WO2004021002A1 - Vorrichtung und methoden zur durchführung von elektrischen messungen an membrankörpern - Google Patents

Vorrichtung und methoden zur durchführung von elektrischen messungen an membrankörpern Download PDF

Info

Publication number
WO2004021002A1
WO2004021002A1 PCT/EP2003/008299 EP0308299W WO2004021002A1 WO 2004021002 A1 WO2004021002 A1 WO 2004021002A1 EP 0308299 W EP0308299 W EP 0308299W WO 2004021002 A1 WO2004021002 A1 WO 2004021002A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
electrical
cells
measuring arrangement
cell
Prior art date
Application number
PCT/EP2003/008299
Other languages
English (en)
French (fr)
Inventor
Christoph Methfessel
Frank Lison
Ingmar Dorn
Original Assignee
Bayer Technology Services Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Technology Services Gmbh filed Critical Bayer Technology Services Gmbh
Priority to US10/523,784 priority Critical patent/US20050227139A1/en
Priority to EP03790822A priority patent/EP1529215A1/de
Priority to CA002494927A priority patent/CA2494927A1/en
Priority to JP2004531823A priority patent/JP4498139B2/ja
Priority to AU2003253343A priority patent/AU2003253343B2/en
Publication of WO2004021002A1 publication Critical patent/WO2004021002A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48728Investigating individual cells, e.g. by patch clamp, voltage clamp

