WO2004020366A1 - Verbundkörper aus keramikschichten und verfahren zu dessen herstellung - Google Patents

Verbundkörper aus keramikschichten und verfahren zu dessen herstellung Download PDF

Info

Publication number
WO2004020366A1
WO2004020366A1 PCT/DE2003/002829 DE0302829W WO2004020366A1 WO 2004020366 A1 WO2004020366 A1 WO 2004020366A1 DE 0302829 W DE0302829 W DE 0302829W WO 2004020366 A1 WO2004020366 A1 WO 2004020366A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite body
ceramic
ceramic layers
connecting material
layers
Prior art date
Application number
PCT/DE2003/002829
Other languages
English (en)
French (fr)
Inventor
Claudio De La Prieta
Thomas Schulte
Erhard Hirth
Annika Kristoffersson
Stefan Nufer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US10/514,333 priority Critical patent/US7270888B2/en
Priority to JP2004531710A priority patent/JP4646202B2/ja
Publication of WO2004020366A1 publication Critical patent/WO2004020366A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/122Metallic interlayers based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/123Metallic interlayers based on iron group metals, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/1266O, S, or organic compound in metal component
    • Y10T428/12667Oxide of transition metal or Al

Definitions

  • the invention is based on a composite body made of at least two ceramic layers according to the preamble of claim 1 and a method for its production.
  • the connecting material consists of metal, for example Al, Cu, Zn, Mg, Ag, Au, Si, Fe, Ti , Ge, Sn, or the like. Or an alloy of these metals.
  • the connecting material is introduced by a casting process, for example die casting or infiltration.
  • the two elements are placed close to one another or one above the other and cast around them. Due to the fine surface roughness of the two elements which is always present, the liquefied connecting material can immigrate between them and thus permanently connect the two elements to one another.
  • one or both of the mutually facing surfaces of the adjacent elements is roughened. This roughening can be done by simple grinding or by forming groove-shaped channels.
  • the composite body according to the invention with the features of claim 1 has the advantage that due to the low modulus of elasticity the connecting material is ductile and permanently and stably connects the ceramic layers, even if they have very different temperature coefficients, such as e.g. is the case when the composite body is composed of zirconium oxide and aluminum oxide layers.
  • the ductile connecting material compensates for the thermal expansion of the ceramic layers at the interfaces by means of elastic-plastic deformation and thus reduces the mechanical stresses that occur at higher temperatures, e.g. when using the composite body for a sensor element of a lambda probe lie between 700 and 1000 ° C.
  • the reduction of the thermal stresses between the ceramic layers leads to a high age resistance of the sensor element.
  • the connection points between the ceramic layers have a high density, so that leadthroughs through the ceramic layers can be carried out with high gas tightness.
  • the two ceramic layers have their
  • Joints have a porous surface structure.
  • This porous surface structure ensures an optimal mechanical connection of the connecting material and ceramic, since the porous layer is well wetted by the melt of the connecting material and this results in a toothing when the connecting material cools.
  • the toothing is also the reason for the high gas tightness of the connection between the ceramic layers.
  • metals with a high melting point e.g. Bromine (B), chromium (Cr), nickel (Ni), platinum (Pt), titanium (Ti), or alloys of these metals are used.
  • Reactive metal-ceramic mixtures are also used as the connecting material.
  • magnesium oxide, aluminum oxide or spinel and on the other hand aluminum or aluminum-magnesium alloys react with one another.
  • a good connection is made both to a ceramic layer consisting, for example, of aluminum oxide and to a e.g. achieved ceramic layer made of zirconium oxide, so that the additional generation of porosity of the surfaces of these ceramic layers can be dispensed with.
  • a porous surface structure is first applied to the connection points of the ceramic layers, preferably by applying a layer made of a paste pore-forming components in the screen printing or dispensing process and subsequent, separate heat treatment of the ceramic layers. During the heat treatment, the pore-forming components evaporate, and the porous surface structure is created on the connection points.
  • the connecting material is then applied to the porous surface structure of the sintered ceramic layers, preferably by screen printing or dispensing, the two ceramic layers to form the composite body with mutually facing connection points and intermediate points
  • a heat treatment post-firing
  • the advantage of this process is that the separate heat treatment (sintering) of the ceramic layers allows the sintering parameters to be freely selected before being assembled into the composite body, and that the porous additional layers can be produced with any pore-forming agent.
  • each ceramic layer prepared the formation of a porous surface structure by applying a layer of a paste with pore-forming components in a screen printing or dispensing process.
  • the connecting material is then immediately applied as a layer to the paste layer on at least one, preferably on each, ceramic layer, preferably again using the screen printing or dispensing method.
  • the coated ceramic layers are then placed on top of one another to form the composite body with mutually facing connection points and intermediate connecting material, and the composite body is subjected to a heat treatment (co-firing). subjected.
  • the composite body can also be produced by reaction sintering.
  • the porous additional layers that is to say the application of the paste with pore formers, are dispensed with and the connecting material is applied directly to the connection points of the ceramic layers. After the ceramic layers have been placed on top of one another with the connection points facing one another and the connecting material lying between them, the composite body is reaction-sintered.
  • Fig. 1 shows a cross section of one of two
  • FIG. 2 shows the composite body of FIG. 1 in various stages A - E of its manufacture. Description of the embodiment
