WO2004053893A1 - 電気接点部材 - Google Patents

電気接点部材 Download PDF

Info

Publication number
WO2004053893A1
WO2004053893A1 PCT/JP2003/015116 JP0315116W WO2004053893A1 WO 2004053893 A1 WO2004053893 A1 WO 2004053893A1 JP 0315116 W JP0315116 W JP 0315116W WO 2004053893 A1 WO2004053893 A1 WO 2004053893A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
contact member
brush
metal
electrical contact
Prior art date
Application number
PCT/JP2003/015116
Other languages
English (en)
French (fr)
Inventor
Masashi Okubo
Original Assignee
Shinano Kenshi Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Kabushiki Kaisha filed Critical Shinano Kenshi Kabushiki Kaisha
Priority to US10/534,248 priority Critical patent/US7202586B2/en
Priority to DE60315063T priority patent/DE60315063T2/de
Priority to AU2003302829A priority patent/AU2003302829A1/en
Priority to EP03812688A priority patent/EP1566814B1/en
Publication of WO2004053893A1 publication Critical patent/WO2004053893A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/027Composite material containing carbon particles or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2300/00Orthogonal indexing scheme relating to electric switches, relays, selectors or emergency protective devices covered by H01H
    • H01H2300/036Application nanoparticles, e.g. nanotubes, integrated in switch components, e.g. contacts, the switch itself being clearly of a different scale, e.g. greater than nanoscale

