WO2004035503A1 - Dielectric ceramic and method for preparation thereof, and monolithic ceramic capacitor - Google Patents

Dielectric ceramic and method for preparation thereof, and monolithic ceramic capacitor Download PDF

Info

Publication number
WO2004035503A1
WO2004035503A1 PCT/JP2003/013038 JP0313038W WO2004035503A1 WO 2004035503 A1 WO2004035503 A1 WO 2004035503A1 JP 0313038 W JP0313038 W JP 0313038W WO 2004035503 A1 WO2004035503 A1 WO 2004035503A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric ceramic
rare earth
earth element
dielectric
ceramic capacitor
Prior art date
Application number
PCT/JP2003/013038
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoyuki Nakamura
Hiroki Muto
Harunobu Sano
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to AU2003271169A priority Critical patent/AU2003271169A1/en
Publication of WO2004035503A1 publication Critical patent/WO2004035503A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • C04B2235/365Borosilicate glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to a dielectric ceramic, a method of manufacturing the same, and a multilayer ceramic capacitor formed using the dielectric ceramic.
  • the present invention advantageously reduces the thickness of a dielectric ceramic layer in a multilayer ceramic capacitor. It is about the improvement to gain. Background art
  • a multilayer ceramic capacitor is generally manufactured as follows. First, a ceramic green sheet containing a dielectric ceramic raw material having a conductive material serving as an internal electrode provided in a desired pattern on its surface is prepared.
  • the dielectric Ceramic for example, those that the B a T ⁇ 0 3 as a main component is used.
  • a plurality of ceramic green sheets including the ceramic green sheet provided with the above-described conductive material are laminated and thermocompression-bonded, thereby producing an integrated raw laminate.
  • the green laminate is fired, whereby a sintered laminate is obtained.
  • An internal electrode made of the above-described conductive material is formed inside the laminate.
  • external electrodes are formed on the outer surface of the laminate so as to be electrically connected to specific ones of the internal electrodes.
  • the external electrode is formed, for example, by applying a conductive paste containing a conductive metal powder and glass frit on the outer surface of the laminate and baking the same.
  • a dielectric ceramic having a reduction resistance as described above for example, the main component Ba T ⁇ 0 3, which To which an oxide of a rare earth element, an oxide of a so-called single element such as Mn, Fe, Ni or Cu and a sintering aid are used.
  • Japanese Patent Publication No. 068 or Japanese Patent Application Laid-Open No. 9-270366 proposes a dielectric ceramic composition having a high dielectric constant, a small change in the dielectric constant with temperature, and a long high-temperature load life.
  • JP-A-6-5460, 2001-220224 or 2001-230149 disclose a so-called core-shell dielectric ceramic. Proposed.
  • the dielectric ceramic has been proposed. According to this dielectric ceramic, the effects of high dielectric constant, high insulation resistance, small dielectric loss, and good reliability in a high-temperature load test are obtained.
  • An effective means for reducing the size and increasing the capacity of the multilayer ceramic capacitor is to reduce the thickness of the dielectric ceramic layer.
  • the thickness of the dielectric ceramic layer has become less than 2 im at the product level and less than 1 jUm at the experimental level.
  • the capacitors used for this must also be stable with respect to temperature.
  • the dielectric ceramics described in JP-A-5-9066, JP-A-5-9067 and JP-A-5-9068 described above satisfy the X7R characteristics in the EIA standard and have high electrical insulation properties.
  • the dielectric ceramic layer is thinned, Specifically, the capacitance-temperature characteristics and reliability when the thickness is reduced to 5 m or less, especially 3 j ⁇ m or less, cannot always satisfy the market requirements.
  • the dielectric ceramic described in Japanese Patent Application Laid-Open No. 9-27066 also suffers from the problem that as the thickness of the dielectric ceramic layer is reduced, the capacitance-temperature characteristics and reliability deteriorate. There is.
  • the dielectric Ceramic described in JP-A-9 one 2 7 0 3 6 6 discloses the additives to be added to the main component, such as a B a T ⁇ 0 3, in the firing process, necessary to melt Therefore, there is a problem that the reaction between the main component and the additive is apt to proceed, and particularly the capacity-temperature characteristics when the dielectric ceramic layer is thinned are deteriorated.
  • the core-shell type dielectric ceramic also has a problem that the capacitance-temperature characteristics and the reliability deteriorate as the dielectric ceramic layer becomes thinner.
  • the dielectric ceramic described in JP-A-1 1-1 5 7 9 2 8 No. to B a T i 0 3 system main components, in the oxide glassy state S i 0 2 and rare earth elements As a result, the reliability when the dielectric ceramic layer is thinned is not always sufficient to meet the market requirements. '
  • the dielectric ceramic layer is made thinner in order to respond to the miniaturization and large capacity of the multilayer ceramic capacitor, if the AC signal level is the same as before the thinning, however, since the electric field intensity applied to one of the dielectric ceramic layers is increased, the capacitance-temperature characteristics are significantly reduced. Regarding reliability, when the dielectric ceramic layer is made thinner, if the DC rated voltage is the same as before, the electric field strength applied to one layer of the dielectric ceramic layer becomes larger. Therefore, this is significantly reduced.
  • the thickness of the dielectric ceramic layer is reduced, it is desired to realize a multilayer ceramic capacitor that does not deteriorate the temperature dependence of the dielectric constant and has excellent reliability as the thickness becomes thinner.
  • An object of the present invention is to provide a dielectric ceramic and a method for manufacturing the same, and a multilayer ceramic capacitor formed by using the dielectric ceramic, which can satisfy the above-mentioned demands. Disclosure of the invention
  • Dielectric ceramic according to the invention AB 0 3 (A is B a or B a and at least one part of which is substituted C a and S r,, B is Ding or T i And at least one of Zr and Hf partially substituted.)
  • a dielectric ceramic further containing a rare earth element and Si as a component characterized by having the following configuration.
  • At least a part of the rare earth element and at least a part of the S ⁇ exist as a composite compound containing the rare earth element and Si, which is different from the main component described above. It is characterized by having crystallinity in at least a part thereof.
  • the dielectric ceramic according to the present invention may further include at least one of Mn, NFe, Cu, Mg, AI, and Cr as so-called acceptor elements. Further, the dielectric ceramic according to the present invention may further include a sintering aid containing at least one of S S, ⁇ and Li.
  • the invention is also directed to a method for producing a dielectric ceramic as described above.
  • Method for producing a dielectric ceramic according to the invention AB 0 3 (A is B a or B a and at least one part of which is substituted C a and S r,, B is T i , Or T i and at least one of Z r and H f in which a part thereof is substituted.), And reacting at least a rare earth element with S i, thereby forming a part thereof.
  • a step of preparing a reaction product having a crystallinity by mixing the AB 0 3 and the reaction product, characterized by comprising a step of preparing a raw material powder, and a step of firing the raw material powders are in .
  • a compound containing at least one of AI and Cr, A sintering aid containing at least one of Si, B, and Li, and at least one of compounds containing a rare earth element may be further mixed.
  • the present invention is further directed to a multilayer ceramic capacitor formed using the above-described dielectric ceramic.
  • a multilayer ceramic capacitor according to the present invention includes a multilayer body including a plurality of stacked dielectric ceramic layers and an internal electrode formed along a specific interface between the dielectric ceramic layers, and a specific internal electrode.
  • An external electrode formed on the outer surface of the laminate so as to be electrically connected, wherein the dielectric ceramic layer is made of the dielectric ceramic as described above.
  • the rare earth element and Si exist as a composite compound containing the rare earth element and Si, and the composite compound has crystallinity in at least a part thereof. Therefore, when the dielectric ceramic layer of the multilayer ceramic capacitor is formed with this, even if the dielectric ceramic layer is made thinner, the temperature dependence of the dielectric constant does not deteriorate as much as the thickness becomes thinner. Be reliable Can be.
  • this dielectric ceramic is used to form the dielectric ceramic layer of the multilayer ceramic capacitor, it is possible to reduce the size of the multilayer ceramic capacitor by reducing the thickness of the dielectric ceramic layer while maintaining good capacitance temperature characteristics and reliability.
  • the capacity and capacity can be increased.
  • the thickness of the dielectric ceramic layer can be reduced to about 0.5 m without any problem.
  • FIG. 1 is a sectional view schematically showing a multilayer ceramic capacitor 1 according to one embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the structure of a dielectric ceramic according to the present invention.
  • FIG. 1 is a sectional view schematically showing a multilayer ceramic capacitor 1 according to one embodiment of the present invention.
  • the multilayer ceramic capacitor 1 includes a multilayer body 2.
  • the laminate 2 includes a plurality of dielectric ceramic layers 3 to be laminated, and a plurality of internal electrodes 4 and 5 respectively formed along a plurality of specific interfaces between the plurality of dielectric ceramic layers 3. Is done.
  • the internal electrodes 4 and 5 are formed so as to reach the outer surface of the laminate 2, but the internal electrode 4 is extended to one end face 6 of the laminate 2 and the internal electrode 4 is extended to the other end face 7.
  • the electrodes 5 are alternately arranged inside the laminate 2.
  • External electrodes 8 and 9 are formed on the outer surface of the laminate 2 and on the end faces 6 and 7, respectively. Also, first plating layers 10 and 11 made of nickel, copper, etc. are formed on the external electrodes 8 and 9, respectively, and a second plating layer made of solder, tin, etc. is further formed thereon. Adhesion layers 12 and 13 are formed respectively.
  • the dielectric ceramic layers 3, AB 0 3 (A is B a or B a well least one part of which is substituted C a and S r, , B is at least one of Ti, or Ti and partially substituted ZI "and Hf.) And a dielectric material containing a rare earth element and S S. It is composed of ceramic.
  • the rare earth element and at least a part of Si include the rare earth element and Si
  • the main component refers to a constituent element, a composition ratio, and a crystal structure.
  • the parenthesized composite compound is characterized in that at least a part thereof has crystallinity.
  • AB 0 3 in particular a B a T i 0 3 as a main component
  • the dielectric ceramic any addition Ingredient is constructed by adding to the main component, if the additional component is dissolved, the dielectric constant Temperature dependence increases. Therefore, when a multilayer ceramic capacitor is manufactured using such a dielectric ceramic, the multilayer ceramic capacitor has poor capacitance-temperature characteristics.
  • rare earth elements have been frequently used as the additional components.
  • Rare earth element for example when added to B a T i 0 3, so easily dissolved, the temperature dependence of the dielectric constant of such a dielectric ceramic is deteriorated. It is also known that when the rare earth element exists alone as an oxide, the reliability decreases.
  • the present inventor conducted repeated investigations and experiments, and found that by adding a rare earth element as a crystalline reactant with S i, the compound containing the rare earth element and S i contained AB o 3 as a main component. in the dielectric ceramic to, can exist independently as a main component of grains, the formation of a solid solution in the AB 0 3 rare earth elements was found to be suppressed.
  • the reaction product of the rare earth element and Si does not need to be 100,000 / 0 crystalline, and it is sufficient that at least a part of the reactant has crystallinity. It was also found that the rare earth element does not reduce the reliability of the dielectric ceramic if it exists not as a single compound but as a compound with Si.
  • the AB 0 3 as a main component further includes a rare earth element and S I, and at least a portion of at least a portion S i of rare earth elements, these rare earth elements and S i, which exists as a complex compound different from the main component, and the parenthesized complex compound has crystallinity in at least a part thereof.
  • the layer 3 even if the dielectric ceramic layer 3 is made thinner, the temperature dependency of the dielectric constant does not deteriorate as much as the thickness becomes thinner, and the dielectric ceramic layer 3 has excellent reliability. it can.
  • the multilayer ceramic capacitor 1 including the dielectric ceramic layer 3 made of such a dielectric ceramic can have excellent capacitance-temperature characteristics and excellent reliability.
  • FIG. 2 schematically shows the structure of the above-described dielectric ceramic.
  • the dielectric ceramic has a AB 0 3 particles 2 1.
  • the dielectric ceramic, apart from the AB 0 3 grains element 2 1, composite compound containing a rare earth element and S i 2 2 is, as the phase having a different crystal structure than AB 0 3 particles, present to I have.
  • additive components such as rare earth elements and S i may be partially solid solution.
  • the composite compound 22 may contain an element other than the rare earth element and Si.
  • the dielectric ceramic may further include at least one of Mn, N ⁇ , Fe, Cu, Mg, AI and Cr as so-called acceptor elements. Further, the dielectric ceramic may further include a sintering aid containing at least one of Si, B, and Si.
  • the internal electrodes 4 and 5 contain, for example, a base metal such as nickel, nickel alloy, copper or copper alloy as a conductive component.
  • the external electrodes 8 and 9 have a sintered layer of a conductive metal powder or a sintered layer of a conductive metal powder to which glass frit is added.
  • the compound containing the respective A and B were mixed in the desired proportions, for example, by heat treatment, by synthesizing the AB 0 3, which is powdered stone Shin, It is adapted to prepare a AB 0 3 powder.
  • the desired compounds were mixed, each containing a rare-earth element and S i, connexion by the this example to heat treatment, the rare earth element
  • a reaction product containing a rare earth element and Si is obtained by obtaining a reaction product containing Si and Si, and pulverizing the reaction product.
  • the reactants may contain rare earth elements such as alkaline earth elements and transition metal elements, and elements other than Si.
  • the average particle size of the reactant powders and preferably has an average particle size smaller this than the AB 0 3 powder as described above.
  • the raw material powder of the dielectric ceramic is obtained.
  • a sintering aid containing at least one of i, B and Li may be mixed, or a compound containing a rare earth element may be further mixed. It is preferable that such a receptor element is previously added to the reactant powder. In this case, the ceptor element is present in the composite oxide phase.
