このような熱スィッチ素子 1では、 絶縁体 4の熱伝導性が小さいために、 転移体 3が O F F状態の時に熱スィツチ 素子 1全体としての熱伝導性をさらに小さくすることができる。 このた め、 より効率が高い熱スィッチ素子 1とすることができる。 また、 後述 するが、 絶縁体 4を配置することによって、 一方の電極から他方の電極 へと熱を伝導する冷却素子とすることもできる。
絶縁体 4の熱伝導度は、 O F F状態における転移体 3 (例えば、 絶縁 体一金属転移を行う転移体 3であれば、 絶縁体の状態における転移体 3 ) の熱伝導度よりも小さいことが好ましい。 より効率が高い熱スィッチ 素子 1とすることができる。
図 2に示すように絶縁体 4が配置されている熱スィツチ素子 1では、 電極 2 aと電極 2 bとの間を伝導する電子 (熱電子) が感じるギャップ ポテンシャルは、 転移体 3の電子相転移に伴って大きく変化すると考え られる。 例えば、 熱の移動が相対的に容易である O N状態 (例えば、 絶 縁体一金属転移を行う転移体 3であれば、 金属相を含む状態である) に おいて、 熱電子は転移体 3における絶縁体 4に面する端部から絶縁体 4 を介して電極 2 bに伝導することになる。 この際の熱電子の伝導を確保 する観点からは、 絶縁体 4の厚さは、 例えば、 5 0 n m以下の範囲であ ればよく、 さらに熱の輸送効率の観点からは、 1 5 n m以下の範囲が好 ましい。 なお、 絶縁体 4の厚さの下限は特に限定されないが、 例えば、 0 . 3 n m以上であればよい。 なお、 絶縁体 4の形状は特に限定されず 、 転移体 3および電極 2 bなどの形状に応じて任意に設定すればよい。 絶縁体 4が配置されている熱スィツチ素子 1では、 熱電子は絶縁体 4 を超えて電極 2 aから (あるいは転移体 3から) 電極 2 bへと伝達され る。 このとき、 熱電子は、 トンネル伝達やバリスティック伝達、 いわゆ るサーミオニック (thermionic) 伝達などによって絶縁体 4を介して電 極 2 bへと伝達されると考えられる。 伝達の方法は、 絶縁体 4に用いる 材料、 絶縁体 4の厚さ (即ち、 上述のギャップポテンシャル) などによ つて異なる。 言い換えれば、 例えば、 絶縁体 4に用いる材料や絶縁体 4 の厚さを制御することによって、 伝達の方法をコントロールすることも 可能である。
絶縁体 4として、 例えば、 真空を用いてもよい。 絶縁体 4として真空 を用いた場合、 素子の構成を簡素化することができる。 絶縁体 4として 真空を用いた熱スィ ッチ素子の作成方法については後述する。 なお、 真 空とは、 例えば、 1 P a程度以下の圧力雰囲気であればよい。 また、 絶 緣体 4として真空を用いた場合、 熱電子は、 基本的にはサーミオニック 伝達されると考えられる。 絶縁体 4の厚さによってはトンネル伝達する 熱電子も存在すると考えられる。
また、 絶縁体 4として、 例えば、 酸化物などのセラミクスや、 樹脂な どの一般的な固体状の絶縁材料を用いてもよい。 このとき、 絶縁体 4と して、 アモルファスあるいは微結晶の状態にある絶縁体を用いることが 好ましい。 なお、 本明細書における微結晶の状態とは、 平均結晶径が 1 0 n m以下の結晶粒がアモルファスの基体中に分散した状態をいう。 固 体状の絶縁体を用いる場合、 絶縁体 4はトンネル絶縁体として形成する のが好ましい。 絶縁体 4がトンネル絶縁体である場合、 熱を輸送する熱 電子は絶縁体 4をトンネル伝達されることになる。 トンネル絶縁体を形 成するためには、 例えば、 一般的にトンネル絶縁性とされる材料を用い ればよい。 より具体的には、 例えば、 A l、 M gなどの酸化物、 窒化物 、 酸窒化物などを用いればよい。 トンネル絶縁体である場合の絶縁体 4 の厚さは、 例えば、 0 . 5 n 11!〜 5 0 n mの範囲であり、 l n m〜2 0 n mの範囲が好ましい。
また、 絶縁体 4として、 例えば、 無機高分子材料を用いてもよい。 無 機高分子材料としては、 例えば、 シリケ一 ト材料やアルミシリケート材 料などを用いればよい。 図 3に、 無機高分子材料の構造の一例を示す。 図 3に示すように、 シリケ一ト材料やアルミシリケート材料などの無機 高分子は多孔質構造を有しており、 固体でありながら、 その内部に中空 領域 5を無数に有している。 中空領域 5の平均径は空気の平均自由工程 距離に比べて小さく、 中空領域 5の内部における気体の移動度が実質的 に小さいため、 無機高分子材料は熱を伝えにくレ、。 このため、 そのまま 絶縁体 4として用いてもよいが、 例えば、 中空領域 5に熱伝導度が小さ い気体を充填したり、 中空領域 5を真空にしたりすることによって、 よ り熱伝導度が小さい絶縁体 4とすることができる。
図 3に示す無機高分子材料についてより詳しく説明する。 図 3に示す 無機高分子材料は、 全体の骨格を形成する母材 6を含んでいる。 母材 6 は平均粒径が数 n m程度の粒子であり、 三次元的なネットワークを形成 することによって多孔質構造の骨格を形成している。 無機高分子材料は 、 母材 6によって形成された骨格によって固体としての形状を保ちなが ら、 平均径が数 n m〜数十 n m程度の連続した中空領域 5を無数に含ん でいる。 このような多孔質構造からなる絶縁体 4を図 2に示すように配 置し、 転移体 3が O N状態のときに電極 2 aおよび電極 2 b間に電圧を 印加すると (電極 2 aおよび電極 2 b間に電圧を印加することによって 転移体 3を O N状態としてもよい) 、 母材 6からなる骨格部分に電界が 集中する。 この電界の集中により、 電極あるいは転移体から絶縁体 4の 内部に効率的に熱電子が供給され、 供給された熱電子は絶縁体 4の内部 を放射伝導される。 この際の熱電子の伝達は、 主としてバリスティック 的な伝達によって行われると考えられる。 このような電界が集中する効 果は、 絶縁体 4を図 3に示すような多孔質構造とすることによって顕著 になる効果であり、 絶縁体 4が図 3に示すような多孔質構造を有しない 場合に比べて、 熱電子を伝達するために電極 2 aおよび電極 2 b間に印 加する電圧を低減することができる。
なお、 図 3に示す無機高分子材料において、 供給した熱電子の一部は 、 多孔質構造を形成する母材 6などの固相領域によって散乱され、 エネ ルギーを失うと考えられる。 しかし、 固相領域の大きさは平均数 n m程 度であるため、 供給した熱電子の多くを熱の伝達に利用することができ ると考えられる。 また、 図 3に示す無機高分子材料は、 中空領域 5の平均径と同程度、 あるいはそれ以下の平均粒径を有する電子放出材 7をさらに含んでおり 、 電子放出材 7は母材 6と接するようにして無機高分子中に分散して配 置されている。 このように電子放出材 7を含む無機高分子材料では、 熱 電子の一部が上記固相領域によって散乱された場合においても、 散乱さ れた熱電子が電子放出材 7に伝達されることによって再放出され、 再び 熱の輸送を担うことができる。 再放出された熱電子が固相領域によって さらに散乱された場合についても同様である。 このため、 より効率が高 い熱スィッチ素子とすることができる。 電子放出材 7は、 仕事関数が小 さい材料が好ましく、 具体的には、 例えば、 炭素材料、 C s化合物、 了 ルカリ土類金属化合物などを用いればよく、 その平均粒径は、 数 n m ~ 数十 n m程度の範囲である。 なお、 図 3中に示す 「 e―」 は。 電子が再 放出されている状態を示している。
絶縁体 4として、 上述した無機高分子材料に限定されず、 同様の中空 領域、 例えば、 連続的な空孔、 あるいは、 独立した空孔を有する絶縁材 料を用いてもよい。 上述の無機高分子材料を用いた場合と同様の効果を 得ることができる。 このような絶縁材料は、 母材となる粉体を形成した 後に粉体焼成を行う方法や、 化学発泡、 物理発泡、 ゾル—ゲル法などの 方法によって形成することができる。 ただし、 平均径が数 n m〜数十 n m程度の空孔を無数に有していることが好ましい。 また、 無機高分子材 料と同様に、 電子放出材を含んでいてもよい。 無機高分子材料の場合と 同様の効果を得ることができる。
具体的には、 例えば、 ゾルーゲル法によって作成された乾燥ゲルを用 いてもよい。 上記乾燥ゲルは、 平均粒径が数 n m〜数十 n m程度の範囲 の粒子で構成される骨格部と、 平均径が 1 0 0 n m程度以下の連続的な 中空領域とを有しているナノ多孔質体である。 ゲルの材料としては、 例 えば、 上述した電界の集中を効率的に行う観点から、 半導体材料あるい は絶縁材料が好ましく、 なかでも、 シリカ (酸化ケィ素) を用いること が好ましい。 シリカを用いた乾燥ゲルである多孔質シリカゲルの作製方 法については後述する。
図 4に本発明の熱スィッチ素子のまた別の一例を示す。 図 4に示す熱 スィツチ素子 1は、 図 2に示す熱スィツチ素子に対して電極 8をさらに 含み、 転移体 3と絶縁体 4との間に電極 8が配置されている。 このよう な構成とすることによって、 より効率が高い熱スィツチ素子 1とするこ とができる。
電極 8に用いる材料は、 上述した電極 2 aおよび電極 2 bに用いる材 料と同様であればよい。 なかでも、 真空準位に対する仕事関数が小さい (例えば、 2 e V以下) 材料が好ましい。 具体的には、 例えば、 C s化 合物やアル力リ土類金属化合物などを用いればよい。 このような材料を 用いた場合、 絶縁体 4への熱電子の供給をより効率よく行うことができ る。
電極 8の形状、 サイズなどは特に限定されず、 熱スィッチ素子 1 とし て必要な特性に応じて任意に設定すればよい。 図 4に示すような層状の 電極 8である場合、 その厚さは、 例えば、 サブナノメートルのオーダー から数 μ πιの範囲である。
なお、 図 1、 図 2および図 4に示す熱スィッチ素子 1における各層の 間に、 必要に応じて別の材料をさらに配置してもよい。
次に、 本発明の熱スィツチ素子における転移体へのエネルギーの印加 方法について説明する。
図 5は、 転移体 3 へ電気エネルギーを印加する方法の一例を説明する ための模式図である。 図 5に示すように、 転移体 3へのエネルギーの印 加を行う電極 1 0と絶縁体 9とをさらに含み、 転移体 3と電極 1 0との 間に絶縁体 9を配置することによって転移体 3へ電気エネルギーを印加 することができる。 具体的には、 例えば、 電極 1 0と転移体 3との間に 電圧 V gを印加すればよい。 電圧 V gを印加することによって、 例えば 、 転移体 3に電子またはホールを注入または誘起することができ、 転移 体 3にエネルギーを印加することができる。 注入または誘起された電子 は、 そのまま熱電子として熱の輸送を担うことができる。
図 6に、 図 5に示す構造を含んだ熱スィ ッチ素子の一例を示す。 図 6 に示す熱スィ ッチ素子 1は、 図 4に示す熱スィ ッチ素子 1に対して、 絶 縁体 9と電極 1 0とをさらに含んでいる。 絶縁体 9および電極 1 0は、 転移体 3と電極 1 0とによって絶縁体 9を狭持するように配置されてい る。 また、 絶縁体 9および電極 1 0は、 電極 2 aおよび電極 2 bの電位 に影響を与えないように、 具体的には、 印加する電圧 V gの方向が転移 体 3の内部において熱電子が伝導される方向とほぼ垂直になるように配 置されている。 図 6に示す熱スィツチ 1では、 転移体 3と電極 1 0との 間に電圧 V gを印加することによって、 転移体 3を電子相転移させるこ とができる。 また、 図 6に示す例において、 電圧 V gの印加を、 電極 1 0と電極 2 aとの間で行ってもよい。 なお、 本発明の熱スィッチ素子に おいて、 電圧 V gを印加する方法は特に限定されない。 例えば、 別に配 置した電圧印加部と、 本発明の熱スィツチ素子とを電気的に接続すれば よい。 本発明の熱スィッチ素子が電気回路に組み込まれている場合、 電 圧印加部は、 例えば、 上記電気回路が含んでいてもよい。 その他、 本発 明の熱スィ ッチ素子における電圧を印加したい領域の間に (例えば、 図 6に示す例であれば、 転移体 3と電極 1 0との間に) 電位差を与えるこ とができる限り、 電圧 V gを印加する方法、 構成などは任意に設定すれ ばよレヽ。