Definitions

  • the present invention relates to an electrical contact member, and more particularly to a contact member that can be used as a brush, a commutator, and other relays, switches, and connectors in a motor or a generator (rotary electricity).
  • a contact member that can be used as a brush, a commutator, and other relays, switches, and connectors in a motor or a generator (rotary electricity).
  • Metal graphite brushes used in conventional motors are made of graphite as a brush material, pitch or synthetic resin powder as a binder, metal powder such as copper powder or silver powder, and have solid lubricity if necessary. Additives, such as molybdenum sulfide, are produced during the mixing, pressing and firing steps. When the content of the metal powder increases, the binder may not be used.
  • Metal brushes for motors and electrical contacts of relays are made by fixing contact materials made of silver-palladium, gold-silver, etc. to conductive panel materials such as phosphor bronze, or by cladding spring materials and contact materials. It is produced by stamping wood.
  • the electrical contacts of the connector terminals are tinned on the entire surface of the conductive spring material or gold plated only on the contacts to reduce contact resistance and suppress oxide film formation. I am trying to do it.
  • the selection of the electrical contact material is determined by comprehensively considering the magnitude of the current flowing through the contacts, the contact resistance between the contacts, and the environmental resistance to sulfide gas atmosphere, etc. At present it is not possible to select one.
  • the motor brush relay contact which is a moving contact, is designed and used on the assumption that it will be worn or worn out, with the purpose of removing an oxide film on the contact surface.
  • Deterioration and wear of the contact parts are caused by adhesion and abrasion caused by the adhesion of the contact constituent material and peeling off of the adhesion parts, and oxidation of the surface of one or both sliding surfaces between the contacts or between both Abrasive wear in which a hard material like an object is generated and soft parts are cut by the blade effect of the material, and the sliding surface is formed by the arc generated at the contact point
  • arc abrasion such as ridge transition and evaporation due to dissolution of the metal powder, and oxidative consumption due to overheating of the sliding portion of graphite and carbide of the binder constituting the brush.
  • Graphite used in conventional electrical contacts has a layered crystal structure, and has anisotropy in which the electrical conductivity in the interlayer direction of the crystal is significantly smaller than the electrical conductivity in the same layer direction of the crystal. For this reason, the contact resistance between graphite and graphite and between graphite and metal varies greatly depending on the direction of contact with graphite. For example, as shown in FIG. 9, since a sufficient current flows only in the direction of the layer surface of the graphite 8, the current flows only in the direction of the arrow in the figure, resulting in poor efficiency. 5 is the brush side, 6 is the commutator side, and 7 is copper powder.
  • this invention is made in order to solve the said subject, It aims at providing the electrical contact member which can reduce abrasion and abrasion. Disclosure of the invention
  • the electric contact member according to the present invention comprises a conductive metal particle and a conductive metal fiber having at least an outer peripheral surface modified with carbon nanofibers or carbon nanotubes. One or both are arranged on a contact layer through which a current flows.
  • a support layer is provided on the back surface side of the contact layer.
  • An initial wear layer may be formed on the contact surface side of the contact layer.
  • the contact layer contains graphite.
  • the contact layer may contain carbon nanofiber or carbon nanotube alone.
  • FIG. 1 is an illustration of metal particles modified with carbon fiber
  • FIG. 2 is an illustration of metal fiber modified with carbon fiber
  • FIG. 3 is a first brush layer and a second brush layer.
  • Fig. 4 shows an embodiment in which an initial wear layer (third brush layer) is further provided.
  • Fig. 5 shows an embodiment in which a brush is attached to a panel panel.
  • FIG. 7 shows a schematic diagram of a cross section of a brush
  • FIG. 8 shows an explanatory view of a state in which an oxide film is formed on the surface of metal particles
  • FIG. A schematic view of a cross section of the brush is shown.
  • At least one of conductive metal particles or conductive metal fibers, the outer surface of which is decorated with carbon nanofibers or carbon nanotubes, is disposed on the contact layer through which current flows.
  • the conductive metal particles or conductive metal fibers modified with the carbon fibers are, as shown in FIG. 1 or FIG. 2, specifically, carbon particles 10 or metal fibers 12. This refers to the state where the base side of the fiber 14 is buried and the tip side is protruding, or the state where both ends are buried and the halfway part is exposed.
  • the electrical contact member can be formed by mixing the metal particles or the metal fibers whose outer peripheral surfaces are modified with carbon fibers with other materials, molding and firing.
  • the carbon fibers are scattered in a non-oxidizing atmosphere, and the molten metal is dispersed in the non-oxidizing atmosphere by a piezoelectric pump.
  • the carbon fibers are attached and fixed to the surfaces of the particles or the fibers, or the molten metal in which the carbon fibers are dispersed by kneading is crushed, and the particles or fibers are crushed. Can be formed.
  • metal particles or metal fibers modified with the above can be obtained.
  • the carbon fiber may be used in a single layer or a multilayer, and one end or both ends thereof may be closed by a fullerene-like forceps.
  • the carbon nanotube is a tube having a carbon nanotube having a length of 100 times or more the diameter of the carbon nanotube.
  • the metal to be modified is a conductive metal such as copper, aluminum, and silver.
  • the metal 1 particles here are spherical, non-spherical, flaky particles, and are not limited by their shapes.
  • the carbon fiber used has a diameter of several nm to several hundred nm (for example, 300 nm) or less.
  • Carbon fibers having a diameter of 15 nm or more have conductivity even when the chiral index is other than the above conditions.
  • the above-mentioned carbon fiber is mixed as a material of the electric contact member.