  • an organic binder and a solvent are added to and mixed with the mixed powder obtained as described above to form a slurry, and the slurry is used to form the ceramic green material for forming the dielectric ceramic layer 3. A sheet is formed.
  • a conductive paste film to be the internal electrodes 4 or 5 is formed on a specific ceramic green sheet by, for example, screen printing.
  • This conductive paste film contains, for example, nickel, a nickel alloy, copper or a copper alloy as a conductive component. I have.
  • the internal electrodes 4 and 5 may be formed by a printing method such as a screen printing method, for example, a vapor deposition method, a plating method, or the like.
  • a plurality of ceramic green sheets including the ceramic green sheet on which the conductive paste film has been formed as described above are laminated, thermocompression-bonded, and then cut as necessary.
  • a raw laminate having a structure in which a plurality of ceramic green sheets and a conductive paste film to be the internal electrodes 4 and 5 formed along a specific interface between the ceramic green sheets, respectively, are laminated.
  • the body is obtained.
  • the conductive paste film has its edge exposed at any end face.
  • the green laminate is fired in a reducing atmosphere. Thereby, a laminated body 2 after sintering as shown in FIG. 1 is obtained.
  • a dielectric ceramic layer 3 is constituted by the aforementioned ceramic green sheet
  • an internal electrode 4 or 5 is constituted by the conductive paste film.
  • external electrodes 8 and 9 are formed on end surfaces 6 and 7 of laminated body 2 so as to be electrically connected to the exposed edges of internal electrodes 4 and 5, respectively.
  • the same materials as those for the internal electrodes 4 and 5 can be used, but silver, palladium, silver-palladium alloy, etc. can also be used.
  • a glass frit made of a system glass or the like can be used. Appropriate materials are selected in consideration of the application and place of use of the multilayer ceramic capacitor 1.
  • the external electrodes 8 and 9 are usually formed by applying a paste containing a conductive metal powder as described above on the outer surface of the fired laminate 2 and firing the paste. It may be formed by coating on the outer surface of the raw laminate and baking simultaneously with the firing for obtaining the laminate 2.
  • first plating layers 10 and 11 are plated with solder, tin or the like to form second plating layers 12 and 13.
  • solder, tin or the like The formation of such a conductor layer as the plating layers 10 to 13 on the external electrodes 8 and 9 may be omitted depending on the use of the multilayer ceramic capacitor 1.
  • the multilayer ceramic capacitor 1 is completed.
  • the dielectric ceramic constituting the dielectric ceramic layer 3 in addition to the AB 0 3 particles 2 1, at least a portion of the rare earth element It has a structure in which at least a part of S is present as composite compound 22.
  • Some of the reactants of the rare earth element with Si are AB 0 3 particles 2 Although it may be dissolved in 1, it is preferable that 30% or more of the total amount of the rare earth element is present as the composite compound 22 of the rare earth element and Si. More preferably, 500/0 or more rare earth elements and Si are present as the composite compound 22.
  • the average particle diameter (average primary particle) of the AB0 3 particles 21 as the main component should be in the range of 0.05 to 0.m in order to cope with the thinning of the dielectric ceramic layer 3. It is preferred that Thus, by the main component A B0 3 particles 2 1 having an average particle diameter of 0.05 to 0. 7 ⁇ M, dielectric ceramic layer 3, until 0.5 5 ⁇ M extent of thickness It can be thinned without any problem. Further, the ratio of the composite compound is preferably from 0.01 mol to 25 mol per 100 mol of the main component. More preferably, it is at least 0.1 mol and at most 5 mol.
  • A, Zr, Fe, Hf, Na, N, etc. are mixed as impurities at any stage of the production of the raw material powder of the dielectric ceramic and other manufacturing processes of the multilayer ceramic capacitor 1.
  • mixing of these impurities does not cause a problem on the electrical characteristics of the multilayer ceramic capacitor 1.
  • Example 1 as the AB0 3, (B a 0. G8 C a 0 .. 2) ( ⁇ ⁇ 0. 98 Z r 0 .. 2) 0 3 was used as an additive component, Y 2 0 3, MgO , those using Mn 0 2 and S i 0 2.
  • B a C0 3, C a C0 3 prepare the ⁇ ⁇ 0 2 and Zeta r Omicron 2, these, (B a 0. 98 C a 0 .. 2) (T io 98 Z r o .. 2) 0 3 of weighed so as to have the composition, then it was mixed by ball mill, by heat treatment at a temperature of 1 1 50 ° C, (B a 0. 98 C a 0 .. 2) ( ⁇ ⁇ 0 . 98 Z r o .. 2) 0 3 were synthesized and crushed it.
  • an organic solvent such as a polyvinyl butyral-based binder and ethanol was added to the mixed powder, and the mixture was subjected to wet mixing using a ball mill to produce a ceramic rally.
  • the ceramic slurry was shaped into a sheet by a doctor blade method so that the thickness of the fired dielectric ceramic layer became 1.5 ⁇ m, to obtain a rectangular ceramic green sheet.
  • a conductive paste containing nickel as a conductive component was screen-printed on the ceramic green sheet to form a conductive paste film to be an internal electrode.
  • a plurality of ceramic green sheets including a ceramic green sheet on which the conductive paste film was formed were laminated so that the side from which the conductive paste film was drawn out was alternated, to obtain a raw laminate.
  • the green laminate was heated to a temperature of 350 ° C in a nitrogen atmosphere, after burning a binder, oxygen partial pressure 10 one 1. MPa of H 2 - N 2 - in a reducing atmosphere consisting of the H 2 O gas, calcined for 2 hours at a temperature of 1 200 ° C, to obtain a laminate formed by sintering.
  • B 2 0 3 -L i 2 OS i 0 2 - Copper applying a conductive paste to a conductive component with containing BaO based glass Furitsuto in a nitrogen Kiri ⁇ air Baking was performed at a temperature of 700 ° C. to form external electrodes that were electrically connected to the internal electrodes.
  • the external dimensions of the multilayer ceramic capacitor thus obtained are 1.6 mm in width, 3.2 mm in length and 1.2 mm in thickness, and the thickness of the dielectric ceramic layer interposed between the internal electrodes is Was 1.5 Um.
  • the number of effective dielectric ceramic layers was 100, and the counter electrode area per layer was 2.1 mm 2 .
  • Example 1 has the same composition as, for 100 moles (B a 0. 98 C a 0. 02) ( Ding i 0. 98 Z ro 02) 0 3, 1. 0 mol of Y 2 0 3, 2. 0 moles of S i 0 2, by mixing 0.5 moles of MgO and 0.5 mol of Mn 0 2 at a time, mixed powder which is a raw material powder of Yuden ceramic Got.
  • Comparative Example 1-2 has the same composition as in Example 1, Y0 3/2 of the added component in Example 1 - instead of S i 0 2 based reactants, Y 2 0 3 and S i After 0 and 2 were weighed so as to have a molar ratio of 1: 2, they were mixed by a pole mill and melted at a temperature of 1500 ° C. Next, the melt was poured into water to produce a glass cullet, and the same procedure as in Example 1 was carried out, except that a material obtained by pulverizing the vitreous pallet was used as an additional component. Then, a mixed powder to be used as a raw material powder of the dielectric ceramic was obtained, and a multilayer ceramic capacitor was produced.
  • Example 2 as AB0 3, using Ba (T i 0. 85 Z r 0. 15) 0 3, as an additive component, one using the Gd 2 0 3, MgO, Mn0 2 and S ⁇ 0 2 is there.
  • Ba C0 3 T i 0 2 and Z r 0 2 was prepared, and these, Ba (T i ⁇ . 85 ⁇ r ⁇ . 15) so that 0 3 composition weighed, then these were mixed by ball mill, by heat treatment at a temperature of 1 150 ° C, Ba (T i o. 85 Z r o. 15) 0 3 was synthesized and grinding it.
  • the Gd 2 0 3, S i 0 2 and Mn0 2, 0. 5: 1: were weighed so as to 1 molar ratio, then these were mixed by ball mill, 100 0 ° C by heat treatment at the temperature to obtain a Gd0 3/2 -S i 0 2 -Mn0 2 based reaction product.
  • Comparative Example 2 is an having the same composition as in Example 2, 100 moles of B a in ( ⁇ ⁇ 0. 85 Z ro 15) 0 3, 8 moles of Gd 2 0 3, 1. 0 mol by mixing S i 0 2, 1 O mole of M gO and 1.0 mole of Mn0 2 at a time, to obtain a mixed powder as a raw material powder of the dielectric ceramic.
  • the ceramic structure that constitutes the dielectric ceramic layers included in the multilayer ceramic condenser is described by WDX (Wavelength Dispersive X-ray spectrometry) and TEM. (Transmissive Electron Microscope) — Observed and analyzed using EDX (Energy Dispersive Z-ray Spectrometry) to confirm the presence or absence of a compound containing a rare earth element and Si. In the sample in which the presence of this compound was confirmed, the compound containing the rare earth element and Si had crystallinity by electron beam diffraction of TEM and XRD (X-ray Diffractometry). Checked whether.
  • the dielectric constant of the dielectric ceramic layer included in the multilayer ceramic condenser according to each sample at room temperature (25 ° C.) was measured under the conditions of 1 kHz and 1 V rms .
  • the rate of change of capacitance with respect to this temperature change is as follows: the rate of change at 125 ° C and the rate of change at 85 ° C with respect to the capacitance at 20 ° C, and the rate of change at 25 ° C.
  • the rate of change at 125 ° C. and the rate of change at 125 ° C. were evaluated with reference to the capacitance at the time. ,
  • a high-temperature load test was also performed.
  • a voltage of 12 V was applied to 100 samples at a temperature of 125 ° C so that the electric field strength became 8 kV / mm, and the change in the insulation resistance over time was measured.
  • Samples having an insulation resistance value of 200 k ⁇ or less before the elapse of 1000 hours were determined to be defective, and the number of defective samples was determined.
  • a humidity and high temperature load test was performed.
  • a voltage of 6 V was applied to 100 samples at a temperature of 85 ° C and a humidity of 95% so that the electric field strength was 4 kVZmm.
  • the time-dependent change was determined, and samples in which the $ color fringing resistance value was less than 200 k ⁇ before the elapse of 1000 hours were determined to be defective, and the number of defective samples was determined.
  • Example 1 the presence of a compound containing a rare earth element and Si was confirmed in the dielectric ceramic constituting the dielectric ceramic layer, and more specifically, In Example 1, the presence of a crystalline compound consisting of Y—S ⁇ —O was confirmed, and in Example 2, the presence of a crystalline compound consisting of G d—S i—M n—O was confirmed. . Further, according to Examples 1 and 2, it was found that the capacitance-temperature characteristics satisfied the B characteristics of the JIS standard and the X7R characteristics of the EIA standard, and that the reliability was good in the high-temperature load test. .
  • Comparative Example 1-1 unlike the case of Example 1, the presence of a compound containing Y and Si was not confirmed in the dielectric ceramic constituting the dielectric ceramic layer. It was confirmed that Ra ⁇ and S ⁇ were dissolved in the main component. Therefore, according to Comparative Examples 11 and 11, the capacitance-temperature characteristics were inferior to Example 1.
  • Comparative Example 1-2 unlike Example 1, the presence of a compound containing ⁇ ⁇ and Si in the dielectric ceramic constituting the dielectric ceramic layer was not confirmed. This is presumed to be because the glass-added component is different from the crystalline additive component observed in Example 1 in that the reaction with the main component proceeds easily. Therefore, as in the case of Comparative Example 2 to be described later, Comparative Examples 1-2 were inferior in the capacitance-temperature characteristics as compared with Example 1. Further, in Comparative Examples 1-2, a failure occurred in the humidity resistance and high temperature load test. This is considered to be because the glass generally has low moisture resistance, and in Comparative Example 1-2, the additive component was added as glass.
  • Comparative Example 2 unlike in Example 2, the presence of a compound containing Gd and Si in the dielectric ceramic constituting the dielectric ceramic layer was not confirmed, and the compound of Gd alone was not found. It just existed. In Comparative Example 2, since the compound of Gd alone was present, the capacity-temperature characteristics were relatively good, but the reliability in the high-temperature load test was inferior to Example 2.
  • La0 3/2 - except using S i 0 2 based reactants are using the same raw material composition as Example 1, a similar Through the operation, a multilayer ceramic capacitor was manufactured.
  • Nd0 3/2 - S i 0 2 system A multilayer ceramic capacitor was produced using the same raw material composition as in Example 1 except that the reactant was used and through the same operation.
  • T b 4 0 7 instead of Y 2 0 3 as the rare earth element, T b0 7/4 - except using S i 0 2 based reactants are using the same raw material composition as Example 1, Through the same operation, a multilayer ceramic capacitor was manufactured.
  • Dy0 3/2 - except using S i 0 2 based reactants are using the same raw material composition as Example 1, a similar Through the operation, a multilayer ceramic capacitor was manufactured.
  • Tm 2 0 3 instead of Y 2 0 3 as the rare earth element, Tm0 3/2 - except using S ⁇ 0 2 based reactants are using the same raw material composition as Example 1, a similar Through the operation, a multilayer ceramic capacitor was manufactured. lb
  • Y b 2 0 3 instead of Y 2 0 3 as the rare earth element, except for using the Y b0 3/2 -S i 0 2 based reactants are using the same raw material composition as Example 1, Through the same operation, a multilayer ceramic capacitor was manufactured.
  • Example 316 the multilayer ceramic capacitor obtained in Example 316 was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2 below.
  • Example 18 100 moles of (Ba 0 g8 Ca 0. 2 ) and (T ⁇ 0 98 Z r 0 .. 2) 0 3, and a reaction product of Y0 3/2 one S i 0 2 system 2.0 mol, 0. 5 mole of MgO, and 0.5 mole of Mn0 2, in place of the powder mixture obtained by mixing (raw material powder of the dielectric ceramic), 100 moles (B a 0. 98 sr 0.
  • the composite compound containing a rare earth element and Si and having crystallinity further includes elements (acceptor elements) such as ⁇ , ⁇ A, Fe, Cu, A, and Cr. It may be.
  • Example 23 As described above, the multilayer ceramic capacitor obtained in Example 23 was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 4 below.
  • the content of the composite compound was 25 mol per 100 mol of the main component. Even so, sufficient characteristics can be obtained.
  • the dielectric ceramic according to the present embodiment its Seramitsu click member in after sintering, separately from the main phase composed mainly of AB 0 3, rare earth elements and S i is, these dilute It exists as a composite compound phase (subphase) containing an earth element and Si, and at least a part of the composite compound phase has crystallinity. In this case, even if the thickness of the dielectric ceramic layer is reduced, the temperature dependency of the dielectric constant does not deteriorate as much as the thickness is reduced, and the reliability is excellent.
  • the multilayer ceramic capacitor can be miniaturized by thinning the dielectric ceramic layer while maintaining good capacitance temperature characteristics and reliability.
  • the capacity can be increased.
  • the thickness of the dielectric ceramic layer can be reduced to about 0.5 ⁇ m without any problem.
  • the dielectric ceramic according to the present invention is useful as a dielectric ceramic layer of a multilayer ceramic capacitor.
  • the dielectric ceramic has good capacitance-temperature characteristics and reliability, and is small and large-capacity multilayer ceramic. Suitable for dielectric ceramic layers of capacitors.