電極 1 0に用いる材料は、 上述した電極 2 aおよび電極 2 bに用いる 材料と同様であればよい。 また、 絶縁体 9に用いる材料は、 絶縁材料、 半導体材料であれば特に限定されない。 例えば、 Mg、 T i、 Z r、 H f 、 V、 N b、 T aおよび C rを含む II a族〜 VI a族元素、 およびラン タノイ ド (L a、 C eを含む) 、 Z n、 B、 A l、 G aおよび S iを含 む lib族〜 IVb族から選ばれる少なく とも 1種の元素と、 F、 0、 C、 Nおよび Bから選ばれる少なく とも 1種の元素との化合物を用いればよ い。 具体的には、 例えば、 S i 〇 2、 A 1 203、 Mg Oなどを、 半導体 として、 Z n O、 S r T i 〇 3、 L a A 1 03、 A 1 N、 S i Cなどを 用いればよい。
絶縁体 9の形状、 サイズなどは特に限定されず、 例えば、 図 6に示す ように層状である場合、 その厚さは、 例えば、 サブナノメートルのォー ダ一から数 t mの範囲である。
図 7 Aおよび図 7 Bは、 転移体 3へ磁気エネルギーを印加する方法の 一例を説明するための模式図である。 図 7 Aおよぴ図 7 Bに示す構造は 図 5に示す構造と同様であるが、 電圧 V gを印加する代わりに電極 1 0 に電流 1 1を流して磁界 1 2を発生させ、 発生した磁界 1 2を転移体 3 へ導入することによって転移体 3にエネルギーを印加することができる 。 なお、 図 7 Aは図 7 Bに示す構造を図 1 Aと同様に切断した模式断面 図である。
図 7 Aおよぴ図 7 Bに示す構造を含んだ熱スィ ッチ素子は、 例えば、 図 6に示す構造を有する熱スィツチ素子 1であればよく、 電圧 V gを印 加する代わりに電極 1 0に電流を流し、 発生した磁界を転移体 3に導入 すればよい。 電極 1 0に電流を流すことによって、 転移体 3を電子相転 移させることができる。 なお、 電圧 V gの印加と、 電極 1 0に電流を流 して磁界を発生させ転移体 3に導入することとを同時、 あるいは、 順序 を決めて行ってもよい。 転移体 3へ、 電気エネルギーと磁気エネルギー との双方を印加することができる。 なお、 転移体 3へ磁気エネルギーを 印加する場合、 絶縁体 9の厚さ (電極 1 0と転移体 3との距離ともいえ る) は、 例えば、 数 n m〜数 μ mの範囲である。 また、 電極 1 0と転移 体 3とが電気的に短絡しない限り、 絶縁体 9は必ずしも配置しなくても よい。 例えば、 電極 1 0と転移体 3とを、 数 n m〜数/ i m程度離して配 置してもよい。
転移体 3へ磁気エネルギーを印加する場合、 電極 1 0で発生した磁界 を集束する磁束ガイ ドを電極 1 0に接して、 あるいは、 電極 1 0の近傍 に配置してもよい。 磁束ガイ ドを配置することによって、 転移体 3に磁 界 1 2が効率よく導入され、 より効率が高い熱スィ ッチ素子とすること ができる。
配置する磁束ガイ ドの形状は、 電極 1 0において発生した磁界を集束 することができる限り、 特に限定されない。 熱スィ ッチ素子として必要 な特性、 製造プロセス上の要求などに応じて、 任意に設定すればよい。 例えば、 図 8 Aに示すように、 磁束ガイ ド 1 3と電極 1 0とを組み合わ せた場合の断面が矩形状であってもよいし、 図 8 Bに示すように台形状 であってもよい。 図 8 Bに示す例のように台形状である場合、 磁界を導 入する対象である転移体 3により近い位置でより多くの電流を流すこと ができるため、 より効率よく転移体 3に磁界を導入することができる。 なお、 図 8 Aおよぴ図 8 Bに示す例では、 電極 1 0と磁束ガイ ド 1 3と が密着した形状となっているが、 必ずしも両者は密着している必要はな い。 ただし、 両者が密着している場合、 より効率よく転移体 3に磁界を 導入することができる。 また、 図 8 Aおよび図 8 Bでは、 説明を分かり やすくするために、 電極 2 a、 電極 2 bなどの図示を省略している。 以 降の図においても、 同様に、 電極 2 a、 電極 2 bなどの図示を省略する 場合がある。 実際に熱スィ ッチ素子として使用する際には、 電極 2 aお よび電極 2 b、 また、 必要に応じて電極 8、 絶縁体 4などを任意の位置 に配置すればよい。
磁束ガイ ド 1 3に用いる材料は、 電極 1 0において発生した磁界を集 束することができる限り、 特に限定されず、 例えば、 強磁性材料を用い ればよい。 より具体的には、 例えば、 N i 、 C oおよび F eから選ばれ る少なく とも 1種の元素を含む軟磁性合金膜を用いればよい。
また、 磁束ガイ ド 1 3に用いる強磁性材料は、 過度に大きな保磁力を 有していないことが好ましい。 過度に大きい保磁力を有する強磁性材料 を磁束ガイ ドとして用いた場合、 磁束ガイ ド 1 3自身の磁化保持によつ て転移体 3に加える磁界の制御性が低下したり、 磁束ガイ ド 1 3自身の 磁化方向を変化させるためにエネルギーが余分に必要となり熱スィッチ 素子としての効率が低下したりする可能性がある。
図 9に、 転移体 3 へ磁気エネルギーを印加する方法の別の一例を示す 。 転移体 3へ磁気エネルギーを印加するために、 図 9に示すような構造 としてもよい。 図 9に示す例では、 転移体 3を囲むように電極 1 0が配 置されており、 転移体 3の両側面 (図 9に示す側面 Cおよび側面 D ) に 面する電極 1 0に逆位相の電流を流すことができる。 このため、 転移体 3に導入する磁界を強めることができ、 より効率が高い熱スィツチ素子 とすることができる。
図 1 0 Aおよび図 1 ◦ Bに、 転移体 3 へ磁気エネルギーを印加する方 法のまた別の一例を示す。 図 1 0 Aおよび図 1 0 Bに示す例では、 図 9 に示す例に対して、 磁束ガイ ド 1 3がさらに配置されている。 また、 磁 束ガイ ド 1 3は、 磁界を導入する対象である転移体 3の近傍にのみ配置 されている。 この場合、 磁束ガイ ド 1 3が有する保磁力を不必要に増大 させることなく、 より効率よく転移体 3に磁界を導入することができる なお、 図 1 0 Bは、 図 1 0 Aを図 1 0 Aに示す C一 D方向に切断した断 面図である。
また、 転移体 3の近傍に磁束ガイ ド 1 3を配置するにあたっては、 図 1 1に示すように、 磁束ガイ ド 1 3を分割して配置してもよい。 この場 合、 磁束ガイ ド 1 3が有する保磁力の増大をより抑制し、 かつ、 より効 率よく転移体 3に磁界を導入することができる。 なお、 図 1 1に示す例 は、 磁束ガイ ド 1 3以外は図 1 0 Aおよび図 1 0 Bに示す例と同様であ る。
図 1 2 Aおよび図 1 2 Bに、 転移体 3へ磁気エネルギーを印加する方 法のまた別の一例を示す。 図 1 2 Aおよぴ図 1 2 Bに示す例では、 より 効率よく転移体 3に磁界を導入することができる。 なかでも、 転移体 3 が垂直方向の磁界により反応する場合に好ましい。
図 1 3は、 転移体 3へ光エネルギーを印加する方法の一例を示す模式 図である。 図 1 3に示すように、 転移体 3へ光エネルギーを印加するた めには、 転移体 3へ光 1 4を入射すればよい。 転移体 3へ光 1 4を入射 する際には、 図 1 4 Aに示すように光 1 4を転移体 3に直接入射しても よいし、 図 1 4 Bに示すように電極 2 aおよび Zまたは電極 2 bを介し て光 1 4を入射してもよい。
電極 2 aおよび Zまたは電極 2 bを介して光 1 4を入射する場合には 、 光 1 4が入射する電極 (図 1 4 Bに示す例では、 電極 2 b ) が光 1 4 に対する透過性を有している必要がある。 このため、 上記電極に用いる 材料は、 入射する光の帯域に応じて選択すればよい。 入射する光が可視 光および/または赤外光の場合.、 電極の材料には、 例えば、 I T O ( I n d i u m T i n O x i d e ) や Z n Oなどを用いればよい。 入射 する光がテラへルツ光の場合、 電極の材料には、 例えば、 M g Oなどを 用いればよい。 なお、 電極が光を透過する度合、 例えば、 電極の光透過 度は特に限定されず、 熱スィツチ素子として必要な特性に応じて任意に 設定すればよい。 また、 転移体 3へ光を入射する方法は、 転移体 3へ光 を入射することができる限り特に限定されない。 例えば、 図 4に示す熱 スィツチ素子 1において、 転移体 3に入射する光に対して透過性を有す る材料を電極 8および絶縁体 4にも用い、 電極 2 b側から光を入射して もよい。
図 1 5は、 転移体 3へ熱エネルギーを印加する方法の一例を示す模式 図である。 図 1 5に示す例では、 転移体 3と電極 1 0との間に発熱体 1 5が配置されており、 電極 1 0に電流を流すことによって発熱体 1 5に 電流が流れ発熱体 1 5が発熱する。 このようにして、 転移体 3に熱エネ ルギーを印加することができる。 発熱体 1 5には、 電流が流れることに よって発熱する材料、 例えば、 抵抗体などを用いればよい。 また、 発熱 体 1 5と転移体 3との間に、 必要に応じて他の層、 例えば、 絶縁体を配 置してもよい。
なお、 図 1 5に示す例に限らず、 転移体 3へ熱エネルギーを印加する 方法は特に限定されない。 例えば、 図 1 0に示す発熱体に光や電波を照 射することによって発熱させ、 転移体 3へ熱エネルギーを印加してもよ い。 また、 電極 1 0に流す電流により電極 1 0自体を発熱させることに よって、 転移体 3へ熱エネルギーを印加してもよい。
図 1 6は、 転移体 3へ力学エネルギーを印加する方法の一例を示す模 式図である。 図 1 6に示す例では、 転移体 3と電極 1 0との間に変位体 1 6が配置されており、 電極 1 0に電流を流すことによって変位体 1 6 が変形する。 即ち、 変位体 1 6を配置することによって、 転移体 3へ力 学エネルギーの 1種である圧力を印加することができる。
変位体 1 6には、 例えば、 圧電材料ゃ磁歪材料を用いればよい。 変位 体 1 6が圧電材料を含む場合、 例えば、 電極 1 0を流れる電流を変位体 1 6に導入すればよい。 変位体 1 6が磁歪材料を含む場合、 例えば、 電 極 1 0を流れる電流により発生した磁界を変位体 1 6に導入すればよい 以上、 転移体 3へのエネルギーの印加方法を説明したが、 上述の説明 から明らかであるように、 本発明の熱スィツチ素子では複数の異なる種 類のエネルギーを同時に、 あるいは順序を決めて転移体 3に印加するこ とができる。 例えば、 電極 1 0を異なる種類のエネルギーの印加に用い ることができる。 なお、 図 5〜図 1 7に示す各層の間に、 必要に応じて 別の材料をさらに配置してもよい。
本発明の熱スィツチ素子 1は、 電極 2 aおよび電極 2 bから選ばれる 一方の電極から他方の電極へと熱を伝導する冷却素子としても用いるこ とができる。 例えば、 図 1に示す熱スィッチ素子 1において、 転移体 3 に絶縁体としての機能を併せ持つ材料を用いることなどによって、 一定 の方向に熱を伝導する素子とすることができる。 このような材料として は、 (P r , C a ) M n 0 3や V 0 2など、 また、 B i 2 S r 2 C a 2 C u 3 0 1。などの層状物質などが挙げられる。 層状物質の場合、 例えば、 その層間方向を利用すればよい。 なお、 「一方の電極から他方の電極へ と熱を伝導する」 、 および、 「一定の方向に熱を伝導する」 とは、 その 反対の方向へ全く熱を伝導しない場合のみを意味するわけではない。 例 えば、 電極 2 a力 ら電極 2 bへの熱の伝導と、 電極 2 b力 ら電極 2 aへ の熱の伝導とが非対称であってもよい。 見かけ上、 一定の方向に熱が伝 導される現象が生じることになる。
また、 図 2に示すように、 絶縁体 4を配置した熱スィッチ素子 1では 、 絶縁体 4の材料、 厚さなどを制御することなどによって、 電極 2 aか ら電極 2 bへ向カゝぅ方向と、 電極 2 bから電極 2 aへ向かう方向とにお ける熱電子の伝導度を非対称にすることができる。 このため、 一定の方 向に熱を伝導する素子、 即ち、 冷却素子とすることができる。 なお、 一 方向の熱の伝導を実現するためには、 転移体 3が ON状態にあることが 必要である。
次に、 本発明の熱スィツチ素子の製造方法について説明する。