  • the composite body sketched in cross section in FIG. 1 consists of two ceramic layers 11, 12 which have different coefficients of thermal expansion.
  • the upper ceramic layer 11 is made of zirconium oxide (Zr0 2 ) and the lower ceramic layer is made of aluminum oxide (A1 2 0 3 ).
  • the upper ceramic layer 11 has a thermal expansion coefficient of approx. 10.10 ⁇ 6 / ° K, while the ceramic layer 12 has an expansion coefficient of approx. 8.10 " ⁇ / ° K.
  • a flat connection point 13 or 14 is defined on each ceramic layer 11 or 12 , in the area of which the two ceramic layers 11, 12 are connected to one another in a high-temperature-resistant and thermomechanically stable manner by means of a contact layer 15.
  • a connecting material which has a low modulus of elasticity is used for this purpose with high melting point or reactive metal-ceramic mixtures
  • metals with high melting point are boron (B), chromium (Cr), nickel (Ni), platinum (Pt), titanium (Ti). Alloys of these metals can also be used as Reactive metal-ceramic mixtures are made, for example, of magnesium oxide (MgO), aluminum oxide (A1 2 0 3 ) or spinel on the one hand and aluminum or aluminum-magnesium alloys on the other hand, which react with one another during heat treatment (reaction sintering).
  • MgO magnesium oxide
  • Al oxide A1 2 0 3
  • spinel aluminum oxide
  • aluminum-magnesium alloys on the other hand, which react with one another during heat treatment (reaction sintering).
  • the connecting material 15 is stretchy (ductile) and compensates for the heating of the composite body to high temperatures, for example 700-1000 ° C. different dimensions of the two ceramic layers 11, 12 by elastic-plastic deformation, so that the mechanical stresses between the two ceramic layers 11, 12 are largely reduced. Due to the good connection of the two ceramic layers 11, 12 to the connecting material and by filling the pores in the surface structure of the ceramic layers 11, 12 through the connecting material, a high material density arises at the connecting points 13, 14, so that leadthroughs through the nerbund body, which Surface area of the connection points 13, 14 are located, can be designed with high gas tightness.
  • the ceramic layers 11, 12 are provided in the region of their connection points 13, 14 with a porous surface structure into which the liquid connection material of the contact layer 15 penetrates and after it solidifies "interlocked".
  • FIG. 2 illustrates various production stages A - E of the composite body during its manufacture.
  • the process for producing the composite body then proceeds as follows:
  • a porous surface structure is first produced on the connection points 13, 14 on the ceramic layers 11, 12.
  • a layer 16 of a paste containing a so-called pore former is applied to the boundary layers 13, 14 by means of screen printing, spraying or dispensing methods (FIG. 2A).
  • soot is used as the pore former.
  • the ceramic layers 11, 12 are subjected to a heat treatment separately in a sintering process. In this sintering process, the soot is used burned, and a porous layer 17 is formed on the connection points 13, 14 (FIG. 2B).
  • the connecting material in the form of a layer 18 is now applied to each of the porous layers 17
  • FIG. 2C The application is again carried out using screen printing or dispensing.
  • the ceramic layers 11, 12 provided with the layers 18 are then placed one on top of the other to form the composite body with mutually facing connection points 13, 14 such that the layers 18 touch (FIG. 2D).
  • the composite body assembled in this way is subjected to a heat treatment, a so-called post-firing process.
  • the molten connecting material infiltrates into the porous layers 17 and, after cooling, the solid contact layer 15 is formed between the connecting points 13, 14 (FIG. 2E).
  • the ceramic layers 11, 12 provided in their connection points 13, 14 with layers 16 of a paste with pore-forming constituents are not subjected to a separate sintering process, but rather the porous surface structure of the connection points 13, 14 is only produced in the composite composite body, which is one so-called co-firing is subjected.
  • the layers 16 of ceramic paste have been applied, the layers 18 of connecting material are applied directly to the layers 16.
  • the application is also carried out by screen printing or dispensing.
  • the coated ceramic layers 11, 12 with mutually facing connection points 13, 14 and the intermediate layers 16, 18 are placed on top of one another and the composite body thus assembled is subjected to a heat treatment Subjected to (sintering).
  • composition of the ceramic pastes in the layers 16 is coordinated so that during the heat treatment of the composite body, for example in the heating phase during sintering, the pores are first formed in the layers 16, for example by burning the soot out of the ceramic paste, and then that molten connecting material from the layer 18 penetrates into the pores which are formed (infiltrated).
  • a metal-ceramic mixture is used as the connecting material, instead of a metal-ceramic mixture, the application of the layer 16 of ceramic paste with pore-forming components to produce a porous layer 17 on the connection points 13, 14 between the ceramic layers 11, 12 can be carried out on the separate process step to be dispensed with.
  • the reactive connecting material in the so-called reaction sintering achieves a good connection both to the ceramic layer 11 made of zirconium oxide and to the ceramic layer 12 made of aluminum oxide.
  • the invention is not restricted to the exemplary embodiment described.
  • the composite body can thus contain more than two ceramic layers 11, 12, a contact layer 15 always being produced between two ceramic layers for a permanent, thermally stable connection between the ceramic layers.
  • a preferred area of application of the composite body described is the production of a sensor element for a lambda probe.
  • the ceramic layers 11, 12, between which so-called functional layers, such as pump cell, Nernst cell, resistance heater, are then embedded, are called ceramic foils.
  • the ceramic foils which have not yet undergone a sintering process are referred to as so-called green foils, which are provided in the same way as described above at the connection points 13, 14 with layers of ceramic paste and of connecting material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Laminated Bodies (AREA)