Definitions

  • the invention relates to devices and methods for the investigation of ion channels and receptors in membranes, in particular devices and methods for carrying out simultaneous electrophysiological measurements on a collective of biological cells using connexins or innexins.
  • the voltage clamp method was established as a precise and reliable method for determining the activity of ion channels and receptors in the membrane of living cells [1, 2].
  • the cell to be examined is pierced with two microelectrodes, i.e. pointed glass capillaries filled with saline.
  • An electrode measures the potential inside the cell, i.e. the electrical voltage dropping across the cell membrane.
  • the second electrode is used to generate an electrically regulated current flow through the cell membrane.
  • this current flow is regulated in such a way that the potential across the cell membrane remains constant (hence the name "voltage clamp").
  • the size of the current flowing through the membrane is then a direct and very precise and timely measure of the activity of the ion channels located in the cell membrane, which are activated directly or indirectly by receptors in the cell membrane.
  • the current is set to a fixed value, which is often zero, and the membrane voltage, which is now freely set, is measured (for which purpose only one microelectrode is required for a currentless measurement).
  • the value of the voltage reflects the activity of those in the cell Receptors and channels, this arrangement is not as meaningful and precise as the voltage clamp method, because the relationship between the activity of the receptors and the measured voltage signal in the current clamp arrangement is usually not linear, while the measured current signal and the on - The number of open ion channels in the voltage clamp arrangement are directly proportional.
  • a disadvantage of the classic electrophysiological voltage clamp and current clamp methods is that they are connected to the puncture of a microelectrode in the cell and are therefore only for very large cells, such as. B. the octopus axon,
  • Muscle cells, or frog egg cells are suitable.
  • the majority of all cells that would be interesting for electrophysiological experiments are much smaller and therefore inaccessible to this method.
  • a second disadvantage is that this method, like all electrophysiological methods, is very complex and has to be carried out manually by experienced specialists, so that only a few experiments can be carried out per day and an industrial active ingredient search ("High Throughput Screening or HTS) is eliminated.
  • a disadvantage of the patch clamp method is again the time-consuming preparation of the measurements, which only allows experienced electrophysiologists to make around 20 measurements per day. This is far less than is required for modern high-throughput processes.
  • the conventional patch clamp technology requires a great deal of experience and a great deal of sensitivity and can therefore only be automated to a limited extent.
  • the patch clamp pipette is replaced by a planer or a microstructured substrate.
  • it can be a membrane or thin film that has been provided with small ( ⁇ m) holes [5, 6, 7].
  • ⁇ m small holes
  • the idea is that cells attach themselves to the holes and form a seal there similar to the Giga-Seal in the patch pipette, so that a similar electrophysiological measurement of the electrical through the hole
  • Receptors or ion channels of an automatic measurement are accessible. This enabled the throughput of measurements to be increased about ten times.
  • this method is only restricted to large cells, such as Xenopus oocytes, and is not suitable for small cells, which represent the vast majority of the preparations.
  • the throughput of this arrangement of measurements is comparable to the automated patch clamp methods, and the throughput required for a HTS cannot be achieved in this way. Abbott, Axon, and other companies are also developing such methods.
  • Bilayer can also be stabilized on the substrate with suitable chain molecules ('tethered bilayers'), [13].
  • Membrane is not yet reproducible and seems to be fundamentally impossible for many types of more complex membrane receptors. However, with some simpler membrane proteins (gramizidine, alamethizine, melittin, hemolysin), [10] some potassium channels and especially connexins [14] electrical measurements on such artificial membranes could be carried out.
  • Connexins Biological protein molecules, so-called connexins, which play a special role in the communication between living cells, are known to the person skilled in the art. In the meantime, about fifteen different connexins are differentiated based on their amino acid sequence [15, 16]. Connexins occur in all vertebrates and are usually abbreviated, such as B. Cx26. The number indicates the chromatographic size of the connexins in kD. Connexins with a molecular weight between 26 and 56 kD are known to date.
  • a connexon is a ring-shaped structure that crosses the cell membrane and is basically able to form a very wide, non-specific ion channel or a water-filled pore. However, these pores are usually closed as long as the connexon is in the membrane of a single, healthy cell. However, if two cells touch, each of which has connexons that are compatible with each other in their membrane, then there are two
  • gap junction channel also known as an electrical synapse
  • a gap junctions channel is usually formed in a few minutes on contact.
  • the gap junction channel formed is a structure of generally 12 identical or different connexins, or of two connexons.
  • the channel has a closable central pore with a diameter of about 1.5 to 2 nm.
  • the main difference to other membrane channels is that gap junction channels run through two adjacent cell membranes and therefore not a connection between the cell interior with the external medium, but create a connection between the intracellular media of the two cells.
  • Gap junction channels enable inorganic ions and small water-soluble molecules up to a molecular mass of approx. 1000 Daltons to pass directly from the cytoplasm of one cell into the cytoplasm of the other
  • Gap junction channels belong to the epithelial cell-to-cell connections and can be found in almost all epithelia and many other types of tissue. As a rule, many gap junction channels are organized in the form of fields, these structures then being referred to as gap junctions in the true sense.
  • the gap junction channels of connected cells are usually open and the connexins stretched. If a cell experiences a massive influx of calcium from the outside, for example due to an injury, the connection to neighboring cells is interrupted by the connexins twisting allosterically.
  • Connexins can be made available by purifying cell membranes from cells containing connexins, e.g. B. eye lens, heart muscle, smooth muscles, or epithelial cells and by genetic expression of the connexins in bacteria, yeast or other cells. It is also known that connexins can be provided with a marker, such as a fluorescent protein fragment, so that their presence in a cell membrane can be demonstrated using simple optical methods [17].
  • a marker such as a fluorescent protein fragment
  • Connexone and gap junctions often have the same properties - e.g. Pore size, ion selectivity, electrical behavior - based on how in their natural environment. It is known that between two connexons, which are embedded in artificial membranes, a functional gap junction channel is formed when the membrane surfaces come into contact [18].
  • invertebrates have a functionally similar class of membrane proteins called Innexins [19].
  • the channels formed with this have a larger pore, which allows molecules up to a weight of 2000 Daltons to pass through.
  • Ions and small molecules pass from cell to cell. In contrast to the Channels in animal organisms, however, the plasmodesmata are limited by the plasma membrane.
  • the invention relates to devices and methods for performing electrical measurements on membrane bodies, preferably biological membrane bodies. These electrical measurements allow conclusions to be drawn about the state and behavior of membrane-bound biomolecules and their reaction to any effector molecules.
  • Devices according to the invention contain at least one electrical measuring apparatus (1), but preferably two electrodes (2) and a membrane (3), in which biological molecules (4) are embedded, which have the same or similar properties as innexins, connexins or connexones , Innexins, connexins or connexones are preferably embedded in the membrane.
  • Innexine, Connexine or Connexone of the same type or also Innexine, Connexine or Connexone of different types can be embedded in the membrane.
  • an electrolytic liquid on both sides of the membrane, which preferably has buffer properties.
  • a liquid which has the properties necessary for the survival of living cells is preferably used on one side of the membrane. This includes, for example, a suitable concentration and composition of salts, a physiologically tolerable pH, possibly also the presence of nutrients and / or a suitable concentration of oxygen.
  • the electrodes are preferably arranged such that there is one electrode on each side of the membrane.
  • the membrane with the embedded biomolecules is preferably designed such that it has a high electrical resistance in the absence of open ion channels.
  • the device according to the invention can be used for the methods according to the invention for carrying out electrical measurements on membrane bodies.
  • biological membrane bodies (5) are selected, the membrane of which also contains biomolecules that have the same or similar properties as Innexine, Connexine or Connexone.
  • Particularly preferred membrane bodies in the sense of the invention are living cells. These cells preferentially express connexins or innexins. Cells that normally do not express connexins or innexins can be genetically modified by transfection with cDNA, mRNA or another form of suitable sequences, or by incorporating existing connexins or innexins in another way, in such a way that the desired connexins or Innexins are built into the membrane of the cells and preferably function there exactly like Connexins and Innexins in other cells. It is preferable to choose a stable one
  • membrane bodies are now preferably superimposed Gap junctions (7) on the membrane.
  • the gap junctions formed in this way represent an electrical access from the side of the membrane facing away from the membrane bodies to the interior of the attached membrane bodies.
  • Functional gap junctions can be detected using electrical measurements (double voltage clamp) or optical observation of the transfer of dyes with low molecular weight (e.g. Lucifer yellow). The latter allows the coupling of an ensemble of cells to be estimated using image processing methods.
  • the membrane bodies according to the invention preferably contain further membrane-bound biomolecules (8) (targets), the properties of which can be investigated by the methods according to the invention.
  • targets are preferably ion channels or receptors or other biomolecules which can directly or indirectly influence charge movements through membranes.
  • Charge movements and / or potential differences through the membrane of the attached membrane bodies can now preferably be derived and quantified via the two electrodes.
  • a particularly preferred method according to the invention is the investigation of the effects that substances have on the membrane-specific biomolecules (targets) to be examined.
  • modulators i.e. inhibitors and activators of the target and other substances which influence the expression of the target
  • These substances are potential active substances for the treatment of diseases which are related to the function of the respective target.
  • the invention further relates to the active substances found using the methods according to the invention and to processes for their preparation.
  • Electrical signals in the sense of the invention, are physical quantities which are related to the distribution of electrical charges, ie electrons, protons, or ions, in the system under consideration. Electrical signals that can be recorded in devices according to the invention are, for example, the electrical current strength, the electrical capacitance, or the electrical potential difference and
  • Membrane bodies in the sense of the invention are volume elements surrounded by a membrane and filled with a liquid.
  • Membrane bodies according to the invention are preferably biological membrane bodies, such as e.g. living cells. These include cells that have been isolated from living tissues by dissociation (primary cultures). This also includes cells that are kept in culture as established cell lines, such as CHO cells, HEK cells, NIH3T3 cells, HeLa cells, but also transiently transfected cells or primary cells.
  • Biological membrane bodies, in the sense of the invention are also artificially produced membrane bodies, in which e.g. a lipid bilayer encloses a limited volume of an aqueous medium (vesicle).
  • membrane bodies then preferably contain at least one biological component, e.g. a polypeptide embedded in the lipid bilayer, a membrane-bound enzyme, an ion channel or a G protein-coupled receptor.
  • Biological membrane bodies in the sense of the invention, can also be bacterial cells, fungal cells or cells of other unicellular or multicellular organisms.
  • Biological membrane bodies within the meaning of the invention are e.g. also protoplasts of fungal cells and plant cells, which are achieved by removing external cell walls or similar structures.
  • Biological membrane body in
  • the invention furthermore also includes membrane bodies which, such as synaptosomes, are produced by cleavage or association from the membranes of living organisms or which have been obtained by combining such preparations with synthetic lipid vesicles.
  • Electrical measuring apparatus in the sense of the invention, is a device that allows electrical signals to be recorded and, if necessary, quantified.
  • membrane potential is the electrical potential difference between the opposite sides of a membrane.
  • Active ingredients in the sense of the invention are substances that can influence the activity of biological molecules.
  • Preferred active substances in the sense of the invention are those which specifically influence the activity of individual biological molecules or of groups of biological molecules. Particularly preferred
  • Active substances are those which influence the activity of receptors and / or ion channels.
  • “Supported bilayer” are membranes that are on the one hand in contact with or in the immediate vicinity of a suitable solid, porous or gel-like
  • the present invention relates to 1. a measuring arrangement for measuring electrical signals on membrane bodies containing an electrical measuring apparatus (1), electrodes (2), a membrane (3) containing connexins or innexins (4), and a membrane body (5) also containing connexins or Innexine (6) characterized in that an electrically conductive access from the side of the membrane facing away from the membrane body to the inside of the membrane body through gap junction
  • Affect receptors and / or ion channels (8) characterized in that i) at least one membrane body (5) containing said receptors and / or ion channels is brought into contact with at least one test substance, and ii) at least one electrical signal on the membrane body or the Membrane bodies are measured with a measuring arrangement according to point 1,
  • test substances which influence the measured electrical signal are selected as active substances.
  • a method for transporting substances into a membrane body or out of a membrane body characterized in that the substance through gap junction channels into or out of the membrane body
  • Membrane body came out.
  • the substance to be transported follows an electrical potential gradient, a concentration gradient, or a pressure gradient over the membrane of the arrangement according to the invention
  • FIG. 1 shows a typical measuring arrangement in the sense of the invention with electrical measuring apparatus (1), electrodes (2), a membrane (3) containing connexins or innexins (4), a membrane body (5), gap junction channels (7) and targets ( 8th).
  • a measuring arrangement for measuring electrical signals on membrane bodies is shown in Figure 1. It consists of an electrode (e.g. a gold electrode) at the bottom of a small chamber, e.g. a chamber in a microtiter plate.
  • An electrically dense artificial membrane (3) is attached above the electrode, an electrolyte solution as an ion reservoir being located in the space between the membrane and the electrode.
  • the measuring arrangement has a second electrode, which is located above the artificial membrane.
  • Functional hemichannels (connexones) are introduced into the artificial membrane in such a way that they can diffuse freely in the membrane and that their normally extracellular domain is located above (trans) the membrane.
  • suitable types of connexins are used. Possibly.
  • connexones are built up from more than one connexin (heteromeric connexones).
  • the suitable connexins are selected according to the requirements of the intended test. The procedure is such that an electrical signal which is as small as possible is measured without additions of the active substances to be investigated, and when the active substances interact with the ion channels and / or receptors (8) to be investigated, the observed signal increases as much as possible.
  • a suspension with suitable cells is added to said chamber, which already contains the artificial membrane as described above.
  • These cells (5) have at least one ion channel or receptor (8) to be examined in the cell membrane and additionally hemichannels (6), which form functional gap junctions (7) in a suitable manner with the hemichannels in the artificial membrane (4) of the measuring arrangement ,
  • the hemichannels in the artificial membrane are initially closed as long as there is no cell in place. This is ensured by the fact that an electrical voltage is applied across the membrane.
  • an electrical voltage is applied across the membrane.
  • gap junctions are formed between neighboring cells, or that some of the cells only establish a conductive connection to the ion reservoir indirectly via other cells.
  • this is not an obstacle to the use of this arrangement according to the invention. Rather, this can even result in an amplification of the observed signal, which further improves the sensitivity of the measuring arrangement.
  • Connexons with a voltage behavior such that they are closed as a hemichannel or as a hemichannel are only particularly suitable for the measuring arrangement with a low potential difference (for example less than 20 mV) across the cell membrane and closed with a larger potential difference.
  • the result of the measurement is therefore a current signal which corresponds to the total current flow through the cell membranes of all those cells which are in conductive connection with the ion reservoir via the built-in gap junctions.
  • Suitable measuring arrangement the electrical behavior of ion channels and receptor to determine directly and immediately, with high precision and good temporal resolution and also to precisely demonstrate and evaluate the changes in this behavior, which are triggered, for example, by known or potential active ingredients.
  • the time resolution of the measurement arrangement is determined by the electrical properties of the gap junctions, which in their natural function have a time resolution in the sub-millisecond range.
  • the formation of the desired lead configuration in which the cells adjacent to the substrate establish an electrical connection with the ion reservoir by means of gap junctions, can also be monitored with electrical measurements.
  • the electronic capacitance of the membrane and the membrane bodies connected to it via gap junctions can be determined using suitable electronic measurement methods known to the person skilled in the art.
  • This method is suitable to determine the total membrane area of the system and thus to determine the number of attached cells connected to the membrane via gap junctions.
  • This signal can also be used to determine the influence of test substances on this arrangement. In particular, the occurrence of exocytosis in the attached membrane bodies can be determined in this way.
  • Molecular weight such as B. Lucifer Yellow, which can diffuse through gap junction channels.
  • the measured signal can be normalized so that the results different experiments can be compared directly with similar but different experimental arrangements.
  • Example 1 The structure described in Example 1 is modified in such a way that several or a larger number of the chambers described are set up next to one another, so that, for example, each chamber of a microtiter plate represents a measuring arrangement according to Example 1.
  • the individual measuring chambers are read out sequentially, in groups or simultaneously.
  • Multi-channel amplifier systems such as those known from MEA (multi-electrode array) technology or detectors in high-energy physics can be used for this.
  • the microtiter plate For example, those with 96, 384, 1536 or any other number of chambers are used as the microtiter plate.
  • the measuring arrangement is thus preferably designed such that it is mechanically and geometrically compatible with the HTS systems and systems already established in drug discovery, so that there are no obstacles to the technical application of the invention for practical drug searches. Existing pipetting and dispensing devices can then continue to be used. Only the detection system is expanded by a suitable readout head, which is able to read the electrical signals from the microtiter plates.