熱スィツチ素子を構成する各層の形成には、 一般的な薄膜形成プロセ スを用いればよく、 例えば、 パルスレーザデポジション (P LD) 、 ィ オンビームデポジション ( I BD) 、 クラスタ f オンビーム、 および 、 R F、 DC, 電子サイクロ トロン共鳴 (E C R) 、 ヘリコン、 誘導結 合プラズマ ( I C P) 、 対向ターゲットなどの各種スパッタリング法、 分子線エピタキシー法 (MB E) 、 イオンプレーティング法などを用い ればよい。 また、 これら PVD法の他に、 CVD法、 メツキ法あるいは ゾルゲル法などを用いてもよい。 微細加工を行う必要がある場合、 半導 体プロセスや磁気へッド作製プロセスなどに一般的に用いられている手 法を組み合わせればよい。 具体的には、 例えば、 イオンミリング、 反応 †生イオンエッチング (R I E) 、 F I B (Focused Ion Beam) などの物 理的または化学的エッチング法、 微細パターン形成のためのステッパー 、 電子ビーム (EB) 法などを用いたフォトリ ソグラフィー技術などを 組み合わせればよい。 電極などの各層の表面を平坦化するためには、 例 えば、 CMP (Chemo-Mechanical Polishing) やクラスターイオンビー ムエッチングなどを用いればよい。 また、 各層を形成する際には、 基体 上に形成してもよい。 基体に用いる材料は特に限定されず、 例えば、 S iや S i 〇2、 あるいは、 G a A sや S r T i 03などの酸化物単結晶 などを用いればよい。
図 2に示すように転移体 3と電極 2 b との間に絶縁体 4をさらに含み 、 かつ、 絶縁体 4が真空である熱スィッチ素子 1の製造方法を示す。 こ のような熱スィッチ素子 1の製造方法において、 真空である絶縁体 4 ( 以下、 真空絶縁部、 ともいう) を転移体 3と電極 2 bとの間に形成する 方法は特に限定されない。 例えば、 転移体 3と電極 2 bとを所定の間隔 で配置することによって電極 2 bと転移体 3との間に空間を形成し、 形 成した空間を真空に保持することによって電極 2 bと転移体 3との間に 絶縁体 4を形成してもよい。 このような製造方法の一例を図 1 7に示す α
図 1 7に示す例では、 電極 2 aおよび転移体 3を含む積層体と電極 2 bとを、 電極 2 bと転移体 3とが面するように所定の間隔で配置するこ とによって、 電極 2 bと転移体 3との間に空間を形成している (工程 ( I ) ) 。 ここで、 形成した空間を真空に保持することによって、 電極 2 aと転移体 3との間に真空絶縁部を形成することができる (工程 (I I) ) 0
工程 ( I ) における所定の間隔は、 例えば、 形成する真空絶縁部とし て必要な厚さであればよく、 具体的には上述したように、 例えば、 5 0 n m以下の範囲であればよく、 なかでも 1 5 n m以下の範囲が好ましい 。 上記間隔の下限は特に限定されないが、 例えば、 0 . 3 n m以上であ ればよい。
工程 ( I ) において、 積層体と電極 2 bとを所定の間隔で配置し、 電 極 2 bと転移体 3との間に空間を形成する方法は特に限定されない。 例 えば、 積層体および/または電極 2 bを、 両者の間隔を制御しながら移 動させればよく、 その方法は特に限定されない。 より具体的には、 例え ば、 図 1 7に示すように、 電極 2 bおよび Zまたは上記積層体を移動す るように圧電体 1 7を配置し (工程 ( I一 a ) ) 、 配置した圧電体 1 7 を変形させればよい (工程 ( I — b ) ) 。 圧電体 1 7が変形 (膨張およ ぴ または収縮) するに伴って電極 2 bおよび/または積層体が移動す るため、 積層体と電極 2 bとを所定の間隔で配置することができる。 な お、 積層体と電極 2 bとを所定の間隔で配置するために、 圧電体 1 7を 膨張させても収縮させてもよく、 膨張と収縮とを組み合わせてもよい。 工程 ( I— a ) において、 圧電体 1 7の配置方法は、 電極 2 bおよび /または上記積層体が移動できる限り特に限定されない。 例えば、 図 1 7に示すように、 電極 2 bおよび または上記積層体に接するように圧 電体 1 7を配置すればよい。 図 1 7では、 電極 2 bと上記積層体との双 方に接するように圧電体 1 7が配置されているため、 電極 2 bと上記積 層体との双方を移動できる。 いずれか一方のみに接するように圧電体 1 7が配置されていてもよい。 圧電体 1 7には、 一般的な圧電材料を用い ればよい。 なお、 圧電体 1 7と電極 2 aおよび Zまたは電極 2 bとの間 に、 必要に応じて別の層を配置してもよい。
工程 (I I) において、 工程 ( I ) で形成した空間を真空に保持する方 法は特に限定されない。 例えば、 工程 ( I ) の後に、 積層体および電極 2 b間の間隔を維持したまま、 上記空間を真空とし密閉してもよい。 上 記空間を真空とするためには、 例えば、 積層体および電極 2 bを含む全 体を真空の雰囲気下におけばよい。 また、 工程 ( I ) と工程 (Π) とを 同時に行ってもよい。 例えば、 真空の雰囲気下において工程 ( I ) を行 い、 積層体と電極 2 bとの間に形成した空間をそのまま密閉すればよい 。 その他、 工程 ( I ) が複数の工程を含む場合、 工程 ( I ) の途中で、 積層体おょぴ電極 2 bの全体を真空の雰囲気下においてもよい。 なお、 真空とは、 上述したように、 例えば、 1 P a程度以下の状態であればよ い。
図 1 7に示す例では、 電極 2 bと、 電極 2 aおよび転移体 3を含む積 層体とを用いて熱スィツチ素子を形成したが、 電極 2 aは真空絶縁部の 形成とは別に配置してもよい。 具体的には、 例えば、 以下のようにすれ ばよい。 最初に、 転移体 3と電極 2 bとを、 電極 2 bと転移体 3とが面 するように所定の間隔で配置することによって、 電極 2 bと転移体 3と の間に空間を形成する (工程 ( i ) ) 。 図 1 7において、 電極 2 aが省 かれている状態である。 次に、 上記形成した空間を真空に保持すること によって、 電極 2 bと転移体 3との間に真空絶縁部を形成する (工程 ( ii) ) 。 次に、 転移体 3が電極 2 bと電極 2 aとの間に配置されるよう に、 電極 2 aを配置すればよい (工程 (iii) ) 。
工程 ( i ) における空間の形成方法および工程 (ii) における真空絶 縁部の形成方法は、 上述した工程 ( I ) における方法、 工程 (II) にお ける方法と同様であればよい。 例えば、 工程 ( i ) 力 ( i - a ) 電極 2 bおよび転移体 3から選ばれる少なくとも 1つを移動するように圧電 体 1 7を配置する工程と、 ( i 一 b ) 配置した圧電体 1 7を変形させる ことによって、 電極 2 bと転移体 3とを所定の間隔で配置し、 電極 2 b と転移体 3との間に空間を形成する工程とを含んでいてもよい。
工程 (iii) における電極 2 aを配置する方法は特に限定されず、 例 えば、 上述した薄膜形成方法を用いればよい。 なお、 工程 (iii) は、 必ずしも工程 (ii) の後に行う必要はなく、 例えば、 工程 ( i ) からェ 程 (ii) における任意の時点で行ってもよい。
転移体 3と電極 2 bとの間に絶縁体 4をさらに含み、 かつ、 絶縁体 4 が真空絶縁部である熱スィツチ素子 1の製造方法の別の一例を図 1 8 A 〜図 1 8 Dに示す。
最初に、 図 1 8 Aに示すように、 電極 2 aと、 転移体 3と、 電極 2 b とを含み、 真空絶縁部の代わりに中間体 1 8を配置した多層膜を形成す る (工程 (A) ) 。 真空絶縁部の代わりに中間体 1 8を配置しているた め、 上記多層膜における積層の順序は、 電極 2 a、 転移体 3、 中間体 1 8、 電極 2 bとなる。 ここで、 中間体 1 8には転移体 3よりも力学的に 破壊しやすい材料を用いればよい。 力学的に破壊しやすい材料とは、 例 えば、 圧縮力や引張力を加えた場合に転移体よりも破壊しやすい材料で あればよい。 即ち、 例えば、 転移体 3よりも強度が小さい材料を用いれ ばよい。 より具体的には、 例えば、 B i、 P b、 A gなどを用いればよ い。 中間体 1 8の厚さは、 例えば、 真空絶縁部として必要な厚さであれ ばよく、 具体的には上述の通りである。
次に、 図 1 8 Bに示すように、 上記多層膜の積層方向に多層膜を伸張 することによって中間体 1 8を破壊する。 その後、 図 1 8 Cに示すよう に、 残存する中間体 1 8に気体 1 9を吹き付けることによって中間体 1 8を除去し、 転移体 3と電極 2 b との間に空間を形成する (工程 (B) ) α
次に、 図 1 8 Dに示すように、 形成した空間を真空に保持することに よって、 電極 2 bと転移体 3との間に真空である絶縁体 4が形成された 熱スィッチ素子を得ることができる (工程 (D) ) 。 この方法では、 真 空絶縁部の厚さを中間体 1 8の厚さとすることができるため、 図 1 7に 示す方法に比べて、 真空絶縁部の厚さ (電極 2 bと転移体 3との距離) の制御をより容易に行うことができる。
工程 (A) において、 多層膜を形成する方法は特に限定されず、 例え 'ば、 上述した成膜方法を用いればよい。
工程 (B) において、 多層膜をその積層方向に伸張する方法は特に限 定されない。 例えば、 図 1 8 Bに示すように、 圧電体 1 7を用いればよ い。 具体的には、 工程 (B) (B - a ) 多層膜の少なくとも一方の 主面に接すように圧電体 1 7を配置する工程と、 (B— b) 配置した圧 電体 1 7を変形 (膨張および Zまたは収縮) させることによって、 多層 膜の積層方向に多層膜を伸張させ、 中間体 1 8を破壌する工程とを含ん でいてもよい。
工程 (B— a) において、 圧電体 1 7の配置方法は、 多層膜を伸張で きる限り特に限定されない。 例えば、 図 1 8 Bに示すように、 多層膜に 含まれる電極 2 bに接するように圧電体 1 7を配置すればよい。 電極 2 a側に圧電体 1 7が配置されていてもよく、 電極 2 a側および電極 2 b 側の双方に圧電体 1 7が配置されていてもよい。 圧電体 1 7には、 一般 的な圧電材料を用いればよい。 なお、 圧電体 1 7と電極 2 aおよび/電 極 2 bとの間に、 必要に応じて別の層を配置してもよい。
工程 (B— b ) において、 多層膜を伸張するために、 圧電体 1 7を膨 張させても収縮させてもよく、 膨張と収縮とを組み合わせてもよい。 例 えば、 圧電体 1 7の収縮量と膨張量とが同じになるように、 膨張と収縮 とを組み合わせれば、 中間体 1 8の厚さと同じ間隔 (転移体 3と電極 2 bとの間隔) を有する空間を形成することができる。
工程 (B ) において、 破壌後に残存する中間体 1 8を除去する方法は 特に限定されない。 例えば、 図 1 8 Cに示すように、 気体 1 9を吹き付 けることによって除去すればよい。 気体だけでなく、 液体を吹き付ける ことによって除去してもよい。 気体を用いる場合、 用いる気体の種類は 特に限定されず、 例えば、 中間体 1 8と反応性を有する気体を用いれば よい。
工程 (C ) において、 工程 (B ) で形成した空間を真空に保持する方 法は特に限定されない。 例えば、 工程 (B ) の後に、 転移体 3と電極 2 bとの間隔を維持したまま、 上記空間を真空とし密閉してもよい。 上記 空間を真空とするためには、 例えば、 転移体 3、 電極 2 b、 電極 2 aを 含む全体を真空の雰囲気下におけばよい。 また、 工程 (A ) および ま たは工程 (B〉 と、 工程 (C ) とを同時に行ってもよい。 例えば、 真空 の雰囲気下において工程 (A ) および工程 (B ) を行い、 転移体 3と電 極 2 bとの間に形成した空間をそのまま密閉してもよい。 その他、 工程 ( A ) から工程 (B ) 中の任意の時点で、 転移体 3、 電極 2 aおよぴ電 極 2 bの全体を真空の雰囲気下においてもよい。 なお、 真空とは、 上述 したように、 例えば、 1 P a程度以下の状態であればよい。
次に、 絶縁体 4に用いるナノ多孔質体の製造方法の一例を示す。 多孔質体の一例として多孔質シリカの作製方法を示す。
多孔質シリカを得る方法は、 湿潤ゲルを作製する工程と、 作製した湿 潤ゲルを乾燥する工程 (乾燥工程) とに大きく分類される。
最初に、 湿潤ゲルを作製する工程について説明する。 シリカの湿潤ゲ ルは、 例えば、 溶媒中で混合したシリカの原料をゾルーゲル反応させる ことによって合成できる。 このとき、 必要に応じて触媒を用いてもよい 。 湿潤ゲルの形成過程では、 溶媒中において、 上記原料が反応しながら 微粒子を形成し、'形成した微粒子が三次元的にネットワーク化して網目 状骨格を形成する。 原料および溶媒の組成を選択する、 あるいは、 必要 に応じて触媒、 粘度調整剤などを加えることによって、 上記骨格の形状 (例えば、 形成した多孔質シリカにおける空孔の平均径など) を制御す ることができる。 実際の作製工程においては、 溶媒中で混合したシリカ の原料を基板上に塗布し、 塗布した状態で一定時間経過させることによ つてゲル化させ、 シリカの湿潤ゲルを作製してもよい。