Abstract

Es wird ein Verbundkörper aus mindesten zwei Keramikschichten (11, 12) angegeben, bei dem die Keramikschichten (11, 12) an definierten Verbindungsstellen (13, 14) durch eine Kontaktschicht (15) aus einem Verbindungsmaterial miteinander felt verbunden rind. Zur Erzielung einer dauerhaften, thermisch stabilen Verbindung von Keramikschichten (11, 12) mit unterschiedlichen thermischen Ausdehnungskoeffizienten weist das Verbindungsmaterial einen niedrigen Elastizitäts-Modul auf. Bei der Herstellung des Verbundkörpers werden die Verbindungsstellen der Keramikschichten (11, 12) zur Bdldung einer poröse Oberflächenstruktur vorbehandelt, auf these das Verbindungsmaterial aufgetragen und each Aufeinanderlegen der Keramikschichten (11, 12) mit einander zugekehrten Verbindungsstellen (13, 14) und dazwischenliegendem Verbindungsmaterial der so zusammengestellte Verbundkörper einer Wärmebehandlung unterzogen.

Description

Nerbundkörper aus Keramikschichten und Verfahren zu dessen Herstellung
Stand der Technik
Die Erfindung geht aus von einem Verbundkörper aus mindestens zwei Keramikschichten nach dem Oberbegriff des Anspruchs 1 sowie einem Verfahren zu dessen Herstellung.
Bei einem bekannten Verbundkörper aus zwei Nichtmetall- oder zwei Metallelementen oder aus einem Nichtmetall- und einem Metallelement (DE 197 04 357 AI) besteht das Verbindungsmaterial aus Metall, z.B. AI, Cu, Zn, Mg, Ag, Au, Si, Fe, Ti, Ge, Sn, oder dgl. oder einer Legierung aus diesen Metallen. Das Verbindungsmaterial wird durch einen Gußprozeß, z.B. Druckguß oder Infiltration, eingebracht. Hierzu werden die beiden Elemente unmittelbar dicht aneinander bzw. übereinander gelegt und umgössen. Das verflüssigte Verbindungsmaterial kann aufgrund der stets vorhandenen feinen Oberflächenrauhigkeit der beiden Elemente zwischen diese einwandern und damit die beiden Elemente unlösbar miteinander verbinden. Um die Menge des zwischen den beiden Elementen eindringenden Verbindungsmaterials zu erhöhen, wird eine oder auch beide der einander zugewandten Oberflächen der aneinandergrenzenden Elemente aufgerauht. Dieses Aufrauhen kann durch einfaches Aufschleifen erfolgen oder durch Ausbildung von nutförmigen Kanälen bewirkt werden.
Vorteile der Erfindung
Der erfindungsgemäße Verbundkörper mit den Merkmalen des Anspruchs 1 hat den Vorteil, daß durch den niedrigen E-Modul das Verbindungsmaterial duktil ist und die Keramikschichten dauerhaft und stabil miteinander verbindet, auch dann, wenn sie stark unterschiedliche Temperaturkoeffizienten aufweisen, wie dies z.B. bei Aufbau des Verbundkörpers aus Zirkoniumoxid- und Aluminiumoxid-Schichten der Fall ist. Das duktile Verbindungsmaterial kompensiert die thermische Ausdehnung der Keramikschichten an den Grenzflächen durch elastisch-plastische Verformung und baut so die mechanischen Spannungen ab, die bei höheren Temperaturen auftreten, die z.B. bei Verwendung des Verbundkörpers für ein Sensorelement einer Lambdasonde zwischen 700 und 1000 C° liegen. Die Reduzierung der Wärmespannungen zwischen den Keramikschichten führt zu einer hohen Altersbeständigkeit des Ξensoreleraents . Die Verbindungsstellen zwischen den Keramikschichten besitzen eine hohe Dichte, so daß Durchführungen durch die Keramikschichten mit hoher Gasdichtheit ausgeführt werden können.
Durch die in den weiteren Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Anspruch 1 angegebenen Verbundkörpers möglich. Gemäß einer vorteilhaften Ausführungsform der Erfindung weisen die beiden Keramikschichten an ihren
Verbindungsstellen eine poröse Oberflächenstruktur auf. Durch diese poröse Oberflächenstruktur wird eine optimale mechanische Verbindung von Verbindungsmaterial und Keramik sichergestellt, da die poröse Schicht durch die Schmelze des Verbindungsmaterials gut benetzt wird und sich dadurch beim Abkühlen des Verbindungsmaterials eine Verzahnung ergibt. Die Verzahnung ist auch der Grund für die hohe Gasdichtheit der Verbindung zwischen den Keramikschichten.
Gemäß vorteilhaften Ausführungsformen der Erfindung werden als Ausgangsmaterialien für das Verbindungsmaterial Metalle mit hohem Schmelzpunkt, z.B. Brom (B) , Chrom (Cr) , Nickel (Ni) , Platin (Pt), Titan (Ti), oder Legierungen dieser Metalle verwendet. Als Verbindungsmaterial werden aber auch reaktive Metall-Keramik-Mischungen eingesetzt. Z.B. reagieren einerseits Magnesiumoxid, Aluminiumoxid oder Spinell und andererseits Aluminium oder Aluminium-Magnesium-Legierungen miteinander. In letzterem Fall der Ausführung des Verbindungsmaterials wird eine gute Anbindung sowohl an eine beispielsweise als Aluminiumoxid bestehende Keramikschicht als auch an eine z.B. aus Zirkoniumoxid bestehende Keramikschicht erreicht, so daß auf die zusätzliche Erzeugung einer Porosität der Oberflächen dieser Keramikschichten verzichtet werden kann.