Abstract

A dielectric ceramic containing BaTiO3 as a main component and further a rare earth metal element and Si, wherein at least a part of the rare earth metal element and at least a part of the Si are present as a composite compound (22) containing a rare earth metal and Si and being different from a BaTiO3 particle (21) as the main component, and at least a part of the composite compound (22) is crystalline. The above dielectric ceramic has a characteristic that a thin film prepared therefrom exhibits relatively good temperature dependency of its dielectric constant as compared to a conventional dielectric ceramic, and thus can be advantageously used for forming a dielectric ceramic layer of a monolithic ceramic capacitor manufactured by the firing in a reducing atmosphere.

Description

明細書 誘電体セラミックおよびその製造方法ならびに積層セラミックコンデンサ 技術分野 ,  Description: Dielectric ceramic, manufacturing method thereof and multilayer ceramic capacitor
この発明は、 誘電体セラミックおよびその製造方法、 ならびにこの誘電体セラミツ クを用いて構成される積層セラミックコンデンサに関するもので、 特に、 積層セラミ ックコンデンサにおける誘電体セラミック層の薄層化を有利に図リ得るようにするた めの改良に関するものである。 背景技術  The present invention relates to a dielectric ceramic, a method of manufacturing the same, and a multilayer ceramic capacitor formed using the dielectric ceramic. In particular, the present invention advantageously reduces the thickness of a dielectric ceramic layer in a multilayer ceramic capacitor. It is about the improvement to gain. Background art
積層セラミックコンデンサは、 以下のようにして製造されるのが一般的である。 まず、 その表面に、 所望のパターンをもって内部電極となる導電材料を付与した、 誘電体セラミック原料を含むセラミックグリーンシー卜が用意される。 誘電体セラミ ックとしては、 たとえば、 B a T ί 03 を主成分とするものが用いられる。 A multilayer ceramic capacitor is generally manufactured as follows. First, a ceramic green sheet containing a dielectric ceramic raw material having a conductive material serving as an internal electrode provided in a desired pattern on its surface is prepared. The dielectric Ceramic, for example, those that the B a T ί 0 3 as a main component is used.
次に、 上述した導電材料を付与したセラミックグリーンシートを含む複数のセラミ ックグリーンシートが積層され、 熱圧着され、 それによつて一体化された生の積層体 が作製される。  Next, a plurality of ceramic green sheets including the ceramic green sheet provided with the above-described conductive material are laminated and thermocompression-bonded, thereby producing an integrated raw laminate.
次に、 この生の積層体は焼成され、 それによつて、 焼結後の積層体が得られる。 こ の積層体の内部には、 上述した導電材料をもって構成された内部電極が形成されてい る。  Next, the green laminate is fired, whereby a sintered laminate is obtained. An internal electrode made of the above-described conductive material is formed inside the laminate.
次いで、積層体の外表面上に、内部電極の特定のものに電気的に接続されるように、 外部電極が形成される。 外部電極は、 たとえば、 導電性金属粉末およびガラスフリツ トを含む導電性ペーストを積層体の外表面上に付与し、 焼き付けることによって形成 される。  Next, external electrodes are formed on the outer surface of the laminate so as to be electrically connected to specific ones of the internal electrodes. The external electrode is formed, for example, by applying a conductive paste containing a conductive metal powder and glass frit on the outer surface of the laminate and baking the same.
このようにして、 積層コンデンサが完成される。  Thus, a multilayer capacitor is completed.
上述した内部電極のための導電材料として、 古くは、 パラジウムまたはパラジウム 一銀合金などが用いられていたが、 近年、 積層セラミックコンデンサの製造コストを できるだけ低くするため、 たとえばニッケルまたは銅のような比較的安価な卑金属を 用いることが多くなつてきている。 しかしながら、 卑金属をもって内部電極を形成し た積層セラミックコンデンサを製造しょうとする場合、 焼成時における卑金属の酸化 を防止するため、 中性または還元性雰囲気中での焼成を適用しなければならず、 その ため、 積層セラミックコンデンサにおいて用いられる誘電体セラミックは、 耐還元性 を有していなければならない。 In the past, palladium or palladium-silver alloy was used as the conductive material for the internal electrodes described above.In recent years, however, in order to minimize the manufacturing cost of multilayer ceramic capacitors, for example, nickel or copper was used. The use of inexpensive base metals is increasing. However, when manufacturing a monolithic ceramic capacitor with an internal electrode made of a base metal, firing in a neutral or reducing atmosphere must be applied to prevent oxidation of the base metal during firing. Therefore, the dielectric ceramic used in multilayer ceramic capacitors is Must have.
積層セラミックコンデンサの容量温度特性に関し、 たとえば J I S規格の B特性を 満足させようとする場合、 上述のような耐還元性を有する誘電体セラミックとして、 たとえば、 Ba T ί 03 を主成分とし、 これに希土類元素の酸化物、 Mn、 Fe、 N iまたは C uなどのいわゆるァクセプタ一元素の酸化物および焼結助剤などを添加し たものが用いられている。 It relates capacitance-temperature characteristic of a multilayer ceramic capacitor, for example when it is intended to satisfy the B characteristics of the JIS standard, a dielectric ceramic having a reduction resistance as described above, for example, the main component Ba T ί 0 3, which To which an oxide of a rare earth element, an oxide of a so-called single element such as Mn, Fe, Ni or Cu and a sintering aid are used.
たとえば、 特開平 5— 9066号公報、 特開平 5— 9067号公報、 特開平 5— 9 For example, Japanese Patent Application Laid-Open Nos. Hei 5-9066, Hei 5-9067, Hei 5-9
068号公報または特開平 9— 270366号公報においては、 高い誘電率を有し、 誘電率の温度変化が小さく、高温負荷寿命が長い、 誘電体セラミックの組成が提案さ れている。 Japanese Patent Publication No. 068 or Japanese Patent Application Laid-Open No. 9-270366 proposes a dielectric ceramic composition having a high dielectric constant, a small change in the dielectric constant with temperature, and a long high-temperature load life.
また、 誘電体セラミックの構造および組織に着目すると、 特開平 6— 5460号公 報、 特開 2001— 220224号公報または特開 2001— 230149号公報に おいては、 いわゆるコアシェル構造の誘電体セラミックが提案されている。  Focusing on the structure and structure of the dielectric ceramic, JP-A-6-5460, 2001-220224 or 2001-230149 disclose a so-called core-shell dielectric ceramic. Proposed.
また、 上述の特開平 9— 270366号公報によれば、 セラミックの粒界構造を制 御することにより、 より高し、誘電率およびより優れた電気絶縁性を有する、 誘電体セ ラミックが得られると記載されている。  Further, according to the above-mentioned Japanese Patent Application Laid-Open No. 9-270366, by controlling the grain boundary structure of the ceramic, it is possible to obtain a dielectric ceramic having a higher dielectric constant and a higher electrical insulating property. It is described.
また、特開平 1 1—157928号公報においては、 B a Τ ί 03 系主成分に、 SFurther, Japanese Unexamined 1 1-157928, JP-in B a Τ ί 0 3 based main component, S
102 と希土類元素の酸化物とを含むガラス成分が添加された、誘電体セラミックが 提案されている。 この誘電体セラミックによれば、 誘電率が高く、 絶縁抵抗が高く、 誘電損失が小さく、 高温負荷試験における信頼性が良好である、 という効果が得られ ている。 Glass component including an oxide of 10 2 and a rare earth element is added, the dielectric ceramic has been proposed. According to this dielectric ceramic, the effects of high dielectric constant, high insulation resistance, small dielectric loss, and good reliability in a high-temperature load test are obtained.
近年のエレクトロニクス技術の発展に伴い、 電子部品の小型化が急速に進行し、 積 層セラミックコンデンサについても、 小型化かつ大容量化の傾向が顕著になつてきて いる。 積層セラミックコンデンサの小型化かつ大容量化を図る有効な手段として、 誘 電体セラミック層の薄層化が挙げられる。 誘電体セラミック層の厚みは、商品レベル では 2 im以下、 実験レベルでは 1 jUm以下となってきている。  With the development of electronics technology in recent years, the miniaturization of electronic components has been rapidly progressing, and the tendency of multilayer ceramic capacitors to be smaller and have larger capacities has become remarkable. An effective means for reducing the size and increasing the capacity of the multilayer ceramic capacitor is to reduce the thickness of the dielectric ceramic layer. The thickness of the dielectric ceramic layer has become less than 2 im at the product level and less than 1 jUm at the experimental level.
また、 電気回路を、 温度の変動にも関わらず、 安定に動作させるためには、 これに 用いられるコンデンサについても、温度に対して、 安定なものでなければならない。 以上のようなことから、 容量の温度変化が小さく、 誘電体セラミック層が薄層化さ れても、 電気絶縁性が高く、信頼性に優れる、 積層セラミックコンデンサの実現が強 く望まれている。  Also, in order for an electric circuit to operate stably despite temperature fluctuations, the capacitors used for this must also be stable with respect to temperature. As described above, there is a strong demand for a multilayer ceramic capacitor with high electrical insulation and excellent reliability even when the capacitance temperature change is small and the dielectric ceramic layer is thinned. .
前述した特開平 5— 9066号公報、 特開平 5— 9067号公報および特開平 5— 9068号公報に記載された誘電体セラミックは、 E I A規格における X 7 R特性を 満足し、 かつ高い電気絶縁性を示すものの、 誘電体セラミック層を薄層化したとき、 具体的には、 5 m以下、 特に 3 j« m以下というように薄層化したときの容量温度特 性および信頼性に関しては、 必ずしも、 市場の要求を十分満たし得るものではない。 同様に、 特開平 9— 2 7 0 3 6 6号公報に記載される誘電体セラミックも、 誘電体 セラミック層が薄層化されるにしたがって、 容量温度特性および信頼性が悪化すると し、う問題がある。 さらに、 特開平 9一 2 7 0 3 6 6号公報に記載される誘電体セラミ ックは、 B a T ί 03 などの主成分に添加する添加剤を、焼成過程において、溶融さ せる必要があるため、 主成分と添加剤との反応が進みやすく、 特に誘電体セラミック 層を薄層化した際の容量温度特性が悪化するという問題がある。 The dielectric ceramics described in JP-A-5-9066, JP-A-5-9067 and JP-A-5-9068 described above satisfy the X7R characteristics in the EIA standard and have high electrical insulation properties. However, when the dielectric ceramic layer is thinned, Specifically, the capacitance-temperature characteristics and reliability when the thickness is reduced to 5 m or less, especially 3 j <m or less, cannot always satisfy the market requirements. Similarly, the dielectric ceramic described in Japanese Patent Application Laid-Open No. 9-27066 also suffers from the problem that as the thickness of the dielectric ceramic layer is reduced, the capacitance-temperature characteristics and reliability deteriorate. There is. Further, the dielectric Ceramic described in JP-A-9 one 2 7 0 3 6 6 discloses the additives to be added to the main component, such as a B a T ί 0 3, in the firing process, necessary to melt Therefore, there is a problem that the reaction between the main component and the additive is apt to proceed, and particularly the capacity-temperature characteristics when the dielectric ceramic layer is thinned are deteriorated.
また、 特開平 6— 5 4 6 0号公報、 特開 2 0 0 1— 2 2 0 2 2 4号公報および特開 2 0 0 1 - 2 3 0 1 4 9号公報に記載される、 いわゆるコアシェル型の誘電体セラミ ックについても、 誘電体セラミック層が薄層化されるにしたがって、 容量温度特性お よび信頼性が悪化するという問題がある。  Also, the so-called Japanese Patent Application Laid-Open No. 6-54060, Japanese Patent Application Laid-Open No. 2001-220224 and Japanese Patent Application Laid-Open No. The core-shell type dielectric ceramic also has a problem that the capacitance-temperature characteristics and the reliability deteriorate as the dielectric ceramic layer becomes thinner.
また、 特開平 1 1—1 5 7 9 2 8号公報に記載される誘電体セラミックでは、 B a T i 03 系主成分に、 S i 02 と希土類元素の酸化物とがガラス状態で存在している ため、 誘電体セラミック層を薄層化したときの信頼性に関しては、 必ずしも、 市場の 要求を十分満たし得るものではない。 ' Further, the dielectric ceramic described in JP-A-1 1-1 5 7 9 2 8 No., to B a T i 0 3 system main components, in the oxide glassy state S i 0 2 and rare earth elements As a result, the reliability when the dielectric ceramic layer is thinned is not always sufficient to meet the market requirements. '
以上のようなことから、 積層セラミックコンデンサの小型化かつ大容量化に対応す ることを目的として、 誘電体セラミック層を薄層化した場合、 交流信号レベルを薄層 化する前と同じにすると、 誘電体セラミック層の 1層あたリに印加される電界強度が 大きくなるため、 容量温度特性が著しく低下してしまう。 また、 信頼性に関しても、 誘電体セラミック層を薄層化した場合、直流定格電圧を薄層化する前と同じにすると、 誘電体セラミック層の 1層あたリに印加される電界強度が大きくなるため、 これが著 しく低下してしまう。  From the above, if the dielectric ceramic layer is made thinner in order to respond to the miniaturization and large capacity of the multilayer ceramic capacitor, if the AC signal level is the same as before the thinning, However, since the electric field intensity applied to one of the dielectric ceramic layers is increased, the capacitance-temperature characteristics are significantly reduced. Regarding reliability, when the dielectric ceramic layer is made thinner, if the DC rated voltage is the same as before, the electric field strength applied to one layer of the dielectric ceramic layer becomes larger. Therefore, this is significantly reduced.
そこで、 誘電体セラミック層を薄層化しながらも、 薄層化したほどには、 誘電率の 温度依存性が悪化せず、 また、 信頼性に優れた、 積層セラミックコンデンサの実現が 望まれるところである。  Therefore, even though the thickness of the dielectric ceramic layer is reduced, it is desired to realize a multilayer ceramic capacitor that does not deteriorate the temperature dependence of the dielectric constant and has excellent reliability as the thickness becomes thinner. .
この発明の目的は、 上述のような要望を満たし得る、 誘電体セラミックおよびその 製造方法、 ならびにこの誘電体セラミックを用いて構成される積層セラミックコンデ ンサを提供しょうとすることである。 発明の開示  An object of the present invention is to provide a dielectric ceramic and a method for manufacturing the same, and a multilayer ceramic capacitor formed by using the dielectric ceramic, which can satisfy the above-mentioned demands. Disclosure of the invention
この発明に係る誘電体セラミックは、 A B 03 ( Aは、 B a、 または B aならびに その一部が置換された C aおよび S rの少なくとも 1種であり、 Bは、 丁 し または T iならびにその一部が置換された Z rおよび H fの少なくとも 1種である。 ) を主 成分とし、 さらに希土類元素および S iを含む、 誘電体セラミックであって、 次のよ うな構成を備えることを特徴としている。 Dielectric ceramic according to the invention, AB 0 3 (A is B a or B a and at least one part of which is substituted C a and S r,, B is Ding or T i And at least one of Zr and Hf partially substituted.) A dielectric ceramic further containing a rare earth element and Si as a component, characterized by having the following configuration.
すなわち、 上記希土類元素の少なくとも一部と上記 S ίの少なくとも一部とは、 こ れら希土類元素および S iを含む、前述の主成分とは異なる複合化合物として存在し、 かっこの複合化合物は、 その少なくとも一部において結晶性を有していることを特徴 としている。  That is, at least a part of the rare earth element and at least a part of the S 存在 exist as a composite compound containing the rare earth element and Si, which is different from the main component described above. It is characterized by having crystallinity in at least a part thereof.
この発明に係る誘電体セラミックは、 いわゆるァクセプター元素としての M n、 N F e、 C u、 M g、 A Iおよび C rの少なくとも 1種をさらに含んでいてもよし、。 また、 この発明に係る誘電体セラミックは、 S ί、 Βおよび L iの少なくとも 1種 を含む焼結助剤をさらに含んでいてもよい。  The dielectric ceramic according to the present invention may further include at least one of Mn, NFe, Cu, Mg, AI, and Cr as so-called acceptor elements. Further, the dielectric ceramic according to the present invention may further include a sintering aid containing at least one of S S, Β and Li.