Abstract

Die Anmeldung betrifft eine Messanordnung zur Messung elektrischer Signale an biologischen Membrankörpern bei der ein elektrisch leitender Zugang zum Innern des Membrankörpers durch Gap Junction Kanäle hergestellt wird.

Description

Norrichtung und Methoden zur Durchführung von elektrischen Messungen an Membrankörpern
Die Erfindung betrifft Norrichtungen und Verfahren zur Untersuchung von Ionen- kanälen und Rezeptoren in Membranen, insbesondere Vorrichtungen und Verfahren zur Durchführung gleichzeitiger elektrophysiologischer Messungen an einem Kollektiv von biologischen Zellen unter Verwendung von Connexinen oder Innexinen.
1. Elektrophysiologische Methoden
Zur Untersuchung der elektrischen Aktivität von Ionenkanälen und Rezeptoren sind dem Fachmann verschiedene Methoden bekannt.
In den 50er Jahren des letzten Jahrhunderts wurde die Voltage Clamp Methode als eine präzise und verlässliche Methode zur Bestimmung der Aktivität von Ionenkanälen und Rezeptoren in der Membran lebender Zellen etabliert [1, 2]. Dabei wird die zu untersuchende Zelle mit zwei Mikroelektroden, also mit Salzlösung gefüllten spitz ausgezogenen Glaskapillaren, angestochen. Eine Elektrode misst das Potential im Zellinneren, also die über die Zellmembran abfallende elektrische Spannung. Die zweite Elektrode wird verwendet, um einen elektrisch geregelten Stromfluss durch die Zellmembran zu erzeugen. In der Voltage Clamp Anordnung wird dieser Stromfluss so geregelt, dass das Potential über die Zellmembran konstant bleibt (deshalb die Bezeichnung "Voltage Clamp"). Die Größe des durch die Membran fließenden Stroms ist dann ein direktes und sehr genaues und zeitnahes Maß für die Aktivität der in der Zellmembran befindlichen Ionenkanäle, die direkt oder indirekt von Rezeptoren in der Zellmembran aktiviert werden.
Alternativ wird bei der "Current Clamp" Methode der Strom auf einen festen Wert, der oft Null ist, eingestellt, und die nun sich frei einstellende Membranspannung wird gemessen (wozu es bei einer stromlosen Messung nur einer Mikroelektrode bedarf).
Dann reflektiert der Wert der Spannung die Aktivität der in der Zelle befindlichen Rezeptoren und Kanäle, diese Anordnung ist aber nicht so aussagekräftig und präzise wie die Voltage Clamp Methode, weil der Zusammenhang zwischen der Aktivität der Rezeptoren und dem gemessenen Spannungssignal bei der Current Clamp Anordnung in der Regel nicht linear ist, während das gemessene Stromsignal und die A-n- zahl der geöffneten Ionenkanäle bei der Voltage Clamp -Anordnung direkt proportional sind.
Ein Nachteil der klassischen elektrophysiologischen Voltage Clamp und Current Clamp Verfahren ist, dass sie mit dem Einstich einer Mikroelektrode in die Zelle verbunden sind und damit nur für sehr große Zellen, wie z. B. dem Tintenfischaxon,
Muskelzellen, oder Frosch Eizellen geeignet sind. Die Mehrzahl aller Zellen, die für elektrophysiologische Versuche interessant wäre (wie z. B. Nervenzellen, endocrine Zellen, Kulturzellen aller Art) sind viel kleiner und damit für diese Methode unzugänglich. Ein zweiter Nachteil ist, dass diese Methode, wie alle elektrophysiolo- gischen Verfahren, sehr aufwendig ist und manuell von erfahrenen Fachleuten durchgeführt werden muss, so dass man nur wenige Experimente pro Tag durchführen kann und eine industrielle Wirkstoffsuche ("High Throughput Screening oder HTS) damit ausscheidet.
Bekannt ist weiterhin ein Verfahren zur Untersuchung der Öffnungs- und Schließmechanismen von Ionenkanälen in Zellmembranen, das patch clamp Verfahren, das Mitte der 70er Jahre von Neher und Sakmann entwickelt worden ist [3, 4]. Mit dieser Methode wurde die Begrenzung auf große Zellen, der die Elektrophysiologie vorher unterlag, aufgehoben. Es wird eine elektrolytgefüllte Glaskapillare oder Pipette nicht eingestochen, sondern vorsichtig auf die Zellmembran aufgesetzt und leicht angesaugt. Dabei bildet sich in der Regel das sogenannte Gigaseal, eine äußerst hoch- ohmige, elektrisch dichte Verbindung zwischen der Pipettenspitze und der Zellmembran. Dies isoliert einen kleinen Membranfleck, den "patch", vom Rest der Zell- oberfläche und erlaubt damit, einzelne Ionenkanäle in diesem patch elektrisch zu beobachten. Weiter kann man den "patch" durchsaugen oder elektrisch zerstören und gewinnt so einen elektrisch hochwertigen Zugang zum Zellinneren, ohne die Zelle sonst zu beschädigen oder gar zu zerstören.
Ein Nachteil der patch clamp Methode ist wieder die aufwendige Vorbereitung der Messungen, die auch erfahrenen Elektrophysiologen nur etwa 20 Messungen pro Tag erlaubt. Dies ist weitaus weniger, als für moderne Hochdurchsatzverfahren gefordert wird. Zudem erfordert die konventionelle Patch-Clamp-Technik große Erfahrung und viel Fingerspitzengefühl und ist daher nur bedingt automatisierbar.
Bekannt sind außerdem Arbeiten verschiedener Arbeitsgruppen und Firmen, die versuchen, die patch clamp Methode oder eine vergleichbare andere elektrophysiolo- gische Messanordnung so zu automatisieren oder zu parallelisieren, dass sie einen höheren Durchsatz an Messungen erlaubt. Diese Ansätze kann man wie folgt unterteilen:
(1) Automatisierung der bisherigen patch clamp Methode mit Glaspipetten, indem einzelne oder alle der aufwendigen manuellen Arbeitsschritte maschinell unter der Steuerung eines Computers ablaufen. Diese Ansätze sind zum Teil vielversprechend und können den Experimentator entlasten und die Anzahl der durchgeführten Mes- sungen damit um einen gewissen Faktor, z. B. zehnfach, erhöhen. Jedoch sind sie alle technisch sehr anspruchsvoll und teuer, und reichen im erzielbaren Durchsatz noch in keinem Fall an die im HTS notwendige Kapazität von vorzugsweise >100000 Tests pro Tag heran.
(2) Es werden Konzepte entwickelt, bei denen die patch clamp Pipette durch ein planeres oder ein mikrostrukturiertes Substrat ersetzt wird. Zum Beispiel kann es sich dabei um eine Membran oder dünne Folie handeln, die mit kleinen (μm) Löchern versehen worden ist [5, 6, 7]. Die Idee ist, dass Zellen sich an die Löcher anlagern und dort eine Abdichtung ähnlich des Giga-Seals bei der patch Pipette bilden, so dass dann durch das Loch eine ähnliche elektrophysiologische Messung der elektrischen
Eigenschaften der Zellmembran möglich wird. Durch die planare Anordnung und die grundsätzliche Möglichkeit, in einem Substrat viele Löcher parallel mit Zellen zu belegen, erhofft man sich eine Steigerung des Durchsatzes an Messungen bis in den HTS Bereich hinein. Es werden unterschiedliche Konzepte dieser Art von verschiedenen Arbeitsgruppen entwickelt, die sich vor allem in der Auswahl der Materialien für das Substrat und in der Komplexität der Geometrie der Löcher unterscheiden, bis hin zu aufwendigen Strukturen, in denen das Substrat gleichzeitig Kanäle zum Zu- oder Ableiten von Testsubstanzen oder dergleichen umfasst.
Allen diesen Konzepten gemeinsam ist, dass sie bisher noch weitgehend unerprobt sind. In Einzelfallen gibt es Prototypen, bei denen das Anlagern und Abdichten der
Zellen gezeigt worden ist. Dennoch ist es zweifelhaft, ob sich die elektrophysiolo- gische Ableitung in einer mit der patch clamp Methode vergleichbaren Qualität auf diesem Wege realisieren lässt. Weiter ist noch völlig unklar, ob sich diese Konzepte in einer für das HTS ausreichenden Weise automatisieren oder parallelisieren lassen.
(3) Eine Sonderweg stellt eine Entwicklung der Bayer AG dar, die zur Zeit von der Firma MCS in Reutlingen in den Markt gebracht wird [8, 9]. Hier werden Xenopus Oocyten in 96-er Multiwell Platten gehalten und automatisch mit cDNA injiziert. Mit dieser Anordnung lassen sich automatisierte elektrophysiologische Voltage Clamp Messungen an diesen Oocyten ausführen, so dass die in den Oocyten exprimierten
Rezeptoren oder Ionehkanäle einer automatischen Messung zugänglich sind. Damit konnte der Durchsatz an Messungen um etwa das zehnfache gesteigert werden. Diese Methode ist jedoch ausschließlich auf große Zellen, wie Xenopus Oocyten, beschränkt und für kleine Zellen, die die überwiegende Mehrheit der Präparate darstel- len, nicht geeignet. Der Durchsatz dieser Anordnung an Messungen ist mit den automatisierten patch clamp Methoden vergleichbar, und der für ein HTS notwendige Durchsatz lässt sich auf diesem Wege nicht erzielen. Auch Abbott, Axon, und andere Firmen sind im Begriff, solche Methoden zu entwickeln.
Ein weiterer dem Fachmann bekannter Weg zur elektrischen Messung von Ionenkanälen und Rezeptoren ist der Einbau in künstliche Lipidmembranen [10]. Diese Verfahren wurden schon in den 60er - 70er Jahren entwickelt und zeichnen sich durch hohen experimentellen Aufwand und geringe Reproduzierbarkeit der Ergebnisse aus, mithin sind sie für eine industrielle Wirkstoffsuche zur Zeit keine Alternative. Interessant sind jedoch neuere Ansätze, eine künstliche Lipidmembran durch ein geeignetes Substrat in der Weise zu stabilisieren, dass sie mechanisch fester, länger haltbar, und reproduzierbarer werden [11]. Voraussetzung für elektrische Messungen an solche stabilisierten künstlichen Membranen ist die Auswahl eines geeigneten Substrats, das gleichzeitig einen guten elektrischen Zugang zu beiden Seiten der Membran erlaubt. Als Substrate finden hier zum Beispiel Silicagele Verwendung, die ggf. zur Verbesserung der Stabilität und Fluidität der Membran mit einer polymeren