Bei einem bevorzugten Verfahren zur Herstellung des erfindungsgemäßen Verbundkörpers mittels eines sog. Post- firing-Prozesses wird zunächst auf den Verbindungsstellen der Keramikschichten eine poröse Oberflächenstruktur vorzugsweise durch Aufbringen einer Schicht aus einer Paste mit porenbildenden Bestandteilen im Siebdruck- oder Dispensverfahren und anschließender, getrennter Wärmebehandlung der Keramikschichten hergestellt. Bei der Wärmebehandlung verdampfen die porenbildenden Bestandteile, und es entsteht die poröse Oberflächenstruktur auf den Verbindungsstellen. Danach wird das Verbindungsmaterial auf die poröse Oberflächenstruktur der gesinterten Keramikschichten vorzugsweise im Siebdruck- oder Dispensverfahren aufgetragen, die beiden Keramikschichten zur Bildung des Verbundkörpers mit einander zugekehrten Verbindungsstellen und dazwischenliegendem
Verbindungsmaterial aufeinandergelegt und der Verbundkörper einer Wärmebehandlung (post-firing) unterzogen. Dieses Verfahren hat den Vorteil, daß durch die separate Wärmebehandlung (Sintern) der Keramikschichten vor dem Zusammensetzen zum Verbundkörper eine freie Wahl der Sinterparameter besteht und die porösen Zusatzschichten mit beliebigen Porenbildnern hergestellt werden können.
In einem alternativen Verfahren wird auf den
Verbindungsstellen an jeder Keramikschicht die Bildung einer poröse Oberflächenstruktur vorbereitet, indem eine Schicht aus einer Paste mit porenbildenden Bestandteilen im Siebdruck- oder Dispensverfahren aufgetragen wird. Auf die Pastenschicht auf mindestens einer, vorzugsweise auf jeder, Keramikschicht wird dann sofort das Verbindungsmaterial als Schicht, vorzugsweise wiederum im Siebdruck- oder Dispensverfahren, aufgetragen. Die beschichteten Keramikschichten werden dann zur Bildung des Verbundkörpers mit einander zugekehrten Verbindungsstellen und dazwischenliegendem Verbindungsmaterial aufeinandergelegt und der Verbundkörper einer Wärmebehandlung (Co-firing) unterzogen. Bei diesem sog. Co-firing-Prozeß ist es notwendig, daß die Keramikschichten einheitliche Sinterparameter erfordern und - da die poröse Oberflächenstruktur sich erst bei der Wärmebehandlung bildet - die Porenbildner in der Paste so gewählt sind, daß die Porenbildung vor Beginn des Verbindungsprozesses zwischen Verbindungsmaterial und Pastenmaterial einsetzt.
Gemäß einem weiteren alternativen Verfahren kann der Verbundkörper auch durch Reaktionssintern hergestellt werden. In diesem Fall wird auf die porösen Zusatzschichten, also auf das Aufbringen der Paste mit Porenbildnern, verzichtet und auf die Verbindungsstellen der Keramikschichten unmittelbar das Verbindungsmaterial aufgetragen. Nach Aufeinanderlegen der Keramikschichten mit einander zugekehrten Verbindungsstellen und dazwischenliegendem Verbindungsmaterial wird der Verbundkörper reaktionsgesintert.
Zeichnung
Die Erfindung ist anhand eines in der Zeichnung dargestellten Ausführungsbeispiels in der nachfolgenden Beschreibung näher erläutert. Es zeigen in schematisierter Darstellung:
Fig. 1 einen Querschnitt eines aus zwei
Keramikschichten bestehenden Verbundkörpers,
Fig. 2 den Verbundkörper gemäß Fig. 1 in verschiedenen Stufen A - E seiner Herstellung. Beschreibung des Ausführungsbeispiels
Der in Fig. 1 im Querschnitt skizzierte Verbundkörper besteht aus zwei Keramikschichten 11, 12, die unterschiedliche Wärmeausdehnungskoeffizienten aufweisen. Z.B. besteht die obere Keramikschicht 11 aus Zirkoniumoxid (Zr02) und die untere Keramikschicht aus Aluminiumoxid (A1203) . Die obere Keramikschicht 11 besitzt einen thermischen Ausdehnungskoeffizienten von ca. 10.10~6/°K, die Keramikschicht 12 dagegen einen Ausdehnungskoeffizienten von ca. 8.10/°K. An jeder Keramikschicht 11 bzw. 12 ist eine flächige Verbindungsstelle 13 bzw. 14 definiert, in deren Bereich die beiden Keramikschichten 11, 12 durch ein Kontaktschicht 15 aus einem Verbindungsmaterial hochtemperaturfest und thermomechanisch stabil miteinander verbunden sind. Hierzu ist ein Verbindungsmaterial verwendet, das einen niedrigen Elastizitäsmodul (E-Modul) aufweist. Ausgangsmaterialien für das Verbindungsmaterial 15 sind entweder Metalle mit hohem Schmelzpunkt oder reaktive Metall- Keramik-Mischungen. Beispiele für Metalle mit hohem Schmelzpunkt sind Bor (B) , Chrom (Cr) , Nickel (Ni), Platin (Pt), Titan (Ti). Auch Legierungen aus diesen Metallen können als Verbindungsmaterial verwendet werden. Reaktive Metall- Keramik-Mischungen werden beispielsweise aus Magnesiumoxid (MgO) , Aluminiumoxid (A1203) oder Spinell einerseits und Aluminium oder Aluminium-Magnesium-Legierungen andererseits zusammengesetzt, die bei Wärmebehandlung (Reaktionssintern) miteinander reagieren.