この発明は、また、上述のような誘電体セラミックを製造する方法にも向けられる。 この発明に係る誘電体セラミックの製造方法は、 A B 03 (Aは、 B a、 または B aならびにその一部が置換された C aおよび S rの少なくとも 1種であり、 Bは、 T i、 または T iならびにその一部が置換された Z rおよび H f の少なくとも 1種であ る。) を作製する工程と、少なくとも希土類元素と S i とを反応させ、それによつて、 その一部において結晶性を有する反応物を作製する工程と、上記 A B 03 と上記反応 物とを混合することによって、 原料粉末を作製する工程と、 原料粉末を焼成する工程 とを備えることを特徴としている。 The invention is also directed to a method for producing a dielectric ceramic as described above. Method for producing a dielectric ceramic according to the invention, AB 0 3 (A is B a or B a and at least one part of which is substituted C a and S r,, B is T i , Or T i and at least one of Z r and H f in which a part thereof is substituted.), And reacting at least a rare earth element with S i, thereby forming a part thereof. a step of preparing a reaction product having a crystallinity, by mixing the AB 0 3 and the reaction product, characterized by comprising a step of preparing a raw material powder, and a step of firing the raw material powders are in .
上述の原料粉末を作製する工程において、 必要に応じて、 ァクセプター元素として の1\ ^、 1\1 し 「6、 〇 _»、 1\ ^、 A Iおよび C rの少なくとも 1種を含む化合物、 S i、 Bおよび L iの少なくとも 1種を含む焼結助剤、 ならびに希土類元素を含む化 合物の少なくとも 1種をさらに混合するようにしてもよい。  In the step of preparing the above-mentioned raw material powder, if necessary, 1 \ ^, 1 \ 1 and `` 6, 〇_ », 1 \ ^, a compound containing at least one of AI and Cr, A sintering aid containing at least one of Si, B, and Li, and at least one of compounds containing a rare earth element may be further mixed.
この発明は、 さらに、 上述のような誘電体セラミックを用いて構成される積層セ ラミックコンデンサにも向けられる。  The present invention is further directed to a multilayer ceramic capacitor formed using the above-described dielectric ceramic.
この発明に係る積層セラミックコンデンサは、 複数の積層された誘電体セラミツ ク層および誘電体セラミック層間の特定の界面に沿って形成された内部電極を含む、 積層体と、 内部電極の特定のものに電気的に接続されるように積層体の外表面上に形 成される外部電極とを備えるもので、 誘電体セラミック層が、 上述したような誘電体 セラミックからなることを特徴としている。  A multilayer ceramic capacitor according to the present invention includes a multilayer body including a plurality of stacked dielectric ceramic layers and an internal electrode formed along a specific interface between the dielectric ceramic layers, and a specific internal electrode. An external electrode formed on the outer surface of the laminate so as to be electrically connected, wherein the dielectric ceramic layer is made of the dielectric ceramic as described above.
すなわち、 この発明に係る誘電体セラミックによれば、 希土類元素および S iが、 これら希土類元素および S iを含む複合化合物として存在し、 複合化合物がその少な くとも一部において結晶性を有しているので、 これをもって積層セラミックコンデン ザの誘電体セラミック層を構成した場合、 誘電体セラミック層を薄層化しても、 薄層 化したほどには誘電率の温度依存性が悪化せず、 また、 信頼性に優れたものとするこ とができる。 That is, according to the dielectric ceramic of the present invention, the rare earth element and Si exist as a composite compound containing the rare earth element and Si, and the composite compound has crystallinity in at least a part thereof. Therefore, when the dielectric ceramic layer of the multilayer ceramic capacitor is formed with this, even if the dielectric ceramic layer is made thinner, the temperature dependence of the dielectric constant does not deteriorate as much as the thickness becomes thinner. Be reliable Can be.
したがって、 この誘電体セラミックをもって積層セラミックコンデンザの誘電体セ ラミック層を構成すれば、 良好な容量温度特性および信頼性を維持しながら、 誘電体 セラミック層の薄層化によって、 積層セラミックコンデンサの小型化かつ大容量化を 図ることができる。 特に、 この発明に係る誘電体セラミックによれば、 誘電体セラミ ック層め厚みを 0. 5 m程度にまで問題なく薄層化することができる。 図面の簡単な説明  Therefore, if this dielectric ceramic is used to form the dielectric ceramic layer of the multilayer ceramic capacitor, it is possible to reduce the size of the multilayer ceramic capacitor by reducing the thickness of the dielectric ceramic layer while maintaining good capacitance temperature characteristics and reliability. The capacity and capacity can be increased. In particular, according to the dielectric ceramic according to the present invention, the thickness of the dielectric ceramic layer can be reduced to about 0.5 m without any problem. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 この発明の一実施形態による積層セラミックコンデンサ 1を図解的に示す 断面図である。  FIG. 1 is a sectional view schematically showing a multilayer ceramic capacitor 1 according to one embodiment of the present invention.
図 2は、 この発明による誘電体セラミックの構造を図解的に示す図である。 発明を実施するための最良の形態  FIG. 2 is a diagram schematically showing the structure of a dielectric ceramic according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
図 1は、 この発明の一実施形態による積層セラミックコンデンサ 1を図解的に示す 断面図である。  FIG. 1 is a sectional view schematically showing a multilayer ceramic capacitor 1 according to one embodiment of the present invention.
積層セラミックコンデンサ 1は、 積層体 2を備えている。 積層体 2は、積層される 複数の誘電体セラミック層 3と、 複数の誘電体セラミック層 3の間の特定の複数の界 面に沿ってそれぞれ形成される複数の内部電極 4および 5とをもって構成される。 内 部電極 4および 5は、 積層体 2の外表面にまで到達するように形成されるが、 積層体 2の一方の端面 6にまで引き出される内部電極 4と他方の端面 7にまで引き出される 内部電極 5とが、 積層体 2の内部において交互に配置されている。  The multilayer ceramic capacitor 1 includes a multilayer body 2. The laminate 2 includes a plurality of dielectric ceramic layers 3 to be laminated, and a plurality of internal electrodes 4 and 5 respectively formed along a plurality of specific interfaces between the plurality of dielectric ceramic layers 3. Is done. The internal electrodes 4 and 5 are formed so as to reach the outer surface of the laminate 2, but the internal electrode 4 is extended to one end face 6 of the laminate 2 and the internal electrode 4 is extended to the other end face 7. The electrodes 5 are alternately arranged inside the laminate 2.
積層体 2の外表面上であって、 端面 6および 7上には、 外部電極 8および 9がそれ ぞれ形成されている。 また、 外部電極 8および 9上には、 ニッケル、 銅などからなる 第 1のめつき層 1 0および 1 1がそれぞれ形成され、 さらにその上には、 半田、 錫な どからなる第 2のめつき層 1 2および 1 3がそれぞれ形成されている。  External electrodes 8 and 9 are formed on the outer surface of the laminate 2 and on the end faces 6 and 7, respectively. Also, first plating layers 10 and 11 made of nickel, copper, etc. are formed on the external electrodes 8 and 9, respectively, and a second plating layer made of solder, tin, etc. is further formed thereon. Adhesion layers 12 and 13 are formed respectively.
このような積層セラミックコンデンサ 1において、 誘電体セラミック層 3は、 A B 03 (Aは、 B a、 または B aならびにその一部が置換された C aおよび S rの少な くとも 1種であり、 Bは、 T i、 または T iならびにその一部が置換された Z I "およ び H fの少なくとも 1種である。 ) を主成分とし、 さらに希土類元素および S ίを含 む、 誘電体セラミックから構成される。 In such a multilayer ceramic capacitor 1, the dielectric ceramic layers 3, AB 0 3 (A is B a or B a well least one part of which is substituted C a and S r, , B is at least one of Ti, or Ti and partially substituted ZI "and Hf.) And a dielectric material containing a rare earth element and S S. It is composed of ceramic.
この誘電体セラミックにおいて、 上述の希土類元素の少なくとも一部と S iの少な くとも一部とは、 これら希土類元素および S iを含み、かつ、主成分とは、構成元素、 組成比、結晶構造の異なる複合化合物として存在し、 かっこの複合化合物は、 その少 なくとも一部において結晶性を有していることを特徴としている。 一般に、 A B 03 、特に B a T i 03 を主成分とし、 この主成分に何らかの添加成 分が添加されて構成された誘電体セラミックは、 この添加成分が固溶した場合、 誘電 率の温度依存性が大きくなる。 そのため、 このような誘電体セラミックを用いて積層 セラミックコンデンサを作製した場合、 容量温度特性の悪い積層セラミックコンデン サとなる。 In this dielectric ceramic, at least a part of the rare earth element and at least a part of Si include the rare earth element and Si, and the main component refers to a constituent element, a composition ratio, and a crystal structure. The parenthesized composite compound is characterized in that at least a part thereof has crystallinity. In general, AB 0 3, in particular a B a T i 0 3 as a main component, the dielectric ceramic any addition Ingredient is constructed by adding to the main component, if the additional component is dissolved, the dielectric constant Temperature dependence increases. Therefore, when a multilayer ceramic capacitor is manufactured using such a dielectric ceramic, the multilayer ceramic capacitor has poor capacitance-temperature characteristics.
近年、 上記添加成分として、 希土類元素が頻繁に用いられている。 希土類元素は、 たとえば B a T i 03 に添加した場合、 容易に固溶するので、 そのような誘電体セラ ミックの誘電率の温度依存性が悪くなる。 また、 希土類元素が酸化物として単独で存 在する場合には、 信頼性が低下することも知られている。 In recent years, rare earth elements have been frequently used as the additional components. Rare earth element, for example when added to B a T i 0 3, so easily dissolved, the temperature dependence of the dielectric constant of such a dielectric ceramic is deteriorated. It is also known that when the rare earth element exists alone as an oxide, the reliability decreases.
そこで、 本件発明者は、 調査および実験を重ねたところ、 希土類元素を S i との結 晶性反応物として添加することによって、 希土類元素と S iとを含む化合物が、 A B o 3 を主成分とする誘電体セラミック中に、 主成分のグレインとは別に存在でき、希 土類元素の A B 03 への固溶が抑制されることを見出した。 このとき、 希土類元素と S iとの反応物は、 1 0 00/0結晶性である必要はなく、 少なくとも一部が結晶性を有 していればよいことがわかった。 また、 希土類元素は、 単独ではなく、 S iとの化合 物で存在すれば、 誘電体セラミックの信頼性を低下させないこともわかった。 Therefore, the present inventor conducted repeated investigations and experiments, and found that by adding a rare earth element as a crystalline reactant with S i, the compound containing the rare earth element and S i contained AB o 3 as a main component. in the dielectric ceramic to, can exist independently as a main component of grains, the formation of a solid solution in the AB 0 3 rare earth elements was found to be suppressed. At this time, it was found that the reaction product of the rare earth element and Si does not need to be 100,000 / 0 crystalline, and it is sufficient that at least a part of the reactant has crystallinity. It was also found that the rare earth element does not reduce the reliability of the dielectric ceramic if it exists not as a single compound but as a compound with Si.
このようなことから、 前述したように、 A B 03 を主成分とし、 さらに希土類元素 および S ίを含み、 希土類元素の少なくとも一部と S iの少なくとも一部とが、 これ ら希土類元素および S iを含む、 主成分とは異なる複合化合物として存在し、 かっこ の複合化合物が、 その少なくとも一部において結晶性を有している、 そのような誘電 体セラミックによって、 図 1に示した誘電体セラミック層 3を構成すれば、 誘電体セ ラミック層 3を薄層化しても、 薄層化したほどには誘電率の温度依存性が悪化せず、 また、 信頼性に優れたものとすることができる。 した力《つて、 このような誘電体セラ ミックからなる誘電体セラミック層 3を備える積層セラミックコンデンサ 1は、 容量 温度特性および信頼性に優れたものとすることができる。 For this reason, as described above, the AB 0 3 as a main component, further includes a rare earth element and S I, and at least a portion of at least a portion S i of rare earth elements, these rare earth elements and S i, which exists as a complex compound different from the main component, and the parenthesized complex compound has crystallinity in at least a part thereof. By forming the layer 3, even if the dielectric ceramic layer 3 is made thinner, the temperature dependency of the dielectric constant does not deteriorate as much as the thickness becomes thinner, and the dielectric ceramic layer 3 has excellent reliability. it can. Thus, the multilayer ceramic capacitor 1 including the dielectric ceramic layer 3 made of such a dielectric ceramic can have excellent capacitance-temperature characteristics and excellent reliability.
図 2には、 上述した誘電体セラミックの構造が図解的に示されている。 誘電体セラ ミックは、 A B 03粒子 2 1を備えている。また、誘電体セラミックには、 A B 03粒 子 2 1とは別に、 希土類元素および S iを含む複合化合物 2 2が、 A B 03粒子とは 異なる結晶構造を持った相として、 存在している。 FIG. 2 schematically shows the structure of the above-described dielectric ceramic. The dielectric ceramic has a AB 0 3 particles 2 1. The dielectric ceramic, apart from the AB 0 3 grains element 2 1, composite compound containing a rare earth element and S i 2 2 is, as the phase having a different crystal structure than AB 0 3 particles, present to I have.
上述した A B 03 粒子 2 1には、希土類元素および S iのような添加成分が一部固 溶していてもよい。 また、 複合化合物 2 2は、 希土類元素および S i以外の元素を含 んでいてもよい。 In AB 0 3 particles 2 1 described above, additive components such as rare earth elements and S i may be partially solid solution. Further, the composite compound 22 may contain an element other than the rare earth element and Si.
誘電体セラミックは、 いわゆるァクセプター元素としての M n、 N ί、 F e、 C u、 M g、 A Iおよび C rの少なくとも 1種をさらに含んでいてもよい。 また、 誘電体セラミックは、 S i、 Bおよびし ίの少なくとも 1種を含む焼結助剤 をさらに含んでいてもよい。 The dielectric ceramic may further include at least one of Mn, Nί, Fe, Cu, Mg, AI and Cr as so-called acceptor elements. Further, the dielectric ceramic may further include a sintering aid containing at least one of Si, B, and Si.
内部電極 4および 5は、 たとえば、 ニッケル、 ニッケ 合金、 銅または銅合金の ような卑金属を導電成分として含んでいる。  The internal electrodes 4 and 5 contain, for example, a base metal such as nickel, nickel alloy, copper or copper alloy as a conductive component.
また、 外部電極 8および 9は、 導電性金属粉末の焼結層またはガラスフリツトを添 加した導電性金属粉末の焼結層をもつて構成される。  Further, the external electrodes 8 and 9 have a sintered layer of a conductive metal powder or a sintered layer of a conductive metal powder to which glass frit is added.
次に、 この積層セラミックコンデンサ 1の製造方法について説明する。  Next, a method for manufacturing the multilayer ceramic capacitor 1 will be described.
まず、 誘電体セラミック層 3を構成する誘電体セラミックの原料粉末を作製するた め、 A B 03 を作製する工程と、 少なくとも希土類元素と S iとを反応させ、 それに よって、 その一部において結晶性を有する反応物を作製する工程とがそれぞれ実施さ れる。 First, order to prepare a raw material powder of the dielectric ceramic constituting the dielectric ceramic layer 3, a process of forming a AB 0 3, by reacting at least a rare-earth element, S i, it thus crystals in a portion thereof And a step of producing a reactant having properties.
上述の A B 03 を作製するにあたっては、 Aおよび Bのそれぞれを含む化合物を、 所望の割合で混合し、 たとえば熱処理することによって、 A B 03 を合成し、 これを 粉石辛することによって、 A B 03 粉末を作製するようにされる。 In making AB 0 3 described above, the compound containing the respective A and B, were mixed in the desired proportions, for example, by heat treatment, by synthesizing the AB 0 3, which is powdered stone Shin, It is adapted to prepare a AB 0 3 powder.
他方、 希土類元素と S i 02 とを含む反応物を作製するにあたっては、所望の希土 類元素と S iとをそれぞれ含む化合物を混合し、 これをたとえば熱処理することによ つて、 希土類元素と S i とを含む反応物を得、 これを粉砕することによって、 希土類 元素と S iとを含む反応物粉末を作製するようにされる。 この反応物には、 アルカリ 土類元素や遷移金属元素などの希土類元素、 S i以外の元素が含まれていてもよい。 また、 この反応物粉末の平均粒径は、 上述した A B 03 粉末の平均粒径より小さいこ とが好ましい。 On the other hand, in order to produce a reaction product containing a rare-earth element and S i 0 2, the desired compounds were mixed, each containing a rare-earth element and S i, connexion by the this example to heat treatment, the rare earth element A reaction product containing a rare earth element and Si is obtained by obtaining a reaction product containing Si and Si, and pulverizing the reaction product. The reactants may contain rare earth elements such as alkaline earth elements and transition metal elements, and elements other than Si. The average particle size of the reactant powders, and preferably has an average particle size smaller this than the AB 0 3 powder as described above.