Zwischenschicht versehen worden sind [12]. Auch können Bilayer auf dem Substrat mit geeigneten Kettenmolekülen stabilisiert werden ('tethered bilayers'), [13].
Diese Verfahren sind zur Zeit noch keine Alternative für ein HTS, insbesondere weil der Einbau funktioneller Rezeptoren oder Ionenkanäle in diese künstlichen
Membrane noch nicht reproduzierbar gelingt und für viele Arten von komplexeren Membranrezeptoren grundsätzlich unmöglich zu sein scheint. Es konnten jedoch mit einigen einfacheren Membranproteinen (Gramizidin, Alamethizin, Melittin, Haemo- lysin), [10] einigen Kaliumkanälen und insbesondere auch Connexinen [14] elektri- sehe Messungen an solchen künstlichen Membranen durchgeführt werden.
2. Connexine, Connexone und Gap Junctions
Dem Fachmann bekannt sind biologische Protein-Moleküle, sogenannte Connexine, welche bei der Kommunikation zwischen lebenden Zellen eine besondere Rolle spielen. Mittlerweile werden etwa fünfzehn verschiedene Connexine aufgrund ihrer Aminosäuresequenz unterschieden [15, 16]. Connexine kommen in allen Vertebraten vor und werden in der Regel mit Abkürzung wie z. B. Cx26 bezeichnet. Hierbei gibt die Zahl die chromatographische Größe der Connexine in kD an. Bekannt sind bis- lang Connexine mit einem Molekulargewicht zwischen 26 und 56 kD. Alternativ zu dieser Nomenklatur hat sich eine zweite durchgesetzt, die die Connexine anhand von St-αύ^-turmerkmalen in wenigstens 3 Klassen a, b und c einteilt und dann die entsprechenden Connexine in den einzelnen Klassen durchnummeriert.
In der Zellmembran lagern sich jeweils sechs Connexine zu einem Connexon zu- sammen. Ein Connexon ist eine ringförmige Struktur, die die Zellmembran durchquert und grundsätzlich in der Lage ist, einen sehr weiten, unspezifischen Ionenkanal oder eine wassergefüllte Pore zu bilden. Dabei sind diese Poren aber in der Regel geschlossen, solange sich das Connexon in der Membran einer einzelnen, gesunden Zelle befindet. Berühren sich jedoch zwei Zellen, die in ihrer Membran jeweils mit- einander kompatible Connexone aufweisen, dann kommt es zwischen zwei
Connexonen der gegenüberliegenden Zellen zur Bildung eines Gap Junction Kanals (auch als elektrische Synapse bezeichnet), der nunmehr den Abstand zwischen den Zellmembranen überbrückt. Die Bildung eines Gap Junctions Kanals erfolgt bei Kontakt in der Regel in wenigen Minuten. Der ausgebildete Gap Junction Kanal ist eine Struktur aus in der Regel 12 identischen oder verschiedenen Connexinen, bzw. aus zwei Connexonen. Der Kanal besitzt eine ggf. verschließbare zentrale Pore mit einem Durchmesser von etwa 1,5 bis 2 nm. Der wesentliche Unterschied zu anderen Membrankanälen ist, das Gap Junction Kanäle zwei aneinanderliegende Zellmembranen durchziehen und damit nicht eine Verbindimg zwischen dem Zellinneren mit dem Außenmedium, sondern eine Verbindung zwischen den intrazellulären Medien der beiden Zellen herstellen.
Dabei ermöglichen Gap Junction Kanäle anorganischen Ionen und kleinen wasserlöslichen Molekülen bis zu einer molekularen Masse von ca. 1000 Dalton den direk- ten Durchgang von dem Cytoplasma der einen Zelle ins Cytoplasma der anderen
Zelle. Damit sind die zwei Zellen sowohl mechanische, elektrisch als auch metabo- lisch verbunden. Gap Junction Kanäle gehören zu den epithelialen Zeil-Zeil- Verbindungen und finden sich in nahezu allen Epithelien und vielen anderen Gewebetypen. In der Regel sind viele Gap Junction Kanäle in Form von Feldern organisiert, wobei diese Strukturen dann als Gap Junction im eigentlichen Sinne bezeichnet werden. Die Gap Junction Kanäle verbundener Zellen sind in der Regel geöffnet und die Connexine gestreckt. Erleidet eine Zelle einen massiven Calciumeinstrom von außen, etwa durch eine Verletzung, so wird die Verbindung zu benachbarten Zellen unterbrochen indem sich die Connexine allosterisch miteinander verwinden.
Connexine können verfügbar gemacht werden durch Aufreinigen von Zellmembranen aus Zellen, die Connexine enthalten, z. B. Augenlinse, Herzmuskel, glatte Muskulatur, oder Epithelzellen sowie durch gentechnische Expression der Connexine in Bakterien, Hefen oder anderen Zellen. Es ist weiter bekannt, dass Connexine durch Verbindung mit einem Marker, wie zum Beispiel einem fluoreszierenden Proteinfragment, versehen werden können so dass ihr Vorhandensein in einer Zellmembran mit einfachen optischen Verfahren nachweisbar wird [17].
Es sind dem Fachmann Verfahren bekannt, mit denen Connexone in künstliche Membranen oder andere zellfreie Systeme eingebaut werden können. [14]. Diese
Connexone und Gap Junctions weisen häufig noch die gleichen Eigenschaften - wie z.B. Porengröße, Ionenselektivität, elektrisches Verhalten - auf, wie in ihrer natürlichen Umgebung. Es ist bekannt, dass es auch zwischen zwei Connexonen, die in künstliche Membranen eingelagert sind, bei Kontakt der Membranflächen zur Aus- bildung eines funktionsfähigen Gap Junction Kanals kommt [18].
Weiterhin ist bekannt, dass Invertebraten eine funktionell ähnliche Klasse von Membranproteinen aufweisen, die Innexine genannt werden [19]. Die hiermit gebildeten Kanäle besitzen allerdings eine größere Pore, die Molekülen bis zu einem Ge- wicht von 2000 Dalton den Durchgang ermöglicht.
Es ist weiterhin bekannt, dass auch in Pflanzen Verbindungen zwischen den Zellen vorkommen, die ähnliche Eigenschaften aufweisen wie Gap Junctions und die als Plasmodesmata bezeichnet werden. Diese überspannen ebenfalls die Zellzwischen- wand benachbarter Zellen und ermöglichen ebenfalls einer begrenzten Anzahl von
Ionen und kleiner Moleküle die Passage von Zelle zu Zelle. Im Gegensatz zu den Kanälen bei tierischen Lebewesen sind die Plasmodesmata jedoch von der Plasmamembran begrenzt.
Ausgehend von dem oben beschriebenen Stand der Technik ergibt sich nun die tech- nische Aufgabe, verbesserte Methoden zur Durchführung elektrochemischer Untersuchungen an Membrankörpern zu entwickeln. Diese Aufgabe wird mit den erfindungsgemäßen Anordnungen und Methoden gelöst, welche im Folgenden beschrieben werden.
Die Erfindung betrifft Vorrichtungen und Methoden zur Durch-Rihrung von elektrischen Messungen an Membrankörpern, bevorzugt biologischen Membrankörpern. Diese elektrischen Messungen erlauben Rückschlüsse auf den Zustand und auf das Verhalten von membranständigen Biomolekülen, und auf deren Reaktion gegenüber eventuellen Effektormolekülen.
Erfindungsgemäße Vorrichtungen enthalten mindestens eine elektrische Messapparatur (1), eine, bevorzugt aber zwei Elektroden (2) und eine Membran (3), in welche biologische Moleküle (4) eingelagert sind, die die gleichen oder ähnliche Eigenschaften haben wie Innexine, Connexine oder Connexone. Bevorzugt sind Innexine, Connexine oder Connexone in die Membran eingelagert. Dabei können jeweils
Innexine, Connexine oder Connexone der gleichen Art oder auch Innexine, Connexine oder Connexone verschiedenen Typs in die Membran eingelagert sein.
Auf beiden Seiten der Membran befindet sich jeweils eine elektrolytische Flüssig- keit, die bevorzugt Puffereigenschaften hat. Auf der einen Seite der Membran wird bevorzugt eine Flüssigkeit verwendet, welche die für das Überleben von lebenden Zellen notwendigen Eigenschaften hat. Hierzu gehört z.B. eine geeignete Konzentration und Zusammensetzung an Salzen, ein physiologisch verträglicher pH- Wert, ggf. auch das Vorhandensein von Nährstoffen und/oder eine geeignete Konzentration an Sauerstoff. Die Elektroden sind bevorzugt derart angeordnet, dass sich jeweils eine Elektrode auf jeder Seite der Membran befindet. Die Membran mit den eingelagerten Biomolekülen ist bevorzugt so ausgeführt, dass sie in Abwesenheit von geöffneten Ionenkanälen einen hohen elektrischen Widerstand aufweist.
Die erfindungsgemäße Vorrichtung kann für die erfindungsgemäßen Methoden zur Durchführung von elektrischen Messungen an Membrankörpern verwendet werden. Hierfür werden biologische Membrankörper (5) ausgewählt, deren Membran ebenfalls Biomoleküle enthält, welche die gleichen oder ähnliche Eigenschaften haben wie Innexine, Connexine oder Connexone. Bevorzugt sind Innexine, Connexine oder
Connexone in die Membran der Membrankörper eingelagert.
Besonders bevorzugte Membrankörper, im Sinne der Erfindung, sind lebende Zellen. Diese Zellen exprimieren bevorzugt Connexine oder Innexine. Zellen, die normaler- weise keine Connexine oder Innexine exprimieren, können durch Transfektion mit cDNA, mRNA oder eine andere Form geeigneter Sequenzen genetisch, oder durch Einbau von bereits existierenden Connexinen oder Innexinen auf eine andere Weise, derart modifiziert werden, dass die gewünschten Connexine oder Innexine in die Membran der Zellen eingebaut werden und dort bevorzugt genau so funktionieren wie Connexine und Innexine in anderen Zellen. Man wählt vorzugsweise eine stabile
Transfektion. Koppelt man die Expression des Connexins, Innexins und/oder des zu untersuchenden Rezeptors bzw. Ionenkanals an die Expression eines fluoreszierenden Proteins (z. B. GFP), so ist eine Vorauswahl von geeigneten Zellen mittels Fluoreszenzspektroskopie möglich. Weisen die verwendeten Zellen bereits Connexine auf, so können diese bei Eignung direkt verwendet werden. Möchte man jedoch einen anderen Typ von Connexinen verwenden, so kann der Einbau endogener Connexine in die Zellmembran durch Zugabe einen geeigneten Oligonucleotides (Cx Antisense Nucleotide) vorübergehend unterdrückt werden.