Infolge des niedrigen E-Moduls ist das Verbindungsmaterial 15 dehnbar (duktil) und kompensiert bei Erwärmung des Verbundkörpers auf hohe Temperaturen, z.B. 700 - 1000 °C, die unterschiedlichen Ausdehnungen der beiden Keramikschichten 11, 12 durch elastisch-plastische Verformung, so daß die mechanischen Spannungen zwischen den beiden Keramikschichten 11, 12 weitgehend reduziert werden. Durch die gute Anbindung der beiden Keramikschichten 11, 12 an das Verbindungsmaterial und durch das Ausfüllen der Poren in der Oberflächenstruktur der Keramikschichten 11, 12 durch das Verbindungsmaterial entsteht an den Verbindungsstellen 13, 14 eine hohe Materialdichte, so daß Durchführungen durch den Nerbundkörper, die im Flächenbereich der Verbindungsstellen 13, 14 liegen, mit hoher Gasdichtheit ausgeführt werden können. Um die Anbindung der Kontaktschicht 15 an die beiden Keramikschichten 11, 12 noch zu verbessern, sind die Keramikschichten 11 ,12 im Bereich ihrer Verbindungsstellen 13, 14 mit einer porösen Oberflächenstruktur versehen, in die das flüssige Verbindungsmaterial der Kontaktschicht 15 eindringt und nach Erstarren sich darin "verzahnt".
In Fig. 2 sind verschiedene Fertigungsstufen A - E des Verbundkörpers bei seiner Herstellung illustriert. Danach läuft das Verfahren zur Herstellung des Verbundkörpers wie folgt ab:
Auf den Verbindungsstellen 13, 14 an den Keramikschichten 11, 12 wird zunächst jeweils eine poröse Oberflächenstruktur hergestellt. Hierzu wird auf die Grenzschichten 13, 14 mittels Siebdruck-, Sprüh- oder Dispensverfahren jeweils eine Schicht 16 aus einer sog. Porenbildner enthaltenen Paste aufgebracht (Fig. 2A) . Als Porenbildner wird beispielsweise Flammruß verwendet. Die Keramikschichten 11, 12 werden separat in einem Sinterprozeß einer Wärmebehandlung unterzogen. Bei diesem Sinterprozeß wird der Flammruß verbrannt, und auf den Verbindungsstellen 13, 14 entsteht eine poröse Schicht 17 (Fig. 2B) . Auf jede der porösen Schichten 17 wird nunmehr das Verbindungsmaterial in Form einer Schicht 18 aufgetragen
(Fig. 2C) . Die Auftragung erfolgt wiederum mittels Siebdruckoder Dispensverfahren. Anschließend werden die mit den Schichten 18 versehenen Keramikschichten 11, 12 zur Bildung des Verbundkörpers mit einander zugekehrten Verbindungsstellen 13, 14 so aufeinandergelegt, daß die Schichten 18 sich berühren (Fig. 2D) . Der so zusammengesetzte Verbundkörper wird einer Wärmebehandlung, einem sog. Post- firing-Prozeß unterzogen. Dabei infiltiert das geschmolzene Verbindungsmaterial in die porösen Schichten 17, und es bildet sich nach Abkühlung die feste Kontaktschicht 15 zwischen den Verbindungsstellen 13, 14 (Fig. 2E) .
In einer Abwandlung des Herstellungsverfahren werden die in ihren Verbindungsstellen 13, 14 mit Schichten 16 aus einer Paste mit porenbildenden Bestandteilen versehenen Keramikschichten 11, 12 nicht einem separatem Sinterprozeß unterzogen, sondern die poröse Oberflächenstruktur der Verbindungsstellen 13, 14 erst im zusammengesetzten Verbundkörper hergestellt, der einem sog. Co-firing unterworfen wird. Hierbei werden nach Aufbringen der Schichten 16 aus keramischer Paste unmittelbar die Schichten 18 aus Verbindungsmaterial auf die Schichten 16 aufgetragen. Die Auftragung erfolgt ebenfalls im Siebdruck- oder Dispensverfahren. Dann werden zur Bildung des Verbundkörpers die beschichteten Keramikschichten 11, 12 mit einander zugekehrten Verbindungsstellen 13, 14 und den dazwischenliegenden Schichten 16, 18 aufeinandergelegt und der so zusammengesetzte Verbundkörper einer Wärmebehandlung (Sintern) unterzogen. Die Zusammensetzung der keramischen Pasten in den Schichten 16 ist so abgestimmt, daß bei der Wärmebehandlung des Verbundkörpers, z.B. in der Aufheizphase beim Sintern, zunächst in den Schichten 16 die Poren gebildet werden, indem beispielsweise der Flammruß aus der keramischen Paste verbrennt, und anschließend das geschmolzene Verbindungsmaterial aus der Schicht 18 in die sich bildenden Poren eindringt (infiltriert).
Wird als Verbindungsmaterial nicht metallisches Material sondern eine Metall-Keramik-Mischung verwendet, so kann auf den gesonderten Verfahrenschritt der Auftragung der Schicht 16 aus keramischer Paste mit porenbildenden Bestandteilen zur Erzeugung einer porösen Schicht 17 auf den Verbindungsstellen 13, 14 zwischen den Keramikschichten 11, 12 verzichtet werden. Durch das reaktive Verbindungsmaterial wird beim sog. Reaktionssintern eine gute Anbindung sowohl an die Keramikschicht 11 aus Zirkoniumoxid als auch an die Keramikschicht 12 aus Aluminiumoxid erreicht.
Die Erfindung ist nicht auf das beschriebene Ausführungsbeispiel beschränkt. So kann der Verbundkörper mehr als zwei Keramikschichten 11, 12 enthalten, wobei immer zwischen zwei Keramikschichten eine Kontaktschicht 15 für eine dauerhafte, thermisch stabile Verbindung zwischen den Keramikschichten erzeugt wird.
Ein bevorzugtes Einsatzgebiet des beschriebenen Verbundkörpers ist die Herstellung eines Sensorelements für eine Lambdasonde. Die Keramikschichten 11 ,12, zwischen denen dann noch sog. Funktionsschichten, wie Pumpzelle, Nernstzelle, Widerstandsheizer, eingebettet sind, werden als keramische Folien ausgeführt. Die noch nicht einem Sinterprozeß unterworfenen, keramischen Folien werden als sog. Grünfolien bezeichnet, die in der gleichen Weise wie vorstehend beschrieben an den Verbindungsstellen 13, 14 mit Schichten aus keramischer Paste und aus Verbindungsmaterial versehen werden.