基板上への塗布方法は特に限定されず、 例えば、 スピンコート法、 デ イッブ法、 スクリーン印刷法などを、 必要な膜厚、 形状などに応じて選 択すればよい。
湿潤ゲルを作製する際の温度は特に限定されず、 例えば、 室温近傍で あればよい。 必要に応じて、 用いた溶媒の沸点以下の温度まで加熱して もよい。
シリカの原料には、 例えば、 テトラメ トキシシラン、 テトラエトキシ シラン、 トリメ トキシメチルシラン、 ジメ トキシジメチルシランなどの アルコキシシラン化合物、 および、 これらのオリ ゴマー化合物、 あるい は、 ケィ酸ナトリウム (ケィ酸ソーダ) 、 ケィ酸カリウムなどの水ガラ ス化合物、 あるいは、 コロイダルシリカなどを単独あるいは混合して用 いればよい。
溶媒は、 原料が溶解してシリカを形成することができれば特に限定さ れず、 例えば、 水、 メタノール、 エタノール、 プロパノール、 アセ トン 、 トルエン、 へキサンなどの一般的な無機 '有機溶媒を単独あるいは混 合して用いればよい。
触媒には、 例えば、 水、 あるいは、 塩酸、 硫酸、 酢酸などの酸、 ある いは、 アンモニア、 ピリジン、 水酸化ナトリウム、 水酸化カリウムなど の塩基を用いればよい。
粘度調整剤は、 原料を混合した溶媒の粘度を調整できる材料であれば 特に限定されず、 例えば、 エチレングリコール、 グリセリン、 ポリビ- ルアルコーノレ、 シリコーン油などを用いればよい。
なお、 多孔質シリカ中に上述した電子放出材を分散させたい場合は、 例えば、 上記原料と共に電子放出材を溶媒中に混合、 分散させた後にゲ ル化させればよい。
次に、 湿潤ゲルを乾燥する乾燥工程について説明する。 湿潤ゲルを乾 燥する方法は特に限定されず、 例えば、 自然乾燥、 加熱乾燥、 減圧乾燥 などの通常乾燥法、 あるいは、 超臨界乾燥法、 凍結乾燥法などを用いれ ばよい。 このとき、 乾燥に伴うゲルの収縮を抑制する観点からは、 超臨 界乾燥法を用いることが好ましい。 また、 通常乾燥法を用いる場合にお いても、 作製した湿潤ゲルの固相成分表面を撥水処理することによって 、 乾燥に伴うゲルの収縮を抑制することが可能である。
超臨界乾燥法を用いる場合、 超臨界乾燥に用いる溶媒には、 湿潤ゲル の作製に用いた溶媒をそのまま用いてもよい。 あるいは、 湿潤ゲルに含 まれる溶媒を、 超臨界乾燥において取り扱いがより容易な溶媒に予め置 換してもよい。 置換する溶媒には、 超臨界流体として一般的に用いられ る溶媒、 例えば、 メタノール、 エタノール、 イソプロピルアルコールな どのアルコール類、 二酸化炭素、 水などを用いればよい。 またこれらの 超臨界流体に溶出しやすいアセトン、 酢酸イソァミル、 へキサンなどに 湿潤ゲルに含まれる溶媒を予め置換してもよい。
超臨界乾燥は、 例えば、 オートクレープなどの圧力容器中で行えばよ く、 超臨界流体としてメタノールを用いる場合、 オートクレープの内部 をメタノールの臨界条件である圧力 8 . 0 9 M P a、 温度 2 3 9 . 4 °C 以上に保ち、 温度一定の状態で圧力を徐々に開放することによつて湿潤 ゲルの乾燥を行えばよい。 二酸化炭素を用いる場合、 同様に、 圧力 7 . 3 8 M P a、 温度 3 1 . 1 °C以上に保ち、 温度一定の状態で圧力を徐々 に開放することによって乾燥を行えばよい。 水を用いる場合は、 同様に 、 圧力 2 2 . 0 4 M P a、 温度 3 7 4 . 2 °C以上に保ち、 温度一定の状 態で圧力を徐々に開放することによって乾燥を行えばよい。 乾燥に必要 な時間は、 例えば、 超臨界流体によって湿潤ゲル中の溶媒が 1回以上入 れ替わる時間以上とすればよい。
湿潤ゲルを撥水処理した後に乾燥する方法では、 撥水処理のための表 面処理剤を湿潤ゲルの固相成分の表面に化学反応させた後に乾燥すれば よい。 湿潤ゲルの空孔內に発生する表面張力を撥水処理によって低減す ることができるため、 乾燥時のゲルの収縮を抑制することができる。 表面処理剤には、 例えば、 トリメチルクロルシラン、 ジメチルジクロ ルシランなどのハロゲン系シラン処理剤、 トリメチルメ トシシラン、 ト リメチルェトキシシランなどのアルコキシ系シラン処理剤、 へキサメチ ルジシロキサン、 ジメチルシロキサンォリゴマーなどのシリコーン系シ ラン処理剤、 へキサメチルジシラザンなどのアミン系シラン処理剤、 プ 口ピルァノレコール、 プチルアルコールなどのアルコール系処理剤などを 用いればよい。 その他、 上述した表面処理剤と同様の効果が得られる材 料であれば、 特に限定することなく用いることができる。
なお、 シリ力以外の無機材料や有機高分子材料などを用いても同様の ナノ多孔質体を得ることができる。 例えば、 酸化アルミニウム (アルミ ナ) などのセラミタス形成に一般的に用いられる材料などを用いてもよ い。 また、 上述した方法によってナノ多孔質体を形成した後に、 気相合 成法などの方法を用いることによって、 電子放出材を多孔質体の内部に 分散、 形成することもできる。
(実施例)
以下、 実施例を用いて本発明をより具体的に説明する。 なお、 本発明 は以下に示す実施例に限定されない。
(実施例 1 )
実施例 1では、 転移体 3として S r T i O 3を用い、 図 1 9に示すよ うな熱スィツチ素子 1を作製した。 電極 2 aおよび電極 2 bには A 1を 、 絶縁体 9には A 1 2 O 3を、 電極 1 0には A uを用いた。 実施例 1で 用いた熱スィツチ素子 1の作製方法を図 2 0 A〜図 2 0 Eに示す。
最初に、 転移体 3である S r T i O 3の結晶上にレジスト 2 0を堆積 させた (図 2 O A ) 。 レジストにはポジ型のレジスト材料を用い、 一般 的なレジスト塗布方法を用いた。 次に、 スパッタリング法を用いて A 1 層 2 1を全体に堆積させた (図 2 0 B ) 。 次に、 リフトオフによって、 レジスト 2 0と、 A 1層 2 1におけるレジス ト 2 0上に位置する部分と を除去し、 電極 2 aおよび電極 2 bを形成した (図 2 0 C ) 。 次に、 ス パッタリング法を用いて A 1 2 O 3からなる絶縁体 9を形成した (図 2 0 D ) 。 最後に、 スパッタリ ング法を用いて A uからなる電極 1 0を形 成し (図 2 0 E ) 、 図 1 9に示す熱スィツチ素子 1を作製した。 電極 2 aと電極 2 bとの間の距離 d (転移体 3の一辺の長さに相当) は約 5 μ m、 絶縁体 9の厚さは約 1 0 0 n m、 電極 1 0の厚さは約 2 μ mとした 。 また、 図 1 9に示す矢印 Eから見た転移体 3のサイズは、 1 0 z mX 0. 5 μ mとした。
このようにして作製した熱スィツチ素子 1に対し、 電極 1 0と転移体 3との間に電圧を印加することによって転移体 3に電気エネルギーを印 加し、 エネルギーの印加前後における電極 2 aと電極 2 bとの間の熱伝 導度の変化を調べた。 電極 2 aと電極 2 bとの間の熱伝導度の測定は、 ハーマン法を用いて行った。 ハーマン法とは、 サンプルに電流を印加す ることによつて生じたサンプルの両端の温度差から熱伝導の状態を評価 する方法である。 より具体的には、 熱伝導度は、 式 S T I /Δ Τによつ て求めることができる。 Sは熱電能 (V/K) 、 Tはサンプルの平均温 度 (K) 、 Iは電流値 (A) 、 Δ Τ (K) はサンプルの温度差である。 なお、 特に記載がないかぎり、 熱伝導度の測定は室温で行った。 以降の 実施例においても同様である。
その結果、 電極 1 0と転移体 3との間に電圧を印加しない状態では、 電極 2 aと電極 2 bとの間の熱伝導度が非常に小さく、 測定できない程 度であった。 その後、 電極 1 0と転移体 3との間に電圧を印加していく と、 数十 V程度の電圧を印加した段階で熱伝導性が出現し、 電圧の印加 によって熱の輸送が制御できる熱スィツチ素子として機能することが確 認された。
次に、 図 2 1に示すような熱スィッチ素子 1を作製し、 同様に、 エネ ルギ一の印加前後における電極 2 aと電極 2 bとの間の熱伝導度の変化 を調べた。 図 2 1に示す熱スィッチ素子 1の作製は、 以下のように行つ た。 電極 2 &として1^ を0. 1原子%〜 1 0原子%の範囲でドープし た S r T i O 3結晶 (N b : S r T i O 3) を用い、 その上にスパッタ リング法を用いて S r T i 03からなる転移体 3を形成した。 転移体 3 は、 4 5 0°C~ 7 0 0°C程度の加熱雰囲気下で形成した。 A 1からなる 電極 2 b、 A 1 2 O 3からなる絶縁体 9、 A uからなる電極 1 0は、 図 1 9に示す熱スィッチ素子 1と同様にして形成した。 転移体 3の厚さ ( 電極 2 aおよび電極 2 b間の距離に相当) は約 Ι μπιとし、 絶縁体 9を 介する電極 1 0と転移体 3との間の距離は約 1 0 0 nmとした。
このようにして作製した熱スィッチ素子 1に対し、 電極 1 0と転移体 3との間に電圧を印加することによって転移体 3に電気エネルギーを印 加し、 エネルギーの印加前後における電極 2 aと電極 2 bとの間の熱伝 導度の変化を調べた。
その結果、 電極 1 0と転移体 3との間に電圧を印加しない状態では、 電極 2 aと電極 2 bとの間の熱伝導度が非常に小さく、 測定できない程 度であった。 その後、 電極 1 0と転移体 3との間に印加する電圧を増加 させていく と、 2. 5 Vの電圧を印加した段階で熱伝導性が出現し、 電 圧の印加によって熱の輸送が制御できる熱スィツチ素子として機能する ことが確認された。
なお、 実施例 1では転移体として S r T i 〇 3を用いたが、 その他、 L a T i 〇3、 (L a , S r ) T i 〇3、 YT i 〇3、 (Sm、 C a ) T i 03、 (N d, C a ) T i 〇3、 (P r, C a ) T i 〇3、 S r T i O 3_d ( 0 < d≤ 0. 1 ) 、 (P r !_x C a x) Mn O 3 ( 0 < x≤ 0. 5 ) などを転移体 3に用いた場合にも同様の結果を得ることができた。 ま た、 G d B a Mn 2 O 6などの式 X 1 B a X 2 2 O 6 (X1は、 L a、 P r 、 N d、 Sm、 E u、 G d、 T b、 D y、 H o、 E r、 Tmおよび Yb から選ばれる少なく とも 1種の元素であり、 X2は、 Mnおよび/また は C oである) で示される酸化物や、 式 (V^ X S y) Ox (0≤ y≤ 0. 5、 1. 5≤ x≤ 2. 5、 X3は、 C r、 Mn、 F e、 C oおよび N iから選ばれる少なく とも 1種の元素である) で示される酸化物を用 いた場合にも同様の結果を得ることができた。 (実施例 2 )
実施例 2では、 転移体 3として C rを 0. 1原子。/。〜 1 ◦原子%の範 囲でドービングした S r T i 03 (C r : S i T i 03) を用い、 図 2 2に示すような熱スィツチ素子 1を作製した。
最初に、 基体 2 2として S r T i 03を用い、 スパッタリング法を用 いて基体 2 2上に S r R u〇3からなる電極 2 aを形成した。 次に、 電 極 2 a上に C r : S i T i 03からなる転移体 3を形成し、 さらにその 上に P tからなる電極 2 bを形成した。 転移体 3および電極 2 bの形成 にもスパッタリング法を用いた。 転移体 3およぴ電極 2 aは、 4 5 0 °C 〜 70 0°C程度の加熱雰囲気下で形成した。 なお、 電極 2 a、 転移体 3 およぴ電極 2 bの厚さは、 それぞれ、 約 2 0 0 nm、 約 3 0 0 nmおよ び約 2 μ mとした。
このようにして作製した熱スィツチ素子 1に対し、 電極 2 aと電極 2 bとの間に電圧を印加することによって転移体 3に電気エネルギーを印 加し、 エネルギーの印加前後における電極 2 aと電極 2 bとの間の熱伝 導度の変化を調べた。 熱伝導度の測定は実施例 1 と同様に行った。