Durch die speziellen Eigenschaften der in die Membran (3) und in die Membrankörper (5) eingelagerten Biomoleküle lagern sich nun bevorzugt Membrankörper über Gap Junctions (7) an die Membran an. Diese dabei gebildeten Gap Junctions stellen einen elektrischen Zugang von der den Membrankörpern abgewandten Membranseite zum Innern der angelagerten Membrankörper dar.
Der Nachweis von funktionsfähigen Gap Junctions kann über elektrische Messungen (Double Voltage Clamp) oder die optische Beobachtung des Transfers von Farbstoffen mit geringem Molekulargewicht (z. B. Lucifer Gelb) erfolgen. Letztere erlaubt die Abschätzung der Kopplung eines Ensembles von Zellen mittels Methoden der Bildverarbeitung.
Die erfindungsgemäßen Membrankörper enthalten bevorzugt weitere membranständige Biomoleküle (8) (Targets), deren Eigenschaften durch die erfindungsgemäßen Methoden untersucht werden können. Diese Targets sind bevorzugt Ionenkanäle oder Rezeptoren oder andere Biomoleküle, welche direkt oder indirekt Ladungsbewegun- gen durch Membranen beeinflussen können.
Ladungsbewegungen und/oder Potentialdifferenzen durch die Membran der angelagerten Membrankörper können nun bevorzugt über die beiden Elektroden abgeleitet und quantifiziert werden.
Ein besonders bevorzugtes erfindungsgemäßes Verfahren ist die Untersuchung der Effekte, die Substanzen auf die zu untersuchenden membranständigen Biomoleküle (Targets) ausüben. Es können so Modulatoren (d.h. Inhibitoren und Aktivatoren des Targets und andere Stoffe, die die Expression des Targets beeinflussen) identifiziert werden. Diese Stoffe sind potentielle Wirkstoffe für die Behandlung von Krankheiten die mit der Funktion des jeweiligen Targets in Zusammenhang stehen.
Die Erfindung betrifft weiterhin die mit den erfindungsgemäßen Verfahren gefundenen Wirkstoffe sowie Verfahren zu deren Herstellung. "Elektrische Signale", im Sinne der Erfindung, sind physikalische Größen, die mit der Verteilung von elektrischen Ladungen, also Elektronen, Protonen, oder Ionen, im betrachteten System in Zusammenhang stehen. Elektrische Signale, die in erfindungsgemäßen Vorrichtungen aufgenommen werden können sind z.B. die elektrische Stromstärke, die elektrische Kapazität, oder die elektrische Potentialdifferenz sowie
Änderungen und Fluktuationen dieser Parameter, wie zum Beispiel Aktionspotentiale.
"Membrankörper", im Sinne der Erfindung, sind von einer Membran umschossene, mit einer Flüssigkeit gefüllte Volumenelemente. Erfindungsgemäße Membrankörper sind bevorzugt biologische Membrankörper, wie z.B. lebende Zellen. Dazu gehören Zellen, die aus lebenden Geweben durch Dissoziation isoliert wurden (Primärkulturen). Dazu gehören ebenso Zellen, die als etablierte Zelllinien in Kultur gehalten werden, wie CHO-Zellen, HEK-Zellen, NIH3T3-Zellen, HeLa-Zellen aber auch tran- sient transfizierte Zellen oder Primärzellen. Biologische Membrankörper, im Sinne der Erfindung sind außerdem künstlich erzeugte Membrankörper, bei welchen z.B. eine Lipiddoppelschicht ein begrenztes Volumen eines wässrigen Mediums einschließt (Vesikel). Diese Membrankörper enthalten dann vorzugsweise mindestens eine biologische Komponente, z.B. ein in der Lipiddoppelschicht eingelagertes Poly- peptid, ein membranständiges Enzym, einen Ionenkanal oder einen G-Protein gekoppelten Rezeptor. Biologische Membrankörper, im Sinne der Erfindung können auch bakterielle Zellen, Pilzzellen oder Zellen anderer einzelliger oder mehrzelliger Organismen sein. Biologische Membrankörper, im Sinne der Erfindung sind, z.B. auch Protoplasten von Pilzzellen und Pflanzenzellen, die durch Entfernen außenliegender Zellwände oder ähnlicher Strukturen erzielt werden. Biologische Membrankörper, im
Sinne der Erfindung sind weiterhin auch Membrankörper, die - wie z.B. Synaptoso- men- durch Abspaltung oder Vereinigung aus den Membranen von lebenden Organismen erzeugt oder die durch die Vereinigung solcher Präparate mit synthetischen Lipidvesikeln erhalten worden sind. "Elektrische Messapparatur", im Sinne der Erfindung, ist eine Vorrichtung, die es erlaubt, elektrische Signale aufzunehmen und ggf. zu quantifizieren.
Das "Membranpotential" ist die elektrische Potentialdifferenz zwischen den gegen- überliegenden Seiten einer Membran.
"Wirkstoffe", im Sinne der Erfindung, sind Stoffe, welche die Aktivität von biologischen Molekülen beeinflussen können. Bevorzugte Wirkstoffe, im Sinne der Erfindung, sind solche, die spezifisch die Aktivität von einzelnen biologischen Molekülen oder von Gruppen von biologischen Molekülen beeinflussen. Besonders bevorzugte
Wirkstoffe sind solche, welche die Aktivität von Rezeptoren und/oder Ionenkanälen beeinflussen.
"Supported Bilayer" sind Membranen, die sich auf der einen Seite in Kontakt mit oder in unmittelbarer Nähe von einem geeigneten festen, porösen oder gel-artigen
Material befinden. Dadurch werden sie gegenüber frei tragenden Membranen mechanisch stabiler und belastbarer.
Die vorliegende Erfindung betrifft 1. eine Messanordnung zur Messung elektrischer Signale an Membrankörpern enthaltend eine elektrische Messapparatur (1), Elektroden (2), eine Membran (3) enthaltend Connexine oder Innexine (4), und einen Membrankörper (5) ebenfalls enthaltend Connexine oder Innexine (6) dadurch gekennzeichnet, dass ein elektrisch leitender Zugang von der dem Membrankörper abge- wandten Membranseite zum Innern des Membrankörpers durch Gap Junction
Kanäle (7) hergestellt wird.
2. ein Verfahren zur Messung elektrischer Signale an Membrankörpern dadurch gekennzeichnet, dass eine Messanordnung gemäß Punkt 1 verwendet wird.
3. ein Verfahren nach Punkt 2, wobei das gemessene elektrische Signal i) das Membranpotential des Membrankörpers, ii) der durch die Membran fließende elektrische Strom, und/oder iii) die elektrische Kapazität der Membran ist.
4. ein Verfahren zur Auffindung von Wirkstoffen, welche die Eigenschaften von
Rezeptoren und/oder Ionenkanälen (8) beeinflussen, dadurch gekennzeichnet, dass i) mindestens ein Membrankörper (5) enthaltend besagte Rezeptoren und/oder Ionenkanäle mit mindestens einer Testsubstanz in Kontakt gebracht wird, und ii) mindestens ein elektrisches Signal an dem Membrankörper oder den Membrankörpern mit einer Messanordnung gemäß Punkt 1 gemessen wird,
wobei diejenigen Testsubstanzen, welche das gemessene elektrische Signal beeinflussen, als Wirkstoffe ausgewählt werden.
5. ein Verfahren zum Transport von Stoffen in einen Membrankörper hinein oder aus einem Membrankörper heraus dadurch gekennzeichnet, dass der Stoff durch Gap Junction Kanäle in den Membrankörper hinein oder aus dem
Membrankörper herausgelangt. Dabei folgt der zu transportierende Stoff einem elektrischen Potentialgradienten, einem Konzentrationsgradienten, oder einem Druckgradienten über der Membran der erfindungsgemäßen Anordnung
6. eine Messanordnung gemäß Punkt 1, wobei besagte Membran als Supported Bilayer ausgeführt ist.
7. eine Messanordnung gemäß Punkt 6, wobei besagte Membran als supported bilayer auf einem Substrat aus Silicagel mit einer lipidkompatiblen Polymer- Zwischenschicht, oder als 'tethered bilayer' ausgeführt wird 8. eine Messanordnung gemäß Punkt 1, bei der die Membran das Ende einer Kapillare überspannt.
9. die Verwendung einer Messanordnung gemäß Punkt 1 als Biosensor zum
Nachweis von Stoffen.
10. die Verwendung von Connexin-dotierten Membranen als Substrat für das Wachstum lebender Zellen in Zellkultur mit der Möglichkeit die elektrische Aktivität der Zellen zu überwachen.
11. die Messanordnung gemäß Punkt 1, dadurch gekennzeichnet, dass besagte Membran in Form einer lebenden Zelle vorliegt.
Die erfindungsgemäßen Vorrichtungen und Methoden werden weiterhin die durch folgende Ausführungsbeispiele verdeutlicht. Die Ausführungsbeispiele sind lediglich bevorzugte Ausführungen der Erfindung und wirken nicht beschränkend auf den Erfindungsgegenstand.
Abbildungen
Figur 1 zeigt eine typische Messanordnung im Sinne der Erfindung mit elektrischer Messapparatur (1), Elektroden (2), einer Membran (3) enthaltend Connexine oder Innexine (4), einem Membrankörper (5), Gap Junction Kanälen (7) und Targets (8).
Beispiel 1
Eine Messanordnung zur Messung elektrischer Signale an Membrankörpern ist in Abbildung 1 wiedergegeben. Sie besteht aus einer Elektrode (z. B. einer Gold- elektrode) am Boden einer kleinen Kammer, z.B. einer Kammer in einer Mikroti- terplatte. Oberhalb der Elektrode ist eine elektrisch dichte künstliche Membran (3) angebracht, wobei sich im Zwischenraum zwischen Membran und Elektrode eine Elektrolytlösung als Ionenreservoir befindet. Zusätzlich weist die Messanordnung eine zweite Elektrode auf, die sich oberhalb der künstlichen Membran befindet. In die künstliche Membran sind funktionsfähige Hemichannels (Connexone) derart eingebracht, dass sie in der Membran frei diffundieren können und dass ihre normalerweise extrazelluläre Domäne sich oberhalb (trans) der Membran befindet. Je nach beabsichtigtem Vorhaben werden geeignete Connexintypen verwendet. Ggf. werden Connexone aus mehr als einem Connexin aufgebaut (heteromerische Connexone). Die Auswahl der geeigneten Connexine erfolgt entsprechend den Anforderungen des beabsichtigten Tests. Es wird so vorgegangen, dass man ohne Zugäbe von den zu untersuchenden Wirkstoffen ein möglichst kleines elektrisches Signal misst und bei einer Wechselwirkung der Wirkstoffe mit den zu untersuchenden Ionenkanälen und / oder Rezeptoren (8) ein möglichst großer Anstieg des beobachteten Signals erfolgt.