次に、 A B 03 粉末と反応物粉末とを混合することによって、誘電体セラミックの 原料粉末が得られる。 この原料粉末を得るための混合工程において、 ァクセプター元 素としての Μ η、 Ν ί、 F e、 C u、 M g、 A Iおよび C rの少なくとも 1種を含む 化合物がさらに混合されても、 S i、 Bおよび L iの少なくとも 1種を含む焼結助剤 が混合されても、 あるいは、 希土類元素を含む化合物がさらに混合されてもよい。 な ぉァクセプター元素は、 反応物粉末中にあらかじめ添加されていることが好ましい。 この場合、 複合酸化物相中にァクセプター元素が存在することになる。 Then, by mixing the reaction product powder and AB 0 3 powder, the raw material powder of the dielectric ceramic is obtained. In the mixing step for obtaining the raw material powder, even if a compound containing at least one of ηη, Ν ί, Fe, Cu, Mg, AI and Cr as an acceptor element is further mixed, A sintering aid containing at least one of i, B and Li may be mixed, or a compound containing a rare earth element may be further mixed. It is preferable that such a receptor element is previously added to the reactant powder. In this case, the ceptor element is present in the composite oxide phase.
次に、上述のようにして得られた混合粉末に、有機バインダおよび溶剤を添加し、 混合することによって、 スラリーが作製され、 このスラリーを用いて、 誘電体セラミ ック層 3となるセラミックグリーンシ一卜が成形される。  Next, an organic binder and a solvent are added to and mixed with the mixed powder obtained as described above to form a slurry, and the slurry is used to form the ceramic green material for forming the dielectric ceramic layer 3. A sheet is formed.
次いで、 特定のセラミックグリーンシート上に、 内部電極 4または 5となるべき導 電性ペースト膜がたとえばスクリーン印刷によって形成される。 この導電性ペース卜 膜は、 たとえば、 ニッケル、 ニッケル合金、 銅または銅合金を導電成分として含んで いる。 なお、 内部電極 4および 5は、 スクリーン印刷法のような印刷法のほか、 たと えば、 蒸着法、 めっき法などによって形成されてもよい。 Next, a conductive paste film to be the internal electrodes 4 or 5 is formed on a specific ceramic green sheet by, for example, screen printing. This conductive paste film contains, for example, nickel, a nickel alloy, copper or a copper alloy as a conductive component. I have. The internal electrodes 4 and 5 may be formed by a printing method such as a screen printing method, for example, a vapor deposition method, a plating method, or the like.
次いで、 上述のように導電性ペースト膜を形成したセラミックグリーンシートを含 む複数のセラミックグリーンシートが積層され、 熱圧着された後、 必要に応じてカツ 卜される。 このようにして、複数のセラミックグリーンシート、 およびセラミックグ リーンシート間の特定の界面に沿ってそれぞれ形成された内部電極 4および 5となる べき導電性ペースト膜が積層された構造を有する生の積層体が得られる。 この生の積 層体において、 導電性ペースト膜は、 その端縁をいずれかの端面に露出させている。 次いで、 生の積層体は、還元性雰囲気中において焼成される。 これによつて、 図 1 に示すような焼結後の積層体 2が得られる。 この積層体 2において、 前述のセラミツ クグリーンシートによって、誘電体セラミック層 3が構成され、 導電性ペースト膜に よって、 内部電極 4または 5が構成される。  Next, a plurality of ceramic green sheets including the ceramic green sheet on which the conductive paste film has been formed as described above are laminated, thermocompression-bonded, and then cut as necessary. In this manner, a raw laminate having a structure in which a plurality of ceramic green sheets and a conductive paste film to be the internal electrodes 4 and 5 formed along a specific interface between the ceramic green sheets, respectively, are laminated. The body is obtained. In this green laminate, the conductive paste film has its edge exposed at any end face. Next, the green laminate is fired in a reducing atmosphere. Thereby, a laminated body 2 after sintering as shown in FIG. 1 is obtained. In this laminate 2, a dielectric ceramic layer 3 is constituted by the aforementioned ceramic green sheet, and an internal electrode 4 or 5 is constituted by the conductive paste film.
次いで、 内部電極 4および 5の露出した各端縁にそれぞれ電気的に接続されるよう に、 積層体 2の端面 6および 7上,に、 それぞれ、 外部電極 8および 9が形成される。 外部電極 8および 9の材料としては、 内部電極 4および 5と同じ材料を用いること ができるが、 銀、 パラジウム、 銀一パラジウム合金なども使用可能であり、 また、 こ れらの金属粉末に、 B 2 03 - S ί 02 — B a O系ガラス、 L ί 2 O - S ί 02 - B a O系ガラス、 B 2 03 - L i 2 O - S i 02 — B a O系ガラスなどからなるガ ラスフリットを添加したものも使用可能である。積層セラミックコンデンサ 1の用途、 使用場所などを考慮に入れて適当な材料が選択される。 Next, external electrodes 8 and 9 are formed on end surfaces 6 and 7 of laminated body 2 so as to be electrically connected to the exposed edges of internal electrodes 4 and 5, respectively. As the material for the external electrodes 8 and 9, the same materials as those for the internal electrodes 4 and 5 can be used, but silver, palladium, silver-palladium alloy, etc. can also be used. B 2 0 3 -S ί 0 2 — B a O based glass, L ί 2 O-S ί 0 2 -B a O based glass, B 2 0 3 -L i 2 O-S i 0 2 — B a O A glass frit made of a system glass or the like can be used. Appropriate materials are selected in consideration of the application and place of use of the multilayer ceramic capacitor 1.
また、 外部電極 8および 9は、 通常、 上述のような導電性金属の粉末を含むペース トを、焼成後の積層体 2の外表面上に塗布し、焼き付けることによって形成されるが、 焼成前の生の積層体の外表面上に塗布し、 積層体 2を得るための焼成と同時に焼き付 けることによって形成されてもよい。  The external electrodes 8 and 9 are usually formed by applying a paste containing a conductive metal powder as described above on the outer surface of the fired laminate 2 and firing the paste. It may be formed by coating on the outer surface of the raw laminate and baking simultaneously with the firing for obtaining the laminate 2.
その後、 外部電極 8および 9上に、 ニッケル、 銅などのめつきを施し、 第 1のめつ き層 1 0および 1 1を形成する。 そして、 この第 1のめつき層 1 0および 1 1上に、 半田、 錫などのめつきを施し、 第 2のめつき層 1 2および 1 3を形成する。 なお、 外 部電極 8および 9上に、 このようなめっき層 1 0 ~ 1 3のような導体層を形成するこ とは、 積層セラミックコンデンサ 1の用途によっては省略されることもある。  Thereafter, nickel and copper are applied on the external electrodes 8 and 9 to form first plating layers 10 and 11. Then, the first plating layers 10 and 11 are plated with solder, tin or the like to form second plating layers 12 and 13. The formation of such a conductor layer as the plating layers 10 to 13 on the external electrodes 8 and 9 may be omitted depending on the use of the multilayer ceramic capacitor 1.
以上のようにして、 積層セラミックコンデンサ 1が完成される。  As described above, the multilayer ceramic capacitor 1 is completed.
このようにして得られた積層セラミックコンデンサ 1において、 誘電体セラミック 層 3を構成する誘電体セラミックは、 図 2に示すように、 A B 03 粒子 2 1に加えて、 希土類元素の少なくとも一部と S ίの少なくとも一部とが複合化合物 2 2として存在 している構造を有している。希土類元素と S iとの反応物の一部は、 A B 03 粒子 2 1に固溶してもよいが、 希土類元素の全量の 30%以上が希土類元素と S iとの複合 化合物 22として存在することが好ましい。 より好ましくは、 500/0以上の希土類元 素と S iとが複合化合物 22として存在するようにされる。 In the multilayer ceramic capacitor 1 obtained in this manner, the dielectric ceramic constituting the dielectric ceramic layer 3, as shown in FIG. 2, in addition to the AB 0 3 particles 2 1, at least a portion of the rare earth element It has a structure in which at least a part of S is present as composite compound 22. Some of the reactants of the rare earth element with Si are AB 0 3 particles 2 Although it may be dissolved in 1, it is preferable that 30% or more of the total amount of the rare earth element is present as the composite compound 22 of the rare earth element and Si. More preferably, 500/0 or more rare earth elements and Si are present as the composite compound 22.
主成分である AB03 粒子 21の平均粒子径 (平均一次粒子) は、誘電体セラミツ ク層 3の薄層化により対応するためには、 0. 05〜0. フ〃 mの範囲になるように されることが好ましい。 このように、 0. 05〜0. 7〃mの平均粒子径を有する A B03 粒子 2 1を主成分とすることにより、誘電体セラミック層 3は、 0. 5〃m程 度の厚みまで問題なく薄層化することができる。 また、 複合化合物の割合は、 主成分 1 00モルに対して、 0. 01モル以上、 25モル以下であることが好ましい。 さら に好ましくは、 0. 1モル以上、 5モル以下である。 The average particle diameter (average primary particle) of the AB0 3 particles 21 as the main component should be in the range of 0.05 to 0.m in order to cope with the thinning of the dielectric ceramic layer 3. It is preferred that Thus, by the main component A B0 3 particles 2 1 having an average particle diameter of 0.05 to 0. 7〃M, dielectric ceramic layer 3, until 0.5 5〃M extent of thickness It can be thinned without any problem. Further, the ratio of the composite compound is preferably from 0.01 mol to 25 mol per 100 mol of the main component. More preferably, it is at least 0.1 mol and at most 5 mol.
なお、 誘電体セラミックの原料粉末の作製や、 その他の積層セラミックコンデンサ 1の製造工程のいずれかの段階において、 Aし Z r、 F e、 H f 、 N a、 N等が不 純物として混入する可能性があるが、 これら不純物の混入は、 積層セラミックコンデ ンサ 1の電気的特性上、 問題となることはない。  In addition, A, Zr, Fe, Hf, Na, N, etc. are mixed as impurities at any stage of the production of the raw material powder of the dielectric ceramic and other manufacturing processes of the multilayer ceramic capacitor 1. However, mixing of these impurities does not cause a problem on the electrical characteristics of the multilayer ceramic capacitor 1.
また、 積層セラミックコンデンサ 1の製造工程のいずれかの段階において、 内部電 極 4および 5に F e等が不純物として混入する可能性もあるが、 この不純物の混入に ついても、 電気的特性上、 問題となることはない。 実施例  Also, at any stage of the manufacturing process of the multilayer ceramic capacitor 1, there is a possibility that Fe or the like may be mixed into the internal electrodes 4 and 5 as an impurity. There is no problem. Example
次に、 この発明による効果を確認するために実施した実施例について説明する。 (実施例 1 )  Next, examples implemented to confirm the effects of the present invention will be described. (Example 1)
実施例 1は、 AB03 として、 (B a 0. g8C a0.。2) (Τ ί 0.98 Z r 0.。2) 03 を 用い、 添加成分として、 Y2 03 、 MgO、 Mn 02 および S i 02 を用いたもの である。 Example 1, as the AB0 3, (B a 0. G8 C a 0 .. 2) (Τ ί 0. 98 Z r 0 .. 2) 0 3 was used as an additive component, Y 2 0 3, MgO , those using Mn 0 2 and S i 0 2.
まず、主成分の出発原料として、 B a C03 、 C a C03 、 Τ ί 02 および Ζ r Ο 2 を準備し、 これらを、 (B a0. 98C a 0.。2) (T i o 98Z r o.。2) 03 の組成と なるように秤量し、 次いで、 これらをポールミルにより混合し、 1 1 50°Cの温度で 熱処理することによって、 (B a 0. 98C a 0.。2) (Τ ί 0. 98Z r o.。2) 03 を合成 し、 これを粉砕した。 First, as starting materials of the main component, B a C0 3, C a C0 3, prepare the Τ ί 0 2 and Zeta r Omicron 2, these, (B a 0. 98 C a 0 .. 2) (T io 98 Z r o .. 2) 0 3 of weighed so as to have the composition, then it was mixed by ball mill, by heat treatment at a temperature of 1 1 50 ° C, (B a 0. 98 C a 0 .. 2) (Τ ί 0 . 98 Z r o .. 2) 0 3 were synthesized and crushed it.
他方、添加成分としての Y2 03 および S i 02 を 1 : 2のモル比になるように秤 量し、 次いで、 これらをボールミルにより混合し、 1 000°Cの温度で熱処理するこ とによって、 Y03/2 — S i 02 系の反応物を得、 これを粉砕した。 On the other hand, the Y 2 0 3 and S i 0 2 as an additive component 1: 2 to balance the amount of such a molar ratio, then these were mixed by a ball mill, a heat treatment child at a temperature of 1 000 ° C by, Y0 3/2 - give S i 0 2 based reactants were pulverized into.
次に、 1 00モルの (Ba0. 98C a0. 02) (T i 0 98 Z r 0.。2) 03 と、 2. 0 モルの Y03/2 -S i 02 系の反応物と、 0. 5モルの MgOと、 0. 5モルの Mn o2 とを混合し、 誘電体セラミックの原料粉末となる混合粉末を得た。 Then, 1 00 mol of (Ba 0. 98 C a 0 . 02) and (T i 0 98 Z r 0 .. 2) 0 3, of 2.0 mol Y0 3/2 -S i 0 2 system Reactant, 0.5 mole MgO, 0.5 mole Mn o 2 was mixed to obtain a mixed powder to be a raw material powder of the dielectric ceramic.
次に、 この混合粉末に、 ポリビニルプチラール系バインダおよびエタノール等の有 機溶剤を加え、 ボールミルを用いた湿式混合を実施することによって、 セラミックス ラリーを作製した。  Next, an organic solvent such as a polyvinyl butyral-based binder and ethanol was added to the mixed powder, and the mixture was subjected to wet mixing using a ball mill to produce a ceramic rally.
次に、 セラミックスラリーを、 ドクターブレード法によって、 焼成後の誘電体セラ ミック層の厚みが 1. 5〃mになるような厚みをもってシート状に成形し、 矩形のセ ラミックグリーンシートを得た。  Next, the ceramic slurry was shaped into a sheet by a doctor blade method so that the thickness of the fired dielectric ceramic layer became 1.5 μm, to obtain a rectangular ceramic green sheet.
次に、 セラミックグリーンシート上に、 ニッケルを導電成分として含む導電性べ一 ストをスクリーン印刷し、 内部電極となるべき導電性ペースト膜を形成した。  Next, a conductive paste containing nickel as a conductive component was screen-printed on the ceramic green sheet to form a conductive paste film to be an internal electrode.
次いで、 導電性ペースト膜が引き出されている側が互い違いとなるように、 導電性 ペースト膜が形成されたセラミックグリーンシ一トを含む複数のセラミックグリーン シートを積層し、 生の積層体を得た。  Next, a plurality of ceramic green sheets including a ceramic green sheet on which the conductive paste film was formed were laminated so that the side from which the conductive paste film was drawn out was alternated, to obtain a raw laminate.
次に、 生の積層体を、 窒素雰囲気中において 350°Cの温度に加熱し、 バインダを 燃焼させた後、 酸素分圧 10一1。 MPaの H2 — N2 — H2 Oガスからなる還元性 雰囲気中において、 1 200°Cの温度で 2時間焼成し、 焼結した積層体を得た。 Next, the green laminate was heated to a temperature of 350 ° C in a nitrogen atmosphere, after burning a binder, oxygen partial pressure 10 one 1. MPa of H 2 - N 2 - in a reducing atmosphere consisting of the H 2 O gas, calcined for 2 hours at a temperature of 1 200 ° C, to obtain a laminate formed by sintering.
次いで、 積層体の両端面上に、 B2 03 -L i 2 O-S i 02 — BaO系ガラス フリツトを含有するとともに銅を導電成分とする導電性ペーストを塗布し、 窒素雰囲 気中において 700°Cの温度で焼き付け、 内部電極と電気的に接続された外部電極を 形成した。 Then, on both end surfaces of the laminate, B 2 0 3 -L i 2 OS i 0 2 - Copper applying a conductive paste to a conductive component with containing BaO based glass Furitsuto in a nitrogen Kiri囲air Baking was performed at a temperature of 700 ° C. to form external electrodes that were electrically connected to the internal electrodes.
このようにして得られた積層セラミックコンデンサの外形寸法は、 幅 1. 6mm、 長さ 3. 2 mmおよび厚さ 1· 2 mmであり、 内部電極間に介在する誘電体セラミツ ク層の厚みは、 1. 5 Umであった。 また、 有効誘電体セラミック層の数は 100で あり、 1層あたりの対向電極面積は 2. 1 mm2 であった。 The external dimensions of the multilayer ceramic capacitor thus obtained are 1.6 mm in width, 3.2 mm in length and 1.2 mm in thickness, and the thickness of the dielectric ceramic layer interposed between the internal electrodes is Was 1.5 Um. The number of effective dielectric ceramic layers was 100, and the counter electrode area per layer was 2.1 mm 2 .
(比較例 1 -1)  (Comparative Example 1-1)
比較例 1— 1は、 実施例 1と同じ組成を有するが、 100モルの ( B a 0. 98 C a 0. 02) (丁 i 0. 98Z r o 02) 03 に、 1. 0モルの Y2 03 、 2. 0モルの S i 02 、 0. 5モルの MgOおよび 0. 5モルの Mn 02 を一度に混合することによって、 誘 電体セラミックの原料粉末となる混合粉末を得た。 Comparative Example 1 1 Example 1 has the same composition as, for 100 moles (B a 0. 98 C a 0. 02) ( Ding i 0. 98 Z ro 02) 0 3, 1. 0 mol of Y 2 0 3, 2. 0 moles of S i 0 2, by mixing 0.5 moles of MgO and 0.5 mol of Mn 0 2 at a time, mixed powder which is a raw material powder of Yuden ceramic Got.
