WO2004044982A1 - 実装構造 - Google Patents

実装構造 Download PDF

Info

Publication number
WO2004044982A1
WO2004044982A1 PCT/JP2002/011753 JP0211753W WO2004044982A1 WO 2004044982 A1 WO2004044982 A1 WO 2004044982A1 JP 0211753 W JP0211753 W JP 0211753W WO 2004044982 A1 WO2004044982 A1 WO 2004044982A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
package
housing
mounting structure
screws
Prior art date
Application number
PCT/JP2002/011753
Other languages
English (en)
French (fr)
Inventor
Masafumi Shigaki
Isao Nakazawa
Kazunori Yamanaka
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2002/011753 priority Critical patent/WO2004044982A1/ja
Priority to JP2004551170A priority patent/JP4278617B2/ja
Priority to EP02778091.5A priority patent/EP1562230B1/en
Priority to EP08161081.8A priority patent/EP1986244B1/en
Publication of WO2004044982A1 publication Critical patent/WO2004044982A1/ja
Priority to US10/930,350 priority patent/US7285429B2/en
Priority to US11/873,445 priority patent/US7729129B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/021Components thermally connected to metal substrates or heat-sinks by insert mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6627Waveguides, e.g. microstrip line, strip line, coplanar line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • H01L2924/141Analog devices
    • H01L2924/1423Monolithic Microwave Integrated Circuit [MMIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap
    • H01L2924/1616Cavity shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/163Connection portion, e.g. seal
    • H01L2924/16315Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/166Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1903Structure including wave guides
    • H01L2924/19032Structure including wave guides being a microstrip line type
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/142Arrangements of planar printed circuit boards in the same plane, e.g. auxiliary printed circuit insert mounted in a main printed circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09745Recess in conductor, e.g. in pad or in metallic substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10166Transistor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10409Screws
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink

Definitions

  • the present invention relates to a high-frequency transistor used in a microwave or millimeter wave band,
  • the present invention relates to the mounting structure of a package or a superconducting circuit board that incorporates at least one of a MIC (microphone / wave integrated circuit) and an MMIC (mono-silicone microwave integrated circuit), and particularly impairs the microphone / wave characteristics. Rather, the present invention relates to a mounting structure that can easily obtain a good thermal condition.
  • a MIC microphone / wave integrated circuit
  • MMIC mono-silicone microwave integrated circuit
  • the fact that the graph sheet has thermal anisotropy is used to transfer heat generated from the heat-generating portion of the low-frequency circuit to a distant place and release heat.
  • a method is used in which the graphite sheet is sandwiched between the heat-generating part of the package and the housing, and pressure is applied to the knockage with auxiliary metal fittings to release the heat. I was However, these are applied to low-frequency circuits and not to microwave circuits.
  • Graphite is graphite, an allotrope of carbon, better known as the brother of Diamond, or worse, a pencil lead.
  • Daraite sheet is a graphite sheet with a crystal arrangement close to that of a diamond, formed into a sheet, and has the second highest thermal conductivity after the diamond.
  • the thermal conductivity of copper and aluminum is less than half the thermal conductivity in one direction of the graph. From the above, the graphite sheet is ideal as a heat transfer material. However, there is a problem that it is not liquid like grease, so that it is difficult to completely adhere them.
  • Microwave 'Millimeter-wave circuit mounting structure is a high-heat transistor MIC
  • a package containing an MMIC is mounted on a metal housing, and a circuit board on which a microstrip is patterned is arranged around the package. Then, in order to improve the heat radiation of the heat generated from the package, the surface where the package and the housing come into contact is eliminated to improve the flatness and make the surface contact as much as possible.
  • the entire lower part of the package must be grounded. No matter how good the surface roughness and flatness are, microscopic point contact will result, and if the package is bent by heat, etc., the ground will be unstable and good electrical characteristics (microwave characteristics) will be obtained. I can't. In addition, the heat dissipation effect is limited, and the heat causes the package to warp, making the contact worse, which makes the ground more unstable. It is good to have a screw or the like under the heating element to prevent warping, but the only way to fix the package is to screw the area around it. If the power consumption is large even if the ground is removed, the temperature of the semiconductor may exceed the absolute maximum rating in consideration of thermal resistance.
  • a graphite sheet is interposed between the heat generating portion and the body, and a configuration as shown in a cross-sectional view of FIG. 20 has been proposed. That is, A cap filter 3 is interposed between a heat source (MPU, PA graphic chip, etc.) 2 provided in the package 1 and the upper part of the package, and a graphite sheet 4 is laid on the upper surface of the package. It is mounted by mounting and fixing the housing (heat sink). In this way, the heat is conducted in the direction indicated by the arrow, and the non-uniform heat distribution HTD 1 without the graph sheet is dissipated by the entire heat sink when the graph sheet 4 is used.
  • MPU heat source
  • PA graphic chip etc.
  • FIG. 21 is an explanatory view of the mounting structure of the DVD-RAM, in which a pickup 8 is provided under a printed board 7 on which CPUs 6a and 6b are mounted, and a light emitting diode and the like of the pickup 8 are provided. PGS Graphite Sheet 4 is mounted on the heating part. In the configuration shown in FIG. 21, heat generated from the CPU and the pickup is conducted to the exterior case 9 via the graph sheet 4 and dissipated.
  • the heating part is pressed against the graphite sheet 4 so that it is held down by the housing 5 from above.
  • the space on the peripheral circuit is also narrowed, and in the case of a microphone mouth wave circuit, the space on the peripheral circuit is narrowed.
  • a special jig is required to hold down strongly.
  • FIG. 22 shows a diagram in which the package 1 is pressurized for measuring the thermal resistance, so that the entire package 1 is pressurized.
  • This also holds the package 1 from above, which causes the same problems as in Figs. That is, in the structure in which the entire package 1 is pressed in FIG. 22, the space on the surrounding circuit is the same as the package, and in the case of a microwave circuit, the space on the circuit is small. As a result, even if the circuit is arranged, there is a problem that the ground on the circuit is too close, and it is difficult to obtain ordinary microwave and millimeter wave characteristics. If pressure is applied from above, teflon with a low dielectric constant may be used. However, this is auxiliary for microwave and millimeter wave applications, and pressure alone cannot fix transistors, MIC, and MMIC packages.
  • JP-A-51170 a form in which a heat-generating part is taken to a heat-radiating part using a graphite sheet is considered.
  • these conventional technologies do not take into account the problem of earthing peculiar to microwaves.
  • the graphite sheet has a certain degree of effect due to the high thermal conductivity in the horizontal direction.However, since the sheet is thin, the heat transport amount is small.
  • the calorific value was 100 W or more, it was difficult to lower the channel temperature of the transistor by more than 10 ° C.
  • the circuit board since the circuit board is very close, it is necessary to transport heat avoiding this circuit board, that is, heat can be transported only from parts that are not related to RF characteristics. In that case, the heat transport amount is small and sufficient effect cannot be obtained.
  • Japanese Unexamined Patent Publication No. Hei 8-23183 discloses a cooling method for cooling a heating member of a low-frequency circuit.
  • a structure that is, a cooling structure for a heat generating member, which includes a heat dissipation component made of graphite having high orientation, is disclosed.
  • the heat dissipating component in the cooling structure includes (1) a heat sink for cooling the electronic component as a heat generating member, or (2) a sealing member for sealing the electronic component as a heat generating member, or (3) It is indicated that a heat dissipating member that connects an electronic component as a heat generating member and a heat dissipating body that dissipates heat may be used.
  • the heat radiation characteristics as a heat sink are good, but when a heating element is contained in a package like a microwave or millimeter wave circuit, the heat from this package to the heat sink is If the conduction is not sufficient, there is a problem that a sufficient heat radiation effect cannot be obtained.
  • the sheet requires an adhesive function, but the described adhesive sheet does not show the adhesive function. If an adhesive is used, the adhesive reduces the heat transfer efficiency and reduces the heat dissipation effect.
  • the connecting member has a shape as shown in Fig. 1 of JP-A-8-23183, but the heat transport is small due to the small thickness of the sheet. If the heat generated by the transistor is 100 W, it is difficult to lower the channel temperature of the transistor by more than 10 ° C.
  • JP-A-10-283650 there is an example in which a heat sink is fixed using a connecting member in a laser light generating device.
  • the circuit device can be used independently.However, in a microwave circuit, other microphones are close to each other and this configuration is actually Not a target.
  • the method using the connecting member has a problem that a new member called a connecting member is required. In other words, when fixing the package, the material of the connecting member and the conditions of the connection are required, and there is a problem that members other than screws for fixing a normal package increase.
  • Japanese Patent Application Laid-Open No. 5-75283 discloses a structure in which heat is released using an ink sheet. However, the indium has almost no restoring power, and is revived and deformed during long-term use, creating a gap between the housing and the heating element, which may cause problems in terms of heat conductivity and grounding. There is.
  • FIG. 23 is an explanatory view of the cooling structure.
  • (a) is a perspective view of the high-frequency circuit device using superconductivity with the upper part 10 removed
  • (b) is a cross-sectional view taken along the line A ′ ′ with an upper lid.
  • a base metal substrate (invar, kovar, copper, etc.) 13 having a superconducting RF circuit board 12 mounted on a housing 11 is fixed with board mounting screws I4a to 14f.
  • indium sheets 15a and 15b are laid between the casing 11 and the base metal substrate 13 and between the RF circuit board 12 and the base metal substrate 13 for superconductivity.
  • the housing 11 is fixed on the cooling end 16 via an indium sheet 15c with screws 17a and 17b.
  • the inside of the cooling end 16 is configured such that a psychic medium such as LN, LHe or the like 3 flows, or a cooled He gas sent from a refrigerator (not shown) flows.
  • a superconducting RF circuit using an Nb superconducting film, YBCO, or BSCCO film can be used to operate at approximately 77 K using liquid nitrogen as a refrigerant, or At 50-80K using, superconducting RF circuits using YBCO and BPSCCO films can be cooled.
  • 18 is a superconducting film pattern on the superconducting RF circuit board 12
  • 19a and 19b are coaxial connectors
  • 20a to 20d are holes for screw holes.
  • the heat generated by the circuit in the cooled part is orders of magnitude smaller than that of ordinary semiconductor circuits and wiring.
  • heat entering from the outside of the cooling device passes through the casing 11 and is cooled by the cooled part (superconducting RF circuit board). 12).
  • the rise in temperature due to the invading heat is cooled by the cooling end 16.
  • the insects 15a to 15c have almost no restoration rate and adhere to many housing materials and substrates. For this reason, when the housing 11 is removed, the shape of the printer 15c is deformed, and it is difficult to reuse the same shape as it is, and a gap is formed between the housing 15 and the housing when the housing 11 is reused. It is often difficult to perform active operation and transmission circuit operation by superconductivity with high reproducibility because the temperature is uneven in the substrate.
  • the cooling structure of Fig. 23 has problems of oscillation and characteristic deterioration in EMC and internal circuits.
  • the cover 11 and the back cover of the housing 11 of the microwave and millimeter-wave circuit are usually fixed with screws 17a to 17b.
  • there is a gap there is a gap, and radio waves leak from the gap, causing problems such as EMC and oscillation and characteristic deterioration in internal circuits.
  • EMC has two phenomena: a phenomenon in which radio waves leak outside and a phenomenon in which outside radio waves enter.Internal circuit oscillation is partly due to the fact that part of the output feeds through the gap to the input. is there.
  • characteristic degradation also occurs due to the coupling between circuits through this gap, for example, a cracked circuit. It may have wave number characteristics.
  • an object of the present invention is to efficiently radiate heat generated from a package containing at least one of a high-frequency transistor, a MIC, and an MMIC used in a microwave or millimeter wave band.
  • An object of the present invention is to provide a mounting structure capable of easily obtaining a good thermal state.
  • Another object of the present invention is to mount a superconducting circuit board, which requires thermal uniformity, and a graphite sheet together with a screw together in a housing, thereby achieving a characteristic of a microwave open-circuit.
  • An object of the present invention is to provide a mounting structure capable of easily obtaining a thermally favorable state without impairing the mounting structure.
  • a first aspect of the present invention is a package in which at least one of a high-frequency transistor, a MIC, and an MMIC used in a microwave or millimeter wave band is built in and a base is formed of metal to form a ground. This is the mounting structure of the package mounted on the housing.
  • a conductive sheet that has the same size as the package pace, good thermal conductivity, and is resilient, such as a graphite sheet, is placed on the package on the housing.
  • the screw holes provided in the casing provided with a hole in the fully open or semi-open package a portion screw penetrates is the state sheet is not pressed against the O Ri 10 N / cm 2 or more co-tightening the screw pressure Mount on the housing while pressing the sheet with.
  • the temperature rise of the package can be suppressed by a simple method, a good thermal state can be obtained, and electric characteristics such as power addition efficiency can be improved. .
  • the second mounting structure when there is a step between the package mounting position and the circuit board mounting position on the housing, the step portion on the four sides of the package mounting position where the microwave does not pass is removed. Incline and spread a conductive sheet with good thermal conductivity and resilience all over the package and circuit board mounting location on the housing, and apply at least two of the package, circuit board, and sheet And attach it to the housing. In this case, the portion through which sea Bok the screws a hole in a state sea Bok no, while pressing the sheet with the Ne by Ri 10 N / cm 2 or more pressing pressure fastened di housing To be implemented. According to the second mounting structure, in addition to the same effects as those of the first mounting structure, it is possible to prevent the sheet from being cut off at the inclined step portion, and to maintain the space of the entire sheet.
  • the second aspect of the present invention is a mounting structure for mounting a superconducting circuit board on a metal housing.
  • a conductive sheet having good thermal conductivity and resilience for example, a Draft sheet is laid on the bottom of the box-shaped metal housing, and a superconducting circuit board is placed on the sheet.
  • the superconducting circuit board and the sheet are mounted together and fastened with two or more screws and attached to the metal housing.
  • a hole is provided in a sheet portion through which the screw passes, so that the sheet is not provided, and the sheet is mounted on the housing while pressing the sheet with a pressing pressure of ⁇ / cm 2 or more by co-tightening the screw.
  • a restorable conductive sheet having a hole in the portion where the screw passes is placed on the top of the peripheral edge of the box-shaped metal casing, and the lid of the casing is put on the metal sheet, and the lid and the seat are mounted. Together with screws to seal the inside of the housing.
  • a notch (groove) less than the thickness of the sheet is formed on the top of the peripheral edge of the housing or on one of the lids to enhance the degree of sealing.
  • Figure 1 is an illustration of a mounting method in which the package and sheet are fastened together with a single screw and mounted on the housing.
  • FIG. 2 is an exploded perspective view showing a package mounting structure of the first embodiment.
  • FIG. 3 is a cross-sectional view when cut along the signal direction.
  • Figure 4 is an explanatory diagram of the package and the size of the graph sheet.
  • Figure 5 is an explanatory diagram of the holes in the package and the graphite sheet.
  • Figure 6 shows the relationship between the package contact pressure and the package temperature rise for determining the pressing force.
  • FIG. 7 is a cross-sectional view of a modification in which the size of the sheet is smaller than the base size of the package and is the same as the size of the heat generating portion of the package.
  • FIG. 8 is an explanatory view of the package and the size of the graph sheet in the modified example.
  • FIG. 9 is a graph showing the relationship between the heat value and the temperature rise of the package.
  • Figure 10 is a microwave characteristic diagram with and without a sheet.
  • Figure 11 shows the relationship between the heat generation and the temperature rise when the area of the sheet is changed.