Claims

Ansprüche
1. Verbundkörper aus mindestens zwei Keramikschichten (11, 12), die an definierten Verbindungsstellen (13, 14) durch eine KontaktSchicht (15) aus einem Verbindungsmaterial fest miteinander verbunden sind, dadurch gekennzeichnet, daß das Verbindungsmaterial einen niedrigen Elastizitäts-Modul aufweist.
2. Verbundkörper nach Anspruch 1, dadurch gekennzeichnet, daß die Keramikschichten (11, 12) unterschiedlich große thermische Ausdehnungskoeffizienten aufweisen.
3. Verbundkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die eine Keramikschicht (11) aus Zirkoniumoxid und die andere Keramikschicht (12) aus A.luminiumoxid besteht .
4. Verbundkörper nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß die beiden Keramikschichten (11, 12) an ihren Verbindungsstellen (13, 14) eine 'poröse Oberflächenstruktur aufweisen.
5. Verbundkörper nach Anspruch 4, dadurch gekennzeichnet, daß das Verbindungsmaterial Metalle mit einem hohem Schmelzpunkt enthält.
6. Verbundkörper nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, daß das Verbindungsmaterial eine reaktive Metall-Keramik-Mischung ist.
7. Verfahren zur Herstellung eines Verbundkörpers nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet,, daß die Verbindungsstellen (13, 14) der Keramikschichten (11, 12) zur Bildung einer poröse Oberflächenstruktur vorbehandelt werden, daß auf die vorbehandelten Verbindungsstellen (13, 14) mindestens einer, vorzugsweise jeder Keramikschicht (11, 12) das Verbindungsmaterial aufgetragen wird, daß die Keramikschichten (11, 12) zur Bildung des Verbundkörpers mit einander zugekehrten Verbindungsstellen (13, 14) und dazwischenliegendem Verbindungsmaterial aufeinandergelegt werden und daß der Verbundkörper einer Wärmebehandlung unterzogen wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet^ daß zur Bildung der porösen Oberflächenstruktur auf die Verbindungsstellen (13, 14) eine Schicht (16) aus einer keramischen Paste mit porenbildenden Bestandteilen aufgetragen wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet r daß die Auftragung der keramischen Paste im Siebdruck-, Sprüh- oder Dispensverfahren durchgeführt wird.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß die mit den Schichten (16) aus keramischer Paste versehenen Keramikschichten (11, 12) vor Auftragen des Verbindungsmaterials einer Wärmebehandlung unterzogen werden.
11. Verfahren zur Herstellung eines Verbundkörpers nach Anspruch 6, dadurch gekennzeichnet, daß auf die Verbindungsstellen (13, 14) an den Keramikschichten (11, 12) das Verbindungsmaterial aufgetragen wird, daß die Keramikschichten (11, 12) zur Bildung des Verbundkörpers mit einander zugekehrten Verbindungsstellen (13, 14) und dazwischenliegendem Verbindungsmaterial aufeinandergelegt werden und daß der Verbundkörper einem Reaktionssinterprozeß ausgesetzt wird.
12. Verfahren nach einem der Ansprüche 7 - 11, dadurch gekennzeichnet, daß das Verbindungsmaterial mittels Siebdruck- oder Dispensverfahren aufgetragen wird.
PCT/DE2003/002829 2002-08-28 2003-08-25 Verbundkörper aus keramikschichten und verfahren zu dessen herstellung WO2004020366A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/514,333 US7270888B2 (en) 2002-08-28 2003-08-25 Composite body made of ceramic layers and method for its manufacture
JP2004531710A JP4646202B2 (ja) 2002-08-28 2003-08-25 セラミック層から成る複合体および該複合体を製造するための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10239416.4 2002-08-28
DE10239416A DE10239416B4 (de) 2002-08-28 2002-08-28 Verfahren zur Herstellung eines aus Keramikschichten bestehenden Verbundkörpers