  • the above-mentioned carbon fiber does not have anisotropy in conductivity like graphite, and has any surface direction. Current flows through Since carbon fibers are in contact with each other or with other materials on the surface layer, it is sufficient that at least the outermost layer (contact layer) contains metal particles or metal fibers modified with carbon fibers. .
  • the contact member is a brush
  • the production process is only an example, and is not limited to this.
  • Fig. 3 shows a brush material mixed powder containing metal particles and / or metal fibers modified with carbon nanofibers or carbon nanotubes on the commutator side, and a brush material mixed powder not containing the same metal particles and metal fibers.
  • the material is supplied to the molding die so as to be on the side of the anti-commutator, and after pressure molding, it is baked to form the same carbon as the first brush layer 20 containing the carbon nanofibers or carbon nanotubes.
  • a brush 24 formed by bonding a second brush layer 22 containing no nanofibers or carbon nanotubes is shown.
  • the brush material that does not contain metal particles and metal fibers modified with the carbon fiber is graphite, metal powder, pitch or synthetic resin powder as a binder, solid lubricant as an additive, and the like.
  • the presence or absence and the content of the metal powder, the binder and the additive are adjusted depending on the application, and are not particularly limited.
  • the modification amount of the carbon nanofibers or carbon nanotubes is also adjusted depending on the application, and is not particularly limited.
  • FIG. 4 shows an example of a brush 24 in which a third brush layer 26 is provided on the side of the brush shown in FIG. 3 on the contact surface of the first brush layer (contact layer) 20 with the commutator.
  • the third brush layer 26 quickly changes the contact state between the unstable brush and the commutator due to the mechanical position error and run-out of the brush and the commutator at the beginning of the motor operation, due to the wear of the brush layer. It has been added as an initial wear layer for the purpose of shifting to a good contact state.
  • Figure 5 shows the panel panel 28 with the carbon nanofibers or carbon nanotubes. An example is shown in which the brush 24 is fixed.
  • the brush 24 may be formed by mixing the synthetic resin with the metal particles or metal fibers modified with the carbon nanofibers or carbon nanotubes and injecting and molding the synthetic resin.
  • the means for fixing the brush 24 to the plate panel 28 includes bonding with a conductive adhesive, mechanical fixing by screwing and caulking, and the like.
  • FIG. 6 shows an embodiment in which the contact between the brush 24 and the commutator is further stabilized by dividing the tip of the panel panel 28 in the embodiment of FIG.
  • the brush has been described as an example, but other electric contact members can be similarly configured.
  • the carbon nanofibers or carbon nanotubes are electrically one-dimensional because they have a structure in which a layer of graphite crystal is rolled, and the carbon nanofibers or carbon nanotubes are formed between the carbon nanofibers or carbon nanotubes. Stable and low electrical contact resistance is always obtained between each constituent material such as between carbon nanofibers or carbon nanotubes and metal, and between carbon nanofibers or carbon nanotubes and graphite.
  • the carbon nanofibers or the carbon nanotubes are finer, so as shown in FIG. 7, the metal particles 10 and the carbon fibers protruding from the metal fibers 12
  • the tip of the fiber 10 can enter the gap between the material particles.
  • 30 is graphite.
  • a single carbon fiber 14 may be mixed in the gap between the material particles.
  • the dent caused by the gap between the material particles on the surface of the contact member is filled with the carbon nanofiber or the carbon nanotube, so that the surface roughness is improved, and the smooth sliding surface or the contact surface is improved. can get.
  • the conductive carbon fibers 14 Since the metal particles protrude from the metal particles 10, the conductivity of the contact point is maintained, and the function of the electrical contact member can be prevented from deteriorating.
  • the melting point of the carbon nanofiber or the carbon nanotube is: Compared to conventional contact metals such as copper, the temperature is more than 200 ° C higher and reduces wear due to bridging transition and scattering caused by melting of constituent metals due to arcing.
  • the carbon nanofibers or carbon nanotubes are chemically very stable substances, and can be used even in a bad environment such as in a sulfide gas.
  • the sliding surface becomes smooth and unevenness is reduced.
  • the frictional resistance is reduced, and at the same time, the occurrence of protrusions due to the transition of the metal conductor to the bridge due to the arc is reduced, so that abrasive wear is reduced.
  • the carbon nanofiber or carbon nanotube has good thermal conductivity as well as electrical conductivity.
  • the heat generated on the brush and commutator running surfaces is quickly diffused into the brush, reducing the brittleness of the brush structure and the oxidative consumption of graphite due to overheating of the sliding surface. Therefore, it is possible to prevent the collapse of the tissue on the sliding surface of the brush with the commutator due to the thermal weakening of the tissue.
  • the metal is fixed to the outer periphery of the metal particles and the metal fibers. Even if a non-conductive oxide film is formed on the surface of the metal particles and metal fibers exposed at the electrical contacts, the contact resistance of the electrical contacts is high because the carbon nanofibers or carbon nanotubes have an electrical conductive function. Can be prevented from rising. Furthermore, since the fine and large number of carbon nanofibers or carbon nanotubes act as electrical contacts, the real contact area increases, the current density flowing through the contacts decreases, and the mechanical load applied to the contacts per unit area also decreases.
  • an electrical contact member when an electrical contact member is made by mixing metal particles and carbon nanofibers or carbon nanotubes and other materials, the surfaces of the metal particles and metal fibers are oxidized to form an oxide film. Even so, the conductive property is maintained by the protruding force-bonding nanofibers or force-pump nanotubes, so that the function as an electrical contact member can be prevented from deteriorating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Motor Or Generator Current Collectors (AREA)
  • Contacts (AREA)
  • Conductive Materials (AREA)