  • Figure 12 is a comparison diagram of temperature rise between silicon grease and sheet.
  • Figure 13 is an explanatory diagram of the effect of the sheet when the mounting surface is roughened.
  • FIG. 14 is an exploded perspective view showing the package mounting structure of the second embodiment.
  • Figure 15 is a cross-sectional view of the mounting structure of the knockout.
  • FIG. 16 is an exploded perspective view showing the package mounting structure of the third embodiment.
  • FIG. 17 is a sectional view of the package mounting structure of the third embodiment.
  • FIG. 18 is an explanatory view of a mounting structure for mounting a superconducting circuit board on a metal housing.
  • FIG. 19 is another explanatory view of a mounting structure for mounting a superconducting circuit board on a metal housing.
  • FIG. 20 is a first explanatory view of a conventional mounting method using a graph sheet.
  • FIG. 2i is a second explanatory diagram of a conventional mounting method using a graph sheet.
  • FIG. 22 is a third explanatory view of a conventional mounting method using a graph sheet.
  • FIG. 23 is an explanatory view of a conventional cooling structure.
  • Sheets having the above properties include a graphite sheet structure, and a manufacturing method thereof is known, for example, from Japanese Patent Application Laid-Open No. 10-345665.
  • the force S at which the graphite sheet is optimal is used, and as the next best sheet, the SiC substrate with a carbon 'nano' tube film (200 nm or more) is also used.
  • Carbon 'nano. Tube membrane This part is effective because it has the same properties as the graph item sheet in terms of resilience.
  • the package is grounded. If the electrical conductivity is small, it is not possible to obtain a sufficient ground, which is a problem.
  • the SiC substrate on which the above-mentioned graphite 'site' and 'bonbon''nano' tube film are formed has a good electrical conductivity, and the microphone mouth wave characteristic does not deteriorate due to poor grounding.
  • the joint fastening of the package and the sheet with screws is applicable to relatively small (at most 50 to 300 mm 2 ) microwave circuit packages. This is because the package of the micro mouthpiece circuit is usually screwed, and by using this screw, a greater pressing pressure can be applied to the sheet than pinning.
  • the single screw 21 does not have sufficient force to transmit heat because the pressure around the point B where there is no screw is weak. Therefore, two or more screws are required.
  • 22 is a surface of the housing
  • 23 is a heat conductive sheet
  • 24 is a package
  • 25 is a hole for screw passage.
  • the package and sheet are fastened together with two or more screws, and the package is mounted on the housing while pressing the sheet with a pressing pressure of ⁇ / cm 2 or more.
  • the problem of 23183 can be solved, and the problem of weak thermal conductivity due to the weak pressure and adhesive shown in Fig. 21 can be solved. Also, there is no need to hold the sheet with a special jig from above with screws.
  • the signal propagation section is located at just below the ground. Therefore, a sheet of the same size as the package (the entire sheet is grounded) Also, in the direction where there is no microwave or millimeter wave signal, that is, in the direction perpendicular to the direction in which the microwave propagates, there is an effect even if the size of the package and the sheet are slightly different. There is no.
  • FIG. 2 is an exploded perspective view showing a package mounting structure of the first embodiment
  • FIG. 3 is a cross-sectional view taken along a signal direction
  • FIG. 4 is an explanatory diagram of a package and a graph sheet.
  • Circuit boards 52 and 53 on which a microstrip is patterned are mounted on a housing (heat sink) 51 as a heat radiating member so as to sandwich a package 54 therebetween. Further, screw holes 51a and 51b for mounting a package are formed on the housing 51.
  • the package 54 contains at least one of the high-frequency transistors, MICs, and MMICs used for the microwave or millimeter wave band inside, and has a convex outer shape. Holes 54a, 54b through which the screws 56a, 56b for mounting the package pass are formed in the portion. Also, packet input / output terminals 54c and 54d (see FIG. 3 and omitted in FIG. 2) are formed on both sides of the package protrusion.
  • the sheet 55 has the same size as the base of the package 54 (see Fig. 4), and holes 55a and 55b are formed in portions where the screws 56a and 56b penetrate, so that there is no sheet.
  • the sheet 55 is required to have a restoration rate of 20% or more, good thermal conductivity and conductivity, and is, for example, a graph sheet.
  • Figure 6 shows the relationship between the contact pressure of the package and the temperature rise of the package for determining the pressing force, and shows the case where the calorific value is 60 W (curve A) and the case of 90 W (curve B).
  • the horizontal axis represents the contact pressure (N / cm 2 ), and the vertical axis represents the package temperature rise. Regardless of the type of sheet or the amount of heat generated, the temperature rise rate differs between 5 and 10 (N / cm 2 ). From this characteristic diagram, it is understood that if a contact pressure of 10 (N / cm 2 ) or more is applied, it is possible to suppress a rise in the package temperature.
  • Fig. 7 is a cross-sectional view of a modified example in which the size of the sheet 55 is smaller than the base size of the package and is the same as the size of the heat-generating part of the package. It is an explanatory view of the size of the unit, and the same parts as those in FIGS. 3 and 4 are denoted by the same reference numerals.
  • FIGS. 3 and 7 show the state of grounding in the first embodiment and the modification. That is, in the first embodiment, since the sheet 55 has substantially the same conductivity as metal, the ground of the package 54 can be sufficiently removed from the entire base. However, in the modified example, some bases could not keep pace. Thermally, the first embodiment of FIG. 3 and the modification of FIG. 7 are almost the same. However, in the modified example of Fig. 7, there is a problem that a part of the base part is far from the ground (housing), and the microphone mouth wave characteristics are disturbed.
  • Sheet 55 it is necessary for Sheet 55 to have resilience (recovery rate of 20% or more). This repulsive force removes the ground, which was originally unstable, and improves the effect of escaping heat. This effect can be achieved by a simple method in which the package 54 is fastened together with the screws 56a and 56b, and only by adding the price of the sheet 55. At this time, it is desirable that the sheet has a screw hole through which the screw passes.
  • Figure 10 shows the experimental results of evaluating the microwave characteristics.
  • A is the output voltage with sheet
  • B is the output power without sheet
  • a ' is the power added efficiency with sheet
  • B' is the power added efficiency without sheet.
  • Figure 12 plots the temperature rise of the package with respect to the amount of heat generated when a sheet is sandwiched between a silicone lease (KE 1223).
  • A is the characteristic when silicon grease is sandwiched
  • B is the characteristic when a sheet is sandwiched.
  • thermal characteristics it can be seen that the temperature rise is lower for the sheet with better thermal conductivity. Electrical properties cannot be measured with insulators such as silicon grease, and are not suitable for microwave circuits.
  • Fig. 13 is a characteristic diagram of the heat generation and temperature rise when the surface of the housing is roughened, where A is the characteristic when the surface is not roughened without a sheet, and B is the characteristic when the surface is roughened without the sheet. Characteristic C is the characteristic when the surface is roughened with the sheet, and D is the characteristic when the surface is not roughened with the sheet. Although if sheet is not increased from 32. 5 ° C at the heating value of 8 0 W and greatly 166% to 54.1QC, temperature rise when subjected to pressure in the two screws scissors sheet 13.8 0 14.9 0 C and 1 0 8% and its rate of increase from C was small. From the characteristic diagrams of FIGS. 12 and 13, it can be seen that the adhesion between the sheet and the housing is sufficient, and the method of the first embodiment is effective.
  • a sheet having an electrical conductivity equivalent to that of a metal and having a certain degree of restoration rate is used as the base of the package. Grounding is stable because it is in contact with the entire surface. Also, when the element generates heat, since the sheet is in surface contact, a path through which heat flows through a large number of point contacts is created, and the temperature of the heating element decreases. In addition, the sheet is sandwiched between and fixed with multiple screws, and the sheet can contact the package and housing with pressure, and the shape can be maintained for a long time due to the restoration rate. . In addition, since only the seat fee is positive and other configurations do not increase, the implementation can be carried out without cost.
  • the position of the upper ground is not affected by the height of the package because it is held down with screws.
  • the channel temperature of the transistor is lowered by several hundred degrees, so that the gain, the saturation output, the efficiency, and the distortion characteristics are improved.
  • FIG. 14 is an exploded perspective view showing the package mounting structure of the second embodiment
  • FIG. 15 (a) is a cross-sectional view taken along the line AA 'when cut along the signal direction
  • FIG. 15 (b) is a view perpendicular to the signal direction
  • FIG. 4 is a cross-sectional view taken along the line BB ′ when cut, and the same parts as those in FIGS. 2 and 3 are given the same reference numerals.
  • the difference from the first embodiment is that a package receiving portion 60 is formed in the housing 51.
  • the positioning can be easily performed only by inserting the sheet 55 and the package 54 into the receiving portion 60 when assembling the package.
  • 62 is a metal lid
  • 63 is a 50 ⁇ line
  • 64 is a cross section of the ceramic part.
  • the sheet 55 is laid integrally over the entire location of the package 55 and the circuit boards 52 and 53 on the housing, and the package and the circuit board are grounded from the sheet.
  • FIG. 16 is an exploded perspective view showing the package mounting structure of the third embodiment.
  • FIG. 16 (a) is a cross-sectional view taken along the line AA ′ when cut along the signal direction.
  • FIG. 14 is a cross-sectional view taken along the line BB ′ in which the same parts as those in FIGS. 14 and 15 are denoted by the same reference numerals.
  • the difference from the second embodiment is that, among the steps on the four sides of the receiving part 60, the steps through which microwaves do not pass are inclined to form inclined steps 62. With such an inclination, the sheet is not cut at the step.
  • a conductive sheet 55 with resilience is spread over the entire package and circuit board mounting locations on the housing, the circuit boards 52 and 53 are mounted on the sheet, and then the package 55 is mounted. Even if the screws 56a and 56b are tightened together, the sheet will not be cut at the inclined step portion 62, so that the ground potential of the entire sheet can be maintained and the package and circuit board can be grounded. Can be. In the sheet shown in the figure, notches are formed at steps other than the inclined steps 62, but not necessarily. The entire circuit can be composed of a single sheet. This is an effective method especially when there are multiple transistors, MICs, and MMICs.
  • FIGS. 18 and 19 show a fourth embodiment of a mounting structure in which a superconducting circuit board is mounted on a metal housing.
  • FIG. 18 (a) is a perspective view with the upper lid removed
  • FIG. 18 (b) is an AA with the upper lid.
  • 'It is a sectional view.
  • a conductive sheet with good heat conduction and resilience such as a graphite sheet 73, is laid on the bottom 72 of the box-shaped casing 71, and a superconducting RF circuit is placed on the sheet.
  • 78 is a superconducting film pattern on the superconducting RF circuit board 74
  • 79 is a coaxial connector
  • the cooling performance can be further improved and a good thermal condition can be obtained.
  • the sheet shall be perforated or cut away to avoid the thread.
  • the fifth embodiment has an implementation structure for solving the problems of EMC and internal circuit oscillation and characteristic deterioration. That is, as shown in FIG. 19, a conductive sheet 91 with a hole (eg, a graphite sheet) 91 having a hole in a portion where a screw passes is used to form a box-shaped metal housing 71 with a peripheral top 71a to It is placed on 71 c, and the lid 70 of the housing 71 is put on it, and the space between the cover 70 and the sheet 91 is fastened together with a plurality of screws 92.
  • a conductive sheet 91 with a hole (eg, a graphite sheet) 91 having a hole in a portion where a screw passes is used to form a box-shaped metal housing 71 with a peripheral top 71a to It is placed on 71 c, and the lid 70 of the housing 71 is put on it, and the space between the cover 70 and the sheet 91 is fastened together with a plurality of screws 92.
  • the above sheet mounting method is easy, there is a problem that the sheet 91 is displaced.
  • a digging (groove) is made in one of the housing 71 or the lid 70 (the top of the housing in the figure).
  • the groove depth of the housing 71 is suitably not more than 80% of the thickness of the sheet 91.
  • the groove at the top of the housing 71 is entirely dug in a key shape.
  • the housing 71 has a small box shape to avoid oscillation and cracks in characteristics.
  • the groove on the housing side is dug into the inside at the tops 71a and 71b of the peripheral edge, and is dug into a concave shape at the top 71c other than the peripheral edge.
  • This digging serves as a guide, which makes it possible to easily mount the sheet 91 and, moreover, enables sealing.
  • the pressing pressure applied to the sheet 91 can be achieved by pressing the sheet 91 on the housing 71 via the lid 70 with a plurality of screws 92 (six screws in the figure).
  • the gap is closed, so that radio waves do not leak from here, and it is possible to prevent outside radio waves from entering inside.
  • the problem of oscillation and characteristic deterioration of EMC and internal circuits can be solved.
  • the oscillation of the internal circuit causes a part of the output to However, such a factor disappears and no twist occurs.
  • the characteristic degradation also occurs due to the coupling between the circuits through the gap.
  • the elimination of the gap does not cause the characteristic degradation, for example, a cracked frequency characteristic.
  • a hole HL is drilled in the threaded part of sheet 91. Also, in this example, the case side is dug, but the effect is the same even if the lid side is dug.
  • the electrical conductivity is equivalent to that of metal, and the sheet 73, which has a resilience, is in contact with the superconducting circuit board 74. Stabilize. In addition, since the heat conductivity of the sheet 73 in the lateral direction is good, the superconductor cools uniformly and the characteristics are stabilized.
  • the temperature rise of the package is 35 as compared with the conventional case. Down from G to 1 2 ° C.
  • the gain and output are improved by about 1.5 dB, the efficiency is improved by about 7 to 8%, and the distortion is improved by about 4 dB. It is also effective at cryogenic temperatures such as superconductivity.
  • grease since grease has electrical conductivity unlike grease, it can be used as a ground for a microwave package / substrate. Also, unlike the grease, there is no need to worry about uneven coating, and mounting is easy.
  • the sheet since the sheet has electrical conductivity, the use of the sheet for the shield portion also has an effect on the EMC relationship.
  • the mounting structure using the sheet of the present invention has a wide temperature range, and can be used in a temperature range of several hundred degrees from a cryogenic world such as superconductivity.
  • the package and the circuit board can be grounded at the same time via the sheet, and a surface contact can be obtained by co-tightening with a screw, so that deterioration of microwave characteristics can be prevented. Further, even if there is a step between the mounting position of the package and the circuit board, the sheet can be prevented from being cut by inclining it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Packages (AREA)