その結果、 電極 2 aと電極 2 bとの間に電圧を印加しない状態では、 電極 2 a と電極 2 bとの間の熱伝導度が非常に小さく、 測定できない程 度であった。 その後、 電極 2 aと電極 2 bとの間に印加する電圧を増加 させていく と、 0. 5 V程度の電圧を印加した段階で熱伝導性が出現し 、 電圧の印加によって熱の輸送が制御できる熱スィツチ素子として機能 することが確認された。 また、 熱スィ ッチ素子 1の熱伝導性にヒステリ シス性が見られ、 熱伝導性が出現した後に電極 2 aと電極 2 bとの間に 印加する電圧を 0にした場合でも、 電極 2 aと電極 2 bとの間の熱伝導 性はそのまま維持された。 その後、 最初に印加した電圧と逆方向の電圧 を電極間に印加することにより、 電極 2 aと電極 2 bとの間の熱伝導性 は消失した。 このことから、 転移体 3に用いる材料を選択することによ つて、 不揮発性を有する熱スィツチ素子が実現可能であることがわかつ た。 不揮発性の熱スィッチ素子を用いれば、 より消費電力が削減された 熱デバイスを構築することができる。
なお、 実施例 2では転移体として C r : S r T i O 3を用いたが、 そ の他、 S r Z r〇3、 (L a , S r ) T i〇3、 Y (T i、 V) 03、 S r T i O 3_d ( 0 < d≤ 0. 1) 、 (P r C a x) Mn O 3 ( 0 < x ≤ 0. 5) などを転移体 3に用いた場合にも同様の結果を得ることがで きた。 また、 N d B a Mn 2 O 6などの式 X 1 B a X 2 2 O 6 (X1は、 L a、 P r、 N d、 Sm、 E u、 G d、 T b、 D y、 H o、 E r、 Tmお よび Y bから選ばれる少なく とも 1種の元素であり、 X2は、 Mnおよ び Zまたは C oである) で示される酸化物や、 式 (V^X^) Ox ( 0≤ y≤ 0. 5、 1. 5≤ x≤ 2. 5、 X3は、 C r、 Mn、 F e、 C oおよび N iから選ばれる少なく とも 1種の元素である) で示される酸 化物を用いた場合にも同様の結果を得ることができた。
(実施例 3)
実施例 3では、 転移体 3として S r T i 〇3と L a S r Mn 03との 積層体を用い、 図 2 3に示すような熱スィッチ素子 1を作製した。
基体 2 2には上述の N b : S r T i O aを用い、 基体 2 2上にレーザ ーァプレーシヨン法を用いて以下に示す薄膜を堆積した。 堆積は、 4 5 0。C〜 7 0 0 °Cの加熱中において、 1 0 mmTorr〜 5 00 mmTorrの酸 素雰囲気下にて行った。 最初に、 基体 2 2上に S r T i 03 (厚さ 5 0 nm) を配置し、 さらにその上に L a S r Mn 03 (厚さ 1 0' O nm) を配置して転移体 3とした。 次に、 転移体 3上に S r R u 03 (厚さ 1 O nm) を配置した。 次に、 S r R u O 3上にスパッタリング法を用い て P t (厚さ 240 n m) を配置した。 スパッタリング時の温度は 40 0°Cとした。 次に、 S r R u O 3と P t との積層体を図 2 3に示すよう に微細加工し、 電極 2 aおよび電極 2 bを形成した。 その後、 絶縁体 9 として A 1 2 O 3を電極 2 aおよび電極 2 bの表面からの厚さが 8 0 n mとなるように配置し、 最後に、 電極 1 0として Au (厚さ 9 0 0 nm ) を配置した。 なお、 電極 1 0は、 転移体 3に印加する磁界の効率を向 上させるために、 複数の電極 (計 1 5本、 図 2 3ではその一部のみを記 載) に分割して配置した。
このようにして作製した熱スィツチ素子 1に対し、 電極 1 0に電流 1
1を流すことによって転移体 3に磁界 1 2を印加し、 磁気エネルギーの 印加前後における電極 2 aと電極 2 bとの間の熱伝導度の変化を調べた
。 熱伝導度の測定は実施例 1と同様に行った。 また、 複数の電極 1 0に はすべて同方向に電流を流した。
その結果、 電極 1 0に電流を流さない状態では、 電極 2 aと電極 2 b との間の熱伝導度が非常に小さく、 測定できない程度であった。 その後 、 電極 1 0に流す電流を増加させていく と、 電極 1 0—本あたりの電流 が 2. 5 m A程度の電流を流した段階で熱伝導性が出現し、 磁界の印加 によって熱の輸送が制御できる熱スィツチ素子として機能することが確 認された。
なお、 実施例 3では転移体として (L a, S r ) Mn〇3を用いたが 、 その他、 (L a, S r ) 3Mn 207、 X4 2F e R e Oい X4 2 F e M o 06、 (L a , X 4) 2C u 04、 (N d , C e ) 2C u 04、 (L a , X4) 2N i 04、 L a Mn 03、 YMn 03、 (Sm、 C a ) Mn〇 3、 (N d, C a ) Mn〇 3、 (P r , C a ) Mn〇3、 (L a , X4) F e 03、 YF e 03、 (Sm、 X4) F e〇 3、 (N d, X4) F e 03、 ( P r, X4) F e〇 3、 (L a , X4) C o 03、 (Y, X4) V03、 ( B i, X4) Mn 03、 S r T i O 3_a ( 0 < d≤ 0. 1 ) などを転移 体 3に用いた場合にも同様の効果を得ることができた。 ただし、 X4は 、 S r、 C aおよび B aから選ばれる少なく とも 1種の元素である。 ま た、 SmB aMn 2Osなどの式 X1 B a X 2 206 (X1は、 L a、 P r 、 N d、 Sm、 E u、 G d、 T b、 D y、 H o、 E r、 Tmおよび Yb から選ばれる少なく とも 1種の元素であり、 X2は、 Mnおよび/また は C oである) で示される酸化物や、 式 (V n X Sy) Ox (0≤ y≤ 0. 5、 1. 5≤ x≤ 2. 5、 X3は、 C r、 Mn、 F e、 C oおよび N iから選ばれる少なく とも 1種の元素である) で示される酸化物を用 いた場合にも同様の結果を得ることができた。
(実施例 4)
実施例 4では、 図 1 4 Bに示した構成を含む熱スィツチ素子を作製し た。
基体として Mg Oを用い、 基体上にレーザーアブレーション法を用い て以下に示す薄膜を積層した。 積層は、 4 5 0°C〜 7 0 0°Cの加熱中に おいて、 1 0 mmTorr〜 5 00 mmTorrの酸素雰囲気下にて行った。 最 初に、 基体上に I TO (S n - d o p e d I n 23 :厚さ 5 0 nm) を積層し、 さらにその上に (P r, C a ) Mn O 3 (厚さ l O O nm) を積層して転移体 3とした。 次に、 S r R u 03上にスパッタ リ ング法 を用いて P t (厚さ 240 nm) を積層した。 スパッタリング時の温度 は 40 0°Cとした。 次に、 S r R u O 3と P t との積層体を微細加工し 、 電極 2 aおよび電極 2 bを形成して熱スィツチ素子を作製した。
このようにして作製した熱スィツチ素子に対し、 基体側からパルスレ 一ザ一光 (波長 5 3 2 nm) を入射することによって転移体 3に光エネ ルギーを印加し、 光エネルギーの印加前後における電極 2 aと電極 2 b との間の熱伝導度の変化を調べた。 熱伝導度の測定は実施例 1と同様に 行った。 その結果、 転移体 3に光を入射しない状態では、 電極 2 aと電極 2 b との間の熱伝導度が非常に小さく、 測定できない程度であった。 その後 、 転移体にパルスレーザー光を入射したところ、 1 00フェム ト秒の極 短パルスを約 0. 5 W照射した段階で熱伝導性が出現し、 光の入射によ つて熱の輸送が制御できる熱スィツチ素子として機能することが確認さ れた。 なお、 パルスレーザー光の波長を、 近赤外領域から可視光領域に かけて変化させた場合においても同様の結果を得ることができた。
(実施例 5 )
実施例 5では、 図 1 5に示した構成を含む熱スィツチ素子を作製した 基体として L i T a 03を用い、 基体上にマグネトロンスパッタ法を 用いて以下に示す薄膜を成膜した。 成膜は、 4 5 0°C〜 700°Cの加熱 中において、 1 OmmTorr〜 5 00 mmTorrの酸素一ァノレゴン混合雰囲 気下 (分圧比、 A r : 02= 1 : 1 ) にて行った。 最初に、 基体上に V 203 (厚さ 5 0 n m) を成膜して転移体 3とした。 次に、 転移体 3上 に P t (厚さ 5 0 nm) を 400 °Cで成膜し、 微細加工することによつ て電極 2 aおよび電極 2 bを形成した。 次に、 電子ビーム蒸着法を用い て N i — C r合金 (厚さ 1 00 nm) を成膜して抵抗体 1 5とし、 さら に Au ( 3 00 nm) を成膜して電極 1 0を形成した。
このようにして作製した熱スィツチ素子に対し、 電極 1 0に電流を流 すことによって抵抗体 1 5を発熱させ、 発生した熱を転移体 3に印加し た。 このようにして熱エネルギーの印加前後における電極 2 aと電極 2 bとの間の熱伝導度の変化を調べた。 熱伝導度の測定は実施例 1と同様 に行った。
その結果、 電極 1 0に電流を流さない状態、 即ち、 抵抗体 1 5が発熱 していない状態では、 電極 2 aと電極 2 bとの間の熱伝導度が非常に小 さく、 測定できない程度であった。 その後、 電極 1 0に流す電流を増加 させていく と、 約 4 mA程度の電流を流した段階で熱伝導性が出現し、 熱の印加によって熱の輸送が制御できる熱スィツチ素子として機能する ことが確認された。
なお、 実施例 5では転移体として V 203を用いたが、 その他、 VOx ( 1. 5≤ ≤ 2. 5 ) 、 N i (S , S e ) 2、 E uN i 〇3、 SmN i 〇3、 (Y, X4) V03、 S r T i O 3_d ( 0 < d≤ 0. 1 ) 、 (P r x_x C a x) Mn O a ( 0 < x≤ 0. 5) などを転移体 3に用いた場 合にも同様の結果を得ることができた。 ただし、 X4は、 S r、 C a fe よび B aから選ばれる少なくとも 1種の元素である。 また、 また、 式 X 1 B a X 22 O 6 (X 1は、 L a、 P r、 N d、 Sm、 E ii、 G d、 T b 、 D y、 Ho、 E r、 T mおよび Y bから選ばれる少なく とも 1種の元 素であり、 X2は、 Mnおよび Zまたは C oである) で示される酸化物 や、 式 (Vi— yX3 y) O x (0≤ y≤ 0. 5、 1. 5≤ x≤ 2. 5、 X 3は、 C r、 M n、 F e、 C oおよび N iから選ばれる少なく とも 1種 の元素である) で示される酸化物を用いた場合にも同様の結果を得るこ とができた。
(実施例 6)
実施例 6では、 図 24に示すような熱スィツチ素子 1を作製した。 変位体 1 6として圧電材料の 1種である L i T a O 3 (厚さ 0. 8 μ m) を用い、 変位体 1 6上にスパッタ リ ング法を用いて以下に示す薄膜 を配置した。 各層の配置は、 2 00 °C〜 5 0 0 °Cの加熱中において、 0 . 1 mmTorr〜 1 ◦ 0 mmTorrのアルゴン—窒素混合雰囲気下 (分圧比 、 A r : N2= 3 : 2) にて行った。 最初に、 変位体 1 6上に L a VO 3 (厚さ 1 0 0 nm)を配置して転移体 3とした。 次に、 転移体 3上に A 1 (厚さ l O O O nm) を配置して電極 2 aおよび電極 2 bとした。 さ らに、 変位体 1 6における転移体 3に接している面とは反対側の面に、 A 1 (厚さ l O O O nm) を配置して電極 1 0とした。 電極 1 0は、 フ オトリソグラフィックの手法を用いて、 図 24に示すような櫛形とした 。 櫛形の電極 1 0同士の間隔は 2 mとした。
このようにして作製した熱スィッチ素子 1に対し、 電極 1 0を用いて 変位体 1 6に電圧を印加することによって変位体 1 6に歪みを発生させ 、 発生した歪みに基づく圧力を転移体 3に印加した。 このようにして力 学エネルギーの印加前後における電極 2 aと電極 2 bとの間の熱伝導度 の変化を調べた。 熱伝導度の測定は実施例 1と同様に行った。
その結果、 転移体 1 6に電圧を印加しない状態では、 · 電極 2 aと電極 2 bとの間の熱伝導度が非常に小さく、 測定できない程度であった。 そ の後、 転移体 1 6に印加する電圧を増加させていく と、 0. 5 V程度の 電圧を印加した段階で熱伝導性が出現し、 力学エネルギーの 1種である 圧力の印加によって熱の輸送が制御できる熱スィツチ素子として機能す ることが確認された。