その後、 この混合粉末を用いて、 実施例 1の場合と同様の操作を経て、 積層セラミ ックコンデンサを作製した。  Thereafter, using the mixed powder, a multilayer ceramic capacitor was produced through the same operation as in Example 1.
(比較例 1— 2)  (Comparative Example 1-2)
比較例 1—2は、 実施例 1と同じ組成を有するが、 実施例 1における添加成分とし ての Y03/2 — S i 02 系の反応物に代えて、 Y2 03 と S i 02 とを 1 : 2のモ ル比となるように秤量した後、ポールミルによリ混合し、 1 500°Cの温度で溶融し、 次いで、 この溶融物を水中に投入して、 ガラスカレットを作製し、 このガラス力レツ 卜を粉砕して得られたものを添加成分として用いたことを除いて、 実施例 1の場合と 同様に、 誘電体セラミックの原料粉末となる混合粉末を得、 かつ、 積層セラミックコ ンデンサを作製した。 Comparative Example 1-2 has the same composition as in Example 1, Y0 3/2 of the added component in Example 1 - instead of S i 0 2 based reactants, Y 2 0 3 and S i After 0 and 2 were weighed so as to have a molar ratio of 1: 2, they were mixed by a pole mill and melted at a temperature of 1500 ° C. Next, the melt was poured into water to produce a glass cullet, and the same procedure as in Example 1 was carried out, except that a material obtained by pulverizing the vitreous pallet was used as an additional component. Then, a mixed powder to be used as a raw material powder of the dielectric ceramic was obtained, and a multilayer ceramic capacitor was produced.
なお、 比較例 1 - 2において用いた上述の添加成分は、 X R Dにより、 結晶性では ないことが確認された。  In addition, it was confirmed by XRD that the above-mentioned additive components used in Comparative Examples 1-2 were not crystalline.
(実施例 2)  (Example 2)
実施例 2は、 AB03 として、 Ba (T i 0.85Z r 0. 15) 03 を用い、 添加成分 として、 Gd2 03 、 MgO、 Mn02 および S ί 02 を用いたものである。 Example 2, as AB0 3, using Ba (T i 0. 85 Z r 0. 15) 0 3, as an additive component, one using the Gd 2 0 3, MgO, Mn0 2 and S ί 0 2 is there.
まず、主成分の出発原料として、 Ba C03 、 T i 02 および Z r 02 を準備し、 これらを、 Ba (T i ο. 85Ζ r ο. 15) 03 の組成になるように秤量し、 次いで、 こ れらをポールミルにより混合し、 1 150°Cの温度で熱処理することによって、 Ba (T i o. 85Z r o. 15) 03 を合成し、 これを粉砕した。 First, as starting materials of the main component, Ba C0 3, T i 0 2 and Z r 0 2 was prepared, and these, Ba (T i ο. 85 Ζ r ο. 15) so that 0 3 composition weighed, then these were mixed by ball mill, by heat treatment at a temperature of 1 150 ° C, Ba (T i o. 85 Z r o. 15) 0 3 was synthesized and grinding it.
他方、 添加成分として、 Gd2 03 、 S i 02 および Mn02 を、 0. 5 : 1 : 1のモル比になるように秤量し、 次いで、 これらをポールミルにより混合し、 100 0°Cの温度で熱処理することによって、 Gd03/2 -S i 02 -Mn02 系の反応 物を得た。 On the other hand, as an additive component, the Gd 2 0 3, S i 0 2 and Mn0 2, 0. 5: 1: were weighed so as to 1 molar ratio, then these were mixed by ball mill, 100 0 ° C by heat treatment at the temperature to obtain a Gd0 3/2 -S i 0 2 -Mn0 2 based reaction product.
次に、 100モルの B a (T i o 85Z r o 15) 03 と、 1. 0モルの G d 03/2 - S i 02 -Mn 02 系反応物と、 10モルの MgOと、 7. 5モルの Gd2 03 と を混合することによって、 誘電体セラミックの原料粉末となる混合粉末を得た。 その後、 この混合粉末を用いて、 実施例 1の場合と同様の操作を経て、 積層セラミ ックコンデンサを作製した。 Then, 100 moles of B a (T io 85 Z ro 15) 0 3, 1.0 mole of G d 0 3/2 - and S i 0 2 -Mn 0 2 based reaction products, and 10 moles of MgO , by mixing a Gd 2 0 3 of 7.5 mol to obtain a mixed powder as a raw material powder of the dielectric ceramic. Thereafter, using the mixed powder, a multilayer ceramic capacitor was produced through the same operation as in Example 1.
(比較例 2)  (Comparative Example 2)
比較例 2は、 実施例 2と同じ組成を有するものであリ、 100モルの B a ( Τ ί 0. 85 Z r o 15) 03 に、 8モルの Gd2 03 、 1. 0モルの S i 02 、 1 Oモルの M gOおよび 1. 0モルの Mn02 を一度に混合することによって、誘電体セラミック の原料粉末となる混合粉末を得た。 Comparative Example 2 is an having the same composition as in Example 2, 100 moles of B a in (Τ ί 0. 85 Z ro 15) 0 3, 8 moles of Gd 2 0 3, 1. 0 mol by mixing S i 0 2, 1 O mole of M gO and 1.0 mole of Mn0 2 at a time, to obtain a mixed powder as a raw material powder of the dielectric ceramic.
その後、 この混合粉末を用いて、 実施例 1の場合と同様の操作を経て、 積層セラミ ックコンデンサを作製した。  Thereafter, using the mixed powder, a multilayer ceramic capacitor was produced through the same operation as in Example 1.
(評価)  (Evaluation)
このようにして得られた実施例 1および 2ならびに比較例 1ー1、 1一 2および 2 に係る積層セラミックコンデンサについて、 次のような評価を行なった。  The multilayer ceramic capacitors according to Examples 1 and 2 and Comparative Examples 1-1, 1-2 and 2 obtained as described above were evaluated as follows.
まず、 積層セラミックコンデンザに備える誘電体セラミック層を構成するセラミッ クの構造を、 WDX (Wavelength Dispersive X-ray spectrometry) および T EM (Transmi ss i on El ectron Microscope) — E D X (Energy Di spers ive Z-ray Spectrometry) を用いて観察および分析し、 希土類元素と S iとを含む化合物の存在 の有無を確認した。 また、 この化合物の存在が確認された試料については、 T E Mの 電子線回折および X R D (X-ray Diffractometry) により、 希土類元素と S iとを含 む化合物が結晶性を有しているものであるかどうかを確認した。 First, the ceramic structure that constitutes the dielectric ceramic layers included in the multilayer ceramic condenser is described by WDX (Wavelength Dispersive X-ray spectrometry) and TEM. (Transmissive Electron Microscope) — Observed and analyzed using EDX (Energy Dispersive Z-ray Spectrometry) to confirm the presence or absence of a compound containing a rare earth element and Si. In the sample in which the presence of this compound was confirmed, the compound containing the rare earth element and Si had crystallinity by electron beam diffraction of TEM and XRD (X-ray Diffractometry). Checked whether.
また、 各試料に係る積層セラミックコンデンザに備える誘電体セラミック層の室温 ( 2 5 °C) での誘電率を、 1 k H zおよび 1 V r ms の条件下で測定した。 In addition, the dielectric constant of the dielectric ceramic layer included in the multilayer ceramic condenser according to each sample at room temperature (25 ° C.) was measured under the conditions of 1 kHz and 1 V rms .
また、 温度変化に対する静電容量の変化率を求めた。 この温度変化に対する静電容 量の変化率については、 2 0°Cでの静電容量を基準とした一 2 5 °Cでの変化率および 8 5 °Cでの変化率と、 2 5 °Cでの静電容量を基準とした一 5 5 °Cでの変化率おょぴ 1 2 5 °Cでの変化率とを評価した。 、  In addition, the change rate of the capacitance with respect to the temperature change was obtained. The rate of change of capacitance with respect to this temperature change is as follows: the rate of change at 125 ° C and the rate of change at 85 ° C with respect to the capacitance at 20 ° C, and the rate of change at 25 ° C. The rate of change at 125 ° C. and the rate of change at 125 ° C. were evaluated with reference to the capacitance at the time. ,
また、 高温負荷試験を実施した。 高温負荷試験は、 1 0 0個の試料について、 温度 1 2 5°Cにおいて、 電界強度が 8 k V/mmになるように 1 2 Vの電圧を印加して、 その絶縁抵抗の経時変化を求め、 絶縁抵抗値が 1 0 0 0時間経過するまでに 2 0 0 k Ω以下になった試料を不良と判定し、不良となった試料数を求めた。  A high-temperature load test was also performed. In the high-temperature load test, a voltage of 12 V was applied to 100 samples at a temperature of 125 ° C so that the electric field strength became 8 kV / mm, and the change in the insulation resistance over time was measured. Samples having an insulation resistance value of 200 kΩ or less before the elapse of 1000 hours were determined to be defective, and the number of defective samples was determined.
また、 耐湿高温負荷試験を実施した。 耐湿高温負荷試験は、 1 0 0個の試料につい て、温度 8 5°Cおよび湿度 9 5 %において、 電界強度が 4 k VZmmになるように 6 Vの電圧を印加して、 その絶縁抵抗の経時変化を求め、 $色縁抵抗値が 1 0 0 0時間経 過するまでに 2 0 0 k Ω以下になった試料を不良と判定し、 不良となった試料数を求 めた。  In addition, a humidity and high temperature load test was performed. In the humidity resistance high temperature load test, a voltage of 6 V was applied to 100 samples at a temperature of 85 ° C and a humidity of 95% so that the electric field strength was 4 kVZmm. The time-dependent change was determined, and samples in which the $ color fringing resistance value was less than 200 kΩ before the elapse of 1000 hours were determined to be defective, and the number of defective samples was determined.
以上の評価結果が表 1に示されている。  The above evaluation results are shown in Table 1.
表 1  table 1
Figure imgf000014_0001
Figure imgf000014_0001
* 1—G d単独の化合物あり  * 1—G d single compound available
表 1に示すように、 実施例 1および 2においては、 誘電体セラミック層を構成する 誘電体セラミック中に、 希土類元素と S iとを含む化合物の存在が確認され、 より具 体的には、 実施例 1では、 Y— S ί— Oからなる結晶性の化合物の存在が確認され、 実施例 2では、 G d—S i—M n—Oからなる結晶性の化合物の存在が確認された。 また、 実施例 1および 2によれば、 その容量温度特性について、 J I S規格の B特性 および E I A規格の X 7 R特性を満足し、 また、 高温負荷試験において信頼性が良好 であることがわかった。 As shown in Table 1, in Examples 1 and 2, the presence of a compound containing a rare earth element and Si was confirmed in the dielectric ceramic constituting the dielectric ceramic layer, and more specifically, In Example 1, the presence of a crystalline compound consisting of Y—Sί—O was confirmed, and in Example 2, the presence of a crystalline compound consisting of G d—S i—M n—O was confirmed. . Further, according to Examples 1 and 2, it was found that the capacitance-temperature characteristics satisfied the B characteristics of the JIS standard and the X7R characteristics of the EIA standard, and that the reliability was good in the high-temperature load test. .
これに対して、 比較例 1—1では、 実施例 1の場合とは異なり、 誘電体セラミック 層を構成する誘電体セラミック中に Yと S iとを含む化合物の存在が確認されず、 こ れら丫および S ίは主成分中に固溶していることが確認された。 そのため、 比較例 1 一 1によれば、 実施例 1に比べて、 容量温度特性が劣っていた。  On the other hand, in Comparative Example 1-1, unlike the case of Example 1, the presence of a compound containing Y and Si was not confirmed in the dielectric ceramic constituting the dielectric ceramic layer. It was confirmed that Ra 丫 and Sί were dissolved in the main component. Therefore, according to Comparative Examples 11 and 11, the capacitance-temperature characteristics were inferior to Example 1.
また、 比較例 1—2では、 実施例 1の場合とは異なり、 誘電体セラミック層を構成 する誘電体セラミック中に Υと S iとを含む化合物の存在が確認されなかった。 これ は、 ガラスとなった添加成分は、 実施例 1で見られた結晶性添加成分とは異なり、 主 成分との反応が進みやすいためであると推測される。 そのため、 後述する比較例 2の 場合と同様、 比較例 1一 2では、 実施例 1に比べて、 容量温度特性が劣っていた。 ま た、 比較例 1一 2では、 耐湿高温負荷試験において、 不良が発生した。 これは、 一般 的にガラスは耐湿性が低く、 比較例 1—2では、 添加成分をガラスとして添加してい るためであると考えられる。  In Comparative Example 1-2, unlike Example 1, the presence of a compound containing 含 む and Si in the dielectric ceramic constituting the dielectric ceramic layer was not confirmed. This is presumed to be because the glass-added component is different from the crystalline additive component observed in Example 1 in that the reaction with the main component proceeds easily. Therefore, as in the case of Comparative Example 2 to be described later, Comparative Examples 1-2 were inferior in the capacitance-temperature characteristics as compared with Example 1. Further, in Comparative Examples 1-2, a failure occurred in the humidity resistance and high temperature load test. This is considered to be because the glass generally has low moisture resistance, and in Comparative Example 1-2, the additive component was added as glass.
また、 比較例 2では、 実施例 2の場合とは異なり、 誘電体セラミック層を構成する 誘電体セラミック中に Gdと S i とを含む化合物の存在が確認されず、 Gd単独の化 合物が存在しているだけであった。 なお、 比較例 2では、 Gd単独の化合物が存在し ているため、 容量温度特性については比較的良好であつたが、 実施例 2に比べ、 高温 負荷試験による信頼性が劣っていた。  Further, in Comparative Example 2, unlike in Example 2, the presence of a compound containing Gd and Si in the dielectric ceramic constituting the dielectric ceramic layer was not confirmed, and the compound of Gd alone was not found. It just existed. In Comparative Example 2, since the compound of Gd alone was present, the capacity-temperature characteristics were relatively good, but the reliability in the high-temperature load test was inferior to Example 2.
(実施例 3)  (Example 3)
希土類元素として Y2 03の代わりに La203を用い、 La03/2 — S i 02 系の 反応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積 層セラミックコンデンサを作製した。 Using La 2 0 3 instead of Y 2 0 3 as the rare earth element, La0 3/2 - except using S i 0 2 based reactants are using the same raw material composition as Example 1, a similar Through the operation, a multilayer ceramic capacitor was manufactured.
(実施例 4)  (Example 4)
希土類元素として Y2 03の代わりに Ce02を用い、 Ce02 — S i 02 系の反 応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積層 セラミックコンデンサを作製した。 Using CeO 2 instead of Y 2 0 3 as the rare earth element, CeO 2 - except for using anti Applied Physics of S i 0 2 system, using the same raw material composition as Example 1, through a similar operation, A multilayer ceramic capacitor was manufactured.
(実施例 5)  (Example 5)
希土類元素として Y2 03の代わりに P r を用い、 P r 011/6 — S i 02 系 の反応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積層セラミックコンデンサを作製した。 Using P r instead of Y 2 0 3 as the rare earth element, P r 0 11/6 - except using S i 0 2 based reactants are using the same raw material composition as Example 1, a similar Through the operation, a multilayer ceramic capacitor was manufactured.
(実施例 6)  (Example 6)
希土類元素として Υ2 03の代わりに Nd203を用し、、 Nd03/2 — S i 02 系の 反応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積 層セラミックコンデンサを作製した。 Instead of Upsilon 2 0 3 as the rare earth element to use a Nd 2 0 3 ,, Nd0 3/2 - S i 0 2 system A multilayer ceramic capacitor was produced using the same raw material composition as in Example 1 except that the reactant was used and through the same operation.
(実施例 7)  (Example 7)
希土類元素として Y2 03の代わりに Sm2Osを用い、 Sm03/2 — S i 02 系の 反応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積 層セラミックコンデンサを作製した。 Using Sm 2 O s in place of Y 2 0 3 as the rare earth element, Sm0 3/2 - except using S i 0 2 based reactants are using the same raw material composition as Example 1, a similar Through the operation, a multilayer ceramic capacitor was manufactured.
(実施例 8)  (Example 8)
希土類元素として Y2 03の代わりに E u203を用い、 Eu03/2 — S i 02 系の 反応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積 層セラミックコンデンサを作製した。 Using E u 2 0 3 instead of Y 2 0 3 as the rare earth element, Eu0 3/2 - except using S i 0 2 based reactants are using the same raw material composition as Example 1, the same Through these operations, a multilayer ceramic capacitor was manufactured.
(実施例 9)  (Example 9)