Abstract

 マイクロ波乃至ミリ波帯において使用する高周波トランジスタ、MIC、MMICのうち少なくとも1つを内蔵し、ベースが金属で形成されてアースとなるパッケージを筐体に実装するパッケージの実装構造において、パッケージのべースと同じ大きさで、熱伝導性が良好で、復元性のある導電性シートを筐体上のパッケージ載置箇所に敷き、該パッケージとシートを2個以上のネジで共締めし、共締めにより10N/cm2以上の押し付け圧力でシートを押し付けながら筐体に実装する。

Description

明 細 書
実装構造
技術分野
本発明は、マイ ク ロ波乃至ミ リ 波帯において使用する高周波 卜ラ ンジス、
MIC (マイク 口波集積回路)、 MMIC (モノ シリ ックマイクロ波集積回路)の少なく と も 1 つを内蔵したパッケージや超伝導回路基板の実装構造に係わり、特に、 マイ ク口波特性を損なう ことなく 、 熱的に良好な状態を容易に得ることができる実装 構造に関するものである。
背景技術
従来、マイク ロ波乃至ミ リ波帯の信号を扱うマイクロ波回路を筐体(ヒー トシン ク)に実装するには、①筐体とパッケージや基板の間にィンジゥムのよ うな軟金属 を置いて実装する、 ②筐体とパッケージや基板の間にシリ コン . コンパウン ドや グリースを塗って実装する、③何もしないで直接実装する、④半田付けによ り筐体 に直接実装する、 のいずれかの方法が行われていた。
また、 低周波の回路では、 グラフアイ トシー トが熱異方性をもつことを利用し、 該グラフアイ トシー トで低周波回路の発熱部から発生する熱を離れたところに輸 送して放熱を行う事が成されていた。 また、 同様にグラフアイ トシー トの性質を 利用し、パッケージの発熱部と筐体との間にグラフアイ トシ一トを挟みノ ッケー ジに補助金具などで圧力をかけ、 熱を逃がす方法がなされていた。 しかし、 これ らは低周波回路への適用でありマイク ロ波回路では行われていない。
グラフアイ トは、黒鉛のこ とで、炭素の同素体、良く言えばダイァモン ドの弟分、 悪く言えば鉛筆の芯である。ダラフアイ トシ一トは結晶の並びがきれいなダイァ モン ドに近いグラフアイ トをシー ト状に成形したもので、 ダイァモン ドの次に高 い熱伝導率を有しています。 銅やアルミ の熱伝導率はグラフアイ 卜の一方向の熱 伝導率の 1/2以下である。以上より、グラフアイ トシ一トは伝熱素材と して理想的 である。 しかし、 グリスのよ うに液状でないため完全に密着させるのが困難な問 題がある。
• マイクロ波 , ミ リ波帯の回路の実装構造の問題点
マイク ロ波 ' ミ リ波帯の回路の実装構造は、 高発熱の トランジシタゃ MIC、 MMICを内蔵するパッケージを金属筐体上に実装し、 該パッケージの回りにマイ クロス ト リ ップがパターン化された回路基板を配置するのが通常である。そして、 パッケージから発生する熱の放熱を良くするために、 パッケージと筐体の接触す るところは表面粗さをなく して平面度を良く し、 できるだけ面接触するよう に構 成する。 ■
しかし、 マイクロ波 ' ミ リ波帯ではパッケージの下部は全体がアースになる必 要がある。 表面粗さ と平面度をいかに良く しても、 ミ ク ロに見ると点接触となり 特にパッケージが熱などで曲がる と、 アースが不安定で電気特性(マイクロ波特 性)の良好なものが得られない。 また、 放熱効果は限られたものとなり、 発熱のた め、 パッケージが反り、 接触をよ り悪く し、 これによ りアースがより不安定とな る。 発熱体の下に反り防止用のネジ等がある と良いが、 パッケージは上からその 周辺をネジ止めする しか方法がない。 なんとかアースが取れていても消費電力が 大きい場合、 熱抵抗を考慮すると半導体の温度が絶対最大定格を超えてしま う こ とがある。
以上の解決方法と してハンダでパッケージを箧体(ヒー トシンク)に止める方法 がある。 しかし、 半田で止めた場合は再ぴ動かすことができないため、 故障等が 発生する と トランジスタや MIC、 MMICを実装したパッケージのみならず、 筐体 をそっく り取り替える必要があり、 これ.によ り筐体に含まれる全ての回路を取り 替える事となり コス 卜が大き く なる問題がある。
また、 後から取り替えられるものと してシリ コン · コンパウン ドを使用する方 法がある。 しかし、 コンパウン ドが絶縁物であるため、 アースをとるのがうまく いかない問題がある。 また、 コンパウンドを薄く上手に塗る技術は難しく、 熟練 を要する作業である。
アースの取れる方法と してインジュ一ムシ一卜を敷く方法があるが、 上からの 圧力で押しつぶされ、 反発力がないため、 長期に使用するとパッケージと筐体の 間に隙間を生じることがあり、 これにより 、 信頼度に問題が生じ、 電気特性が変 わる問題がある。
また、 低周波回路では発熱部と箧体との間にグラフアイ トシートを挟むことが 考えられており、 図 20の断面図に示すよ う な構成が提案されている。すなわち、 パッケージ 1 内に設けられた発熱源(MPU,PA グラフィ ックチップ等) 2 とパッケ ージの上部間の隙間にキャップフィルタ 3 を挟み、パッケージの上面にグラファ ィ トシ一ト 4 を敷き、その上から筐体(ヒー トシンク)を載せて固定するこ とによ り実装する。 このよ う にすると、熱が矢印で示す方向に伝導し、グラフアイ トシ一 トを用いない不均一な熱分布 HTD 1 がグラフアイ トシー ト 4 を用いる とヒー ト シンク全体で放熱が行われて熱分布 HTD2 のよ うに変化し、発熱部分の熱が放熱 される。図 21 は DVD-RAMの実装構造説明図であり、CPU 6 a , 6 bが実装され たプリ ン ト基板 7 の下にピックアップ 8が設けられ、該ピックアップ 8の発光ダ ィォ一 ドなどの発熱部の上に ; PGS グラフアイ トシー ト 4 が装着されている。 こ の図 21の構成では、 CPUやピックアップから発生した熱をグラフアイ トシー ト 4 を介して外装ケ一ス 9に伝導して放熱する。
しかし、 図 20、図 21の実装構造は、 マイク口波回路の実装に適用することは難 しい。 理由はマイ ク口波回路の場合、 パッケージ ( トランジスタや MIC、 MMIC) に隣接した周り にはマイクロス ト リ ップを主体と した回路基板を配置する必要が あるからである。
図 21 のよ う に低周波回路であればァ一スは点接触でつながつていても問題は ないがマイ ク口波回路を内蔵するパッケージでは面接触のアース構造を必要とす る。また、図 20、図 21の実装構成において、 熱が矢印で示されるよ うに、 グラファ イ トシー トは横方向に熱伝導が非常に優れているが、 1 枚では薄いため、 これら の図のよ う に熱が横方向に広がることは少ない。
また、 図 20 では発熱部をグラファイ トシー ト 4 に押し当てるために、 上から 筐体 5 で抑える構造になっている。 この場合、 周 りの回路上の空間も狭く なり、 マイク 口波回路の場合は周辺回路の上の空間が狭く なる。 これによ り例え周辺回 路を配置しても、該回路の上のアースが近すぎて、通常のマイク口波特性を得るこ とが困難となる。 また、 実用的に放熱するには強く押さえるための特別な治具が 必要である。
また、 図 21 では筐体への取り付け方法が明確ではないが、 接着層があるダラ フアイ 卜シー ト 4で CPUノ ッケージを放熱部(外装ケース)へ固定させていると考 えられる。 しかし、 接着層の存在が熱抵抗を大き くする。 また、 高発熱のマイク 口波 ' ミ リ波帯のパヮー回路に使用する トランジスタや MIC、 MMICのパッケ一 ジ下部は 1 0 0 °C以上になる。 接着層は高温で 1 0 0 °C程度しかもたないため、 図 21 の実装構造のよ う に接着層のあるシー トはマイクロ波回路の実装に使用で きない。 また、 図 21 の実装構造は低周波回路対応のため、 マイクロ波 · ミ リ波 の高周波回路の特殊性が考慮されておらず、 パッケージ ( トランジスタや MIC、 MMICを内蔵) に隣接した周りにマイ クロス ト リ ップを主体と した基板を配置す る必要があるマイク ロ波回路の実装には、 限界がある。
図 22 では熱抵抗測定のため、 パッケージ 1 を加圧する図が描かれ、 パッケ一 ジ 1全体を加圧するよ う になっている。 これもパッケージ 1 を上から押さえる構 造となっており、 図 20や図 21 と同じ問題が起こる。 すなわち、 図 22のパッケ ージ 1全体を押下する構造では、 周り の回路上の空間もパッケージと同じ高さに なり 、 マイクロ波回路の場合は回路の上の空間が小さ くなる。 これによ り例え回 路を配置しても回路の上のアースが近すぎて、 通常のマイクロ波 ' ミ リ波特性を 得るこ とが困難となる問題があった。 まお、 上から加圧する場合は誘電率の低い テフロ ンなどを使用する場合がある。 しかし、 これはマイクロ波 · ミ リ波用では 補助的で、 圧力のみでは トランジスタや MIC、 MMICのパッケージを固定するこ とは出来ない。
放熱に闋しては、 特開平 8-23183号、 特開平 11- 110084号、 特願平 11 - 149329 号、 特願平 10-3333202号、 特願平 11-Ί28567号、 特願平 10- 51170号公報に見 られるよ う に、 発熱部からグラフアイ トシー トを利用して放熱部へ持っていく形 式が考えられている。 しかし、 これら従来技術はマイクロ波特有のアースの問題 は考慮されていない。 また、 熱的にはグラフアイ トシー トは横方向の熱伝導率が 高いのである程度の効果があるが、 シー トの厚みが薄いこともあり熱輸送量が少 なく 、 例えば トランジスタゃ MIC、 MMICの発熱量が 100W以上ある場合、 卜ラ ンジスタのチャネル温度を 1 0°C以上、 下げる事は困難であった。 また、 マイク 口波 · ミ リ波回路の場合、 回路基板が直ぐそばにあるため、この回路基板を避けて 熱を輸送する必要があり、即ち、 R F特性と関係無い部分からしか熱輸送が出来ず、 その場合熱輸送量は少なく十分な効果が得られない。
例えば、特開平 8-23183 号には、 低周波回路の発熱部材を冷却するための冷却 構造、 すなわち、 高配向性を有するグラフアイ ト製の放熱部品を含むことを特徴 とする発熱部材の冷却構造が開示されている。そして、この冷却構造における放熱 部品は、①発熱部材と しての電子部品を冷却するためのヒ一 トシンク、あるいは② 発熱部材と しての電子部品を封止するための封止部材、あるいは、③発熱部材と し ての電子部品と熱を放熱する放熱体とを接続する放熱部材であってもよいことが 示めされている。
①の方法では、ヒー トシンク と しての放熱特性は良好であるが、 マイクロ波 ' ミ リ波回路のよ う に発熱体がパッケージに入っている場合、 このパッケージからヒ 一卜シンクへの熱伝導が十分でないと十分な放熱効果を得られない問題がある。 また、 ②の方法では、 シー トに接着機能が必要であるが、 記述されているグラフ アイ ト · シ一トでは接着機能が示されていない。 接着剤を用いるとすれば、接着剤 によ り熱伝導効率が下がり、放熱効果が低下する。 ③の方法では、接続部材は特開 平 8-23183号の図 1 に示されるよ うな形であるが、 シー トの厚みが薄いこともあ り熱輸送量が少なく 、 例えばトランジスタゃ MIC、 MMICの発熱量が 100Wある 場合、 トランジスタのチャネル温度を 1 0°C以上、 下げる事は困難である。
また、 特開平 10-283650号公報に示されるように、 レーザ光発生装置において 連結部材を使ってヒー トシンクを固定する例がある。 この例のように周波数に関 係のない場合は回路装置が独立して用いられることができるが、 マイク ロ波回路 では周 り に他のマイ ク 口波回路が近接しており本構成は実際的ではない。 また、 この連結部材を用いる方法では、 連結部材という新たな部材を必要とする問題が ある。 すなわち、 パッケージを固定する場合この連結部材の素材や連結の条件が 必要である し、 通常のパッケージを止めるネジ以外の部材が増える問題がある。 特開平 5-75283 号公報には、ィンジユームシ一トを使って熱を逃がす構造が示 されている。 しかし、 インジユームは殆ど復元力が無く、 長期に使用する間に甦 生変形して筐体との間に隙間が生じ、 発熱体と剥離することがあり、 熱伝導性、 アース維持の点で問題がある。
以上は、発熱体から発生した熱を放熱する従来技術であるが、マイクロ波 · ミ リ 波の高周波域の電磁界成分を扱う超伝導を用いた高周波回路や高速デジタル回路 では、 非常な低温に部材を維持する必要がある。 図 23は冷却構造説明図であり、 (a)超伝導を使用した高周波回路装置の上蓥 10を外した斜視図、 (b)は上蓋付きの A Α ' 断面図である。 図示するよ うに、 筐体 11に超伝導 RF回路基板 12などを 実装したベース金属基板 (イ ンバー、 コバール、 銅など) 13を基板取り付けネジ I4a〜14f で止めている。 また、 筐体 11 とペース金属基板 13の間及び超伝導; RF 回路基板 12 とベース金属基板 13 の間に熱を冷やすためイ ンジウムシー ト 15a, 15bが敷かれている。 更に、冷却端 16上にインジウムシー ト 15cを介して筐 体 11がネジ 17a, 17bによ り 固定されている。 冷却端 16 の内部には LN,,LHe等 の霊媒が流す力3、または図示しない冷凍機から送られてく る冷却された He ガス を流す'構成になっている。液体 H e ( L H e ) を冷媒と した動作温度約 4 Kでは、 Nb超伝導膜や YBCO、 BSCCO膜を用いた超伝導 R F回路を、 液体窒素を冷媒と した動作温度約 77K または、 冷凍機を用いた 50〜80Kでは、 YBCO、 BPSCCO 膜を用いた超伝導 R F回路を冷却することができる。 尚、図 23において、 18は超 伝導 RF 回路基板 12 上の超伝導膜パターン、 1 9 a, 1 9 b は同軸コネクタ、 20 a〜 20dはネジ揷通用の孔である。 ■