Abstract

 摩耗、消耗を低減することができる電気接点部材を提供する。 カーボンナノファイバーまたはカーボンナノチューブで少なくとも外周面を修飾された導電性金属粒子および導電性金属繊維の一方または双方が、電流が流れる接触層に配置されたことを特徴とする。 

Description

明 細 書
電気接点部材 技術分野
本発明は電気接点部材に関し、 モータや発電機 (回転電気) におけるブラシや 整流子、 その他リレー、 スィッチ、 コネクタの接点に使用できる接点部材に関す る。 背景技術
従来のモー夕に使用されている金属黒鉛ブラシは、 ブラシの材料として黒鉛、 結合材としてのピッチ又は合成樹脂粉、 銅粉又銀粉等の金属粉、 必要に応じて固 体潤滑性を持つ二硫化モリブデンのような添加剤を、 混合、 加圧成形、 焼成のェ 程で生産する。 金属粉の含有量が多くなると結合材を使用しない場合もある。 また、 モー夕用金属ブラシやリレーの電気接点は、 リン青銅などの導電性パネ 材に銀一パラジウム、 金一銀等からなる接点材を固定したり、 バネ材と接点材を 張り合せたクラッド材を打ち抜いて生産される。
コネクタの端子の電気接点部は、 導電性バネ材の全面に錫めつきを施すか、 あ るいは接点部のみに金めつきを施して、 接触抵抗を低下させると共に酸化膜の形 成を抑制するようにしている。
従来、電気接点材料の選定は接点部に流れる電流の大きさ、接点間の接触抵抗、 硫化ガス雰囲気等に対する耐環境性を総合的に考慮して決定するが、 試験してみ なければ適正なものが選定できないのが現状である。
また従来の電気接点部材のうち動接点であるモータブラシゃリレ一接点は接点 表面の酸化膜の除去を目的とし、 磨耗または消耗することを前提に設計され、 使 用されている場合が多い。
接点部の劣化及び消耗は、 接点構成材料が凝着し、 凝着部が引き剥がされるこ とによって発生する凝着磨耗、 接点間の一方又は双方の摺動面の表面、 又は双方 間に酸化物のような硬い物質が生成され、 その物質の刃物効果により軟らかい部 品が削られるアブレシブ磨耗、 接点部に発生したアークによる摺動面を構成する 金属粉の溶解に伴うプリッジ転移及び蒸発等のアーク磨耗、 ブラシを構成する黒 鉛や結合材の炭化物の前記摺動部過熱に伴う酸化消耗がある。
なお、 出願人は上記課題を解決するため、 カーボンナノファイバーまたは力一 ボンナノチューブからなる炭素繊維を混入させたブラシを開発し、 既に特許出願 している (特願 2 0 0 2 - 1 8 9 7 0 6 ) 。
従来の電気接点に使用されている黒鉛は層状の結晶構造をしており、 結晶の同 一層方向の電気伝導率に対し、 結晶の層間方向の電気伝導率が著しく小さい異方 性が有る。 このため黒鉛と黒鉛、 黒鉛と金属の接触抵抗は黒鉛との接触方向によ り大きく変化する。 例えば図 9に示すように、 黒鉛 8の層面方向にしか十分な電 流が流れないことから、図の矢印の方向にしか電流が流れず、効率が劣る。なお、 5はブラシ側、 6は整流子側、 7は銅粉である。 さらには、 空隙が存在し、 多数 の突起を有することから、 整流子 6との接触面積も少なく、 黒鉛が含有されてい る割りには摺動特性が良くなく、 上記のアブレシブ摩耗、 アーク摩耗、 酸化消耗 が生じやすく、 耐寿命特性に劣る。 そのため、 長時間使用するためには、 ブラシ の長さを長くすることや、 ブラシの定期交換のためのブラシ交換機構が必要とさ れている。 これはモ一夕のブラシ取付部形状を大きくし、 またモータの使用者に 対してはブラシの清掃や交換という作業を強いている。
また、 電気接点として金属を使用する場合は、 金属表面の酸化による接触抵抗 の増加、 貴金属を使用した場合にはコス卜の上昇および電気アークによる接点構 成金属の溶融、 蒸発の問題があり、 最悪の場合には接点の溶着に発展する。 なお、 特願 2 0 0 2— 1 8 9 7 0 6のように、 単に材料中にカーボンナノファ ィバーまたはカーボンナノチューブを混入させる場合には、 これら炭素繊維を接 触層側に安定して分散配置させるのが必ずしも容易でない。
そこで、 本発明は上記課題を解決すべくなされたものであり、 その目的とする ところは、 摩耗、 消耗を低減することができる電気接点部材を提供するにある。 発明の開示
本発明に係る電気接点部材は、 カーボンナノファイバーまたはカーボンナノチ ュ一ブで少なくとも外周面を修飾された導電性金厲粒子および導電性金属繊維の 一方または双方が、 電流が流れる接触層に配置されたことを特徴とする。
また、 前記接触層の裏面側に支持層が設けられたことを特徴とする。
前記接触層の接触面側に初期摩耗層が形成することができる。
板状または棒状のバネ材に固定することができる。
また、 前記接触層に黒鉛が含有されていることを特徴とする。
また、 前記接触層に、 カーボンナノファイバーまたは力一ボンナノチューブが 単体で含まれていてもよい。 図面の簡単な説明
図 1は、 炭素繊維で修飾した金属粒子の説明図であり、 図 2は、 炭素繊維で修 飾した金属繊維の説明図であり、 図 3は、 第 1のブラシ層と第 2のブラシ層とか らなるブラシの実施例を示し、 図 4は、 さらに初期摩耗層 (第 3のブラシ層) を 設けた実施例を示し、 図 5板パネにブラシを取りつけた実施例を示し、 図 6は、 板パネを分岐した実施例を示し、図 7は、ブラシの断面の模式図を示し、図 8は、 金属粒子表面に酸化膜が形成された状態の説明図を示し、 図 9は、 従来のブラシ の断面の模式図を示す。 発明を実施するための最良の形態