Für die Durchführung einer Messung wird in besagte Kammer, welche bereits die künstliche Membran wie oben beschrieben enthält, eine Suspension mit geeigneten Zellen hinzugegeben. Diese Zellen (5) weisen in der Zellmembran mindestens einen zu untersuchenden Ionenkanal oder Rezeptor (8) auf und zusätzlich Hemichannels (6), die in geeigneter Weise mit den Hemichannels in der künstlichen Membran (4) der Messanordnung funktionsfähige Gap Junctions (7) ausbilden.
Die Hemichannels in der künstlichen Membran sind zunächst geschlossen, solange an ihrem Ort keine Zelle aufliegt. Dies wird dadurch sichergestellt, dass über die Membran eine elektrische Spannung angelegt wird. Beim Kontakt einer Zelle mit der künstlichen Membran kommt es auch zum Kontakt zwischen Hemichannels in der künstlichen Membran und der Zellmembran und damit zur Ausbildung von Gap Junctions. Es kann durchaus vorkommen, dass sich zusätzlich Gap Junctions zwischen benachbarten Zellen ausbilden, oder dass manche der Zellen nur indirekt über andere Zellen eine leitende Verbindung zum Ionenreservoir aufbauen. Dies ist aber für die erfindungsgemäße Nutzung dieser Anordnung kein Hindernis. Vielmehr kann sich hierdurch sogar eine Verstärkung des beobachteten Signals ergeben, die die Empfindlichkeit der Messanordnung noch verbessert.
Besonderes geeignet für die Messanordnung sind Connexone mit einem Spannungs- verhalten derart, dass sie als Hemichannel geschlossen oder als Hemichannel nur bei niedriger Potentialdifferenz ( zum Beispiel weniger als 20 mV) über die Zellmembran offen und bei größerer Potentialdifferenz geschlossen sind.
Bewirkt nun die Zugabe eines potentiellen Wirkstoffs oder die Reizung durch ein aufgeprägtes elektrisches Signal eine Änderung des Zustandes von Ionenkanälen oder Rezeptoren in der Zellmembran, die wiederum zu einer Änderung des Membranpotentials der Zellen führt, so ergibt sich hierdurch ein Ionenstrom für diejenigen Zellen, die direkt oder indirekt eine leitende Verbindung zum Ionenreservoir unterhalb der künstlichen Membran aufgebaut haben. Dieser Ionenstrom wird ge- messen. Hierfür eignen sich elektrische Messgeräte wie sie dem Fachmann aus typischen elektrophysiologischen Messungen, z. B. Patch-Clamp Messungen, bekannt sind.
Als Messergebnis erhält man also ein Stromsignal, das dem gesamten aufsummierten Stromfluss durch die Zellmembranen all jener Zellen entspricht, die über die eingebauten Gap Junctions in leitender Verbindung mit dem Ionenreservoir stehen.
Alternativ dazu kann man auch die elektrische Spannung messen und erhält dann ein
Spannungssignal, dass das Verhalten der Ionenkanäle und Rezeptoren in eben diesen Zellmembranen in nachvollziehbarer Weise wiedergibt. Damit ist die beschriebene
Messanordnung geeignet, das elektrische Verhalten von Ionenkanälen und Rezepto- ren direkt und unmittelbar, mit hoher Präzision und guter zeitlicher Auflösung zu bestimmen und auch die Änderungen dieses Verhaltens, die zum Beispiel durch bekannte oder potenzielle Wirkstoffe ausgelöst werden, genau nachzuweisen und zu bewerten. Die Zeitauflösung der Messanordnung wird durch die elektrischen Eigen- schatten der Gap Junctions bestimmt, die in ihrer natürlichen Funktion eine Zeitauflösung im Sub-Millisekundenbereich aufweisen.
Beispiel 2: Bestimmung der Gesamtmembranfläche
Die Entstehung der gewünschten Ableitkonfiguration, bei der die an die am Substrat anliegenden Zellen mittels der Ausbildung von Gap Junctions eine elektrische Verbindung mit dem Ionenreservoir aufnehmen, kann ebenfalls mit elektrischen Messungen überwacht werden. Insbesondere ist mit geeigneten elektronischen Messverfahren, die dem Fachmann bekannt sind, die elektrische Kapazität der Membran und der über Gap Junctions damit in Verbindung stehenden Membrankörper zu ermitteln.
Diese Methode ist geeignet, die Gesamtmembranfläche des Systems zu ermitteln und damit die Anzahl der angelagerten, mit der Membran über Gap Junctions verbundenen Zellen zu bestimmen. Auch kann man dieses Signal zur Bestimmung des Einflusses von Testsubstanzen auf diese Anordnung heranziehen. Insbesondere kann auf diese Weise das Auftreten von Exozytose in den angelagerten Membrankörpern festgestellt werden.
Alternativ wird durch Zugabe eines geeigneten Farbstoffs zu dem Ionenreservoir oder zu den Zellen optisch nachgewiesen, wie viele Zellen eine leitende Verbindung mit dem Ionenreservoir eingegangen sind. Hierfür eignen sich Farbstoffe mit kleinem
Molekulargewicht, wie z. B. Luzifer Gelb, die durch Gap Junction Kanäle diffundieren können.
Mit Hilfe der Bestimmung der Anzahl der angelagerten und damit elektrisch ver- bunden Zellen kann das gemessene Signal normiert werden, so dass die Ergebnisse verschiedener Versuche mit ähnlichen, aber voneinander abweichenden Versuchsanordnungen direkt verglichen werden können.
Beispiel 3: Parallelisierte Verfahren
Der in Beispiel 1 beschriebene Aufbau wird dahingehend modifiziert, dass mehrere oder eine größere Zahl der beschriebenen Kammern nebeneinander eingerichtet werden, dass also zum Beispiel jede Kammer einer Mikrotiterplatte eine Messanordnung gemäß dem Beispiel 1 darstellt. Die einzelnen Messkammern werden sequen- tiell, in Gruppen oder gleichzeitig ausgelesen. Hierfür können unter anderem Vielkanal-Verstärkersysteme zum Einsatz kommen wie sie aus der MEA (multi- electrode-array)-Technik oder den Detektoren in der Hochenergiephysik bekannt sind.
Als Mikrotiterplatte werden zum Beispiel solche mit 96, 384, 1536 oder einer beliebigen anderen Anzahl von Kammern verwendet. Damit wird die Messanordnung bevorzugt so gestaltet, dass sie mechanisch und geometrisch mit den bereits in der Wirkstoffforschung etablierten HTS Systemen und Anlagen kompatibel ist, so dass der technischen Anwendung der Erfindung für die praktische Wirkstoffsuche keine Hindernisse entgegenstehen. Bestehende Pipettier- und Dispensiergeräte können dann weiterhin verwendet werden. Lediglich das Detektionssystem wird um ein geeigneten Auslesekopf erweitert, der in der Lage ist die elektrischen Signale aus den Mikrotiterplatten auszulesen.
Literatur:
1. Hodgkin, A.L., A.F. Huxley and B. Katz (1949). Ionic currents underlying activity in the giant axon of the squid. Arch. Sei. Physiol. 3, 129-150.
2. Hodgkin, A.L., A.F. Huxley and B. Katz (1949). Measurements of current- voltage relations in the membrane of the giant axon of Loligo. J. Physiol.
(London) 117, 500-544 3. Neher E. and B. Sakmann (1975) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 779-802
4. Hamill, O.P., A. Marty, E. Neher, B. Sakmann and F.J. Sigworth (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv 391, 85-100
5. Sigworth, FJ and Klemic, KG (2002) Patch clamp on a chip. Biophys. J. 82, 2831-2832
6. Fertig, N., Blick, R.H. and Behrends, J.C. (2002) Whole Cell Patch Clamp Recording Performed on a Planar Glass Chip. Biophys. J. 82, 3056-62 7. Rosat, J.-P., Brueggemann, A. and Schmidt, C. (2002) Patch-clamp on a chip - a reality. Analytica 2002 p. 4-10
8. Schulz R, S. Bertrand, K. Chamaon,K.H. Smalla, E.D.Gundelfinger and D. Bertrand (2000) Neuronal nicotinic acetylcholine receptors from Drosophila: Two different types of α subunits coassemble within the same receptor complex. J. Neurochem. 74, 2537-2546
9. Decker K. und C. Methfessel (2002) Automatisierte elektrophysiologische Wirkstoffsuche. Laborpraxis / LabFuture, s. 72-79
10. Hanke, W. (1985) Reconstitution of Ion Channels. CRC Critical Reviews Biochemistry 19, 1-44 11. Sackmann E. and Tanaka M. (2000) Supported Membranes on soft polymer cushions: fabrication, characterization and applications TIBTECH 18, 58-64
12. Loidl-Stahlhofen, A., Schmitt, J., Nöller, J., Hartmann, T., Brodowsky, H., Schmitt, W. and Keldenich, J. (2001) Solid-Supported Biomolecules on Modified Silica Surfaces - A Tool for Fast Physicochemical Characterization and High-Throughput Screening. Advanced Materials 13, 1829-1834
13. Raguse, B., Braach-Maksvytis, V., Cornell, B.A., King, L.G., Osman, P.D.J., Pace, R.J. and Wieczorek, L. (1998). Tethered Lipid Bilayer Membranes: Formation, and Ionic Reservoir Characterization. Langmuir 14, 648-659
14. Mazet, J.L., Jarry, Th., Gros, D. and Mazet F. (1992) Voltage Dependence of liver gap-junction Channels reconstituted into liposomes and incorporated into planar bilayers. European Journal of Biochemistry 210, 249-256 15. Austin, CD. (1993) The Connexins: A Family of Gap Junction Proteins. Einstein Quarterly Journal of Biology and Medicine 10, 133-142
16. Goodenough, D.A., J.A. Goliger, and D.L.Paul (1996) Connexins, Connexons, and intercellular communication. Annu. Rev. Biochem. 65:475-502
17. Jordan K., Solan J.L., Dominguez M., Sia M., Hand A., Lampe P. and Laird D.W. (1999) Trafficking, Assembly, and Function of a Connexin43-Green Fluorescent Protein Chimera in Live Mammalian Cells. Molecular Biology of the Cell 10, 2033-3050 18. Brewer, G. J. (1991 ) Reconstitution of lens Channels between two membranes.
Chapter 19 in: Biophysics of Gap Junction Channels, Editor: C. Peracchia, CRC Press Boca Raton, Ann Arbor, Boston. 19. Phelan, P. (2000) Gap Junction Communication in Invertebrates: The Innexin Gene Family. Current Topics in Membranes 49, 389-422