被冷却部の回路の発熱は通常の半導体回路、 配線に比べ、 桁違いに小さいが、 冷却装置の外部からの侵入熱が筐体 11を経由して、 被冷却部 (超伝導 RF回路基 板 12) に侵入する。 この侵入熱による温度の上昇を冷却端 16 によ り冷却する。 しかし、ィンジンムシ一ト 15a〜15cは復元率が殆どなく、また多く の筐体材料、 基板に対して付着性がある。 このため、 筐体 11を外すと、 ィンジンムシ一ト 15c の形状が変形してしまい、 このままでは同じ形状での再使用が困難であり、 再使 用した場合は筐体との間に隙間が生じやすく、 基板内に温度むらが出来、 再現性 が高い超伝導による能動動作や伝送回路動作がしばしば困難である。
また、図 23の冷却構造では EMCや内部回路での発振や特性劣化の問題がある。 マイクロ波 ' ミ リ波回路の筐体 11は通常ネジ 17a〜17bなどで蓋 10や裏ブタを 止める。 この際、 隙間ができるためここから電波が漏れることによ り EMC や内 部の回路における発振や特性劣化の問題がおきる。 EMCは外へ電波が漏れる現象 と、 または外の電波が中に入る現象の 2点があり、 内部回路の発振は出力の一部 が隙間をとおり入力にフィー ドパック して起こること も 1因である。 また、 特性 劣化もこの隙間を通した回路間の結合に起因して'おこ り、 例えば亀裂が入った周 波数特性になったりする。
以上よ り本発明の目的は、マイク ロ波乃至ミ リ波帯において使用する高周波 ト ランジスタ、 MIC、 MMICのう ち少なく と も 1つを内蔵するパッケージから発生 する熱を効率的に放熱して熱的に良好な状態を容易に得ることができる実装構造 を提供することである。
本発明の別の目的は、熱的に均一度が必要な超伝導回路基板と グラフアイ トシ 一トをネジで共締めして筐体に実装するこ とによ り、マイ ク口波特性を損なう こ となく 、 熱的に良好な状態を容易に得ることができる実装構造を提供することで ある。
発明の開示
本発明の第 1 は、マイクロ波乃至ミ リ波帯において使用する高周波 トランジス タ、 MIC、 MMICのう ち少なく と も 1つを内蔵し、 ベースが金属で形成されてァ ースとなるパッケージを筐体に実装するパッケージの実装構造である。
第 1 の実装構造においては、パッケージのペースと同じ大きさで、 熱伝導率が 良好で、復元性のある導電性シ一 ト、例えばグラフアイ トシ一トを筐体上のパッケ 一ジ載置箇所に敷き、 該パッケージとシー トを 2個以上のネジで共締めして筐体 に取り付ける。この場合、パッケージに全開あるいは半開の穴を設けると共に筐体 にネジ穴を設け、ネジが貫通する部分はシー トが無い状態にし、前記ネジの共締め によ り 10N/cm2以上の押し付け圧力でシー トを押し付けながら筐体に実装する。 第 1 の実装構造によれば、簡単な方法で、パッケージの温度上昇を押さえることが でき、熱的に良好な状態を得ることができ、さらには電力付加効率など電気特性を 向上することができる。
第 2 の実装構造においては、筐体上のパッケージ載置箇所と回路基板載置箇所 に段差が存在する場合、該パッケージ載置箇所の 4 辺の段差部分のうちマイクロ 波が通らない段差部分を傾斜させ、 熱伝導性が良好で、 復元性のある導電性シー トを筐体上のパッケージおよび回路基板載置箇所全体に敷き、 該パッケージと回 路基板のそれぞれとシー トとを 2 個以上のネジで共締めして筐体に取り付ける。 この場合、シー 卜のネジが通る部分には穴を設けてシー 卜が無い状態にし、前記ネ ジの共締めによ り 10N/cm2 以上の押し付け圧力でシー トを押し付けながら筐体 に実装する。 第 2の実装構造によれば、第 1の実装構造と同様の効果に加えて、傾 斜段差部分でシー トが切れることを防止で、 シー 卜全体のァ一スを維持すること ができる。
本発明の第 2は、超伝導回路基板を金属筐体に実装する実装構造である。この実 装構造においては、箱状の金属筐体の底部に熱伝導率が良好で、復元性のある導電 性シー 卜、例えばダラフアイ トシ一トを敷き、該シー ト上に超伝導回路基板を載せ、 該超伝導回路基板とシー トを 2個以上のネジで共締めして金属筐体に取り付ける。 この場合、ネジが通るシー ト部分には穴を設けてシー トが無い状態にし、前記ネジ の共締めによ り ΙΟΝ/cm2 以上の押し付け圧力でシー トを押し付けながら筐体に 実装する。 また、 ネジが通る部分に穴が設けられた復元性のある導電性シー トを 箱状の金属筐体の周縁頂部に載置し、その上に筐体の蓋を被せ、蓋とシ一 卜をネジ で共締めして筐体内部を密封する。また、 シー トの厚み以下の掘り込み(溝)を筐体 の周縁頂部か蓋の一方に形成して、密封度合を強力にする。この実装構造によれば、 熱的に均一度が必要な超伝導回路基板とグラフアイ トシ一トをネジで共締めして 筐体に実装することによ り、マイク 口波特性を損なう ことなく、熱的に良好な状態 を容易に得ることができる。
図面の簡単な説明
図 1は 1本のネジでパッケージとシ一 トを共締めして筐体に実装する実装方法 の説明図である。
図 2は第 1実施例のパッケージの実装構造を示す分解斜視図である。
図 3は信号方向に沿って切断した場合の断面図である。
図 4はパッケージとグラフアイ トシー トのサイズ説明図である。
図 5はパッケージとグラフアイ トシー トの穴説明図である。
図 6は押し付け力を決定するためのパッケージの接触圧力とパッケージの温度 上昇との関係図である。
図 7はシー 卜のサイズをパッケージのべ一スサイズより小さく し、かつ、パッケ ージの発熱部分のサイズと同じにした変形例の断面図である。
図 8は変形例のパッケ ジとグラフアイ トシー トのサイズ説明図である。
図 9は発熱量とパッケージの上昇温度との関係図である。 図 1 0 はシー ト有り /無しの場合におけるマイクロ波特性図である。 図 1 1 はシー トの面積を変えた時の発熱量と温度上昇の関係図である。
図 1 2はシリ コングリースとシー トの温度上昇比較図である。
図 1 3 は実装面を荒らした時のシー 卜の効果説明図である。
図 1 4は第 2実施例のパッケージの実装構造を示す分解斜視図である。
図 1 5 はノ ッケージの実装構造の断面図である。
図 1 6 は第 3実施例のパッケージの実装構造を示す分解斜視図である。
図 1 7は第 3実施例のパッケージの実装構造の断面図である。
図 1 8 は超伝導回路基板を金属筐体に実装する実装構造の説明図である。
図 1 9は超伝導回路基板を金属筐体に実装する実装構造の別の説明図である。 図 20は従来の グラフアイ トシー トを用いた実装方法の第 1の説明図である。 図 2 iは従来の グラフアイ トシー トを用いた実装方法の第 2の 説明図である。 図 22は従来の グラフアイ トシー トを用いた実装方法の第 3の 説明図である。 図 23は従来の冷却構造説明図である。
発明を実施するための最良の形態
( A ) 本発明の原理
通常のマイク口波乃至ミ リ波回路に殆ど新たな実装変更を加えず、 効率よくパ ッケージよ り発生する熱を放熱できるよ う にすることが重要である。 このため、 シ一 ト と して、
①電気伝導度が良好でマイク口波特性が変化しないもの、
②ク ッショ ンのよ うに復元力があり、しかも長期に復元力を保持しているもの、
③空気以上の熱伝導があり、ネジでパッケージと共締めして、筐体に実装可能な もの、
が良レ、。なお、 シー ト状のものを使う とグリースのよ うに液状ではないので、 実 装が簡単になる。
以上のよ うな性質をもったシー トと して、グラフアイ ト .シー ト構造があり、 製 造方法は例えば特開平 10- 345665号公報よ り知られている。また、シー ト と して、 グラフアイ トシー トが最適である力 S、次善のシー トと して、カーボン ' ナノ ' チュ ーブ膜 (200 n m厚以上) を形成した SiC 基材等もカーボン ' ナノ . チューブ膜 の部分に復元性の点でグラフアイ トシ一 ト と同様の性質を持っため、有効である。 また、 マイク口波乃至ミ リ波回路用のパッケージ等ではパッケージがアースとな つており、 電気伝導度が小さいものはアースが十分に取れずに問題である。 しか し、 上記のグラフアイ ト ' シ一 ト、 力一ボン ' ナノ ' チューブ膜を形成した SiC 基材は電気伝導度がよく 、アース不良によるマイク口波特性が劣化することはな い。
ネジでパッケージとシー トを共締めして筐体に実装する際、相当の押し付け圧 力、例えば ΙΟΝ/cm2以上の押し付け圧力をシー トに加えながら実装する必要があ る。これはシー ト とパッケージ間、シー ト と筐体間を密接に接触させる(面接蝕さ せる)ためである。面接触により熱伝導効率が上昇し、また、アースが十分に取れて マイク ロ波特性の劣化を防止できる。
ネジによるパッケージと シー トの共締めは、比較的小さい (せいぜい 50〜 300mm 2 ) マイ クロ波回路のパッケージに適用可能である。 なぜならば、 このマ イク口波回路のパッケージは通常ネジで止められているからであり 、 このネジを 用いることによ り、 ピンで留めるよ り大きな押し付け圧力をシー トに加えること ができる。 また、 図 1 に示すように、 1個のネジ 21 では、 ネジが無い B点周辺 の圧力が弱いために熱を伝えるのに十分な力が得られない。 このため、 2 個以上 のネジが必要である。 尚、図 1 において、 22 は筐体の面、 23 は熱伝導性シー ト、 24 はパッケージ、 25はネジ揷通用の孔である。
2 個以上のネジでパッケージとシー トを共締めする と共に、 ΙΟΝ/cm2 以上の押 し付け圧力でシ一 トを押し付けながら筐体に実装する方法によ り、既述の特開平 8-23183 の問題点を解決でき、また、 図 21 の弱い圧力や接着材による弱熱伝導性 の問題を解決できる。 また、 ネジによ り上から特別な治具でシー トを押さえるこ とも必要ない。
シー トは薄いため、 熱伝導を特開平 8-23183 のよ う にヒー トシンク と接続して 発熱体からヒー トシンクへ熱を伝えよ う と してもその効果は弱い。 しかし、 パッ ケージの発熱体の真下にシー トを敷き、ネジによ り該シー トとパッケージとを共 締めし、シー 卜に ΙΟΝ/cm2以上の押し付け圧力を加えて筐体に実装することによ り、 押し付け圧力真下に熱を伝えることが可能となり、 パッケージの温度上昇を 押さえることが可能となる。
この際、 マイクロ波 . ミ リ波回路において、 信号伝播部はア^ "スの位置ぎり ぎ り まであることが必要である。 このため、 パッケージと同じサイズのシー ト(シー 卜全面がアースである)が必要である。 また、 マイ クロ波 ' ミ リ波信号がない方向 においては、 即ち、マイク ロ波が伝播する方向と直角方向においては、パッケージ とシー トのサイズが多少違っても影響はない。
( B) 第 1実施例
図 2 は第 1 実施例のパッケージの実装構造を示す分解斜視図、図 3 は信号方向 に沿って切断した場合の断面図、図 4 はパッケージとグラフアイ トシー トのサイ ズ説明図である。放熱部材と しての筐体(ヒー トシンク) 51 上に、 マイク ロス ト リ ップがパターン化された回路基板 52, 53 がパッケージ 54 を挟むように装着され ている。また、筐体 51 上にはパッケージ取り付け用のネジ穴 51a, 51bが形成され ている。
パッケージ 54 は、 内部にマイ ク口波乃至ミ リ波帯において使用する高周波 ト ランジスタ、 MIC、 MMICのう ち少なく と も 1つを内蔵しており、 外形は凸状に なっており、 基部両端部にパッケージ取り付け用のネジ 56a, 56b を揷通する穴 54a, 54b が形成されている。 また、 パッケージ突出部の両側にはパケッ トの入 出力端子 54c, 54d (図 3参照、図 2 では省略)が形成されている。 シー ト 55 はパッ ケージ 54のベースと同じサイズを備え(図 4参照)、ネジ 56a, 56bが貫通する部分 には穴 55a, 55bが明けられて、 シー 卜が無い状態になっている。シー ト 55は、 復 元率が 20%以上、 熱伝導性が良好で、 導電性を有する必要があり、例えばグラフ アイ トシ一卜である。
パッケージの筐体への組み付けは、グラフアイ トシー ト 55 を筐体 51 上のパッ ケージ載置箇所に、穴 55a, 55bがネジ穴 51a, 51b と一致するよ うに敷き、ついで、 その上にパッケージ 54を穴 54a, 54bが穴 55a, 55b と一致するように載せ、 2個 以上(図では 2個)のネジ 56a, 56bを各穴に挿入してパッケージ 54 とシー ト 55を 共締めして筐体 51 に取り付ける。 この場合、ネジの共締めにより、所定の押し付 け圧力でシ一 ト 55 を押し付けながら筐体 51 に実装する必要がある。最後に回路 基板 52,53 上のマイク ロス ト リ ップ 52a, 53a とパッケージの入出力端子 54c, 54d (図 3参照)を半田 56で接続する。なお、 パッケージ 54及びシー ト 55に設け る穴 54a, 54¾; 55a, 55b を、図 5に示すよ うに半開とすることもできる。
図 6は押し付け力を決定するためのパッケージの接触圧力とパッケージの温度 上昇との関係図で、発熱量が 60W の場合(曲線 A)と 90Wの場合(曲線 B)を示して いる。横軸は接触圧力(N/cm2)、縦軸はパッケージ温度上昇である。シー トの種類や 発熱量に関係なく 、 5〜10(N/cm2)を境に温度の上昇率が違っている。 この特性図 から、 10(N/cm2)以上の接触圧力をかければ、パッケージの温度上昇を押さえるこ とが可能となることが分かる。
図 7はシー ト 55 のサイズをパッケージのベースサイズよ り小さ く し、かつ、パ ッケージの発熱部分のサイズと同じにした変形例の断面図、図 8 は変形例のパッ ケージとグラフアイ トシ 卜のサイズ説明図であり、図 3、図 4 と同一部分には同 一符号を付している。