本発明で用いるカーボンナノファイバーやカーボンナノチューブ (以下単に炭素 繊維ということがある) は公知の材料を用いることができる。
力一ボンナノファイバーまたは力一ボンナノチューブで少なくとも外周面を修 飾された導電性金属粒子あるいは 電性金属繊維の少なくとも一方を、 電流が流 れる接触層に配置する。
上記炭素繊維で修飾された導電性の金属粒子あるいは導電性の金属繊維とは、 具体的には、 図 1あるいは図 2に示されるように、 金属粒子 1 0あるいは金属繊 維 1 2に、 炭素繊維 1 4の基部側が埋没して先端側が突出している状態や、 両端 側が埋没し、 中途部が露出している状態などをいう。
一部の炭素繊維 1 4はその全体が金属粒子 1 0または金属繊維 1 2中に埋没し ているものも存在する。 このように外周面が炭素繊維で修飾された金属粒子、 あるいは金属繊維を他の 材料と混合し、 成形し、 焼成することによって電気接点部材に構成できる。 上記のように、 金属粒子 1 0あるいは金属繊維 1 2を炭素繊維 1 4で修飾する には、 非酸化雰囲気中に炭素繊維を飛散させ、 この非酸化雰囲気中に、 溶融金属 を圧電ポンプにより粒子ィ匕または繊維化して注入することで、 粒子あるいは繊維 表面に炭素繊維を付着、 固定させたり、 炭素繊維を混練により分散させた溶融金 属を、 破砕し、 粒子ィ匕または繊維ィ匕したりして形成できる。
あるいは、 陰極表面に付着させた金属粒子または金属繊維に、 めっき液中に炭 素繊維を分散させてめっきを行った後、 陰極表面から前記金属粒子または金属繊 維を分離することにより、 炭素繊維で修飾された金属粒子あるいは金属繊維を得 ることができる。
上記炭素繊維は単層、 多層どちらでも利用可能であり、 またその一端または両 端がフラーレン状の力ップで閉ざされていても良い。
なお、前記力一ボンナノフアイバ一とは、前記力一ボンナノチューブの長さが、 その直径の 100倍以上あるチューブの形態である。
また修飾される金属は銅、 アルミニウム、 銀等の導電性をもつ金属である。 なお、 ここでいう金属1粒子は、 球形、 非球形、 薄片状の、粒子であり、 その形状 にとらわれるものではない。
上記炭素繊維は、 その直径が数 n mから数百 nm (例えば 3 0 0 n m) 以下の ものを用いる。
なお、 直径が 1 5 n m未満の炭素繊維の場合は導電性が低下する。 この直径が 1 5 n m未満の炭素繊維では、 その結晶構造の螺旋方向を指定するカイラルべク トルを決定する二つの整数 nと m (カイラル指数) が、 次の場合に、 導電性が生 じる。
すなわち、 n— m = 3の倍数、 または 11 =mのときである。
直径が 1 5 n m以上の炭素繊維では、 カイラル指数が上記条件以外の場合であ つても導電性を有する。
本発明では、 電気接点部材の材料として上記炭素繊維を混入させるものである が、 上記炭素繊維は、 黒鉛のように導電性に異方性はなく、 表面のあらゆる方向 に電流が流れる。 炭素繊維は、 炭素繊維同士、 あるいは他の材料と表層面で接触 するものであるので、 少なくとも最外層 (接触層) に炭素繊維で修飾された金属 粒子あるいは金属繊維が含まれるものであればよい。
接点部材が例えばブラシである場合に、 通常の黒鉛ブラシ、 金属黒鉛ブラシの 構成材料の中に炭素繊維で修飾された金属粒子および金属繊維の一方もしくは双 方を添加し、 材料の混合、 加圧成形後、 焼成してブラシを作る。 なお生産工程は 一例であって、 これにこだわるものではない。
図 3に、 カーボンナノファイバーまたは力一ボンナノチューブで修飾された金 属粒子および/または金属繊維を含むブラシ材料混合粉が整流子側に、 同金属粒 子および金属繊維を含まないブラシ材料混合粉が反整流子側となるように成形金 型に材料を供給し、 加圧成形後、 焼成することで力一ボンナノファイバ一または 力一ボンナノチューブを含む第 1のブラシ層 2 0と同カーボンナノファイバ一ま たはカーボンナノチューブを含まない第 2のブラシ層 2 2を結合してなるブラシ 2 4を示す。
炭素繊維は非常に高価であるから、 上記のように第 1のブラシ層 2 0と第 2の ブラシ層 2 2とに分けることによってコストの低減化ができる。
上記炭素繊維で修飾された金属粒子および金属繊維を含まないブラシ材料は、 黒鉛、 金属粉、 結合材としてのピッチ又は合成樹脂粉、 添加材としての固体潤滑 材等である。 このうち金属粉、 結合材及び添加材の有無及び含有量については、 用途によって調整するものであり、 特に限定されない。
また同カーボンナノファイバーまたはカーボンナノチューブの修飾量も用途に より調整するものであり、 特に限定されない。
図 4に、 図 3に示すブラシの第 1のブラシ層 (接触層) 2 0の整流子との接触 面側に、 第 3のブラシ層 2 6を設けたブラシ 2 4の例を示す。
第 3のブラシ層 2 6は、 モー夕運転初期のブラシと整流子の機械的位置誤差や 振れに起因する不安定なブラシと整流子の接触状態を、 当該ブラシ層が磨耗する ことで速やかに良好な接触状態に移行させることを目的として初期摩耗層として 付加されたものである。