Claims

Patentansprflche:
1. Messanordnung zur Messung elektrischer Signale an Membrankörpern enthaltend eine elektrische Messapparatur (1), Elektroden (2), eine Membran (3) enthaltend Connexine oder Innexine (4), und einen Membrankörper (5) ebenfalls enthaltend Connexine oder Innexine (6) dadurch gekennzeichnet, dass ein elektrisch leitender Zugang von der dem Membrankörper abgewandten Membranseite zum Innern des Membrankörpers durch Gap Junction Kanäle (7) hergestellt wird.
2. Verfahren zur Messung elektrischer Signale an biologischen Membrankörpern dadurch gekennzeichnet, dass eine Messanordnung gemäß Anspruch 1 verwendet wird.
3. Verfahren nach Anspruch 2, wobei das gemessene elektrische Signal i) das Membranpotential des Membrankörpers, ii) der durch die Membran fließende elektrische Strom, und/oder iii) die elektrische Kapazität der Membran ist.
4. Verfahren zur Auffindung von Wirkstoffen, welche die Eigenschaften von
Rezeptoren und/oder Ionenkanälen beeinflussen, dadurch gekennzeichnet, dass i) mindestens ein Membrankörper enthaltend besagte Rezeptoren und/oder Ionenkanäle mit mindestens einer Testsubstanz in Kontakt gebracht wird, und ii) mindestens ein elektrisches Signal an dem Membrankörper oder den Membrankörpern mit einer Messanordnung gemäß Anspruch 1 gemessen wird, wobei diejenigen Testsubstanzen, welche das gemessene elektrische Signal beeinflussen, als Wirkstoffe ausgewählt werden.
5. Verfahren zum Transport von Stoffen in einen Membrankörper hinein oder aus einem Membrankörper heraus dadurch gekennzeichnet, dass der Stoff durch Gap Junction Kanäle in den Membrankörper hinein oder aus dem Membrankörper herausgelangt, wobei der Transport des Stoffes durch einen Konzentrationsgradienten, eine elektrische Spannungsdifferenz, oder eine Druckdifferenz angetrieben wird.
6. Messanordnung gemäß Anspruch 1, wobei besagte Membran als Supported Bilayer ausgeführt ist.
7. Messanordnung gemäß Anspruch 1, bei der die Membran das Ende einer Kapillare überspannt.
8. Verwendung der Messanordnung gemäß Anspruch 1 als Biosensor zum Nachweis von Stoffen.
9. Verwendung von Connexin-dotierten Membranen als Substrat für das Wachstum lebender Zellen in Zellkultur mit der Möglichkeit die elektrische Aktivität der Zellen zu überwachen.
10. Messanordnung gemäß Anspruch 1, dadurch gekennzeichnet, dass besagte Membran in Form einer lebenden Zelle vorliegt.
PCT/EP2003/008299 2002-08-09 2003-07-28 Vorrichtung und methoden zur durchführung von elektrischen messungen an membrankörpern WO2004021002A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/523,784 US20050227139A1 (en) 2002-08-09 2003-07-28 Device and methods for carring out electrical measurements on membrane bodies
EP03790822A EP1529215A1 (de) 2002-08-09 2003-07-28 Vorrichtung und methoden zur durchführung von elektrischen messungen an membrankörpern
CA002494927A CA2494927A1 (en) 2002-08-09 2003-07-28 Device and methods for carrying out electrical measurements on membrane bodies
JP2004531823A JP4498139B2 (ja) 2002-08-09 2003-07-28 膜体上で電気的測定を実行するための装置および方法
AU2003253343A AU2003253343B2 (en) 2002-08-09 2003-07-28 Device and methods for carrying out electrical measurements on membrane bodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10236528A DE10236528A1 (de) 2002-08-09 2002-08-09 Vorrichtung und Methoden zur Durchführung von elektrischen Messungen an Membrankörpern
DE10236528.8 2002-08-09