図 3、図 7から第 1実施例と変形例におけるアースの様子がわかる。 即ち、第 1 実施例ではシー ト 55が金属と同程度の導電性を有するため、 パッケージ 54のァ ースがべ一ス全面から十分に取れている。 しかし、 変形例では一部ベースがァー スを取れていない。熱的には図 3の第 1実施例も図 7の変形例も殆ど同じである。 しかし、 図 7 の変形例では一部のベース部分がアース(筐体)から遠く なる間題が 出てきてマイク 口波特性が乱れる。
長期信頼度を考えるとシー ト 55 が反発力(復元率 20%以上)を持っている必要 がある。 この反発力で、 本来不安定であったアースが取れ、 熱も逃げる効果が上 げられるからである。 この効果は、パッケージ 54をネジ 56a, 56bで共締めするだ けの簡単な方法で、 かつ、 シー ト 55 の値段をプラスするだけで達成できる。 こ の際、 ネジが貫通するネジ穴をシー 卜に設ける形状が望ましい。
パッケージ 54 に 1段の FET増幅器を納めて発熱量を調べた。 図 2において、 M2.3 の 2本のネジ 56a, 56bで締付け トルクは 3.5kgf である。 パッケージ 54の 下部の面穡は 3.5 X 1.5 cm=5.25 cm 2である。 シー ト 55はネジを通すためにこの 部分に穴があけてあるものを使用した。 その時の発熱量とパッケージ上面の温度 上昇の値を図 9に示す。 Aはシ一 卜無しの特性、 B はシー ト有りの特性である。シ 一卜なしの特性 Aよ り シー トを挟んだ特性 Bの方が熱的に倍以上、 良好であるこ とがわかる。
マイ クロ波特性が変わる と問題である。 そこで、 マイクロ波特性を評価した実 験結果を図 10に示す。 Aはシー ト有り のときの出力電圧、 Bはシー ト無しの場合 の出力電力、 A ' はシー ト有り のときの電力付加効率、 B ' はシー ト無しのときの 電力付加効率である。 シー ト有り の方が入出力特性と効率特性と も良好な値が得 られた。これは、シー 卜の電気伝導度が金属と同じ程度に良く、 パッケ一ジ全面か らアースを取れるためであり 、 マイク ロ波特性に影響を及ぼさないことが分かつ た。 .
ところで、 シー ト 55 は薄いために熱を横方向に拡散する効果は少ない。 この ため、 シー ト 55 の面積を変えた場合における温度上昇のデータを取ったが、 図 1 1 に示すように殆ど同じ温度上昇率となった。 特にシー ト Aではパッケージの 面積 3.5 X 1.5 cm よ り広く した場合でも同じ温度上昇であった。 このデータから も発熱体の下にシ一 トを配置する と.効果があり、 放熱体と接続する放熱部材では あま り効果が得られないことが分かる。
図 1 2にシリ コ ンダリース(KE 1223)とシー トを挟んだ時の発熱量に対するパ ッケージの温度上昇の値をプロッ トした。 Aはシリ コングリースを挟んだ時の特 性、 B はシー トを挟んだ時の特性である。熱的特性は、熱伝導度が良い分シー トの 方が温度上昇が低いことが分かる。 電気特性はシリ コングリースのよ うな絶縁体 では測定できないので、 マイクロ波回路には不適である。
図 1 3は筐体の面を荒らした時の発熱量と温度上昇の特性図であり、 A はシー ト無しで面を荒らさない場合の特性、 B はシー ト無しで面を荒らした場合の特性、 Cはシー ト有りで面を荒ら した場合の特性、 Dはシー ト有りで面を荒らさない場 合の特性である。シー トが無い場合は 8 0 W の発熱量で 32. 5°C から 54.1QC へ 166%と大幅に上昇したが、 シー トをはさみネジ 2本で圧力をかけた場合は温度 上昇が 13.80Cから 14.90C と 1 0 8 %とその上昇率は少なかった。 図 1 2 と図 1 3の特性図より シー トと筐体間の密着は十分であり、 第 1実施例の方法は効果が あるこ とが分かる。
以上、第 1実施例によれば、パッケージ品を使ったマイクロ波回路において、 電 気伝導度が金属と同等の、 ある程度で復元率があるシー トがパッケージのベース 全面に接触しているためアースが安定して取れる。 また、 素子が発熱した場合も シー トが面接触しているため、 多数の点接触より熱の流れる経路が出来、 発熱素 子の温度が低く なる。 また、シー トを間に挟んで複数のネジで止める形態であり、 シー トはパッケージと筐体に対し圧力をもって接触することが可能でしかも、 復 元率があるため、 形状を長期に保持できる。 また、 シー ト代のみがプラスとなり 他の構成が増えないため、 コス トをかけず実施できる。 また、 ネジで押さえるた め、 上側のアースの位置はパッケージの高さに左右されることはない。 また、 第 1実施例によれば、、例えば トランジスタのチヤネル温度が数 100C低く なるため、 利得、 飽和出力、 効率、 歪特性が向上する。
( C ) 第 2実施例
図 2 の第 2実施例では筐体 51 にパッケージ受容部を形成しないため、 パッケ ージ組み付け時におけるシー ト 55やパッケージ 54の位置合わせが面倒であった。 図 14は第 2実施例のパッケージの実装構造を示す分解斜視図、図 15の(a )はは信 号方向に沿って切断した場合の AA' 断面図、(b)は信号方向に直角に切断した場 合の BB' 断面図であり、図 2、図 3 と同一部分には同一符号を付している。第 1実 施例と異なる点は、 筐体 51 にパッケ一ジ受容部 60 を形成している点である。こ の受容部 60を設けたことによ り、パッケージ組み付け時において、シー ト 55及び パッケージ 54 をこの受容部 60 に入れるだけで簡単に位置合わせが可能となる。 尚、 62は金属フタ、 63は 50 Ωライン、 64はセラミ ック部分の断面である。
( D ) 第 3実施例
第 2 実施例ではパッケージのベースと同じサイズのシ一トを受容部 61 にセッ 卜するだけで良いため何等の問題は生じない。しかし、シー ト 55 を筐体上のパッ ケージ 55 および回路基板 52, 53 の载置箇所全体に一体に敷き、 パッケージ及ぴ 回路基板にシー トよ りアースを与える場合がある。かかる場合、図 15 よ り明らか なよ う にパッケージ 5 4の載置箇所と回路基板 52, 53の载置箇所との間の 4辺に は直角の段差 61が存在する。この直角の段差 61のために、シー トを敷いた上に回 路基板 52, 53 を装着し、しかる後、パッケージ 55 を載置してネジ 56a, 56 bで共締 めする と、段差 61の直角部で薄いシー ト 55が切断する。そこで、第 3実施例では、 筐体 51上のパッケ一ジ载置箇所と回路基板載置箇所との間に段差 61が存在する 場合、パッケージ載置箇所の 4 辺の段差部分のうちマイクロ波が通らない段差部 分を傾斜させる。
図 16は第 3実施例のパッケージの実装構造を示す分解斜視図、図 16の(a )は信 号方向に沿って切断した場合の AA' 断面図、(b)は信号方向に直角に切断した場 合の BB' 断面図であり、図 14、図 15 と同一部分には同一符号を付している。 第 2実施例と異なる点は受容部 60 の 4辺の段差部分のうちマイクロ波が通ら ない段差部分を傾斜させ、傾斜段差部 62 と した点である。このように傾斜させれ ば、 段差部でシ一 トが切断するこ とはない。すなわち、 復元性のある導電性シー ト 55 を筐体上のパッケージおよび回路基板載置箇所全体に敷き、 シー 卜上に回路基 板 52, 53 を装着し、しかる後、パッケージ 55を載置してネジ 56a, 56 bで共締めし ても傾斜段差部 62 でシー トが切断することはない、 これによ り、 シー ト全体の アース電位を維持でき、 パッケージ、回路基板にアースを与えることができる。な お、 図のシー トは、 傾斜段差部 62 以外の段差部分に切り込みが付けられている が、 必ずしも切り込みは必要でない。 1 枚のシー トで回路全体を構成することが でき、特に 卜ランジスタ、MIC,MMICが複数個あるときには有効な方法である。
( E) 第 4実施例
図 18、図 19は超伝導回路基板を金属筐体に実装する実装構造の第 4実施例であ り、図 18 の(a)は上蓋を外した斜視図、 (b)は上蓋付きの A A ' 断面図である。 図 示するよ うに、 箱状の筐体 71 の底部 72 に熱伝導が良好で、復元性のある導電性 シー ト、例えばグラフアイ トシ一ト 73 を敷き、 該シー ト上に超伝導 RF回路など を実装した超伝導回路基板 74を載せ、 該超伝導回路基板 74 とシー ト 73 を 2個 以上のネジ 75a〜75eで共締めし、 シー ト 73を所定の押し付け圧力で押し付けて 金属筐体 71 に取り付ける。 押し付け圧力は第 1実施例と同様に ΙΟΝ/cm2以上で あり、この押し付け圧力でシー 卜 73を押し付けながら筐体 71に実装する。なお、 シー トのサイズは基板サイズと同じである。また、冷却端 7 6上にグラフアイ トシ 一ト Ί ' を敷き、その上に筐体 71を載せ、 4本のネジ 77a, 77c,…により固定する。 冷却端 76の内部には LN, , LHe等の霊媒が流すか、または図示しない冷凍機から 送られてく る冷却された Heガスを流す構成になっている。また、 図において、 78 は超伝導 RF回路基板 74上の超伝導膜パターン、 79は同軸コネクタ、 80 a〜 8 Od はネジ揷通用の孔である。
以上のよ うにグラフアイ トシー ト 73設け、 10N/cm2以上の押し付け圧力でシー ト 73 を押し付けながら筐体 71に実装することにより、 マイ ク口波特性を損なう ことなく 、 熱的に良好な状態を得るこ とができる。
また、 筐体 71 と冷却端 76 間の熱接触をよくするために、 シー ト 73' を追加 する場合には、ますます冷却性能を良く でき、熱的に良好な状態を得ることができ る。この場合、シ一 ト はネジ部を避けるように、穴があけられているかその部 分が切り裂かれた構造にする。
( F ) 第 5実施例
第 5 実施例は EMCや内部回路の発振や特性劣化の問題を解決するための実施 構造である。 すなわち、 図 19に示すように、ネジが通る部分に穴が設けられた復 元性のある導電性シー ト(例えばグラフアイ トシ一ト) 91 を箱状の金属筐体 71 の 周縁頂部 71a〜71cに載置し、 その上に筐体 71 の蓋 70を被せ、畫 70 とシー ト 91 間を複数のネジ 92で共締めする。
以上のシー ト実装法は容易であるが、 シー ト 91 がずれる問題があるが、 そこ で、筐体 71あるいは蓋 70の一方(図では筐体頂部)に掘り込み(溝)を入れておき、 そこにシー ト 91 を載置することによ りずれないで実装することができる。 この 際、 盞 70 と筐体 71 の接触を図る必要があり、 筐体 71 において溝深さはシー ト 91 の厚みの 8 0 %以下が適当である。 筐体 71の頂部のみぞは全体的に鍵の字型 に掘ってある。 また、 筐体 71 は発振や特性の亀裂を避けるために小さな箱状に なっている。 筐体側の溝は周縁部の頂部 71a, 71bでは内側が掘り込まれた形にな つており、周縁部以外の頂部 71c では凹の字型に掘り込まれている。 この掘り込 みがガイ ドになり容易にシー ト 91 の実装が可能となり、 しかも、 密封が可能と なる。
また、 シー ト 91 に加える押し付け圧力は複数のネジ 92(図では 6本のネジ)で 蓋 70 を介して筐体 71 に押さえることによ り可能である。 こうすることによ り、 隙間がふさがるため、ここから電波が漏れることがなく、また外の電波が中に入る こと も防止できる。 この結果、 EMCや内部回路の発振や特性劣化の問題を解決で きる。 すなわち、 内部回路の発振は出力の一部が隙間をとおり入力にフィー ドバ ック して起こるが、かかる要因がなく なり発捩することはない。 また、特性劣化も この隙間を通した回路間の結合でおこるが、 隙間がなくなつたことによ り特性劣 化、例えば亀裂が入った周波数特性になることはない。
シー ト 91 のネジ貫通部には穴 HL があけられている。 また、 この例は筐体側 を掘り込んだ例であるが、 フタ側を掘り込んでも効果は同じである。
超伝導においては電気伝導度が金属と同等で、 復元率があるシー ト 73 が超伝 導回路基板 74 と接触しているため、 基板と筐体のアースが良く取れるよう にな り、 特性が安定する。 また、 シー ト 73 の横方向の熱伝導率が良いため、 超伝導 体が均一に冷え、 特性が安定する。
本発明によれば、 例えば 8 0 W発熱する発熱体を収納したパッケージの場合、 パッケージの温度上昇が従来の 35。Gから 1 2°Cまで下がる。 この効果で 1段の増 幅器の例では利得、 出力が約 1 . 5 dB よくなり、 効率が約 7〜 8 %、 歪は 4 dB 程度良好となる。 また、 超伝導などの極低温でも効果がある。
本発明によれば、 グリスと違い電気伝導度があるため、 マイクロ波用のパッケ ージゃ基板のアース とするこ とが可能である。 また、 グリスのよ うに塗りムラを 気にする必要がなく 、 装着が容易である。
本発明によれば、 グリスと違い、 シー トは電気伝導度があるため、 シール ド部 に使う ことによ り E M C関係も効果がある。
本発明によれば、 筐体面が荒れていても荒れていなくてもほとんど同等の効果 を奏することができ、 筐体の面荒さは最低ランクで良いため大幅なコス 卜ダウン が期待できる。 また、薄く一定に塗る必要があるジエルと違い経験は必要ない。 更 に、本発明のシー トを用いた実装構造は温度範囲が広く、超伝導のような極低温の 世界から数百度の温度範囲でも使用できる。
また、本発明によれば、シー トを介してパッケージ及び回路基板を同時にアース させることができ、しかも、 ネジによる共締めによ り面接触が得られ、マイクロ波 特性の劣化を防止できる。また、パッケージと回路基板の載置箇所に段差があって も傾斜させることによ り シー 卜の切断を防止することができる。
また、本発明によれば、電波の放射、 電波の受信による誤動作、 回路の発振、 特 性の亀裂がなく なり 、 E C Mにも効果がある。