図 5に板パネ 2 8に前記カーボンナノファイバ一またはカーボンナノチューブ を含むブラシ 2 4を固定した実施例を示す。
当該ブラシ 2 4は前記焼成品のほかに、 合成樹脂に前記力一ボンナノファイバ 一またはカーボンナノチューブで修飾された金属粒子あるいは金属繊維を混合し、 射出成形して形成してもかまわない。
板パネ 2 8に対する当該ブラシ 2 4の固定手段は導電性接着剤による接着、 ね じ止めやカシメによる機械的固定等がある。
図 6は図 5の実施例において板パネ 2 8の先端を分割することで、 ブラシ 2 4 と整流子の接触をより安定させた実施例を示す。
上記ではブラシを例として説明したが、 他の電気接点部材も同様にして構成で きる。
前記カーボンナノファイバ一または力一ボンナノチューブは、 黒鉛の結晶の一 層を丸めた構造をしているため電気的には一次元であり、 前記カーボンナノファ ィバ一またはカーボンナノチューブ相互間、 前記力一ボンナノファイバーまたは カーボンナノチューブと金属間、 前記カーボンナノファイバーまたは力一ポンナ ノチューブと黒鉛間等の各構成物質間で、 常に安定した低い電気的接触抵抗が得 られる。
電気接点を構成する他の材料と比較して、 前記力一ボンナノファイバ一または カーボンナノチューブは微細であるため、 図 7に示すように、 金属粒子 1 0、 金 属繊維 1 2から突出した炭素繊維 1 0の先端部が、 当該材料粒子間の隙間に入り 込むことが可能である。 なお 3 0は黒鉛である。 また材料粒子間の隙間に単体の 炭素繊維 1 4が混入されるようにしてもよい。
この結果、 接点部材表面の材料粒子間の隙間に起因する凹みは、 前記カーボン ナノファイバ一または力一ボンナノチューブで埋められるので、 面粗さが改善さ れ、 滑らかな摺動面あるいは接点面が得られる。
また、図 8に示すように、金属粒子 1 0または金属繊維 1 2の表面が酸化され、 非導電体の酸化膜 3 2で覆われた場合であっても、 導電性を有する炭素繊維 1 4 が金属粒子 1 0から突出しているので、 接触点の導電性が維持され、 電気接点部 材の機能低下を防ぐことができる。
また、 前記カーボンナノファイバ一または力一ボンナノチュ一ブは融点が、 従 来利用される銅などの接点用金属と比較し 2 0 0 0 °C以上高く、 アークによる構 成金属の溶融に起因するブリッジ転移や飛散による磨耗を軽減する。
さらに前記カーボンナノファイバーまたはカーボンナノチューブは化学的に非 常に安定な物質であり、 硫化ガス中等の劣悪な環境でも使用可能である。
また、 ブラシや整流子等の摺動部材に用いた場合、 摺動面が滑らかになり凹凸 が減少するため、 従来、 ブラシ '整流子双方の摺動面に存在する凹凸のひっかか りに起因した摩擦抵抗が低下し、 同時にアークによる金属導電体のプリッジ転移 に起因する突起の発生が減少するのでアブレシブ磨耗が軽減する。
また摺動面の面粗度が良好になることにより、 ブラシと整流子の真実接触面積 が増える。 これによりブラシ一整流子間の電気的な接触抵抗が低下すると共に、 摺動部に加わる荷重と電流が分散されることで真実接触点の発熱が減少し、 摺動 面間の凝着も発生しにくくなり、 凝着磨耗も減少する。
加えて前記カーボンナノファイバ一または力一ボンナノチューブは電気伝導率 と同様に熱伝導率も良好である。 この結果、 ブラシと整流子の搢動面で発生した 熱は速やかにブラシ内部に拡散し、 摺動面の過熱によるブラシ組織の脆弱化と黒 鉛の酸化消耗を軽減する。 従って、 組織の熱的脆弱化に起因するブラシの整流子 との摺動面の組織崩壊も防止できる。 発明の効果
以上のように本発明によれば、 従来の電気接点部材と異なり、 貴金属と比較し て安価な銅などの金属を電気接点部に使用しても、 当該金属粒子および金属繊維 の外周に固定された力一ボンナノファイバ一またはカーボンナノチューブが電気 伝導機能をもっため、 電気接点部に露出した金属粒子および金属繊維の表面に非 導電性の酸化膜が生成しても、 電気接点部の接触抵抗の上昇を防止できる。 さらに微細かつ多数のカーボンナノファイバ一またはカーボンナノチューブが 電気接点として働くので真実接触面積が広くなり、 接点に流れる電流密度が低下 するとともに接点に加わる単位面積当りの機械的荷重も低下する。
また、 カーボンナノファイバ一または力一ボンナノチューブの良好な電気伝導 率、 熱伝導率、 摺動性および高い融点により、 接点部の抵抗損失および摩擦によ る発熱が現象し、 接点部の摩耗、 接点間の凝着、 電気アークによる電気接点構成 金属の溶融、 蒸発などが軽減される。
さらに、 金属粒子および金属繊維を使用することにより電気接点部へのカーボ ンナノファイバ一または力一ボンナノチューブの安定した分散配置が、 単に材料 中に混入させる場合と比較して容易に実現できる。
特に金属粒子と力一ボンナノファイバーまたは力一ボンナノチューブおよびそ の他の材料を混合して電気接点部材を作る場合には、 金属粒子、 金属繊維の表面 が酸化して酸ィ匕膜が生成されても、 突出する力一ボンナノファイバ一または力一 ポンナノチューブにより導電性が維持され、 電気接点部材としての機能低下を防 止することができる。