希土類元素として Y2 03の代わりに Gd203を用い、 Gd03/2 — S i 02 系の 反応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積 層セラミックコンデンサを作製した。 Using Gd 2 0 3 instead of Y 2 0 3 as the rare earth element, GD0 3/2 - except using S i 0 2 based reactants are using the same raw material composition as Example 1, a similar Through the operation, a multilayer ceramic capacitor was manufactured.
(実施例 10)  (Example 10)
希土類元素として Y2 03の代わりに T b407を用い、 T b07/4 — S i 02 系の 反応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積 層セラミックコンデンサを作製した。 Using T b 4 0 7 instead of Y 2 0 3 as the rare earth element, T b0 7/4 - except using S i 0 2 based reactants are using the same raw material composition as Example 1, Through the same operation, a multilayer ceramic capacitor was manufactured.
(実施例 1 1)  (Example 11)
希土類元素として Y2 03の代わりに Dy203を用い、 Dy03/2 — S i 02 系の 反応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積 層セラミックコンデンサを作製した。 Using Dy 2 0 3 instead of Y 2 0 3 as the rare earth element, Dy0 3/2 - except using S i 0 2 based reactants are using the same raw material composition as Example 1, a similar Through the operation, a multilayer ceramic capacitor was manufactured.
(実施例 12)  (Example 12)
希土類元素として Y2 03の代わりに Η ο203を用い、 Ηο03/2 — S i 02 系の 反応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積 層セラミックコンデンサを作製した。 Y 2 0 3 with Eta o 2 0 3 instead of as a rare earth element, Ηο0 3/2 - except using S i 0 2 based reactants are using the same raw material composition as Example 1, the same Through these operations, a multilayer ceramic capacitor was manufactured.
(実施例 13)  (Example 13)
希土類元素として Y2 03の代わりに E r 203を用い、 E r 03/2 一 S i 02 系の 反応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積 層セラミックコンデンサを作製した。 Y 2 0 3 instead using E r 2 0 3 to the rare earth elements, except for using E r 0 3/2 one S i 0 2 based reactants, using the same raw material composition as Example 1 Through the same operation, a multilayer ceramic capacitor was manufactured.
(実施例 14)  (Example 14)
希土類元素として Y 2 03の代わりに Tm203を用い、 Tm03/2 — S ί 02 系の 反応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積 層セラミックコンデンサを作製した。 lb Using Tm 2 0 3 instead of Y 2 0 3 as the rare earth element, Tm0 3/2 - except using S ί 0 2 based reactants are using the same raw material composition as Example 1, a similar Through the operation, a multilayer ceramic capacitor was manufactured. lb
(実施例 15) (Example 15)
希土類元素として Y2 03の代わりに Y b203を用い、 Y b03/2 -S i 02 系の 反応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積 層セラミックコンデンサを作製した。 Using Y b 2 0 3 instead of Y 2 0 3 as the rare earth element, except for using the Y b0 3/2 -S i 0 2 based reactants are using the same raw material composition as Example 1, Through the same operation, a multilayer ceramic capacitor was manufactured.
(実施例 16)  (Example 16)
希土類元素として Y2 03の代わりに Lu203を用い、 Lu03/2 -S ί 02 系の 反応物を用いた以外は、 実施例 1と同様の原料組成物を用い、 同様の操作を経て、 積 層セラミックコンデンサを作製した。 Using Lu 2 0 3 instead of Y 2 0 3 as the rare earth element, except for using Lu0 3/2 -S ί 0 2 based reactants, using the same raw material composition as Example 1, a similar Through the operation, a multilayer ceramic capacitor was manufactured.
以上、 実施例 3 1 6において得られた積層セラミックコンデンサを、 実施例 1と 同様にして評価した。 その評価結果を下記表 2に示す。  As described above, the multilayer ceramic capacitor obtained in Example 316 was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2 below.
表 2 Table 2
Figure imgf000017_0001
Figure imgf000017_0001
表 2に示すように、 希土類元素として丫の代わりに、 上述した他の希土類元素を用 いても、 ほぼ同じ特性が得られた。  As shown in Table 2, almost the same characteristics were obtained when the above-mentioned other rare earth elements were used instead of 丫 as the rare earth element.
(実施例 17)  (Example 17)
100モルの (Ba0.98Ca02) (T i 0.98 Z r 02) 03 と、 2. 0モルの Y03/2 -S i 02 系の反応物と、 0. 5モルの MgOと、 0. 5モルの Mn02 と を混合した混合粉末 (誘電体セラミックの原料粉末) の代わりに、 1 00モルの B a T i 03と、 2. 2モルの Y— S i -Mg-O (Y203: S i 02 : MgO= 1 : 2 : 1) 系複合化合物と、 0. 2モルの N i Oと、 0. 1モルの C r 203と、 を混合し た混合粉末を用いた以外は、 施例 1と同様の操作を経て、 積層セラミックコンデン サを作製した。 100 moles of (Ba 0. 98 Ca 0. 2) and (T i 0. 98 Z r 0. 2) 0 3, and a reaction product of Y0 3/2 -S i 0 2 system 2.0 mol, 0 . and 5 moles of MgO, instead of 0.5 moles mixed powder of the Mn0 2 of (raw material powder of the dielectric ceramic), and 1 00 moles of B a T i 0 3, 2. 2 moles of Y - S i -Mg-O (Y 2 0 3: S i 0 2: MgO = 1: 2: 1) and the composite compound, 0.1 and 2 moles of N i O, and 0.1 mole of C r 203 A multilayer ceramic capacitor was produced through the same operation as in Example 1 except that a mixed powder of and was used.
(実施例 18) 100モルの (Ba0 g8Ca02) (T ί 0 98 Z r 0.。2) 03 と、 2. 0モルの Y03/2一 S i 02 系の反応物と、 0. 5モルの MgOと、 0. 5モルの Mn02 と、 を混合した混合粉末 (誘電体セラミックの原料粉末) の代わりに、 100モルの (B a 0. 98s r 0. 02) 丁 i〇3と、 1■ 8モルの Y— S i -N i— O (Y203 : S i 02 : N i 0= 1 : 1 : 1 ) 系複合化合物と、 0. 3モルの Dy203と、 0. 5モルの Cu Oと、 0. 1モルの A I 203と、 0. 02モルの B203と、 0. 1モルの S i 02と、 を混合した混合粉末を用いた以外は、 実施例 1と同様の操作を経て、 積層セラミック コンデンサを作製した。 (Example 18) 100 moles of (Ba 0 g8 Ca 0. 2 ) and (T ί 0 98 Z r 0 .. 2) 0 3, and a reaction product of Y0 3/2 one S i 0 2 system 2.0 mol, 0. 5 mole of MgO, and 0.5 mole of Mn0 2, in place of the powder mixture obtained by mixing (raw material powder of the dielectric ceramic), 100 moles (B a 0. 98 sr 0. 02 ) Ding I_rei_3 When, 1 ■ 8 mol Y- S i -N i- O (Y 2 0 3: S i 0 2: N i 0 = 1: 1: 1) and the composite compound, 0.3 mol of Dy 2 0 and 3, 0.5 and 5 moles of Cu O, and 0.1 mole of AI 2 0 3, and 0.02 mole of B 2 0 3, 0.1 to 1 mole mixture powder mixed with S i 0 2, the A multilayer ceramic capacitor was produced through the same operation as in Example 1 except that the above was used.
(実施例 19)  (Example 19)
100モルの (Ba0 g8Ca02) (T i 0 98 Z r 0.。2) 03 と、 2· 0モルの Υ03/2 一 S ί 02 系の反応物と、 0. 5モルの MgOと、 0. 5モルの Mn02 と、 を混合した混合粉末 (誘電体セラミックの原料粉末) の代わりに、 100モルの (B a 0 98 C a 0 02) T i 03と、 1 · 5モレの Υ— S i― F e— O (Y203 : S i 02 : F e2Os= 1 : 3 : 0. 5) 系複合化合物と、 0· 4モルの Ηο203、 0. 3モルの Μη02と、 0. 5モルの CuOと、 を混合した混合粉末を用いた以外は、 実施例 1 と同様の操作を経て、 積層セラミックコンデンサを作製した。 100 moles of (Ba 0 g8 Ca 0. 2) and (T i 0 98 Z r 0 .. 2) 0 3, and a reaction product of Upushiron0 3/2 one S I 0 2 system 2 2.0 moles, zero. 5 mole of MgO, and 0.5 mole of Mn0 2, and instead, the 100 moles (B a 0 98 C a 0 02) T i 0 3 powder mix prepared by mixing (raw material powder of the dielectric ceramic) , of 1-5 molecular Υ- S i- F e- O (Y 2 0 3: S i 0 2: F e 2 O s = 1: 3: 0. 5) and composite compounds, 0 - 4 moles of Ηο 2 0 3, and 0.3 moles of Μη0 2, 0. and 5 moles of CuO, except that a mixed powder obtained by mixing, through the same operation as in example 1 to prepare a multilayer ceramic capacitor.
(実施例 20)  (Example 20)
100モルの (Ba 0 98 Ca02) (T i 0 98 Z r 0.02) 03 と、 2. 0モルの Y03/2一 S i 02 系の反応物と、 0· 5モルの MgOと、 0. 5モルの Mn02 と、 を混合した混合粉末 (誘電体セラミックの原料粉末) の代わりに、 100モルの B a100 moles of (Ba 0 98 Ca 0. 2 ) and (T i 0 98 Z r 0 . 02) 0 3, and a reaction product of Y0 3/2 one S i 0 2 system 2.0 mol, 0 - 5 Mole of MgO, 0.5 mole of MnO 2, and 100 moles of Ba instead of mixed powder (raw powder of dielectric ceramic)
(T i 0 95 H f 0.。5) 03と、 2. 4モルの Y— S i -C u-O (Y203: S i 02 : CuO=1 : 1 : 0. 5) 系複合化合物と、 0. 2モルの Mn02と、 0· 1モルの Fe203と、 0. 1モルの S i 02と、 を混合した混合粉末を用いた以外は、 実施例 1と同様の操作を経て、 積層セラミックコンデンサを作製した。 (T i 0 95 H f 0 .. 5) 0 3 and, 2.4 moles of Y- S i -C uO (Y 2 0 3: S i 0 2: CuO = 1: 1: 0. 5) system a composite compound, and Mn0 2 of 0.2 mol, and 0/1 mole of Fe 2 0 3, and 0.1 mole of S i 0 2, except for using a mixed powder obtained by mixing, as in example 1 Through the same operation, a multilayer ceramic capacitor was manufactured.
(実施例 21 )  (Example 21)
100モルの (Ba0.98Ca02) (T i 0 98 Z r 0.02) 03 と、 2. 0モルの Y03/2一 S i 02 系の反応物と、 0. 5モルの MgOと、 0. 5モルの Mn02 と を混合した混合粉末 (誘電体セラミックの原料粉末) の代わりに、 100モルの B a 0. 99S r o. 01) (丁 i o. 99Z r o 01) 03と、 1 · 7モルの Y— S i— A I—O (Y 203 : S i 02 : A I 203=1 : 3 : 1 ) 系複合化合物と、 0· 2モルの Υ b203と、 0. 3モルの N i Oと、 を混合した混合粉末を用いた以外は、 実施例 1と同様の操作 を経て、 積層セラミックコンデンサを作製した。 100 moles of (Ba 0. 98 Ca 0. 2) and (T i 0 98 Z r 0 . 02) 0 3, and a reaction product of Y0 3/2 one S i 0 2 system 2.0 mol, 0. 5 mole of MgO, instead of 0.5 moles mixed powder of the Mn0 2 of (raw material powder of the dielectric ceramic), 100 moles of B a 0. 99 S r o. 01) ( Ding i o. 99 Z ro 01) 0 3 and, 1-7 moles of Y- S i- AI-O (Y 2 0 3: S i 0 2: AI 2 0 3 = 1: 3: 1) composite and compound, 0 - with two moles of Upsilon b 2 0 3, and N i O of 0.3 moles, except that a mixed powder obtained by mixing, through the same operation as in example 1 to prepare a multilayer ceramic capacitor.
(実施例 22)  (Example 22)
100モルの (Ba0.98Ca 0 02) (T i 0.98Z r 0.02) 03 と、 2. 0モルの Y03/2 -S i 02 系の反応物と、 0. 5モルの MgOと、 0. 5モルの Mn02 と、 を混合した混合粉末 (誘電体セラミックの原料粉末) の代わりに、 100モルの Ba T i 03と、 2. 6モルの Y— S i -C r -O (Y203: S i 02 : C r 2Og= 1 : 0. 5 : 0. 5) 系複合化合物と、 0· 05モルの Lu203と、 O. 2モルの S i 02と、 を混合した混合粉末を用いた以外は、 実施例 1と同様の操作を経て、 積層セラミック コンデンサを作製した。 100 moles of (Ba 0. 98 Ca 0 02 ) (T i 0. 98 Z r 0. 02) 0 3, 2.0 mole of And Y0 3/2 -S i 0 2 based reactants, 0.5 and 5 moles of MgO, and 0.5 mole of Mn0 2, in place of the powder mixture obtained by mixing (raw material powder of the dielectric ceramic), 100 and Ba T i 0 3 molar, 2. 6 moles Y- S i -C r -O (Y 2 0 3: S i 0 2: C r 2 O g = 1: 0. 5: 0. 5) a system complex compound, and 0-05 mol of Lu 2 0 3, and O. 2 moles of S i 0 2, except for using a mixed powder obtained by mixing, through the same operation as in example 1, a multilayer ceramic A capacitor was manufactured.
以上、 実施例 17~22において得られた積層セラミックコンデンサを、 実施例 1 と同様にして評価した。 その評価結果を下記表 3に示す。  As described above, the multilayer ceramic capacitors obtained in Examples 17 to 22 were evaluated in the same manner as in Example 1. The evaluation results are shown in Table 3 below.
表 3 Table 3
Figure imgf000019_0001
Figure imgf000019_0001
表 3に示すように、 希土類元素と S i とを含み、 結晶性を有する複合化合物は、 さ らに、 Μη、 Ν ί、 Fe、 Cu、 Aし C r等の元素 (ァクセプター元素) を含んで いてもよい。  As shown in Table 3, the composite compound containing a rare earth element and Si and having crystallinity further includes elements (acceptor elements) such as Μη, Ν A, Fe, Cu, A, and Cr. It may be.
(実施例 23)  (Example 23)
100モルの (Ba 0 98 Ca 0 02) (T i 0 98 Z r 0 02) 03 と、 2. 0モルの Y03/2 -S i 02 系の反応物と、 0. 5モルの MgOと、 0. 5モルの Mn02 と を混合した混合粉末 (誘電体セラミックの原料粉末) の代わりに、 100モルの Ba (T i o 8Z r o 2) 03と、 25モノレの G d -Sm— S i— O (G d 203 : Sm203: S i 02= 1 : 0. 15 : 0. 1 ) 系の複合化合物と、 1 1モルの MgOと、 1. 5 モルの Mn02と、 を混合した混合粉末を用いた以外は、 実施例 1と同様の操作を経 て、 積層セラミックコンデンサを作製した。 100 mol and (Ba 0 98 Ca 0 02) (T i 0 98 Z r 0 02) 0 3, 2. a reaction product of 0 mole Y0 3/2 -S i 0 2 system, 0.5 moles of and MgO, and instead, 100 moles of Ba (T io 8 Z ro 2 ) 0 3 of 0.5 mol mixed powder of the Mn0 2 of (raw material powder of the dielectric ceramic), 25 Monore of G d - Sm- S i- O (G d 2 0 3: Sm 2 0 3: S i 0 2 = 1: 0. 15: 0. 1) and the complex compounds based, and 1 mole of MgO, 1. 5 mol A multilayer ceramic capacitor was produced through the same operation as in Example 1 except that a mixed powder obtained by mixing MnO 2 and was used.
以上、 実施例 23において得られた積層セラミックコンデンサを、 実施例 1と同様 にして評価した。 その評価結果を下記表 4に示す。  As described above, the multilayer ceramic capacitor obtained in Example 23 was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 4 below.
表 4
Figure imgf000019_0002
Table 4
Figure imgf000019_0002
表 4に示すように、 複合化合物の含有量が、 主成分 100モルに対して 25モルで あっても、 十分な特性が得られる。 As shown in Table 4, the content of the composite compound was 25 mol per 100 mol of the main component. Even so, sufficient characteristics can be obtained.
以上のように、 本実施例に係る誘電体セラミックによれば、 その焼結後のセラミツ ク体中に、 A B 03 を主とする主相とは別に、 希土類元素および S iが、 これら希土 類元素および S iを含む複合化合物相 (副相) として存在し、 かつ、 この複合化合物 相はその少なくとも一部において結晶性を有しているので、 これをもって積層セラミ ックコンデンザの誘電体セラミック層を構成した場合、 誘電体セラミック層を薄層化 しても、 薄層化したほどには誘電率の温度依存性が悪化せず、 また、 信頼性に優れた ものとなる。 As described above, according to the dielectric ceramic according to the present embodiment, its Seramitsu click member in after sintering, separately from the main phase composed mainly of AB 0 3, rare earth elements and S i is, these dilute It exists as a composite compound phase (subphase) containing an earth element and Si, and at least a part of the composite compound phase has crystallinity. In this case, even if the thickness of the dielectric ceramic layer is reduced, the temperature dependency of the dielectric constant does not deteriorate as much as the thickness is reduced, and the reliability is excellent.
したがって、 この誘電体セラミックをもって積層セラミックコンデンサの誘電体セ ラミック層を構成すれば、 良好な容量温度特性および信頼性を維持しながら、 誘電体 セラミック層の薄層化によって、 積層セラミックコンデンサの小型化かつ大容量化を 図ることができる。 特に、 この発明に係る誘電体セラミックによれば、 誘電体セラミ ック層の厚みを 0. 5 μ m程度にまで問題なく薄層化することができる。 産業上の利用可能性  Therefore, if this dielectric ceramic is used to form the dielectric ceramic layer of the multilayer ceramic capacitor, the multilayer ceramic capacitor can be miniaturized by thinning the dielectric ceramic layer while maintaining good capacitance temperature characteristics and reliability. In addition, the capacity can be increased. In particular, according to the dielectric ceramic according to the present invention, the thickness of the dielectric ceramic layer can be reduced to about 0.5 μm without any problem. Industrial applicability
以上のように、 本発明に係る誘電体セラミックは、 積層セラミックコンデンサの誘 電体セラミック層として有用であリ、特に、良好な容量温度特性および信頼性を有し、 小型かつ大容量の積層セラミックコンデンザの誘電体セラミック層に適している。  As described above, the dielectric ceramic according to the present invention is useful as a dielectric ceramic layer of a multilayer ceramic capacitor. In particular, the dielectric ceramic has good capacitance-temperature characteristics and reliability, and is small and large-capacity multilayer ceramic. Suitable for dielectric ceramic layers of capacitors.