Claims

請求の範囲
1 . 少なく と もマイクロ波乃至ミ リ波帯内のいずれかにおいて使用可能な高周 波 トランジスタ、 MIC、 MMICのう ち少なく と も 1っを內蔵し、 ベースが金属で 形成されてアースとなるパッケージを筐体に実装するパッケージの実装構造にお いて、
パッケージのベース と同じ大きさで、 熱伝導性が良好で、 復元性のある導電性 シー トを筐体上のパッケージ载置箇所に敷き、 該パッケージとシ一 トを 2個以上 のネジで共締めして筐体に取り付けてなる、
ことを特徴とする実装構造。
2 . パッケージに全開あるいは半開の穴を設ける と共に筐体にネジ穴を設け、 ネジが貫通する部分はシー トが無い状態にし、 前記ネジの共締めによ り lON/cm2 以上の押し付け圧力でシー トを押し付けながら筐体に実装してなる、
ことを特徴とする請求項 1記載の実装構造。
3 . マイ ク ロ波乃至ミ リ波帯において使用する高周波 ト ランジスタ、 MIG、 MMICのうち少なく と も 1つを内蔵し、 ベースが金属で形成されてアースとなる パッケージを筐体に実装するパッケージの実装構造において、
筐体上のパッケージ载置箇所と回路基板载置箇所に段差が存在する場合、パッ ケージ載置箇所の 4辺の段差部分のう ちマイク口波が通らない段差部分を傾斜さ せ、 熱伝導性が良好で、 復元性のある導電性シー トを筐体上のパッケージおよび 回路基板载置箇所全体に敷き、 該パッケ一ジと回路基板のそれぞれとシー トとを 2個以上のネジで共締めして筐体に取り付けてなる、
ことを特徴とする実装構造。
4 . シー トのネジが通る部分には穴を開けてシー トが無い状態にし、 前.記ネジ の共締めによ り 10N/cm2 以上の押し付け圧力でシー トを押し付けながら筐体に 実装してなる、 . ことを特徴とする請求項 3記載の実装構造
5 . 超伝導回路基板を金属筐体に実装する実装構造において、
箱状の金属筐体の底部に、 熱伝導性が良好で、 復元性のある導電性シー トを敷 き、 シー ト上に超伝導回路基板を載せ、 該超伝導回路基板とシ一 トを 2個以上の ネジで共締めして金属筐体に取り付けてなる、
ことを特徴とする実装構造。
6 . シー トのネジが通る部分には穴を設けてシートが無い状態にし、 前記ネジ の共締めによ り l ON/cm2 以上の押し付け圧力でシー トを.押し付けながら筐体に 実.装してなる、
ことを特徴とする請求項 5記載の実装構造
7 . ネジが通る部分に穴が設けられた復元性のある導電性シー トを箱状の金属 筐体の周緣頂部に載置し、その上に筐体の蓋を被せ、蓋とシー 卜をネジで共締めし てなる、
ことを特徴とする請求項 6記載の実装構造。
8 . シー トの厚み以下の掘り込みを前記筐体の周縁項部か盖の一方に形成して なる、
ことを特徴とする請求項 7記載の実装構造。
9 . 前記シー トはグラフアイ トシー トであることを特徴とする請求項 1乃至 8 記載の実装構造。
PCT/JP2002/011753 2002-11-12 2002-11-12 実装構造 WO2004044982A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2002/011753 WO2004044982A1 (ja) 2002-11-12 2002-11-12 実装構造
JP2004551170A JP4278617B2 (ja) 2002-11-12 2002-11-12 実装構造及び電子装置
EP02778091.5A EP1562230B1 (en) 2002-11-12 2002-11-12 Packaging structure
EP08161081.8A EP1986244B1 (en) 2002-11-12 2002-11-12 Mounting structure
US10/930,350 US7285429B2 (en) 2002-11-12 2004-08-27 Mounting device for high frequency microwave devices
US11/873,445 US7729129B2 (en) 2002-11-12 2007-10-17 Mounting device for high frequency microwave devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/011753 WO2004044982A1 (ja) 2002-11-12 2002-11-12 実装構造

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/930,350 Continuation US7285429B2 (en) 2002-11-12 2004-08-27 Mounting device for high frequency microwave devices

Publications (1)

Publication Number Publication Date
WO2004044982A1 true WO2004044982A1 (ja) 2004-05-27

Family

ID=32310250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011753 WO2004044982A1 (ja) 2002-11-12 2002-11-12 実装構造

Country Status (4)