なお、 実施例 6では転移体として L a V03を用いたが、 その他、 ( Υ, X4) Mn 03、 (L a , X4) Mn〇 3、 (B i, X4) Mn 03、 (B i, X" T i 〇 3、 (B i, X4) 3T i 2。い (P b , X4) T i 〇 3、 S r T i O 3_d ( 0 < d≤ 0. 1 ) 、 (P r x_x C a J Mn O 3 (O < x≤ 0. 5) などを転移体 3に用いた場合にも同様の結果を得 ることができた。 ただし、 X4は、 S r、 C aおよび B aから選ばれる 少なく とも 1種の元素である。 また、 S mB a Mn 2 O 6などの式 X 1 B a X 2 2 O 6 (X1は、 L a、 P r、 N d、 S m、 E u、 G d、 T b、 D y、 H o、 E r、 T mおよび Y bから選ばれる少なく とも 1種の元素で あり、 X2は、 Mnおよび Zまたは C oである) で示される酸化物や、 式 (V — yX3 y) O x ( 0≤ y≤ 0. 5、 1. 5≤ x≤ 2. 5、 X3は 、 C r、 Mn、 F e、 C oおよび N iから選ばれる少なく とも 1種の元 素である) で示される酸化物を用いた場合にも同様の結果を得ることが できた。 また、 実施例 6では、 変位体 1 6として L i T a 03を用いた 力 S、 その他、 L i N b〇3や (B a, S r ) T i 〇 3、 P b (Z r , T i ) 03などを用いた場合にも同様の結果を得ることができた。
(実施例 7)
実施例 7では、 図 2に示すような絶縁体 4を含む熱スィツチ素子 1を 作製した。
最初に S r T i 03からなる基体上に、 S r R u 03 (厚さ 2 0 0 η m) を配置して電極 2 aを形成した。 次に、 電極 2 a上に C rを 0. 1 原子%〜 1 0原子0 /0の範囲でドープした S r T i 〇 3 (C r : S r T i 03、 厚さ 3 00 n m) を配置して転移体 3を形成した。 電極 2 aおよ び転移体 3の形成にはレーザーアブレーシヨン法 (基板温度 4 5 0°C〜 70 0°Cの範囲) を用いた。
次に、 転移体 3上に、 上述したゾルーゲル法を用いて多孔質シリカ層 (厚さ約 0. Ι μιη) を配置し絶縁体 4とした。 以下に多孔質シリカ層 の具体的な作製方法を示す。
まず、 シリカ原料を含んだ溶液として、 テトラメ トキシシランとエタ ノールとアンモニア水溶液 (0. 1規定) とをモル比 1 : 3 : 4の割合 で混合した溶液を調製した。 溶液には電子放出材として平均粒径 1 0 η m程度のダイヤモンド粒子を分散させた。 上記溶液を撹拌処理した後、 塗布に適当な粘度となったところで、 転移体 3上に厚さが約 0. l / m となるようにスピンコート塗布した。 その後、 乾燥により上記塗布した シリカゾルを重合、 ゲル化させた。 形成したシリカゲルを高分解能走査 型電子顕微鏡により評価したところ、 図 3に示すような S i — O— S i 結合の三次元的なネットワークからなる湿潤ゲル構造が形成されている ことが確認できた。 また、 電子放出材であるダイヤモンド粒子が均一に 分散していることも確認できた。
次に、 上記のようにして作製した膨潤ゲルをエタノールで洗浄、 溶媒 置換した後に、 二酸化炭素を用いた超臨界乾燥を行うことによって多孔 質シリカ層を作製した。 超臨界乾燥は、 圧力 1 2 M P a、 温度 5 0 °Cの 条件で 4時間経過した後に、 圧力を徐々に開放して大気圧とし、 後に室 温まで降温させて行った。 次に、 乾燥した試料を窒素雰囲気下、 4 0 0 °Cでァニール処理することによって、 多孔質シリカ層への吸着物質を除 去レた。
なお、 作製した多孔質シリカ層の空孔率は、 ブルナウア一 'エメット • テラー法 ( B E T法) を用いて評価したところ、 約 9 2 %であった。 また、 同様の手法により多孔質シリ力層の平均空孔径を見積もったとこ ろ、 約 2 0 n mであつた。
このようにして作製した電極 2 a、 転移体 3および絶縁体 4の積層体 を水素雰囲気下、 4 0 0 °Cでァニール処理した。 このようなァニール処 理によって、 多孔質シリカ層に含まれるダイヤモンド粒子の表面が水素 化され、 電子放出材としてダイヤモンド粒子をより活性化させることが できる。
最後に、 スパッタリング法を用いて、 絶縁体 4上に P t (厚さ 2 0 0 O n m) を配置し、 電極 2 bを形成した。
このようにして作製した熱スィツチ素子 1に対し、 電極 2 aと電極 2 bとの間に電圧を印加することによって転移体 3に電気エネルギーを印 加し、 エネルギーの印加前後における電極 2 aと電極 2 bとの間の熱伝 導度の変化を調べた。 熱伝導度の測定は実施例 1と同様に行った。
その結果、 電極 2 aと電極 2 bとの間に電圧を印加しない状態では、 電極 2 aと電極 2 bとの間の熱伝導度が非常に小さく、 測定できない程 度であった。 その後、 電極 2 aと電極 2 bとの間に印加する電圧を増加 させていく と、 5 V程度の電圧を印加した段階で熱伝導性が出現し、 電 圧の印加によって熱の輸送が制御できる熱スィツチ素子として機能する ことが確認された。
また、 熱伝導性が出現した際の両電極間の放射電流密度を測定したと ころ数 1 OmAZ c m2の値が得られた。 さらに、 熱スィッチ素子 1の 熱伝導性を維持したまま、 電極 2 aを 3 0°Cに保った Auと接触させた 上で電極 2 aの温度変化を測定したところ、 電極 2 aの温度が約 3 0度 低下する、 即ち約 0°Cとなる現象が観察され、 絶縁体 4を介する熱スィ ツチ素子および冷却素子としての機能が確認された。
さらに実施例 7では、 図 4に示すような絶縁体 4と電極 8とを含む熱 スィッチ素子 1を作製し、 同様の評価を行った。
最初に S r T i 〇3からなる基体上に、 S r R u〇3 (厚さ 2 0 0 η m) を配置して電極 2 aを形成した。 次に、 電極 2 a上に C rを 0. 1 原子0/。〜 1 0原子%の範囲でドープした S r T i〇3 (C r : S r T i 03、 厚さ 3 00 nm) を配置して転移体 3を形成した。 次に、 転移体 3上に (S r, C a, B a ) C03 (厚さ 5 0 nm) を配置して電極 8 を形成し、 さらにその上に多孔質シリカ層 (厚さ 0. 1 πι) を上記と 同様に配置して絶縁体 4を形成した。 電極 2 a、 転移体 3および電極 8 の形成にはレーザーァプレーシヨン法 (基板温度 4 5 0°C〜 70 0°Cの 範囲) を用いた。 最後に、 スパッタリング法を用いて、 絶縁体 4上に P t (厚さ 2 00 0 nm) を配置して電極 2 bとし、 図 4に示すような熱 スィツチ素子 1を作製した。
このようにして作製した熱スィツチ素子 1に対し、 電極 2 aと電極 2 bとの間に電圧を印加することによって転移体 3に電気エネルギーを印 加し、 エネルギーの印加前後における電極 2 aと電極 2 bとの間の熱伝 導度の変化を調べた。 熱伝導度の測定は実施例 1と同様に行った。
その結果、 電極 2 aと電極 2 bとの間に電圧を印加しない状態では、 電極 2 aと電極 2 bとの間の熱伝導度が非常に小さく、 測定できない程 度であった。 その後、 電極 2 aと電極 2 bとの間に印加する電圧を増加 させていく と、 1. 8 V程度の電圧を印加した段階で熱伝導性が出現し 、 電圧の印加によって熱の輸送が制御できる熱スィツチ素子として機能 することが確認された。 電極 8を配置しない場合において 5 V程度の電 圧を印加することが必要であったことから考えると、 電極 8を配置する ことによって 2倍以上の効率向上がなされたことがわかった。
また、 熱スィッチ素子 1の熱伝導性を維持したまま、 電極 2 aを 3 0 °Cに保った Auと接触させた上で電極 2 aの温度変化を測定したところ 、 電極 2 aの温度が低下する現象が観察され、 絶縁体 4を介する熱スィ ッチ素子およぴ冷却素子としての機能が確認された。
なお、 実施例 7では厚さが約 0. 1 μ mの多孔質シリカ層を絶縁体 4 として形成したが、 絶縁体 4の厚さが 0. 0 5 μ m〜: L 0 μ m程度の範 囲においても同様の結果を得ることができた。 ただし、 絶縁体 4として の最適な厚さは、 素子の構造、 用いる材料などによって変化すると考え られるため、 絶縁体 4の厚さは上記範囲に限定されない。
また、 実施例 7では電極 8として (S r, C a , B a ) CO3を用い たが、 その他、 (S r, C a , B a ) 一 0、 C s _0、 C s— S b、 C s _T e、 C s—F、 R b— 0、 R b— C s— 0、 A g, 一 C s— Oな どを用いた場合にも同様の結果を得ることができた。
(実施例 8)
実施例 8では、 転移体 3として C a 3 C o 409を用い、 図 2 2に示す ような熱スィツチ素子 1を作製した。
最初に、 基体 2 2としてサファイア (A 1 203) を用い、 スパッタ リング法を用いて基体 2 2上に N a C o 2 0 6からなる電極 2 aを形成 した。 次に、 電極 2 a上に C a 3 C o 4 0 9からなる転移体 3を形成し、 さらにその上に N a C o 2 0 6からなる電極 2 bを形成した。 転移体 3 および電極 2 bの形成にもスパッタリング法を用いた。 転移体 3および 電極 2 aは、 4 5 0 °C ~ 8 5 0 °C程度の加熱雰囲気下で形成した。 なお 、 電極 2 a、 転移体 3および電極 2 bの厚さは、 それぞれ、 約 2 0 0 n m、 約 3 0 0 n mおよぴ約 2 μ mとした。
このようにして作製した熱スィツチ素子 1に対し、 電極 2 aと電極 2 bとの間に電圧を印加することによって転移体 3に電気エネルギーを印 加し、 エネルギーの印加前後における電極 2 aと電極 2 bとの間の熱伝 導度の変化を調べた。 熱伝導度の測定は実施例 1と同様に行った。
その結果、 電極 2 aと電極 2 bとの間に電圧を印加しない状態では、 電極 2 aと電極 2 bとの間の熱伝導度が非常に小さく、 測定できない程 度であった。 その後、 電極 2 aと電極 2 bとの間に印加する電圧を増加 させていく と、 0 . 5 V程度の電圧を印加した段階で熱伝導性が出現し 、 電圧の印加によって熱の輸送が制御できる熱スィツチ素子として機能 することが確認された。 また、 熱スィ ッチ素子 1の熱伝導性にヒステリ シス性が見られ、 熱伝導性が出現した後に電極 2 aと電極 2 bとの間に 印加する電圧を 0にした場合でも、 電極 2 aと電極 2 bとの間の熱伝導 性はそのまま維持された。 その後、 最初に印加した電圧と逆方向の電圧 を電極間に印加することにより、 電極 2 a と電極 2 bとの間の熱伝導性 は消失した。 このことから、 転移体 3に用いる材料を選択することによ つて、 不揮発性を有する熱スィツチ素子が実現可能であることがわかつ た。 不揮発性の熱スィッチ素子を用いれば、 より消費電力が削減された 熱デパイスを構築することができる。
なお、 実施例 8では転移体 3として C a 3 C o 4 0 9を用いたが、 式 C u X 5 0 2 ( X 5は、 A l、 I n、 G aおよび F eから選ばれる少なく と も 1種の元素である) で示されるデラフォサイ トなどを用いた場合にも 同様の結果を得ることができた。
本発明は、 その意図および本質的な特徴から逸脱しない限り、 他の実 施形態に適用しうる。 この明細書に開示されている実施形態は、 あらゆ る点で説明的なものであってこれに限定されない。 本発明の範囲は、 上 記説明ではなく添付したクレームによって示されており、 クレームと均 等な意味および範囲にあるすベての変更はそれに含まれる。 産業上の利用の可能性
以上説明したように、 本発明によれば、 従来とは全く異なる構成を有 し、 エネルギーを印加することによって熱の輸送を制御できる熱スィッ チ素子と、 その製造方法とを提供することができる。
本発明の熱スィツチ素子は、 情報端末などに使用されている C P Uな どの半導体チップの放熱部や、 熱機関として代表的な製品である冷蔵 - 冷凍庫、 エアコンディショナーなどの熱伝達部、 熱配線における熱流制 御部など、 熱の輸送を行う部分であれば特に限定されずに用いることが できる。 その際、 熱の輸送を制御する必要がある部分だけではなく、 制 御する必要がなく単に熱を輸送する部分にも用いることができる。