Claims

請 求 の 範 囲
I . カーボンナノファイバーまたは力一ボンナノチューブで少なくとも外周面 を修飾された導電性金属粒子および導電性金属繊維の一方または双方が、 電流が 流れる接触層に配置されたことを特徴とする電気接点部材。
2 . 前記接触層の裏面側に支持層が設けられたことを特徴とする請求項 1記載 の電気接点部材。
3 . 前記接触層の接触面側に初期摩耗層が形成されていることを特徴とする請 求項 1記載の電気接点部材。
4. 前記接触層の接触面側に初期摩耗層が形成されていることを特徴とする請 求項 2記載の電気接点部材。
5 . 板状または棒状のパネ材に固定されていることを特徴とする請求項 1記載 の電気接点部材。
6 . 前記接触層に黒鉛が含有されていることを特徴とする請求項 1記載の電気 接点部材。
7 . 前記接触層に黒鉛が含有されていることを特徴とする請求項 2記載の電気 接点部材。
8 . 前記接触層に黒鉛が含有されていることを特徴とする請求項 3記載の電気 接点部材。
9 . 前記接触層に、 力一ボンナノファイバ一または力一ボンナノチューブが単 体で含まれていることを特徴とする請求項 1記載の電気接点部材。
1 0 . 前記接触層に、 カーボンナノファイバ一またはカーボンナノチューブが 単体で含まれていることを特徴とする請求項 2記載の電気接点部材。
I I . 前記接触層に、 カーボンナノファイバ一またはカーボンナノチューブが 単体で含まれていることを特徴とする請求項 3記載の電気接点部材。
PCT/JP2003/015116 2002-11-28 2003-11-26 電気接点部材 WO2004053893A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/534,248 US7202586B2 (en) 2002-11-28 2003-11-26 Electrical contact member
DE60315063T DE60315063T2 (de) 2002-11-28 2003-11-26 Elektrokontaktelement
AU2003302829A AU2003302829A1 (en) 2002-11-28 2003-11-26 Electric contact member
EP03812688A EP1566814B1 (en) 2002-11-28 2003-11-26 Electric contact member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002344916A JP4272875B2 (ja) 2002-11-28 2002-11-28 電気接点部材
JP2002-344916 2002-11-28

Publications (1)

Publication Number Publication Date
WO2004053893A1 true WO2004053893A1 (ja) 2004-06-24

Family

ID=32500730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015116 WO2004053893A1 (ja) 2002-11-28 2003-11-26 電気接点部材

Country Status (7)

Country Link
US (1) US7202586B2 (ja)
EP (1) EP1566814B1 (ja)
JP (1) JP4272875B2 (ja)
CN (1) CN1327454C (ja)
AU (1) AU2003302829A1 (ja)
DE (1) DE60315063T2 (ja)
WO (1) WO2004053893A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981266B2 (en) * 2006-11-22 2011-07-19 Drägerwerk AG & Co. KGaA Electrochemical gas sensor containing electric connection lines or housing contact bridges comprising carbon nanotubes