Publications (1)

Publication Number Publication Date
WO2004020366A1 true WO2004020366A1 (de) 2004-03-11

Family

ID=31502028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002829 WO2004020366A1 (de) 2002-08-28 2003-08-25 Verbundkörper aus keramikschichten und verfahren zu dessen herstellung

Country Status (4)

Country Link
US (1) US7270888B2 (de)
JP (1) JP4646202B2 (de)
DE (1) DE10239416B4 (de)
WO (1) WO2004020366A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110272080A1 (en) * 2005-11-23 2011-11-10 Babcock & Wilcox Technical Services Y-12, Llc Method of forming and assembly of metal and ceramic parts

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100052167A (ko) * 2008-11-10 2010-05-19 삼성전자주식회사 웨이퍼 본딩 방법 및 웨이퍼 본딩 장비
US8850823B2 (en) 2009-12-29 2014-10-07 Rolls-Royce North American Technologies, Inc. Integrated aero-engine flowpath structure
JP5930876B2 (ja) * 2012-06-28 2016-06-08 株式会社クボタ セラミックス成形体、膜エレメント、セラミックス成形体の製造方法、セラミックス構造体の製造方法、及び膜エレメントの製造方法
US10486405B2 (en) * 2018-01-16 2019-11-26 U.S. Department Of Energy Nanomaterial assisted bonding method to produce curved surfaces
EP3514126A1 (de) * 2018-01-17 2019-07-24 Siemens Aktiengesellschaft Keramischer werkstoffverbund mit einer verbindungsschicht aus einem molybdän-titancarbid-kompositwerkstoff, bauteil, gasturbine, sowie verfahren
US10882130B2 (en) 2018-04-17 2021-01-05 Watlow Electric Manufacturing Company Ceramic-aluminum assembly with bonding trenches

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB976660A (en) * 1962-11-26 1964-12-02 Mond Nickel Co Ltd Brazing alloys and the production of ceramic-to-ceramic or ceramic-to-metal joints
GB1259633A (de) * 1968-04-15 1972-01-05
EP0380200A1 (de) * 1989-01-11 1990-08-01 Sumitomo Special Metals Co., Ltd. Verbundfolien zum Hartlöten
EP0726238A2 (de) * 1995-02-09 1996-08-14 Ngk Insulators, Ltd. Verbundene Gegenstände, korrosionsbeständiges Verbindungsmaterial und Herstellungsverfahren dieser Gegenstände
US5776620A (en) * 1994-05-25 1998-07-07 Office National D'etudes Et De Recherches Aerospatiales Process for the assembly of ceramic and refractory alloy parts
US5985464A (en) * 1996-02-08 1999-11-16 Electrvac, Fabrikation Elektrotechnischer Spezialartikel Gmbh Composite structure, and method of making same
WO2002100798A1 (en) * 2001-06-08 2002-12-19 The Welding Institute Joining material