Claims

請 求 の 範 囲
1 . 第 1の電極と、 第 2の電極と、 前記第 1の電極と前記第 2の電極と の間に配置された転移体とを含み、
前記転移体は、 エネルギーを印加することによって電子相転移する材 料を含み、
前記転移体への前記エネルギーの印加によって、 前記第 1の電極と前 記第 2の電極との間の熱伝導度が変化する熱スィツチ素子。
2 . 前記エネルギーの印加によって、 前記印加の前よりも前記第 1の電 極と前記第 2の電極との間を熱が移動しやすい状態になる請求項 1に記 載の熱スィツチ素子。
3 . 前記エネルギーの印加によって、 前記転移体の電子熱伝導度が変化 する請求項 1に記載の熱スィツチ素子。
4 . 前記エネルギーの印加によって、 前記転移体が絶縁体一金属転移す る請求項 1に記載の熱スィツチ素子。
5 . 前記エネルギーの印加によって、 前記印加の前よりも前記転移体を 熱電子が移動しやすい状態になる請求項 1に記載の熱スィツチ素子。
6 . 前記印加するエネルギーが、
電気エネルギー、 光エネルギー、 力学エネルギー、 磁気エネルギーおよ び熱エネルギーから選ばれる少なく とも 1種である請求項 1に記載の熱 スィツチ素子。
7. 前記エネルギーの印加が、 前記転移体への電子またはホールの注入 、 あるいは、 前記転移体への電子またはホールの誘起によって行われる 請求項 6に記載の熱スィツチ素子。
8. 前記エネルギーの印加が、 前記第 1の電極と前記第 2の電極との間 に電圧を印加することによって行われる請求項 6に記載の熱スィツチ素 子。 9. 前記電子相転移する材料が、 式 AxDyOzで示される組成を有する 酸化物を含む請求項 1に記載の熱スィツチ素子。
ただし、 上記式において、 Aは、 アルカリ金属、 アルカリ土類金属、
S c、 Yおよび希土類元素から選ばれる少なく とも 1種の元素であり、
Dは、 III a族、 IVa族、 V a族、 VI a族、 VII a族、 VIII族おょぴ I b 族から選ばれる少なく とも 1種の遷移元素であり、 Oは酸素であり、 X
、 yおよび zは正の数である。
1 0. 前記式 AxDyOzにおける x、 yおよび zが、 以下の関係を満た す数値である請求項 9に記載の熱スィツチ素子。
= n + 2
y = n + 1
z = 3 n + 4
ただし、 nは、 0、 1、 2または 3である。 1 1. 前記式 AxDyzにおける x、 yおよび Zが、 以下の関係を満た す数値である請求項 9に記載の熱スィツチ素子。 χ = n + 1
y = n + 1
z = 3 n + 5
ただし、 nは、 1、 2、 3または 4である。
1 2. 前記式 AxDyOzにおける x、 yおよび zが、 以下の関係を満た す数値である請求項 9に記載の熱スィツチ素子。
= n
y = n
z = 311
ただし、 nは、 1、 2または 3である。
1 3. 前記式 AxDyOzにおける x、 yおよび zが、 以下の関係を満た す数値である請求項 9に記載の熱スィツチ素子。
= n + 1
y = n
z = 41 + 1
ただし、 nは、 1または 2である。 1 4. 前記式 AxDyOzにおける x、 yおよび zが、 以下の関係を満た す数値である請求項 9に記載の熱スィツチ素子。
X = 0または 1
y = 0または 1
z = 1
ただし、 Xおよび yから選ばれるいずれか一方が 0である。
1 5. 前記式 AxDyzにおける x、 yおよび zが、 以下の関係を満た す数値である請求項 9に記載の熱スィ ッチ素子。 ·
X = 0、 1または 2
y = 0、 1または 2
ただし、 Xおよび yから選ばれるいずれか一方が 0であり、 zは、
Xが 0のとき、 yの値に 1を加えた値であり、
yが 0のとき、 Xの値に 1を加えた値である。 1 6. 前記式 AxDyOjCおける x、 yおよび z力 S、 以下の関係を満た す数値である請求項 9に記載の熱スィツチ素子。
X = 0または 2
y = 0または 2
z = 5
ただし、 Xおよび yから選ばれるいずれか一方が 0である。
1 7. 前記電子相転移する材料が、 モッ ト絶縁体および磁性半導体から 選ばれる少なく とも 1種を含む請求項 1に記載の熱スィツチ素子。 1 8. 第 1の絶縁体をさらに含み、
前記転移体と前記第 2の電極との間に前記第 1の絶縁体が配置されて いる請求項 1に記載の磁性スィツチ素子。
1 9. 第 3の電極をさらに含み、
前記転移体と前記第 1の絶縁体との間に前記第 3の電極が配置されて いる請求項 1 8に記載の磁性スィ ッチ素子。
2 0 . 前記転移体への前記エネルギーの印加を行う第 4の電極をさらに 含む請求項 1に記載の熱スィツチ素子。 2 1 . 第 2の絶縁体をさらに含み、
前記転移体と前記第 4の電極との間に前記第 2の絶縁体が配置されて いる請求項 2 0に記載の熱スィツチ素子。
2 2 . 前記エネルギーの印加が、 前記第 4の電極と前記転移体との間に 電圧を印加することによって行われる請求項 2 0に記載の熱スィツチ素 子。
2 3 . 前記エネルギーの印加が、 前記第 4の電極に電流を流すことによ つて行われる請求項 2 0に記載の熱スィツチ素子。
2 4 . 前記エネルギーの印加が、 前記第 4の電極に電流を流して発生さ せた磁界を転移体に導入することによって行われる請求項 2 3に記載の 熱スィツチ素子。 2 5 . 前記第 1の絶縁体が真空である請求項 1 8に記載の熱スィッチ素 子。
2 6 . 前記第 1の絶縁体がトンネル絶縁体である請求項 1 8に記載の熱 スィツチ素子。
2 7 . 前記第 1の絶縁体が多孔質構造を有する絶縁材料からなる請求項 1 8に記載の熱スィツチ素子。
2 8 . 前記絶縁材料が電子放出材を含む請求項 2 7に記載の熱スィツチ 素子。
2 9 . 前記第 1の電極および前記第 2の電極から選ばれる一方の電極か ら他方の電極へと熱を伝導する冷却素子として機能する請求項 1に記載 の熱スィツチ素子。
3 0 . 第 1の電極と、 第 2の電極と、 前記第 1の電極と前記第 2の電極 との間に配置された転移体と、 前記転移体と前記第 2の電極との間に配 置された絶縁体とを含み、
前記転移体は、 エネルギーを印加することによって電子相転移する材 料を含み、
前記絶縁体が真空であり、
前記転移体への前記エネルギーの印加によって、 前記第 1の電極と前 記第 2の電極との間の熱伝導度が変化する熱スィツチ素子の製造方法で あって、
( I ) 転移体および第 1の電極を含む積層体と、 第 2の電極とを、 前 記第 2の電極と前記転移体とが面するように所定の間隔で配置すること によって、 前記第 2の電極と前記転移体との間に空間を形成する工程と
(I I) 前記空間を真空に保持することによって、 前記第 2の電極と前 記転移体との間に絶縁体を形成する工程とを含む熱スィツチ素子の製造 方法。
3 1 . 前記工程 ( I ) 力
( I 一 a ) 前記第 2の電極おょぴ前記積層体から選ばれる少なく とも 1つを移動するように圧電体を配置する工程と、
( I - b ) 前記配置した圧電体を変形させることによって、 前記第 2 の電極と前記転移体とを所定の距離で配置し、 前記第 2の電極と前記転 移体との間に空間を形成する工程とを含む請求項 3 0に記載の熱スィッ チ素子の製造方法。
3 2 . 第 1の電極と、 第 2の電極と、 前記第 1の電極と前記第 2の電極 との間に配置された転移体と、 前記転移体と前記第 2の電極との間に配 置された絶縁体とを含み、
前記転移体は、 エネルギーを印加することによって電子相転移する材 料を含み、
前記絶縁体が真空であり、
前記転移体への前記エネルギーの印加によって、 前記第 1の電極と前 記第 2の電極との間の熱伝導度が変化する熱スィツチ素子の製造方法で あって、
( i ) 転移体と第 2の電極とを所定の間隔で配置することによって、 前記第 2の電極と前記転移体との間に空間を形成する工程と、
( i i) 前記空間を真空に保持することによって、 前記第 2の電極と前 記転移体との間に絶縁体を形成する工程と、
( i i i ) 前記転移体が前記第 2の電極と第 1の電極との間に配置され るように、 前記第 1の電極を配置する工程とを含む熱スィツチ素子の製 造方法。
3 3 . 前記工程 ( i ) 力 S、 ( i 一 a ) 前記第 2の電極および前記転移体から選ばれる少なく とも 1つを移動するように圧電体を配置する工程と、
( i _ b ) 前記配置した圧電体を変形させることによって、 前記第 2 の電極と前記転移体とを所定の間隔で配置し、 前記第 2の電極と前記転 移体との間に空間を形成する工程とを含む請求項 3 2に記載の熱スィッ チ素子の製造方法。
3 4 . 第 1の電極と、 第 2の電極と、 前記第 1の電極と前記第 2の電極 との間に配置された転移体と、 前記転移体と前記第 2の電極との間に配 置された絶縁体とを含み、
前記転移体は、 エネルギーを印加することによって電子相転移する材 料を含み、
前記絶縁体が真空であり、
前記転移体への前記エネルギーの印加によって、 前記第 1の電極と前 記第 2の電極との間の熱伝導度が変化する熱スィツチ素子の製造方法で あって、
( A ) 第 1の電極と、 転移体と、 前記転移体よりも力学的に破壌しや すい材料を含む中間体と、 第 2の電極とをこの順序で含む積層体を形成 する工程と、
( B ) 前記積層体の積層方向に前記積層体を伸長することによって、 前記中間体を破壌し、 前記破壌した中間体を除去することによって、 前 記転移体と前記第 2の電極との間に空間を形成する工程と、
( C ) 前記空間を真空に保持することによって、 前記第 2の電極と前 記転移体との間に絶縁体を形成する工程とを含む熱スィツチ素子の製造 方法。
3 5. 前記工程 (B) 力、
(B- a) 前記積層体の少なく とも一方の主面に接するように圧電体 を配置する工程と、
(B- b) 前記配置した圧電体を変形させることによって、 前記積層 体の積層方向に前記積層体を伸長させ、 前記中間体を破壌する工程とを 含む請求項 34に記載の熱スィツチ素子の製造方法。
3 6. 前記工程 (B) における前記中間体の除去が、 前記破壌した中間 体に気体を吹き付けることによって行われる請求項 3 4に記載の熱スィ ツチ素子の製造方法。
PCT/JP2004/000845 2003-01-30 2004-01-29 熱スイッチ素子およびその製造方法 WO2004068604A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005504751A JP3701302B2 (ja) 2003-01-30 2004-01-29 熱スイッチ素子およびその製造方法
US10/865,130 US20040232893A1 (en) 2003-01-30 2004-06-10 Thermal switching element and method for manufacturing the same
US11/605,064 US20070069192A1 (en) 2003-01-30 2006-11-28 Thermal switching element and method for manufacturing the same
US12/157,954 US20080258690A1 (en) 2003-01-30 2008-06-13 Thermal switching element and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-021841 2003-01-30
JP2003021841 2003-01-30
JP2003324404 2003-09-17
JP2003-324404 2003-09-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/865,130 Continuation US20040232893A1 (en) 2003-01-30 2004-06-10 Thermal switching element and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2004068604A1 true WO2004068604A1 (ja) 2004-08-12