Country Link
US (2) US7285429B2 (ja)
EP (2) EP1562230B1 (ja)
JP (1) JP4278617B2 (ja)
WO (1) WO2004044982A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109403A (ja) * 2008-10-28 2010-05-13 Fujitsu Ltd 超伝導フィルタ
JP2010206073A (ja) * 2009-03-05 2010-09-16 Fujitsu General Ltd 半導体素子の放熱構造およびこれを備えた電子機器
WO2016121340A1 (ja) * 2015-01-29 2016-08-04 日本電気株式会社 高周波モジュールおよび高周波モジュールの製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200633171A (en) * 2004-11-04 2006-09-16 Koninkl Philips Electronics Nv Nanotube-based fluid interface material and approach
TWI388042B (zh) * 2004-11-04 2013-03-01 Taiwan Semiconductor Mfg 基於奈米管基板之積體電路
JP4828969B2 (ja) 2006-03-10 2011-11-30 株式会社東芝 半導体装置の実装構造
US7978504B2 (en) * 2008-06-03 2011-07-12 Infineon Technologies Ag Floating gate device with graphite floating gate
US9123686B2 (en) * 2013-04-12 2015-09-01 Western Digital Technologies, Inc. Thermal management for solid-state drive
US9521738B1 (en) * 2013-12-23 2016-12-13 Flextronics Ap, Llc Graphite sheet to protect SMT components from thermal exposure
US9789572B1 (en) 2014-01-09 2017-10-17 Flextronics Ap, Llc Universal automation line
JP2015149650A (ja) * 2014-02-07 2015-08-20 株式会社東芝 ミリ波帯用半導体パッケージおよびミリ波帯用半導体装置
JP2015149649A (ja) * 2014-02-07 2015-08-20 株式会社東芝 ミリ波帯用半導体パッケージおよびミリ波帯用半導体装置
BE1025500B1 (de) 2017-08-22 2019-03-27 Phoenix Contact Gmbh & Co. Kg Elektrisches Modul mit einem Planartransformator
CN109699115B (zh) * 2017-10-23 2020-06-23 苏州旭创科技有限公司 光模块

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555416A (ja) * 1991-08-23 1993-03-05 Shinko Electric Ind Co Ltd 温度センサ付半導体装置
JPH0992955A (ja) * 1995-07-18 1997-04-04 Mitsubishi Electric Corp 電子装置
JPH10322066A (ja) * 1997-05-21 1998-12-04 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk 超伝導回路基板の取付構造およびその取付方法
JP2000223629A (ja) * 1999-02-02 2000-08-11 Matsushita Electric Ind Co Ltd ベアicの放熱構造

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3803459A (en) * 1971-10-27 1974-04-09 Gen Instrument Corp Gain in a josephson junction
US3982271A (en) * 1975-02-07 1976-09-21 Rca Corporation Heat spreader and low parasitic transistor mounting
US4178602A (en) * 1977-08-31 1979-12-11 Kandyba Petr E Thin film cryotron
JPS57177544A (en) * 1981-04-24 1982-11-01 Natl Space Dev Agency Japan<Nasda> Microwave ic device
US4471837A (en) * 1981-12-28 1984-09-18 Aavid Engineering, Inc. Graphite heat-sink mountings
JPS62193269A (ja) 1986-02-20 1987-08-25 Matsushita Electric Ind Co Ltd マイクロ波またはミリ波用回路装置
FR2630261B1 (fr) * 1988-04-15 1990-08-17 Trt Telecom Radio Electr Circuit utilisable dans le domaine des hyperfrequences
US5550389A (en) * 1988-11-28 1996-08-27 Hitachi, Ltd. Superconducting device
JPH03270295A (ja) * 1990-03-20 1991-12-02 Mitsubishi Materials Corp 放熱構造体
JPH0555419A (ja) 1991-08-23 1993-03-05 Uchu Tsushin Kiso Gijutsu Kenkyusho:Kk 半導体デバイスの放熱取付け構造
JPH0575283A (ja) 1991-09-11 1993-03-26 Fujitsu Ltd 電子装置
US5348305A (en) * 1992-12-17 1994-09-20 Lowe Richard D Golf ball teeing apparatus
JP2953273B2 (ja) * 1993-10-22 1999-09-27 住友電気工業株式会社 低温に冷却する素子の接続方法
JPH0823183A (ja) 1994-07-06 1996-01-23 Matsushita Electric Ind Co Ltd 部材の冷却構造
JPH0821183A (ja) 1994-07-11 1996-01-23 Tamu Tec:Kk トンネル掘削開始方法
FR2729045B1 (fr) * 1994-12-29 1997-01-24 Bull Sa Procede et dispositif de fixation de deux elements tels qu'un radiateur de circuit integre a une carte de circuits imprimes
JP3378435B2 (ja) * 1995-09-29 2003-02-17 株式会社東芝 超高周波帯無線通信装置
FR2747239B1 (fr) * 1996-04-04 1998-05-15 Alcatel Espace Module hyperfrequence compact
JPH1051170A (ja) 1996-07-30 1998-02-20 Furukawa Electric Co Ltd:The 冷却装置
JPH10135749A (ja) * 1996-10-29 1998-05-22 Nec Corp 高周波帯増幅器
JPH10283650A (ja) 1997-04-02 1998-10-23 Matsushita Electric Ind Co Ltd レーザー光発生装置、該装置を備えた光ディスク読み取り書き込み装置、及びレーザー光発生装置の製造方法
JPH11110084A (ja) 1997-10-06 1999-04-23 Matsushita Electric Ind Co Ltd 情報処理装置
JPH11128567A (ja) 1997-10-31 1999-05-18 Sanyo Electric Co Ltd 電気かみそり
JPH11149329A (ja) 1997-11-19 1999-06-02 Matsushita Electric Ind Co Ltd 情報処理装置
JP2993926B2 (ja) * 1998-01-14 1999-12-27 株式会社移動体通信先端技術研究所 超伝導回路の実装構造
JP4064516B2 (ja) 1998-03-03 2008-03-19 沖電気工業株式会社 メモリを内蔵する集積回路装置
JP2993494B1 (ja) * 1998-06-05 1999-12-20 株式会社移動体通信先端技術研究所 超伝導回路の実装構造
US6222741B1 (en) * 1998-09-04 2001-04-24 Qualcomm Incorporated Mounting arrangement for microwave power amplifier
JP2000165077A (ja) 1998-11-24 2000-06-16 Matsushita Refrig Co Ltd 電子機器用放熱装置
JP2000169125A (ja) 1998-12-04 2000-06-20 Matsushita Electric Ind Co Ltd グラファイト材料およびその製造方法
JP3533987B2 (ja) 1998-12-10 2004-06-07 富士通株式会社 電子機器筐体及びそれに用いる熱伝導パス部材
JP2000236629A (ja) 1999-02-15 2000-08-29 Fuji Electric Co Ltd 分散型電源の単独運転検出装置
JP2000269671A (ja) 1999-03-19 2000-09-29 Toshiba Corp 電子機器
JP3287330B2 (ja) * 1999-04-22 2002-06-04 日本電気株式会社 高周波回路のシールド構造
US6075701A (en) * 1999-05-14 2000-06-13 Hughes Electronics Corporation Electronic structure having an embedded pyrolytic graphite heat sink material
JP2000338605A (ja) 1999-05-28 2000-12-08 Hitachi Ltd 指向性反射スクリーンおよび画像表示装置
US6249439B1 (en) * 1999-10-21 2001-06-19 Hughes Electronics Corporation Millimeter wave multilayer assembly
US6507495B1 (en) * 2000-06-28 2003-01-14 Dell Products L.P. Three-dimensional technique for improving the EMC characteristics of a printed circuit board
US6797882B1 (en) * 2000-10-18 2004-09-28 Silicon Bandwidth, Inc. Die package for connection to a substrate
JP3499849B2 (ja) 2001-10-22 2004-02-23 松下電器産業株式会社 プラズマディスプレイ装置
US6661317B2 (en) * 2002-03-13 2003-12-09 The Boeing Co. Microwave monolithic integrated circuit assembly with multi-orientation pyrolytic graphite heat-dissipating assembly
US6936919B2 (en) * 2002-08-21 2005-08-30 Texas Instruments Incorporated Heatsink-substrate-spacer structure for an integrated-circuit package
JP2004228543A (ja) * 2002-11-26 2004-08-12 Kyocera Corp 半導体素子収納用パッケージおよび半導体装置
US20060108672A1 (en) * 2004-11-24 2006-05-25 Brennan John M Die bonded device and method for transistor packages
JP2006253953A (ja) * 2005-03-09 2006-09-21 Fujitsu Ltd 通信用高周波モジュールおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555416A (ja) * 1991-08-23 1993-03-05 Shinko Electric Ind Co Ltd 温度センサ付半導体装置
JPH0992955A (ja) * 1995-07-18 1997-04-04 Mitsubishi Electric Corp 電子装置
JPH10322066A (ja) * 1997-05-21 1998-12-04 Idotai Tsushin Sentan Gijutsu Kenkyusho:Kk 超伝導回路基板の取付構造およびその取付方法
JP2000223629A (ja) * 1999-02-02 2000-08-11 Matsushita Electric Ind Co Ltd ベアicの放熱構造

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109403A (ja) * 2008-10-28 2010-05-13 Fujitsu Ltd 超伝導フィルタ
US8761849B2 (en) 2008-10-28 2014-06-24 Fujitsu Limited Superconductive filter with plurality of resonator patterns formed on surface of dielectric substrate
JP2010206073A (ja) * 2009-03-05 2010-09-16 Fujitsu General Ltd 半導体素子の放熱構造およびこれを備えた電子機器
WO2016121340A1 (ja) * 2015-01-29 2016-08-04 日本電気株式会社 高周波モジュールおよび高周波モジュールの製造方法

Also Published As

Publication number Publication date
EP1986244A3 (en) 2010-02-17
US7729129B2 (en) 2010-06-01
US20050029546A1 (en) 2005-02-10
EP1562230B1 (en) 2017-07-05
EP1986244B1 (en) 2017-01-11
JPWO2004044982A1 (ja) 2006-03-16
EP1562230A1 (en) 2005-08-10
US20080144287A1 (en) 2008-06-19
EP1562230A4 (en) 2007-12-05
EP1986244A2 (en) 2008-10-29
US7285429B2 (en) 2007-10-23
JP4278617B2 (ja) 2009-06-17

Similar Documents

Publication Publication Date Title
US7729129B2 (en) Mounting device for high frequency microwave devices
US7646093B2 (en) Thermal management of dies on a secondary side of a package
US10130003B2 (en) Reduced thermal transfer to Peltier cooled FETs
US11984380B2 (en) Semiconductor package, semiconductor device, semiconductor package-mounted apparatus, and semiconductor device-mounted apparatus
JP4828969B2 (ja) 半導体装置の実装構造
US7355276B1 (en) Thermally-enhanced circuit assembly
JP2006093526A (ja) 導電性熱伝導シート
JPH10135749A (ja) 高周波帯増幅器
JP2009176996A (ja) 高周波回路基板
JPH0555419A (ja) 半導体デバイスの放熱取付け構造
JP2856192B2 (ja) 半導体装置
JP4018575B2 (ja) 半導体内蔵ミリ波帯モジュール
JP2003031987A (ja) 電磁界遮蔽キャップ
JP2010206073A (ja) 半導体素子の放熱構造およびこれを備えた電子機器
CN114902401B (zh) 热管理封装件和方法
JP2970530B2 (ja) 高出力電力増幅器
JP2007234905A (ja) 高出力増幅器
JP2020191316A (ja) 回路モジュール
EP0131004A1 (en) Microwave packages
JPH0140520B2 (ja)
JPH04243154A (ja) 高周波平面回路モジュールの実装構造
JPH09283956A (ja) 回路基板の放熱構造
JP2002141710A (ja) 高周波回路基板の実装構造
JP2002246923A (ja) 電子回路ユニット
JP2008199198A (ja) ガンダイオード発振器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004551170

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2002778091

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002778091

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10930350

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002778091

Country of ref document: EP