Publications (1)

Publication Number Publication Date
WO2004021002A1 true WO2004021002A1 (de) 2004-03-11

Family

ID=30469635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/008299 WO2004021002A1 (de) 2002-08-09 2003-07-28 Vorrichtung und methoden zur durchführung von elektrischen messungen an membrankörpern

Country Status (7)

Country Link
US (1) US20050227139A1 (de)
EP (1) EP1529215A1 (de)
JP (1) JP4498139B2 (de)
AU (1) AU2003253343B2 (de)
CA (1) CA2494927A1 (de)
DE (1) DE10236528A1 (de)
WO (1) WO2004021002A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507703A (ja) * 2004-07-23 2008-03-13 エレクトロニック・バイオサイエンシーズ・エルエルシー イオン・チャネルを通過する時変電流を検出するための方法及び装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7266457B1 (en) * 1999-05-21 2007-09-04 Hesperos, Llc High throughput functional genomics
EP1588616A3 (de) * 2004-04-19 2011-09-07 Becton Dickinson and Company Verfahren zum transportieren transgener Xenopus laevis Oozyten
JP2007225300A (ja) * 2006-02-21 2007-09-06 Mie Univ 物質認識機能と情報変換機能を併せ持つセンサー

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066329A1 (en) * 1998-06-12 1999-12-23 Cenes Limited High throughput screen
WO2003063891A1 (en) * 2002-01-29 2003-08-07 Wyeth Compositions and methods for modulating connexin hemichannels

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5874668A (en) * 1995-10-24 1999-02-23 Arch Development Corporation Atomic force microscope for biological specimens
AU5164099A (en) * 1998-07-23 2000-02-14 Symbiosis Gmbh Assembly and apparatus for extracellular electrophysiological recordings and their use
DE10102117A1 (de) * 2001-01-18 2002-08-08 Diehl Ako Stiftung Gmbh & Co Verfahren zum schnellen Starten eines Asynchronmotors
GB0119438D0 (en) * 2001-02-16 2001-10-03 Aventis Pharm Prod Inc Gap junction permeability assay
WO2003032964A2 (en) * 2001-10-17 2003-04-24 University Of Wales College Of Medecine Gap junctions and endothelial-derived hyperpolarizing factor (edhf)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066329A1 (en) * 1998-06-12 1999-12-23 Cenes Limited High throughput screen
WO2003063891A1 (en) * 2002-01-29 2003-08-07 Wyeth Compositions and methods for modulating connexin hemichannels

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MAZET JEAN-LUC ET AL: "Voltage dependence of liver gap-junction channels reconstituted into liposomes and incorporated into planar bilayers", EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 210, no. 1, 1992, pages 249 - 256, XP001156543, ISSN: 0014-2956 *
OH SEUNGHOON ET AL: "Molecular determinants of electrical rectification of single channel conductance in gap junctions formed by connexins 26 and 32", JOURNAL OF GENERAL PHYSIOLOGY, vol. 114, no. 3, September 1999 (1999-09-01), pages 339 - 364, XP002264406, ISSN: 0022-1295 *
POSTMA FRISO R ET AL: "Acute loss of cell-cell communication caused by G protein-coupled receptors: A critical role for c-Src", JOURNAL OF CELL BIOLOGY, vol. 140, no. 5, 9 March 1998 (1998-03-09), pages 1199 - 1209, XP002264408, ISSN: 0021-9525 *
YAMAMOTO YOSHIMICHI ET AL: "Intercellular electrical communication among smooth muscle and endothelial cells in guinea-pig mesenteric arterioles", JOURNAL OF PHYSIOLOGY (CAMBRIDGE), vol. 535, no. 1, August 2001 (2001-08-01), pages 181 - 195, XP002264407, ISSN: 0022-3751 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507703A (ja) * 2004-07-23 2008-03-13 エレクトロニック・バイオサイエンシーズ・エルエルシー イオン・チャネルを通過する時変電流を検出するための方法及び装置
JP4897681B2 (ja) * 2004-07-23 2012-03-14 エレクトロニック・バイオサイエンシーズ・エルエルシー イオン・チャネルを通過する時間的に変化する電流を検出するための方法及び装置

Also Published As

Publication number Publication date
EP1529215A1 (de) 2005-05-11
DE10236528A1 (de) 2004-02-19
CA2494927A1 (en) 2004-03-11
JP2005535906A (ja) 2005-11-24
AU2003253343B2 (en) 2009-04-30
US20050227139A1 (en) 2005-10-13
JP4498139B2 (ja) 2010-07-07
AU2003253343A1 (en) 2004-03-19

Similar Documents

Publication Publication Date Title
EP1040349B2 (de) Positionierung und elektrophysiologische charakterisierung einzelner zellen und rekonstituierter membransysteme auf mikrostrukturierten trägern
DE202005022036U1 (de) Paralleles Patch-Clamp-System
EP1368488B1 (de) Sensoranordnung, vorrichtung und verfahren zur amperometrischen und/oder potentiometrischen, pharmakologischen wirkort- und/oder wirkstofftestung
EP2483673A1 (de) Anordnung und verfahren unter verwendung von mikrosensoren zum messen von zell-vitalitäten
EP1529215A1 (de) Vorrichtung und methoden zur durchführung von elektrischen messungen an membrankörpern
EP1421380A2 (de) Vorrichtung und verfahren zur erfassung bioelektrischer signale aus elektrophysiologisch aktiven bereichen in sphäroiden
EP1807696B1 (de) Vorrichtung und verfahren zur messung von zelleigenschaften
EP1400805B1 (de) Messvorrichtung und -verfahren für ein Screening bei auf Elektroden immobilisierten Zellen
EP1660886A1 (de) Vorrichtungen zum nachweis biochemischer aktivität enthaltend gap junctions
EP2607475B1 (de) Monitoringzelle und Verfahren zur Analyse eines Zell- und Gewebewachstums
DE10244129B4 (de) H+-K+-ATPase-Assay
DE10047390A1 (de) Hochdurchsatzverfahren zum Screening von organischen Verbindungen auf einem Array von planaren lipiden Doppelschichten
DE102006055990A1 (de) Vorrichtung und Verfahren zur Messung biologischer und elektronischer Eigenschaften einer Probe
DE102006011925B3 (de) Typ-PAT1-Protein-Assay
EP1623224A2 (de) Biokompatible sensorelektrodenanordnung und verfahren zu deren herstellung
DE102007006585B3 (de) Verfahren zum Identifizieren eines Wirkstoffkomplexes, welcher eine enzymatische Eigenschaft eines synaptosomalen/synaptischen Wirkortkomplexes im Bereich einer synaptosomalen/synaptischen Membran modifiziert
DE10202482B4 (de) Molekularer Sensorkomplex, Messsondenanordnung und Verfahren zur pharmakologischen Wirkstoff- und/oder Wirkorttestung
WO2022043136A1 (de) Vorrichtung und verfahren zur detektion von einem wassertransport durch mindestens eine schicht biologischer zellen
DE102011080772B3 (de) Vorrichtung, System und Verfahren zum Detektieren einer Sinneswahrnehmung
DE102006032953A1 (de) Biosensorrohling und Verfahren zum Herstellen einer Biosensoranordnung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003790822

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2494927

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003253343

Country of ref document: AU

Ref document number: 2004531823

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10523784

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003790822

Country of ref document: EP