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL300784A (de) * 1962-11-26
US4221604A (en) * 1978-05-22 1980-09-09 Corning Glass Works Hermetic seals
JPS59217682A (ja) * 1983-05-25 1984-12-07 新明和工業株式会社 拡散接合方法
CA1253674A (en) * 1984-06-13 1989-05-09 Louis J. Manfredo Reaction bonded carbide, nitride, boride, silicide or sulfide bodies
JPH0653621B2 (ja) * 1986-12-01 1994-07-20 本田技研工業株式会社 セラミツク体の接合方法
JPH0543070Y2 (de) * 1989-01-11 1993-10-29
JPH02229771A (ja) * 1989-03-03 1990-09-12 Fujikura Ltd セラミックスの接合方法
JPH0412068A (ja) * 1990-04-28 1992-01-16 Tonen Corp セラミックスの接合体および接合方法
DE4018715A1 (de) * 1990-06-12 1991-12-19 Bayer Ag Verfahren zur herstellung von metall- und/oder keramik-verbund-teilen
JPH0891952A (ja) * 1994-09-29 1996-04-09 Kyocera Corp セラミック部材と金属部材の接合体
JP3520124B2 (ja) * 1995-01-11 2004-04-19 新光電気工業株式会社 異種セラミック接合体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB976660A (en) * 1962-11-26 1964-12-02 Mond Nickel Co Ltd Brazing alloys and the production of ceramic-to-ceramic or ceramic-to-metal joints
GB1259633A (de) * 1968-04-15 1972-01-05
EP0380200A1 (de) * 1989-01-11 1990-08-01 Sumitomo Special Metals Co., Ltd. Verbundfolien zum Hartlöten
US5776620A (en) * 1994-05-25 1998-07-07 Office National D'etudes Et De Recherches Aerospatiales Process for the assembly of ceramic and refractory alloy parts
EP0726238A2 (de) * 1995-02-09 1996-08-14 Ngk Insulators, Ltd. Verbundene Gegenstände, korrosionsbeständiges Verbindungsmaterial und Herstellungsverfahren dieser Gegenstände
US5985464A (en) * 1996-02-08 1999-11-16 Electrvac, Fabrikation Elektrotechnischer Spezialartikel Gmbh Composite structure, and method of making same
WO2002100798A1 (en) * 2001-06-08 2002-12-19 The Welding Institute Joining material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110272080A1 (en) * 2005-11-23 2011-11-10 Babcock & Wilcox Technical Services Y-12, Llc Method of forming and assembly of metal and ceramic parts
US8701970B2 (en) * 2005-11-23 2014-04-22 Babcock & Wilcox Technical Services Y-12, Llc Method of forming and assembly of metal and ceramic parts

Also Published As

Publication number Publication date
JP4646202B2 (ja) 2011-03-09
JP2005536434A (ja) 2005-12-02
US7270888B2 (en) 2007-09-18
US20050175853A1 (en) 2005-08-11
DE10239416B4 (de) 2005-03-03
DE10239416A1 (de) 2004-03-11

Similar Documents

Publication Publication Date Title
DE3914010C2 (de) Verfahren zur Herstellung von Metall-Keramik-Verbundwerkstoffen sowie Verwendung des Verfahrens zur Steuerung der Materialeigenschaften von Verbundwerkstoffen
EP1233935B1 (de) Verfahren zur festlegung eines aus metall-matrix-composite-(mmc) material gebildeten körpers auf einem keramischen körper
DE3843667C2 (de) Verfahren zur Herstellung eines elektromagnetischen Durchflußmessers sowie elektromagnetischer Durchflußmesser
DE3618102A1 (de) Verfahren zum stoffschluessigen verbinden von keramik-werkstoffen und metall sowie von gleichartigen und verschiedenartigen keramik-werkstoffen miteinander
WO1989010434A1 (fr) Materiau ou piece stratifie avec une couche fonctionnelle, notamment une couche de glissement, appliquee sur une couche de support et ayant la structure d'une dispersion solide mais fusible
DE2552686C3 (de) Verfahren zur Herstellung poröser Metallkörper
DE19612500A1 (de) Verfahren zur Herstellung von Zylinderköpfen für Verbrennungsmotoren
EP3468740A1 (de) Verfahren zum fügen von werkstoffen und werkstoffverbund
DE19909882C2 (de) Material zur schichtweisen Herstellung von Werkzeugen, Formen oder Bauteilen durch das Lasersinterverfahren
WO2004020366A1 (de) Verbundkörper aus keramikschichten und verfahren zu dessen herstellung
WO2015014787A1 (de) Infiltrierbares einlegeteil
DE3444214A1 (de) Gegenstand mit einem gussmetallteil und einem gesinterten, metallischen teil, sowie verfahren zu dessen herstellung
DE3307749A1 (de) Bauteil mit einem kompositwerkstoff-ueberzug und verfahren zum aufbringen des ueberzugs
DE19920567C2 (de) Verfahren zur Beschichtung eines im wesentlichen aus Titan oder einer Titanlegierung bestehenden Bauteils
DE10130395A1 (de) Reibwerkstoff und Verfahren zu seiner Herstellung sowie Reibelement
DE69833870T2 (de) Hartlötstruktur und metallisierte struktur
DE102007010839A1 (de) Verfahren zur Herstellung eines Kolbens und Kolben mit einer ringförmigen Verstärkung bestehend aus mehreren Verstärkungssegmenten
DE10036264B4 (de) Verfahren zur Herstellung einer Oberflächenschicht
DE3307000C2 (de) Verfahren zur Herstellung eines Verbundmetallkörpers
DE112014002069T5 (de) Keramik-Metall-Bondstruktur und Verfahren zu deren Herstellung
DE19721406A1 (de) Ventilsitz
EP1127958A2 (de) Verfahren zum Laserbeschichten einer Oberfläche
DE4435866C2 (de) Verfahren zur Herstellung von SiC/MoSi¶2¶- und SiC/TiSi¶2¶-Formkörpern
WO2008086930A1 (de) Keramischer vorkörper zur herstellung von metall-keramik verbundwerkstoffen
DE3518058A1 (de) Kolben fuer verbrennungsmotoren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10514333

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004531710

Country of ref document: JP

122 Ep: pct application non-entry in european phase