Family

ID=32828909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000845 WO2004068604A1 (ja) 2003-01-30 2004-01-29 熱スイッチ素子およびその製造方法

Country Status (3)

Country Link
US (3) US20040232893A1 (ja)
JP (1) JP3701302B2 (ja)
WO (1) WO2004068604A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006028117A1 (ja) * 2004-09-09 2006-03-16 Matsushita Electric Industrial Co., Ltd. 抵抗変化素子とその製造方法
JP2009117430A (ja) * 2007-11-02 2009-05-28 Toyota Central R&D Labs Inc 熱電素子
JP2013108663A (ja) * 2011-11-18 2013-06-06 Nissan Motor Co Ltd 磁気冷暖房装置
JP2013108664A (ja) * 2011-11-18 2013-06-06 Nissan Motor Co Ltd 熱輸送器およびそれを用いた磁気冷暖房装置
WO2015030238A1 (ja) 2013-09-02 2015-03-05 日本碍子株式会社 セラミックス材料、および熱スイッチ
JP2016216688A (ja) * 2015-05-26 2016-12-22 国立大学法人名古屋大学 熱伝導率可変デバイス
JP2017219213A (ja) * 2016-06-03 2017-12-14 ダイキン工業株式会社 冷凍装置
WO2021166950A1 (ja) * 2020-02-21 2021-08-26 三菱マテリアル株式会社 熱流スイッチング素子
WO2023162627A1 (ja) * 2022-02-24 2023-08-31 三菱マテリアル株式会社 熱流スイッチング素子
US11944693B2 (en) 2010-07-02 2024-04-02 The Procter & Gamble Company Method for delivering an active agent

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956716B2 (en) * 2003-07-30 2005-10-18 Hitachi Global Storage Technologies Netherlands, B.V. Magnetic head having multilayer heater for thermally assisted write head and method of fabrication thereof
KR100657911B1 (ko) * 2004-11-10 2006-12-14 삼성전자주식회사 한 개의 저항체와 한 개의 다이오드를 지닌 비휘발성메모리 소자
US20070039641A1 (en) * 2005-08-19 2007-02-22 Yufeng Hu Cobalt oxide thermoelectric compositions and uses thereof
US8331057B2 (en) * 2005-10-03 2012-12-11 Sharp Kabushiki Kaisha Electromagnetic field detecting element utilizing ballistic current paths
KR100687760B1 (ko) * 2005-10-19 2007-02-27 한국전자통신연구원 급격한 금속-절연체 전이를 하는 절연체 및 그 제조방법,이를 이용한 소자
JP4950490B2 (ja) * 2005-12-28 2012-06-13 株式会社東芝 不揮発性スイッチング素子およびその製造方法ならびに不揮発性スイッチング素子を有する集積回路
US7615771B2 (en) * 2006-04-27 2009-11-10 Hitachi Global Storage Technologies Netherlands, B.V. Memory array having memory cells formed from metallic material
WO2008109564A1 (en) * 2007-03-02 2008-09-12 The Regents Of The University Of California Complex oxides useful for thermoelectric energy conversion
TW200839956A (en) * 2007-03-30 2008-10-01 Toshiba Kk Information recording/reproducing apparatus
DE102009004966A1 (de) 2008-01-15 2009-07-23 Mol Katalysatortechnik Gmbh Verfahren zur Herstellung einer Solarzelle sowie Solarzelle
US20090289736A1 (en) * 2008-05-23 2009-11-26 Seagate Technology Llc Magnetic switches for spinwave transmission
WO2009151000A1 (ja) * 2008-06-12 2009-12-17 学校法人 慶應義塾 熱電変換素子
KR101109667B1 (ko) * 2008-12-22 2012-01-31 한국전자통신연구원 방열 성능이 향상된 전력 소자 패키지
US20120145988A1 (en) * 2009-01-29 2012-06-14 Quitoriano Nathaniel J Nanoscale Apparatus and Sensor With Nanoshell and Method of Making Same
CN102084510B (zh) * 2009-02-20 2014-04-16 松下电器产业株式会社 辐射检测器和辐射检测方法
JP5445689B2 (ja) 2010-10-27 2014-03-19 株式会社村田製作所 半導体セラミックおよび抵抗素子
US11470693B1 (en) * 2013-03-13 2022-10-11 Government Of The United States As Represented By The Secretary Of The Air Force Apparatus and method to control electromagnetic heating of ceramic materials
US20160102235A1 (en) * 2013-11-22 2016-04-14 Sandia Corporation Phase-Transition-Based Thermal Conductivity in Anti-Ferroelectric Materials
US9255347B2 (en) * 2013-11-22 2016-02-09 Sandia Corporation Voltage tunability of thermal conductivity in ferroelectric materials
US9502647B2 (en) * 2014-05-28 2016-11-22 Taiwan Semiconductor Manufacturing Company Limited Resistive random-access memory (RRAM) with a low-K porous layer
US9699883B2 (en) 2015-01-08 2017-07-04 Toyota Motor Engineering & Manufacturing North America, Inc. Thermal switches for active heat flux alteration
US10991867B2 (en) 2016-05-24 2021-04-27 University Of Utah Research Foundation High-performance terbium-based thermoelectric materials
TWI612538B (zh) * 2016-08-03 2018-01-21 國立屏東科技大學 薄膜電阻合金
US10216013B2 (en) * 2017-03-07 2019-02-26 Wisconsin Alumni Research Foundation Vanadium dioxide-based optical and radiofrequency switches

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122464A (ja) * 1989-10-06 1991-05-24 Natl Res Inst For Metals 磁気冷凍機
JPH09145195A (ja) * 1995-11-20 1997-06-06 Mitsubishi Heavy Ind Ltd 磁気冷凍機
JPH09196503A (ja) * 1996-01-22 1997-07-31 Mitsubishi Heavy Ind Ltd 磁気冷凍装置
US5966941A (en) * 1997-12-10 1999-10-19 International Business Machines Corporation Thermoelectric cooling with dynamic switching to isolate heat transport mechanisms
JP2000205695A (ja) * 1999-01-12 2000-07-28 Harunori Kishi 熱エネルギ―回収装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278636A (en) * 1989-09-29 1994-01-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Non-volatile, solid state bistable electrical switch
US5978207A (en) * 1996-10-30 1999-11-02 The Research Foundation Of The State University Of New York Thin film capacitor
US6004830A (en) * 1998-02-09 1999-12-21 Advanced Vision Technologies, Inc. Fabrication process for confined electron field emission device
IL143649A0 (en) * 1999-02-17 2002-04-21 Ibm Microelectronic device for storing information and method thereof
US6680830B2 (en) * 2001-05-31 2004-01-20 International Business Machines Corporation Tunnel valve sensor and flux guide with improved flux transfer therebetween
DE10142634A1 (de) * 2001-08-31 2003-03-20 Basf Ag Thermoelektrisch aktive Materialien und diese enthaltende Generatoren und Peltier-Anordnungen
US7067862B2 (en) * 2002-08-02 2006-06-27 Unity Semiconductor Corporation Conductive memory device with conductive oxide electrodes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122464A (ja) * 1989-10-06 1991-05-24 Natl Res Inst For Metals 磁気冷凍機
JPH09145195A (ja) * 1995-11-20 1997-06-06 Mitsubishi Heavy Ind Ltd 磁気冷凍機
JPH09196503A (ja) * 1996-01-22 1997-07-31 Mitsubishi Heavy Ind Ltd 磁気冷凍装置
US5966941A (en) * 1997-12-10 1999-10-19 International Business Machines Corporation Thermoelectric cooling with dynamic switching to isolate heat transport mechanisms
JP2000205695A (ja) * 1999-01-12 2000-07-28 Harunori Kishi 熱エネルギ―回収装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446391B2 (en) 2004-09-09 2008-11-04 Matsushita Electric Industrial Co., Ltd. Electro-resistance element and method of manufacturing the same
WO2006028117A1 (ja) * 2004-09-09 2006-03-16 Matsushita Electric Industrial Co., Ltd. 抵抗変化素子とその製造方法
JP2009117430A (ja) * 2007-11-02 2009-05-28 Toyota Central R&D Labs Inc 熱電素子
US11944693B2 (en) 2010-07-02 2024-04-02 The Procter & Gamble Company Method for delivering an active agent
JP2013108663A (ja) * 2011-11-18 2013-06-06 Nissan Motor Co Ltd 磁気冷暖房装置
JP2013108664A (ja) * 2011-11-18 2013-06-06 Nissan Motor Co Ltd 熱輸送器およびそれを用いた磁気冷暖房装置
WO2015030238A1 (ja) 2013-09-02 2015-03-05 日本碍子株式会社 セラミックス材料、および熱スイッチ
JPWO2015030238A1 (ja) * 2013-09-02 2017-03-02 日本碍子株式会社 セラミックス材料、および熱スイッチ
US9656920B2 (en) 2013-09-02 2017-05-23 Ngk Insulators, Ltd. Ceramic material and thermal switch
JP2016216688A (ja) * 2015-05-26 2016-12-22 国立大学法人名古屋大学 熱伝導率可変デバイス
JP2017219213A (ja) * 2016-06-03 2017-12-14 ダイキン工業株式会社 冷凍装置
WO2021166950A1 (ja) * 2020-02-21 2021-08-26 三菱マテリアル株式会社 熱流スイッチング素子
WO2023162627A1 (ja) * 2022-02-24 2023-08-31 三菱マテリアル株式会社 熱流スイッチング素子

Also Published As

Publication number Publication date
JP3701302B2 (ja) 2005-09-28
US20070069192A1 (en) 2007-03-29
JPWO2004068604A1 (ja) 2006-05-25
US20080258690A1 (en) 2008-10-23
US20040232893A1 (en) 2004-11-25

Similar Documents

Publication Publication Date Title
WO2004068604A1 (ja) 熱スイッチ素子およびその製造方法
KR101993382B1 (ko) 기판상의 그래핀 및 상기 기판상 그래핀의 제조방법
WO2007020775A1 (ja) 熱電変換デバイス、並びにそれを用いた冷却方法および発電方法
US20120161106A1 (en) Photodetector using a graphene thin film and nanoparticles, and method for producing the same
US10636654B2 (en) Wafer-scale synthesis of large-area black phosphorus material heterostructures
JP3874365B2 (ja) 熱電変換デバイス、およびこれを用いた冷却方法および発電方法
WO2004010508A1 (ja) 不揮発性半導体記憶素子および製造方法
KR102138527B1 (ko) 상분리를 이용한 열전소재, 상기 열전소재를 이용한 열전소자 및 그 제조방법
Cao et al. Towards high refrigeration capability: The controllable structure of hierarchical Bi 0.5 Sb 1.5 Te 3 flakes on a metal electrode
CN106784279A (zh) 一种高性能掺杂钛酸锶氧化物热电薄膜的制备方法
Nguyen et al. High-performance energy storage and breakdown strength of low-temperature laser-deposited relaxor PLZT thin films on flexible Ti-foils
Liang et al. Preparation of two-dimensional [Bi2O2]-based layered materials: Progress and prospects
Parveen et al. Room temperature variation in dielectric and electrical properties of Mn doped SnO2 nanoparticles
US20120205237A1 (en) Method for forming gapless semiconductor thin film
Dhananjay et al. Dielectric properties of c-axis oriented Zn1− xMgxO thin films grown by multimagnetron sputtering
CN100477312C (zh) 热开关元件及其制造方法
Mir et al. The ultralow thermal conductivity and tunable thermoelectric properties of surfactant-free SnSe nanocrystals
JP5214068B1 (ja) 膜構造体とその製造方法
Vats et al. Magnetocaloric effect and piezoresponse of engineered ferroelectric-ferromagnetic heterostructures
JP2012033910A (ja) 多孔性絶縁体及び電界効果トランジスタ
JP2007246374A (ja) 強磁性酸化物半導体薄膜及びその製造方法並びにこれを用いたスピントンネル磁気抵抗素子
Wasa Thin films as material engineering
Zhang et al. Multiferroic properties of Bi0. 8La0. 2FeO3/CoFe2O4 multilayer thin films
Alvarez-Quintana Solid state thermal rectification by chemical pressure tuning of magnetic properties in perovskites
Bäuerle et al. Thin-film formation by pulsed-laser deposition and laser-induced evaporation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10865130

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504751

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048033512

Country of ref document: CN

122 Ep: pct application non-entry in european phase