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100932974B1 (ko) * 2003-04-08 2009-12-21 삼성에스디아이 주식회사 전자 방출용 카본계 복합입자의 제조방법
JP4770139B2 (ja) * 2004-08-10 2011-09-14 東レ株式会社 導電性粒子および異方導電性材料用組成物
JP4390807B2 (ja) * 2004-10-21 2009-12-24 シナノケンシ株式会社 複合金属体及びその製造方法
CN1988290A (zh) * 2005-12-22 2007-06-27 鸿富锦精密工业(深圳)有限公司 电刷及其制备方法
WO2007118337A1 (en) * 2006-04-13 2007-10-25 Abb Research Ltd Electrical contact assembly
US20070298168A1 (en) * 2006-06-09 2007-12-27 Rensselaer Polytechnic Institute Multifunctional carbon nanotube based brushes
DE102006027821A1 (de) * 2006-06-16 2007-12-27 Siemens Ag Elektrischer Schaltkontakt
JP4467635B1 (ja) * 2009-05-28 2010-05-26 Tanakaホールディングス株式会社 摺動接点材料
JP4913853B2 (ja) * 2009-08-31 2012-04-11 Smk株式会社 微細コネクタ
CN101912848B (zh) * 2010-08-25 2012-06-20 清华大学 电致动清洁装置
US8737884B2 (en) * 2011-10-12 2014-05-27 Canon Kabushiki Kaisha Charging member and electrophotographic image forming apparatus
JP5853311B2 (ja) * 2011-10-31 2016-02-09 株式会社Joled 表示装置及び表示装置の製造方法
JP6286852B2 (ja) * 2013-04-01 2018-03-07 日立化成株式会社 導電粒子、異方導電性接着剤及び導電粒子の製造方法
EP2838166B1 (en) 2013-08-16 2019-09-25 Schleifring GmbH Slip ring assembly and components thereof
DE102014114721B4 (de) 2014-10-10 2019-08-29 Harting Electric Gmbh & Co. Kg Elektrischer Steckverbinder und Verfahren zur Überwachung des Zustands einer Kontaktoberfläche eines elektrischen Steckverbinder-kontaktes
CN105742083A (zh) * 2014-12-11 2016-07-06 福达合金材料股份有限公司 一种碳纳米管增强的复合电接触材料及其制备工艺
WO2018021228A1 (ja) * 2016-07-27 2018-02-01 パナソニックIpマネジメント株式会社 電気接続部品
DE102017131340A1 (de) * 2017-12-27 2019-06-27 Schunk Carbon Technology Gmbh Kohlebürste und Verfahren zur Herstellung
DE102017131341A1 (de) * 2017-12-27 2019-06-27 Schunk Carbon Technology Gmbh Kohlebürste und Verfahren zur Herstellung
CN114498229A (zh) * 2022-01-24 2022-05-13 东莞市维斯德新材料技术有限公司 一种碳刷及制备碳刷的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075102A (ja) * 2000-08-25 2002-03-15 Shimadzu Corp 電気接点材料
JP2002341061A (ja) * 2001-05-11 2002-11-27 Seiko Instruments Inc 中間支持構造体及びこれを備えた電子時計
JP2002341060A (ja) * 2001-05-11 2002-11-27 Seiko Instruments Inc 複合電気部品、地板構造体及びこれを用いた電子時計
JP2003284304A (ja) * 2002-03-20 2003-10-03 Anritsu Corp 電気接点装置及び接触子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886386A (en) * 1973-08-01 1975-05-27 Gen Electric Carbon fiber current collection brush
US5830326A (en) * 1991-10-31 1998-11-03 Nec Corporation Graphite filaments having tubular structure and method of forming the same
US6455100B1 (en) * 1999-04-13 2002-09-24 Elisha Technologies Co Llc Coating compositions for electronic components and other metal surfaces, and methods for making and using the compositions
DE10103340A1 (de) * 2001-01-25 2002-08-22 Infineon Technologies Ag Verfahren zum Wachsen von Kohlenstoff-Nanoröhren oberhalb einer elektrisch zu kontaktierenden Unterlage sowie Bauelement
JP2004032963A (ja) 2002-06-28 2004-01-29 Shinano Kenshi Co Ltd ブラシおよびこれを有する回転電機
JP2004040844A (ja) * 2002-06-28 2004-02-05 Shinano Kenshi Co Ltd 整流子およびこれを用いた回転電機
JP4277103B2 (ja) * 2004-02-03 2009-06-10 国立大学法人信州大学 カーボンナノファイバーを用いる高分子アクチュエータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075102A (ja) * 2000-08-25 2002-03-15 Shimadzu Corp 電気接点材料
JP2002341061A (ja) * 2001-05-11 2002-11-27 Seiko Instruments Inc 中間支持構造体及びこれを備えた電子時計
JP2002341060A (ja) * 2001-05-11 2002-11-27 Seiko Instruments Inc 複合電気部品、地板構造体及びこれを用いた電子時計
JP2003284304A (ja) * 2002-03-20 2003-10-03 Anritsu Corp 電気接点装置及び接触子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1566814A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7981266B2 (en) * 2006-11-22 2011-07-19 Drägerwerk AG & Co. KGaA Electrochemical gas sensor containing electric connection lines or housing contact bridges comprising carbon nanotubes

Also Published As

Publication number Publication date
AU2003302829A1 (en) 2004-06-30
DE60315063D1 (de) 2007-08-30
EP1566814A1 (en) 2005-08-24
US20060017348A1 (en) 2006-01-26
CN1714411A (zh) 2005-12-28
US7202586B2 (en) 2007-04-10
JP4272875B2 (ja) 2009-06-03
JP2004179021A (ja) 2004-06-24
CN1327454C (zh) 2007-07-18
EP1566814B1 (en) 2007-07-18
DE60315063T2 (de) 2008-04-10
EP1566814A4 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
WO2004053893A1 (ja) 電気接点部材
JP2004032963A (ja) ブラシおよびこれを有する回転電機
JPH09213385A (ja) 高性能電気接点を有する電気部品
CN102760515A (zh) 具有有机复合物涂层的电导体
Poljanec et al. Effect of polarity and various contact pairing combinations of electrographite, polymer-bonded graphite and copper on the performance of sliding electrical contacts
JP3054628B2 (ja) 電気機器の摺動接触子
JP2004040844A (ja) 整流子およびこれを用いた回転電機
JP2000188028A (ja) 摺動接点装置及び接点材料
JP2010193621A (ja) 金属黒鉛質ブラシ
CN1055732C (zh) 铜基粉末合金电触头材料
JP2005120427A (ja) 電気接点用材料及び電気接点
US7129615B2 (en) Metal coated carbon brush
JP2020187971A (ja) コネクタ端子、端子付き電線、及び端子対
JPH05182733A (ja) 電気機械用カーボンブラシ
RU2769371C1 (ru) Электрический контактный элемент
JP2006310168A (ja) 電気接点機構
JP2005322492A (ja) 導電弾性体及びその製造方法
Kuhlmann-Wilsdorf Gold fibre brushes: Their promise for future high-technology applications
JP4211048B2 (ja) 摺動部品の製造方法
JP2001119903A (ja) ブラシおよびブラシを備えたモータ
JP3097467B2 (ja) 回路遮断器の可動接触子機構
JP2006177759A (ja) カーボンナノチューブの先端加工
JP2006286574A (ja) 電気接点
JP2010242160A (ja) 耐摩耗性導電部材及びその製造方法
JP4190407B2 (ja) 複合金属体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003812688

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006017348

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10534248

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038A39121

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003812688

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10534248

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003812688

Country of ref document: EP