Claims

請求の範囲 The scope of the claims
1. AB03 (Aは、 B a、 または B aならびにその一部が置換された C aおよび S rの少なくとも 1種であり、 Bは、 T し または T iならびにその一部が置換され た Z rおよび H f の少なくとも 1種である。 ) を主成分とし、 さらに希土類元素およ び S iを含む、 誘電体セラミックであって、 1. AB0 3 (A is, B a or B a and a portion thereof, is at least one C a and S r substituted, B is, T or T i and a part thereof is substituted Zr and Hf.) A dielectric ceramic comprising, as a main component, and further containing a rare earth element and Si,
前記希土類元素の少なくとも一部と前記 S iの少なくとも一部とは、 前記希土類元 素および前記 S iを含む、 前記主成分とは異なる複合化合物として存在し、 かつ前記 複合化合物は、 その少なくとも一部において結晶性を有していることを特徴とする、 誘電体セラミック。  At least a part of the rare earth element and at least a part of the Si are present as a composite compound different from the main component, including the rare earth element and the Si, and at least one of the composite compounds is A dielectric ceramic characterized by having crystallinity in a part.
2. Mn、 N i、 Fe、 Cu、 Mg、 A Iおよび C rの少なくとも 1種をさらに含 む、 請求項 1に記載の誘電体セラミック。 2. The dielectric ceramic according to claim 1, further comprising at least one of Mn, Ni, Fe, Cu, Mg, AI and Cr.
3. S i、 Bおよび L iの少なくとも 1種を含む焼結助剤をさらに含む、 請求項 1 または 2に記載の誘電体セラミック。 3. The dielectric ceramic according to claim 1, further comprising a sintering aid containing at least one of Si, B, and Li.
4. AB03 (Aは、 Ba、 または B aならびにその一部が置換された C aおよび S rの少なくとも 1種であり、 Bは、 Τ ί、 または Τ ίならびにその一部が置換され た Z rおよび H f の少なくとも 1種である。 ) を作製する工程と、 4. AB0 3 (A is at least one of Ba C a and S r to or B a and a part thereof is substituted,, B is T I or T I and a portion thereof, is replaced At least one of Zr and Hf).
少なくとも希土類元素と S i とを反応させ、 それによつて、 その一部において結晶 性を有する反応物を作製する工程と、  Reacting at least the rare earth element with S i, thereby producing a reactant having crystallinity in a part thereof;
前記 AB03 と前記反応物とを混合することによって、原料粉末を作製する工程と 前記原料粉末を焼成する工程と By mixing the reactants and the AB0 3, a step of firing the raw material powder and process for producing a raw material powder
を備える、 誘電体セラミックの製造方法。 A method for producing a dielectric ceramic, comprising:
5. 前記原料粉末を作製する工程は、 Mn、 N i、 Fe、 Cu、 Mg、 A Iおよび C rの少なくとも 1種を含む化合物、 S i、 Bおよび L iの少なくとも 1種を含む焼 結助剤、 ならびに希土類元素を含む化合物の少なくとも 1種をさらに混合する工程を 含む、 請求項 4に記載の誘電体セラミックの製造方法。 5. The step of producing the raw material powder includes a sintering aid containing at least one of Mn, Ni, Fe, Cu, Mg, a compound containing at least one of AI and Cr, and at least one of Si, B, and Li. The method for producing a dielectric ceramic according to claim 4, further comprising a step of further mixing at least one of an agent and a compound containing a rare earth element.
6. 複数の積層された誘電体セラミック層および前記誘電体セラミック層間の特定 の界面に沿って形成された内部電極を含む、 積層体と、 6. Identification of a plurality of stacked dielectric ceramic layers and the dielectric ceramic layers A laminate including internal electrodes formed along the interface of
前記内部電極の特定のものに電気的に接続されるように前記積層体の外表面上に形 成される外部電極とを備え、  An external electrode formed on an outer surface of the laminate so as to be electrically connected to a specific one of the internal electrodes.
前記誘電体セラミック層は、 請求項 1ないし 3のいずれかに記載の誘電体セラミツ クからなることを特徴とする、 積層セラミックコンデンサ。  A multilayer ceramic capacitor, wherein the dielectric ceramic layer is made of the dielectric ceramic according to any one of claims 1 to 3.
PCT/JP2003/013038 2002-10-17 2003-10-10 Dielectric ceramic and method for preparation thereof, and monolithic ceramic capacitor WO2004035503A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003271169A AU2003271169A1 (en) 2002-10-17 2003-10-10 Dielectric ceramic and method for preparation thereof, and monolithic ceramic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-302663 2002-10-17
JP2002302663 2002-10-17

Publications (1)

Publication Number Publication Date
WO2004035503A1 true WO2004035503A1 (en) 2004-04-29

Family

ID=32105049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013038 WO2004035503A1 (en) 2002-10-17 2003-10-10 Dielectric ceramic and method for preparation thereof, and monolithic ceramic capacitor

Country Status (3)

Country Link
AU (1) AU2003271169A1 (en)
TW (1) TWI235391B (en)
WO (1) WO2004035503A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342458C (en) * 2005-07-22 2007-10-10 张振中 Metal NiCr function thick-film electronic slurry
CN116003121A (en) * 2022-12-26 2023-04-25 深圳三环电子有限公司 Ceramic dielectric composition and chip type multilayer ceramic capacitor prepared from same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152017B2 (en) * 2009-01-30 2013-02-27 株式会社村田製作所 Dielectric ceramic and multilayer ceramic capacitors
JP7338963B2 (en) * 2018-03-06 2023-09-05 太陽誘電株式会社 Multilayer ceramic capacitors and ceramic raw material powders
US10957485B2 (en) 2018-03-06 2021-03-23 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor and ceramic material powder
CN113354410B (en) * 2021-06-01 2022-02-11 潮州三环(集团)股份有限公司 Ceramic material and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265260A (en) * 2001-03-07 2002-09-18 Kyocera Corp Dielectric ceramic and lamination type electronic part
JP2002293620A (en) * 2001-03-29 2002-10-09 Kyocera Corp Multilayer electronic part and production method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265260A (en) * 2001-03-07 2002-09-18 Kyocera Corp Dielectric ceramic and lamination type electronic part
JP2002293620A (en) * 2001-03-29 2002-10-09 Kyocera Corp Multilayer electronic part and production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100342458C (en) * 2005-07-22 2007-10-10 张振中 Metal NiCr function thick-film electronic slurry
CN116003121A (en) * 2022-12-26 2023-04-25 深圳三环电子有限公司 Ceramic dielectric composition and chip type multilayer ceramic capacitor prepared from same
CN116003121B (en) * 2022-12-26 2023-09-26 深圳三环电子有限公司 Ceramic dielectric composition and chip type multilayer ceramic capacitor prepared from same

Also Published As

Publication number Publication date
TW200423165A (en) 2004-11-01
TWI235391B (en) 2005-07-01
AU2003271169A1 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
JP4111006B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
KR100374470B1 (en) Ceramic capacitor and method for making the same
JP4110978B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP3282520B2 (en) Multilayer ceramic capacitors
JP3509710B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP3180681B2 (en) Multilayer ceramic capacitors
JP2004035388A (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using it, and its manufacturing method
JP3336967B2 (en) Multilayer ceramic capacitors
JP4457630B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP2002274936A (en) Dielectric ceramic, method of manufacturing the same, a method of evaluating the same and as laminated ceramic electronic part
JP2002164247A (en) Dielectric ceramic composition and layered ceramic capacitor
JP4480367B2 (en) Dielectric porcelain and its manufacturing method, and multilayer electronic component and its manufacturing method
JP4552419B2 (en) Dielectric ceramic and multilayer ceramic capacitors
EP1669334A1 (en) Electronic device, dielectric ceramic composition and production method of the same
JP2004214539A (en) Dielectric ceramic and laminated ceramic capacitor
US7239501B2 (en) Dielectric ceramic composition and laminated ceramic capacitor
JP3603607B2 (en) Dielectric ceramic, multilayer ceramic capacitor and method of manufacturing multilayer ceramic capacitor
US7265072B2 (en) Dielectric ceramic composition and electronic device
JP3945033B2 (en) Manufacturing method of multilayer ceramic capacitor
WO2004035503A1 (en) Dielectric ceramic and method for preparation thereof, and monolithic ceramic capacitor
JP2003142331A (en) Laminated ceramic electronic component
JP3064918B2 (en) Multilayer ceramic capacitors
JP4506090B2 (en) Dielectric ceramic and multilayer ceramic capacitors
JP3675076B2 (en) Multilayer ceramic capacitor
JP3675077B2 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase