WO2004015170A1 - α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜と該アルミナ皮膜を含む積層皮膜、該アルミナ皮膜または該積層皮膜で被覆された部材とその製造方法、および物理的蒸着装置 - Google Patents

α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜と該アルミナ皮膜を含む積層皮膜、該アルミナ皮膜または該積層皮膜で被覆された部材とその製造方法、および物理的蒸着装置 Download PDF

Info

Publication number
WO2004015170A1
WO2004015170A1 PCT/JP2003/010114 JP0310114W WO2004015170A1 WO 2004015170 A1 WO2004015170 A1 WO 2004015170A1 JP 0310114 W JP0310114 W JP 0310114W WO 2004015170 A1 WO2004015170 A1 WO 2004015170A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
alumina
crystal structure
forming
substrate
Prior art date
Application number
PCT/JP2003/010114
Other languages
English (en)
French (fr)
Inventor
Toshimitsu Kohara
Yoshimitsu Ikari
Hiroshi Tamagaki
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002357210A external-priority patent/JP3971293B2/ja
Priority claimed from JP2003117353A external-priority patent/JP4402898B2/ja
Priority claimed from JP2003125519A external-priority patent/JP3971337B2/ja
Priority claimed from JP2003125517A external-priority patent/JP3971336B2/ja
Priority claimed from JP2003125548A external-priority patent/JP3971338B2/ja
Priority claimed from JP2003125550A external-priority patent/JP3971339B2/ja
Priority claimed from JP2003125549A external-priority patent/JP2004332007A/ja
Priority to US10/523,931 priority Critical patent/US7531212B2/en
Priority to EP03784598.9A priority patent/EP1553210B1/en
Priority to AU2003254888A priority patent/AU2003254888A1/en
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Publication of WO2004015170A1 publication Critical patent/WO2004015170A1/ja
Priority to IL166622A priority patent/IL166622A/en
Priority to US12/402,763 priority patent/US20090173625A1/en
Priority to US12/402,755 priority patent/US8323807B2/en
Priority to IL218369A priority patent/IL218369A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising

Definitions

  • the present invention relates to a method for producing an alumina film mainly composed of an a-type crystal structure, an alumina film mainly composed of an a-type crystal structure, a laminated film containing the alumina film, a member coated with the alumina film or the laminated film, and a member thereof.
  • the present invention relates to a production method, and furthermore, to a physical vapor deposition apparatus used for the production.
  • an alumina film mainly composed of an a-type crystal structure which is excellent in wear resistance and heat resistance, and is coated on wear-resistant members such as cutting tools, sliding members, dies, etc.
  • a useful production method that can be formed under low-temperature conditions without impairing the properties of the base material such as the above, and the obtained alumina film mainly composed of the a-type crystal structure and the laminated film including the alumina film mainly composed of the model crystal structure
  • the present invention relates to a physical vapor deposition device for forming an oxide-based hard film such as an alumina film on a surface of a base material such as a cutting tool and a sliding member.
  • the present invention uses a cubic boron nitride (hereinafter sometimes abbreviated as “cBN”) sintered body having excellent wear resistance as a base material, and has excellent oxidation resistance on the base material.
  • cBN cubic boron nitride
  • a useful method for producing an alumina film mainly composed of a type crystal structure, and abrasion and The present invention also relates to a surface-coated member having excellent oxidizability and a useful method for producing such a surface-coated member (hereinafter, these methods may be simply referred to as “the present invention method”). .
  • the alumina film mainly composed of the ⁇ -type crystal structure of the present invention can be applied to the above-mentioned members for various uses.
  • description will be made mainly on the case where the alumina film is applied to a cutting tool as a typical example. Background art
  • CVD method Materials formed by methods such as the PVD method and the chemical vapor deposition method (hereinafter referred to as the CVD method) are used.
  • the hard coating when used as a cutting tool, the hard coating is required to have abrasion resistance and heat resistance (oxidation resistance at high temperatures) as properties.
  • TiA 1 N has been widely used as a coating material for a carbide tool or the like, which has a high cutting edge temperature during cutting.
  • the reason why TiA1N exhibits excellent properties is that the aluminum contained in the film improves the heat resistance and provides stable wear resistance and heat resistance up to a temperature of about 800 ° C. Because it can be maintained.
  • T i AIN various ones having different composition ratios of T i and A 1 are used, but most of them have an atomic ratio of T i: A 1 having both of the above characteristics of 50: 5.
  • Alumina has various crystal structures depending on the temperature, but all are thermally metastable. However, when the temperature of the cutting edge during cutting fluctuates significantly over a wide range from room temperature to 100 ° C or more, such as a cutting tool, the crystal structure of alumina changes, resulting in cracking or peeling of the coating. Problems occur. However, only the alumina of the type crystal structure (corundum structure), which is formed by using the CVD method and raising the substrate temperature to 100 ° C or more, once formed, is related to the subsequent temperature. And maintain a thermally stable structure. Therefore, in order to impart heat resistance to cutting tools and the like, it is effective to coat an alumina film having an ⁇ -type crystal structure.
  • the base material in order to form alumina having an ⁇ -type crystal structure, the base material must be heated to 100 ° C. or higher, so that applicable base materials are limited. This is because, depending on the type of the base material, if it is exposed to a high temperature of 100 ° C. or higher, it may become soft and lose its suitability as a base material for wear-resistant members. In addition, even a high-temperature base material such as a cemented carbide causes problems such as deformation when exposed to such a high temperature.
  • the practical temperature range of a hard coating such as a TiA1N coating formed on a substrate as a coating exhibiting abrasion resistance is generally 800 ° C at the maximum, and 100 ° C or less. Exposure to the above-mentioned high temperatures may alter the quality of the film and deteriorate the abrasion resistance.
  • JP-A-5 - A 2 0 8 3 2 6 JP said alumina and the same level with a high hardness (A l, C r) is 2 0 3 mixed crystal, 5 0 0 It is reported that it was obtained in the following low temperature range.
  • the mixed crystal Cr present on the surface of the film is liable to cause a chemical reaction with iron in the work material during cutting, so the film is worn out and causes a shortening of the service life.
  • Japanese Patent Application Laid-Open No. 2002-53946 discloses that the lattice constant is not less than 4.779 ⁇ m and not more than 5.00 OA and the film thickness is at least A method is disclosed in which an oxide film having a corundum structure ( ⁇ -type crystal structure) of 0.05 xm is used as an underlayer, and an alumina film having an ⁇ -type crystal structure is formed on the underlayer.
  • noisy is preferably either shift, oxide film If the component is (F e, C r) 2 ⁇ 3 , use (F e x , C r (tox ) ) 2 O 3 (where x is 0 ⁇ X ⁇ 0.54) it is more preferable, and when components of the oxide material coating is a (a l, C r) 2 0 3 is, (a l y, C r ( Bok y)) 2 O 3 (however, y is It has been shown that it is more preferable to adopt 0 ⁇ y ⁇ 0.90).
  • the above-mentioned Japanese Patent Application Laid-Open No. 2002-530396 discloses a composite nitride of A 1 and one or more elements selected from the group consisting of Ti, Cr and V as a hard coating.
  • a film consisting of (A l z , C r (1 .z) ) N (where z is 0 ⁇ z ⁇ 0.90) is formed as an intermediate layer, and the film is further oxidized.
  • an oxide film having a corundum structure ⁇ type crystal structure
  • form alumina is formed on the oxide film. It has been shown that this method is useful, and that this method can form alumina having an ⁇ -type crystal structure at a low substrate temperature.
  • the present invention provides an alumina film mainly having a pattern crystal structure, which is excellent in abrasion resistance and heat resistance.
  • a useful method that can suppress the deterioration and deformation of the material and can be efficiently formed without an intermediate film under relatively low temperature conditions with little equipment load, and the abrasion resistance obtained by such a method.
  • a study was also conducted to realize a laminated film excellent in heat resistance and a tool (component) coated with the laminated film (the alumina film mainly composed of the ⁇ -type crystal structure).
  • the alumina film obtained by the above method is an alumina having an ⁇ -type crystal structure as a main component.
  • a diffraction pattern showing alumina having a crystal structure other than the ⁇ -type such as ⁇ -type is obtained.
  • a peak was sometimes observed.
  • an alumina film having substantially only a rhombic crystal structure is obtained, when the surface of the film is observed with a scanning electron microscope (SEM), the voids between the alumina crystal grains are large, Were sometimes uneven in size.
  • SEM scanning electron microscope
  • an alumina film excellent in abrasion resistance and heat resistance in which the generation of a crystal phase other than the rhombic crystal structure is suppressed and the alumina crystal grains are finer and more uniform is described above.
  • crystalline Q! Alumina can be formed at a relatively low substrate temperature, but when the film is oxidized as an intermediate layer, an oxide having a corundum structure having a specific lattice constant is formed.
  • the oxidation process requires oxidation at high temperatures and for a long time. There are inconveniences. Therefore, further studies are needed to perform oxidation treatment in a shorter time.
  • the oxidation step is performed at a relatively low temperature in a short time without limiting the metal element constituting the intermediate layer to a metal element forming an oxide having a specific lattice constant structure.
  • the present invention provides a useful method for producing an alumina film mainly composed of an ⁇ -type crystal structure, a member coated with such an alumina film, and a method useful for producing the alumina film-coated member. We considered to do it.
  • a useful method capable of forming an alumina film mainly composed of an ⁇ -type crystal structure having excellent wear resistance and heat resistance without forming a specific intermediate layer on various types of substrates The present inventors also studied for the purpose of providing a member coated with the alumina film and a method of manufacturing the same.
  • a hard coating In the present invention, further, as described above, it is often used as a hard coating.
  • a hard coating such as TiAIN or TiN or TiCN
  • cutting tools are required to have excellent wear resistance and heat resistance as described above, but the materials used for such cutting tools include cemented carbide, high-speed steel, cBN, etc. These materials (substrates) with various hard coatings formed on the surface are also widely used as cutting tools.
  • cBN is superior in strength and abrasion resistance compared to other materials.
  • a technique such as that disclosed in Japanese Patent Application Laid-Open No. 9-86679 (claims) is known.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • Hard coating layer consisting of a single layer or a multilayer of two or more of carbides, nitrides, charcoal, nitrides, carbonates and carbonitrides of Ti, and aluminum oxide;
  • a surface-coated cBN-based ceramic cutting tool formed with an average layer thickness of 0 / zm has been proposed, and this tool is used for cutting hardened steel and iron.
  • the characteristics of a cutting tool are determined by an appropriate combination of the tool base material and the hard film formed on the surface.
  • the most suitable coating material for cBN sintered body is used. attractive der Runowa, aluminum oxide (a 1 2 O 3: alumina) is film. This is based on a cBN sintered body that has excellent plastic deformation resistance at high temperatures. Therefore to adhesion may cover the A 1 2 ⁇ 3 coating excellent in chemical stability, wear resistance under high temperature and high load, can configure the covering member particularly excellent in resistance to clay evening resistance, these characteristics are required This is because it is considered to be suitable for application to cutting tools and the like.
  • Japanese Patent Application Laid-Open No. 2000-440370 discloses that in order to achieve high hardness cutting of hard-to-cut materials and high-speed / high-efficiency cutting of iron-based materials, wear resistance, especially the purpose of providing a cutting tool having excellent crater wear resistance, less the tool also form a a 1 2 O 3 layers of one or more layers on a portion of the surface involved in cutting in c BN sintered substrate Proposed.
  • This sintered body substrate c BN dispersed phase 2 0 9 9 vol% include: 1.
  • the substrate An alumina film was formed on top with a thickness of about 0.5 to 50 zm. Further, A 1 2 0 3 coating, when a thickness of 0.. 5 to 2 5 xm is the average crystal grain size 0. 0 1 ⁇ 4 / m, a thickness of 2 5 super ⁇ 5 0 im In this case, it is also disclosed that it is effective to control the average crystal grain size to 0.01 to 10 m.
  • Japanese Patent Application Laid-Open Publication No. 2002-5443993 discloses a sintered carbide.
  • a tool consisting of one or more cBN sintered bodies, with or without a support, wherein the coating layer is composed of one or more layers of heat-resistant compounds, of which at least It is disclosed that at least one layer is composed of fine-grained crystalline alpha-phase alumina having a particle size of less than 0.1 m.
  • this alumina layer is subjected to two-pole pulse DMS (data Dual magnetron sputtering).
  • Japanese Patent Application Laid-Open Publication No. 2002-5403997 discloses a tool having a similar configuration.
  • a phase alumina is disclosed as being characterized by being deposited by plasma activated chemical vapor deposition (PAC VD).
  • PAC VD plasma activated chemical vapor deposition
  • plasma is produced by applying a bipolar pulsed DC voltage between two electrodes that are fixed and electrically connected to the tool base to be coated.
  • the alumina film formed by A is alumina having an ⁇ -type crystal structure (a-alumina).
  • a-alumina ⁇ -type crystal structure
  • the film is formed at a high temperature. When exposed to the environment, it may be transformed into essentially stable 0; type alumina (Q! Alumina), and this transformation may cause cracking or peeling of the film. Because of this, it is not possible to sufficiently cope with recent cutting processes, which tend to be high-speed cutting.
  • alumina having a rhomboid crystal structure is also included as the formed alumina film.
  • the above problem does not occur.
  • the composition of the binder phase in the c ⁇ ⁇ sintered body that forms the coating is limited.
  • the substrate temperature during film formation is a high-temperature atmosphere exceeding 100 ° C. At such a high temperature, the cBN sintered body of the base material is overheated and h It can transform into the BN phase, which can lead to undesirable situations.
  • a method for producing an alumina film that can be formed without specifying the composition of the alumina film, a member coated with such an alumina film, and a useful method for producing the alumina-coated member were also studied. Disclosure of the invention
  • the laminated film of the present invention is formed by oxidizing the hard film in a laminated film having a hard film composed of a compound of ⁇ C, N, ⁇ , and the like with a metal component having A 1 and T i as essential components.
  • an alumina film mainly composed of a rhombic crystal structure formed on the oxide-containing layer hereinafter, may be referred to as “first embodiment”).
  • the oxide-containing layer has an outermost surface substantially made of alumina, and that the hard coating is made of TiAIN.
  • a 1 and T i, and a group IVa as hard coatings composed of compounds of the above-mentioned metal components which require A 1 and T i and B, C, N, ⁇ , etc.
  • T i nitrides, carbides, carbonitrides, borides, and nitrides containing at least one element selected from the group consisting of Group Va, Group VIa and Si
  • a compound consisting of carbonitride may be employed.
  • the present invention provides a laminated film having a hard film composed of a compound of a metal component essential for A 1 and B, C, N, 0, etc., wherein the outermost surface formed by oxidizing the hard film
  • a laminated film characterized by having an oxide-containing layer substantially made of alumina on the side and an alumina film mainly composed of an ⁇ -type crystal structure formed on the oxide-containing layer may be used (hereinafter referred to as a laminated film). In some cases, it may be referred to as the "first aspect.”
  • the hard coating composed of a compound of the metal component having the essential A 1 and B, C, ⁇ , ⁇ , etc. includes A 1, a group IVa, a group Va, a group VIa and Si. It is preferable to use nitrides, carbides, carbonitrides, borides, oxynitrides, or oxycarbonitrides containing at least one element selected from the group as an essential component.
  • the alumina film formed on the oxide-containing layer preferably has a rhombic crystal structure of 70% or more.
  • a multilayer coating-coated tool having such a multilayer coating formed on its surface is also included in the scope of protection.
  • the surface of the hard film is oxidized and oxidized.
  • Forming an alumina coating film mainly composed of an a-type crystal structure on the oxide-containing layer, and then forming an alumina film or a laminated film mainly composed of the rhomboid crystal structure The manufacturing method is also specified.
  • the formation of the oxide-containing layer is preferably performed while maintaining the substrate temperature at 650 to 800 ° C. in an oxidizing gas-containing atmosphere.
  • the formation is preferably performed by a PVD method.
  • the “substrate temperature” at the time of this oxidation treatment refers to the temperature of a substrate made of cemented carbide, carbon steel, tool steel or the like and a hard film formed on the substrate (hereinafter the same). ).
  • the formation of the oxide-containing layer and the formation of the alumina film mainly composed of the ⁇ -type crystal structure are preferably performed in the same apparatus from the viewpoint of improving productivity, more preferably the formation of the hard film, It is preferable that the formation of the oxide-containing layer and the formation of the alumina film mainly composed of the Q! Type crystal structure are all performed in the same apparatus.
  • the present invention also provides (the following method for obtaining a laminated film on which an alumina film mainly composed of a 3 ⁇ 4-type crystal structure is formed: an alumina film is formed on a hard film made of a metal compound.
  • a method of producing a laminated film comprising a metal having a standard free energy of oxide formation larger than aluminum and a compound of B, C, ⁇ , ⁇ , etc. (for example, nitride, carbide, carbonitride, boride) , A nitric oxide, or a carbonitride), the surface of the hard film is oxidized to form an oxide-containing layer, and then the reduction of the oxide on the surface of the oxide-containing layer is performed.
  • this method is characterized by the formation of an alumina film mainly composed of ⁇ -type crystal structure (hereinafter, it may be referred to as “1-3 mode”).
  • the metal having a standard free energy of oxide formation higher than that of aluminum it is preferable to use Ti.
  • the hard coating is selected from the group consisting of TiN, TiC and TiCN. It is preferable to form one or two or more layers. Further, by forming a composition gradient layer of both constituent elements to be joined at the joining interface between the hard coating and the base material or the hard coating, the adhesion between the base material and the hard coating or the hard coating can be improved.
  • a method for producing a laminated film (alumina film mainly composed of a polymorphic crystal structure)
  • alumina film mainly composed of a polymorphic crystal structure
  • an alumina coating is formed while reducing the titanium oxide on the surface of the hard coating.
  • the formation of the oxide-containing layer is preferably performed under an oxidizing gas-containing atmosphere while maintaining the substrate temperature at 65 to 800 ° C., and forming the alumina film mainly composed of the ⁇ -type crystal structure. Is preferably performed by the PVD method.
  • the formation of the oxide-containing layer and the formation of the alumina film mainly composed of the ⁇ -type crystal structure are preferably performed in the same apparatus from the viewpoint of improving productivity, and more preferably It is preferable that all of the formation of the hard coating, the formation of the oxide-containing layer, and the formation of the alumina coating having the ⁇ -type crystal structure as a main body are performed in the same apparatus.
  • a laminated film produced according to the above-mentioned first aspect wherein an alumina film mainly composed of a Q! -Type crystal structure is formed on a hard film made of a metal compound.
  • the protection object also includes a laminated film having excellent wear resistance and heat resistance, and a laminated film coated tool having excellent wear resistance and heat resistance formed on the surface of the laminated film.
  • a method of producing an alumina film mainly composed of a crystal structure a method of producing an alumina film mainly composed of an ⁇ -type crystal structure on a substrate (including a substrate in which a base film is formed in advance). The point is that at least one of the following (a) to (c) is formed before the alumina film forming step, and then the surface is oxidized, and then the alumina film is formed.
  • Specify the manufacturing method hereinafter, may be referred to as “second embodiment”).
  • the oxidation treatment is preferably performed while maintaining the substrate temperature at 65 to 800 ° C. in an oxidizing gas atmosphere in a vacuum chamber.
  • a coated member having an alumina film mainly composed of a rhombic crystal structure formed on a substrate including a substrate on which a base film has been formed in advance
  • At least any one of a) to (c) is formed as an intermediate layer
  • an oxide-containing layer and an alumina film mainly composed of ⁇ -type crystal structure are sequentially formed on the surface side of the intermediate layer.
  • a covering member having a gist is also defined.
  • a method for forming an alumina film mainly composed of a rhombic crystal structure using a c ⁇ sintered body as a base material is also defined (hereinafter, may be referred to as a “third embodiment”).
  • the production method is a method for producing an alumina film mainly composed of ⁇ -type crystals on a cBN sintered body base material comprising a binder phase and a cubic boron nitride dispersed phase, comprising: The point is that the surface of the base material is oxidized and then an alumina film is formed.
  • the binder phase of the c BN in the sintered body selected from T i C, T i N, T i CN, A 1 N, the group consisting of T i B 2 and A l 2 ⁇ 3 1 And those containing more than one species.
  • the oxidation treatment is preferably carried out in an oxidizing gas oxidizing atmosphere while maintaining the substrate temperature at 65 to 800 ° C., and the formation of the alumina film mainly composed of the ⁇ -type crystal structure is as follows: It is preferable that the substrate temperature is set to 65 to 80 or by applying the PVD method.
  • the present invention also provides a coating member coated with an alumina coating mainly composed of an ⁇ -type crystal.
  • the coating member is a coating member in which a cBN sintered body base material comprising a binder phase and a cubic boron nitride dispersed phase is coated with an alumina coating mainly composed of a type crystal.
  • the gist lies in that an oxide-containing layer is interposed between the body and the alumina coating.
  • said binder phase is intended to include T i C, T i N, T i CN, A 1 N, at least one member selected from the group consisting of T i B 2 and A 1 2 0 3
  • the binder phase contains 1 to 50% by volume of the whole sintered body.
  • the alumina coating mainly composed of the ⁇ -type crystal structure formed on the surface of the coating member has a residual compressive stress.
  • a step of oxidizing the surface of the sintered body and a step of forming an alumina film mainly composed of an ⁇ -type crystal structure are sequentially performed in the same film forming apparatus. Is preferred.
  • the present invention also specifies the following method as a method for producing an alumina film mainly composed of a crystal structure.
  • This method has a gist in that the surface is oxidized after an ion pumping treatment, and then an alumina film is formed on the oxidized surface (hereinafter referred to as “fourth mode”). ).
  • a steel material a cemented carbide, a cermet, a cBN sintered body, or a ceramic sintered body is preferably used.
  • the elements A1, Si, Fe, and C4a, 5a, and 6a of the periodic table are used as the undercoat.
  • the gas ion bombardment is performed in a vacuum chamber.
  • the voltage is preferably applied to the substrate in plasma, and the oxidation treatment is preferably performed while maintaining the substrate temperature at 650 to 800 ° C. in an oxidizing gas-containing atmosphere. .
  • the present invention also provides a method for producing a component coated with an alumina film mainly comprising a pattern crystal structure, the method comprising:
  • the process is characterized in that the step of forming an alumina film mainly having a rhomboid crystal structure is sequentially performed in the same apparatus.
  • the T i (C, N), C r (C, N), T i A 1 (C, N), C r A 1 (C, N), T i A l C r (C, N) are The respective carbides, nitrides or carbonitrides of Ti, Cr, TiAl, CrAl, or TiAlCr are shown (the same applies hereinafter).
  • the present invention provides a method for producing an alumina film mainly composed of an ⁇ -type crystal structure, comprising: forming an alumina film mainly composed of a diamond-shaped crystal structure on a substrate (including a substrate in which a base film is previously formed on the substrate).
  • a method for forming a substrate is described in which a metal surface is subjected to a metal ion bombardment treatment, then the surface is oxidized, and then an alumina film is formed. ).
  • the metal ion bombardment treatment is performed on a substrate in a vacuum chamber. It is sufficient to generate a metal plasma while applying a voltage, and the oxidation treatment is preferably carried out in an atmosphere containing an oxidizing gas while maintaining the substrate temperature at 65 to 800 ° C. Good.
  • a plasma of Cr or Ti is preferably generated from a vacuum arc evaporation source.
  • the present invention also provides a member coated with an alumina film mainly composed of a rhombic crystal structure formed in the fifth aspect.
  • the member is a base material
  • a member on which an alumina film mainly composed of a crystal structure is formed, and the vicinity of the substrate surface is treated with a metal ion pump.
  • a concentration gradient layer in which the concentration of the metal used increases toward the surface layer, and an oxide-containing layer and an alumina film mainly composed of an ⁇ -type crystal structure are sequentially formed on the surface side of the concentration gradient layer.
  • the present invention also provides a method for producing a member coated with an alumina film mainly composed of a rhombic crystal structure formed in the fifth aspect, wherein the method does not form an undercoat film on a substrate. If
  • the feature is that the process of forming the alumina film mainly composed of the type crystal structure is performed sequentially in the same equipment.
  • the undercoat film formed in the fifth embodiment is at least one element selected from the group consisting of elements of groups 4a, 5a, and 6a of the periodic table, Al, Si, Cu, and Y.
  • the present invention also specifies the alumina film having the ⁇ -type crystal structure formed in the above-described embodiment.
  • the alumina film having the ⁇ -type crystal structure is a base material (a base film having a base film previously formed on the base material).
  • the starting point of the film growth is composed of alumina crystal having a fine structure, and has a gist in that a crystal structure other than the ⁇ -type crystal structure is not substantially observed in the fine crystal region.
  • the term “substantially” means that the present invention is not limited to the crystal structure having a crystal structure of 100%, but is not limited to impurities or inevitably contained in a film forming process. This means that a small amount of other crystalline structures are allowed.
  • the fine-structured alumina crystal has a crystal grain of 0.3 m or less in the range from the initial growth to 0.5 in the thickness direction; All over A crystal structure other than the ⁇ - type crystal structure is not substantially observed, and (C) alumina having an a-type crystal structure exhibits a structure such as a columnar growth on the film surface side.
  • the thickness of the alumina film of the present invention is preferably 0.5 to 20 m.
  • the present invention also specifies a physical vapor deposition device used for the production of the above alumina film.
  • a physical vapor deposition apparatus includes: a vacuum chamber; a substrate holder (planetary rotation jig) rotatably disposed in the vacuum chamber to hold a plurality of substrates; An oxidizing gas introduction mechanism, a plasma source arranged at a position facing the substrate holder (planetary jig), and a sputtering source arranged at a position facing the substrate holder (planetary jig) An evaporation source, a radiant heating mechanism disposed at a position facing the substrate holder (planetary rotating jig) and capable of heating the substrate, and a radiation type heating mechanism connected to the substrate holder (planetary rotating jig).
  • the gist lies in that it consists of a bias power supply that can apply a negative pulsed bias voltage to the substrate holder (planetary jig).
  • this apparatus can form an alumina coating mainly composed of an a-type crystal structure under relatively low-temperature processing conditions of about 600 to 800 ° C. The wear resistance and heat resistance of the lumina coating can be increased.
  • an arc evaporation source is arranged at a position facing the substrate holder (planetary jig). May be placed.
  • the radiant heating mechanism is disposed on a side surface of the base material holder (planetary rotation jig), and a cylindrical heating source arranged concentrically with the rotation center of the base material holder (planetary rotation jig). And a flat heating source.
  • the cross-sectional shape of the vacuum chamber is one of a square, a hexagon, and an octagon, and each of the pair of the sputtering evaporation source and the planar heating source includes an inner surface of the vacuum chamber that faces each other.
  • the configuration may be such that it is provided in the system.
  • a physical vapor deposition apparatus having a more compact apparatus configuration can be provided.
  • the sputtering evaporation source and the planar heating source can be evenly arranged, and the shape of the vacuum chamber can be made to follow the shape of the sputtering evaporation source and the planar heating source.
  • the internal volume of the vacuum chamber can be reduced.
  • the cross-sectional shape of the vacuum chamber is hexagonal or octagonal, and a pair of the sputtering evaporating source, the planar heating source and the arc evaporating source are disposed on mutually facing inner surfaces of the vacuum chamber. It may be a configuration that has been implemented. With the above configuration, a more compact device configuration can be obtained.
  • a thermionic emission filament disposed in the vacuum chamber and located in proximity to the substrate holder (planetary rotating jig) such that its longitudinal directions face each other is used. Is also good. With this configuration, a physical vapor deposition apparatus having a more compact apparatus configuration can be provided. In addition, thermoelectrons emitted from the filament can be efficiently guided to the substrate.
  • FIG. 1 is a thin-film X-ray diffraction result of Example 1 ′ (TiN film) of the present invention in Example 2 relating to the first embodiment.
  • FIG. 2 is a diagram showing XPS depth profiling of a film obtained by oxidizing TiN.
  • Figure 3 shows the thin film X-ray diffraction results of the film obtained by oxidizing TiN.
  • FIG. 4 is a schematic explanatory view (top view) showing an example of an apparatus used for implementing the first, second, or sixth embodiment.
  • FIG. 5 is a schematic explanatory view (top view) showing an example of an apparatus used for implementing the fourth embodiment.
  • FIG. 6 is an explanatory view schematically showing the method of the present invention (fifth embodiment).
  • FIG. 7 is a schematic explanatory view (top view) showing an example of an apparatus used for implementing the fifth embodiment.
  • FIG. 8 is a schematic cross-sectional explanatory view showing an outline of a physical vapor deposition apparatus according to an embodiment of the present invention.
  • FIG. 9 is an explanatory sectional view showing an outline of a physical vapor deposition apparatus according to another embodiment of the present invention.
  • FIG. 10 shows an outline of a physical vapor deposition apparatus according to still another embodiment of the present invention.
  • FIG. 11 is a thin film X-ray diffraction result of Example 1 of the present invention in Example 1 relating to the first embodiment.
  • FIG. 12 is a thin-film X-ray diffraction result of Comparative Example 1 in Example 1 according to the first embodiment.
  • FIG. 13 is a thin-film X-ray diffraction result of Example 2 ′ (TiCN film) of the present invention in Example 2 relating to the first embodiment.
  • FIG. 14 is a schematic explanatory view (top view) showing an example of an apparatus used for implementing the third embodiment.
  • FIG. 15 is a graph showing a thin film X-ray diffraction result of an alumina film formed on a cBN sintered body substrate.
  • Figure 16 shows the X-ray diffraction results (film formation temperature: 750) of the thin film of the alumina film (comparative example) formed on the TiA1N film.
  • FIG. 17 shows the thin film X-ray diffraction results (film formation temperature: 75 ° C.) of the alumina film (the present invention) formed on the TiAIN film.
  • FIG. 18 is a microscope observation photograph (a is a comparative example, b is an example of the present invention) of the surface of the alumina film formed on the TiAIN film by SEM. .
  • Figure 19 shows the results of thin-film X-ray diffraction (film formation temperature: 750 ° C) of the alumina film (comparative example) formed on the CrN film.
  • FIG. 20 shows the results of thin-film X-ray diffraction (film formation temperature: 75 ° C.) of the alumina film (the present invention example) formed on the CrN film.
  • FIG. 21 is a microscopic observation photograph (a is a comparative example, and 'b is an example of the present invention) of the surface of the alumina film formed on the CrN film taken by SEM.
  • -Fig. 22 shows the results of observing the crystal concept of the alumina film obtained in the example of the sixth embodiment by a transmission electron microscope (TEM). It is a drawing substitute photograph.
  • TEM transmission electron microscope
  • FIG. 23 is a drawing substitute photograph in which a part of FIG. 22 is enlarged.
  • FIG. 24 is a diagram showing a thin-film X-ray diffraction result of the alumina film on the TiAIN film obtained by the example of the present invention.
  • the present inventors formed alumina mainly composed of an a-type crystal structure in a temperature range of about 800 ° C. or lower which can maintain the characteristics of the hard film and the base material. Research on the method was proceeded. as a result,
  • an a-type crystal structure-based alumina film (hereinafter, simply referred to as “a-type-based alumina film” or “0! Alumina film”) Is formed in a temperature range of about 800 ° C. or less that can maintain the characteristics of the hard coating, the base material, and the like.
  • a-type-based alumina film simply referred to as “a-type-based alumina film” or “0! Alumina film”
  • A1 such as TiAlN, TiA1CrN, etc.
  • the oxide-containing layer thus formed may be used as a base for forming an alumina film mainly composed of an ⁇ -type crystal structure, and arrived at the present invention described above.
  • Fig. 12 shows the results of the depth analysis.
  • the film composition from the outermost surface to the inside of the film first, there is a layer mainly composed of alumina on the outermost surface, and inside it is an oxide layer containing a mixture of Ti and A1. It is clarified that there is an oxide layer mainly composed of Ti inside.
  • the oxidation treatment temperature (740 to 780) of the hard coating composed of TiA1N is determined by the oxidation temperature in the experiment by Ikeda et al. (800 ° C.), it is presumed that a layer similar to the above experimental result is also formed in the present invention.
  • the present inventors further oxidized the hard coating containing various metal elements and performed the same measurement, and found that the surface of the hard coating containing A 1 was oxidized. Then, it was found that A 1 in the hard film floated preferentially to the surface and was oxidized, and as a result, alumina was easily formed on the outermost surface of the formed oxide layer. It has been found that, when such an oxide layer containing alumina is used as a base for forming an alumina film, an alumina film mainly composed of an ⁇ -type crystal structure is formed even in a relatively low temperature range of 800 ° C. or less.
  • a hard coating useful for forming an oxide layer useful for forming an alumina coating a hard coating consisting of a metal component, which is essential for 81 and i, and a compound of B, C, N, ⁇ , etc. is adopted. (1st aspect).
  • Hard coatings composed of compounds of B, C, N, ⁇ , etc., with a metal component that requires A 1 and T i include nitrides, carbides, and carbonitrides of metal components that require A 1 and T i.
  • the composition ratio between Ti and A 1 can be set arbitrarily, but preferably, the atomic ratio of Ti: A 1 is 40:60 to 25: 7 5 things.
  • the hard coating may be made of a nitride, carbide, carbonitride, boride, nitride oxide, or carbonitride containing at least one element selected from the group consisting of essential components.
  • the coating include TiAlCrN, TiAlVN, TiAlSiN, TiAlCrCN, and the like. More preferably, a hard film made of Al, Ti and Cr nitrides, carbides, carbonitrides, borides, oxynitrides or oxycarbonitrides is used.
  • a hard coating formed by oxidizing a hard coating composed of a compound of B, C, N, 0, etc. with a metal component having A 1 as an essential component is formed. Also defined is a laminated film having an oxide-containing layer whose surface side is substantially made of alumina and an alumina film formed on the oxide-containing layer and mainly having a crystalline structure (first embodiment).
  • the hard coating composed of a compound of a metal component which requires A 1 and B, C, N, ⁇ , etc. includes A 1, IVa group, Va group, VIa group and Si It is preferable to use at least one element selected from the group consisting of a nitride, a carbide, a carbonitride, a boride, a nitride oxide or a carbonitride, which is an essential component.
  • AlCrN, AlCrCN, and the like can be used.
  • the thickness of the hard coating is preferably 0.5 m or more, more preferably 1 m or more, in order to sufficiently exhibit the wear resistance and heat resistance expected of the hard coating. However, if the thickness of the hard coating is too thick, the hard coating is liable to crack during cutting and a longer life cannot be achieved. It is better to suppress.
  • the method of forming the hard coating is not particularly limited, but in order to form a hard coating having a high A 1 atomic ratio in order to enhance wear resistance and heat resistance, it is preferable to form the hard coating by a PVD method (physical vapor deposition method). It is more preferable to use an AIP (ion plating) method or a reactive sputtering method as the PVD method. In addition, if a method of forming a hard film by the PVD method is employed, the formation of the hard film and the formation of a mold-based alumina film, which will be described later, can be performed in the same apparatus, thereby improving productivity. Is also preferred.
  • the surface of the hard coating is treated with an acid. It is preferable to form an oxide-containing layer, especially an oxide-containing layer consisting essentially of alumina on the surface of the hard coating containing A1. That is, the oxidation is preferably performed in an oxidizing gas-containing atmosphere because it can be efficiently oxidized. For example, oxygen, ozone,
  • An atmosphere containing an oxidizing gas such as H 2 O 2 may be mentioned, and of course includes an air atmosphere.
  • the oxidation it is preferable to perform thermal oxidation while maintaining the substrate temperature at 65 ° C. to 800 ° C. This is because if the substrate temperature is too low, oxidation is not sufficiently performed, and it is preferable that the temperature be increased to 700 ° C. or more. Oxidation is promoted as the substrate temperature is increased, but the upper limit of the substrate temperature must be kept below 100 ° C. for the purpose of the present invention. In the present invention, an oxide-containing layer useful for forming a later-described main alumina layer film can be formed even at 800 ° C. or lower.
  • an alumina film mainly composed of an ⁇ -type crystal structure can be reliably formed on the oxide-containing layer.
  • the ⁇ -type alumina film preferably has a type crystal structure of 70% or more because it exhibits excellent heat resistance, more preferably has a model crystal structure of 90% or more, and most preferably has an ⁇ -type crystal structure of 90% or more.
  • the thickness of the mold-based alumina film is desirably 0.1 to 20 mm. This is because, in order to maintain the excellent heat resistance of the alumina film, it is effective to secure 0.1 m or more, and preferably 1 m or more. However, it is not preferable that the thickness of the a-type main alumina coating is too large because internal stress is generated in the alumina coating and cracks and the like are easily generated. Therefore, the film thickness is preferably 20 m or less, more preferably 10 m or less, and still more preferably 5 mm or less.
  • the method of forming the main alumina film There is no particular limitation on the method of forming the main alumina film. Of the desirable PVD methods, the sputtering method is preferable, and the reactive sputtering method is particularly preferable because high-speed film formation can be performed using an inexpensive metal target.
  • the substrate temperature at the time of forming the alumina film is not particularly limited, but it is preferable to perform the process in a temperature range of about 650 to 800 ° C. because the ⁇ -type main alumina film is easily formed. Further, if the mold-based alumina film is formed while maintaining the substrate temperature during the oxidation treatment constant after the oxidation treatment step, the characteristics of the substrate and the hard film can be maintained, and the productivity is also excellent. Good.
  • a film forming apparatus which includes an evaporation source for AIP, a magnetron sputtering force source, a heating mechanism, and a substrate rotating mechanism, which will be described later, for example, is made of cemented carbide.
  • the present invention also specifies a laminated film-coated tool on which such a laminated film is formed.
  • the base material is made of a cemented carbide
  • the hard film is made of T A throw-away tip with iA1 ⁇ formed, an end mill with a base material made of cemented carbide and a hard coating with TiAlCrN, and a base material made of cermet with a hard coating
  • cutting tools such as throw-away inserts with TiA1N formed thereon, and hot working dies used at high temperatures.
  • the present inventors have found that as another means for forming an ⁇ -type main alumina film on a hard film under a low temperature condition of about 800 ° C. or less, the standard free energy of oxide formation is larger than that of aluminum.
  • Metal, ie A ie A
  • a surface of the hard coating is oxidized to form an oxide-containing layer, and then the oxidization is performed. It was found that the alumina film should be formed while reducing the oxide on the surface of the material-containing layer.
  • the present inventors first formed a TiN film as a hard film on a cemented carbide substrate, as shown in an example relating to the first aspect described below, and then formed the substrate in an oxygen atmosphere. Oxidation treatment is performed by maintaining the temperature at about 760 for 20 minutes, and then, while maintaining the temperature at about the same, the A1 target is sputtered in an atmosphere of argon and oxygen to form an alumina film on the oxidized film. Was formed.
  • FIG. 1 to be described later shows a thin film X-ray diffraction result of the laminated film obtained in this manner. From FIG. 1, it can be seen that most of the peaks that can be confirmed indicate alumina having an ⁇ -type crystal structure, and that an alumina film mainly composed of a rhomboid crystal structure was formed. Similar results were obtained when TiCN was used as the hard coating.
  • alumina film mainly composed of a Q! -Type crystal structure based on a TiN film and a TiCN film the results of the thin-film X-ray diffraction shown in Fig. 1 were used. was examined, peaks of T i N and ⁇ over T i 3 0 5 considered compound constituting the base layer of the alumina film was confirmed.
  • T i N is considered oxide-containing layer is believed to be a compound that constitutes the hard coating T-T i 3 ⁇ 5 are present between the alumina coating and T i N film.
  • FIG. 3 shows the result of thin film X-ray diffraction of the film after the oxidation treatment.
  • Ti 0 2 (rutile type) is formed at a depth of about 100 nm from the surface layer of the film after the oxidation treatment. The same results were obtained when the TiCN film was oxidized. there were.
  • the (c) the present inventors have conducted experiments to form a C r 2 0 alumina film on 3 film, the higher the concentration of oxygen in the deposition atmosphere, alumina is formed becomes non-type crystal structure We have already confirmed that it is difficult to obtain alumina with ⁇ -type crystal structure when the oxygen concentration is low.
  • the present inventors have found that in the alumina film forming step (particularly in the initial stage), in addition to oxygen supplied for forming a film forming atmosphere, The action of oxygen generated by the reduction of oxides promotes the crystal growth of alumina having an ⁇ -type crystal structure, in other words, the reduction reaction of oxides formed by the oxidation treatment of the hard coating is promoted. It has been found that if the oxygen concentration in the film formation atmosphere is further increased in this state, the crystal growth of alumina having an ⁇ -type crystal structure is promoted.
  • conditions for realizing such a mechanism will be described in detail.
  • the hard coating contains, as a metal element, an element that “is oxidized to an oxide in the oxidation treatment step, but is easily reduced in the presence of A 1 in the alumina coating formation step”.
  • the element having a higher standard free energy for forming an oxide than aluminum include Si, Cr, Fe, and Mn.
  • the standard free energy for oxide formation of Ti is about 170 kJZ (gmo1) around 75 ° C, which is the standard free energy for oxide formation of aluminum.
  • a hard coating containing Ti is used as a metal component.
  • a hard film containing Ti as a metal component is used because an alumina film with a rhomboid crystal structure can be formed on a hard film such as TiC or TiN that is widely used for cutting tools. Is preferred.
  • the hard coating may be formed of a compound of the metal and B, C, N, O, etc., for example, nitrides, carbides, carbonitrides, borides containing the metal as an essential component , Nitric oxide, carbonitride, etc. can be formed as a hard coating, specifically, TiN, TiCN, TiC, TiCNO, TiCrN , T i S i N and the like.
  • Tin it is preferable to use Tin, TiCN, and TiC.
  • TiN titanium
  • TiCN titanium
  • TiC titanium carbide
  • Lamination of two or more layers of TiN, TiCN or TiC can be mentioned.
  • composition gradient layer of the two constituent elements to be joined is formed at the joint interface between the hard film and the base material or the hard film so as to enhance the adhesion between the base material and the hard film or the hard film. Is also good.
  • a composition gradient layer for example, when forming a TiN film on a substrate, the N composition ratio in the Ti metal film as the composition gradient layer is continuously or stepwise increased from the substrate side. And the composition gradient The formation of a TiN film on the inclined layer may be mentioned. Also, for example, when forming a TiCN film on a TiN film, the C composition ratio occupying the TiN film as a composition gradient layer on the TiN film continuously or from the TiN film side. Providing a layer that gradually increases and forming a TiCN film on the composition gradient layer may be mentioned.
  • alumina film mainly composed of a crystal structure is formed on the hard film using a hard film containing Ti as a metal component, first, a nitride containing Ti as an essential element such as Ti NTiCN is used. After forming a hard film made of a compound such as an oxide, the surface of the hard film is oxidized to form a titanium oxide-containing layer. Then, in a step of forming an alumina film, a reduction reaction of titanium oxide on the surface of the layer is performed.
  • the alumina coating may be formed alumina coating while, specifically, after the T i 0 2 oxidizing the surface of the hard film, T i 3 0 to T i 0 2 of the layer surface in the formation of the alumina skin layer It was found that if the alumina film was formed while reducing to 5 , the alumina mainly composed of ⁇ -type crystal structure could be formed efficiently.
  • the thickness of the hard film is preferably 0.5 / m or more, more preferably 1 m or more, in order to sufficiently exhibit the wear resistance and heat resistance expected of the hard film.
  • the thickness of the hard coating is too thick, the hard coating is liable to crack during cutting and a longer life cannot be achieved. It is better to keep it down.
  • the method for forming the hard coating is not particularly limited, but is preferably formed by a PVD method. 8 1 as 0 law? It is more preferable to use the (ion plating) method or the reactive sputtering method. If the method of forming a hard film by the PVD method is used, the formation of the hard film and the formation of the ⁇ -type main alumina film described later are performed. Film formation in the same equipment This is preferable from the viewpoint of improving productivity.
  • the surface of the hard coating is oxidized to form an oxide-containing layer (particularly, when a hard coating containing Ti is used, the outermost surface is substantially Ti 0 2 composed of an oxide-containing layer) to form the shape of the oxidation of the hard film is preferably carried out under the following conditions.
  • the oxide is preferably reason be carried out in an atmosphere containing an oxidizing gas is because efficiently oxidized, for example, oxygen, ozone, atmosphere containing an oxidizing gas such as H 2 ⁇ 2 mentioned, the This includes, of course, the atmosphere.
  • the oxidation it is preferable to perform thermal oxidation while maintaining the substrate temperature at 65 to 800 ° C. In this case, if the substrate temperature is lower than 650 ° C., the oxidation is not sufficiently performed, and it is preferable to increase the temperature to 700 ° C. or higher. Oxidation is promoted as the substrate temperature is increased, but the upper limit of the substrate temperature must be kept below 100 ° C. for the purpose of the present invention. In the present invention, an oxide-containing layer useful for forming an ⁇ -type main alumina film described below can be formed even at 800 ° C. or lower.
  • a hard film composed of a compound of B, C, N, 0, etc., with a metal having a standard free energy of oxide larger than aluminum is formed. If an oxide-containing layer obtained by oxidizing the surface of the hard coating is used as a base, an alumina coating mainly composed of a mold can be reliably formed on the oxide-containing layer. Therefore, the method of forming the main alumina film is not particularly limited, but the following method is recommended in order to form the film efficiently without adversely affecting the substrate or the device.
  • the CVD method needs to be performed in a high temperature range of 100 ° C. or more, which is not preferable, and it is preferable to adopt the PVD method that can form a film in a low temperature range.
  • the sputtering method is preferable, and the reactive sputtering is particularly preferable because a high-speed film formation can be performed using an inexpensive metal target.
  • the substrate temperature at the time of forming the alumina film is not particularly limited, but it is preferable to perform the process in a temperature range of about 650 to 800 ° C. because an ⁇ -type main alumina film is easily formed. Further, if the mold-based alumina film is formed while maintaining the substrate temperature during the oxidation treatment constant after the oxidation treatment step, the characteristics of the substrate and the hard film can be maintained, and the productivity is also excellent. Good.
  • the ⁇ -type main alumina film to be formed preferably has a rhombic crystal structure of 70% or more because of exhibiting excellent heat resistance, and more preferably has an ⁇ -type crystal structure of 90% or more, and is most preferable. Has an ⁇ -type crystal structure of 100%.
  • the film thickness of the ⁇ -type alumina film be 0.1 to 20 m. To maintain the excellent heat resistance and the like of the alumina film, 0 This is because it is effective to secure at least 1 m, more preferably at least 05 / _im, and still more preferably at least lAim. However, if the thickness of the mold-based alumina film is too large, it is not preferable because internal stress occurs in the alumina film to easily cause cracks and the like. Therefore, the thickness is preferably 20 m or less, more preferably 10 m or less, and still more preferably 5 m or less.
  • the formation of the oxide-containing layer and the formation of the alumina mainly composed of the ⁇ -type crystal structure are performed. From the viewpoint of improving productivity, it is preferable that the film is formed in the same apparatus from the viewpoint of improving the productivity. More preferably, the alumina film mainly composed of the hard film, the oxide-containing layer, and the a-type crystal structure is formed. It is preferable that all the steps of the formation are performed in the same apparatus.
  • a film forming apparatus physical vapor deposition apparatus described below, which is provided with an evaporation source for ⁇ ⁇ , a magnetron sputtering force source, a heater heating mechanism, a substrate rotating mechanism, etc.
  • a hard coating such as TiN is formed by using AIP method or the like, and then the coating is performed in an oxidizing gas atmosphere such as oxygen, ozone, or H 2 O 2 as described above.
  • the surface of the hard film is thermally oxidized, and thereafter, an alumina film mainly composed of a rhombic crystal structure is formed by employing a reactive sputtering method or the like.
  • a laminate excellent in wear resistance and heat resistance characterized in that an alumina film mainly composed of a 3 ⁇ 4-type crystal structure is formed on a hard film composed of a metal compound formed by the method according to the above aspect.
  • Film and a laminated film coating on which the laminated film is formed Ingredients also prescribes, as a specific application example of multilayer coating coated tool, for example, a substrate is made of cemented carbide, T i N a hard film, T (1) Throwaway tips with CN formed, cemented carbide base material, end mills with Tin and TiCN hard coatings, and cermet base material with hard coatings. Examples include cutting tools such as throw-away inserts having TIN and TCN formed thereon, and hot working dies used at high temperatures.
  • the present inventors have studied from various angles a method capable of forming a film mainly composed of ⁇ -alumina by oxidizing in a relatively short time in the oxidizing process. As a result, they found that it is sufficient to form at least one of the following (a) to (c) as an intermediate layer on a substrate instead of the nitride such as CrN as described above. It has been completed.
  • the present inventors have confirmed through experiments that the intermediate layer is made of a nitride such as CrN, the oxidation temperature is set to 75 ° C., and the oxygenation of 0.7 Pa When oxidizing in a gas atmosphere, the oxidation treatment time
  • the CrN is a stoichiometric nitride in which Cr and N are firmly bonded. It is probable that a sufficient oxide film could not be grown by exposure to, and the alumina grown on it did not mainly consist of the rhomboid crystal structure.
  • the intermediate layers described in the above (a) to (c) are all chemically unstable as compared with nitrides having a stoichiometric composition. It is considered that film formation proceeds more quickly.
  • the intermediate layer in the above (a) is a film made of a pure metal or an alloy.
  • the type of the intermediate layer is not particularly limited as long as an oxide can be formed, but from the viewpoint of easily forming an oxide, Such a metal material is preferable.
  • the intermediate layer be a film that forms an oxide having a corundum structure by oxidation treatment.
  • Al, Cr, Fe or Preferable is a film made of an alloy between them or an alloy containing these metals as a main component.
  • it is effective to select a metal having a standard free energy of oxide formation larger than that of aluminum. It is mentioned as a suitable thing.
  • the base material includes a base film formed on the surface of the base material.
  • the base film is formed. If a metal material to be formed (for example, Ti when forming TiN) is used for the intermediate layer, the configuration of the film forming apparatus can be simplified.
  • the pure metal film when a pure metal is used as the intermediate layer, if the thickness is formed relatively thick, the pure metal film has weaknesses such as low hardness, low strength, and poor sliding characteristics.
  • the pure metal film portion may affect the characteristics of the entire covering member. In such a case, the above (b) or the above may be used in place of or in combination with the pure metal intermediate layer.
  • the film of the above (b) is mainly composed of metal, but the strength of the intermediate layer is remarkably improved due to solid solution of nitrogen and the like. However, since the oxidation resistance of the film is not so high, it is easily oxidized in the oxidation process. As an element to be dissolved at this time, nitrogen is preferable, but oxygen, carbon, boron, or a mixture thereof may be dissolved.
  • the type of metal that is the main component of the film of (b) can be the same as the type of pure metal in the film of (a).
  • a compound having a lower nitrogen content than a complete nitride such as Cr 2 N
  • a nitride having a stoichiometric composition such as Cr 2 N
  • a film made of a mixture of r 2 N and CrN, etc., and a film made of a compound having a stoichiometrically low nitrogen content even with a C r N type crystal structure are exemplified.
  • the oxidation resistance of a Cr 2 N film is inferior to that of Cr N and is easily oxidized, but the strength of the film itself is significantly improved.
  • a nitride is preferable, but an oxide, a carbide, a boron, or a mutual solid solution thereof is effective. is there.
  • the types of metals that form these compounds are also described above.
  • the same type of pure metal as the film (a) can be used.
  • the thickness of the intermediate layer (the total thickness in the case of two or more layers) is preferably at least 0.05 m, more preferably 0.01 ⁇ m or more, and further preferably 0.0 m or more. 2 m or more is recommended. If the thickness of the intermediate layer is less than 0.05 m, the thickness of the oxide-containing layer formed in the oxidation treatment step will be too thin, and it will be difficult to achieve the effects of the present invention. However, if the thickness of the intermediate layer is too large, cracks tend to occur in the intermediate layer film when applied to a cutting tool or the like, and a longer life cannot be achieved. Therefore, the thickness of the intermediate layer is preferably 20 m or less, more preferably. Should be less than 10 m.
  • the film (a) When a pure metal film [the film (a)] is used as the intermediate layer, since the film has relatively low strength, its thickness is preferably 1 zm or less. Further, when the coated member according to the present invention is used for purposes other than a cutting tool, the relationship between the thickness of the intermediate layer and the thickness of the alumina film (described later) is not particularly limited, but the wear resistance of a cutting tool is reduced. When heat resistance and heat resistance are particularly required, the thickness of the intermediate layer is desirably not more than the thickness of the alumina film formed thereon.
  • various PVD methods such as an AIP (arc ion plating) method, a sputtering method, and an ion plating method may be applied.
  • AIP arc ion plating
  • a sputtering method a sputtering method
  • an ion plating method may be applied.
  • the film is formed without introducing a reactive gas.
  • an appropriate reaction gas may be introduced according to each process.
  • the PVD method when applying the PVD method to form an intermediate layer of the two-layer structure (laminated structure) of the above (b) film and (a) film, (b) the reactivity when forming the film Forming a film while introducing nitrogen or the like as a gas, and then (a) When forming a film thereon, the introduction of reactive gas is stopped to form an intermediate layer of a laminated structure in the same device can do.
  • the composition between (b) film and (a) film has a gradient composition
  • the film is formed while introducing a reactive gas at the initial stage of forming the film, By gradually reducing the amount of gas introduced, it is possible to form the film (a) (that is, a metal film) while having a gradient composition.
  • the surface of the intermediate layer is oxidized (oxidation treatment step) to form an oxide-containing layer.
  • this oxidation treatment step is preferably carried out in an apparatus (a vacuum chamber) for forming an alumina film to be formed in the next step.
  • Thermal oxidation at elevated temperature is the preferred method.
  • the oxidizing gas atmosphere at this time for example, oxygen, ozone, an atmosphere containing an oxidizing gas such as H 2 ⁇ 2 like et be, among which are included, of course also air atmosphere.
  • the thermal oxidation it is preferable to perform the thermal oxidation while maintaining the substrate temperature at 65 to 800 ° C. This is because if the substrate temperature is too low, oxidation is not sufficiently performed, and it is preferable to increase the temperature to 700 ° C. or more.
  • Oxidation is promoted as the substrate temperature is raised, but the upper limit of the substrate temperature must be kept below 100 ° C. for the purpose of the present invention.
  • the alumina based on the cast is also An oxide-containing layer useful for forming a film can be formed.
  • the oxide-containing layer By forming the oxide-containing layer as described above, it is possible to reliably form an alumina film mainly composed of an a-type crystal structure on the surface thereof.
  • those having a crystal structure of 70% or more are preferable because they exhibit excellent heat resistance, more preferably those having a crystal structure of 90% or more, and most preferably those having a crystal structure of a. 100%.
  • the film thickness of the ⁇ -type alumina film be 0.1 to 20 m. In order to maintain the excellent heat resistance of the alumina film, it is necessary to use 0.1.
  • the thickness of the alumina film mainly containing the mold is preferably 20 m or less, more preferably 10 m or less, and still more preferably 5 m or less.
  • the method of forming the alumina film mainly composed of the a-type crystal structure in the second embodiment is not particularly limited, but is not preferable because the CVD method needs to be performed at a high temperature of 100 ° C. or more, and is not preferable in a relatively low temperature region. It is desirable to adopt a PVD method that can form a film. Of these PVDs, the sputtering method, particularly the reactive sputtering method, is preferable because high-speed film formation can be achieved using an inexpensive metal target.
  • the temperature at which the alumina film is formed is not particularly limited. However, considering the continuity from the oxidation treatment in the previous step, the temperature is preferably the same as that in the oxidation treatment step. ° C is preferred. Also This temperature range is preferable because an alumina film mainly composed of an ⁇ -type crystal structure is easily formed.
  • an alumina film-coated member in which an intermediate layer, an oxide-containing layer and an ⁇ -alumina film are sequentially formed on the substrate is realized.
  • Such a member has excellent wear resistance and heat resistance, and is useful as a material for cutting tools and the like.
  • the steps of forming the intermediate layer, the oxide-containing layer, and the alumina film mainly composed of the type crystal structure be performed in the same apparatus.
  • the steps of forming the intermediate layer, the oxide-containing layer, and the alumina film mainly composed of the type crystal structure be performed in the same apparatus.
  • all of the series of steps for forming a series of laminated films are performed. It is preferable to carry out in the same apparatus. Specifically, for example, a cemented carbide substrate is installed in a film forming apparatus (see FIG.
  • an evaporation source including, for example, an evaporation source, a magnetron sputtering force source, a heater heating mechanism, and a substrate rotating mechanism.
  • a hard film such as T i AIN adopted AIP method or the like
  • C r intermediate layer formation
  • oxygen such as described above
  • ozone oxygen
  • oxidation such as H 2 ⁇ 2
  • the surface of the intermediate layer is thermally oxidized in an inert gas atmosphere, and thereafter, an alumina film mainly composed of an ⁇ -type crystal structure is formed by employing a reactive sputtering method or the like.
  • the base material used in the present invention may be a steel material such as high-speed steel, a cemented carbide or cermet, or a sintered body containing cubic boron nitride (cBN) or ceramics, or a crystal.
  • cBN cubic boron nitride
  • various substrates including Si can be used.
  • a base coat is formed on the surface of such a base material separately from the intermediate layer in advance.
  • the present invention is applicable to the present invention irrespective of the presence or absence of the undercoat, the type thereof, the type of single layer and the number of layers.
  • the undercoating film that may be formed in advance on the surface of the base material includes at least one metal element of Group 4a, 5a, 6a of the periodic table, Cu, A1, Si, or Y And a compound of one or more elements of C, ⁇ , ⁇ , and 0.
  • One or more single-phase or multi-layer hard coatings selected from mutual solid solutions Among them, a hard coating having a single-layer or multilayer structure of TiN, TiC, TiCN, TiA1N, CrN, CrAIN and TiAlCrN is applied to the surface of the substrate. It is good to form.
  • diamond and cBN grown by vapor phase are also preferable base coats.
  • the thickness of the undercoating is preferably 0.5 im or more, more preferably 1 m or more, in order to sufficiently exhibit the wear resistance expected as the hard coating. However, if the thickness of the undercoat is too large, cracks are likely to occur in the undercoat during cutting, and a longer life cannot be achieved.
  • a so-called thermal barrier coating such as an oxide ceramic (for example, YUrium Stabilized Zirconia) can be used.
  • oxide ceramic for example, YUrium Stabilized Zirconia
  • the film thickness there is no particular limitation on the film thickness.
  • the method of forming the undercoat is not particularly limited. However, in order to form the hard film having good wear resistance, it is preferable to form the undercoat by a PVD method. As the PVD method, an AIP method or a reactive sputtering method is used. It is more preferable to use. In addition, if the method of forming the undercoat by PVD is adopted, the formation of the undercoat and the formation of the Q! Type main alumina coat can be performed in the same apparatus, so from the viewpoint of improving productivity. Also preferable.
  • an alumina film mainly composed of an ⁇ -type crystal structure having excellent oxidation resistance on a c ⁇ ⁇ sintered body substrate having excellent wear resistance a surface covering member having excellent oxidation resistance can be realized.
  • the surface coating member when the surface coating member is manufactured, it is not exposed to a high-temperature atmosphere as in the case of applying the CVD method, and there is no restriction on the composition of the cBN sintered body.
  • the surface of the cBN sintered body after the oxidation treatment step is formed of an oxide formed by the oxidation of the binder phase, or an oxide whose surface is pure in the case of an oxide binder phase originally, and the substrate surface. It is considered that the state is dispersed throughout the whole area. Also, there is a possibility that cBN itself in the sintered body also forms an oxide on the surface.
  • an oxide region which is a region suitable for crystal growth of alumina is formed over the entire surface of the cBN sintered body substrate, and crystal growth of ⁇ -alumina starts from this region, so that It is thought that the alumina film mainly composed of ⁇ -type crystal structure can be formed at a relatively low film formation temperature.
  • the binder phase contained in the cBN sintered body used as the base material in the present invention is not limited to a specific type, but may be TiC, TiN, TiCN, A1N, T i B 2 and a 1 2 0 but 3 can be employed those containing at least one or more selected from the group consisting of, addition to this periodic table 4 a, 5 a, 6 a metals or Metal nitrides, carbides, borides such as A 1 and S i, and their mutual solid solutions, metals
  • the compound as the binder phase preferably contains at least a non-oxide compound.
  • the content of the binder phase in the cBN sintered body is preferably 1 to 50% by volume based on the whole sintered body. If the content of the binder phase is less than 1% by volume, the desired strength cannot be secured, and if the content exceeds 50% by volume, the wear resistance of the base material will be reduced.
  • the surface of the cBN sintered body substrate is oxidized, and an oxide-containing layer is formed on the surface (that is, the portion that becomes the interface between the cBN sintered body and the alumina film).
  • This oxidation treatment step is desirably carried out in a film forming apparatus for forming an alumina film to be formed in the next step from the viewpoint of efficiently producing a coating member.
  • Thermal oxidation which is carried out at a higher temperature, is a preferred method.
  • the oxidizing gas Kiri ⁇ gas at this time for example, oxygen, ozone, include an atmosphere containing an oxidizing gas H 2 0 2, etc., among which are included, of course also air atmosphere.
  • the thermal oxidation it is preferable to perform the thermal oxidation while maintaining the substrate temperature at 65 to 800 ° C. This is because if the substrate temperature is too low, oxidation is not sufficiently performed, and it is preferable to increase the temperature to 700 ° C. or more. Oxidation is promoted as the substrate temperature is increased, but the upper limit of the substrate temperature must be kept below 100 ° C. for the purpose of the present invention. However, it is possible to form an oxide-containing layer useful for forming an alumina film mainly composed of ⁇ ; type crystal structure.
  • the oxide-containing layer By forming the oxide-containing layer as described above, it is possible to reliably form an alumina film mainly composed of an ⁇ -type crystal structure on the surface thereof.
  • the alumina film preferably has an a-type crystal structure of 70% or more because it exhibits excellent heat resistance, more preferably has a type crystal structure of 90% or more, and most preferably has a type crystal structure of 90% or more.
  • the thickness of the alumina coating mainly composed of the a-type crystal structure having a crystal structure of 100% is desirably 0.1 to 20 zm. This is because it is effective to maintain 0.1 or more in order to maintain the excellent heat resistance of the alumina film.
  • the film thickness is preferably 20 m or less, more preferably 10 / m or less, and still more preferably 5 zm or less.
  • the means for forming the alumina film mainly composed of the ⁇ -type crystal structure in the third embodiment is not particularly limited. However, it is not preferable because the CVD method needs to be performed at a high temperature of 100 ° C. or more, and the CVD method is not preferable. It is desirable to adopt a PVD method that can form a film. Of these PVDs, the sputtering method, particularly the reactive sputtering method, is preferable because high-speed film formation can be realized using an inexpensive metal gate.
  • the temperature at which the alumina film is formed is not particularly limited. However, considering the continuity from the oxidation treatment in the previous step, the temperature is preferably the same as that in the oxidation treatment step. 0 ° C is preferred. It is preferable to form an alumina film in this temperature range because an alumina film mainly composed of an ⁇ -type crystal structure is easily formed.
  • an alumina film-coated member in which a substrate, an oxide-containing layer and an alumina film mainly composed of a mold are sequentially formed can be realized. It has excellent wear resistance and heat resistance, and is useful as a material for cutting tools.
  • the alumina film mainly composed of the ⁇ -type crystal structure is formed by the PVD method, more preferably by the reactive sputtering method, a compressive residual stress can be imparted by selecting the coating conditions, and the It is preferable to secure the strength of the steel.
  • the alumina film mainly composed of ⁇ -type crystal structure formed by the reactive sputtering method contains a small amount of Ar in addition to A1 and ⁇ .
  • the members that can be realized have excellent wear resistance and heat resistance, and are useful as materials for cutting tools and the like.
  • alumina film mainly composed of a rhombic crystal structure and having fine and uniform crystal grains (hereinafter, may be simply referred to as “aluminum film mainly composed of a rhombus”) by the above-mentioned base material ⁇ base film (the In the fourth embodiment, hereinafter, unless otherwise specified, the term “substrate” includes a substrate in which a base film is previously formed on the substrate. Research was also carried out on a method of forming by (fourth aspect).
  • the surface of the substrate was subjected to gas ion bombardment treatment and then oxidized, so that the proportion of the a-type in the crystal structure of the alumina film was markedly higher.
  • the present inventors have found that the alumina grains are improved and the alumina crystal grains are fine and uniform, and have reached the present invention.
  • the mechanism by which the above method effectively acts on the formation of the a-type alumina film is presumed as follows from the experimental results in the examples of the fourth embodiment described below.
  • the surface of the CrN film is oxidized to form an alumina film mainly having an a-type crystal structure.
  • the mechanism of this method is to expose the surface of the above-mentioned CrN film to be formed into an oxidizing atmosphere before forming the alumina film.
  • Cr 2 ⁇ 3 having the same crystal structure as alumina with a-type crystal structure is formed on the surface, and this surface state is suitable for generation of alumina crystal nuclei with rhombic crystal structure when forming alumina film Can be considered.
  • the oxidation treatment is performed after performing the gas ion pumping treatment as in the present invention, the surface of the formed alumina film is observed by SEM.
  • the crystal grains of alumina with a-type crystal structure are finer and more uniform than those formed by the conventional method.
  • the adsorbed moisture, contamination, and natural oxide film present on the surface of the film such as CrN were removed by the gas ion bombardment treatment, and became in a state easily combined with oxygen. It is supposed that the surface of the film was oxidized, and the oxide, which is the generation point of the a-crystal nuclei of the a-type crystal structure, was finely and uniformly formed on the film surface.
  • the oxide which is the generation point of the a-crystal nuclei of the a-type crystal structure
  • the fourth embodiment is characterized in that, when forming the alumina film, the surface of the base material is subjected to a gas ion pumping treatment, and then the surface is oxidized.
  • a gas ion pumping treatment There are no particular limitations on the detailed conditions of the treatment, and conditions that can etch the substrate surface may be appropriately adopted.
  • the following method using a plasma excited by a filament can be cited. That is, in a state in which an inert gas such as Ar is introduced into the vacuum chamber, thermal electrons are generated from the filament to generate a discharge, and gas ions such as Ar in the plasma generated by the discharge are generated. Is a method of etching the substrate surface by accelerating and colliding with a negative voltage applied to the substrate.
  • the voltage may be applied by applying a negative DC voltage continuously or intermittently as described above, or by applying a high-frequency AC voltage.
  • the negative DC voltage In order to accelerate the generated gas ions such as Ar toward the base material and sufficiently etch the surface of the base material, the negative DC voltage should be at least 100 V or more (preferably at least 300 V). V or more). However, if the negative voltage is too large, there is a concern that an adverse effect such as arc discharge may occur. Therefore, the negative voltage is preferably suppressed to 1200 V or less (preferably -1000 V or less). When a high-frequency AC voltage is applied, it is preferable that the generated self-bias be approximately equal to the DC voltage.
  • the gas ion species used is not particularly limited as long as it has an etching effect, and a rare gas such as Ar, Kr, or Xe can be used. Among them, relatively inexpensive and commonly used A It is preferable to use r gas.
  • the plasma may be generated by a method such as a hollow source discharge or an RF (radio frequency) discharge, in addition to the method based on the above-described filaments.
  • a method such as a hollow source discharge or an RF (radio frequency) discharge, in addition to the method based on the above-described filaments.
  • an inert gas such as Ar is vacuumed.
  • a negative DC voltage or a high-frequency AC voltage is applied to the substrate to generate a glow discharge, and gas ions (Ar ions, etc.) in the plasma generated by the discharge are generated.
  • Etching may be performed by accelerating the applied voltage.
  • a method of causing highly accelerated gas ions generated from an ion beam source to collide with the surface of the base material can be adopted.
  • a base material constituting a member such as a cutting tool is used as it is, and a single-layer or multi-layer base coat is previously formed on the base material in order to impart properties such as wear resistance. It is also possible to use those formed with.
  • the present invention method is applied to the manufacture of cutting tools, sliding members, dies, etc., which are required to have excellent heat resistance and abrasion resistance, although the specific types of the base material and the undercoat are not specified. In this case, the following materials are preferably used as the base material and the undercoat.
  • steel materials such as high-speed steel, cemented carbide, cermet, cBN (cubic boron nitride) sintered body and ceramic sintered body can be used.
  • the type of the substrate is not particularly limited.
  • the undercoat include elements of Group 4a, 5a and 6a of the periodic table, Al, Si, Fe, Cu and
  • One or more elements selected from the group consisting of Y and C, N, B, and O It is preferable to form a compound with one or more of the above-mentioned elements, or a mutual solid solution of these compounds, since an oxide layer advantageous for forming alumina having an ⁇ -type crystal structure can be formed.
  • undercoat examples include Ti (C, N), Cr (CN), Ti A1 (C, N), Cr A1 (C, N), Ti A1 Cr (CN), that is, carbides, nitrides, carbon / nitrides of Ti, Cr, TiAl, CrAl, or TiAlCr, and cutting tools, etc.
  • the thickness of the undercoat is preferably 0.5 m or more, more preferably 1 m or more, in order to sufficiently exhibit the expected wear resistance and heat resistance of the film.
  • the thickness of the undercoating is limited to 20 m or less, more preferably 10 m or less. Is good.
  • the method of forming the undercoat is not particularly limited, but is preferably formed by a PVD method, and more preferably, an AIP (ion plating) method or a reactive sputtering method is used as the PVD method. If a method of forming a base film such as a hard film by a method is adopted, the formation of the base film and the formation of an ⁇ -type main alumina film described later can be performed in the same apparatus, thereby improving productivity. Is also preferred.
  • an oxidation treatment is performed on the undercoating film surface.
  • the conditions of the oxidation treatment are not particularly limited. However, in order to efficiently form an oxide-containing layer that is advantageous for generating alumina crystal nuclei having a Q! -Type crystal structure, it is preferable to perform oxidation under the following conditions. That is, the oxidation is performed in an oxidizing gas-containing atmosphere. The reason for this is that the oxidation can be performed efficiently. For example, an atmosphere containing an oxidizing gas such as oxygen, ozone, or H 2 O 2 can be mentioned, and of course, an air atmosphere is also included.
  • the thermal oxidation it is preferable to perform the thermal oxidation while maintaining the substrate temperature at 65 to 800 ° C. This is because if the substrate temperature is too low, oxidation is not sufficiently performed, and it is preferable that the temperature be increased to 700 ° C. or more. Oxidation is promoted as the substrate temperature is increased, but the upper limit of the substrate temperature must be kept below 100 ° C. for the purpose of the present invention. In the present invention, an oxide-containing layer useful for forming an ⁇ -type main alumina film described below can be formed even at 800 ° C. or lower.
  • the above oxidation treatment step is desirably performed in an alumina film forming apparatus used in the next step, and a method of performing the above thermal oxidation by raising the substrate temperature in an oxidizing gas atmosphere is mentioned as a preferred embodiment.
  • a method of performing the above thermal oxidation by raising the substrate temperature in an oxidizing gas atmosphere is mentioned as a preferred embodiment.
  • the method of forming the ⁇ -type main alumina film in the fourth embodiment> is not particularly limited, but the CVD method needs to be performed in a high temperature range of 100 ° C. or more, and is therefore not preferable. It is desirable to adopt a PVD method that can form a film by sputtering. Examples of the PVD method include a sputtering method, an ion plating method, and a vapor deposition method. Among them, the sputtering method is preferable. In particular, reactive sputtering is preferable because high-speed film formation can be performed using an inexpensive metal target.
  • the temperature of the substrate during the formation of the alumina film is not particularly specified, it is preferable to perform the process in a temperature range of about 65 ° C. to 800 ° C., since the alumina film mainly containing the mold is easily formed. Further, if the ⁇ : type alumina coating is formed while maintaining the substrate temperature during the oxidation treatment constant after the oxidation treatment step, the characteristics of the base material ⁇ the hard coating can be maintained and the productivity is excellent. Is preferred.
  • the thickness of the alumina film to be formed is desirably 0.1 to 20 m. In order to maintain the excellent heat resistance of the alumina film, it is effective to secure 0.1 m or more, and more preferably, 1 m or more. However, it is not preferable that the thickness of the alumina film is too large because internal stress is generated in the alumina film and cracks and the like are easily generated. Therefore, the thickness is preferably 20 m or less, more preferably 10 m or less, and still more preferably 5 m or less.
  • a cemented carbide base material is installed in a physical vapor deposition device described below, which includes an evaporation source for AIP, a magnetron sputtering cathode, a heating mechanism, and a base material rotation mechanism.
  • a hard film such as TiAIN is formed as a base film by using the AIP method or the like, and then Ar is introduced into the vacuum chamber, and a negative DC voltage is applied to the substrate to apply a gas ion pump. performs a process, then oxygen such as described above, ozone, the surface of the hard coating is thermally oxidized in an oxidizing gas atmosphere such as H 2 0 2, employs a subsequent reactive Supattari ring method, Forming an alumina film mainly composed of a rhombic crystal structure.
  • an alumina film mainly composed of an ⁇ -type crystal structure may be formed on a hard film such as TiA1N as an underlayer film or an ultra-fine film.
  • alumina film mainly composed of diamonds may be formed on a hard film such as TiA1N as an underlayer film or an ultra-fine film.
  • the base material and the underlying film in the fifth embodiment, hereinafter, unless otherwise specified, the “base material”
  • research has been conducted on a method for forming the film in a temperature range of about 800 ° C or less, which can maintain the characteristics of (including those in which a base film has been formed on the substrate in advance).
  • the method for producing an alumina film of the present invention will be outlined.
  • a substrate that can withstand the temperature of the film forming process
  • a carbide tool uncoated
  • a substrate such as a Si wafer, or as a base coat on the substrate, CrN, TiN, Ti
  • CrN, TiN Ti
  • Ti A metal ion pump treatment is applied to a material coated with a hard film such as AIN or diamond under the conditions described below.
  • the metal ions (M) etch the substrate surface, deposit metal ions (M), and accelerate the metal ions. Simultaneously (not shown) into the substrate.
  • the base metal 21 after metal ion bombardment treatment (the position of the base material surface before metal ion bombardment processing is number 15)
  • the metal used for metal ion bombardment treatment goes to the surface layer near the surface As a result, a concentration gradient layer 22 having a high concentration is formed [FIG. 6 (b)].
  • the surface of the concentration gradient layer 22 is oxidized to form an oxide-containing layer 23 as shown in FIG. 6 (c) on the surface of the concentration gradient layer 22.
  • an oxide-containing layer 23 and an alumina film 24 mainly composed of an ⁇ -type crystal structure are sequentially formed on the surface side of the concentration gradient layer 22 as shown in FIG. You can get it.
  • Such a method for producing an alumina film mainly composed of an ⁇ -type crystal structure has the following features as compared with the conventional method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2002-53946.
  • the surface of the concentration gradient layer formed by metal ion bombardment is a non-nitrided metal layer or a metal layer in which a small amount of nitrogen or the like is dissolved. It is easier to oxidize than the conventional method, and as a result, the time required for the oxidation treatment can be shortened, and the load on the apparatus due to heating can be reduced.
  • the formed concentration gradient layer is a mixed layer with the base material, and is different from the conventional method in which a nitride film is formed on the base material.
  • the thickness of the layer can be reduced, and as a result, it is possible to suppress the adverse effect on the member properties due to the layer other than the alumina film. Wear.
  • the formed concentration gradient layer is a mixed layer of the base material and the metal, there is no clear interface between the base material and the mixed layer, and the adhesive layer is essentially excellent in adhesion. Therefore, it can be seen that the above configuration is preferably employed in order to further enhance the adhesion to the substrate.
  • the method of the present invention is characterized in that, in forming an alumina film, first, a metal ion bombardment treatment is performed on a substrate surface, and then the surface is oxidized.
  • a metal ion bombardment treatment is performed on a substrate surface, and then the surface is oxidized.
  • a metal material that forms an oxide having a corundum structure as a source of metal ions because alumina having an ⁇ -type crystal structure can be easily formed.
  • the metal material include Al and C. Examples thereof include r, Fe, alloys of these metals, and alloys containing these metals as main components.
  • a metal having a standard free energy of oxide formation higher than aluminum may be selected, and for example, Ti or the like can be used.
  • a vacuum arc evaporation source When a vacuum arc evaporation source is used to generate metal ions, the drawback is that a large amount of droplets are emitted. Such a question In order to solve the problem, it is preferable to use a metal material having a relatively high melting point (for example, an element belonging to Group 4a, 5a, or 6a of the periodic table). If the method for generating metal ions is performed without using a vacuum arc evaporation source, the above problem does not occur, so that a metal material can be selected regardless of the melting point.
  • a metal material having a relatively high melting point for example, an element belonging to Group 4a, 5a, or 6a of the periodic table.
  • the configuration of the film forming apparatus can be further simplified.
  • a target containing a metal constituting the undercoat is used for the metal ion bombardment treatment
  • the configuration of the film forming apparatus can be further simplified.
  • TiN as a base film
  • the generation of metal ions may be performed by a method capable of generating highly ionized metal plasma, and for example, a method of evaporating a metal target material by vacuum arc discharge using a vacuum arc evaporation source.
  • a vacuum arc evaporation source a source which has a filter mechanism and can reduce macro particles is particularly desirable.
  • a method in which a metal ionization mechanism is added to a crucible type ion plating method, or an RF (radio frequency) coil is used in a sputtering evaporation source for example, a method in which a metal ionization mechanism is added to a crucible type ion plating method, or an RF (radio frequency) coil is used in a sputtering evaporation source.
  • a method of improving the ionization rate by addition, or a high-power pulse sputtering method of concentrating high power in a short time to promote ionization of steam can be adopted.
  • the above etching and the like can be realized with a low voltage of about ⁇ 100 V, but preferably ⁇ 300 V or more. More preferably, a bias voltage of ⁇ 600 V or more is applied. Although there is no particular upper limit for the bias voltage, applying too high a voltage may cause problems such as arc discharge and damage to the base material and X-rays. Therefore, it is realistic to set the upper limit of the bias voltage to about ⁇ 200 V, and the concentration gradient layer can be sufficiently formed even at 110 V or less.
  • the bias voltage may be applied continuously or intermittently.
  • a conductive layer is formed on the surface of the base material, and then a bias voltage is applied, or metal ions are irradiated at a low bias voltage (about several tens of volts) to form a conductive layer on the base material surface.
  • a bias voltage of the above level may be applied.
  • bias voltage As described above, besides applying DC voltage continuously or intermittently, it is also possible to apply bias voltage at a high frequency (1 to several hundred kHz) in a pulsed manner or to apply RF. Often, these methods may be employed to apply a bias voltage to an insulating surface.
  • metal ion bombardment is generally performed without introducing atmospheric gas.
  • An active gas atmosphere or a nitrogen atmosphere may be used.
  • a small amount of reactive gas such as nitrogen, is introduced in order to prevent macroparticles generated from the vacuum arc evaporation source from being mixed into the formation layer. Processing may be performed.
  • a reactive gas atmosphere is used as described above, if the partial pressure of the reactive gas exceeds 1 Pa, the atmosphere becomes the same as that at the time of forming the nitride film, and the above-described etching action is weakened, which is not preferable. Therefore, the reactive gas should have a partial pressure of 0.5 Pa or less, preferably 0.2 Pa or less, and more preferably 0.1 Pa or less.
  • the metal ion bombardment treatment is preferably performed by heating the base material to 300 or more. Specifically, for example, after setting the base material 2 in the base material holder (planetary rotating jig) 4 in the film forming apparatus shown in FIG. Increasing the temperature of the substrate 2 by (radiation) heating 5 while rotating the holder (planetary jig) 4.
  • the gas adsorbed on the base material surface can be released before the start of the metal ion bonding process, so that the generation of arcs during the metal ion pumping process can be suppressed and the stability can be reduced. Operation.
  • the substrate temperature during the metal ion bombardment process depends on the heating by the above-mentioned heat and the energy corresponding to the bias voltage applied to the base material during the metal ion bombardment process. If the upper limit of the heating temperature is determined in advance in consideration of the temperature rise during the treatment, the loss of energy and the like can be suppressed, and the base material and the undercoat film in the fifth embodiment are not>
  • a base material a base material constituting a member such as a cutting tool can be used as it is, and a single-layer or multi-layer structure is previously formed on the base material in order to impart properties such as wear resistance. Those having a base coat formed thereon can also be used.
  • the method of the present invention is applied to the manufacture of cutting tools, sliding members, dies, etc., which are required to have excellent heat resistance and abrasion resistance, although the specific types of the base material and the underlying film are not specified.
  • the following materials are preferably used as the base material and the base coat.
  • Base materials include steel materials such as high-speed steel, cemented carbides, cermets, sintered bodies containing cBN (cubic boron nitride) and ceramics, and hard materials such as crystalline diamond.
  • Various substrates such as Si wafers for electronic members can be used.
  • an undercoat film formed on a substrate for example, a group consisting of elements of groups 4a, 5a and 6a of the periodic table, Al, Si, Cu and Y
  • undercoat examples include Ti (C, N), Cr (CN), TiA1 (C, N), CrA1 (C, N), TiAlcr (CN), that is, carbides, nitrides, carbon-nitrides of Ti, Cr, TiAl, CrAl, or TiAlCr, and cutting tools, etc.
  • Oxide ceramics for example, Yttrium Stabi 1ized
  • thermal barrier coating such as Zirconia
  • Zirconia Zirconia
  • the thickness of the undercoat is preferably 0.5 m or more, more preferably 1 m or more, in order to sufficiently exhibit the expected wear resistance and heat resistance of the film.
  • the undercoat is a hard-wearing hard coating, if the thickness is too large, the coating is liable to crack during cutting and the service life cannot be prolonged. Hereafter, it is more preferable to keep it to 10 m or less.
  • the upper limit of the film thickness need not be particularly set.
  • the method of forming the undercoat is not particularly limited.However, in order to form an undercoat having good wear resistance, it is preferable to form the undercoat by a PVD method, and the AIP method or the reactive sputtering method is used as the PVD method. This is more preferred. In addition, if the method of forming the undercoat by the PVD method is adopted, the undercoat and the alumina main body of the later-described mold can be formed in the same apparatus, which is preferable from the viewpoint of improving productivity.
  • the underground surface is oxidized.
  • the conditions for the oxidation treatment are not particularly limited. However, in order to efficiently form an oxide-containing layer that is advantageous for the generation of alumina crystal nuclei having a type crystal structure, it is preferable to perform oxidation under the following conditions. .
  • the oxide is preferably reason be carried out in an atmosphere containing an oxidizing gas is because efficiently oxidized, for example, oxygen, ozone, atmosphere containing an oxidizing gas H 2 0 2, etc. Among them, the This includes, of course, the atmosphere.
  • the thermal oxidation it is preferable to perform the thermal oxidation while maintaining the substrate temperature at 65 to 800. This is because if the substrate temperature is too low, oxidation is not sufficiently performed, and it is preferable that the temperature be increased to 700 ° C. or more. Oxidation is promoted as the substrate temperature is increased, but the upper limit of the substrate temperature must be kept below 100 ° C. for the purpose of the present invention.
  • an oxide-containing layer useful for forming a later-described main alumina film can be formed even at 800 ° C. or lower.
  • the oxidation treatment is performed continuously without cooling the substrate heated at the time of the metal ion bombardment treatment, the time and energy required for heating can be reduced. For that purpose, it is recommended that the oxidation treatment be performed in an oxidizing atmosphere in the apparatus immediately after the metal ion pumping treatment.
  • an oxidizing gas such as oxygen, ozone, or H 2 ⁇ 2 is turned into plasma and irradiated. It is, of course, also effective to adopt a method that does this.
  • the method for forming the ⁇ -type main alumina film is not particularly limited. It is desirable to adopt a PVD method capable of forming a film. Examples of the PVD method include a sputtering method, an ion plating method, and a vapor deposition method. This is preferable because high-speed film formation can be performed using an inexpensive metal gate.
  • the temperature of the substrate during alumina film formation is not specified,
  • the alumina film mainly containing the pattern is formed. It is preferable because it is easily damaged. In addition, it is preferable to form the alumina film while keeping the temperature of the substrate during the oxidation treatment constant, because the characteristics of the substrate and the hard film can be maintained and the productivity is excellent.
  • the thickness of the alumina film to be formed is desirably 0.1 to 20 m. In order to maintain the excellent heat resistance of the alumina film, it is effective to secure 0.1 m or more, more preferably 1 m or more. However, it is not preferable that the thickness of the alumina film is too large because internal stress is generated in the alumina film and cracks and the like are easily generated. Therefore, the thickness is preferably 20 m or less, more preferably l O / m or less, and still more preferably 5 m or less.
  • the treatment is performed continuously without moving the processed material. Therefore, a member covered with an alumina film mainly composed of a crystal structure can be efficiently manufactured.
  • evaporation sources for ⁇ ⁇ ⁇ , magnetron sputtering For example, a base material made of cemented carbide is installed in a physical vapor deposition device described later equipped with a power source, a heater heating mechanism, a base material rotation mechanism, and the like.
  • a hard film such as TiA1N is used as a base film.
  • AIP method or the like performs metal ion bombardment by C r ions in a vacuum chamber within one, then oxygen such as described above, ozone, oxidizing gas atmosphere of H 2 0 2, etc.
  • the surface of the hard coating is thermally oxidized, and then a reactive sputtering method or the like is employed to form an alumina coating mainly composed of an ⁇ -type crystal structure.
  • FIG. 6 (d) is a member in which an alumina film mainly having a crystal structure is formed in a fifth mode on a substrate (including a substrate on which a base film is formed in advance).
  • the vicinity of the base material surface is a concentration gradient layer in which the metal used for the metal ion bombardment treatment has a higher concentration as it goes to the surface layer, and an oxide is formed on the surface side of the concentration gradient layer.
  • a member in which an impregnated layer and an alumina film mainly composed of a rhomboid crystal structure are sequentially formed is also specified.
  • the base material is made of a cemented carbide
  • the base film (hard film) is TiN, TiCN, TiAlN, polycrystalline diamond.
  • a cutting tool such as a throw-away chip whose base material is made of cermet and which has an undercoat (hard coating) formed of Tin and TiCN, and a semiconductor whose base material is a Si wafer Component parts, cBN sintered body tool, diamond tool, die made of cemented carbide or base material
  • a mold having an undercoat formed thereon, a high-temperature member having a base material of a heat-resistant alloy, or a mold having an undercoat formed on the base can be given.
  • a film containing alumina can be formed by X-ray diffraction observation on an iron substrate at a substrate temperature of 60 ° C, and an ⁇ film is formed substantially at a substrate temperature of 75 to 70 ° C We report what we could do.
  • Zywitzki et al. Reported the growth process of ⁇ -alumina by observing in detail a transmission electron microscope (TEM) of an alumina film formed by the same film formation as above (Surf. Coat). Technol., 94-95
  • the coating member coated with the film has a temperature of 100 °. High temperature above c When exposed to water, that part of the alumina may undergo a phase transformation to ⁇ -alumina. Since this phase transformation is accompanied by a change in volume, there is a concern that it may cause cracks in the coating. Also, if such a phase change accompanied by a volume change occurs at the interface between the film and the substrate, it is fully expected that the adhesion of the film will be adversely affected.
  • Japanese Patent Application Laid-Open No. 200-533946 discloses that the lattice constant is 4.779 A or more.
  • a method is disclosed in which an oxide film having a corundum structure having a thickness of at least 0.05 m and a thickness of at least 0.05 m is used as an underlayer, and an alumina film having a pattern crystal structure is formed on the underlayer.
  • the T i as the hard film, on which to form a composite nitride film of one or more kinds of elements and A 1 is selected from the group consisting of C r and V, as the intermediate layer (A 1 2, C r ( 1 _ z) ) N (where z is 0 ⁇ z ⁇ 0.90), and then a corundum structure oxide film is formed by oxidizing this film.
  • ⁇ -type crystal structure The formation of lumina has also been shown to be useful. According to this method, crystalline alumina can be formed at a relatively low substrate temperature.
  • T alumina exists at least in the region where the crystal is fine at the initial stage of film formation, and the alumina with Q! It is thought that it grows from inside.
  • the present inventors have proposed a means for producing an alumina coating having a substantially ⁇ -crystal structure, particularly a base material (or a base material formed on the base material surface) which is a portion where crystal growth of the alumina coating starts.
  • the study focused on the surface properties of the film.
  • pretreatment such as ion bombardment treatment or surface damage treatment with an oxide powder having a corundum structure is performed on the base material surface to form a large number of fine scratches and dents on the base material surface.
  • the surface is oxidized at a predetermined temperature and then an alumina film is formed, an aggregate of alumina crystals at least where the film starts to grow (that is, the interface between the oxide-containing layer and the alumina film) is fine. It was found that no crystal phase other than alumina was observed in the fine crystal parts. It was also found that, without performing the above pretreatment, if the oxidation treatment conditions (treatment temperature) were set more strictly, the alumina film formed thereafter would have the same crystal form as above.
  • alumina film of the present invention it is preferable that crystals other than alumina are not observed not only in the film growth start portion having a microstructure but also in all parts of the film, but the above processing conditions are appropriately set. By doing so, such an alumina film can be formed.
  • the thickness of the alumina film having the a-type crystal structure is preferably 0.5 to 20 °, more preferably about 1 to 5 im.
  • 0.5 m is the minimum thickness at which the performance as a heat-resistant film is exhibited, as well as the thickness corresponding to the “film growth start portion” in the present invention, and the film thickness is 20 xm or less. By doing so, it is possible to avoid the adverse effects (the occurrence of cracks) due to the internal stress of the coating. Also, from the viewpoint of preventing the growing crystal from becoming extremely coarse, it is preferable that the thickness be 5 / m or less.
  • the sputtering method particularly the reactive sputtering method, is suitable for forming a highly insulating film such as alumina at a reasonable film forming rate, and is also preferable in terms of productivity.
  • the film speed may be at least 0.1 mZhr or more, and may be 0.5 mZhr or more to increase productivity.
  • the temperature of the substrate when forming the above alumina film depends on whether the The optimum value differs depending on the type of the base film and the base film, etc., but it is necessary to secure at least 700 ° C. or more when performing pretreatment. If the temperature is lower than this, it becomes difficult to form an alumina film with ⁇ crystal structure.
  • a film such as TiA1N which may be formed as a base film, is used. It is preferable to form the alumina film at a temperature of 800 or less at which the characteristics are not deteriorated.
  • base temperature as used herein means the temperature of a substrate made of cemented carbide, carbon steel, tool steel, or the like, and a base film formed on the substrate.
  • the oxide-containing layer is formed by oxidizing (oxidizing process) the surface of the substrate or the surface of the base film formed in advance on the substrate.
  • This oxidation treatment step forms an alumina film to be formed in the next step from the viewpoint of treatment efficiency or from the viewpoint of preventing the adsorption of water vapor in the atmosphere on the surface of the formed oxide-containing layer.
  • the thermal oxidation is preferably performed in an apparatus (a vacuum chamber 1), and thermal oxidation performed by raising the substrate temperature in an oxidizing gas atmosphere is a preferable method.
  • the oxidizing gas atmosphere at this time for example, oxygen, ozone, include an atmosphere containing an oxidizing gas such as H 2 ⁇ 2, among which are included, of course also air atmosphere.
  • the optimal substrate temperature varies depending on the presence or absence of a pretreatment, the substrate and the type of the undercoat, and the like. It is necessary to perform thermal oxidation while maintaining at least 700 ° C. or more.
  • the undercoat is CrN and the pretreatment is not performed, or when the undercoat is TiA1N and the gas ion bombardment is pretreated, or If the pretreatment with the metal ion bombardment using Cr is not limited, the oxidation treatment needs to be performed at a substrate temperature of 75 O or more. If the substrate temperature is lower than each of the above temperatures, the oxidation will not be performed sufficiently, and the desired Q! Alumina will not be formed even if the alumina film formation conditions are set appropriately.
  • the base material temperature in the oxidation treatment step and the alumina film formation step is continuously set by setting an appropriate base material temperature range according to the presence or absence of the pretreatment. (Preferably at the same substrate temperature in the same apparatus).
  • oxidation methods include, for example, oxygen, ozone,
  • a pretreatment such as a gas ion bombardment treatment or a surface damage treatment with an oxide powder having a corundum structure is performed on the substrate surface as necessary.
  • a pretreatment such as a gas ion bombardment treatment or a surface damage treatment with an oxide powder having a corundum structure is performed on the substrate surface as necessary.
  • a negative bias voltage (a DC voltage or a high-frequency AC voltage) is applied to the substrate while an inert gas such as Ar is introduced into the vacuum chamber.
  • an inert gas such as Ar
  • a glow discharge is generated, and a gaseous substance such as Ar in the plasma generated by the glow discharge collides with the base material at a high speed, thereby etching the base material surface.
  • the surface damage treatment using an oxide powder having a corundum structure means that the surface of a base material is polished using, for example, an alumina powder having an ⁇ -type crystal structure (corundum structure), or the powder is dispersed in a liquid in which the powder is dispersed. By immersing the base material and applying ultrasonic waves, fine scratches or dents in the shape reflecting the shape of the powder are formed on the base material surface.
  • the powder used in such treatment is not limited to alumina powder having an ⁇ -type crystal structure. 1 "is 2 0 3 Ya 6 2 ⁇ 3 or the like can be applied powder that having a corundum structure, it is preferred to use an alumina powder having the same flight-type crystal structure and an alumina film formed on the outermost surface. Also, the From the viewpoint of forming a fine alumina film, it is preferable to use a powder having a smaller size, and it is preferable to use a powder having an average particle diameter of 50 or less, more preferably 1 m or less. .
  • Another pretreatment technique is the metal ion pumping treatment.
  • the metal ion bombarding process uses, for example, a vacuum arc evaporation source to evaporate a metal target material by vacuum arc discharge, apply energy to the generated metal ions with a bias voltage, and cause the metal ions to collide with the base material at a high temperature.
  • a mixed layer of a base material (or an underlayer) having a large content of the metal and the metal is formed.
  • the thickness of the undercoat film at this time is preferably 0.5 m or more, more preferably 1 m or more, in order to sufficiently exhibit the wear resistance expected as a hard film.
  • the thickness of the hard coating is 20 m or less, more preferably 10 m or less. It is better to keep it below.
  • a so-called thermal barrier coating such as an oxide ceramic (for example, Yttrium Stabilized Zirconia) can be used.
  • an oxide ceramic for example, Yttrium Stabilized Zirconia
  • the film thickness there is no particular limitation on the film thickness.
  • the method of forming the undercoat is not particularly limited, but is preferably formed by a PVD method in order to form a hard film having good wear resistance, and an AIP method or a reactive sputtering method is used as the PVD method. It is more preferable to do so. Also, if the method of forming the undercoat film by the PVD method is employed, the formation of the undercoat film and the formation of the ⁇ -alumina film can be performed in the same apparatus, which is also preferable from the viewpoint of improving productivity. .
  • an alumina film mainly composed of ⁇ -type crystal structure on the TiAIN film After bombarding the surface, the surface is exposed to an oxidizing atmosphere at a temperature of 65 ° C. (: up to 800 ° C.) and then subjected to a reactive sputtering method to a temperature of about 65 ° C. to 800 ° C. If an alumina film is formed at a temperature of, the crystal phase other than the rhombic crystal is reduced, and the finer crystal grains are formed. It has been found that a fine and dense alumina film can be obtained.
  • the present inventors also studied the device to be used in order to specifically and efficiently realize the operation and effect of the present invention.
  • T i N T Excellent heat resistance, such as alumina film mainly composed of a rhombic crystal structure, without disposing the above special intermediate layer on a practical hard film (base film) such as iCN, TiAIN, etc.
  • base film base film
  • iCN iCN
  • TiAIN TiAIN
  • a high-purity oxide-based film can be efficiently and stably formed, and that all processing steps leading to the formation of the alumina film can be performed in the same apparatus.
  • the physical vapor deposition apparatus of the present invention which can achieve the above-mentioned objects will be described in detail.
  • the apparatus of the present invention includes, as its basic components, a vacuum chamber, a substrate holder (planetary rotating jig), a mechanism for introducing an inert gas and an oxidizing gas, a plasma source, a sputtering ring evaporation source, and a radiation type superheater.
  • Mechanism and bias power supply respectively Have.
  • the substrate holder (planetary jig) holds a plurality of substrates, and is rotatably arranged on the bottom of one vacuum chamber.
  • a rotary table is provided on the bottom surface of the vacuum chamber, and a plurality of substrate holders (planetary rotary jigs) are provided on the rotary table, and are rotatably (rotated) on the rotary tape.
  • the vacuum chamber can be arranged on the top surface instead of the bottom surface.
  • the inert gas and oxidizing gas introduction mechanism is provided to convert the atmosphere in the vacuum chamber 1 into an inert gas and / or an oxidizing gas.
  • the introduction mechanism is an introduction pipe connecting these gas sources and the upper part of the vacuum chamber, and has a flow control valve.
  • argon can be used as the inert gas.
  • Argon is excited by a plasma source to generate argon plasma, and the argon ions are used to bombard the surface of a hard film (base film) such as TiAlN, TiN, or TiC.
  • a hard film such as TiAlN, TiN, or TiC.
  • the oxidizing gas oxygen, ozone, hydrogen peroxide, and the like can be used.
  • the hard film (underlying film) after cleaning is oxidized. be able to.
  • a mixed gas of this oxidizing gas and the above-mentioned inert gas such as argon is supplied into the vacuum chamber, it becomes a plasma gas and is formed by reactive sputtering, that is, the hard film is formed.
  • a highly heat-resistant oxide-based film such as so-called a-alumina having an ⁇ -type crystal structure can be formed on the surface of the (underlying film).
  • the plasma source has a mechanism for generating a plasma gas for film formation by the ion bombardment process or reactive sputtering. It is located at a position facing the substrate holder (planetary jig).
  • Various types of plasma sources such as filament excitation, holocaode discharge, and RF discharge, can be used.
  • the sputtering evaporation source has a cathode made of evening material used for reactive sputtering, and it is also preferable that the sputtering source is disposed at a position facing the substrate holder (the planetary rotary jig).
  • the substrate holder the planetary rotary jig.
  • the radiant heating mechanism is provided for heating the base material to a predetermined temperature, and is preferably disposed at a position facing the base material holder (the planetary jig).
  • the heating capability of this radiation type heating mechanism needs to be able to raise and maintain the substrate supported by the substrate holder (planetary rotating jig) to 65 to 800 ° C.
  • the surface of the hard coating (undercoat) can be sufficiently oxidized by heating the hard coating (undercoat) formed on the substrate surface at a temperature of 65 to 800 ° C.
  • the formation of the high heat-resistant film on the hard film (underlying film) by the reactive sputtering performed subsequent to the above-described oxidation treatment is advantageously achieved by heating and holding in this temperature range. be able to.
  • a highly heat-resistant film by thermal oxidation or reactive sputtering of such a hard film (underlying film) is insufficient at less than 65 ° C and is not preferred.
  • the oxidation treatment step and the alumina film formation step reactive sputtering step
  • the oxidation treatment and the formation of the alumina film can be performed without the radiation heating mechanism exceeding 800 ° C.
  • the temperature is higher than 800, the properties of the hard coating may be deteriorated.
  • a hard coating such as TiAlN, TiN, TiC, etc. is applied on a substrate using the AIP (arc ion plating) method.
  • the radiant heating mechanism preferably has a heating capacity suitable for carrying out the AIP method.
  • the bias power supply connected to the substrate holder (planetary jig) needs to be capable of applying a negative pulsed bias voltage to the substrate holder (planetary jig). is there. As a result, the substrate holder with the insulating film adhered to it in the ion bombarding process.
  • a stable voltage can be applied even when a (planetary jig) is used.
  • an arc evaporation source can be included in the configuration of the present apparatus.
  • the arc evaporation source is also arranged at a position facing the substrate holder (the planetary rotary jig), similarly to the sputtering evaporation source.
  • FIG. 8 is an explanatory cross-sectional view of the physical vapor deposition device of the present invention.
  • a circular rotary table 3 is installed in a vacuum chamber 1 having a regular octagonal cross section (cross section), and a plurality of circular rotary tables 3 are arranged on the circular rotary table 3 at equal intervals in the circumferential direction.
  • six (6) substrate holders (planetary jigs) 4 are mounted.
  • the substrate 2 to be processed is held by the substrate holder (planetary jig) 4, and a mechanism for rotating the planetary gear by the rotation of the rotary table 3 and the rotation of the substrate holder (planetary jig) 4.
  • a cylindrical radiant heater 51 is arranged, while the vacuum chamber 1 1
  • Planar radiant heating heaters 52, 52 are provided so as to face each other with the rotary table 3 interposed therebetween, and these 51, 52 constitute a substrate heating mechanism 5.
  • a plasma source 8 (a filament installed for plasma generation is shown in the figure) for exciting the atmospheric gas into a plasma gas is arranged.
  • sputtering evaporation sources (6) and (6) for reactive sputtering are positioned opposite to the substrate holder (planetary jig) (4) with the rotating table (3) interposed therebetween. They are provided facing each other.
  • arc evaporation sources 7, 7 for AIP are similarly positioned at positions facing the substrate holder (planetary rotating jig) 4 with the rotating table 3 interposed therebetween.
  • the arc evaporation sources 7, 7 are not required in some cases, so they are indicated by dotted lines in the drawing.
  • a gas introduction pipe 11 for introducing an inert gas 9 for generating plasma or an oxidizing gas 10 for oxidizing treatment into the chamber is connected to an appropriate position in the upper part of the vacuum chamber 11.
  • An exhaust gas pipe 13 for discharging the exhaust gas 12 after evacuation or treatment is connected to an appropriate position in the lower part of the vacuum chamber 11 in communication therewith.
  • the number 14 in FIG. 8 indicates a negative pulse-like bias voltage (100 V to 200 V) connected to the substrate holder (planetary jig) 4 and applied to the substrate holder (planetary jig) 4. 0 V) can be applied.
  • the substrate holder (planetary jig) 4 the inert gas and oxidizing gas introduction mechanism, Since this equipment is equipped with a plasma source, sputtering evaporation source 6, arc evaporation source 7, radiant heating heaters 51 and 52, and bias power supply 14, etc.
  • a process of forming an undercoat such as a hard coating on the material surface by AIP, a process of ion bombarding the surface of the undercoat such as the hard coating, and then thermally oxidizing the surface of the undercoat such as the hard coating Performs all processes related to physical vapor deposition using a single device, such as the process of processing and the process of forming a highly heat-resistant oxide-based film such as alumina by reactive sputtering on the surface of a hard film after thermal oxidation. can do.
  • the rotating table 3 and the plurality of substrate holders (planetary rotating jigs) 4 provided on the table allow the substrate 2 to perform planetary rotational movement in the chamber 1, and therefore, The treatment of the substrate 2 can be performed uniformly.
  • the hard coating can be thermally oxidized by ion pumping at a constant rate over the entire surface of the base material, and the hard coating or oxide-based coating formed by reactive sputtering or AIP can also be thermally oxidized.
  • a film having a uniform thickness can be formed. This makes it possible to obtain a high heat-resistant film having excellent adhesion.
  • the substrate holder (planetary jig) 4 is connected Alumina coating, etc., which tends to be insulative with use, is used as a substrate holder (for planetary 4)
  • a stable voltage can be applied without causing arc discharge or the like due to charge-up even when formed in 4 or the like.
  • the vacuum chamber having a regular octagonal cross section
  • FIG. 9 and FIG. 10 are cross-sectional explanatory views of a physical vapor deposition apparatus showing a specific embodiment. However, since the basic configuration is the same as that of FIG. Will be described.
  • the cross-sectional shape of the vacuum chamber 1 is a regular hexagon, and the sputtering evaporation source 6, the arc evaporation source 7, and the planar radiant heating heater 52 are used for all six inner surfaces of the chamber 1. Similarly, a pair is provided so as to face each other.
  • the vacuum chamber 11 has a square cross section. In this case, the sputtering evaporation source 6 and the planar radiant heater 52 are connected to the vacuum chamber 11. The structure is such that a pair is provided on all four inner surfaces so as to face each other.
  • the radiation heater 52 has a flat plate shape on the entire surface opposed to the substrate holder (planetary jig) 4, but is not limited thereto. Use a curved surface that matches the curvature of the rotating table 3 Can be adopted. Further, the arrangement of the plasma source 8 does not have to be in front of the heater 52.
  • first means First mode
  • the dried film was used for coating the laminated film.
  • the formation of the hard film, the oxidation treatment of the hard film, and the formation of the ⁇ -type main alumina film were performed by the vacuum film formation shown in FIG. The test was carried out using a device (AIP-S40 multifunction machine manufactured by Kobe Steel).
  • the hard film is formed on the substrate by the AI method (arc ion plating method) using the evaporation source 7 for ⁇ ⁇ with the equipment 1 shown in Fig. 4 and the film thickness is 2 to 3 / xm.
  • the atomic ratio of Ti to A 1 (T i: A 1) is 0.55: 0.45, a Ti AIN hard coating, or the atomic ratio of Ti, A 1 and Cr (T i: A l: Cr) was 0.10: 0.65: 0.18 to form a TiAlCrN hard coating.
  • a CrN film was further formed on the TiAIN film by the AIP method.
  • the oxidation of the hard coating or the oxidation of the CrN film formed on the hard coating was performed as follows. That is, the sample (substrate) 2 is It is set on the substrate holder (planetary jig) 4 on the turntable 3, evacuated until the inside of the device is almost vacuum, and the heater 5 installed on the side of the inside of the device and the center 5 The sample was heated at the temperature shown in Table 1 (substrate temperature in the oxidation process). When the temperature of the sample reaches a predetermined temperature, oxygen gas is introduced into the apparatus 1 at a flow rate of 200 sccm and a pressure of 0.5 Pa, and heated and maintained for 20 or 60 minutes. Oxidation.
  • the formation of the hard coating, the oxidation treatment, and the formation of alumina described later are performed by rotating (revolving) the rotary table 3 in FIG. 4 and by setting the substrate holder (planetary jig) 4 mounted thereon. Also performed while rotating (rotating).
  • oxidation treatment and alumina film formation were performed while rotating the rotation table 3 at 3 rpm and the substrate holder (planetary rotating jig) 4 at 20 rpm.
  • An alumina film mainly composed of an ⁇ -type crystal structure was formed on the oxide-containing layer.
  • the formation of the alumina film was carried out in an atmosphere of argon and oxygen by setting the substrate temperature to approximately the same level as in the above-mentioned oxidation treatment step, and applying the sputtering cathode 6 with one or two aluminum targets shown in FIG. A pulsed DC power of about 3 kW was applied, and the reactive sputtering method was used. During the formation of the alumina film, the temperature of the sample (substrate) rose slightly from that during the oxidation treatment.
  • the alumina coating was formed by controlling the discharge voltage and the flow rate ratio of argon-oxygen using plasma emission spectroscopy and setting the discharge state to a so-called transition mode.
  • Substrate temperature heating time Number of sputter sources used Substrate temperature Film thickness I / Ir Crystal structure 3k Inventive example 1 TiAIN 2 n No peak detected * 1
  • Inventive Example 3 TiAlCrN 1.15 im 2.9 ⁇ type main, ⁇ type slave Inventive Example 4 TiAIN 740 for 60 minutes, 3 kW 1 unit nov 0.9 m No peak detected * 1 K type Comparative Example 2 TiAIN 635%: .20 minutes 3 kW. 1 unit 67 (TC 1.1.4. Mixing type and ⁇ type Comparative example 3 TiAIN 58 (TC 20 minutes 3 kW 2 units 59 (T 2 Atm ⁇ peak not detected * 2
  • FIG. 11 shows the results of measuring the surface of the laminated film of Example 1 of the present invention with a thin film X-ray diffractometer.
  • the main peaks of X-ray diffraction shown in FIG. 11 are the diffraction peak attributed to Ti A 1 N and the diffraction peak of ⁇ ; type alumina formed on the outermost surface. It can be seen that the coating of Example 1 was formed by forming an alumina coating mainly composed of a rhombic crystal structure on a hard coating.
  • Fig. 12 shows the X-ray diffraction results of the thin film on the surface of the laminated film of Comparative Example 1.
  • Comparative Example 1 similarly to Example 1 of the present invention, an alumina film having the main crystal structure was formed.
  • the hard coating according to the present invention there is no need to worry about a decrease in cutting performance due to the Cr-containing coating formed as the intermediate coating, and the laminated coating can be omitted by providing a step of providing the intermediate coating. It is excellent from the viewpoint of increasing the productivity of the product.
  • Inventive Example 2 and Inventive Example 3 TiAIN or TiA1CrN was formed as a hard coating on a substrate, and only the substrate temperature in the oxidation treatment step was 30 ° C higher than that of Inventive Example 1.
  • the film was formed in the same manner as in Example 1 of the present invention, except that the temperature was set to be lower than C at 750 ° C. and other conditions were the same.
  • Table 1 it can be seen that in the present invention example 2 and the present invention example 3, although the formed film is mixed with alumina having a slightly ⁇ -type crystal structure, an ⁇ -type mainly alumina film is formed.
  • Example 4 of the present invention Ti AIN was formed as a hard film, the substrate temperature in the oxidation treatment step was set to 7400 ° C., which was still lower than that of Examples 2 and 3 of the present invention, and the oxidation treatment time was reduced. Longer than Examples 1 to 3 of the present invention The film was formed in the same manner as in Example 1 of the present invention except for 60 minutes. As shown in Table 1, it can be seen that the outermost surface of the coating obtained in Example 4 of the present invention was covered with almost pure alumina having a crystal structure. In Comparative Example 2 and Comparative Example 3, the oxidation treatment temperature was 635 ° C. in Comparative Example 2, and the temperature was 580 ° C. in Comparative Example 3, and both were heated and held for 20 minutes.
  • Comparative Example 3 From the results of Comparative Example 3 shown in Table 1, when the oxidation treatment was performed at 580 ° C., no alumina film having an a-type crystal structure was formed at all even if an alumina film was formed thereafter. It can be seen that an alumina film mainly composed of a type crystal structure is formed. Also, from Comparative Example 2, when the oxidation treatment was performed at 635, the ⁇ -type crystal structure of the formed alumina film was slightly superior, but the ⁇ -type and ⁇ -type It is mixed, and it is hard to say that it is mainly a model.
  • the formation of the hard coating, the oxidation treatment of the hard coating, and the formation of the ⁇ -type main alumina coating were performed in the same manner as in the first embodiment by using the vacuum film forming apparatus shown in FIG. ⁇ -S4Q MFP).
  • the hard film is formed on the substrate by the ⁇ ⁇ method (arc ion plating method) using the ⁇ ⁇ ⁇ ⁇ evaporation source 7 in the apparatus 1 shown in Fig. 4, and the film thickness is 2 to 3 m.
  • a TiN film or a TiCN film was formed on the substrate.
  • CrN of the same thickness was formed on the substrate.
  • Oxidation of the above film was performed as follows. That is, a sample (substrate) 2 is set on a substrate holder (planetary rotating jig) 4 on a rotary table 3 in the apparatus 1, and the inside of the apparatus is evacuated until the inside of the apparatus is almost evacuated. The sample was heated to about 760 ° C by heater 5 installed at two locations and in the center. When the temperature of the sample reached about 760 ° C, oxygen gas was introduced into the device 1 at a flow rate of 200 sccm and a pressure of 0.5 Pa, and the sample was heated and held for 20 minutes. Oxidation.
  • the formation of the hard coating, the oxidation treatment, and the formation of alumina described later are performed by rotating (revolving) the rotary table 3 in FIG. 4 and by setting the substrate holder (planetary jig) 4 mounted thereon. Also performed while rotating (rotating).
  • the oxidation treatment and the alumina film formation were performed while rotating the rotary table 3 at 3 rpm and the substrate holder (planetary rotating jig) 4 at 20 rpm.
  • an alumina film mainly composed of an ⁇ -type crystal structure was formed on the oxide-containing layer.
  • the formation of the alumina film was carried out in an atmosphere of argon and oxygen by setting the substrate temperature to approximately the same level as in the above-mentioned oxidation treatment step, and averaging 5 times on the sputtering cathode 6 equipped with two aluminum targets in FIG. A 6 kW pulse DC power was applied and the reactive sputtering method was used.
  • the temperature of the sample (substrate) was slightly higher than that during the oxidation treatment.
  • the formation of the alumina film was performed by controlling the discharge voltage and the flow rate ratio of argon and oxygen using plasma emission spectroscopy, and setting the discharge state in a so-called transition mode.
  • FIG. 1 shows the results of the thin film X-ray diffraction of ′
  • FIG. 13 shows the results of the thin film X-ray diffraction when the TiCN film was used (Example 2 ′ of the present invention).
  • Example 2 the I ⁇ / ⁇ value was obtained from the thin film X-ray diffraction results shown in FIG. 1 or FIG. 13 to evaluate the degree of formation of alumina having a rhomboid crystal structure. Table 2 shows the results together with the film forming conditions.
  • the main peaks of the X-ray diffraction shown in FIGS. 1 and 13 are a TiN film or a TiCN film (in FIG. 13, only the TiN structure in the TiCN film is a thin film X (Detected by X-ray diffraction) and the diffraction peak of alumina with ⁇ -type crystal structure formed on the outermost surface.
  • T i N coating or T i CN skin layer and the alumina coating T i 3 ⁇ 5 that may have been formed is reduced After oxidizing the said coating Can be confirmed.
  • the reference example is an example in which an alumina film was formed on a CrN film containing Cr, which is a metal whose standard free energy of oxide formation is smaller than aluminum, as a metal component. Since the ⁇ / Ia value is smaller than that in Examples 1 and 2, the formed alumina film has a higher ratio of alumina with crystal structure to alumina with crystal structure. It turns out to be something.
  • TiAl film film thickness 0.1 l ⁇ m
  • Ti: A1 50: 50, formed by sputtering method
  • Fe film including Cr and Ni: Thickness 0,1 lm (formed by sputtering using SUS304 target)
  • the film of the present invention was formed using a PVD apparatus (vacuum film forming apparatus) shown in FIG. That is, the sample (substrate) 2 is set in the substrate holder (planetary rotating jig) 4 in the apparatus 1, and the inside of the apparatus 1 is evacuated until the inside of the apparatus 1 becomes almost vacuum.
  • the sample was heated to 750 ° C at night 5 placed in the lab.
  • oxygen gas was introduced into the device 1 at a flow rate of 300 sccm and a pressure of about 0.7 Pa. Then, the surface was oxidized for 5 minutes.
  • 7 in FIG. 4 shows an AIP evaporation source when the intermediate layer is formed by the AIP method.
  • a sputtering cathode 6 equipped with two aluminum targets was subjected to sputtering by applying a pulse DC power of about 2.5 kW in an atmosphere of argon and oxygen to perform a sputtering. Almost the same temperature conditions
  • alumina aluminum oxide
  • discharge voltage control and plasma emission spectroscopy to maintain the discharge state in a so-called transition mode, and formed an approximately 2 / m alumina film.
  • the rotating table 3 shown in FIG. 4 was rotated (revolved), and the substrate holder (planetary jig) 4 installed thereon was also rotated.
  • a commercially available cBN sintered body cutting tool was used as a substrate on which an alumina film was formed, and an alumina film was formed on the substrate using a PVD apparatus (vacuum film forming apparatus) shown in FIG.
  • the sample (substrate) 2 is set in the substrate holder (planetary jig) 4 in the inside 1 of the device, and the inside of the device 1 is evacuated until a nearly vacuum state is established.
  • the sample was heated to 750 ° C in the heated room 5.
  • oxygen gas was introduced into the apparatus 1 at a flow rate of 300 sccm and a pressure of about 0.7 Pa, and the surface was oxidized for 20 minutes.
  • a sputtering cathode 6 equipped with two aluminum gates was sputtered by applying a pulse DC power of about 2.5 kW in a mixed atmosphere of argon and oxygen to perform oxidation.
  • the alumina film was formed under the same temperature conditions (750 ° C). In forming the alumina film, discharge voltage control and plasma emission spectroscopy were used. The discharge state was maintained in the so-called transition mode, and about 2 alumina films were formed.
  • the alumina film was formed while rotating (revolving) the rotary table 3 shown in FIG. 14 and rotating the substrate holder (planetary jig) 4 installed thereon.
  • Figure 15 is a graph showing the results of thin-film X-ray diffraction of the alumina film formed on the cBN sintered body.
  • many diffraction peaks were observed, including the diffraction peaks from the cBN sintered body of the substrate.
  • the X-ray diffraction of the substrate was compared with the result of the X-ray diffraction of the substrate alone.
  • the diffraction peak and the diffraction peak from the substrate were separated.
  • the diffraction peaks from the substrate are marked with triangles.
  • the diffraction peaks due to cBN are distinguished by marking "tolerance”, and the diffraction peaks other than cBN are marked by "V".
  • the diffraction peaks from the film are marked with circles, and the diffraction peaks from alumina with ⁇ -type crystal structure are marked with “ ⁇ ”, and the other peaks are marked with “Ogi”.
  • a large number of diffraction peaks are observed in the cBN sintered body as a base material in addition to cBN, but this is a diffraction peak from the binder phase.
  • most of the diffraction peaks from the film are from ⁇ -alumina, and a very weak peak was observed at a position that coincided with the diffraction from alumina, although very slight.
  • the film formed on the cBN sintered body substrate can be identified as an alumina film mainly composed of a rhomboid crystal structure, and the ⁇ -type crystal structure mainly composed of a cBN sintered body substrate. It could be judged that a coated member coated with the alumina coating was manufactured.
  • the coated member manufactured in this way is composed mainly of an alumina film with excellent oxidation resistance on a c ⁇ sintered body with excellent hardness, and an ⁇ -type crystal structure with particularly good thermal stability. It is suitable for applications such as high-speed cutting of high-hardness materials when applied to cutting tools, and excellent performance can be expected.
  • a TiA1N film having a thickness of 2 to 3 m was prepared in advance as a base film by an AIP method on a 7 mm X 12.7 mm X 5 mm cemented carbide substrate.
  • the coating composition of the T i AIN is a T i ". 55 A l 0 . 45 N.
  • an alumina film was formed after the surface of the TiAIN film or the CrN film was oxidized.
  • the oxidation treatment and the formation of the alumina film were performed by a vacuum film forming apparatus (AIP-S40 multifunction machine manufactured by Kobe Steel Ltd.) shown in FIG.
  • the oxidation treatment was specifically performed as follows. That is, the sample (substrate) 2 is set on the substrate holder (planetary jig) 4 on the rotary table 3 in the chamber 11, and the chamber 11 is evacuated until the inside of the chamber 11 becomes almost vacuum.
  • the temperature of the sample 2 is raised to 7500 ° C (base temperature in the oxidation process) by the heater 5 installed at two places on the side surface inside the chamber 1 and at the center. Until heated.
  • oxygen gas is introduced into the chamber 1 at a flow rate of 300 sccm and a pressure of 0.75 Pa, and is heated and maintained for 20 minutes to oxidize. Was done.
  • the formation of the base film, the oxidation treatment, and the formation of alumina described later are performed by rotating (revolving) the rotary table 3 in FIG. 5 and by setting the substrate holder (planetary jig) 4 placed thereon. Also performed while rotating (rotating).
  • an alumina film was formed on the base film after the oxidation treatment.
  • the alumina film was formed by sputtering in an atmosphere of argon and oxygen at a substrate temperature of about the same as that of the above-mentioned oxidation treatment step (750 ° C) and mounting two aluminum targets in FIG.
  • a pulsed DC power of about 2.5 kW was applied to the force source 6, and the reactive sputtering method was employed.
  • the formation of the alumina film was performed by controlling the discharge voltage and the flow rate ratio of argon-oxygen using plasma emission spectroscopy and setting the discharge state to a so-called transition mode.
  • an alumina film having a thickness of about 2 m was formed.
  • an experiment was performed in the same manner as in the above comparative example, except that the following gas ion bombardment treatment was performed before the oxidation treatment. That is, the surface of the TiA1N film or the CrN film was subjected to a gas ion bombardment treatment, then oxidized, and then an alumina film was formed.
  • the sample 2 is set on the substrate holder (planetary rotating jig) 4 on the rotating table 3 in the chamber 1 and evacuated until the inside of the chamber 1 is almost in a vacuum state.
  • the sample was heated to 550 ° C with a heater 5 installed at the location and the center. The temperature of the sample is At this point, Ar gas was introduced into the chamber 11 so that the pressure was 0.75 Pa, and the filament 15 for thermionic emission (a wire shape perpendicular to the plane of the paper in Fig. 5) ), And the Ar gas was generated by emitting thermionic electrons and turning the Ar gas near filament 15 into plasma.
  • a DC voltage (pulsed at a frequency of 30 kHz) is applied to the substrate by a bias power supply 14 at 130 V for 5 minutes and then at 400 V at 10 V Gas ion bombardment treatment for 15 minutes. Also in this case, the processing was performed while rotating the rotary table 3 and the substrate holder (planetary rotary jig) 4.
  • an AIP evaporation source (arc evaporation source) 7 was installed, and the formation of the undercoat was performed by the gas ion bombardment treatment, the oxidation treatment, and the formation of the alumina coating. It may be performed in the apparatus 1 for performing the processing.
  • the surface of the alumina film thus obtained was analyzed with a thin-film X-ray diffractometer to identify the crystal structure of the alumina film. The results are shown in FIG. 16 (Comparative Example) and FIG. 17 (Example of the present invention).
  • the main peak of X-ray diffraction is a diffraction peak indicating alumina of ⁇ -type crystal structure (hereinafter referred to as “ ⁇ -alumina peak”).
  • ⁇ -alumina peak Some diffraction peaks indicating alumina having an ⁇ -type crystal structure (hereinafter, referred to as “a-alumina peak”) are also observed. From this, when the alumina film is formed by the conventional method, the alumina with ⁇ -type crystal structure and the alumina with r-type crystal structure It can be seen that a mixed film was formed.
  • FIG. 17 showing the results of the present invention, the formation of alumina having an ⁇ -type crystal structure was suppressed to a level at which the alumina peak was barely confirmed. It is clear that the ratio of alumina is increasing.
  • FIG. 18 shows the results of observation of the surfaces of these alumina films by SEM (magnification: ⁇ 10,000).
  • FIG. 18 (a) is an SEM observation photograph showing the alumina film surface in the comparative example.
  • (b) is an SEM observation photograph showing the surface of the alumina film in the example of the present invention.
  • the alumina film in the comparative example is divided into crystal grains (white area) and flat areas where crystal grains do not grow (black area), and the grown crystal grains are coarse. It can be seen that it exists and is sparse.
  • the alumina film of the present invention example shown in FIG. 18 (b) is composed of uniform and fine crystal grains, and is clearly different from the film surface of the comparative example.
  • Example 2 An experiment was conducted in the same manner as in Example 1 except that a CrN film was formed as the undercoat film.
  • the surface of the obtained alumina film was analyzed with a thin-film X-ray diffractometer, and the crystal structure of the film was analyzed. Identified. The results are shown in FIG. 19 (Comparative Example) and FIG. 20 (Example of the present invention).
  • FIG. 21 (a) is an SEM observation photograph showing the alumina film surface in the comparative example
  • FIG. 21 (b) is a SEM observation photograph showing the alumina film surface in the present invention example.
  • the alumina film of the present invention is composed of finer crystal grains, and the pores between the crystal grains are the alumina film of the comparative example [FIG. 21 (a)]. This is considerably smaller than that of, indicating that the densification of the crystal grains is progressing. Although no remarkable difference was observed on the thin film X-ray diffraction, the difference in surface state was remarkable in the SEM observation, and the alumina film of the present invention exhibited more excellent properties. It seems to be.
  • metal ion bombardment treatment and acid treatment were performed using the vacuum deposition system (AIP-S40 multifunction machine manufactured by Kobe Steel) shown in Fig. 7 above.
  • the formation process and the formation of the alumina film were performed in order.
  • a Ti A 1N film having a thickness of about 2 formed by AIP method was performed as follows. That is, the sample (substrate) 2 is set on the substrate holder (planetary rotating jig) 4 on the rotary table 3 in the chamber 1, and the chamber 11 is evacuated to a vacuum. The sample was heated to 600 using two heaters 5 placed on the side surfaces and a heater 5 installed at the center, and kept at that temperature for 30 minutes.
  • the power of the heater was raised to a level where the substrate temperature could be maintained at 750 ° C in a steady state, and then 8 OA was supplied to the AIP evaporation source 7 to which the Cr A plasma containing Cr ions is generated by flowing an arc current of the type, and in this state, a DC bias voltage is applied by a bias power supply 14 through a rotating table 3 and a substrate holder (planetary rotating jig) 4.
  • a metal ion pumping treatment was performed by applying a voltage to the substrate and irradiating the substrate with Cr ions.
  • the bias voltage was applied at -600 V for 2 minutes, -700 V for 2 minutes, and -800 V for 5 minutes, for a total of 9 minutes.
  • the temperature of the substrate at the end of the metal ion pump treatment was about 760 ° C.
  • the metal ion bombardment treatment, the oxidation treatment described below, and the formation of the alumina film are performed by rotating (revolving) the rotary table 3 in FIG. 7 and also by setting the substrate holder (planetary jig) 4 installed thereon. It was performed while rotating (rotating). After the metal ion bombardment treatment, the arc discharge and the application of the bias voltage were stopped, and the oxidation treatment was performed.
  • the oxidation treatment was carried out by introducing oxygen gas into the champer 1 after the metal ion bombardment treatment at a flow rate of 300 sccm and a pressure of 0.75 Pa, and heating and holding for 30 minutes. In the step, the substrate temperature at the end of the oxidation treatment was 750 ° C.
  • an alumina film was formed on the oxidized surface.
  • the alumina film was formed in an atmosphere of argon and oxygen at a substrate temperature substantially equal to that of the oxidation treatment step (750 ° C.), and two aluminum bumps shown in FIG. 7 were mounted.
  • a pulsed DC power of about 2.5 kW was applied to the sputtering power source 6 and the reactive sputtering method was employed.
  • the formation of the alumina film was performed by controlling the discharge voltage and the flow ratio of argon and oxygen using plasma emission spectroscopy, and setting the discharge state to a so-called transition mode. In this manner, an alumina film having a thickness of about 2 ⁇ m was formed (Nos. 1 to 3 in Table 5 described later).
  • Example 1 was the same as Example 1 except that nitrogen was introduced into the chamber 11 so that a partial pressure of 0.05 Pa was obtained during the metal ion pumping process, and the metal ion bonding process was performed in a nitrogen atmosphere. Similarly, metal ion bombardment treatment, oxidation treatment, and formation of an alumina film were performed (No, 4 to 6 in Table 5 described later).
  • a metal ion bombardment treatment was performed in the same manner as in Example 1 except that the target material to be attached to the AIP evaporation source as a source of metal ions in the metal ion bombardment treatment was changed to Ti instead of Cr. Oxidation treatment and formation of an alumina film were performed (Nos. 7 to 9 in Table 5 described later). ⁇ Comparative example>
  • the alumina film of the present invention was formed using a PVD apparatus (vacuum film forming apparatus) shown in FIG.
  • a test piece with a CrN film (base film) formed on a cemented carbide base material by the AIP method in advance was set in the base material holder (planetary rotating jig) 4 in the equipment 1 and the equipment 1.
  • the sample was heated to 750 ° C by a heater 5 arranged on the side and center of the inside of the apparatus.
  • oxygen gas was introduced into the apparatus 1 at a flow rate of 300 sccm and a pressure of about 0.75 Pa, and the surface was oxidized for 20 minutes.
  • 7 in FIG. 4 indicates an AIP evaporation source when the undercoat is formed by the AIP method.
  • a sputtering cathode 6 equipped with two aluminum targets was subjected to sputtering by applying pulsed DC power of about 2.5 kW in an atmosphere of argon and oxygen, and the oxidation temperature was almost reached. Same temperature conditions
  • alumina aluminum oxide
  • discharge voltage control and plasma emission spectroscopy to maintain the discharge state in a so-called transition mode, and formed an alumina film of about 2 ⁇ m.
  • the rotary table 3 shown in FIG. 4 was rotated (revolved) and the substrate holder (planetary jig) 4 installed thereon was also rotated.
  • the crystal structure of the alumina film after the film formation was determined by thin-film X-ray diffraction. As a result, it was confirmed that only a diffraction peak indicating alumina having an ⁇ crystal structure could be observed from the alumina coating.
  • Fig. 22 The results of observing the above alumina film with a transmission electron microscope ( ⁇ ⁇ ⁇ ) are shown in Fig. 22 (a photograph as a substitute for a drawing) (magnification: 20000 times).
  • chromium oxide (C r 2 ⁇ 3) layer the thickness of this film formed on the surface of the CrN film and CrN by the oxidation process in the order of 30 to 40 nm, starting from the side closest to the substrate: chromium oxide (C r 2 ⁇ 3) layer, and was found to have a three-layer structure of the alumina layer.
  • the alumina and chromium oxide layer was analyzed by electron diffraction, both have a corundum structure, each Q; - A 2 0 3, shed one C r 2 ⁇ 3 was confirmed.
  • Fig. 23 (drawing substitute photograph) is an enlarged view of a part of Fig. 22.
  • the crystal grains become larger, and the crystal width near the surface is 0.5 m at the maximum, and the length of the columnar crystal is 1 m. It can be seen that it has reached 5 m.
  • the size is at most about 0.3 m.
  • the alumina film formed in the steps above analysis of the alumina film in the vicinity of the interface between the a- C r 2 0 3 at the time of TEM observation by electron diffraction, diffraction results from a alumina in every region obtained It was found that alumina was not detected. From these results, it was clarified that by forming an alumina film under appropriate conditions, including the type of undercoat, a-alumina can be formed even in a region where the crystals in the initial stage of film growth are fine. . Also, in this film, the crystal grains grow large in columnar form as the film thickness increases from the initial stage of film growth in which the crystal has a fine structure. ! Only alumina was observed.
  • the alumina of the present invention is obtained by oxidizing a surface layer of CrN formed as an undercoat film at a substrate temperature of 750, and subsequently forming an alumina film on the undercoat film.
  • the present inventors examined the optimal conditions for forming an alumina film having substantially only a crystal structure, and found that alumina could be formed even under the following manufacturing conditions. There was found.
  • the primer film prior to the oxidation treatment step of the base film, or the surface of the primer film subjected to ion bombardment by A r ions, or oxides of corundum structure powder (preferably ⁇ -alumina powder) by the primer film surface It was confirmed that a similar ⁇ -alumina film can be formed even if the substrate surface is oxidized at about 700 ° C. by performing the “scratching treatment”. If the base film is made of CrN and combined with the above pretreatment (ion pump treatment or scratching with oxide powder), the substrate temperature during oxidation treatment and film formation should be 7 ° C.
  • the substrate temperature at the time of oxidation treatment and film formation is set at a temperature of at least 750 ° C.
  • a thermionic emission filament for forming gas ion plasma or metal ion plasma in the apparatus configuration shown in FIG. 4 is arranged in the apparatus.
  • install a power supply that can apply a bias voltage to the substrate, and apply an appropriate value (for example, more than 140 V) of the bias voltage to perform ion bombardment processing. What is necessary is just to make the device configuration.
  • TiA1 a hard coating
  • the substrate temperature was increased to 750 ° C with heating heaters 51 and 52, and when the sample was heated to the same temperature, oxygen gas was introduced into the chamber through the gas introduction pipe 11.
  • oxygen gas was introduced into the chamber through the gas introduction pipe 11.
  • a sputtering power source equipped with two aluminum evening gates was used as the sputtering evaporation source 6, and pulsed DC sputtering power of about 2.5 kW was applied to this in an argon and oxygen atmosphere.
  • Sputtering was performed, and aluminum oxide (alumina) was formed on the surface of the hard coating under the same temperature condition (750 ° C.) as the oxidation temperature.
  • the discharge state was maintained in a so-called transition mode using discharge voltage control and plasma emission spectroscopy, and an alumina film of about 2 m was formed.
  • Figure 24 shows the results of thin-film X-ray diffraction of the alumina film formed on the TiAIN film.
  • circles indicate ⁇ -alumina (alumina mainly composed of ⁇ -type crystal structure)
  • inverted white triangles indicate alumina (alumina mainly composed of ⁇ -type crystal structure)
  • inverted black triangles indicate T i. Each peak of A 1 ⁇ is shown.
  • the use of the apparatus of the present invention makes it possible to form an alumina film (mainly a heat-resistant oxidizing system) mainly composed of a rhomboid crystal structure on a practical hard film such as TiA1N. On the contrary, it was confirmed by experiments that a satisfactory film could not be formed in an apparatus lacking the requirements of the apparatus of the present invention.
  • alumina film mainly a heat-resistant oxidizing system
  • ⁇ -type crystals cannot be obtained when the substrate temperature is lower than 65 ° C, and almost T when the substrate temperature exceeds 800 ° C. Deterioration of the i A 1 N film was observed.
  • the preferable range of the intermittent application frequency is as follows. It is 100 kHz to 400 kHz. At frequencies below 100 kHz, unstable phenomena will occur due to the occurrence of arc discharge, and at frequencies above 400 kHz, problems such as matching will occur. It is recommended that ,
  • the formation of the alumina film by the present apparatus is performed by the reactive sputtering method as described above.
  • the aluminum target attached to the sputtering evaporation source is operated in a mixed atmosphere of argon and oxygen, so that metallic aluminum is sputtered and is combined with oxygen on the substrate.
  • the sputtering mode must be maintained in a so-called transition mode.
  • the sputtering power supply for driving the sputtering evaporation source can be controlled at a constant voltage. Desirably.
  • this device is equipped with a spectroscope that monitors the plasma emission before the sputtering evaporation source in order to grasp the mode of sputtering.
  • the ⁇ -type crystal structure with particularly excellent heat resistance Alumina coatings mainly composed of aluminum can be formed in a relatively high temperature range without deteriorating the properties of the base material and the hard coating, without using high temperatures as in the CVD method. Also, unlike the conventional case, there is no need to provide an intermediate film between the hard film and the alumina film having the rhomboid crystal structure, so that the laminated film can be formed efficiently and the cutting performance of the intermediate film can be improved. There is no decrease in
  • the present invention provides a method for forming alumina having an ⁇ -type crystal structure with excellent oxidation resistance at a relatively low temperature on a titanium-based hard film such as a commonly used TiN, TiCN, or TiC. It is practical in terms of doing.
  • Alumina film that can be expected to have better wear resistance and heat resistance in which the crystal grains are fine and uniform, and if the metal ion bombardment treatment is performed, Alumina film can be formed on the substrate or the undercoat regardless of the type of the undercoat, regardless of the type of the undercoat.
  • the alumina film can be formed without specifying the composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

特に耐熱性に優れたα型結晶構造主体のアルミナ皮膜を製造する方法であって、①AlとTiを必須とする金属成分とB、C、N、O等との化合物をからなる硬質皮膜を有する積層皮膜において、該硬質皮膜を酸化することによって酸化物含有層を形成し、該酸化物含有層上にα型結晶構造を主体とするアルミナ皮膜を形成する方法や、②酸化物生成の標準自由エネルギーがアルミニウムより大きい金属とB、C,N,O等との化合物からなる硬質皮膜を形成した後、該硬質皮膜の表面を酸化して酸化物含有層を形成し、次いで該酸化物含有層表面における酸化物の還元を伴いながらアルミナ皮膜を形成する方法を提供する。

Description

明細書
a型結晶構造主体のアルミナ皮膜の製造方法、 ひ型結晶構造主体の アルミナ皮膜と該アルミナ皮膜を含む積層皮膜、 該アルミナ皮膜ま たは該積層皮膜で被覆された部材とその製造方法、 および物理的蒸
技術分野
本発明は、 a型結晶構造主体のアルミナ皮膜の製造方法、 および 該 a型結晶構造主体のアルミナ皮膜と該アルミナ皮膜を含む積層皮 膜、 該アルミナ皮膜または該積層皮膜で被覆された部材とその製造 方法、 更にはこれらの製造に用いる物理的蒸着装置に関するもので める。
詳細には、 切削工具、 摺動部材、 金型等の如き耐摩耗部材に被覆 される耐摩耗性及び耐熱性に優れた a型結晶構造主体のアルミナ皮 膜を、 上記切削工具ゃ摺動部材等の基材の特性を損なう ことのない 低温条件で形成することのできる有用な製造方法と、 得られた a型 結晶構造主体のアルミナ皮膜および該ひ型結晶構造主体のアルミナ 皮膜を含む積層皮膜、 該アルミナ皮膜や該積層皮膜の被覆された部 材とその製造方法、 更には、 切削工具、 摺動部材、 金型の如き耐摩 耗部材に適用される耐摩耗性及び耐熱性に優れた上記アルミナ皮膜 の様な酸化物系硬質皮膜を切削工具ゃ摺動部材等の基材の表面に形 成するための物理的蒸着装置に関するものである。
また、 本発明は、 耐摩耗性に優れた立方晶窒化硼素 (以下、 「 c B N」 と略記することがある) 焼結体を基材とし、 この基材上に耐 酸化性にすぐれた a型結晶構造を主体とするアルミナ皮膜を製造す るための有用な方法、 およびこう した皮膜を形成して耐摩耗性 · 耐 酸化性に優れたものとした表面被覆部材、 およびこのような表面被 覆部材の製造するための有用な方法等に関するものでもある (以下 これらの方法を単に 「本発明法」 という ことがある)。
尚、 本発明の α型結晶構造主体のアルミナ皮膜は、 上記した様々 な用途の部材に適用できるが、 以下では代表例として切削工具に適 用する場合を中心に説明を進める。 背景技術
一般に、 優れた耐摩耗性ゃ摺動特性が求められる切削工具ゃ摺動 部材として、 高速度鋼製や超硬合金製等の基材表面に、 チタン窒化 物やチタンアルミニウム窒化物等の硬質皮膜が、 物理蒸着法 (以下
P V D法という) や化学蒸着法 (以下、 C V D法という) 等の方法 で形成されたものが用いられている。
特に切削工具として使用する場合、 前記硬質皮膜には耐摩耗性と 耐熱性 (高温での耐酸化性) が特性として要求されるので、 該両特 性を有するものとして、 特にチタンアルミニウム窒化物 ( T i A 1 N ) が、 切削時の刃先温度が高温となる超硬工具等への被覆材料と して近年多く使用されている。 この様に T i A 1 Nが優れた特性を 発揮するのは、 皮膜に含まれるアルミニウムの作用により耐熱性が 向上し、 8 0 0 °C程度の高温まで安定した耐摩耗性と耐熱性を維持 できるからである。 該 T i A I Nとしては、 T i と A 1 の組成比の 異なる様々なものが使用されているが、 その大半は、 上記両特性を 備えた T i : A 1 の原子比が 5 0 : 5 0〜 2 5 : 7 5 のものである ところで切削工具等の刃先は、 切削時に 1 0 0 0 °C以上の高温と なる場合がある。 この様な状況下、 上記 T i A 1 N膜のみでは十分 な耐熱性を確保できないため、 例えば、 特許第 2 7 4 2 0 4 9号公 報に示されるように、 T i A 1 N膜を形成した上に、 更にアルミナ 層を形成して耐熱性を確保することが行われている。
アルミナは、 温度によって様々な結晶構造をとるが、 いずれも熱 的に準安定状態にある。 しかし、 切削工具の如く切削時における刃 先の温度が、 常温から 1 0 0 0 °c以上にわたる広範囲で著しく変動 する場合には、 アルミナの結晶構造が変化し、 皮膜に亀裂が生じた り剥離する等の問題を生じる。 ところが、 C V D法を採用し、 基材 温度を 1 0 0 o °c以上に高めることによって形成される 型結晶構 造 (コランダム構造) のアルミナだけは、 一旦形成されると、 以後 の温度に関係なく熱的に安定な構造を維持する。 したがって、 切削 工具等に耐熱性を付与するには、 α型結晶構造のアルミナ皮膜を被 覆することが有効な手段とされている。
しかしながら、 上述した通り α型結晶構造のアルミナを形成する には、 基材を 1 0 0 0 °C以上にまで加熱しなければならないため、 適用できる基材が限られる。 基材の種類によっては、 1 0 0 0 °C以 上の高温にさらされると軟質化し、 耐摩耗部材用基材としての適性 が失われる可能性が生じるからである。 また、 超硬合金の様な高温 用基材であっても、 この様な高温にさらされると変形等の問題が生 じる。 また、 耐摩耗性を発揮する膜として基材上に形成された T i A 1 N膜等の硬質皮膜の実用温度域は一般に最高で 8 0 0 °C程度で あり、 1 0 0 0 °C以上の高温にさらされると、 皮膜が変質し、 耐摩 耗性が劣化するおそれがある。
この様な問題に対し、 特開平 5 — 2 0 8 3 2 6号公報には、 上記 アルミナと同レベルの高硬度を有する (A l , C r ) 2 0 3混合結 晶が、 5 0 0 以下の低温域で得られた旨報告されている。 しかし ながら、 被削材が鉄を主成分とするものである場合、 前記混合結晶 皮膜の表面に存在する C rが、 切削時に被削材中の鉄と化学反応を 起こし易いため、 皮膜の消耗が激しく寿命を縮める原因となる。
また、 0. Zywi tzki, G. Hoe t z s ch らは、 「 Sur f. Coat . Techno 1 ·」 ( 86-87 1996 p. 640-647) で、 高出力(11— 17 k W)のパルス 電源を用いて反応性スパッタリ ングを行う ことで、 7 5 0 °Cで α型 結晶構造のアルミナ皮膜を形成できた旨報告している。 しかし、 こ の方法で α型結晶構造のアルミナを得るには、 パルス電源の大型化 が避けられない。
この様な問題を解決した技術として、 特開 2 0 0 2 - 5 3 9 4 6 号公報には、 格子定数が 4. 7 7 9 Α以上 5. 0 0 O A以下で、 膜 厚が少なく とも 0. 0 0 5 x mであるコランダム構造 ( α型結晶構 造) の酸化物皮膜を下地層とし、 該下地層上に α型結晶構造のアル ミナ皮膜を形成する方法が開示されている。 上記酸化物皮膜の成分 は、 C r 23、 ( F e , C r ) 203又は (A l , C r ) 203のい ずれかであることが好ましく、 該酸化物皮膜の成分が ( F e , C r ) 23である場合には、 ( F e x, C r (卜 x) ) 2 O 3 (ただし、 xは 0≤ X≤ 0. 5 4 ) を採用することがより好ましく、 また、 該酸化 物皮膜の成分が (A l , C r ) 203である場合には、 (A l y, C r (卜 y) ) 2 O 3 (ただし、 yは 0≤ y≤ 0. 9 0 ) を採用することがよ り好ましいと示されている。
また、 上記特開 2 0 0 2 — 5 3 9 4 6号公報には、 硬質皮膜とし て T i 、 C r、 Vよりなる群から選択される 1種以上の元素と A 1 との複合窒化皮膜を形成した上に、 中間層として (A l z, C r (1. z)) N (ただし、 z は 0≤ z ≤ 0. 9 0 ) からなる皮膜を形成し、 さらに該皮膜を酸化処理してコランダム構造 (《型結晶構造) の酸 化物皮膜を形成した後に、 該酸化物皮膜上にひ型アルミナを形成す ることが有用である旨示されており、 この方法によれば、 低温の基 材温度で α型結晶構造のアルミナが形成できるとされている。
しかし上記方法では、 α型結晶構造のアルミナ皮膜を形成するに あたり、 例えば C r Ν皮膜を形成し、 該 C r N皮膜を酸化してコラ ンダム構造 ( α型結晶構造) を有する C r 23を中間膜として別途 形成しなければならないため、 積層皮膜の形成効率を高めるうえで は、 なお改善の余地が残されている。 また、 中間膜として形成され た C r 203や (C r N + C r 23) 等の C r含有皮膜は、 切削ェ 具用として汎用されている材料でないため、 切削性能の低下が懸念 される。 従って、 切削性能を高める観点からも改善の余地を残すも のと考えられる。
本発明はこの様な観点から、 耐摩耗性および耐熱性に優れた、 型結晶構造を主体とするアルミナ皮膜ゃ該ひ型結晶構造主体のアル ミナ皮膜を有する積層皮膜を、 基材ゃ硬質皮膜の特性の劣化や変形 を抑制し、 かつ装置負荷の少ない比較的低温条件下で、 中間膜を介 さず効率よく形成することのできる有用な方法や、 この様な方法で 得られる耐摩耗性および耐熱性に優れた積層皮膜、 更には該積層皮 膜 (該 α型結晶構造主体のアルミナ皮膜) の被覆された工具 (部 材) を実現すべく検討を行った。
また、 上記の方法で得られるアルミナ皮膜は、 α型結晶構造を主 体とするアルミナであるが、 X線回折パターンを詳細に観察すると ァ型等の α型以外の結晶構造のアルミナを示す回折ピークが観察さ れる場合があった。 更に、 ほぼひ型結晶構造のみからなるアルミナ 皮膜が得られた場合であっても、 該皮膜表面を S E M (scanning electron microscope) で観察すると、 アルミナ結晶粒間の空隙が 大きい場合や、 該結晶粒のサイズが不均一である場合があった。 従 4 つて、 より確実に耐摩耗性及び耐熱性に優れたアルミナ皮膜を得る には、 更なる改善を要するものと考えられる。
本発明では、 この様な観点から、 ひ型結晶構造以外の結晶相の生 成が抑制され、 かつアルミナ結晶粒がより微細かつ均一である耐摩 耗性及び耐熱性に優れたアルミナ皮膜を、 上記切削工具ゃ摺動部材 等の基材の特性を損なう ことのない低温条件で形成するための有用 な方法を提供すべく検討を行った。
更に、 上記従来法では、 比較的低温の基板温度で結晶性の Q!アル ミナが形成できるが、 中間層として皮膜を酸化処理を行った場合に 特定の格子定数を有するコランダム構造の酸化物を形成できる窒化 物皮膜に限定する必要があるという不都合に加えて、 中間層が C r Nに代表される安定な窒化物であるが故に、 酸化工程に高温や長時 間を酸化処理を要するという不都合がある。 従って、 より短時間で 酸化処理を行うには、 更なる検討が必要である。
この様な観点から、 中間層を構成する金属元素を、 特定の格子定 数構造を有する酸化物を形成する金属元素に限定することなく、 且 つ比較的低温で短時間に酸化工程を行う ことが可能な、 α型結晶構 造を主体とするアルミナ皮膜を製造するための有用な方法、 および こう したアルミナ皮膜を被覆した部材、 並びに該アルミナ皮膜被覆 部材を製造するために有用な方法を提供すべく検討を行った。
更には、 様々な種類の基材上に、 特定の中間層を形成することな く、 耐摩耗性及び耐熱性に優れた α型結晶構造主体のアルミナ皮膜 を形成することのできる有用な方法、 および該アルミナ皮膜で被覆 された部材およびその製造方法を提供することも目的に検討を行つ た。
本発明では更に、 上記の通り、 硬質皮膜として多く利用される TiAIN系や TiN, TiCNのような硬質皮膜上に、 特別な中間層等をはさ まずともひアルミナを形成する方法に加えて、 これを実現するため の装置構成についても研究開発を行った。
ところで、 切削工具には、 上述の通り優れた耐摩耗性や耐熱性が 要求されるのであるが、 こう した切削工具に用いられる素材として は、 超硬合金、 高速度鋼、 c B N等が知られており、 こう した素材 (基材) の表面に更に各種硬質皮膜を形成したものも切削工具とし て広く使用されている。
上記した各種の素材のうちで、 c B Nは他の素材に比べて強度や 耐摩耗性の点で優れているといわれているが、 こう した c B Nを用 いるものとして、 例えば特開昭 5 9 - 8 6 7 9号公報 (特許請求の 範囲等) のような技術が知られている。 この技術では、 T i Cや T 1 1^或は丁 1 〇 1^、 更には A l 23や WC、 T i B 2等で構成され たセラミックス結合相が 2 0〜 5 0体積%を占め、 残りが実質的に c B N分散相からなる組成を有する c B N焼結体基材の表面に、 物 理蒸着法 ( P VD法) や化学蒸着法 ( C VD法) を適用して、 T i の炭化物、 窒化物、 炭 , 窒化物、 炭酸化物および炭窒酸化物、 並び に酸化アルミニウムのうちの 1種の単層または 2種以上の複層から な 硬質被覆層を 5〜 2 0 /z mの平均層厚で形成してなる表面被覆 c B N基セラミックス製切削工具が提案されており、 この工具は高 硬度焼入鋼ゃ铸鉄などの切削加工に用いられている。
切削工具の特性は工具基材とその表面に形成される硬質皮膜との 適切な組み合わせによって決定されるといえるが、 こうした観点か ら c B N焼結体を基材としたときの被覆材料として最も魅力的であ るのは、 酸化アルミニウム (A 1 2 O 3 : アルミナ) 皮膜である。 これは、 高温下での耐塑性変形性に優れた c B N焼結体を基材とし 化学的安定性に優れる A 1 23皮膜を密着力良く被覆することに よって、 高温 · 高負荷下での耐摩耗性、 特に耐クレー夕性に優れる 被覆部材が構成でき、 こうした特性が要求される切削工具等への適 用に適していると考えられるからである。
こう した観点から、 これまでにも c B N焼結体基材へのアルミナ 皮膜形成に関する技術が様々提案されている。 例えば特開 2 0 0 0 一 4 4 3 7 0号公報 (特許請求の範囲等) には、 鉄系材料の高硬度 難削材切削および高速 · 高能率切削を図るべく、 耐摩耗性、 特に耐 クレーター摩耗性に優れる切削工具を提供することを目的に、 c B N焼結体基材における切削に関与する表面の少なく とも一部に 1 層 以上の A 1 2 O 3層を形成した工具が提案されている。 この焼結体 基材は c B N分散相を 2 0〜 9 9体積%、 平均粒径 l m以下の A 1 23を結合相として 1. 0〜 1 0体積%未満を含み、 その基材 上にアルミナ皮膜が厚さ 0. 5〜 5 0 z m程度で形成されたもので ある。 また、 A 1 203皮膜は、 厚さが 0. 5〜 2 5 x mの場合に は、 平均結晶粒径を 0. 0 1 〜 4 / mに、 厚さが 2 5超〜 5 0 i m の場合には、 平均結晶粒径を 0. 0 1〜 1 0 mに制御するのが有 効であることも開示されている。
一方、 金属加工のためのコーティ ングされた c B N切削工具に関 する技術として、 例えば特表 2 0 0 2— 5 4 3 9 9 3号公報 (特許 請求の範囲等) には、 焼結炭化物支持体を伴うまたは伴わない 1若 しくは複数の c B N焼結体からなる工具であって、 コーティ ング層 は 1 または複数の耐熱性化合物の層で構成されており、 この層のう ちの少なく とも 1つの層は、 粒度が 0. 1 m未満の微粒結晶質ァ 相アルミナからなるものが開示されている。 そしてこのアルミナ層 は、 4 5 0〜 7 0 0 °Cの基材温度において、 2極パルス D M S (デ ュアルマグネトロンスパッタリ ング) 技術によって堆積させるもの である。
或は、 同様の c B N切削工具に関する技術として、 例えば特表 2 0 0 2 — 5 4 3 9 9 7号公報 (特許請求の範囲等) には、 同様の構 成の工具であるが、 皮膜としてのァ相アルミナは、 プラズマ活性化 化学気相堆積 ( P A C VD) で堆積させることを特徴とするものが 開示されている。 そしてこの技術では、 コーティ ングする工具基材 を固定して電気的に接続した 2つの電極の間に 2極パルス直流電圧 を適用することによって、 プラズマをもたらしている。
アルミナ皮膜形成について、 これまで提案された各種技術におい ても以下のような問題がある。 即ち、 前記特表 2 0 0 2— 5 4 3 9 9 3号公報 (特許請求の範囲等) ゃ特表 2 0 0 2 — 5 4 3 9 9 7号 公報 (特許請求の範囲等) の技術で形成されるアルミナ皮膜はァ型 結晶構造を有するアルミナ (ァアルミナ) であるが、 この rアルミ ナは、 各種の結晶形態が存在するアルミナの中で準安定な結晶形態 であるので、 皮膜が高温環境に曝されると本質的に安定な 0;型結晶 構造のアルミナ ( Q!アルミナ) に変態することがあり、 この変態に 伴って皮膜に亀裂が生じたり皮膜剥離が発生したりする恐れがある こう したことから、 高速切削化の傾向にある近年の切削加工には十 分に対応できない。
これに対して、 前記特開 2 0 0 0 — 4 4 3 7 0号公報 (特許請求 の範囲等) に示された技術では、 形成されるアルミナ皮膜としてひ 型結晶構造を有するアルミナも含まれており、 この結晶形態であれ ば前記のような問題は生じない。 しかしながら、 この技術では皮膜 を形成する c Β Ν焼結体中の結合相の組成が限定されることになる また、 この技術でひアルミナ皮膜を形成する方法としては、 C V D 法が示されているが、 こう した方法では皮膜形成時の基板温度は 1 0 0 0 °Cを超える高温雰囲気となり、 このような高温では基材の c B N焼結体が過熱されて、 h B N相へ変態する可能性があり、 好ま しくない事態を招く ことになる。
この様な観点から、 本発明者らは、 c B N焼結体基材への α型結 晶構造を主体とするアルミナ皮膜を、 C V D法のような高温による ことなく、 また c B N焼結体の組成を特定しなくても形成すること のできるアルミナ皮膜の製造方法、 およびこう したアルミナ皮膜を 被覆した部材、 並びに該アルミナ被覆部材を製造するための有用な 方法についても検討を行った。 発明の開示
<第 1の態様について >
耐摩耗性および耐熱性に優れた α型結晶構造主体のアルミナ皮膜 を有する積層皮膜を得るための手段として、 次の様な手段がある。 本発明の積層皮膜として、 A 1 と T i を必須とする金属成分と Β C、 N、 〇等との化合物からなる硬質皮膜を有する積層皮膜におい て、 該硬質皮膜を酸化することによって形成される酸化物含有層と 該酸化物含有層上に形成されるひ型結晶構造を主体とするアルミナ 皮膜を有するものとする (以下、 「第 1①の態様」 という ことがあ る)。
前記酸化物含有層は、 最表面側が実質的にアルミナからなるもの であることが好ましく、 また前記硬質皮膜は、 T i A I Nからなる ものを特に好ましい形態とする。
また前記 A 1 と T i を必須とする金属成分と B、 C、 N、 〇等と の化合物からなる硬質皮膜として、 A 1 および T i と、 I V a族 ( T i 除く)、 V a族、 V I a族および S i よりなる群から選択さ れる少なく とも 1種の元素とを必須成分とする窒化物、 炭化物、 炭 窒化物、 ほう化物、 窒酸化物、 または炭窒酸化物からなるものを採 用してもよく、 この場合、 特に T i A l C r Nからなるものを用い るのが好ましい。
更に本発明は、 A 1 を必須とする金属成分と B、 C、 N、 0等と の化合物からなる硬質皮膜を有する積層皮膜であって、 該硬質皮膜 を酸化することによって形成される最表面側が実質的にアルミナか らなる酸化物含有層と、 該酸化物含有層上に形成される α型結晶構 造を主体とするアルミナ皮膜を有するところに特徴を有する積層皮 膜としてもよい (以下、 「第 1②の態様」 という ことがある)。
前記 A 1 を必須とする金属成分と B、 C , Ν、 〇等との化合物か らなる硬質皮膜としては、 A 1 と、 I V a族、 V a族、 V I a族お よび S i よりなる群から選択される少なく とも 1種の元素とを必須 成分とする窒化物、 炭化物、 炭窒化物、 ほう化物、 窒酸化'物、 また は炭窒酸化物からなるものを用いるのがよい。
また、 前記酸化物含有層上に形成されるアルミナ皮膜は、 ひ型結 晶構造が 7 0 %以上であるものがよい。
本発明では、 この様な積層皮膜が表面に形成された積層皮膜被覆 工具も保護対象に包含する。
更に本発明は、 上記第 1①または第 1②の態様で α型結晶構造を 主体とするアルミナ皮膜を有する積層皮膜に加えて、 前記硬質皮膜 を形成した後、 該硬質皮膜の表面を酸化して酸化物含有層を形成し その後、 該酸化物含有層上に a型結晶構造を主体とするアルミナ皮 膜を形成するところに特徴を有する該ひ型結晶構造を主体とするァ ルミナ皮膜または積層皮膜の製造方法も規定する。 前記酸化物含有層の形成は、 酸化性ガス含有雰囲気下で基板温度 を 6 5 0 〜 8 0 0 °Cに保持して行う ことが好ましく、 また、 前記ひ 型結晶構造を主体とするアルミナ皮膜の形成は、 P V D法で行う こ とが好ましい。 尚、 この酸化処理時における 「基板温度」 とは超硬 合金製や炭素鋼製、 工具鋼製等の基材および該基材上に形成された 硬質皮膜の温度をいうものとする (以下同じ)。
前記酸化物含有層の形成と、 前記 α型結晶構造を主体とするアル ミナ皮膜の形成は、 生産性向上の観点から同一装置内で行う ことが 好ましく、 より好ましくは前記硬質皮膜の形成、 前記酸化物含有層 の形成、 および前記 Q!型結晶構造を主体とするアルミナ皮膜の形成 の全てを同一装置内で行うのがよい。
また本発明は、 (¾型結晶構造主体のアルミナ皮膜の形成された積 層皮膜を得るべく、 次の方法を規定するものでもある。 即ち、 金属 化合物からなる硬質皮膜上にアルミナ皮膜の形成された積層皮膜を 製造する方法であって、 酸化物生成の標準自由エネルギーがアルミ ニゥムより大きい金属と B、 C , Ν , Ο等との化合物 (例えば、 窒 化物、 炭化物、 炭窒化物、 ほう化物、 窒酸化物、 または炭窒酸化 物) からなる硬質皮膜を形成した後、 該硬質皮膜の表面を酸化して 酸化物含有層を形成し、 次いで該酸化物含有層表面における酸化物 の還元を伴いながら、 α型結晶構造を主体とするアルミナ皮膜を形 成するところに特徴を有する方法である (以下、 「第 1③の態様」 という ことがある)。
前記酸化物生成の標準自由エネルギーがアルミニウムより大きい 金属としては, T i を用いるのがよく、 この場合、 前記硬質皮膜とし て、 T i N、 T i Cおよび T i C Nよりなる群から選択される 1層 または 2層以上の積層を形成するのがよい。 更に、 前記硬質皮膜と基材もしくは硬質皮膜同士の接合界面に、 接合される両素材構成元素の組成傾斜層を形成すると、 基材と硬質 皮膜や硬質皮膜同士の密着性等を高めることができるので望ましい この様に硬質皮膜として、 酸化物生成の標準自由エネルギーがァ ルミニゥムより大きい T i を金属成分とする硬質皮膜を用いる場合 積層皮膜 ( ひ型結晶構造を主体とするアルミナ皮膜) の製造方法と して、 該硬質皮膜の表面を酸化し、 チタン酸化物含有層を形成した 後に、 該層表面のチタン酸化物の還元を伴いながらアルミナ皮膜を 形成するのがよく、 具体的には、 前記酸化物含有層 (前記チタン酸 化物含有層) として T i 〇 2含有層を形成した後、 アルミナ形成に おいて該層表面の T i 〇 2の丁 i 35への還元を伴いながらアルミ ナ皮膜を形成することが好ましい。
前記酸化物含有層の形成は、 酸化性ガス含有雰囲気下で基板温度 を 6 5 0〜 8 0 0 °Cに保持して行う ことが好ましく、 前記 α型結晶 構造を主体とするアルミナ皮膜の形成は、 P V D法で行う ことが好 ましい。
また、 上記方法においても、 前記酸化物含有層の形成と、 前記 α 型結晶構造を主体とするアルミナ皮膜の形成は、 生産性向上の観点 から同一装置内で行う ことが好ましく、 より好ましくは前記硬質皮 膜の形成、 前記酸化物含有層の形成、 および前記 α型結晶構造を主 体とするアルミナ皮膜の形成の全てを同一装置内で行うのがよい。
本発明では、 上記第 1③の態様で製造された積層皮膜であって、 金属化合物からなる硬質皮膜上に Q!型結晶構造を主体とするアルミ ナ皮膜が形成されていることを特徴とする耐摩耗性と耐熱性に優れ た積層皮膜と、 該積層皮膜が表面に形成された耐摩耗性および耐熱 性に優れた積層皮膜被覆工具も保護対象に包含する。 <第 2の態様について >
ひ型結晶構造主体のアルミナ皮膜を製造する別の方法として、 基 材 (基材上に予め下地皮膜が形成されたものを含む) 上に α型結晶 構造を主体とするアルミナ皮膜を製造する方法であって、 アルミナ の成膜工程前に下記 ( a ) 〜 ( c ) の少なく ともいずれかの皮膜を 形成した後、 その表面を酸化処理し、 その後にアルミナ皮膜を形成 する点に要旨を有する製造方法を規定する (以下、 「第 2の態様」 という ことがある)。
( a ) 純金属または合金からなる皮膜
( b ) 窒素、 酸素、 炭素若しくは硼素を固溶する金属主体の皮膜 ( c ) 化学量論的組成に対して不十分な窒素、 酸素、 炭素若しく は硼素を含む金属窒化物、 酸化物、 炭化物若しくは硼化物からなる 皮膜 .
この発明において、 前記酸化処理は、 真空チャンバ内の酸化性ガ ス雰囲気下で基材温度を 6 5 0〜 8 0 0 °Cに保持して行う ことが好 ましい。
また、 基材 (基材上に予め下地皮膜が形成されたものを含む) 上 にひ型結晶構造を主体とするアルミナ皮膜が形成された被覆部材で あって、 基材表面には、 上記 ( a ) 〜 ( c ) の少なく ともいずれか の皮膜が中間層として形成されると共に、 該中間層の表面側に酸化 物含有層および α型結晶構造主体のアルミナ皮膜が順次形成されて いる点に要旨を有する被覆部材も規定する。
こう した被覆部材を製造するに当たっては、
(I) 基材上に、 上記 ( a ) 〜 ( c ) の少なく ともいずれかの皮 膜を中間層として形成する工程、 該中間層表面を酸化処理する工程 次いで α型結晶構造を主体とするアルミナ皮膜を形成する工程を、 同一成膜装置内で順次実施すること、 或は、
( II) 基材上に下地皮膜を形成する工程、 該下地皮膜表面に上記 ( a ) 〜 ( c ) の少なく ともいずれかの皮膜を中間層として形成す る工程、 該中間層表面を酸化処理する工程、 次いで α型結晶構造を 主体とするアルミナ皮膜を形成する工程を、 同一成膜装置内で順次 実施することが有用である。
<第 3の態様について >
本発明では、 c Β Ν焼結体を基材として、 ひ型結晶構造主体のァ ルミナ皮膜を形成する方法も規定する (以下、 「第 3の態様」 とい う ことがある)。 該製造方法は、 結合相と立方晶窒化硼素分散相か らなる c B N焼結体基材上に、 α型結晶を主体とするアルミナ皮膜 を製造する方法であって、 c Β Ν焼結体基材表面を酸化処理し、 そ の後にアルミナ皮膜を形成する点に要旨を有する。
この方法において、 前記 c B N焼結体中の結合相としては、 T i C , T i N, T i C N , A 1 N , T i B 2および A l 23よりなる 群から選ばれる 1種以上を含むものが挙げられる。
また前記酸化処理は、 酸化性ガス酸化雰囲気下で基材温度を 6 5 0〜 8 0 0 °Cに保持して行う ことが好ましく、 前記 α型結晶構造を 主体とするアルミナ皮膜の形成は、 基材温度を 6 5 0〜 8 0 or と して P V D法を適用して行う ことが好ましい。
本発明は、 α型結晶を主体とするアルミナ皮膜を被覆した被覆部 材も規定する。 該被覆部材とは、 結合相と立方晶窒化硼素分散相か らなる c B N焼結体基材上に、 《型結晶を主体とするアルミナ皮膜 を被覆した被覆部材であって、 c B N焼結体とアルミナ皮膜との界 面には、 酸化物含有層が介在されたものである点に要旨を有するも のである。 こう した被覆部材において、 前記結合相は、 T i C, T i N, T i C N, A 1 N, T i B 2および A 1 203よりなる群から選ばれる 1種以上を含むものであることが好ましく、 該結合相は、 焼結体全 体に対して 1〜 5 0体積%含むものであることが好ましい。
また、 上記被覆部材の表面に形成された α型結晶構造を主体とす るアルミナ皮膜は、 圧縮の残留応力を有するものとなる。
上記部材を製造するに当たっては、 c Β Ν焼結体基材の表面を酸 化処理する工程と、 α型結晶構造を主体とするアルミナ皮膜を形成 する工程を、 同一成膜装置内で順次実施することが好ましい。
<第 4の態様について >
本発明は、 型結晶構造主体のアルミナ皮膜の製造方法として、 次の方法も規定する。 即ち、 基材 (基林上に予め下地皮膜が形成さ れたものを含む。 以下同じ) 上にひ型結晶構造を主体とするアルミ ナ皮膜を形成する方法であって、 基材表面にガスイオンポンバ一ド 処理を施した後に、 表面を酸化処理し、 その後、 酸化処理表面上に アルミナ皮膜を形成するところに要旨を有する方法である (以下、 「第 4の態様」 という ことがある)。
前記基材としては、 鋼材、 超硬合金、 サーメッ ト、 c B N焼結体 またはセラミックス焼結体を用いるのがよい。
また、 下地皮膜が形成されたものを基材として使用する場合には 該下地皮膜として、 周期律表の 4 a族, 5 a族および 6 a族の元素 A l、 S i 、 F e、 C u並びに Yよりなる群から選択される 1種以 上の元素と C、 N、 B、 0の中の 1種以上の元素との化合物、 また はこれら化合物の相互固溶体、 のいずれか 1種以上が形成されたも のを用いることが推奨される。
前記ガスイオンボンバード処理は、 真空チャンバ一内においてガ スプラズマ中で基材に電圧を印加して行うのがよく、 前記酸化処理 は、 酸化性ガス含有雰囲気下で基材温度を 6 5 0〜 8 0 0 °Cに保持 して行うのがよい。
本発明は、 上記 型結晶構造主体のアルミナ皮膜で被覆された部 材の製造方法も規定するものであって、 該方法は、
①基材上に下地皮膜を形成する工程、
②該下地皮膜表面にガスイオンボンバー ド処理を施す工程、
③ガスイオンボンバード処理後の下地皮膜表面を酸化処理するェ
④次いでひ型結晶構造を主体とするアルミナ皮膜を形成する工程 を、 同一装置内で順次実施するところに特徴を有する。
前記下地皮膜としては、 T i ( C , N), C r (C , N)、 T i A 1 ( C , N)、 C r A 1 ( C, N) および T i A l C r ( C, N) よりなる群から選択される 1種以上を形成するのが好ましい。 前記 T i ( C , N)、 C r ( C, N), T i A 1 ( C , N)、 C r A 1 (C , N), T i A l C r ( C , N) は、 T i 、 C r、 T i A l 、 C r A l 、 または T i A l C rの、 それぞれの炭化物、 窒化物また は炭 · 窒化物を示す (以下同じ)。
<第 5の態様について >
更に本発明は、 α型結晶構造主体のアルミナ皮膜の製造方法とし て、 基材 (基材上に予め下地皮膜が形成されたものを含む) 上にひ 型結晶構造を主体とするアルミナ皮膜を形成する方法であって、 基 材表面にメタルイオンボンバード処理を施した後、 表面を酸化処理 し、 その後にアルミナ皮膜を形成するところに要旨を有する方法を 規定する (以下、 「第 5の態様」 という ことがある)。
前記メタルイオンボンバード処理は、 真空チャンバ一中で基材に 電圧を印加しつつ金属プラズマを発生させて行えばよく、 また、 前 記酸化処理は、 酸化性ガス含有雰囲気下で基材温度を 6 5 0〜 8 0 0 °Cに保持して行うのがよい。
前記金属プラズマとして、 C r または T i のプラズマを真空ァー ク蒸発源から発生させるのがよい。
本発明は、 上記第 5の態様で形成されるひ型結晶構造主体のアル ミナ皮膜で被覆された部材についても規定する。 該部材は、 基材
(基材上に予め下地皮膜が形成されたものを含む) 上に 型結晶構 造を主体とするアルミナ皮膜が形成された部材であって、 基材表面 近傍は、 メタルイオンポンバ一ド処理に使用した金属が表層側に行 く につれて高濃度となる濃度勾配層であり、 該濃度勾配層の表面側 に、 酸化物含有層および α型結晶構造主体のアルミナ皮膜が順次形 成されているところに特徴がある。
また本発明は、 上記第 5の態様で形成される ひ型結晶構造主体の アルミナ皮膜で被覆された部材の製造方法も規定するものであって 該方法は、 基材上に下地皮膜を形成しない場合、
①基材表面にメタルイオンボンバード処理を施す工程、
②メタルイオンボンバー ド処理後の基材表面を酸化処理する工程
③次いで 型結晶構造を主体とするアルミナ皮膜を形成する工程 を、 同一装置内で順次実施するところに特徴を有する。
また基材上に予め下地皮膜を形成する場合には、
①基材上に下地皮膜を形成する工程、
②該下地皮膜の表面にメタルイオンボンバード処理を施す工程、
③メタルイオンボンバード処理後の下地皮膜の表面に酸化処理を 施す工程、
④次いでひ型結晶構造を主体とするアルミナ皮膜を形成する工程 を、 同一装置内で順次実施するところに特徴を有する方法である。 前記第 5 の態様で形成する下地皮膜としては、 周期律表の 4 a族 5 a族および 6 a族の元素、 A l 、 S i 、 C u並びに Yよりなる群 から選択される 1種以上の元素と(:、 Ν、 Β、 Οの中の 1種以上の 元素との化合物、 これら化合物の相互固溶体、 または C、 N、 Bの 中の 1種以上の元素からなる単体または化合物、 のいずれか 1種以 上を形成するのが好ましい。 前記基材としては、 鋼材、 超硬合金、. サーメッ ト、 c B N焼結体、 セラミ ックス焼結体、 結晶ダイヤモン ドまたは S i ウェハを用いることができる。
<本発明のアルミナ皮膜について >
本発明は、 上記態様で形成される α型結晶構造のアルミナ皮膜に ついても規定するものであり、 該 α型結晶構造のアルミナ皮膜とは 基材 (基材上に予め下地皮膜が形成されたものを含む) 上に物理蒸 着法によって形成したアルミナ皮膜であって、 該アルミナ皮膜の結 晶構造を断面透過型電子顕微鏡で観察したときに (倍率 : 2 0 0 0 0倍)、 少なく とも皮膜成長開始部は微細構造のアルミナ結晶で構 成されており、 当該微細結晶領域においては α型結晶構造以外の結 晶構造が実質的に観察されないものである点に要旨を有するもので ある。
尚、 ここで 「実質的に」 とは、 本発明が、 ひ結晶構造が 1 0 0 % であることに限定されるものではなく、 成膜プロセス上不可避的に 含まれてしまった不純物や極めて微量の他結晶構造のものが含まれ ていることを許容するという意味である。
本発明のアルミナ皮膜においては、 (Α ) 微細構造のアルミナ結 晶は、 その結晶粒が成長初期から厚さ方向 0 . 5 までの範囲内 において 0 . 3 m以下のもの、 (B ) アルミナ皮膜全体に亘つて α型結晶構造以外の結晶構造が実質的に観察されないもの、 ( C ) a型結晶構造のアルミナは、 皮膜表面側において柱状に成長したも の、 等の構造を呈するものとなる。 また、 本発明のアルミナ皮膜の 膜厚は、 0 . 5〜 2 0 mであることが好ましい。
<物理的蒸着装置 (成膜装置) について〉
また本発明は、 上記アルミナ皮膜の製造等に用いる物理的蒸着装 置についても規定する。
本発明の物理的蒸着装置は、 真空チャンバと、 該真空チャンバに 回転自在に配置されて複数の基材を保持する基材ホルダ (遊星回転 治具) と、 該真空チャンパへの不活性ガス及び酸化性ガス導入機構 と、 該基材ホルダ (遊星回転治具) に対向する位置に配置されたプ ラズマ源と、 前記基材ホルダ (遊星回転治具) に対向する位置に配 置されたスパッタリング蒸発源と、 前記基材ホルダ (遊星回転治 具) に対向する位置に配置されて前記基材を加熱可能な輻射型加熱 機構と、 前記基材ホルダ (遊星回転治具) に接続されて前記基材ホ ルダ (遊星回転治具) に負のパルス状のバイアス電圧を印加可能な バイアス電源とからなるところに要旨を有する。
この様な構成とすることで、 基材に対するイオンボンバード処理 熱酸化処理及び反応性スパッ夕リ ングによる高耐熱性 · 高耐摩耗性 皮膜の成膜処理などの物理的蒸着関連処理の全ての工程を、 効率的 かつ安定に実施可能となる。 また、 この装置によって、 6 5 0 °C〜 8 0 0 °C程度の比較的低温な処理条件で a型結晶構造を主体とする アルミナ皮膜を形成することができ、 例えば切削工具に被覆するァ ルミナ皮膜の耐摩耗性と耐熱性を高めることができる。
前記プラズマ源に代えて、 若しくは前記プラズマ源に加えて、 前 記基材ホルダ (遊星回転治具) に対向する位置にアーク蒸発源が配 置されていてもよい。 この様な構成とすれば、 アークイオンプレー ティ ングによる硬質皮膜の成膜処理とアルミナ皮膜の形成を同一装 置で行う ことが可能となる。 これにより、 成膜可能な皮膜の種類が 多様化できるとともに、 多層の成膜を行う場合にも有効となる。
前記輻射型加熱機構は、 前記基材ホルダ (遊星回転治具) の回転 中心と同芯的に配置された筒状加熱源と、 前記基材ホルダ (遊星回 転治具) の側面に配置された平面状加熱源とからなるようにしても よい。
更に上記構成とすることで、 基材を内外から均一に加熱し得るコ ンパク トな装置構成にできる。 また、 基材と加熱源の距離を短縮で きるので、 加熱効率を向上することもできる。
前記真空チャンパ一の断面形状が、 四角形、 六角形または八角形 のいずれかであり、 各一対の前記スパッ夕リ ング蒸発源および前記 平面状加熱源が、 前記真空チャンバ一の互いに対向する内側面に配 設されている構成としてもよい。
上記構成とすることで、 一層コンパク トな装置構成を有する物理 的蒸着処理装置を提供できる。 また、 スパッタリ ング蒸発源及び平 面状過熱源を均等に配置することができるとともに、 これらのスパ ッタリ ング蒸発源及び平面状加熱源の形状に真空チャンバ一の形状 を沿わせることができるので、 真空チャンバ一の内容積を小さくす ることができる。
前記真空チャンバ一の断面形状が六角形または八角形であり、 各 一対の前記スパッ夕リング蒸発源、 前記平面状加熱源およびアーク 蒸発源が、 前記真空チャンバ一の互いに対向する内側面に配設され ている構成としてもよい。 上記構成とすることで、 より一層コンパ ク トな装置構成にすることができる。 また前記プラズマ源として、 前記真空チャンバ一内であって前記 基材ホルダ (遊星回転治具) に近接したその長手方向が対向するよ うに配置された熱電子放出用のフィ ラメントを用いるようにしても よい。 該構成とすることで、 さらにコンパク トな装置構成を有する 物理的蒸着処理装置を提供できる。 また、 フィ ラメントから放出さ れた熱電子を効率的に基材に導く ことができる。 図面の簡単な説明
図 1 は、 第 1 の態様に関する実施例 2における本発明例 1 ' ( T i N皮膜) の薄膜 X線回折結果である。
図 2は、 T i Nを酸化処理して得られた皮膜の X P Sデプスプロ フアイ リ ングを示す図である。
図 3は、 T i Nを酸化処理して得られた皮膜の薄膜 X線回折結果 である。
図 4は、 第 1, 2または 6の態様の実施に用いる装置例を示す概 略説明図 (上面図) である。
図 5は、 第 4の態様の実施に用いる装置例を示す概略説明図 (上 面図) である。
図 6は、 本発明法 (第 5の態様) を模式的に示した説明図である 図 7は、 第 5の態様の実施に用いる装置例を示す概略説明図 (上 面図) である。
図 8は、 本発明の実施形態に係る物理的蒸着装置の概要を示す断 面説明図模式図である。
図 9は、 本発明の他の形態に係る物理的蒸着装置の概要を示す断 面説明図である。
図 1 0は、 本発明のさ らに他の形態に係る物理的蒸着装置の概要 を示す断面説明図である。
図 1 1 は、 第 1 の態様に関する実施例 1 における本発明例 1 の薄 膜 X線回折結果である。
図 1 2は、 第 1 の態様に関する実施例 1 における比較例 1 の薄膜 X線回折結果である。
図 1 3は、 第 1 の態様に関する実施例 2 における本発明例 2 ' (T i C N皮膜) の薄膜 X線回折結果である。
図 1 4は、 第 3の態様の実施に用いる装置例を示す概略説明図 (上面図) である。
図 1 5は、 c B N焼結体基材上に形成したアルミナ皮膜の薄膜 X 線回折結果を示したグラフである。
図 1 6は、 T i A 1 N皮膜上に形成したアルミナ皮膜 (比較例) の薄膜 X線回折結果 (成膜温度 7 5 0 ) である。
図 1 7は、 T i A I N皮膜上に形成したアルミナ皮膜 (本発明 例) の薄膜 X線回折結果 (成膜温度 7 5 0 °C) である。
図 1 8は、 T i A I N皮膜上に形成したアルミナ皮膜の表面を S E Mで撮影した顕微鏡観察写真 ( aは比較例、 bは本発明例) であ る。 .
図 1 9は、 C r N皮膜上に形成したアルミナ皮膜 (比較例) の薄 膜 X線回折結果 (成膜温度 7 5 0 °C) である。
図 2 0は、 C r N皮膜上に形成したアルミナ皮膜 (本発明例) の 薄膜 X線回折結果 (成膜温度 7 5 0 °C) である。
図 2 1は、 C r N皮膜上に形成したアルミナ皮膜の表面を S E M で撮影した顕微鏡観察写真 ( aは比較例、' bは本発明例) である。 - 図 2 2は、 第 6の態様に関する実施例で得られたアルミナ皮膜の 結晶構想を透過型電子顕微鏡 (T E M) によって観察した結果を示 す図面代用写真である。
図 2 3は、 図 2 2の一部を拡大して示した図面代用写真である。 図 2 4は、 本発明の実施例によって得られた T i A I N皮膜上のアル ミナ皮膜の薄膜 X線回折結果を示す図である。 発明を実施するための最良の形態
( 1 ) 第 1の態様について
本発明者らは、 前述した様な状況の下で、 a型結晶構造主体のァ ルミナを硬質皮膜ゃ基材等の特性を維持できる約 8 0 0 °C以下の温 度域で形成するための方法について研究を進めた。 そ'の結果、
①第 1手段として、 A 1 を必須とする金属成分と B、 C、 N、 O 等との化合物からなる硬質皮膜を形成後、 当該硬質皮膜の表面を酸 化し、 酸化物含有層を形成する処理を行った後にアルミナの皮膜を 形成する方法、 または、
②第 2手段として、 酸化物生成の標準自由エネルギーがアルミ二 ゥムより大きい金属と B、 C , N、 〇等との化合物からなる硬質皮 膜を形成した後、 該硬質皮膜の表面を酸化して酸化物含有層を形成 し、 次いで該酸化物含有層表面における酸化物の還元を伴いながら アルミナ皮膜を形成する方法
を採用すればよいことを見出し、 本発明に想到した。 以下、 上記第 1、 第 2手段について説明する。
<第 1手段 (第 1①②の態様) について >
上述の通り、 本発明者らは、 前述した様な状況の下で、 a型結晶 構造主体のアルミナ皮膜 (以下、 単に 「 a型主体アルミナ皮膜」 ま たは 「 0!アルミナ皮膜」 という ことがある) を、 前記硬質皮膜や基 材等の特性を維持できる約 8 0 0 °C以下の温度域で形成するための 方法について研究を進めた結果、 第 1手段として、 T i A l N、 T i A 1 C r N等の A 1 を含む硬質皮膜を形成した後、 当該皮膜の表 面を酸化することにより形成した酸化物含有層を、 α型結晶構造を 主体とするアルミナ皮膜形成の下地とすればよいことを見出し、 上 記本発明に想到した。
この様な作用が得られる詳細な機構は定かではないが、 I k e d a ら が、 「Thin Solid Fi lmsj [ 195 (1991) 99-110] に開示した T i A 1 N皮膜の高温酸化挙動からすると、 本発明の上記作用は以下のよう な理由によるものと考えられる。
即ち上記文献中で、 Ikeda らは、 高温の酸素含有雰囲気で T i A I N皮膜を酸化処理すると、 T i A I N皮膜の最表面に薄いアルミ ナ皮膜が析出することを指摘している。 また、 その結論に至った観 察結果として、 大気中で最大 8 0 0 °Cまで加熱することで酸化した T i A I N (原子比で T i : A 1 = 5 0 : 5 0 ) 膜のォージェ深さ 方向分析の結果を F i g . 1 2 に示している。 この F i g . 1 2 に は、 最表面から皮膜内部に至る膜組成として、 まず最表面に、 アル ミナを主体とする層が存在し、 その内部に T i と A 1 の混合した酸 化物層が存在し、 更にその内部に T i主体の酸化物層が存在してい ることを明らかにしている。
そして、 本発明者らが行った後記実施例からも明らかなように、 T i A 1 Nからなる硬質皮膜の酸化処理温度 ( 7 4 0〜 7 8 0 ) は、 Ikeda らの実験における酸化温度 ( 8 0 0 °C) に比較的近いこ とから、 本発明でも、 上記実験結果と同様の層が形成されているも のと推定される。
本発明者らは、 更に、 様々な金属元素を含む硬質皮膜を酸化して 同様の測定を行ったところ、 A 1 を含有する硬質皮膜の表面を酸化 すれば、 硬質皮膜中の A 1 が優先的に表面に浮上して酸化され、 そ の結果、 形成された酸化層の最表面にはアルミナが形成しやすいこ とを見出した。 そしてこの様なアルミナを含む酸化物層をアルミナ 皮膜形成の下地とすれば、 8 0 0 °C以下の比較的低温域でも、 α型 結晶構造主体のアルミナ皮膜が形成されることを見出した。 この様 な現象が生ずる理由としては、 硬質皮膜を酸化処理して形成された 酸化物含有層上に、 例えば反応性スパッタリ ング法によってアルミ ナ皮膜の形成を行う と、 該酸化物含有層上に α型アルミナの結晶核 が選択的に形成されるためと考えられる。
ぐ第 1手段 (第 1①②の態様) における硬質皮膜について > 切削工具等の優れた耐摩耗性を確保するのに有効であり、 かつ、 該硬質皮膜を酸化処理して、 α型結晶構造主体のアルミナ皮膜形成 に有用な酸化物層を形成するのに有用な硬質皮膜として、 八 1 と丁 i を必須とする金属成分と B、 C、 N、 〇等との化合物からなる硬 質皮膜を採用する (第 1①の態様)。
A 1 と T i を必須とする金属成分と B、 C、 N、 〇等との化合物 からなる硬質皮膜としては、 A 1 と T i を必須とする金属成分の窒 化物、 または炭化物、 炭窒化物、 ほう化物、 窒酸化物、 炭窒酸化物 等からなる硬質皮膜が挙げられ、 具体的に、 例えば T i A 1 N、 T i A l C N、 T i A l C、 T i A I NO等を用いることができる。 その中でも、 特に T i A 1 Nからなる硬質皮膜が好ましい。 尚、 硬 質皮膜として T i A I N皮膜を用いる場合、 T i と A 1 の組成比は 任意に設定できるが、 好ましいのは T i : A 1 が原子比で 4 0 : 6 0〜 2 5 : 7 5のものである。
更に本発明では、 八 1 と丁 1 を必須とし、 更に第 3番目の元素と して、 I V a族 (T i 除く)、 V a族、 V I a族および S i よりな る群から選択される少なく とも 1種の元素を必須成分とする窒化物 炭化物、 炭窒化物、 ほう化物、 窒酸化物、 または炭窒酸化物からな るものを硬質皮膜としてもよく、 該硬質皮膜として、 例えば T i A l C r N、 T i A l V N、 T i A l S i N、 T i A l C r C N等が 挙げられる。 より好ましくは、 A l , T i および C r の窒化物、 炭 化物、 炭窒化物、 ほう化物、 窒酸化物、 または炭窒酸化物からなる 硬質皮膜を用いるのがよく、 例えば T i A 1 C r N、 T i A 1 C r C N、 T i A l C r 〇 N、 T i A l C r B N等が挙げられる。 この 場合、 T i A l C r Nからなる硬質皮膜を用いるのが更に好ましく 特に、 下記に示す組成のものを用いることが推奨される。
即ち、 (T i a, A 1 b, C r c) ( C x _d N d) からなる硬質皮膜 であって、
0 . 0 2 ≤ a ≤ 0 . 3 0、
0. 5 5 ≤ b ≤ 0 . 7 6 5、
0 . 0 6≤ c 、
a + b + c = 1 、
0 . 5≤ d≤ 1 ( a , b , cはそれぞれ T i , A 1 , C rの原 子比を示し、 dは Nの原子比を示す。 以下同じ)、
または
0 . 0 2≤ a≤ 0 . 1 7 5、
0 . 7 6 5 ≤ b ,
4 ( b - 0 . 7 5 ) ≤ c 、
a + b + c = 1 、
0 . 5≤ d≤ l を満たすものである。
更に本発明では、 A 1 を必須とする金属成分と B、 C、 N、 0等 との化合物からなる硬質皮膜を酸化することによって形成される最 表面側が実質的にアルミナからなる酸化物含有層と、 該酸化物含有 層上に形成される 型結晶構造を主体とするアルミナ皮膜を有する 積層皮膜も規定する (第 1②の態様)。
このときの A 1 を必須とする金属成分と B、 C、 N、 〇等との化 合物からなる硬質皮膜としては、 A 1 と、 I V a族、 V a族、 V I a族および S i よりなる群から選択される少なく とも 1種の元素と を必須成分とする窒化物、 炭化物、 炭窒化物、 ほう化物、 窒酸化物 または炭窒酸化物からなるものを用いるのがよく、 例えば、 上述の 様な A 1 と T i を金属成分として含有するものの他、 A l C r N、 A l C r C N等を用いることができる。
前記硬質皮膜の膜厚は、 硬質皮膜に期待される耐摩耗性と耐熱性 を十分に発揮させるため、 0 . 5 ^ m以上とするのがよく、 より好 ましくは 1 m以上である。 しかし硬質皮膜の膜厚が厚すぎると、 切削時に該硬質皮膜に亀裂が生じ易くなり長寿命化が図れなくなる ので、 硬質皮膜の膜厚は 2 0 以下、 より好ましくは 1 Ο ΠΙ以 下に'抑えるのがよい。
上記硬質皮膜の形成方法は特に限定されないが、 耐摩耗性および 耐熱性を高めるべく A 1 原子比の高い硬質皮膜を形成するには、 P V D法 (物理蒸着法) で形成することが好ましく、 該 P VD法とし て A I P (イオンプレーティ ング) 法や反応性スパッタリング法を 採用することがより好ましい。 また、 P V D法で硬質皮膜を形成す る方法を採用すれば、 硬質皮膜の形成と後述するひ型主体アルミナ 皮膜の形成を同一装置内で成膜を行う ことができるので、 生産性向 上の観点からも好ましい。
く第 1手段 (第 1①②の態様) における酸化物含有層について〉 本発明では、 前記硬質皮膜を形成した後、 該硬質皮膜の表面を酸 化し、 酸化物含有層を形成、 特に A 1 を含有する硬質皮膜表面に、 最表面側が実質的にアルミナからなる酸化物含有層を形成するのが よいことから、 硬質皮膜の酸化は下記の条件で行う ことが好ましい 即ち、 前記酸化は、 酸化性ガス含有雰囲気で行う ことが好ましい その理由は効率よく酸化できるからであり、 例えば酸素、 オゾン、
H 2 O 2等の酸化性ガスを含有する雰囲気が挙げられ、 その中には 大気雰囲気も勿論含まれる。
また前記酸化は、 基板温度を 6 5 0〜 8 0 0 °Cに保持して熱酸化 を行う ことが望ましい。 基板温度が低過ぎると十分に酸化が行われ ないからであり、 好ましくは 7 0 0 °C以上に高めて行うことが望ま しい。 基板温度を高めるにつれて酸化は促進されるが、 基板温度の 上限は、 本発明の目的に照らして 1 0 0 0 °c未満に抑えることが必 要である。 本発明では、 8 0 0 °C以下でも後述する ひ型主体アルミ ナ皮膜の形成に有用な酸化物含有層を形成することができる。
本発明では、 上記酸化処理のその他の条件について格別の制限は なく、 具体的な酸化方法として、 上記熱酸化の他、 例えば酸素、 ォ ゾン、 H 22等の酸化性ガスをプラズマ化して照射する方法を採 用することも勿論有効である。
<第 1手段 (第 1①②の態様) における α型結晶構造主体のアル ミナ皮膜について >
そして上述した通り、 前記酸化物含有層を下地とすれば、 該酸化 物含有層上に α型結晶構造主体のアルミナ皮膜を確実に形成するこ とができるのである。
この α型主体アルミナ皮膜は、 型結晶構造が 7 0 %以上のもの が優れた耐熱性を発揮するので好ましく、 より好ましくはひ型結晶 構造が 9 0 %以上のものであり、 最も好ましくは α型結晶構造が 1 0 0 %のものである。
型主体アルミナ皮膜の膜厚は、 0 . 1 〜 2 0 ΠΙとすることが 望ましい。 該アルミナ皮膜の優れた耐熱性を持続させるには、 0 . 1 m以上確保することが有効だからであり、 好ましくは 1 ^ m以 上である。 しかし a型主体アルミナ皮膜の膜厚が厚すぎると、 該ァ ルミナ皮膜中に内部応力が生じて亀裂等が生じ易くなるので好まし くない。 従って、 前記膜厚は 2 0 ^ m以下とするのがよく、 より好 ましくは 1 0 x m以下、 更に好ましくは 5 ΠΙ以下である。
ひ型主体アルミナ皮膜の形成方法は特に限定されないが、 C V D 法では 1 0 0 0 °C以上の高温域で行う必要があるので好ましくなく 低温域で成膜することのできる P V D法を採用することが望ましい P V D法の中でも、 スパッタリング法が好ましく、 特に反応性スパ ッ夕リ ングは、 安価なメタルターゲッ トを用いて高速成膜を行う こ とができるので好ましい。
該アルミナ皮膜形成時の基板温度は特に規定しないが、 約 6 5 0 〜 8 0 0 °Cの温度域で行う と、 α型主体アルミナ皮膜が形成され易 いので好ましい。 また、 前記酸化処理工程に引き続き、 酸化処理時 の基板温度を一定に保って 型主体アルミナ皮膜を形成すれば、 基 材ゃ硬質皮膜の特性を維持できる他、 生産性にも優れているので好 ましい。
尚、 本発明にかかる積層皮膜の形成は、 前記酸化物含有層の形成 と前記 α型結晶構造を主体とするアルミナ皮膜の形成を、 同一装置 内で行う ことが生産性向上の観点から好ましく、 より好ましくは、 前記硬質皮膜の形成、 前記酸化物含有層の形成、 および前記 α型結 晶構造を主体とするアルミナ皮膜の形成の全ての工程を、 同一装置 内で行うのがよい。 具体的には、 例えば A I P用蒸発源、 マグネトロンスパッタリ ング 力ソード、 ヒー夕加熱機構、 基材回転機構等を備えた後述する成膜 装置 (物理的蒸着装置) に、 例えば超硬合金製の基材を設置し、 ま ず A I P法等を採用して T i A I N等の硬質皮膜を形成した後、 前 述した様な酸素、 オゾン、 H 22等の酸化性ガス雰囲気中で該硬 質皮膜の表面を熱酸化させ、 その後、 反応性スパッ夕リ ング法等を 採用して α型結晶構造主体のアルミナ皮膜を形成することが挙げら れる。
本発明は、 この様な積層皮膜が形成された積層皮膜被覆工具も規 定するものであり、 その具体的な適用例としては、 例えば、 基材が 超硬合金製であり、 硬質皮膜として T i A 1 Νを形成したスローァ ウェイチップや、 基材が超硬合金製であり、 硬質皮膜として T i A l C r Nを形成したエンドミルや、 基材がサーメッ ト製であり、 硬 質皮膜として T i A 1 Nを形成したスローァウェイチップ等の切削 工具、 更には、 高温下で使用される熱間加工用金型等を挙げること ができる。
<第 2手段 (第 1③の態様) について >
上述した様に、 本発明者らは、 約 8 0 0 °C以下の低温条件で α型 主体アルミナ皮膜を硬質皮膜上に形成する別の手段として、 酸化物 生成の標準自由エネルギーがアルミニウムより大きい金属、 即ち A
1 より も酸化されにくい元素と、 B 、 C、 N、 O等との化合物から なる硬質皮膜を形成した後、 該硬質皮膜の表面を酸化して酸化物含 有層を形成し、 次いで該酸化物含有層表面における酸化物の還元を 伴いながらアルミナ皮膜を形成すればよいことを見出した。
上記手段のメカニズムについて完全に解明できた訳ではないが、 以下に示す実験結果に基づき、 次のような機構によるものと考えら れる。
( a ) 本発明者らは、 まず、 後述する第 1の態様に関する実施例 に示す通り、 超硬基材上に硬質皮膜として T i N皮膜を形成し、 次 に酸素雰囲気中で基材の温度を約 7 6 0 で 2 0分間保持して酸化 処理を行い、 その後、 ほぼ同じ温度に保ったまま、 A 1 ターゲッ ト をアルゴンと酸素雰囲気中でスパッタリ ングさせて酸化処理膜上に アルミナ皮膜を形成した。
後述する図 1は、 この様にして得られた積層皮膜の薄膜 X線回折 結果である。 該図 1から、 確認できるピークのほとんどは α型結晶 構造のアルミナを示すものであり、 ひ型結晶構造を主体とするアル ミナ皮膜が形成されていることがわかる。 尚、 硬質皮膜として T i C Nを用いた場合も同様の結果が得られた。
そこでこの様に、 T i N膜ゃT i C N膜をべ一スに Q!型結晶構造 を主体とするアルミナ皮膜が形成される機構について追究すべく、 前記図 1 の薄膜 X線回折結果を調べたところ、 アルミナ皮膜の下地 層を構成する化合物と考えられる T i Nとァー T i 30 5のピークが 確認された。 T i Nは硬質皮膜を構成する化合物であると考えられ T— T i 35はアルミナ皮膜と T i N膜の間に存在する酸化物含有 層と考えられる。
( b ) 次に、 硬質皮膜として T i N膜を形成し、 上記図 1 の場合 と同様の条件で酸化処理を行ったものについて、 X P Sでデブスプ ロフアイリ ングを観察した。 その結果を図 2に示す。 また、 該酸化 処理後の皮膜の薄膜 X線回折結果を図 3 に示す。
この図 2および図 3より、 酸化処理後の皮膜の表層から約 1 0 0 n m深さまでは、 T i 0 2 (ルチル型) が形成されていることがわ かる。 尚、 この結果は、 T i C N皮膜を酸化処理した場合も同様で あった。
この上記 ( a ) および ( b ) の結果から、 酸化処理で形成された T i 0 2は、 次のアルミナ皮膜の形成過程で T i 〇2から T i 30 5に 還元されていることがわかる。
( c ) また、 本発明者らは、 C r 2 0 3皮膜上にアルミナ皮膜を 形成する実験を行って、 成膜雰囲気における酸素濃度が高いほど、 形成されるアルミナはひ型の結晶構造となり易く、 酸素濃度が低く なると α型結晶構造のアルミナが得られ難いことを既に確認してい る。
これら上記 ( a ) 〜 ( c ) の結果から、 本発明者らは、 アルミナ 皮膜形成工程 (特にその初期段階) において、 成膜雰囲気形成のた めに供給された酸素に加えて、 皮膜中の酸化物の還元で生ずる酸素 の働きにより、 α型結晶構造のアルミナの結晶成長が促進されるこ と、 換言すれば、 硬質皮膜の酸化処理で形成された酸化物の還元反 応が促進される状態にして、 成膜雰囲気の酸素濃度をより高めるよ うにすれば、 α型結晶構造のアルミナの結晶成長が促進されること を見出した。 以下、 この様な機構を実現するための条件について詳 述する。
<第 2手段 (第 1③の態様) における硬質皮膜について > アルミナ皮膜の形成工程において、 皮膜側からの酸素の供給、 即 ち、 上記酸化物含有層中の酸化物の還元を促進させるには、 硬質皮 膜が、 「酸化処理工程では酸化されて酸化物となるが、 アルミナ皮 膜形成工程では、 A 1存在下で該酸化物が還元され易い」 元素を金 属元素として含むものがよく、 そのためには、 酸化物生成の標準自 由エネルギーがアルミニウムより も大きい元素を採用することが大 変有効であることがわかった。 上記酸化物生成の標準自由エネルギーがアルミニウムより も大き い元素としては、 S i 、 C r、 F e、 M n等挙げられる。 しかしそ の中でも、 T i の酸化物生成の標準自由エネルギーが、 7 5 0 °C付 近で約一 7 2 0 k J Z ( g · m o 1 ) と、 アルミニウムの酸化物生 成の標準自由エネルギー : 約— 9 0 0 k J Z ( g ' m o l ) と比較 して大きく、 A 1 存在下で還元されやすいので、 T i を金属成分と する硬質皮膜を用いることが好ましい。 また、 切削工具等に汎用さ れている T i Cや T i N等の硬質皮膜上にひ型結晶構造のアルミナ 皮膜を形成できる点からも、 T i を金属成分とする硬質皮膜を用い ることが好ましい。
尚、 硬質皮膜としては、 該金属と B、 C、 N、 O等との化合物か らなるもの形成すればよく、 例えば、 前記金属を必須成分とする窒 化物、 炭化物、 炭窒化物、 ほう化物、 窒酸化物、 または炭窒酸化物 等からなるものを硬質皮膜として形成することができ、 具体的に、 T i N、 T i C N、 T i C、 T i C NO、 T i C r N、 T i S i N 等が挙げられる。
本発明では、 この中でも T i Nや T i C N、 T i Cを用いるのが よく、 具体的には、 T i N、 T i C Nまたは T i Cを単独で基材上 に形成する他、 T i N、 T i C Nまたは T i Cを 2層以上積層する ことが挙げられる。
この場合、 硬質皮膜と基材もしくは硬質皮膜同士の接合界面に、 接合される両素材構成元素の組成傾斜層を形成し、 基材と硬質皮膜 または硬質皮膜同士の密着性等を高めるようにしてもよい。
組成傾斜層を設ける場合の具体例として、 例えば基材上に T i N 皮膜を形成する場合、 組成傾斜層として T i金属膜に占める N組成 比が基材側から連続的または段階的に高くなる層を設け、 該組成傾 斜層上に T i N皮膜を形成することが挙げられる。 また、 例えば T i N皮膜上にT i C N皮膜を形成する場合には、 T i N皮膜上に、 組成傾斜層として T i N皮膜に占める C組成比が T i N皮膜側から 連続的または段階的に高くなる層を設け、 該組成傾斜層上に T i C N皮膜を形成することが挙げられる。
T i を金属成分とする硬質皮膜を用いて、 該硬質皮膜上に 型結 晶構造主体のアルミナ皮膜を形成する場合には、 まず、 T i N T i C N等の T i を必須元素として含む窒化物等の化合物からなる硬 質皮膜を形成した後、 該硬質皮膜の表面を酸化してチタン酸化物含 有層を形成し、 次いでアルミナ皮膜形成工程で、 該層表面のチタン 酸化物の還元反応させながらアルミナ皮膜を形成すればよく、 具体 的には、 硬質皮膜の表面を酸化して T i 02とした後、 アルミナ皮 膜の形成において該層表面の T i 02を T i 305に還元させながら アルミナ皮膜を形成すれば、 α型結晶構造を主体とするアルミナを 効率よく形成できることが分かった。
前記硬質皮膜の膜厚は、 硬質皮膜に期待される耐摩耗性と耐熱性 を十分に発揮させるため、 0. 5 / m以上とするのがよく、 より好 ましくは 1 m以上である。 しかし硬質皮膜の膜厚が厚すぎると、 切削時に該硬質皮膜に亀裂が生じ易くなり長寿命化が図れなくなる ので、 硬質皮膜の膜厚は 2 0 ^ m以下、 より好ましくは l O ^ m以 下に抑えるのがよい。
上記硬質皮膜の形成方法は特に限定されないが、 P VD法で形成 することが好ましく、 該? 0法として八 1 ? (イオンプレ一ティ ング) 法や反応性スパッタリング法を採用することがより好ましい また、 P V D法で硬質皮膜を形成する方法を採用すれば、 硬質皮膜 の形成と後述する α型主体アルミナ皮膜の形成を同一装置内で成膜 を行う ことができるので、 生産性向上の観点からも好ましい。
く第 2手段 (第 1③の態様) における酸化物含有層の形成につい て >
本発明では、 前記硬質皮膜を形成した後に、 該硬質皮膜の表面を 酸化して、 酸化物含有層 (特に T i を含有する硬質皮膜を用いる場 合には、 最表面側が実質的に T i 0 2からなる酸化物含有層) を形 成すべく、 硬質皮膜の酸化は下記条件で行う ことが好ましい。
即ち、 前記酸化は、 酸化性ガス含有雰囲気で行う ことが好ましい その理由は効率よく酸化できるからであり、 例えば酸素、 オゾン、 H 22等の酸化性ガスを含有する雰囲気が挙げられ、 その中には 大気雰囲気も勿論含まれる。
また前記酸化は、 基板温度を 6 5 0〜 8 0 0 °Cに保持して熱酸化 を行うことが望ましい。 この場合、 基板温度が 6 5 0 °Cを下回る低 温だと十分に酸化が行われないからであり、 好ましくは 7 0 0 °C以 上に高めて行う ことが望ましい。 基板温度を高めるにつれて酸化は 促進されるが、 基板温度の上限は、 本発明の目的に照らして 1 0 0 0 °C未満に抑えることが必要である。 本発明では、 8 0 0 °C以下で も後述する α型主体アルミナ皮膜の形成に有用な酸化物含有層を形 成することができる。
本発明では、 上記酸化処理のその他の条件について格別の制限は なく、 具体的な酸化方法として、 上記熱酸化の他、 例えば酸素、 ォ ゾン、 Η 22等の酸化性ガスをプラズマ化して照射する方法を採 用することも勿論有効である。
また、 後述するように、 上記酸化処理は、 次の工程で成膜するァ ル'ミナ皮膜の成膜装置中で行うのが望ましい。
く第 2手段 (第 1③の態様) における ひ型結晶構造主体のアルミ ナ皮膜の形成について >
上述した通り、 第 2手段 (第 1③の態様) においては、 酸化物生 成の標準自由エネルギーがアルミニウムより大きい金属と B、 C , N、 0等との化合物からなる硬質皮膜を形成し、 該硬質皮膜の表面 を酸化して得た酸化物含有層を下地とすれば、 該酸化物含有層上に 型主体のアルミナ皮膜を確実に形成することができる。 従って、 ひ型主体アルミナ皮膜の形成方法は特に限定されないが、 基板や装 置等に悪影響を与えることなく効率よく成膜するには、 次の様な方 法が推奨される。
即ち、 C V D法では 1 0 0 0 °C以上の高温域で行う必要があるの で好ましくなく、 低温域で成膜することのできる P V D法を採用す ることが望ましい。 P V D法の中で,も、 スパッタリ ング法が好まし く、 特に反応性スパッタリングは、 安価なメタルターゲッ トを用い て高速成膜を行う ことができるので好ましい。
該アルミナ皮膜形成時の基板温度は特に規定しないが、 約 6 5 0 〜 8 0 0 °Cの温度域で行うと、 α型主体アルミナ皮膜が形成され易 いので好ましい。 また、 前記酸化処理工程に引き続き、 酸化処理時 の基板温度を一定に保って 型主体アルミナ皮膜を形成すれば、 基 材ゃ硬質皮膜の特性を維持できる他、 生産性にも優れているので好 ましい。
形成する α型主体アルミナ皮膜は、 ひ型結晶構造が 7 0 %以上の ものが優れた耐熱性を発揮するので好ましく、 より好ましくは α型 結晶構造が 9 0 %以上のものであり、 最も好ましくは α型結晶構造 が 1 0 0 %のものである。
α型主体アルミナ皮膜の膜厚は、 0 . 1 〜 2 0 mとすることが 望ましい。 該アルミナ皮膜の優れた耐熱性等を持続させるには、 0 1 m以上確保することが有効だからであり、 より好ましくは、 0 5 /_i m以上、 更に好ましくは l Ai m以上である。 しかし 型主体ァ ルミナ皮膜の膜厚が厚すぎると、 該アルミナ皮膜中に内部応力が生 じて亀裂等が生じ易くなるので好ましくない。 従って、 前記膜厚は 2 0 m以下とするのがよく、 より好ましくは l O m以下、 更に 好ましくは 5 m以下である。
尚、 第 2手段 (第 1③の態様) で積層皮膜を形成する場合も、 前 記第 1手段の場合と同様に、 前記酸化物含有層の形成と前記 α型結 晶構造を主体とするアルミナ皮膜の形成を、 同一装置内で行う こと が生産性向上の観点から好ましく、 より好ましくは、 前記硬質皮膜 の形成、 前記酸化物含有層の形成、 および前記 a型結晶構造を主体 とするアルミナ皮膜の形成の全ての工程を、 同一装置内で行うのが よい。
具体的には、 例えば Α Ι Ρ用蒸発源、 マグネトロンスパッタリ ング 力ソード、 ヒータ加熱機構、 基材回転機構等を備えた後述する成膜 装置 (物理的蒸着装置) に、 例えば超硬合金製の基材を設置し、 ま ず A I P法等を採用して T i N等の硬質皮膜を形成した後、 前述し た様な酸素、 オゾン、 H 2 O 2等の酸化性ガス雰囲気中で該硬質皮 膜の表面を熱酸化させ、 その後、 反応性スパッタリ ング法等を採用 してひ型結晶構造主体のアルミナ皮膜を形成することが挙げられる 本発明は、 この様な第 2手段 (第 1③の態様) による方法で形成 された、 金属化合物からなる硬質皮膜上に(¾型結晶構造を主体とす るアルミナ皮膜が形成されていることを特徴とする耐摩耗性と耐熱 性に優れた積層皮膜と、 該積層皮膜が形成された積層皮膜被覆工具 も規定するものであり、 積層皮膜被覆工具の具体的な適用例として は、 例えば、 基材が超硬合金製であり、 硬質皮膜として T i N、 T 1 C Nを形成したスローァウェイチップや、 基材が超硬合金製であ り、 硬質皮膜として T i N、 T i C Nを形成したエンドミルや、 基 材がサーメッ ト製であり、 硬質皮膜として T i N、 T i C Nを形成 したスローァウェイチップ等の切削工具、 更には、 高温下で使用さ れる熱間加工用金型等を挙げることができる。
( 2 ) 第 2の態様について
本発明者らは、 上記酸化処理工程において比較的短時間で酸化処 して αアルミナを主体とする皮膜形成を形成することのできる方 法について様々な角度から検討した。 その結果、 前述した様な C r N等の窒化物に替えて、 下記 ( a ) 〜 ( c ) の少なく ともいずれか を中間層として基材上に形成すればよいことを見出し、 本発明を完 成するに至った。
( a ) 純金属または合金からなる皮膜
( b ) 窒素、 酸素、 炭素若しくは硼素を固溶する金属主体の皮膜 ( c ) 化学量論的組成に対して不十分な窒素、 酸素、 炭素若しく は硼素を含む金属窒化物、 酸化物、 炭化物若しくは硼化物からなる 皮膜
本発明者らが、 実験によって確認したところによると、 中間層と して C r N等の窒化物を用い、 酸化温度を 7 5 0 °Cに設定し、 0. 7 5 P aの酸素性ガス雰囲気で酸化した場合には、 酸化処理時間が
2 0分では《アルミナが形成されたのに対して、 5分程度では《ァ ルミナとァアルミナの混合皮膜となった。 これに対し、 上記 ( a ) 〜 ( c ) の様な中間層を形成してその中間層の表面を酸化処理すれ ば、 5分程度の処理時間でその表面に酸化皮膜を十分に形成でき、 その表面にひ型結晶構造を主体とするアルミナ皮膜を形成できたの である。 上記の様な効果が発揮された理由については、 その全てを解明し 得た訳ではないがおそらく次のように考えることができる。 即ち、
C r N等の窒化物を中間層として形成した場合には、 該 C r Nが C r と Nの強固に結合した化学量論的な窒化物であるため、 5分程度 の酸化性ガス雰囲気への暴露では十分な酸化皮膜を成長できず、 そ の上に成長させたアルミナはひ型結晶構造を主体とするものになら なかったものと考えられる。 これに対して、 上記 ( a ) 〜 ( c ) の 様な中間層は、 いずれも化学量論組成の窒化物に比べると化学的に は不安定であり、 その結果として、 酸化処理工程における酸化皮膜 形成がより速やかに進行するものと考えられる。
以下では、 上記 ( a ) 〜 ( c ) の各中間層の具体的な形態につい て説明する。
上記 ( a ) の中間層は、 純金属または合金からなる皮膜であり、 その種類については酸化物が形成できれば特に限定するものではな いが、 容易に酸化物を形成するという観点から、 以下のような金属 材料が好ましい。
次工程で アルミナ皮膜を容易に形成するには、 中間層として、 酸化処理によりコランダム構造を有する酸化物を形成する皮膜であ ることが好ましく、 こう したことから A l , C r , F e若しくはこ れら相互間の合金、 或はこれらの金属を主成分とする合金からなる 皮膜が好ましいものとして挙げられる。 また、 次工程の《アルミナ 皮膜の形成を容易にするという観点からすれば、 酸化物生成の標準 自由エネルギーがアルミニウムより大きい金属を選択することも有 効であり、 こう した金属としては T i が好適なものとして挙げられ る。
尚、 本発明で用いる基材としては、 後述する様に様々なものが適 用でき、 該基材はその表面に下地皮膜を形成したものも含む趣旨で あるが、 こう した下地皮膜の形成と中間層の形成を同一装置内で行 う場合には、 前記下地皮膜を形成する金属材料 (例えば、 T i Nを 形成するならば T i ) を中間層に用いれば、 成膜装置の構成を単純 化できる。
但し、 中間層として純金属を用いる場合には、 その厚みを比較的 厚く形成すると、 純金属膜は硬度が低く、 強度が弱く、 摺動特性が 悪いと言う弱点があるため、 場合によっては形成した純金属膜部が 被覆部材全体の特性に影響を与えることがある。 このような場合に は、 純金属中間層に変えて或はこれと組み合わせて上記 ( b ) や
( c ) の皮膜を中間層として用いることも有用である。
上記 ( b ) の皮膜は金属を主体とするものであるが、 窒素等が固 溶することによって、 中間層としての強度は著しく向上する。 しか も、 皮膜としての耐酸化性はそれほど高くないので、 酸化処理工程 では容易に酸化される。 このとき固溶させる元素としては、 窒素が 好ましいが、 酸素、 炭素、 硼素或はこれらを混合させて固溶させて もよい。 また ( b ) の皮膜で主体となる金属の種類は、 上記 ( a ) の皮膜における純金属の種類と同じものを採用できる。
上記 ( c ) の皮膜としては、 例えば C r 2 Nの様に、 C r Nの様 な完全な窒化物 (化学量論的組成の窒化物) に比べ窒素含有量の少 ない化合物や、 C r 2 Nと C r Nの混合物等からなる皮膜、 更には C r N型の結晶構造であっても化学量論的に窒素が少ない化合物か らなる皮膜等が挙げられる。 例えば、 C r 2 N皮膜の耐酸化性は C r Nに劣るため酸化されやすいが、 皮膜としての強度自身は著しく 向上したものとなる。 化合物の種類としては窒化物が好ましいが、 酸化物、 炭化物、 硼素物或はこれらの相互固溶体であっても効果が ある。 またこれらの化合物を形成する金属の種類についても、 上記
( a ) の皮膜における純金属の種類と同じものを採用できる。
上記 ( a ) 〜 ( c ) に示した中間層は、 いずれか単独で形成して もその効果が発揮されるが、 必要によって [例えば、 純金属皮膜だ けでは強度が低下する場合]、 それらの 1種または 2種以上を組み 合わせて形成することができる。
中間層の膜厚 ( 2層以上の場合は合計の膜厚) は、 少なく とも 0 0 0 5 m以上とすることが好ましく、 より好ましくは 0. 0 1 β m以上、 更に好ましくは 0 . 0 2 m以上とするのが良い。 中間層 の膜厚が 0. 0 0 5 m未満になると、 酸化処理工程で形成される 酸化物含有層の層厚が薄くなり過ぎ、 本発明の効果が達成されにく くなる。 しかし中間層の膜厚が厚過ぎると、 切削工具等に適用した ときに該中間層皮膜に亀裂が生じ易くなり長寿命化が図れなくなる ので、 中間層の膜厚は 2 0 m以下、 より好ましくは 1 0 m以下 に抑えるのがよい。
尚、 中間層として純金属皮膜 [上記 ( a ) の皮膜] を用いる場合 該皮膜は相対的に強度が低くなるので、 その膜厚は 1 z m以下とす ることが好ましい。 また本発明に係る被覆部材を切削工具以外の用 途で使用する場合には、 中間層膜厚とアルミナ皮膜厚 (後述する) との関係については特に制約されないが、 切削工具のように耐摩耗 性および耐熱性が特に要求される場合には、 中間層の厚みは、 その 上に形成されるアルミナ皮膜厚以下とすることが望ましい。
上記中間層を形成する方法としては、 A I P (アークイオンプレ 一ティ ング) 法、 スパッタリ ング法、 イオンプレーティ ング法等の 各種 P V D法を適用すれば良い。 例えば、 上記 ( a ) の皮膜を形成 する場合は、 特に反応性のガスを導入することなく成膜し、 上記 ( b ) 若しくは ( c ) の皮膜を形成する場合は、 それぞれのプロセ スに応じて適当な反応ガスを導入する様にすれば良い。
例えば、 P VD法を適用して、 上記 ( b ) 皮膜と ( a ) 皮膜の 2 層構造 (積層構造) の中間層を形成する場合には、 ( b ) 皮膜を形 成するときに反応性ガスとして窒素等を導入しながら成膜し、 次い でその上に ( a ) 皮膜を形成するときには、 反応性ガスの導入を中 止することによって、 同一装置内で積層構造の中間層を形成するこ とができる。 また、 ( b ) 皮膜と ( a ) 皮膜の間を傾斜的な組成に する場合には、 ( b ) 皮膜を形成する初期の段階で反応性ガスを導 入しながら成膜した後、 反応性ガスの導入量を徐々に減少させるこ とによって、 傾斜的な組成を有しながら ( a ) の皮膜 (即ち、 金属 膜) にすることができる。
本発明では、 前記中間層を形成した後、 中間層の表面を酸化 (酸 化処理工程) して酸化物含有層を形成するものである。 この酸化処 理工程は、 効率良く酸化するという観点から、 次の工程で成膜する アルミナ皮膜を形成する装置 (真空チャンバ一) 内で行うことが望 ましく、 酸化性ガスの雰囲気下で基板温度を高めて行う熱酸化が好 ましい方法である。 このときの酸化性ガス雰囲気としては、 例えば 酸素、 オゾン、 H 22等の酸化性ガスを含有する雰囲気が挙げら れ、 その中には大気雰囲気も勿論含まれる。
また前記酸化は、 基材温度を 6 5 0〜 8 0 0 °Cに保持して熱酸化 を行う ことが望ましい。 基材温度が低過ぎると十分に酸化が行われ ないからであり、 好ましくは 7 0 0 °C以上に高めて行うのが良い。
基材温度を高めるにつれて酸化は促進されるが、 基材温度の上限 は、 本発明の目的に照らして 1 0 0 0 °c未満に抑えることが必要で ある。 本発明では、 8 0 0 以下でも後述する ひ型主体アルミナ皮 膜の形成に有用な酸化物含有層を形成することができる。
上記酸化処理のその他の条件について格別の制限はなく、 具体的 な酸化方法として、 上記熱酸化の他、 例えば酸素、 オゾン、 H 2 0 2等の酸化性ガスをプラズマ化して照射する方法を採用することも 勿論有効である。
上記のような酸化物含有層を形成すれば、 その表面に a型結晶構 造主体のアルミナの皮膜を確実に形成することができる。 尚、 この ひ型結晶構造が 7 0 %以上のものが優れた耐熱性を発揮するので好 ましく、 より好ましくは 型結晶構造が 9 0 %以上のものであり、 最も好ましくは a結晶構造が 1 0 0 %のものである。
α型主体アルミナ皮膜の膜厚は、 0 . 1 〜 2 0 mとすることが 望ましい。 該アルミナ皮膜の優れた耐熱性を持続させるには、 0 .
以上確保することが有効だからであり、 好ましくは 1 x m以 上である。 しかしひ型主体アルミナ皮膜の膜厚が厚すぎると、 該ァ ルミナ皮膜中に内部応力が生じて亀裂等が生じ易くなるので好まし くない。 従って、 前記膜厚は 2 0 m以下とするのがよく、 より好 ましくは 1 0 m以下、 更に好ましくは 5 m以下である。
この第 2の態様における a型結晶構造主体アルミナ皮膜の形成手 段は特に限定されないが、 C V D法では 1 0 0 0 °C以上の高温で行 う必要があるので好ましくなく、 比較的低温域で成膜することので きる P V D法を採用することが望ましい。 こう した P V Dのうち、 スパッタリング法、 特に反応性スパッタリ ング法では、 安価なメタ ルターゲッ トを用いて高速成膜が実現できるので好適である。 また アルミナ皮膜を形成するときの温度は特に限定されないが、 前工程 の酸化処理からの連続性を考慮すると、 酸化処理工程のときと同レ ベルであることが好ましく、 6 5 0〜 8 0 0 °Cが好適である。 また この温度範囲であれば、 α型結晶構造主体のアルミナ皮膜が形成さ れやすいので好ましい。
上記のようにして α型結晶構造主体のアルミナ皮膜を基材表面に 形成することによって、 基材上に、 中間層、 酸化物含有層および α アルミナ皮膜が順次形成されたアルミナ皮膜被覆部材が実現でき、 こう した部材は、 耐摩耗性および耐熱性に優れたものとなり、 切削 工具等の素材として有用である。
またこう した部材を製造するに当たっては、 前記中間層、 酸化物 含有層、 および 型結晶構造を主体とするアルミナ皮膜の各形成ェ 程を、 同一装置内で行うことが生産性向上の観点から好ましい。 ま た、 基材上に下地皮膜を形成した上に、 中間層、 酸化物含有層およ びひ型結晶構造主体アルミナ皮膜を形成する場合には、 これら一連 の積層皮膜の形成工程全てを、 同一装置内で行う ことが好ましい。 具体的には、 例えば ΑΙΡ用蒸発源、 マグネトロンスパッタリ ング 力ソード、 ヒータ加熱機構、 基板回転機構等を備える成膜装置 (後 記図 4参照) に、 例えば超硬合金製基板を設置し、 まず A I P法等 を採用して T i A I N等の硬質皮膜を形成した後、 C r による成膜 処理 (中間層形成) を実施し、 前述した様な酸素、 オゾン、 H 22等の酸化性ガス雰囲気中で該中間層表面を熱酸化させ、 その後、 反応性スパッタリ ング法等を採用して α型結晶構造主体のアルミナ 皮膜を形成することが挙げられる。
尚、 本発明で用いる基材については、 高速度鋼等の鋼系材料、 超 硬合金やサーメッ ト、 或は立方晶窒化硼素 ( c B N ) やセラミック スを含有する焼結体、 或は結晶ダイヤモンド等の硬質材料や、 電子 部材向けには S i をはじめ各種基材を用いることが出来る。 またこ う した基材表面には、 中間層とは別に下地皮膜を予め形成しておい てもよく、 該下地皮膜の有無、 その種類、 単層、 多層の種別等に関 わらず、 本発明に適用できるものである。
基材表面に予め形成することのある下地皮膜としては、 周期律表 の 4 a , 5 a , 6 a族の金属、 C u, A 1 , S i、 Yの中の 1種類 以上の金属元素と C , Ν , Β , 0の内の 1種類以上の元素の化合物 相互固溶体の中から選ばれた 1種類以上の単相または多層硬質皮膜 等が挙げられる。 その中でも、 T i N, T i C, T i C N、 T i A 1 N, C r N、 C r A I Nおよび T i A l C r Nの単層または多層 構造の硬質皮膜を基材表面に形成するのがよい。 また、 気相成長さ せたダイヤモンド、 c B N等も好ましい下地皮膜である。
また、 下地皮膜の膜厚は、 前記硬質皮膜として期待される耐摩耗 性を十分に発揮させるには、 0. 5 i m以上とするのがよく、 より 好ましくは 1 m以上である。 しかし下地皮膜の膜厚が厚すぎると 切削時に該下地皮膜に亀裂が生じ易くなり長寿命化が図れなくなる ので、 膜厚は 2 0 i m以下、 より好ましくは Ι Ο ΠΙ以下に抑える のがよい。
また、 別の種類の下地皮膜としては、 酸化物セラミックス (例え ば YUrium Stabilized Zirconia) 等のいわゆるサーマルバリアコ —ティ ングを用いることも出来る。 この場合は、 特に膜厚に制約は 無い。
上記下地皮膜の形成方法は特に限定されないが、 耐摩耗性の良好 な前記硬質皮膜を形成するには、 P V D法で形成することが好まし く、 該 P V D法として A I P法や反応性スパッタリ ング法を採用す ることがより好ましい。 また、 P V D法で下地皮膜を形成する方法 を採用すれば、 下地皮膜の形成と Q!型主体アルミナ皮膜の形成を同 一装置内で成膜を行う ことができるので、 生産性向上の観点からも 好ましい。
( 3 ) 第 3の態様について
次に本発明者らは、 Q!型結晶構造を主体とするアルミナ皮膜を C
B N焼結体基材上へ被覆するに際して、 C VDのような高温による ことなく、 且つ c B N焼結体の組成を特定しなくても実現し得る技 術について様々な角度から検討した。 その結果、 c B N焼結体の表 面を酸化性ガス雰囲気下に暴露して酸化処理した後、 基材温度を 6 5 0〜 8 0 0でとして? VD法によって成膜処理してやれば、 c B N焼結体基材表面に α型結晶構造を主体とするアルミナ皮膜ができ ることを見出し、 本発明を完成した。
また本発明によると、 耐摩耗性に優れた c Β Ν焼結体基板上に、 耐酸化性に優れた α型結晶構造主体のアルミナ皮膜を効果的に形成 することができ、 耐摩耗性および耐酸化性に優れた表面被覆部材が 実現できることになる。 しかも、 該表面被覆部材を製造するに際し て、 C VD法を適用するときのような高温雰囲気に曝すことなく、 また c B N焼結体の組成上の制約を受けることもないのである。 上記の様な効果が発揮される理由については、 その全てを解明し 得た訳ではないが、 おそらく次の様に考えることができる。 c B N 焼結体は結合相として T i C、 T i N、 T i C N、 A 1 N、 T i B 2、 A 1 203などを含有し、 皮膜を形成する表面層にもその一部が 露出した状態となっている。 このような焼結体基材を高温で酸化雰 囲気に暴して酸化処理すると、 前記結合相のうち非酸化物結合相は 表面に露出している部分が酸化される。 また、 A 1 203のような 酸化物の結合相の場合でも、 微視的には表面に炭化水素等の汚染物 が付着した状態にあり、 高温で酸化雰囲気に曝して酸化処理するこ とによって、 こう した汚染物が除去されその表面には純粋な酸化物 の表面が露出するものと考えられる。
従って酸化処理工程を経過した後の c B N焼結体の表面は、 結合 相の酸化により形成される酸化物、 あるいは元々酸化物の結合相に あっては表面が純粋な酸化物が、 基板表面全域に亘つて分散した状 態となつているものと考えられる。 また焼結体中の c B N自体も表 面に酸化物を形成している可能性もある。
この様に、 c B N焼結体基板の表面全体に亘つて アルミナの結 晶成長に好適な領域となる酸化物領域が形成され、 該領域を起点と して αアルミナの結晶成長が起こるため、 α型結晶構造主体のアル ミナ皮膜が比較的低い成膜温度で形成できるものと考えられる。 本発明で基材として用いる c B N焼結体中に含まれる結合相とし ては、 特定の種類に限定されるものではなく、 T i C、 T i N、 T i C N、 A 1 N、 T i B 2および A 1 203よりなる群から選ばれる 1種以上を少なく とも含有しているものが採用できるが、 これ以外 にも周期律表 4 a、 5 a , 6 a族の金属若しくは A 1 、 S i 等の金 属の窒化物、 炭化物、 硼化物およびこれらの相互固溶体や、 金属
(例えば、 A l , T i , C r , F e若しくはこれらを含む合金) を 含むものも利用できる。 尚、 本発明による酸化処理による効果を考 慮すると、 結合相としての化合物は非酸化物系のものを少なく とも 含んでいることが好ましい。
c B N焼結体中の結合相の含有量としては、 焼結体全体に対して 1〜 5 0体積%であることが好ましい。 結合相の含有量が 1体積% 未満では所望の強度を確保できず、 その含有量が 5 0体積%を超え ると基材の耐摩耗性が低下することになる。
本発明では c B N焼結体基材の表面を酸化して、 その表面 (即ち c B N焼結体とアルミナ皮膜との界面となる部分) に酸化物含有層 を形成する。 この酸化処理工程は、 被覆部材を効率良く製造すると いう観点から、 次の工程で成膜するアルミナ皮膜を形成する成膜装 置内で行う ことが望ましく、 酸化性ガスの雰囲気中で基材温度を高 めて行う熱酸化が好ましい方法である。 このときの酸化性ガス雰囲 気としては、 例えば酸素、 オゾン、 H 2 0 2等の酸化性ガスを含有 する雰囲気が挙げられ、 その中には大気雰囲気も勿論含まれる。
また前記酸化は、 基材温度を 6 5 0〜 8 0 0 °Cに保持して熱酸化 を行う ことが望ましい。 基材温度が低過ぎると十分に酸化が行われ ないからであり、 好ましくは 7 0 0 °C以上に高めて行うのが良い。 基材温度を高めるにつれて酸化は促進されるが、 基材温度の上限は 本発明の目的に照らして 1 0 0 0 °C未満に抑えることが必要である 本発明では、 8 0 0 °C以下でも α;型結晶構造主体のアルミナ皮膜の 形成に有用な酸化物含有層を形成することができる。
上記酸化処理のその他の条件について格別の制限はなく、 具体的 な酸化方法として、 上記熱酸化の他、 例えば酸素、 オゾン、 H 2 0 2等の酸化性ガスをプラズマ化して照射する方法を採用することも 勿論有効である。
上記のような酸化物含有層を形成すれば、 その表面に α型結晶構 造主体のアルミナ皮膜を確実に形成することができる。 尚、 前記ァ ルミナ皮膜は、 a型結晶構造が 7 0 %以上のものが優れた耐熱性を 発揮するので好ましく、 より好ましくは 型結晶構造が 9 0 %以上 のものであり、 最も好ましくはひ結晶構造が 1 0 0 %のものである 上記 a型結晶構造を主体とするアルミナ皮膜の膜厚は、 0 . 1 〜 2 0 z mとすることが望ましい。 該アルミナ皮膜の優れた耐熱性を 持続させるには、 0 . 1 以上確保することが有効だからであり 好ましくは 以上である。 しかしひ型結晶構造主体アルミナ皮 膜の膜厚が厚すぎると、 該アルミナ皮膜中に内部応力が生じて亀裂 等が生じ易くなるので好ましくない。 従って、 前記膜厚は 2 0 m 以下とするのがよく、 より好ましくは 1 0 / m以下、 更に好ましく は 5 z m以下である。
上記第 3 の態様における α型結晶構造主体のアルミナ皮膜の形成 手段は特に限定されないが、 C V D法では 1 0 0 0 °C以上の高温で 行う必要があるので好ましくなく、 比較的低温域で成膜することの できる P V D法を採用することが望ましい。 こうした P V Dのうち スパッ夕リ ング法特に反応性スパッ夕リ ング法が、 安価なメタル夕 一ゲッ トを用いて高速成膜が実現できるので好適である。 またアル ミナ皮膜を形成するときの温度は特に限定されないが、 前工程の酸 化処理からの連続性を考慮すると、 酸化処理工程のときと同レベル であることが好ましく、 6 5 0〜 8 0 0 °Cが好適である。 またこの 温度範囲でアルミナ皮膜の形成を行う と、 α型結晶構造主体のアル ミナ皮膜が形成されやすいので好ましい。
上記のようにしてひ型主体アルミナ皮膜を基板表面に形成するこ とによって、 基板、 酸化物含有層およびひ型主体のアルミナ皮膜が 順次形成されたアルミナ皮膜被覆部材が実現でき、 こう した部材は 耐摩耗性および耐熱性に優れたものとなり、 切削工具等の素材とし て有用である。
α型結晶構造主体のアルミナ皮膜は P V D法、 より好ましくは反 応性スパッタリング法で形成されるので、 被覆する条件の選択によ り圧縮の残留応力を付与することができ、 これは、 被覆部材全体の 強度を確保する上で好ましい。 尚、 反応性スパッタリ ング法で形成 した α型結晶構造主体のアルミナ皮膜には、 A 1 および〇以外に A rが微量含まれる。 上記のようにして a型結晶構造主体のアルミナ皮膜を c B N焼結 体基材表面に形成することによって、 基材上に酸化物含有層および aアルミナ皮膜が順次形成されたアルミナ皮膜被覆部材が実現でき こう した部材は、 耐摩耗性および耐熱性に優れたものとなり、 切削 工具等の素材として有用である。 またこう した部材を製造するに当 たっては、 前記酸化物含有層および aアルミナ皮膜の各形成工程を 同一装置内で行う ことが生産性向上の観点から好ましい。
( 4 ) 第 4の態様について
本発明者らは、 ひ型結晶構造主体でかつ結晶粒が微細かつ均一で あるアルミナ皮膜 (以下、 単に 「 ひ型主体アルミナ皮膜」 という こ とがある) を、 前記基材ゃ下地皮膜 (第 4の態様において、 以下、 特に断りのない限り 「基材」 には、 基材上に予め下地皮膜が形成さ れたものを含める) の特性を維持できる約 8 0 0 °C以下の温度域で 形成する方法 (第 4の態様) についても研究を進めた。
その結果、 アルミナ皮膜を形成するにあたり、 基材表面にガスィ オンボンバ一ド処理を施したのち表面を酸化処理しておく ことによ つて、 アルミナ皮膜の转晶構造に占める a型の割合が格段に向上し かつアルミナ結晶粒が微細かつ均一なものとなることを見出し、 上 記本発明に想到した。 上記方法が a;型主体アルミナ皮膜の形成に有 効に作用するメカニズムは、 後述する第 4の態様に関する実施例に おける実験結果から、 以下の様に一応推定される。
上述の通り、 従来法によれば、 C r N皮膜上にアルミナ皮膜を形 成するにあたり、 C r N皮膜の表面を酸化させることによって、 a 型結晶構造を主体とするアルミナ皮膜を形成できる。
この方法のメカニズムとして、 アルミナ皮膜形成前に、 成膜対象 である上記 C r N皮膜の表面を酸化性雰囲気に曝すことで、 その表 面に a型結晶構造のアルミナと同一の結晶構造を有する C r 23 が形成され、 この表面状態が、 アルミナ皮膜形成時における ひ型結 晶構造のアルミナ結晶核の生成に好適であることが考えられる。
しかしながら、 この方法でアルミナ皮膜を形成した場合には、 該 皮膜表面を S E Mで観察すると、 後述する第 4の態様に関する実施 例で比較例として示す様にアルミナ結晶粒が粗大化し、 かつ疎らと なっている。 その理由として、 酸化処理表面の全ての領域が a型結 晶構造のアルミナ結晶核の生成に好適な状態でなく、 具体的には、 酸化処理前の C r N皮膜の表面状態が必ずしも均一でないことから 酸化処理後の表面も不均一な状態となっていることが考えられる。
これに対し、 本発明の様にガスイオンポンバ一ド処理を行ってか ら酸化処理した場合には、 形成されたアルミナ皮膜の表面を S E M で観察すると、 後述する本発明例として示す如く、 a型結晶構造の アルミナの結晶粒は、 従来法で成膜した場合より微細かつ均一にな つている。
これらの結果から、 酸化処理前にガスイオンポンバ一ド処理を施 すことによって、 酸化処理で形成される a型結晶構造のアルミナ結 晶核の生成ポイントが、 より多数かつ均一に存在するようになった と推定することができる。
このメカニズムについて詳細は明らかでないが、 例えば次の様に 考えることができる。 即ち、 第 4の態様では、 上記 C r N等の皮膜 表面に存在する吸着水分、 コンタミネーシヨ ン、 自然酸化膜が、 ガ スイオンボンバード処理で除去されて、 酸素と化合しやすい状態と なった表面を酸化処理するため、 皮膜表面に、 a型結晶構造のアル ミナ結晶核の生成ポイントとなる酸化物が微細かつ均一に形成され たものと考えられる。 以下に、 上記第 4の態様における好ましい実施態様等について詳 述する。
<ガスイオンボンバード処理について >
第 4の態様は、 上述の通り、 アルミナ皮膜を形成するにあたり、 基材表面にガスイオンポンバ一ド処理を施したのち表面を酸化処理 することを特徴とするものであり、 該ガスイオンボンバード処理の 詳細な条件まで特に限定されず、 基材表面をエッチングできる条件 を適宜採用すれば良い。
具体的な方法として例えば後述する図 5 に示す様に、 フイ ラメン ト励起のプラズマを利用する次の様な方法が挙げられる。 即ち、 A r等の不活性ガスを真空チャンバ一内に導入した状態で、 フィ ラメ ントから熱電子を発生させて放電を生じさせ、 該放電で生じたブラ ズマ中の A r等のガスイオンを、 基材に印加した負の電圧で加速し て衝突させることで、 基材表面をエッチングする方法である。
前記電圧の印加は、 上記の通り負の直流電圧を連続的または断続 的に印加する他、 高周波の交流電圧を印加してもよい。
発生した A r等のガスイオンを基材に向けて加速させ、 該基材表 面のエッチングを十分に行うには、 前記負の直流電圧を一 1 0 0 V 以上 (好ましくは一 3 0 0 V以上) とするのがよい。 しかし上記負 の電圧が大きすぎると、 アーク放電が生ずる等の悪影響が懸念され るため、 一 2 0 0 0 V以下 (好ましくは— 1 0 0 0 V以下) に抑え るのがよい。 また高周波の交流電圧を印加する場合には、 発生する セルフバイアスを前記直流電圧と同程度とするのがよい。
使用するガスイオン種は、 エッチング効果を有するものであれば 特に限定されず、 A r、 K r、 X e等の希ガスを使用することがで きる。 その中でも、 比較的安価でありかつ一般に使用されている A rガスを使用することが好ましい。
上記プラズマの生成は、 上記フィ ラメントによる方法の他、 ホロ 力ソード放電や R F (ラジオ周波数) 放電等の方法で行ってもよい また、 より簡便な方法として、 A r等の不活性ガスを真空チャン バー内に導入した状態で、 基材に負の直流電圧または高周波の交流 電圧を印加してグロ一放電を発生させ、 該放電で生じたプラズマ中 のガスイオン (A rイオン等) を、 印加した電圧で加速させてエツ チングを行ってもよい。
ガスイオンポンバ一ド処理の別の具体的態様として、 イオンビー ムソースから発生させた高加速のガスイオンを、 基材表面に衝突さ せる方法を採用することもできる。
<第 4の態様における基材および下地皮膜について >
第 4の態様では、 基材として、 切削工具等の部材を構成する基材 をそのまま使用する他、 耐摩耗性等の特性を付与すべく、 該基材上 に予め単層または多層の下地皮膜を形成したものを用いることもで きる。 該基材や下地皮膜の具体的な種類まで規定するものではない が、 優れた耐熱性ゃ耐摩耗性等の要求される切削工具、 摺動部材、 金型等の製造に本発明法を適用する場合には、 該基材や下地皮膜と して下記のものが好ましく使用される。
基材としては、 高速度鋼等の鋼系材料、 超硬合金、 サーメッ ト、 または c B N (立方晶窒化ほう素) 焼結体やセラミ ックス焼結体を 用いることができる。
基材上に下地皮膜を形成させたものを用いる場合には、 基材の種 類は特に問わない。 前記下地皮膜としては、 例えば、 周期律表の 4 a族, 5 a族および 6 a族の元素、 A l、 S i 、 F e、 C u並びに
Yよりなる群から選択される 1種以上の元素と C、 N、 B、 Oの中 の 1種以上の元素との化合物、 または、 これら化合物の相互固溶体 のいずれか 1種以上を形成すれば、 α型結晶構造のアルミナ形成に 有利な酸化物層ができるので好ましい。
上記下地皮膜の代表的なものとして、 T i ( C , N)、 C r ( C N)、 T i A 1 ( C , N)、 C r A 1 ( C, N)、 T i A l C r ( C N)、 即ち、 T i 、 C r、 T i A l 、 C r A l 、 または T i A l C r の、 それぞれの炭化物、 窒化物、 炭 · 窒化物が挙げられ、 切削ェ 具等に汎用されている硬質皮膜として、 例えば T i N、 T i C、 T i C N、 T i A l N、 C r N、 C r A l N、 T i A l C r Nを単層 または多層形成することができる。
下地皮膜の膜厚は、 該皮膜に期待される耐摩耗性や耐熱性等を十 分に発揮させるため、 0. 5 m以上とするのがよく、 より好まし くは 1 m以上である。 しかし下地皮膜の膜厚が厚すぎると、 切削 時に該皮膜に亀裂が生じ易くなり長寿命化が図れなくなるので、 下 地皮膜の膜厚は 2 0 m以下、 より好ましくは 1 0 m以下に抑え るのがよい。
上記下地皮膜の形成方法は特に限定されないが、 P V D法で形成 することが好ましく、 該 P V D法として A I P (イオンプレーティ ング) 法や反応性スパッタリ ング法を採用することがより好ましい また、 P VD法で硬質皮膜等の下地皮膜を形成する方法を採用すれ ば、 下地皮膜の形成と後述する α型主体アルミナ皮膜の形成を同一 装置内で成膜を行う ことができるので、 生産性向上の観点からも好 ましい。
<第 4の態様における酸化処理方法について >
第 4の態様では、 前記ガスイオンボンバード処理後に下地皮膜表 面の酸化処理を行う。 該酸化処理の条件についても特に限定されな いが、 Q!型結晶構造のアルミナ結晶核の生成に有利な酸化物含有層 を効率よく形成するには、 下記の条件で酸化を行う ことが好ましい 即ち、 前記酸化は、 酸化性ガス含有雰囲気で行う ことが好ましい その理由は効率よく酸化できるからであり、 例えば酸素、 オゾン、 H 22等の酸化性ガスを含有する雰囲気が挙げられ、 その中には 大気雰囲気も勿論含まれる。
また前記酸化は、 基材温度を 6 5 0〜 8 0 0 °Cに保持して熱酸化 を行う ことが望ましい。 基材温度が低過ぎると十分に酸化が行われ ないからであり、 好ましくは 7 0 0 °C以上に高めて行う ことが望ま しい。 基材温度を高めるにつれて酸化は促進されるが、 基材温度の 上限は、 本発明の目的に照らして 1 0 0 0 °c未満に抑えることが必 要である。 本発明では、 8 0 0 °C以下でも後述する α型主体アルミ ナ皮膜の形成に有用な酸化物含有層を形成することができる。
上記酸化処理のその他の条件について格別の制限はなく、 具体的 な酸化方法として、 上記熱酸化の他、 例えば酸素、 オゾン、 Η 22等の酸化性ガスをプラズマ化して照射する方法を採用することも 勿論有効である。
上記酸化処理工程は、 次工程で使用するアルミナ皮膜の成膜装置 中で行うのが望ましく、 酸化性ガスの雰囲気中で基材温度を高めて 上記熱酸化を行う方法が、 好ましい実施形態として挙げられる。
く第 4の態様におけるアルミナ皮膜の形成方法について〉 α型主体アルミナ皮膜の形成方法は特に限定されないが、 C V D 法では 1 0 0 0 °C以上の高温域で行う必要があるので好ましくなく 低温域で成膜することのできる P V D法を採用することが望ましい P V D法としてスパッタリ ング法、 イオンプレーティ ング法、 蒸着 法等が挙げられるが、 その中でも、 スパッタリ ング法が好ましく、 特に反応性スパッタリ ングは、 安価なメタルターゲッ トを用いて高 速成膜を行う ことができるので好ましい。
また、 アルミナ皮膜形成時の基材温度も特に規定しないが、 約 6 5 0〜 8 0 0 °Cの温度域で行うと、 ひ型主体アルミナ皮膜が形成さ れ易いので好ましい。 更には、 前記酸化処理工程に引き続き、 酸化 処理時の基材温度を一定に保って α;型主体アルミナ皮膜を形成すれ ば、 基材ゃ硬質皮膜の特性を維持できる他、 生産性にも優れている ので好ましい。
形成するアルミナ皮膜の膜厚は、 0 . l 〜 2 0 mとすることが 望ましい。 該アルミナ皮膜の優れた耐熱性を持続させるには、 0 . 1 m以上確保することが有効だからであり、 より好ましくは l m以上である。 しかしアルミナ皮膜の膜厚が厚すぎると、 該アルミ ナ皮膜中に内部応力が生じて亀裂等が生じ易くなるので好ましくな い。 従って、 前記膜厚は 2 0 m以下とするのがよく、 より好まし くは l O m以下、 更に好ましくは 5 m以下である。
<第 4の態様における成膜プロセスについて >
前記下地皮膜の形成 (基材上に下地皮膜を形成したものを用いる 場合)、 前記ガスイオンボンバード処理、 前記酸化処理、 および前 記ひ型結晶構造を主体とするアルミナ皮膜の形成の全ての工程を、 同一装置内で行えば、 処理物を移動させることなく連続して処理を 行う ことができるので、 型結晶構造主体のアルミナ皮膜で被覆さ れた部材を効率よく製造することができる。
また、 この様に同一装置内で行えば、 下地皮膜形成時の基材温度 (約 3 5 0〜 6 0 0 °C程度) を低下させることなく、 続けて前記ガ スイオンポンバ一ド処理や前記酸化処理を行う ことができるので、 基材の加熱に要する時間やエネルギーを抑えることもできる。 具体的には、 AI P用蒸発源、 マグネトロンスパッタリ ングカソー ド、 ヒー夕加熱機構、 基材回転機構等を備えた後述する物理的蒸着 装置に、 例えば超硬合金製の基材を設置し、 まず下地皮膜として T i A I N等の硬質皮膜を A I P法等を採用して形成した後、 真空チ ヤンバ一内に A r を導入し、 基材に負の直流電圧を印加してガスィ オンポンパ一ド処理を行い、 次に、 前述した様な酸素、 オゾン、 H 2 0 2等の酸化性ガス雰囲気中で該硬質皮膜の表面を熱酸化させ、 その後に反応性スパッタリ ング法等を採用して、 ひ型結晶構造主体 のアルミナ皮膜を形成することが挙げられる。
( 5 ) 第 5の態様について
本発明者らは、 更に、 α型結晶構造主体のアルミナ皮膜 (以下、 単に 「ひ型主体アルミナ皮膜」 という ことがある) を、 下地皮膜で ある T i A 1 N等の硬質皮膜上や超硬合金や S i ウェハ等の様々な 基材上に、 複雑な中間層を形成することなく、 該基材や下地皮膜 (第 5の態様においても、 以下、 特に断りのない限り 「基材」 には 基材上に予め下地皮膜が形成されたものを含める) の特性を維持で きる約 8 0 0 °C以下の温度域で形成するための方法についても研究 を進め'た。
その結果、 アルミナ皮膜を形成するにあたり、 基材表面にメタル イオンポンバ一ド処理を施したのち表面を酸化処理すればよいこと を見出し、 上記本発明に想到した。
まず、 本発明のアルミナ皮膜の製造方法について概説する。 成膜 プロセスの温度に耐え得る基材として、 例えば超硬工具 (未コーテ イ ング)、 S i ウェハ等の基材、 または該基材上に下地皮膜として C r N , T i N, T i A I N , ダイヤモンド等の硬質皮膜を被覆し たものに、 後述する様な条件でメタルイオンポンバ一ド処理を施す と、 加速された金属イオンが基材に 突し、 図 6 ( a ) の拡大図に 示すように、 金属イオン (M ) による基材表面のエッチング、 金属 イオン (M ) の堆積、 および金属イオンの基材への注入 (図示せ ず) が同時に生じる。 その結果、 メタルイオンボンバ一ド処理後の 基材 2 1 (メタルイオンボンバード処理前の基材表面の位置は番号 1 5 ) 表面近傍には、 メタルイオンボンバード処理に使用した金属 が表層側に行く につれて高濃度となる濃度勾配層 2 2が形成される [図 6 ( b ) ]。
そして上記濃度勾配層 2 2の表面を酸化処理して、 図 6 ( c ) に 示すような酸化物含有層 2 3 を濃度勾配層 2 2の表面に形成してか ら、 アルミナ皮膜 2 4の形成を行うことで、 図 6 ( d ) に示す様な 前記濃度勾配層 2 2の表面側に、 酸化物含有層 2 3および α型結晶 構造主体のアルミナ皮膜 2 4が順次形成された部材を得ることがで さる。
この様な α型結晶構造主体のアルミナ皮膜の製造方法は、 上記特 開 2 0 0 2 - 5 3 9 4 6号公報に示される従来の方法と比較して以 下の様な特長を有する。
( Α ) メタルイオンボンバード処理で形成される濃度勾配層は、 その表面が、 窒化されていない金属層であるか、 または窒素等が少 量固溶した金属層であるため、 窒化物皮膜を酸化する従来法と比較 して酸化しやすく、 結果として、 酸化処理に要する時間を短縮する ことができる他、 加熱による装置の負担を軽減することもできる。
( Β ) 形成される濃度勾配層は、 上記図 6 ( b ) に示す通り、 基 材材料との混合層となっており、 基材上に窒化物皮膜を設ける従来 法よりもアルミナ皮膜以外の層の厚さを薄くでき、 結果として、 ァ ルミナ皮膜以外の層による部材特性への悪影響を抑制することがで きる。
また、 形成される濃度勾配層は、 基材と金属の混合層であるので 基材と該混合層との間には明瞭な界面が存在せず、 本質的に密着性 に優れている。 従って、 基材との密着性をより高めるには、 上記構 成を採用するのがよいことがわかる。
( C ) また、 メタルイオンポンバ一ド処理を、 次工程の酸化処理 に適した基材温度で行う ことで、 追加の輻射加熱等を行って基材温 度を高めなく とも、 雰囲気を酸化性にするだけで速やかに酸化処理 を行う ことができ、 生産性を高めることができる。
以下では、 この第 5 の態様でアルミナ皮膜を形成するにあたり適 用可能な条件や好適な条件について詳述する。
<メタルイオンボンバ一ド処理について >
本発明法は、 上述の通り、 アルミナ皮膜の形成において、 まず基 材表面に、 メタルイオンボンバード処理を施したのち表面を酸化処 理することを特徴とするものであり、 該メタルイオンポンバ一ド処 理の詳細な条件まで規定するものではないが、 以下の条件を採用す れば、 0;型結晶構造のアルミナを効率よく形成することができる。
金属イオンの発生源として、 コランダム構造を有する酸化物を形 成する金属材料を使用すれば、 α型結晶構造のアルミナを容易に形 成できるので好ましく、 該金属材料として、 例えば、 A l 、 C r 、 F e、 またはこれら金属の合金や、 これらの金属を主成分とする合 金等が挙げられる。 また、 酸化物生成の標準自由エネルギーがアル ミニゥムより大きい金属を選択してもよく、 例えば T i 等を使用す ることができる。
金属イオンの発生に真空アーク蒸発源を使用する場合には、 ドロ ップレッ ト放出が多いことが欠点として挙げられる。 このような問 3 010114 題点を解消するには、, 比較的高融点を有する金属材料 (例えば、 周 期律表の 4 a族、 5 a族、 6 a族の元素) を用いることが好ましい。 尚、 金属イオンを発生させる方法として、 真空アーク蒸発源を用い ずに行う方法であれば、 上記問題は生じないので、 融点に関係なく 金属材料を選択することができる。
以上のような観点から、 金属イオンの発生源には、 C r 、 T i ま たはこれらを含む合金を用いることが特に好ましい。
また、 下地皮膜を形成する場合には、 該下地皮膜を構成する金属 を含むターゲッ トをメタルイオンボンバー ド処理に使用すれば、 成 膜装置の構成をより簡単にすることができる。 例えば、 下地皮膜と して T i Nを形成する場合に、 T i 夕ーゲッ トを用いてメタルィォ ンボンバード処理を行う方法が挙げられる。
金属イオンの発生は、 高イオン化金属プラズマを生成できる方法 で行えばよく、 例えば真空アーク蒸発源を用い、 真空アーク放電に より金属ターゲッ ト材を蒸発させる方法が挙げられる。 真空アーク 蒸発源としては、 フィルターの機構を具備してマクロパ一ティ クル を低減できるものが特に望ましい。
上記真空アーク蒸発源を用いて前記金属プラズマを発生させる他、 例えば、 坩堝式のイオンプレーティ ング法に金属イオン化機構を付 加する方式や、 スパッタリ ング蒸発源に R F (ラジオ周波数) コィ ルを付加してイオン化率を向上させる方式や、 短時間に高パワーを 集中させて蒸気のイオン化を促進する高パワーパルススパッタリ ン グ法等を採用することができる。
メタルイオンポンバ一ド処理を行う場合には、 基材に負のバイァ ス電圧を印加する必要がある。 該バイアス電圧を基板に印加するこ とで、 真空アーク蒸発源で生成した金属イオンにエネルギーを与え て基材表面に高速で衝突させ、 前記図 6 ( a ) の拡大図に示すよう な基材のエッチング等を行う ことができる。
上記エッチング等は、 — 1 0 0 V 程度と低電圧でも実現できるが 好ましくは— 3 0 0 V以上とする。 より好ましくは— 6 0 0 V以上 のバイアス電圧を印加する。 該バイアス電圧の上限は特に設けない が、 高い電圧を印加しすぎると、 アーク放電が発生して基材に損傷 が生じるといった不具合や、 X線が発生するため、 装置の X線遮断 対策が必要となるので、 バイアス電圧の上限は— 2 0 0 0 V程度と するのが現実的であり、 一 1 0 0 0 V以下でも上記濃度勾配層の形 成を十分に行う ことができる。 バイアス電圧の印加は、 連続的に行 つても良'いし、 断続的に行っても良い。
尚、 メタルイオンボンバ一ド処理を施す表面がダイヤモンド、 c B N、 窒化物等の絶縁性の素材である場合には、 上記バイアス電圧 を有効に印加することが難しく、 メタルイオンボンバード処理を十 分に行う ことができない。 従ってこのような場合には、 基材表面に 導電性の層を形成してからバイアス電圧を印加するか、 低バイアス 電圧 (約数十 V ) で金属イオンを照射して、 基材表面に導電性の金 属含有層を形成した後、 前記レベルのバイアス電圧を印加すればよ い。
上記の通り、 直流電圧を連続的または断続的に印加する他、 バイ ァス電圧を高い周波数 ( 1〜数百 k Hz ) でパルス的に印加したり、 R Fを印加する方法を採用してもよく、 これらの方法を、 絶縁性の 表面へのバイアス電圧の印加に採用してもよい。
真空アーク蒸発源を用いる場合には、 雰囲気ガスを導入せずにメ タルイオンボンバード処理を行うのが一般的である。 しかし、 真空 アーク蒸発源の動作安定性を確保するという観点から、 A r等の不 活性ガス雰囲気や窒素雰囲気としてもよい。
また、 真空アーク蒸発源を使用する場合、 該真空アーク蒸発源か ら発生するマクロパーティクルが形成層に混入することを防止する ため、 少量の反応性ガスとして例えば窒素を導入し、 窒素雰囲気下 で処理を行ってもよい。 しかし、 この様に反応性ガス雰囲気とする 場合、 反応性ガスの分圧が 1 P a超になると、 窒化物皮膜の形成時 と同様の雰囲気となり、 上記エッチング作用が弱まるので好ましく ない。 従って、 反応性ガスは 0 . 5 P a以下、 好ましくは 0 . 2 P a以下、 より好ましくは 0 . 1 P a以下の分圧となるようにするの が良い。
メタルイオンボンバ一ド処理は、 基材を 3 0 0 以上に加熱して 行うのがよい。 具体的には、 例えば、 後述する図 7 に示す成膜装置 内の基材ホルダ (遊星回転治具) 4に基材 2 をセッ トした後、 真空 となるまで排気を行い、 その後、 基材ホルダ (遊星回転治具) 4を 回転させながら、 (輻射) ヒー夕 5で基材 2の温度を高めることが 挙げられる。
この様に基材温度を高めることによって、 メタルイオンボンパー ド処理開始前に、 基材表面に吸着したガスを放出できるので、 メタ ルイオンポンバ一ド処理時のアーク発生等を抑制することができ、 安定した操業を行う ことができる。
尚、 メタルイオンポンバ一ド処理時の基板温度は、 前記ヒ一夕に よる加熱と、 メタルイオンボンバード処理中に基材に与えられるバ ィァス電圧に相当するエネルギーによるので、 該メタルイオンボン バード処理中の温度上昇を考慮した上で、 予めヒ一夕による加熱温 度の上限を決定すれば、 エネルギー等のロスを抑えることができる く第 5の態様における基材および下地皮膜について > 第 5の態様においては、 基材として、 切削工具等の部材を構成す る基材をそのまま使用できる他、 耐摩耗性等の特性を付与すべく、 該基材上に予め単層または多層の下地皮膜を形成したものを用いる こともできる。 該基材や下地皮膜の具体的な種類まで規定するもの ではないが、 優れた耐熱性ゃ耐摩耗性等の要求される切削工具、 摺 動部材、 金型等の製造に本発明法を適用するには、 該基材や下地皮 膜として下記のものが好ましく使用される。
基材としては、 高速度鋼等の鋼系材料、 超硬合金、 サーメッ ト、 c B N (立方晶窒化ほう素) やセラミ ックスを含有する焼結体、 ま たは結晶ダイヤモンド等の硬質材料や、 電子部材用の S i ウェハ等 の各種基材を用いることができる。
基材上に下地皮膜を形成させたものを用いる場合には、 例えば、 周期律表の 4 a族, 5 a族および 6 a族の元素、 A l 、 S i 、 C u 並びに Yよりなる群から選択される 1種以上の元素と C、 N、 B、 〇の中の 1種以上の元素との化合物、 これら化合物の相互固溶体、 および C, N、 Bの中の 1種以上の元素からなる単体または化合物
(例えば、 気相成長させたダイヤモンド、 c B N等)、 よりなる群 から選択される 1種以上からなる皮膜を下地皮膜として形成するこ とができる。
上記下地皮膜の代表的なものとして、 T i ( C , N)、 C r ( C N)、 T i A 1 ( C , N)、 C r A 1 ( C , N)、 T i A l C r ( C N)、 即ち、 T i 、 C r、 T i A l 、 C r A l 、 または T i A l C rの、 それぞれの炭化物、 窒化物、 炭 · 窒化物が挙げられ、 切削ェ 具等に汎用されている硬質皮膜として、 例えば T i N、 T i C、 T i C N、 T i A l N、 C r N、 C r A l N、 T i A l C r Nを単層 または多層形成することができる。 また、 酸化物セラミックス (例えば Yttrium Stabi 1 ized
Zirconia) 等のいわゆるサーマルバリアコーティ ングを下地皮膜と して形成してもよい。
下地皮膜の膜厚は、 該皮膜に期待される耐摩耗性や耐熱性等を十 分に発揮させるため、 0. 5 m以上とするのがよく、 より好まし くは 1 m以上である。 しかし下地皮膜が耐摩耗性の硬質皮膜の場 合は、 膜厚が厚すぎると、 切削時に該皮膜に亀裂が生じ易くなり長 寿命化が図れなくなるので、 下地皮膜の膜厚は 2 0 ^ m以下、 より 好ましくは 1 0 m以下に抑えるのがよい。 下地皮膜が上記の様な 硬質皮膜でない場合は、 膜厚の上限を特に設けなくてもよい。
上記下地皮膜の形成方法は特に限定されないが、 耐摩耗性の良好 な下地皮膜を形成するには、 P V D法で形成することが好ましく、 該 P V D法として A I P法や反応性スパッタリ ング法を採用するこ とがより好ましい。 また、 P VD法で下地皮膜を形成する方法を採 用すれば、 下地皮膜と後述するひ型主体アルミナ皮膜を同一装置内 で成膜することができるので、 生産性向上の観点からも好ましい。
ぐ第 5の態様における酸化処理方法について >
第 5の態様においては、 前記メタルイオンボンバー ド処理後に下 地表面の酸化処理を行う。 該酸化処理の条件についても特に限定さ れないが、 型結晶構造のアルミナ結晶核の生成に有利な酸化物含 有層を効率よく形成するには、 下記の条件で酸化を行う ことが好ま しい。
即ち、 前記酸化は、 酸化性ガス含有雰囲気で行う ことが好ましい その理由は効率よく酸化できるからであり、 例えば酸素、 オゾン、 H 202等の酸化性ガスを含有する雰囲気が挙げられ、 その中には 大気雰囲気も勿論含まれる。 また前記酸化は、 基材温度を 6 5 0〜 8 0 0 に保持して熱酸化 を行う ことが望ましい。 基材温度が低過ぎると十分に酸化が行われ ないからであり、 好ましくは 7 0 0 °C以上に高めて行う ことが望ま しい。 基材温度を高めるにつれて酸化は促進されるが、 基材温度の 上限は、 本発明の目的に照らして 1 0 0 0 °c未満に抑えることが必 要である。 本発明では、 8 0 0 °C以下でも後述する ひ型主体アルミ ナ皮膜の形成に有用な酸化物含有層を形成することができる。
尚、 酸化処理は、 前記メタルイオンボンバード処理時に加熱され た基材を冷却することなく続けて行えば、 加熱に要する時間やエネ ルギーを抑えることができる。 そのためには、 メタルイオンポンバ ード処理後すぐに、 装置内を酸化性雰囲気にして酸化処理を行う こ とが推奨される。
第 5の態様における酸化処理のその他の条件について格別の制限 はなく、 具体的な酸化方法として、 上記熱酸化の他、 例えば酸素、 オゾン、 H 22等の酸化性ガスをプラズマ化して照射する方法を 採用することも勿論有効である。
<第 5の態様におけるアルミナ皮膜の形成方法について > α型主体アルミナ皮膜の形成方法は特に限定されないが、 C V D 法では 1 0 0 0 以上の高温域で行う必要があるので好ましくなく 低温域で成膜することのできる P V D法を採用することが望ましい P V D法としてスパッタリ ング法、 イオンプレーティ ング法、 蒸着 法等が挙げられるが、 その中でも、 スパッタリ ング法が好ましく、 特に反応性スパッタリ ングは、 安価なメタル夕ーゲッ トを用いて高 速成膜を行うことができるので好ましい。
また、 アルミナ皮膜形成時の基材温度も特に規定しないが、 約 6
5 0〜 8 0 O の温度域で行う と、 ひ型主体アルミナ皮膜が形成さ れ易いので好ましい。 また、 酸化処理時の基材温度を一定に保って アルミナ皮膜を形成すれば、 基材ゃ硬質皮膜の特性を維持できる他 生産性にも優れているので好ましい。
形成するアルミナ皮膜の膜厚は、 0 . l 〜 2 0 mとすることが 望ましい。 該アルミナ皮膜の優れた耐熱性を持続させるには、 0 . 1 m以上確保することが有効だからであり、 より好ましくは 1 m以上である。 しかしアルミナ皮膜の膜厚が厚すぎると、 該アルミ ナ皮膜中に内部応力が生じて亀裂等が生じ易くなるので好ましくな い。 従って、 前記膜厚は 2 0 m以下とするのがよく、 より好まし くは l O / m以下、 更に好ましくは 5 m以下である。
く第 5の態様における成膜プロセスについて >
前記メタルイオンボンバード処理、 前記酸化処理、 および前記 α 型結晶構造を主体とするアルミナ皮膜の形成の全ての工程を、 同一 装置内で行えば、 処理物を移動させることなく連続して処理を行う ことができるので、 型結晶構造主体のアルミナ皮膜で被覆された 部材を効率よく製造することができる。
また、 基材として下地皮膜の形成されたものを用いる場合には、 下地皮膜の形成、 前記メタルイオンボンバード処理、 前記酸化処理 および前記ひ型結晶構造を主体とするアルミナ皮膜の形成の全ての 工程を、 同一装置内で行えば、 下地皮膜形成時の基材温度 (約 3 5 0 〜 6 0 0 °C程度) を低下させることなく、 続けて前記メタルィォ ンポンバ一ド処理、 前記酸化処理、 および前記 α型結晶構造を主体 とするアルミナ皮膜の形成を行う ことができるので、 基材の加熱に 要する時間やエネルギーを抑えて、 効率よく ひ型結晶構造主体のァ ルミナ皮膜で被覆された部材を製造することができる。
具体的には、 例えば Α Ι Ρ用蒸発源、 マグネトロンスパッタリ ング 力ソード、 ヒータ加熱機構、 基材回転機構等を備えた後述する物理 的蒸着装置に、 例えば超硬合金製の基材を設置し、 まず下地皮膜と して T i A 1 N等の硬質皮膜を A I P法等を採用して形成した後、 真空チャンバ一内で C rイオンによるメタルイオンボンバード処理 を行い、 次に、 前述した様な酸素、 オゾン、 H 2 0 2等の酸化性ガ ス雰囲気中で該硬質皮膜の表面を熱酸化させ、 その後に反応性スパ ッ夕リ ング法等を採用して、 α型結晶構造主体のアルミナ皮膜を形 成することが挙げられる。
<第 5の態様で形成された 型結晶構造主体のアルミナ皮膜の被 覆された部材について >
基材 (基材上に予め下地皮膜が形成されたものを含む) 上に、 型結晶構造を主体とするアルミナ皮膜が第 5の態様で形成された部 材であって、 図 6 ( d ) に模式的に示す様に、 基材表面近傍が、 メ 夕ルイオンボンバード処理に使用した金属が表層側に行く につれて 高濃度となる濃度勾配層であり、 該濃度勾配層の表面側に酸化物含 有層およびひ型結晶構造主体のアルミナ皮膜が順次形成されている 部材も規定する。
この様な本発明の部材として、 具体的には、 例えば、 基材が超硬 合金製であり、 下地皮膜 (硬質皮膜) として T i N、 T i C N、 T i A l N、 多結晶ダイヤモン ド、 または c B Nを形成した旋削用や フライス用のスローァウェイチップや、 基材が超硬合金製であり、 下地皮膜 (硬質皮膜) として T i N、 T i C Nを形成したドリルや エンドミル、 基材がサーメッ ト製であり、 下地皮膜 (硬質皮膜) と して T i N、 T i C Nを形成したスローァウェイチップ等の切削ェ 具、 その他、 基材が S i ウェハである半導体構成部品、 c B N焼結 体工具、 ダイヤモンド工具、 基材が超硬合金製の金型または該基材 上に下地皮膜の形成された金型、 基材が耐熱合金の高温用部材また は該基材上に下地皮膜の形成された金型を挙げることができる。
( 6 ) 第 6の態様について
上述の通り、 O. Zywitzki, G. Hoetzsch らは、
rsurf . Coat. Technol. J [86-87 (1996) p.640- 647]で、 高出力(1 1 〜 1 7 k W)のパルス電源を用いた反応性スパッタリ ングにより、 7 0 0〜 7 6 0 °Cの基材温度で鉄基材上に X線回折による観察で アルミナを含む皮膜が形成できること、 および 7 5 0〜 7 7 0 °Cの 基材温度で実質的に α皮膜が形成できたことを報告している。 更に 0. Zywi tzki らは、 上記と同様の成膜によって形成したアルミナ皮 膜を透過型電子顕微鏡 (T EM) によって詳細に観察し、 αアルミ ナの成長過程を報告している (Surf . Coat. Technol. , 94-95
(1997)ρ.303-308)。
一方、 Υ. Yamada- Takamura らは、 フィルタ一型真空アーク法によ る反応性成膜によって、 7 8 0 °Cの基材温度で αアルミナ皮膜が形 成できること、 および R F (ラジオ周波数) バイアスを印加するこ とによって、 4 6 0 °Cでも αアルミナの生成が可能であることを報 告している (Surf . Coat. Technol., 142- 144 (2001) p.260-264)。
この報告においても、 T EMによるアルミナ皮膜断面観察を実施 しているが、 上記 0. Zywitzki らの報告と同様に皮膜成長の初期
(即ち、 皮膜における基材との界面) 付近にはァアルミナが形成さ れており、 この中から αアルミナ結晶が成長しているとの詳細な観 察結果が報告されている。
これまで報告された技術では、 いずれも皮膜の成長初期にァアル ミナを含むものであるが、 この様にァアルミナを部分的に含む皮膜 であっても、 その皮膜を被覆した被覆部材が 1 0 0 0 °c以上の高温 に曝された場合には、 その部分のァアルミナが αアルミナに相変態 を起こす可能性がある。 そして、 この相変態は体積変化を伴って起 こるので、 皮膜のクラック発生の原因となる可能性が懸念される。 また、 このような体積変化を伴う相変態が皮膜と基材との界面で発 生すると、 皮膜の密着性に悪影響を及ぼすことが十分に予想される 別の技術として、 a;アルミナと同一の結晶構造を持つ — C r 23をひアルミナ ( 一 A 1 203) の結晶核発生のテンプレートと して用いることによって、 αアルミナの低温成膜を可能にする方法 も提案されている {例えば、 特開 2 0 0 1 — 3 3 5 9 1 7号公報 (特許請求の範囲、 実施例等)、 「; f.Vac.Sci.Technol.J
(A20(6),Nov/Dec , 2002, p.2134-2136) }0 このうち特開 2 0 0 1 — 3 3 5 9 1 7号公報によれば、 S i ウェハ上にひ — C r 203下地 層を形成することによって、 2 X I 0 - 6 P a程度の真空雰囲気と、 I n mZm i nの低成膜割合にて成膜することを要件として、 4 0 0 の基材温度で aアルミナが 0. 1 8 /i mの厚みで形成されたこ とが示されている。
更に、 上記の様な処理温度の問題を解決することを目的にして、 例えば特開 2 0 0 2 — 5 3 9 4 6号公報には、 格子定数が 4. 7 7 9 A以上 5. 0 0 O A以下で、 膜厚が少なく とも 0. 0 0 5 mで あるコランダム構造の酸化物皮膜を下地層として、 該下地層上に 型結晶構造のアルミナ皮膜を形成する方法が開示されている。 また 硬質皮膜として T i 、 C rおよび Vよりなる群から選択される 1種 以上の元素と A 1 との複合窒化皮膜を形成した上に、 中間層として ( A 12, C r (1_z)) N (但し、 zは 0≤ z≤ 0. 9 0 ) からなる皮 膜を形成し、 更にこの皮膜を酸化処理することによってコランダム 構造の酸化物皮膜を形成した後、 該酸化皮膜上に α型結晶構造のァ ルミナを形成することが有用である旨も示されている。 この方法で は、 比較的低温の基板温度で結晶性のひアルミナが形成できるとさ れている。
しかしながら、 これら特開 2 0 0 1 — 3 3 5 9 1 7号公報、 特開 2 0 0 2 - 5 3 9 4 6号公報および 「; ί · Va c . S c i . T e c hno 1 .」
( A20 (6) , Nov/De c , 2002 , p . 2 1 34-21 36) の技術においても、 形成さ れるァ'ルミナ皮膜についてのミクロな結晶相の検出は行われている とは言えず、 界面付近におけるアルミナの結晶構造については全く 不明の状態である。 こう したことから、 これまで P V D法によって 形成されたアルミナ皮膜では、 少なく とも皮膜形成初期の結晶が微 細な領域では、 Tアルミナが存在しており、 Q!型結晶構造のアルミ ナはこうしたァアルミナの中から成長しているものと考えられる。
そこで、 本発明者らは、 実質的に α結晶構造からなるアルミナ皮 膜を製造するための手段について、 特にアルミナ皮膜の結晶成長開 始部分となる基材 (若しくは基材表面に形成された下地皮膜) の表 面性状に着目して検討した。
その結果、 イオンボンバー ド処理やコランダム構造を有する酸化 物粉末による表面傷つけ処理等の前処理を基材表面に施して、 基材 表面に微細な傷や凹みを多数形成してから、 該被処理表面を所定の 温度で酸化処理し、 その後アルミナ皮膜の形成を行えば、 少なく と も皮膜の成長開始部 (即ち、 酸化物含有層とアルミナ皮膜の界面) が微細な構造の アルミナ結晶の集合体で形成されており、 その結 晶微細部においてはひアルミナ以外の結晶相が観察されないことが 判明したのである。 また、 上記のような前処理を行わずとも、 酸化 処理条件 (処理温度) をより厳密に設定してやれば、 その後に形成 されるアルミナ皮膜は上記と同様の結晶形態になることも分かった このようなアルミナ皮膜は、 1 0 0 0 °c以.上の高温雰囲気下で用 いても、 既に最も熱的に安定な構造の αアルミナのみで構成されて いるので、 これ以上結晶形の変態を起こすことなく、 結晶の体積変 化などによる皮膜界面付近でのクラックや剥離等が発生することが なくなるのである。
本発明のアルミナ皮膜では、 微細構造を有する皮膜成長開始部だ けでなく、 皮膜のあらゆる箇所においてひアルミナ以外の結晶が観 察されることがないことが好ましいが、 上記処理条件を適切に設定 することによって、 こう したアルミナ皮膜を形成できる。
a型結晶構造のアルミナ皮膜の膜厚は、 0 . 5〜 2 0 ΠΙとする ことが好ましく、 より好ましくは l 〜 5 i m程度である。 0 . 5 mは、 本発明における 「皮膜成長開始部」 に相当する厚みであると 共に、 耐熱性の皮膜としての性能が発揮される最小限の厚みである また皮膜厚みを 2 0 x m以下とすることで、 皮膜内部応力による悪 影響 (亀裂の発生) を避けることができる。 また、 成長する結晶が 極端に粗大化するのを防止するという観点からすれば、 5 / m以下 とするのがよい。
第 6の態様において 型結晶構造を有するアルミナ皮膜を形成す る手段としては、 C V D法は 1 0 0 0で以上の高温で行う必要があ るので好ましくなく、 比較的低温域で成膜することのできる P V D 法を採用する。 こうした P V Dのうち、 スパッタリ ング法、 特に反 応性スパッタリング法では、 アルミナのような高絶縁性皮膜を妥当 な成膜速度で形成するのに適しており、 生産性の点からも好ましい このときの成膜速度は、 少なく とも 0 . 1 m Z h r以上確保でき 生産性をより高めるべく 0 . 5 m Z h r以上としてもよい。
また上記アルミナ皮膜を形成するときの基材温度は、 前処理の有 無、 基材ゃ下地皮膜の種類等によって最適値が異なるが、 前処理を 施す場合には、 少なく とも 7 0 0 °C以上を確保する必要がある。 こ れより も低い温度になると α結晶構造のアルミナ皮膜を形成するこ とが難しくなる。
一方、 αアルミナを Ρ V D法で形成する目的の一つとして挙げら れる 「プロセスの低温化」 の観点からは、 例えば下地皮膜として形 成されることのある T i A 1 N等の皮膜の特性が劣化しない 8 0 0 以下でアルミナを成膜するのが好ましい。 尚、 ここでいう 「基 材温度」 とは、 超硬合金製や炭素鋼製、 工具鋼製等の基材および該 基材上に形成された下地皮膜の温度の意味である。
第 6の形態では、 アルミナ皮膜の形成に先立ち、 基材表面若しく は基材上に予め形成された下地皮膜の表面を酸化 (酸化処理工程) して酸化物含有層を形成する。 この酸化処理工程は、 処理の効率の '観点から、 或は、 形成した酸化物含有層表面への大気中の水蒸気の 吸着を防止する観点から、 次の工程で成膜するアルミナ皮膜を形成 する装置 (真空チャンバ一) 内で行う ことが望ましく、 酸化性ガス の雰囲気下で基材温度を高めて行う熱酸化が好ましい方法である。 このときの酸化性ガス雰囲気としては、 例えば酸素、 オゾン、 H 22等の酸化性ガスを含有する雰囲気が挙げられ、 その中には大気 雰囲気も勿論含まれる。
また前記酸化は、 前処理の有無、 基材ゃ下地皮膜の種類等によつ て最適な基材温度が異なるが、 例えば下地皮膜が C r Nでガスィォ ンポンバードゃ傷つけの前処理を施す場合には、 少なく とも 7 0 0 °C以上に保持して熱酸化を行う必要がある。 これに対して、 例え ば下地皮膜が C r Nで前処理を施さない場合や、 下地皮膜が T i A 1 Nでガスイオンボンバードゃ傷つけの前処理を施した場合、 或は 基材ゃ下地を限定しないが C r によるメタルイオンボンバードによ る前処理を施した場合には、 基材温度を 7 5 O 以上にして酸化処 理を行う必要がある。 基材温度が上記各温度より も低過ぎると十分 に酸化が行われず、 アルミナ皮膜形成条件を適切にしても希望する Q!アルミナが形成されない。
基材温度を高めるにつれて酸化は促進されるが、 基材温度の上限 は、 本発明の目的に照らして 1 0 0 0 °c未満に抑えることが必要で ある。 8 0 0 °C以下でも本発明のアルミナ皮膜の形成に有用な酸化 物含有層を形成することができる。 従って、 本発明の αアルミナ皮 膜を得るためには、 酸化処理工程およびアルミナ皮膜形成工程にお ける基材温度を、 前処理の有無に応じて適切な基材温度範囲を設定 して連続的に (好ましくは同一装置内で同一の基材温度で) 行うよ うにすれば良い。
第 6の態様で上記アルミナ皮膜を形成するにあたり、 上記酸化処 理における基材温度以外の他の条件については格別の制限はなく、 具体的な酸化方法として、 上記熱酸化の他、 例えば酸素、 オゾン、
Η 2 Ο 2等の酸化性ガスをプラズマ化して照射する方法を採用する ことも勿論有効である。 上記のような酸化物含有層を形成すれば、 その表面にひ型結晶構造のアルミナの皮膜膜を確実に形成すること ができる。
第 6の態様では、 上記アルミナ皮膜を製造するに際して、 必要に よってガスイオンボンバード処理やコランダム構造の酸化物粉末に よる表面傷つけ処理等の前処理を基材表面に施す。 こうした前処理 を施すことによって、 その後の酸化処理およびアルミナ皮膜形成を 比較的低い温度 ( 7 0 0 °C以上) で行う場合でも、 ひ結晶構造のァ ルミナ皮膜が得られる。 これらの前処理による作用は次の様に考え られる。
上記イオンボンバード処理は、 上述の通り、 A r等の不活性ガス を真空チャンバ一内に.導入した状態で、 基材に負のバイアス電圧 (直流電圧若しく は高周波の交流電圧) を印加してグロ一放電を発 生させ、 該グロ ー放電により生じたプラズマ中の A r等のガスィォ ンを基材に高速で衝突させることによって、 基材表面をエッチング させる方法である。 この処理により次工程の酸化処理で形成される α型結晶構造のアルミナ結晶核の生成ポイント (酸化物ポイント) がより多数且つ均一に形成されることになる。
一方、 コランダム構造の酸化物粉末による表面傷つけ処理とは、 例えば α型結晶構造 (コランダム構造) のアルミナ粉末を用いて、 基材表面を研磨するか、 或は該粉末を分散させた液体中に基材を浸 漬して超音波印加を行う ことによって、 粉末の形状を反映した形状 の微細な傷や凹みを基材表面に形成するものである。
また、 この処理によって、 型結晶構造のアルミナ粉末が基材表 面に極微量残存する可能性もある。 これらの傷や凹み或は極微量の アルミナ粉末の残存によって、 上記と同様に次工程の酸化処理で形 成される α型結晶構造のアルミナ結晶核の生成ポイン ト (酸化物ポ イント) がより多数且つ均一に形成されることになる。
尚、 こう した処理で用いる粉末としては、 α型結晶構造のアルミ ナ粉末に限らず、 。 1" 2 0 3ゃ 6 23等のコランダム構造を有す る粉末も適用できるが、 最表面に形成されるアルミナ皮膜と同じ ひ 型結晶構造のアルミナ粉末を用いることが好ましい。 また、 前記粉 末は、 微細なアルミナ皮膜を形成するという観点から、 サイズのよ り小さいものを用いることが好ましく、 平均粒子径が 5 0 以下 のもの、 より好ましくは 1 m以下のものを用いるのが良い。 また、 別の前処理の手法として、 上記メタルイオンポンバ一ド処 理が挙げられる。 メタルイオンボンバード処理は、 上述の通り、 例 えば真空アーク蒸発源を用い、 真空アーク放電により金属ターゲッ ト材を蒸発させ、 生成した金属イオンにバイアス電圧でエネルギー を与えて基材に高温で衝突させ、 最表面においては前記メタルの含 有量が多い基材 (或は下地層) と前記メタルとの混合層を形成する ものである。
尚、 このときの下地皮膜の膜厚は、 硬質皮膜として期待される耐 摩耗性を十分に発揮させるため、 0. 5 m以上とするのがよく、 より好ましくは 1 m以上である。 しかし下地皮膜の膜厚が厚すぎ ると、 切削時に該下地皮膜に亀裂が生じ易くなり長寿命化が図れな くなるので、 硬質皮膜の膜厚は 2 0 m以下、 より好ましくは 1 0 m以下に抑えるのがよい。
別の種類の下地皮膜としては、 酸化物セラミックス (例えば Yttrium Stabilized Zirconia) 等のいわゆるサーマルバリアコ一 ティ ングを用いることも出来る。 この場合は、 特に膜厚に制約はな い。
上記下地皮膜の形成方法は特に限定されないが、 耐摩耗性の良好 な硬質皮膜を形成するには、 P VD法で形成することが好ましく、 該 P V D法として A I P法や反応性スパッタリ ング法を採用するこ とがより好ましい。 また、 P VD法で下地皮膜を形成する方法を採 用すれば、 下地皮膜の形成と αアルミナ皮膜の形成を同一装置内で 成膜を行う ことができるので、 生産性向上の観点からも好ましい。
( 7 ) 成膜用装置 (物理的蒸着装置) について
上述の通り、 例えば硬質皮膜として多く利用される T i A 1 Ν系 や T i N、 T i C Nのような硬質皮膜上に、 コランダム構造の酸化 物を形成する下地層等の特別な中間層等を形成せずとも、 上記ひ ァ ルミナ皮膜を形成する方法について研究開発を行い、 その結果とし て、 上述の通り、 基材表面に形成した T i A I Nや T i N、 T i C Nなどの硬質皮膜等の表面を約 6 5 0 ° (:〜 8 0 0 °Cの酸化雰囲気に 暴露した後に、 例えば反応性スパッタリング法により 6 5 0 °C〜 8 0 0 °C程度の温度でアルミナ皮膜を形成すればよいことが分かった また、 特に T i A I N皮膜の上に α型結晶構造を主体とするアル ミナ皮膜を形成する場合に、 当該皮膜表面にボンバー ド処理を施し その後に該表面を 6 5 0 ° (: 〜 8 0 0 °Cの酸化雰囲気に暴露してから 反応性スパッタリ ング法により 6 5 0 °C〜 8 0 0 °C程度の温度でァ ルミナ皮膜を形成すれば、 ひ型結晶以外の結晶相が減少し、 更に、 結晶粒のより微細かつ緻密なアルミナ皮膜を得ることができること が分かつた。
そして本発明者らは、 この様な本発明の作用効果を具体的かつ効 率よく実現すべく、 使用する装置についても検討を行ったところ、 下記に示す構成にすれば、 T i N、 T i C N、 T i A I N等の実用 的な硬質皮膜 (下地皮膜) の上に、 上記特別な中間層を配すること なく ひ型結晶構造を主体とするアルミナ皮膜などの特に高耐熱性に 優れた高純度の酸化物系皮膜を効率よく安定して形成できることや 該アルミナ皮膜の形成に至る全ての処理工程を同一装置内で実施し 得ることを見出した。 以下、 上記課題を達成し得た本発明の物理的 蒸着装置について詳述する。
先ず、 本発明の実施形態の概要について説明する。 本発明の装置 は、 その基本構成として、 真空チャンバ一、 基材ホルダ (遊星回転 治具) 、 不活性ガス及び酸化性ガスの導入機構、 プラズマ源、 スパ ッ夕リ ング蒸発源、 輻射型過熱機構、 及びバイアス電源をそれぞれ 備えている。
基材ホルダ (遊星回転治具) は、 複数の基材を保持するためのも ので、 真空チャンバ一の底面に回転自在に配置されている。 真空チ ヤンバーの底面上には回転テーブルが配設され、 基材ホルダ (遊星 回転治具) は、 この回転テーブル上に複数個設置されて、 回転テー プル上で回転 (自転) 自在に設けられたものが好ましい。 尚、 真空 チャンバ一の底面ではなく上面に配置することもできる。
また、 不活性ガス及び酸化性ガス導入機構は、 真空チャンバ一内 の雰囲気を不活性ガス及び/または酸化性ガスとするために設けら れたものである。 該導入機構は、 これらのガス源と真空チャンバ一 の上部を接続する導入配管であり、 それぞれ流量調整弁を備えてい る。 前記不活性ガスとして例えばアルゴンを用いることができる。 アルゴンがプラズマ源により励起されてアルゴンプラズマを生成し このアルゴンイオンによって、 基材となる T i A l N、 T i N、 T i Cなどの 硬質皮膜 (下地皮膜) の表面をイオンボンバード処理して、 該表面 のク リーニングを行う ことができる。
前記酸化性ガスとしては、 酸素、 オゾン、 過酸化水素などを用い ることができ、 これらのガスを真空チャンバ一内に供給することに より、 クリーニング後の上記硬質皮膜 (下地皮膜) を酸化すること ができる。 さらに、 この酸化性ガスと前記アルゴン等の不活性ガス との混合ガスを真空チャンバ一内に供給すれば、 プラズマガスとな つて、 反応性スパッタリ ングによる成膜、 すなわち前記硬質皮膜
(下地皮膜) の表面に α型結晶構造を有する所謂 aアルミナなどの 高耐熱性酸化物系皮膜を形成することができる。
前記プラズマ源は、 前記イオンボンバード処理や反応性スパッタ リ ングによる成膜のためのプラズマガスを生成させる機構を備えた ものであり、 基材ホルダ (遊星回転治具) に対向する位置に配置さ れている。 このプラズマ源としては、 フィ ラメント励起、 ホロカソ ード放電、 R F放電など各種のタイプのものを使用することができ る。
スパッタリ ング蒸発源は、 反応性スパッタリ ングに使用される夕 一ゲッ ト材をカソードとしたものであり、 これも基材ホルダ (遊星 回転治具) に対向する位置に配置するのがよい。 ひアルミナなどの 高耐熱性皮膜を形成するときは金属アルミニウムが使用される。
輻射型加熱機構は、 基材を所定温度に加熱するために設けられた ものであり、 基材ホルダ (遊星回転治具) に対向する位置に配置す るのがよい。 この輻射型加熱機構の加熱能力は、 基材ホルダ (遊星 回転治具) に支持される基材を 6 5 0〜 8 0 0 °Cに昇温、 保持でき ることが必要である。 基材表面にあらかじめ形成された前記硬質皮 膜 (下地皮膜) を 6 5 0〜 8 0 0 °Cの温度で加熱することによって 硬質皮膜 (下地皮膜) の表面を十分に酸化することができる。
また、 上記酸化処理に引き続いて行われる反応性スパッ夕リ ング による前記高耐熱性皮膜の硬質皮膜 (下地皮膜) 上への成膜も、 こ の温度範囲で加熱、 保持して有利に達成することができる。
こう した硬質皮膜 (下地皮膜) の熱酸化や反応性スパッタリ ング による高耐熱性皮膜の形成は、 6 5 0 °C未満では不十分であり好ま しくない。 一方、 上記酸化処理工程やアルミナ皮膜形成工程 (反応 性スパッタリ ング工程) では、 輻射型加熱機構が 8 0 0 °Cを超えず とも、 上記酸化処理やアルミナ皮膜の形成を行うことができる。 ま た、 8 0 0 を超える高温にすると硬質皮膜の特性を劣化させるお それがある。 しかし、 同一装置内で、 A I P (アークイオンプレー ティ ング) 法を採用して T i A l N、 T i N、 T i C等の硬質皮膜を基材上に 形成させる場合には、 輻射型加熱機構は、 上記 A I P法の実施にも 適した加熱能力を備えていることが好ましい。
前記基材ホルダ (遊星回転治具) に接続されたバイアス電源は、 該基材ホルダ (遊星回転治具) に負のパルス状のバイアス電圧を印 加することのできるものであることが必要である。 これによつて前 記イオンボンバードエ程において、 絶縁膜が付着した基材ホルダ
(遊星回転治具) を使用する場合でも、 安定した電圧を印加するこ とができる。
さらに本装置の構成としてアーク蒸発源を含めることができる。 アーク蒸発源も、 前記スパッタリ ング蒸発源と同様に前記基材ホル ダ (遊星回転治具) に対向する位置に配置されるものである。 この アーク蒸発源を設けることによって前記 A I Pによる成膜も本装置 によって可能となる。
次に、 本発明の実施形態の具体例について図面を参照しながら詳 述する。 図 8 には、 本発明の物理的蒸着装置の断面説明図を示す。 当該装置は断面 (横断面) が正八角形を有する真空チャンバ一 1 内 に、 円形の回転テーブル 3が設置され、 この円形の回転テーブル 3 上にはその周方向に等間隔で配列された複数 (図例では 6個) の基 材ホルダ (遊星回転治具) 4が載設されている。 処理対象となる基 材 2はこの基材ホルダ (遊星回転治具) 4に保持され、 前記回転テ —ブル 3 の回転と基材ホルダ (遊星回転治具) 4の回転により遊星 回転する機構となっている。
また、 回転テーブル 3上の中央部、 すなわち基材ホルダ (遊星回 転治具) 4 に対向する内側中央には、 円筒状の輻射型加熱ヒータ 5 1が配設される一方、 真空チャンバ一 1 の内側面 (八面) の互いに 対向する二面にも、 基材ホルダ (遊星回転治具) 4にそれぞれ対向 する平面状の輻射型加熱ヒー夕 5 2、 5 2が回転テーブル 3 を挟ん で互いに向かい合った状態で設けられ、 これら 5 1及び 5 2が基材 加熱機構 5 を構成している。
輻射型加熱ヒー夕 5 2の内側には、 雰囲気ガスをプラズマガスに 励起するためのプラズマ源 8 (図上はプラズマ発生用に設置したフ イ ラメントを図示) が配置され、 また、 真空チャンバ一 1の別の内 側面の二面には基材ホルダ (遊星回転治具) 4に対向する位置に反 応性スパッタリ ング用のスパッタリ ング蒸発源 6、 6が、 回転テ一 ブル 3 を挟んで互いに向かい合った状態で設けられている。 さらに 真空チャンバ一 1 の他の内側面の二面には同様に基材ホルダ (遊星 回転治具) 4に対向する位置に A I P用のアーク蒸発源 7、 7が、 回転テーブル 3 を挟んで互いに向かい合った状態で設置されている なお、 このァ一ク蒸発源 7、 7は必要としない場合もあるため、 図 面では点線で表している。
そして、 この真空チャンバ一 1 の上部の適当な位置に、 プラズマ 発生用の不活性ガス 9 または酸化処理用の酸化性ガス 1 0などをチ ヤンバ内に導入するためのガス導入管 1 1が連通して接続されてお り、 同真空チャンバ一 1 の下部の適当な位置には、 真空排気または 処理後の排ガス 1 2を排出するための排ガス管 1 3が連通して接続 されている。
図 8中の番号 1 4は、 基材ホルダ (遊星回転治具) 4に接続され て該基材ホルダ (遊星回転治具) 4に負のパルス状のバイアス電圧 ( 1 0 0 V〜 2 0 0 0 V ) を印加することのできるバイアス電源を 示している。
本実施形態によれば、 上述のように真空チャンバ一 1内に基材ホ ルダ (遊星回転治具) 4、 不活性ガス及び酸化性ガス導入機構、 プ ラズマ源、 スパッタリ ング蒸発源 6、 アーク蒸発源 7、 輻射型加熱 ヒ一タ 5 1 , 5 2、 及びバイアス電源 1 4などが配設された装置で あるため、 工具ゃ耐摩耗部材などの基材表面に A I Pによって硬質 皮膜等の下地皮膜を形成する工程、 この硬質皮膜等の下地皮膜の表 面をイオンボンバ一ド処理する工程、 次にこの硬質皮膜等の下地皮 膜の表面を熱酸化処理する工程、 さらに熱酸化処理後の硬質皮膜の 表面に反応性スパッタリ ングにより アルミナなどの高耐熱性酸化 系皮膜を形成する工程といった物理的蒸着処理関連の全ての工程を 単一の装置で実施することができる。
また、 回転テーブル 3 とこのテーブル上に設けられた複数の基材 ホルダ (遊星回転治具) 4 とにより、 基材 2 をチャンバ 1 内で遊星 回転運動させることができ、 このため上記各工程における基材 2の 処理を均一に行う ことができる。 つまり、 硬質皮膜を基材の全面に 亘つて一定の割合でイオンポンバ一ドゃ熱酸化することができ、 ま た反応性スパッタリングや A I Pによる硬質皮膜や酸化系皮膜の成 膜においても基材の全面に亘りその厚みが均一な膜を形成すること ができる。 これにより密着性に優れた高耐熱性皮膜を得ることがで きる。
さ らに輻射型加熱ヒータ 5 1 と 5 2の双方を装備することにより 回転テーブル 3の回転に伴って周回 · 通過する基材 2 を同テーブル 3の中心側とチャンバ 1 の壁側の内外から同時に効果的に加熱する ことができ、 熱酸化や成膜などの処理工程における生産性を向上さ せることができる。 加えて、 負のパルス状のバイアス電圧を印加可 能なバイアス電源 1 4を基材ホルダ (遊星回転治具) 4に接続して 設けることで、 基材ホルダ (遊星回転治具) 4の連続使用に伴って 絶縁性を帯びやすいアルミナ皮膜などが基材ホルダ (遊星回転治 具) 4等に形成されている場合でも、 チャージアップを原因とする アーク放電などを起こすことなく、 安定した電圧を印加することが できる。 そしてこのように電圧の印加が安定した成膜を行う ことで 結果として密着性の高い皮膜を有した切削工具などの製品が得られ る。
本実施形態にあっては、 更に、 断面が正八角形の真空チャンバ一
1 を採用すると共に、 スパッタリング蒸発源 6、 アーク蒸発源 7 、 平面状の輻射型加熱ヒータ 5 2などの必要構成要素を同チャンバ 1 の 6つの内側面にそれぞれ互いに対向させて一対配設した構造であ るため、 スぺ一スに無駄のないコンパク トな装置となっている。
図 9及び図 1 0は、 具体的な実施形態を示した物理的蒸着装置の 断面説明図であるが、 いずれも基本的な構成は図 8 と共通している ため、 図 8 と相違している構成について説明する。
図 9の装置は、 真空チャンバ一 1 の断面形状が正六角形であり、 スパッタリ ング蒸発源 6、 アーク蒸発源 7及び平面状の輻射型加熱 ヒータ 5 2が、 チャンバ 1 の 6つの全ての内側面に同様にそれぞれ 互いに対向させて一対設けられた構造となっている。 また、 図 9の 装置は、 真空チャンバ一 1 の断面形状が正方形を有したもので、 こ の場合はスパッ夕リ ング蒸発源 6 と平面状の輻射型加熱ヒータ 5 2 が、 同チャンバ 1 の 4つ全ての内側面にそれぞれ互いに対向させて 一対設けられた構造となっている。
これら図 9及び図 1 0の実施形態とすれば、 図 8の実施形態より も一層コンパク トな構造にすることができる。 尚、 図 8〜図 1 0の 形態において輻射型加熱ヒータ 5 2の形状はその基材ホルダ (遊星 回転治具) 4に対向する全面が平板状となっているが、 これに限ら ず、 例えば回転テーブル 3の周面の曲率に合わせた曲面状のものを 採用することができる。 また、 プラズマ源 8の配置は同ヒータ 5 2 の前でなくても良い。 実施例
以下、 実施例を挙げて本発明をより具体的に説明するが、 本発明 はもとより下記実施例によって制限を受けるものではなく、 前 · 後 記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可 能であり、 それらはいずれも本発明の技術的範囲に含まれる。
( 1 ) 第 1 の態様に関する実施例
<実施例 1 >
まず、 前記第 1手段 (第 1①②の態様) に関する実施例を示す。 サイズが 1 2. 7 mm X 1 2. 7 mmX 5 mmで超硬合金製の基材 を、 鏡面研磨 (R a = 0. 0 2 m程度) し、 アルカリ槽と純水槽 中で超音波洗浄してから乾燥したものを、 積層皮膜の被覆に用いた 本実施例では、 硬質皮膜の形成、 該硬質皮膜の酸化処理、 および α型主体アルミナ皮膜の形成を、 前記図 4に示す真空成膜装置 ( ㈱神戸製鋼所製 AIP- S40複合機) で行った。
基材上への硬質皮膜の形成は、 図 4に示す装置 1で Α Ι Ρ用蒸発 源 7 を用い A I Ρ法 (アークイオンプレーティ ング法) で行い、 膜 厚が 2〜 3 /x mの、 T i と A 1 の原子比 (T i : A 1 ) が 0. 5 5 : 0. 4 5の T i A I N硬質皮膜、 または T i 、 A 1 および C r の原子比 (T i : A l : C r ) が 0. 1 0 : 0. 6 5 : 0. 1 8の T i A l C r N硬質皮膜を形成した。 また比較例 1 として、 上記 T i A I N皮膜上に、 更に A I P法で C r N皮膜を形成した。
上記硬質皮膜の酸化、 または硬質皮膜上に形成された C r N膜の 酸化は、 次の様にして行った。 即ち、 試料 (基材) 2 を装置 1内の 回転テーブル 3上の基材ホルダ (遊星回転治具) 4にセッ トし、 装 置内がほぼ真空状態となるまで排気した後、 装置内部の側面に 2箇 所と中央部に設置したヒータ 5で試料を表 1 に示す温度 (酸化処理 工程での基板温度) となるまで加熱した。 試料の温度が所定の温度 となった時点で、 装置 1 内に、 酸素ガスを流量 2 0 0 s c c m、 圧 力 0 . 5 P aとなるよう導入し、 2 0分間または 6 0分間加熱保持 して酸化を行った。
尚、 上記硬質皮膜の形成、 酸化処理および後述するアルミナ成膜 は、 前記図 4における回転テーブル 3を回転 (公転) させるととも に、 その上に設置した基材ホルダ (遊星回転治具) 4も回転 (自 転) させながら行った。 本実施例では、 回転テーブル 3の回転数を 3 r p mとし、 基材ホルダ (遊星回転治具) 4の回転数を 2 0 r p mにして回転させながら、 酸化処理およびアルミナ成膜を行った 次に、 α型結晶構造を主体とするアルミナ皮膜を前記酸化物含有 層上に形成した。 該アルミナ皮膜の形成は、 アルゴンと酸素雰囲気 中で、 基板温度を前記酸化処理工程とほぼ同程度とし、 図 4におけ る 1台又は 2台のアルミニウム夕ーゲッ トを装着したスパッタリ ン グカソード 6 に約 3 k Wのパルス D C電力を加え、 反応性スパッタ リ ング法を採用して行った。 尚、 アルミナ皮膜の形成時には、 試料 (基板) 温度が酸化処理時よりも若干上昇した。 また該アルミナ皮 膜の形成は、 放電電圧およびアルゴン—酸素の流量比率をプラズマ 発光分光法を利用して制御し、 放電状態をいわゆる遷移モードにし て行った。
この様にして形成された積層皮膜の表面を薄膜 X線回折装置で分 祈し、 最表面皮膜として形成されたアルミナ皮膜の結晶構造を特定 した。 即ち、 後述する図 1 1や図 1 2に示される様な X線回折測定 結果から、 α型結晶構造のアルミナを代表する X線回折ピークとし て 20 =25.5761 (° ) のピーク強度 I を選択し、 ァ型結晶構造の アルミナを代表する X線回折ピークとして 20 =19.4502 (° ) のピ ーク強度 1 ァを選択し、 この強度比 : ァ値の大きさから、 ひ型結晶構造のアルミナ形成の程度を評価した。 これらの結果を表 1 に併記する。
アルミナ膜の成膜工程 アルミナ膜の測定結果 硬質皮膜
基板温度加熱時間 使用スパッタ源台数基板温度 膜厚 I / I r 晶構 3k 本発明例 1 TiAIN 2 n ァピーク検出されず※1 ひ型
780で 20分 3 kW 2台 780°C
比較例 1 TiAlN+CrN 2 n ァピーク検出されず※1 α型
00 本発明例 2 TiAIN 1.15 xm 2.8 a型主、 τ型従
750t 20分 3 kW 1台 770^
本発明例 3 TiAlCrN 1.15 im 2.9 α型主、 ァ型従 本発明例 4 TiAIN 740で 60分、 3 kW 1台 nov 0.9 m ァピーク検出されず※1 K型 比較例 2 TiAIN 635%: . 20分 3 kW . 1台 67(TC 1. 1.4. 型とァ型の混合 比較例 3 TiAIN 58(TC 20分 3 kW 2台 59(T 2 Atm αピーク検出されず※2
※丄 20=19.4502° のピーク検出されず
※ 20=25.5761° のピーク検出されず
図 1 1 は、 本発明例 1 の積層皮膜表面を薄膜 X線回折装置で測定 した結果である。 この図 1 1 に示される X線回折の主要なピークが T i A 1 Nに起因する回折ピークと最表面に形成された ο;型結晶構 造のアルミナの回折ピークであることから、 本発明例 1の皮膜は、 硬質皮膜上にひ型結晶構造主体のアルミナ皮膜が形成されたもので あることがわかる。
また図 1 2は、 比較例 1 の積層皮膜表面の薄膜 X線回折結果を示 したものであり、 α型結晶構造のアルミナの回折ピークとともに、 中間膜である C r Νが酸化されてなる C r 23に起因する回折ピ ークが観察される。
このことから、 比較例 1でも本発明例 1 と同様に 型結晶構造主 体のアルミナ皮膜が形成されていることがわかる。 しかし、 本発明 にかかる硬質皮膜の方が、 中間膜として形成された C r含有皮膜に よる切削性能低下を懸念する必要がないことに加え、 中間膜を設け るといった工程を省略して積層皮膜の生産性をより高めるといった 観点から優れている。
本発明例 2および本発明例 3は、 硬質皮膜として T i A I Nまた は T i A 1 C r Nを基材上に形成し、 酸化処理工程の基板温度のみ を本発明例 1より 3 0 °C低い 7 5 0 °Cに設定し、 その他の条件を本 発明例 1 と同様にして成膜したものである。 表 1 に示す通り、 本発 明例 2および本発明例 3では、 形成された皮膜に若干ァ型結晶構造 のアルミナが混合するものの、 α型主体のアルミナ皮膜が形成され ていることがわかる。
また本発明例 4は、 硬質皮膜として T i A I Nを形成し、 酸化処 理工程における基板温度を前記本発明例 2および本発明例 3より も 更に低い 7 4 0 °Cとし、 酸化処理時間を本発明例 1 〜 3より も長い 6 0分間とし、 その他の条件を本発明例 1 と同様にして成膜したも のである。 表 1 に示す通り、 本発明例 4で得られた皮膜の最表面は ほぼ純粋なひ型結晶構造アルミナで覆われていることがわかる。 比較例 2および比較例 3は、 酸化処理温度を比較例 2では 6 3 5 υとし、 比較例 3では 5 8 0 °Cとし、 いずれも 2 0分間加熱保持 して行ったものである。 表 1 に示す比較例 3の結果より、 酸化処理 を 5 8 0 °Cで行った場合には、 その後にアルミナ皮膜を成膜しても 全く a型結晶構造のアルミナ皮膜が形成されず、 ァ型結晶構造主体 のアルミナ皮膜が形成されることがわかる。 また比較例 2から、 酸 化処理を 6 3 5でで行った場合には、 成膜されたアルミナ皮膜の結 晶構造は α型が若干優位であるが、 実質的に α型とァ型の混合とな つており、 ひ型主体とは言い難い。
<実施例 2 >
次に、 前記第 2手段 (第 1③の態様) に関する実施例を示す。 サイズが 1 2. 7 mm X 1 2. 7 mm X 5 mmで超硬合金製の基 材を、 鏡面研磨 (R a = 0. 0 2 ] 1程度) し、 アルカリ槽と純水 槽中で超音波洗浄してから乾燥したものを、 積層皮膜の被覆に用い た。
本実施例でも、 前記実施例 1 と同様に、 硬質皮膜の形成、 該硬質 皮膜の酸化処理、 および α型主体アルミナ皮膜の形成を、 前記図 4 に示す真空成膜装置 ( ㈱神戸製鋼所製 ΑΙΡ- S4Q複合機) で行つ た。
基材上への硬質皮膜の形成は、 図 4に示す装置 1 で Α Ι Ρ用蒸発 源 7 を用い Α Ι Ρ法 (アークイオンプレーティ ング法) で行い、 膜 厚が 2〜 3 mの T i N皮膜または T i C N皮膜を基板上に形成し た。 また参考例として、 基板上に同膜厚の C r Nを形成した。 上記皮膜の酸化は、 次の様にして行った。 即ち、 試料 (基材) 2 を装置 1内の回転テーブル 3上の基材ホルダ (遊星回転治具) 4に セッ トし、 装置内がほぼ真空状態となるまで排気した後、 装置内部 の側面に 2箇所と中央部に設置したヒータ 5で試料を約 7 6 0 °C付 近まで加熱した。 試料の温度が約 7 6 0 °C付近となった時点で、 装 置 1 内に、 酸素ガスを流量 2 0 0 s c c m、 圧力 0 . 5 P a となる よう導入し、 2 0分間加熱保持して酸化を行った。
尚、 上記硬質皮膜の形成、 酸化処理および後述するアルミナ成膜 は、 前記図 4における回転テーブル 3 を回転 (公転) させるととも に、 その上に設置した基材ホルダ (遊星回転治具) 4も回転 (自 転) させながら行った。 本実施例では、 回転テーブル 3の回転数を 3 r p mとし、 基材ホルダ (遊星回転治具) 4の回転数を 2 0 r p mにして回転させながら、 酸化処理およびアルミナ成膜を行った。
次に、 α型結晶構造を主体とするアルミナ皮膜を前記酸化物含有 層上に形成した。 該アルミナ皮膜の形成は、 アルゴンと酸素雰囲気 中で、 基板温度を前記酸化処理工程とほぼ同程度とし、 図 4におけ る 2台のアルミニウムターゲッ トを装着したスパッタリ ングカソ一 ド 6 に平均 5 . 6 k Wのパルス D C電力を加え、 反応性スパッタリ ング法を採用して行った。 尚、 アルミナ皮膜の形成時には、 試料 (基板) 温度が酸化処理時より も若干上昇した。
また該アルミナ皮膜の形成は、 放電電圧およびアルゴン一酸素の 流量比率をプラズマ発光分光法を利用して制御し、 放電状態をいわ ゆる遷移モ一ドにして行った。
この様にして形成された積層皮膜の表面を薄膜 X線回折装置で分 析 (薄膜 X R D分析) し、 最表面皮膜として形成されたアルミナ皮 膜の結晶構造を特定した。 T i N皮膜を用いた場合 (本発明例 1 ' ) の薄膜 X線回折結果を図 1 に示し、 T i C N皮膜を用いた場合 (本発明例 2 ' ) の薄膜 X線回折結果を図 1 3に示す。
また、 前記実施例 1 と同様に、 図 1 または図 1 3の薄膜 X線回折 結果から I α / Ι ァ値を求め、 ひ型結晶構造のアルミナ形成の程度 を評価した。 この結果を前記成膜条件と併せて表 2 に示す。
表 2
Figure imgf000093_0001
20=19.4502° のピーク検出されず
前記図 1および図 1 3で示される X線回折の主要なピークは、 T i N皮膜または T i C N皮膜 (尚、 図 1 3では、 T i C N皮膜中の T i N構造のみが薄膜 X線回折で検出される) に起因する回折ピ一 クと最表面に形成された α型結晶構造のアルミナの回折ピークであ り、 また前記図 1、 図 1 3および表 2から、 ァ型結晶構造のアルミ ナを代表する X線回折ピーク ( 2 0 = 1 9. 4 5 0 2 ° ) は確認さ れず、 また、 その他のァ型結晶構造のアルミナを示すピークも小さ いことから、 本発明例 1 'および本発明例 2 'の積層皮膜は、 硬質 皮膜上に α型結晶構造主体のアルミナ皮膜が形成されたものである ことがわかる。
更に、 前記図 1および図 1 3から、 T i N皮膜または T i C N皮 膜とアルミナ皮膜との間には、 該皮膜を酸化処理したのち還元され て形成されたと思われる T i 35のピークを確認できる。
これに対し参考例は、 酸化物生成の標準自由エネルギーがアルミ ニゥムより小さい金属である C r を金属成分とする C r N皮膜上に アルミナ皮膜を形成した例であるが、 表 2より、 I α / I ァ値が前 記実施例 1や実施例 2 と比較して小さいことから、 形成されたアル ミナ皮膜は、 ひ型結晶構造のアルミナに対してァ型結晶構造アルミ ナの比率が高いものであることが分かる。
( 2 ) 第 2の態様に関する実施例
まず超硬合金製基材上に、 下記 (Α) 〜 (Ε) の各種中間層を予 め形成したものを準備した。
( A) C r金属膜 : 膜厚 0. 1 m ( A I P法で形成)
(B ) T i 金属膜 : 膜厚 0. 1 (A I P法で形成)
( C ) T i A l 膜 : 膜厚 0. l ^ m (T i : A 1 = 5 0 : 5 0、 ス パッタリ ング法によって形成) (D) F e膜 ( C r、 N i も含有) : 膜厚 0. l m ( S U S 3 0 4ターゲッ トを用いてスパッタリング法によって成膜)
( E ) C r Nx膜 : 膜厚 3 m [A I P法によって、 窒素圧力 : 0 1 3、 0. 2 7、 0. 6 5、 1. 3、 2. 7 ( P a ) でクロムを蒸 発させて形成]
尚、 上記 (E) のクロム · 窒素皮膜に関しては、 X P S (X線光 電子分光法) による組成分析と X R D (X線回折) による結晶組織 分析を実施した。 その結果を、 下記表 3 に示す。 表 3 に示したもの のうち、 2. 7 P aの圧力で成膜した C r N膜は化学量論組成に近 いものとなり ( C r N Xにおける Xが 0. 9 6 )、 従来技術に相当 するものである。 表 3
Figure imgf000095_0001
次に、 前記図 4に示す P VD装置 (真空成膜装置) を用いて本発 明の皮膜形成を行った。 即ち、 試料 (基材) 2 を装置 1 内の基材ホ ルダ (遊星回転治具) 4にセッ トし、 装置 1 内がほぼ真空状態とな るまで排気した後、 装置内部の側面と中央に配置したヒ一夕 5で試 料を 7 5 0 °Cまで加熱した。 試料が 7 5 0 °Cになった時点で、 装置 1内に酸素ガスを流量 3 0 0 s c c m、 圧力約 0. 7 5 P aで導入 し、 5分間表面の酸化処理を行った。 尚、 図 4中 7は、 A I P法に よって中間層を形成するときの A I P用蒸発源を示している。
次に、 2台のアルミ夕ーゲッ トを装着したスパッタリ ングカソー ド 6 を、 アルゴンと酸素の雰囲気中で、 約 2 . 5 k Wのパルス D C 電力を投入してスパッ夕を行い、 前記酸化温度とほぼ同じ温度条件
( 7 5 0 °C ) で、 酸化アルミニウム (アルミナ) の形成を行った。 アルミナの形成にあたっては、 放電電圧制御とプラズマ発光分光を 利用して、 放電状態をいわゆる遷移モードに保ち、 約 2 / mのアル ミナ皮膜を形成した。 尚、 これらの皮膜形成では、 前記図 4に示し た回転テーブル 3 を回転 (公転) させるとともに、 その上に設置し た基材ホルダ (遊星回転治具) 4も回転させながら行った。
処理完了後の各サンプルについては、 薄膜 X線回折により分析を 行い、 その結晶組織の特定を行った。 その結果を、 下記表 4に示す が、 本発明で規定する要件を満足する条件で成膜したもの (N o . 1 〜 8 ) では、 良好な結晶組織 (即ち、 ひ型結晶構造を主体とする 組織) を有するアルミナ皮膜が形成できていることが分かる。
表 4
Figure imgf000097_0001
( 3 ) 第 3の態様に関する実施例
アルミナ皮膜を形成する基材として、 市販の c B N焼結体切削ェ 具を用い、 図 1 4に示す P V D装置 (真空成膜装置) で該基材上へ のアルミナ皮膜の形成を行った。 まず、 試料 (基材) 2 を装置内 1 の基材ホルダ (遊星回転治具) 4にセッ トし、 装置 1 内をほぼ真空 状態となるまで排気した後、 装置内部の側面と中央に配置したヒー 夕 5で試料を 7 5 0 °Cまで加熱した。 試料が 7 5 0 °Cになった時点 で、 装置 1 内に酸素ガスを流量 3 0 0 s c c m、 圧力約 0. 7 5 P aで導入し、 2 0分間表面の酸化処理を行った。
次に、 2台のアルミ夕一ゲッ トを装着したスパッタリ ングカソー ド 6 を、 アルゴンと酸素の混合雰囲気中で、 約 2. 5 k Wのパルス D C電力を投入してスパッ夕を行い、 前記酸化温度とほぼ同じ温度 条件 ( 7 5 0 °C) で、 アルミナ皮膜の形成を行った。 アルミナ皮膜 の形成に当たっては、 放電電圧制御とプラズマ発光分光を利用して 放電状態をいわゆる遷移モードに保ち、 約 2 のアルミナ皮膜を 形成した。 尚、 このアルミナ皮膜の形成では、 前記図 1 4に示した 回転テーブル 3 を回転 (公転) させるとともに、 その上に設置した 基材ホルダ (遊星回転治具) 4も回転させながら行った。
処理完了後の各実施例のサンプルについては、 薄膜 X線回折によ り分析を行い、 その結晶組織の特定を行つた。 図 1 5は、 c B N焼 結体基材上に形成したアルミナ皮膜の薄膜 X線回折結果を示したグ ラフである。 図 1 5には、 基材の c B N焼結体からの回折ピークも 含め、 多くの回折ピークが観察されたため、 まず基板単独で X線回 折を行った結果との対比で、 皮膜からの回折ピークと基材からの回 折ピークを分別した。 図 1 5では基板からの回折ピークには三角形 の印をつけ、 このうち c B Nによる回折ピークを 「覃」、 c B N以 外からの回折ピークには 「V」 をつけて区別した。 また、 皮膜から の回折ピークには丸の印をつけ、 このうち α型結晶構造のアルミナ からの回折ピークには 「〇」、 それ以外のピークには 「翁」 をつけ て区別した。
図 1 5から判るように、 基材とする c B N焼結体は c B N以外に も多くの回折ピークが観察されるが、 これは結合相からの回折ピー クである。 結合相と思われる回折ピークの幾つかは六方晶の A 1 N に合致する角度に観察されたので、 結合相は少なく とも A 1 Nを含 むと考えられる。 皮膜からの回折ピークは、 図 1 5からも判るよう にその殆どは αアルミナからのものであり、 極わずかであるがァァ ルミナからの回折に一致する位置に非常に弱いピークが観察された 併せて、 この皮膜を X P S ( X線光電子分光法) により組成分析 した結果では、 微量 ( 1原子%程度) の A r を含有するが、 これを 除けば皮膜組成は A 1 : Oが 2 : 3の割合で含有しているものであ る。
これらの結果から、 c B N焼結体基材上に形成された皮膜は、 ひ 型結晶構造を主体とするアルミナ皮膜と特定でき、 c B N焼結体基 材上に α型結晶構造を主体とするアルミナ皮膜を被覆した被覆部材 が製造できていると判断できた。
このようにして製作した被覆部材は、 硬度に優れた c Β Ν焼結体 基材上に、 耐酸化性にすぐれたアルミナ皮膜を、 特に熱的な安定性 が良い α型の結晶構造を主体として形成できているため、 たとえば 切削工具に適用した場合に、 高硬度材を高速切削する等の用途に適 しており、 優れた性能が期待できる。
( 4 ) 第 4の態様に関する実施例
<実施例 1 >
表面を鏡面研磨 (R a = 0. 0 程度) したサイズが 1 2.
7 mm X 1 2. 7 mmX 5 mmの超硬合金製の基材上に、 予め A I P法で下地皮膜として膜厚 2〜 3 mの T i A 1 N皮膜を形成した ものを用意した。 尚、 前記 T i A I Nの皮膜組成は、 T i„.55A l 0.45Nである。
比較例として、 前記 T i A I N皮膜または C r N皮膜の表面を酸 化処理してから、 アルミナ皮膜の形成を行った。 該酸化処理とアル ミナ皮膜の形成は、 前記図 5 に示す真空成膜装置 (神戸製鋼所製 AIP-S40複合機) で行った。
上記酸化処理は、 具体的に次の様にして行った。 即ち、 試料 (基 材) 2 をチャンバ一 1内の回転テーブル 3上の基材ホルダ (遊星回 転治具) 4にセッ トし、 チャンバ一 1 内がほぼ真空状態となるまで 排気した後、 チャンバ一 1内部の側面に 2箇所と中央部に設置した ヒータ 5で試料 2 を 7 5 0 °C (酸化処理工程での基材温度) となる まで加熱した。 試料 2の温度が所定の温度となった時点で、 チャン バー 1内に、 酸素ガスを流量 3 0 0 s c c m、 圧力 0 . 7 5 P a と なるよう導入し、 2 0分間加熱保持して酸化を行った。
尚、 上記下地皮膜の形成、 酸化処理および後述するアルミナ成膜 は、 前記図 5 における回転テーブル 3 を回転 (公転) させるととも に、 その上に設置した基材ホルダ (遊星回転治具) 4も回転 (自 転) させながら行った。
次に、 酸化処理後の下地皮膜上に、 アルミナ皮膜を形成した。 該 アルミナ皮膜の形成は、 アルゴンと酸素雰囲気中で、 基材温度を前 記酸化処理工程とほぼ同程度 ( 7 5 0 °C ) とし、 図 5における 2台 のアルミニウムターゲッ トを装着したスパッタリ ング力ソード 6 に 約 2 . 5 k Wのパルス D C電力を加え、 反応性スパッタリング法を 採用して行った。 該アルミナ皮膜の形成は、 放電電圧およびアルゴ ンー酸素の流量比率をプラズマ発光分光法を利用して制御し、 放電 状態をいわゆる遷移モードにして行った。 この様にして膜厚が約 2 mのアルミナ皮膜を形成した。
また本発明例として、 下記のガスイオンボンバ一ド処理を酸化処 理前に実施する以外は、 上記比較例と同様にして実験を行った。 即 ち、 前記 T i A 1 N皮膜または C r N皮膜の表面にガスイオンボン バ一ド処理を施した後、 酸化処理してから、 アルミナ皮膜の形成を 行った。
ガスイオンボンバード処理は次の様にして行った。 試料 (基材)
2をチャンバ一 1 内の回転テーブル 3上の基材ホルダ (遊星回転治 具) 4にセッ トし、 チャンバ一 1内がほぼ真空状態となるまで排気 した後、 チャンバ一 1 内部の側面に 2箇所と中央部に設置したヒ一 タ 5で試料を 5 5 0 °Cとなるまで加熱した。 試料の温度が所定の温 度となった時点で、 チャンバ一 1内に、 A rガスを圧力 0 . 7 5 P aとなるよう導入し、 熱電子放出用フィ ラメント 1 5 (図 5の紙面 に対して垂直にワイヤ状に張っている) から熱電子を放出し、 フィ ラメント 1 5近傍の A rガスをプラズマ化することによって、 A r プラズマを生成した。
そして A r プラズマ中で、 基材に対し、 バイアス電源 1 4により D C電圧 ( 3 0 k H z の周波数でパルス化) を一 3 0 0 Vで 5分間 次に— 4 0 0 Vで 1 0分間、 合計 1 5分間印加してガスイオンボン バード処理を行った。 尚、 この場合も、 回転テーブル 3および基材 ホルダ (遊星回転治具) 4を回転させながら処理を行った。
次にヒータ 5で基材を 7 5 0 °Cまで加熱した後は、 前記比較例と 同様に酸化処理とアルミナ皮膜の形成を行い、 膜厚が約 2 のァ ルミナ皮膜を形成した。
本実施例では行わなかったが、 図 5 に示すように、 A I P用蒸発源 (アーク蒸発源) 7 を設置して、 下地皮膜の形成を上記ガスイオン ボンバード処理、 酸化処理およびアルミナ皮膜の形成を行う装置 1 内で行ってもよい。
この様にして得られたアルミナ皮膜の表面を薄膜 X線回折装置で 分析し、 アルミナ皮膜の結晶構造を特定した。 その結果を図 1 6 (比較例) および図 1 7 (本発明例) に示す。
図 1 6から、 X線回折の主要なピークは、 α型結晶構造のアルミ ナを示す回折ピーク (以下、 「 αアルミナピーク」 という) であ り その他に下地皮膜の T i A I Nを示す回折ピーク、 およびァ型結晶 構造のアルミナを示す回折ピーク (以下、 「ァアルミナピーク」 と いう) も若干見られる。 このことから、 従来の方法でアルミナ皮膜 を形成すると、 α型結晶構造のアルミナと r型結晶構造のアルミナ の混合した皮膜が形成していることがわかる。
これに対し、 本発明例の結果を示す図 1 7では、 ァアルミナピー クがかろう じて確認できるレベルにまでァ型結晶構造のアルミナの 生成が抑制されており、 その分、 ひ型結晶構造のアルミナの比率が 高まっていることが明らかである。
また、 これらのアルミナ皮膜の表面を S E Mで観察 (倍率 : 1 0 , 000倍) した結果を図 1 8に示す。 図 1 8 ( a ) は、 比較例に おけるアルミナ皮膜表面を示す S E M観察写真であり、 図 1 8
( b ) は、 本発明例におけるアルミナ皮膜表面を示す S E M観察写 真である。
図 1 8 ( a ) から、 比較例におけるアルミナ皮膜は、 結晶粒 (白 色部分) と結晶粒の成長していない平坦な部分 (黒色部分) に分か れており、 成長した結晶粒は粗大化し、 かつ疎らに存在しているこ とがわかる。 これに対して、 図 1 8 ( b ) に示す本発明例のアルミ ナ皮膜は、 均一かつ微細な結晶粒で構成されており、 前記比較例の 皮膜表面と明らかに相違している。
ぐ実施例 2 >
下地皮膜として C r N皮膜を形成する以外は、 上記実施例 1 と同 様にして実験を行い、 得られたアルミナ皮膜の表面を薄膜 X線回折 装置で分析して、 該皮膜の結晶構造を特定した。 その結果を図 1 9 (比較例) および図 2 0 (本発明例) に示す。
図 1 9および図 2 0から、 アルミナと判別される回折ピ一クは、 どちらも全て α型結晶構造を示すものであり、 本発明例と比較例の どちらもほぼ a型結晶構造のみからなるアルミナ皮膜が得られてお り、 この薄膜 X線回折分析では、 本発明例と比較例のアルミナ皮膜 に顕著な相違はみられない。 しかし、 図 1 9 と図 2 0 の回折ピーク の高さを比較すると、 前記図 2 0 における回折強度は、 図 1 9 と比 較して若干小さめであることがわかる。 これは後述する結晶粒の微 細化の影響によるものと考えられる。
また、 これらのアルミナ皮膜の表面を、 上記実施例 1 と同様に S E Mで観察した。 その結果を図 2 1 に示す。 図 2 1 ( a ) は、 比較 例におけるアルミナ皮膜表面を示す S E M観察写真であり、 図 2 1 ( b ) は、 本発明例におけるアルミナ皮膜表面を示す S E M観察写 真である。
図 2 1 ( b ) に示す通り本発明例のアルミナ皮膜は、 より細かい 結晶粒で構成されており、 また結晶粒間の空孔が、 比較例のアルミ ナ皮膜 [図 2 1 ( a )] と比較してかなり小さく、 結晶粒の緻密化 が進んでいることがわかる。 前記薄膜 X線回折上では顕著な差はみ られなかったが、 該 S E M観察では、 この様に表面状態の相違が顕 著であり、 本発明例のアルミナ皮膜は、 より優れた特性を発揮する ものと思われる。
尚、 C r N皮膜や T i A 1 N皮膜等の下地皮膜を設けず、 高速度 鋼基材、 c B N焼結体を基材として上記実施例 1 , 2 と同様の条件 でアルミナ皮膜を形成する実験を行った場合にも、 前記ガスイオン ボンバード処理を行った後に酸化処理を行えば、 形成されるアルミ ナの結晶構造は、 ァ型結晶構造の割合が小さく α型結晶構造主体で あり、 かつ結晶粒が微細かつ均一であるアルミナ皮膜が形成される ことを確認した。
( 5 ) 第 5の態様に関する実施例
<実施例 1 >
下記①〜③の基材を用いて、 前記図 7に示す真空成膜装置 (神戸 製鋼所製 AIP-S40複合機) で、 メタルイオンボンバード処理、 酸 化処理およびアルミナ皮膜の形成を順に行った。
<基材の種類 >
①超硬基材 ( 1 2 mm X l 2 mm X 5 mm)
② S i ウェハ (シリコンウェハ) ( 2 0 mm角)
③超硬基材 ( 1 2 mmX l 2 mm X 5 mm) 上に、
A I P法で膜厚が約 2 の T i A 1 N皮膜を形成したもの まず、 前記メタルイオンボンバ一ド処理は次の様にして行った。 即ち、 試料 (基材) 2をチャンバ一 1 内の回転テーブル 3上の基材 ホルダ (遊星回転治具) 4にセッ トし、 チャンバ一 1内を真空に排 気した後、 チャンバ一 1 内部の側面に 2箇所と中央部に設置したヒ —タ 5で試料を 6 0 0 となるまで加熱し、 該温度で 3 0分間保持 した。
その後、 加熱ヒータの電力を、 基材温度を定常状態で 7 5 0 °Cに 保持可能なレベルにまで上昇させてから、 C r 夕一ゲッ トを取り付 けた AIP用蒸発源 7に 8 O Aのアーク電流を流して C rイオンを含 むプラズマを発生させ、 この状態で、 回転テ一ブル 3および基材ホ ルダ (遊星回転治具) 4を通じて、 バイアス電源 1 4によって直流 のバイアス電圧を基材に印加し、 C rイオンを基材に照射させてメ タルイオンポンバ一ド処理を行った。 前記バイアス電圧は— 6 0 0 Vで 2分間、 — 7 0 0 Vで 2分間、 更に— 8 0 0 Vで 5分間の、 合 計 9分間印加した。 尚、 メタルイオンポンバ一ド処理終了時の基材 温度は約 7 6 0 °Cであった。
上記メタルイオンボンバード処理、 後述する酸化処理およびアル ミナ皮膜の形成は、 前記図 7における回転テーブル 3 を回転 (公 転) させるとともに、 その上に設置した基材ホルダ (遊星回転治 具) 4も回転 (自転) させながら行った。 メタルイオンボンバード処理後は、 アーク放電とバイアス電圧の 印加を停止して酸化処理を行った。 酸化処理は、 メタルイオンボン バード処理後のチャンパ一 1 内に、 酸素ガスを流量 3 0 0 s c c m 圧力 0 . 7 5 P aとなるよう導入し、 3 0分間加熱保持して行った 尚、 この工程で、 酸化処理終了時の基材温度は 7 5 0 °Cであった。 そして上記酸化処理表面にアルミナ皮膜を形成した。 該アルミナ 皮膜の形成は、 アルゴンと酸素雰囲気中で、 基材温度を前記酸化処 理工程とほぼ同程度 ( 7 5 0 °C ) とし、 図 7における 2台のアルミ 二ゥムタ一ゲッ トを装着したスパッタリ ング力ソード 6 に約 2 . 5 k Wのパルス D C電力を加え、 反応性スパッタリング法を採用して 行った。 該アルミナ皮膜の形成は、 放電電圧およびアルゴン一酸素 の流量比率をプラズマ発光分光法を利用して制御し、 放電状態をい わゆる遷移モードにして行った。 この様にして膜厚が約 2 β mのァ ルミナ皮膜を形成した (後述する表 5の N o . 1〜 3 )。
<実施例 2 >
メタルイオンポンバ一ド処理に際して 0 . 0 5 P aの分圧となる よう窒素をチャンバ一 1 内に導入して、 窒素雰囲気下でメタルィォ ンポンバ一ド処理を行う以外は、 前記実施例 1 と同様にして、 メタ ルイオンボンバード処理、 酸化処理およびアルミナ皮膜の形成を行 つた (後述する表 5の N o , 4〜 6 )。
<実施例 3 >
メタルイオンボンバード処理における金属イオンの発生源として A I P用蒸発源に取り付けるターゲッ ト材料を C r の代わりに T i と する以外は、 前記実施例 1 と同様にして、 メタルイオンポンバ一ド 処理、 酸化処理およびアルミナ皮膜の形成を行った (後述する表 5 の N o . 7〜 9 )。 <比較例>
前記メタルイオンボンバード処理を行わず、 酸化処理を行った後 にアルミナ皮膜の形成を行った。 尚、 従来の方法として、 前記基材
③の T i A 1 N皮膜上に更に C r N皮膜を形成したものを酸化処理 した後、 アルミナ皮膜を形成する方法も実施した。 前記酸化処理お よびアルミナ皮膜の形成は、 前記実施例 1 と同様にして行った。 く得られたアルミナ皮膜の薄膜 X線回折分析結果 >
上記実施例 1〜 3および比較例の方法で形成されたアルミナ皮膜 の表面を、 薄膜 X線回折装置で分析してアルミナ皮膜の結晶構造を 特定した。 その結果を表 5 に示す。
表 5
Figure imgf000107_0001
表 5から、 上記実施例 1〜 3の結果を示す N o . :!〜 9では、 ① 超硬合金、 ② S i ウェハ、 ③超硬基材上に A I P法で膜厚が約 2 H mの T i A 1 N皮膜を形成したもの、 のいずれを用いた場合でも、 α型結晶構造主体のアルミナ皮膜が形成されていることがわかる。 尚、 N o . 1〜 6 と N o . 7〜 9の結果を比較すると、 本実施例では T i よりも C rをメタルイオンポンバ一ド処理に用いれば、 ほぼ α 型結晶構造のみからなるアルミナ皮膜を形成できることがわかる。
これに対し比較例では、 超硬合金上に T i A 1 N皮膜および C r N皮膜を形成させたものを用いた場合 ( N o . 1 3 ) には、 ほぼ 型結晶構造のみからなるアルミナ皮膜が形成できたが、 超硬合金の みからなるものを用いた場合 (N o . 1 0 ) または超硬合金上に T i A I N皮膜のみ形成したものを用いた場合 (N o . 1 2 ) には、 α型結晶構造とァ型結晶構造の混合したアルミナ皮膜となった。 ま た、 基材として S i ウェハを用いた場合 (N o . 1 1 ) には、 ひ型 結晶構造のアルミナが形成されず、 ほぼァ型結晶構造のみからなる アルミナ皮膜が得られた。
これらの結果から、 本発明法によれば、 基材の種類に限定される ことなく ひ型結晶構造主体のアルミナ皮膜を形成できることがわか る。
( 6 ) 第 6の態様に関する実施例
前記図 4に示す P VD装置 (真空成膜装置) を用いて、 本発明の アルミナ皮膜の形成を行った。 まず、 超硬合金基材上に予め A I P 法によって C r N皮膜 (下地皮膜) を形成した試験片を、 装置 1 内 の基材ホルダ (遊星回転治具) 4にセッ トし、 装置 1.内がほぼ真空 状態となるまで排気した後、 装置内部の側面と中央に配置したヒー タ 5で試料を 7 5 0 °Cまで加熱した。 試験片が 7 5 0 になった時 点で、 装置 1内に酸素ガスを流量 3 0 0 s c c m、 圧力約 0. 7 5 P aで導入し、 2 0分間表面の酸化処理を行った。 尚、 図 4中 7 は A I P法によって下地皮膜を形成するときの A I P用蒸発源を示し ている。
次に、 2台のアルミターゲッ トを装着したスパッタリ ングカソ一 ド 6 を、 アルゴンと酸素の雰囲気中で、 約 2. 5 kWのパルス D C 電力を投入してスパッ夕を行い、 前記酸化温度とほぼ同じ温度条件
( 7 5 0 °C ) で、 酸化アルミニウム (アルミナ) の形成を行った。 アルミナの形成にあたっては、 放電電圧制御とプラズマ発光分光を 利用して、 放電状態をいわゆる遷移モードに保ち、 約 2 ^ mのアル ミナ皮膜を形成した。 尚、 これらの皮膜形成では、 前記図 4に示し た回転テーブル 3を回転 (公転) させるとともに、 その上に設置し た基材ホルダ (遊星回転治具) 4も回転させながら行った。
成膜処理後のアルミナ皮膜は、 薄膜 X線回折によって結晶性を分 祈し、 アルミナ皮膜の結晶構造を特定した。 その結果、 アルミナ皮 膜からは、 α結晶構造のアルミナを示す回折ピークのみが観察でき ることが確認できた。
上記アルミナ皮膜を透過型電子顕微鏡 (Τ Ε Μ) によって観察し た結果を、 図 2 2 (図面代用写真) に示す (倍率 : 2 0 0 0 0倍) この Τ Ε Μ像および同時に実施した E D X分析 (エネルギー分散形 X線分析) によると、 この皮膜は基材に近い方から順に、 C r N皮 膜、 C r Nの表面に酸化処理工程によって形成された厚み : 3 0〜 4 0 n mのクロム酸化物 ( C r 23 ) 層、 およびアルミナ層の 3 層構造となっていることが分かった。 また、 アルミナおよびクロム 酸化物層については、 電子線回折によって分析したところ、 いずれ もコランダム構造を有しており、 夫々 Q; — A203 、 ひ 一 C r 23 であることが確認できた。
図 2 3 (図面代用写真) は図 2 2の一部を拡大した図である。 こ の図 2 3から明らかなように、 皮膜成長が進み膜厚が大きくなるに つれて結晶粒が大きくなり、 表面近傍では結晶の幅が最大で 0. 5 m、 柱状結晶の長さで 1. 5 mに達していることが分かる。 こ れに対して、 皮膜の成長初期では、 最大でも 0. 3 m程度の大き さであることが分かる。
このように皮膜の成長初期に、 微細な結晶粒が形成されて、 皮膜 成長と共に該結晶粒が成長するのは一般的な傾向であるが、 これま で P V D法によって形成したアルミナ皮膜に関する皮膜断面観察に よれば (Surf · Coat. Techno 1. , 94-95 (1997) p.303 - 308、
Surf . Coat. Technol. , 142-144 (2001) .260-264,
J. Vac. Sci. Techno 1. A20 (6) , Nov/Dec (2002) p.2134-2136)、 a;アル ミナが形成できた試料においても、 皮膜形成初期には結晶粒の微細 なァアルミナ層が形成されていることが観察されており、 《型の結 晶はこの中から成長すると報告されている うしたことから、 P
V D法によって aアルミナ皮膜を形成した場合には、 皮膜成長初期 の結晶微細領域ではァアルミナの含有が避けられないものと考えら れていた。
しかしながら、 上記の手順で形成したアルミナ皮膜では、 T E M 観察時に a— C r 203との界面近傍のアルミナ皮膜を電子線回折 で分析したところ、 あらゆる領域において aアルミナからの回折結 果が得られ、 ァアルミナは検出されないことが判明した。 こう した ことから、 下地皮膜の種類も含めて、 適切な条件下でアルミナ皮膜 を形成することによって、 皮膜成長初期の段階の結晶が微細な領域 においても、 aアルミナが形成できることが明らかになった。 また、 この皮膜では、 結晶が微細な構造を有する皮膜成長初期か ら、 膜厚が増大するにつれて、 結晶粒が柱状に大きく成長していく が、 いずれの結晶成長においても、 電子線回折では Q!アルミナのみ が観察されていたのである。
上記実施例では、 本発明のひアルミナは、 下地皮膜として形成し た C r Nの表面層を 7 5 0 の基材温度で酸化処理し、 引き続き下 地皮膜上にアルミナ皮膜を形成することで得られたものであるが、 本発明者らが、 実質的に 結晶構造のみからなるアルミナ皮膜を形 成するための最適な条件について検討したところ、 次のような製造 条件によっても アルミナが形成できることが判明した。
即ち、 下地皮膜の酸化処理工程に先立って、 下地皮膜の表面を A rイオン等によるイオンボンバード処理を施すか、 或はコランダム 構造の酸化物粉末 (好ましくは αアルミナの粉末) により下地皮膜 表面の 「傷付け処理」 を施せば、 7 0 0 °C程度で基材表面の酸化処 理を行っても同様の αアルミナ皮膜が形成できることが確認できた これらのことから、 本発明のひアルミナ皮膜は、 下地皮膜を C r Nとして上記のような前処理 (イオンポンバ一ド処理や酸化物粉末 による傷付け処理) を組み合わせて製造する場合には、 酸化処理お よび皮膜形成のときの基材温度を 7 0 0 °C以上として処理を行い、 前処理を行わない場合には、 酸化処理および皮膜形成のときの基材 温度を 7 5 0 °C以上として処理を行えば、 P V D法によるアルミナ 皮膜形成によって、 α型結晶構造のアルミナ皮膜が形成できること が分かる。
尚、 イオンポンバ一ド処理を施す場合には、 前記図 4に示した装 置構成において、 ガスイオンプラズマ若しくは金属イオンプラズマ を形成するための熱電子放出用途フィ ラメントを装置内に配置する と共に (図示せず)、 基材にバイアス電圧が印加できるような電源 を設置し、 適切な値 (例えば、 一 4 0 0 V以上) のバイアス電圧を 印加してイオンボンパード処理ができるような装置構成にすれば良 い。
( 7 ) 成膜用装置に関する実施例
以下に前記図 8 に示した物理的蒸着装置 (但し、 アーク源 7は設 けていない) を用いて、 高耐熱性の αアルミナ皮膜の成膜を行った 実験例を挙げる。
成膜実験に使用する試料として、 鏡面 (Ra = 0.02 zin程度) の 12.7mm角、 厚さ 5mmの板状の超硬基材上にあらかじめアークイオン プレーティ ング法にて硬質皮膜 (T i A 1 N) を 2〜 3 mの厚み で形成したものを用いた。 この際の T i A 1 Nの皮膜組成は T i 0.55A 1 0.45Nであった。
この試料を回転テーブル 3上の基材ホルダ (遊星回転治具) 4に セッ ト後、 排ガス配管 1 1 を通じて真空に排気した後、 輻射型加熱 ヒ一夕 5 1 、 5 2で基材温度を 5 5 0 °Cまで加熱、 上昇させてから アルゴンガスを 2. 7 P aの圧力でガス導入管 1 1から導入した上 で、 プラズマ源 8である熱電子放出用フィ ラメントとチャンバ一の 間で 15 Aの放電を発生させてアルゴンプラズマを生成した。 この アルゴンプラズマを照射しながら、 基材には 3 0 k H z の周波数で パルス化した D C電圧を— 3 0 0 Vで 5分間、 — 4 0 0 Vで 1 0分 間、 トータル 1 5分間のイオンボンバード処理を実施した。
次に加熱ヒ一夕 5 1、 5 2にて基材温度を 7 5 0 °Cにまで加熱を 行い、 試料が同温度に昇温した時点で、 チャンバ内にガス導入管 1 1から酸素ガスを流量 3 0 0 sccm、 圧力約 0. 7 5 P aで導入し、 2 0分間表面の熱酸化処理を行った。 そして、 スパッタリ ング蒸発源 6 として 2台のアルミニウム夕一 ゲッ トを装着したスパッタリ ング力ソードを用い、 これにアルゴン と酸素雰囲気中でパルス D Cスパッタリ ング約 2 . 5 k Wの電力を 投入してスパッ夕を行い、 前記酸化温度とほぼ同じ温度条件 ( 7 5 0 °C ) で、 硬質皮膜の表面に酸化アルミニウム (アルミナ) の形成 を行った。 この反応スパッタリ ング法によるアルミナ皮膜の形成に あたっては、 放電電圧制御とプラズマ発光分光を利用して、 放電状 態をいわゆる遷移モードに保ち、 約 2 ^ mのアルミナ皮膜を形成し た。
処理完了後の本実施例のサンプルについては、 薄膜 X線回折によ り分析を行い、 その結晶組織の特定を行った。 図 2 4に T i A I N 皮膜上に形成したアルミナ皮膜の薄膜 X線回折結果を示す。 この図 において、 丸印は αアルミナ ( α型結晶構造を主体とするアルミ ナ) 、 逆白三角印はァアルミナ (ァ型結晶構造を主体とするアルミ ナ) 、 また、 逆黒三角印は T i A 1 Νのそれぞれピークを示してい る。 この図 2 4から明らかなように、 本発明の装置を用いることで T i A 1 Nのような実用的な硬質皮膜上にひ型結晶構造を主体とす るアルミナ皮膜 (高耐熱性酸化系皮膜) を形成できることが分かる 逆に、 本発明の装置の要件を欠く装置においては、 満足な皮膜が 形成できないことも実験で確認した。
まず上記プラズマ源を欠く場合として、 上記工程のうちイオンポ ンバ一ド処理を行わずに成膜を行った。 この場合には、 T i A I N 上に α型結晶構造を含むアルミナ皮膜の形成は可能であったものの ァ型結晶構造の混入が確認された。 また、 皮膜も結晶粒の均一なァ ルミナ皮膜が形成できていとは言い難いものとなった。
間欠的な直流電圧の印加が可能なバイァス電源を欠く場合、 即ち 直流のバイアス電源を用いた場合にはアークが多発した。 また、 高 周波のバイアス電源は遊星回転テーブルには適用できなかった。
輻射型過熱機構の基材加熱能力に関しても、 基材温度が 6 5 0 °C 未満では α型結晶を得ることができず、 また、 基材温度が 8 0 0 °C を超える場合にほ T i A 1 N皮膜の劣化が認められた。
本発明の実施形態に関連して補足を行うと、 基材ホルダ (遊星回 転洽具) に負のパルス状のバイアス電圧を印加するバイアス電源に ついてその間欠的な印加の周波数の好ましい範囲は 1 0 k H z 〜 4 0 0 k H zである。 1 0 k H z未満の周波数では、 アーク放電の発 生による不安定な現象が発生することになり、 4 0 0 k H z を超え る高周波数ではマッチング等の問題が生じるため、 上記範囲とする ことが推奨される。 ,
また、 本装置によるアルミナ皮膜の形成は、 前述のように反応性 スパッタリ ング法により行う。 すなわち、 スパッタリ ング蒸発源に 取り付けたアルミターゲッ トをアルゴン, 酸素の混合雰囲気中で動 作させることで、 金属アルミニウムをスパッ夕し、 基材上で酸素と 化合させる。 成膜速度の速い成膜を行うためには、 スパッタリ ング のモードをいわゆる遷移モードに保持する必要があり、 この観点か ら、 スパッタリ ング蒸発源を駆動するスパッタリ ング電源は定電圧 制御が可能であることが望ましい。 さらに、 付加的には、 本装置に はスパッ夕リングのモードを把握するために、 スパッタリ ング蒸発 源前のプラズマ発光をモニタ一する分光器を具備していることが望 ましい。 産業上の利用可能性
上記のような構成を採用すると、 特に耐熱性に優れた α型結晶構 造主体のアルミナ皮膜を、 C V D法のような高温によることなく、 基材ゃ硬質皮膜の特性を劣化させることのない比較的温度域で形成 することができる。 また従来のように、 硬質皮膜とひ型結晶構造の アルミナ皮膜との間に中間膜を設ける必要がないので、 効率的に積 層皮膜を形成することができ、 かつ該中間膜による切削性能等の低 下が生じることもない。
従ってこの様な α型結晶構造を主体とするアルミナ皮膜を含む積 層皮膜、 およびこれらの製造方法の実現により、 従来よりも耐摩耗 性および耐熱性に優れた切削工具等を安価で提供できる。
尚、 本発明は、 汎用される T i N , T i C N, T i C等のチタン 系硬質皮膜上に耐酸化性に優れた α型結晶構造のアルミナを比較的 低温で形成する方法を提供する点で実用的である。
また、 上記ガスイオンボンバード処理を行えば、 特に結晶粒が微 細かつ均一であるより優れた耐摩耗性および耐熱性を期待すること のできるアルミナ皮膜を形成でき、 メタルイオンボンバード処置を 行えば、 アルミナ皮膜の成膜対象である基材ゃ下地皮膜の種類を問 わずにアルミナ皮膜を該基材や下地皮膜上に形成することができる 本発明では、 c B N焼結体上にも、 その組成を特定せずに該アルミ ナ皮膜を形成することができる。

Claims

請求の範囲
1 . 予め下地皮膜の形成された基材上にひ型結晶構造を主体とする アルミナ皮膜を形成する方法であって、
該下地皮膜として、 A 1 と T i を必須とする金属成分と B、 C、 N、 O等との化合物からなる硬質皮膜を形成した後、 該硬質皮膜を 酸化処理して酸化物含有層を形成し、 その後、 該酸化物含有層上に 型結晶構造を主体とするアルミナ皮膜を形成することを特徴とす る α型結晶構造を主体とするアルミナ皮膜の製造方法。
2 . 前記酸化物含有層は、 最表面側が実質的にアルミナからなるも のである請求項 1 に記載の製造方法。
3 . 前記下地皮膜は、 T i A I Nからなるものである請求項 1 に記 載の製造方法。
4 . 前記下地皮膜は、 A 1 および T i と、 I V a族 (T i 除く)、 V a族、 V I a族および S i よりなる群から選択される少なく とも
1種の元素とを必須成分とする窒化物、 炭化物、 炭窒化物、 ほう化 物、 窒酸化物、 または炭窒酸化物からなるものである請求項 1 に記 載の製造方法。
5 . 前記下地皮膜は、 T i A 1 C r Nからなるものである請求項 1 に記載の製造方法。
6 . 予め下地皮膜の形成された基材上にひ型結晶構造を主体とする アルミナ皮膜を形成する方法であって、
該下地皮膜として、 A 1 を必須とする金属成分と B、 C、 N、 〇 等との化合物からなる硬質皮膜を形成した後、 該硬質皮膜を酸化処 理して酸化物含有層を形成し、 その後、 該酸化物含有層上に α型結 晶構造を主体とするアルミナ皮膜を形成する'ことを特徵とするひ型 結晶構造を主体とするアルミナ皮膜の製造方法。
7. 前記下地皮膜は、 A 1 と、 I V a族、 V a族、 V i a族および S i よりなる群から選択される少なく とも 1種の元素とを必須成分 とする窒化物、 炭化物、 炭窒化物、 ほう化物、 窒酸化物、 または炭 窒酸化物からなるものである請求項 6に記載の製造方法。
8. 予め下地皮膜の形成された基材上に α型結晶構造を主体とする アルミナ皮膜を形成する方法であって、 ·
該下地皮膜として、 酸化物生成の標準自由エネルギーがアルミ二 ゥムより大きい金属と B、 C, N, O等との化合物からなる硬質皮 膜を形成した後、 該硬質皮膜を酸化処理して酸化物含有層を形成し その後、 該酸化物含有層上に α型結晶構造を主体とするアルミナ皮 膜を形成することを特徴とする 0;型結晶構造を主体とするアルミナ 皮膜の製造方法。
9. 前記下地皮膜として、 酸化物生成の標準自由エネルギーがアル ミニゥムより大きい金属である T i と B、 C, N, 〇等との化合物 からなる硬質皮膜を形成する請求項 8 に記載の製造方法。
1 0. 前記下地皮膜として、 T i N、 丁 1 〇ぉょび丁 1 ]^ょりな る群から選択される 1層または 2層以上の積層を形成する請求項 8 に記載の製造方法。
1 1. 前記硬質皮膜と基材もしくは硬質皮膜同士の接合界面に、 接 合される両素材構成元素の組成傾斜層を形成する請求項 8に記載の 製造方法。
1 2. 前記酸化物含有層としてチタン酸化物含有層を形成した後、 アルミナ形成において、 該層表面のチタン酸化物の還元を伴いなが らアルミナ皮膜を形成する請求項 8 に記載の製造方法。
1 3. 前記酸化物含有層として T i 〇 2含有層を形成した後、 アル ミナ形成において、 該層表面の T i 〇 2の T i 35への還元を伴い ながらアルミナ皮膜を形成する請求項 8 に記載の製造方法。
1 4. 基材 (基材上に予め下地皮膜が形成されたものを含む) 上 に 型結晶構造を主体とするアルミナ皮膜を製造する方法であって アルミナの成膜工程前に下記 ( a ) 〜 ( c ) の少なく ともいずれか の皮膜を形成した後、 その表面を酸化処理し、 その後にアルミナ皮 膜を形成することを特徴とする α型結晶構造主体のアルミナ皮膜の 製造方法。
( a ) 純金属または合金からなる皮膜
( b ) 窒素、 酸素、 炭素若しくは硼素を固溶する金属主体の皮膜 ( c ) 化学量論的組成に対して不十分な窒素、 酸素、 炭素若しく は硼素を含む金属窒化物、 酸化物、 炭化物若しくは硼化物からなる 皮膜
1 5. 前記酸化処理を、 酸化性ガス含有雰囲気下で基板温度を 6 5 0〜 8 0 0 °Cに保持して行う請求項 1、 6、 8 または 1 4に記載の 製造方法。
1 6. 前記 α;型結晶構造を主体とするアルミナ皮膜の形成を、 P V D法で行う請求項 1、 6、 8または 1 4に記載の製造方法。
1 7. 前記下地皮膜の表面を酸化処理する工程と前記 α型結晶構造 を主体とするアルミナ皮膜を形成する工程を、 同一装置内で行う請 求項 1、 6、 8または 1 4に記載の製造方法。
1 8. 前記下地皮膜を形成する工程、 前記下地皮膜の表面を酸化処 理する工程、 および前記 a型結晶構造を主体とするアルミナ皮膜を 形成する工程を、 同一装置内で順次実施する請求項 1、 6、 8 また は 1 4に記載の製造方法。
1 9. 請求項 1、 6、 8 または 1 4に記載の製造方法で製造された ひ型結晶構造を主体とするアルミナ皮膜が表面に形成されているこ とを特徴とする耐摩耗性および耐熱性に優れた被覆部材。
2 0. A 1 と T i を必須とする金属成分と B、 C、 N、 〇等との化 合物からなる硬質皮膜を有する積層皮膜において、 該硬質皮膜を酸 化することによって形成される酸化物含有層と、 該酸化物含有層上 に形成される 型結晶構造を主体とするアルミナ皮膜を有すること を特徴とする耐摩耗性および耐熱性に優れた積層皮膜。
2 1. 前記酸化物含有層は、 最表面側が実質的にアルミナからなる ものである請求項 2 0 に記載の積層皮膜。
2 2. 前記硬質皮膜は、 T i A I Nからなるものである請求項 2 0 に記載の積層皮膜。
2 3. 前記硬質皮膜は、 A 1 および T i と、 I V a族 (T i 除く) V a族、 V I a族および S i よりなる群から選択される少なく とも 1種の元素とを必須成分とする窒化物、 炭化物、 炭窒化物、 ほう化 物、 窒酸化物、 または炭窒酸化物からなるものである請求項 2 0に 記載の積層皮膜。
2 4. 前記硬質皮膜は、 T i A l C r Nからなるものである請求項 2 0 に記載の積層皮膜。
2 5. A 1 を必須とする金属成分と B、 C、 N、 O等との化合物か らなる硬質皮膜を有する積層皮膜において、 該硬質皮膜を酸化する ことによって形成される最表面側が実質的にアルミナからなる酸化 物含有層と、 該酸化物含有層上に形成される α型結晶構造を主体と するアルミナ皮膜を有することを特徴とする耐摩耗性および耐熱性 に優れた積層皮膜。
2 6. 前記硬質皮膜は、 A 1 と、 I V a族、 V a族、 V I a族およ び S i よりなる群から選択される少なく とも 1種の元素とを必須成 分とする窒化物、 炭化物、 炭窒化物、 ほう化物、 窒酸化物、 または 炭窒酸化物からなるものである請求項 2 5に記載の積層皮膜。
2 7 . 前記酸化物含有層上に形成されるアルミナ皮膜は、 α型結晶 構造が 7 0 %以上である請求項 2 0 または 2 5 に記載の積層皮膜。
2 8 . 請求項 2 0 または 2 5 に記載の積層皮膜が表面に形成されて いることを特徴とする積層皮膜被覆工具。
2 9 . 基材上に、 下記 ( a ) 〜 ( c ) の少なく ともいずれかの皮膜 を中間層として形成する工程、 該中間層表面を酸化処理する工程、 次いで α型結晶構造を主体とするアルミナ皮膜を形成する工程を、 同一成膜装置内で順次実施することを特徴とする Q!型結晶構造主体 のアルミナ皮膜で被覆された部材の製造方法。
( a ) 純金属または合金からなる皮膜
( b ) 窒素、 酸素、 炭素若しくは硼素を固溶する金属主体の皮膜 ( c ) 化学量論的組成に対して不十分な窒素、 酸素、 炭素若しく は硼素を含む金属窒化物、 酸化物、 炭化物若しくは硼化物からなる 皮膜
3 0 . 基材上に下地皮膜を形成する工程、 該下地皮膜表面に下記 ( a ) 〜 ( c ) の少なく ともいずれかの皮膜を中間層として形成す る工程、 該中間層の表面を酸化処理する工程、 次いで α型結晶構造 を主体とするアルミナ皮膜を形成する工程を、 同一成膜装置内で順 次実施することを特徴とする ひ型結晶構造主体のアルミナ皮膜で被 覆された部材の製造方法。
( a ) 純金属または合金からなる皮膜
( b ) 窒素、 酸素、 炭素若しくは硼素を固溶する金属主体の皮膜 ( c ) 化学量論的組成に対して不十分な窒素、 酸素、 炭素若しく は硼素を含む金属窒化物、 酸化物、 炭化物若しくは硼化物からなる 皮膜
3 1 . 結合相と立方晶窒化硼素分散相からなる c B N焼結体基材上 に、 α型結晶を主体とするアルミナ皮膜を製造する方法であって、 c B N焼結体基材表面を酸化処理し、 その後にアルミナ皮膜を形 成することを特徴とする ひ型結晶構造主体のアルミナ皮膜の製造方 法。
3 2. 前記結合相は、 T i C , T i N, T i C N , A 1 N, T i B 2および A 1 203よりなる群から選ばれる 1種以上を含むものであ る請求項 3 1 に記載の製造方法。
3 3. 前記酸化処理を、 酸化性ガス含有雰囲気下で基板温度を 6 5 0〜 8 0 0 °Cに保持して行う請求項 3 1 に記載の製造方法。
3 4. 前記 α型結晶構造を主体とするアルミナ皮膜の形成を、 基材 温度を 6 5 0〜 8 0 0 °Cで物理蒸着法を適用して行う請求項 3 1 に 記載の製造方法。
3 5. 結合相と立方晶窒化硼素分散相からなる c B N焼結体上に、
0!型結晶を主体とするアルミナ皮膜を被覆した被覆部材であって、 c B N焼結体基材とアルミナ皮膜との界面には、 酸化物含有層が介 在されたものであることを特徴とするひ型結晶構造主体のアルミナ 皮膜で被覆された部材。
3 6. 前記結合相は、 T i C, T i N, T i C N, A 1 N, T i B 2および A 1 23よりなる群から選ばれる 1種以上を含むものであ る請求項 3 5に記載の部材。
3 7. 前記結合相は、 焼結体全体に対して 1〜 5 0体積%含むもの である請求項 3 5に記載の部材。
3 8. 前記 0!型結晶構造を主体とするアルミナ皮膜は、 圧縮の残留 応力を有するものである請求項 3 5 に記載の部材。
3 9. 結合相と立方晶窒化硼素分散相からなる c B N焼結体上に、 α型結晶を主体とするアルミナ皮膜を被覆した被覆部材を製造する に当たり、 c Β Ν焼結体の表面を酸化処理する工程と、 α型結晶構 造を主体とするアルミナ皮膜を形成する工程を、 同一成膜装置内で 順次実施することを特徴とする α型結晶構造を主体とするアルミナ 皮膜で被覆された部材の製造方法。
4 0. 基材 (基材上に予め下地皮膜が形成されたものを含む。 以下 同じ) 上にひ型結晶構造を主体とするアルミナ皮膜を形成する方法 であって、
基材表面にガスイオンポンバ一ド処理を施した後、 表面を酸化処 理し、 その後にアルミナ皮膜を形成することを特徴とするひ型結晶 構造主体のアルミナ皮膜の製造方法。
4 1. 前記下地皮膜として、 周期律表の 4 a族, 5 a族および 6 a 族の元素、 A l 、 S i 、 F e、 C u並びに Yよりなる群から選択さ れる 1種以上の元素と C、 N、 B、 Oの中の 1種以上の元素との化 合物、 またはこれら化合物の相互固溶体、 のいずれか 1種以上を形 成する請求項 4 0に記載の製造方法。
4 2. 前記下地皮膜として、 T i ( C, N)、 C r ( C, N)、 T i A 1 ( C , N)、 C r A 1 ( C , N) および T i A l C r ( C , N) よりなる群から選択される 1種以上を形成する請求項 4 0に記 載の製造方法。
4 3. 前記基材が、 鋼材、 超硬合金、 サーメッ ト、 c B N焼結体、 またはセラミックス焼結体である請求項 4 0に記載の製造方法。
4 4. 前記ガスイオンボンバード処理は、 真空チャンバ一内におい てガスプラズマ中で基材に電圧を印加して行う請求項 4 0 に記載の 製造方法。
4 5. 基材上に下地皮膜を形成する工程、 該下地皮膜表面にガスィ オンボンバード処理を施す工程、 表面を酸化処理する工程、 次いで α型結晶構造を主体とするアルミナ皮膜を形成する工程を、 同一装 置内で順次実施することを特徴とするひ型結晶構造主体のアルミナ 皮膜で被覆された部材の製造方法。
4 6. 前記下地皮膜として、 T i ( C , N)、 C r ( C , N)、 T i A 1 ( C , N), C r A 1 ( C, N) および T i A l C r (C, N) よりなる群から選択される 1種以上を形成する請求項 4 5に記 載の製造方法。
4 7. 基材 (基材上に予め下地皮膜が形成されたものを含む。 以下 同じ) 上にひ型結晶構造を主体とするアルミナ皮膜を形成する方法 であって、 基材表面にメタルイオンポンバ一ド処理を施した後、 表 面を酸化処理し、 その後にアルミナ皮膜を形成することを特徴とす る ひ型結晶構造主体のアルミナ皮膜の製造方法。
4 8. 前記メタルイオンポンバ一ド処理は、 真空チャンバ一中で基 材に電圧を印加しつつ金属プラズマを発生させて行う請求項 4 7 に 記載の製造方法。
4 9. 前記メタルイオンボンバー ド処理は、 真空チャンバ一中で基 材に電圧を印加しつつ真空アーク蒸発源から C r または T i のブラ ズマを発生させて行う請求項 4 7 に記載の製造方法。
5 0. 前記酸化処理は、 酸化性ガス含有雰囲気下で基材温度を 6 5 0〜 8 0 0 °Cに保持して行う請求項 4 7 に記載の製造方法。
5 1 . 基材 (基材上に予め下地皮膜が形成されたものを含む。 以下 同じ) 上にひ型結晶構造を主体とするアルミナ皮膜が形成された部 材であって、 基材表面近傍は、 メタルイオンボンバード処理に使用 した金属が表層側に行く につれて高濃度となる濃度勾配層であり、 該濃度勾配層の表面側に酸化物含有層および α型結晶構造主体のァ ルミナ皮膜が順次形成されていることを特徴とする α型結晶構造主 体のアルミナ皮膜で被覆された部材。
5 2 . 基材表面にメタルイオンボンバード処理を施す工程、 表面を 酸化処理する工程、 次いで α型結晶構造を主体とするアルミナ皮膜 を形成する工程を、 同一装置内で順次実施することを特徴とする α 型結晶構造主体のアルミナ皮膜で被覆された部材の製造方法。
5 3 . 基材上に下地皮膜を形成する工程、 該下地皮膜表面にメタル イオンボンバード処理を施す工程、 表面を酸化処理する工程、 次い でひ型結晶構造を主体とするアルミナ皮膜を形成する工程を、 同一 の成膜装置内で順次実施することを特徴とする α型結晶構造主体の アルミナ皮膜で被覆された部材の製造方法。
5 4 . 前記下地皮膜が、 周期律表の 4 a族, 5 a族および 6 a族の 元素、 A l 、 S i 、 C u並びに Yよりなる群から選択される 1種以 上の元素と( 、 Ν、 Β、 Οの中の 1種以上の元素との化合物、 これ ら化合物の相互固溶体、 または(:、 Ν、 Βの中の 1種以上の元素か らなる単体または化合物、 のいずれか 1種以上である請求項 5 3 に 記載の製造方法。
5 5 . 前記基材が、 鋼材、 超硬合金、 サーメッ ト、 c B N焼結体、 セラミ ックス焼結体、 結晶ダイヤモンドまたは S i ウェハである請 求項 5 3 に記載の製造方法。
5 6 . 基材 (基材上に予め下地皮膜が形成されたものを含む) 上に 物理蒸着法によって形成したアルミナ皮膜であって、 該アルミナ皮 膜の結晶構造を断面透過型電子顕微鏡で観察したときに (倍率 : 2 0 0 0 0倍)、 少なく とも皮膜成長開始部は微細構造のアルミナ結 晶で構成されており、 当該微細結晶領域においてはひ型結晶構造以 外の結晶構造が実質的に観察されないものであることを特徴とする α型結晶構造のアルミナ皮膜。
5 7 . 前記微細構造のアルミナ結晶は、 その結晶粒が成長初期から 厚さ方向 0 . 5 mまでの範囲内において 0 . 3 m以下のもので ある請求項 5 6 に記載のアルミナ皮膜。
5 8 . アルミナ皮膜全体に亘つて 型結晶構造以外の結晶構造が実 質的に観察されないものである請求項 5 6 に記載のアルミナ皮膜。
5 9 . α型結晶構造のアルミナは、 皮膜表面側において柱状に成長 したものである請求項 5 6に記載のアルミナ皮膜。
6 0 . アルミナ皮膜の膜厚が 0 . 5〜 2 0 ^ mである請求項 5 6 に 記載のアルミナ皮膜。
6 1 . 真空チャンパと、 該真空チヤンバに回転自在に配置されて複 数の基材を保持する基材ホルダと、 該真空チャンバへの不活性ガス 及び酸化性ガス導入機構と、 該基材ホルダに対向する位置に配置さ れたプラズマ源と、 前記基材ホルダに対向する位置に配置されたス パッタリ ング蒸発源と、 前記基材ホルダに対向する位置に配置され て前記基材を加熱可能な輻射型加熱機構と、 前記基材ホルダに接続 されて前記基材ホルダに負のパルス状のバイアス電圧を印加可能な バイアス電源とからなることを特徴とする物理的蒸着装置。
6 2 . 前記プラズマ源に代えて若しくは前記プラズマ源に加えて、 前記基材ホルダに対向する位置にアーク蒸発源の配置された請求項 6 1 に記載の物理的蒸着装置。
6 3 . 前記輻射型加熱機構が、 前記基材ホルダの回転中心と同芯的 に配置された筒状加熱源と、 前記基材ホルダの側面に配置された平 面状加熱源とからなる請求項 6 1 に記載の物理的蒸着装置。
6 4 . 前記真空チャンバの断面形状が、 四角形、 六角形または八角 形のいずれか一つの形状であり、 前記輻射型加熱機構が、 前記基材 ホルダの回転中心と同芯的に配置された筒状加熱源と、 前記基材ホ ルダの側面に配置された平面状加熱源とからなり、 各一対の前記ス パッ夕リ ング蒸発源および該平面状加熱源が、 前記真空チヤンバの 互いに対向する内側面に配設されている請求項 6 1 に記載の物理的 蒸着装置。
6 5 . 前記真空チャンバの断面形状が、 六角形または八角形であり 前記輻射型加熱機構が、 前記基材ホルダの回転中心と同芯的に配置 された筒状加熱源と、 前記基材ホルダの側面に配置された平面状加 熱源とからなり、 各一対の前記スパッタリ ング蒸発源、 該平面状加 熱源およびアーク蒸発源が、 前記真空チャンバの互いに対向する内 側面に配設されている請求項 6 1 に記載の物理的蒸着装置。
6 6 . 前記プラズマ源が、 前記真空チャンバ内であって前記基材ホ ルダに近接してその長手方向が対向するように配置された熱電子放 tti用のフィ ラメントである請求項 6 1 に記載の物理的蒸着装置。
PCT/JP2003/010114 2002-08-08 2003-08-08 α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜と該アルミナ皮膜を含む積層皮膜、該アルミナ皮膜または該積層皮膜で被覆された部材とその製造方法、および物理的蒸着装置 WO2004015170A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/523,931 US7531212B2 (en) 2002-08-08 2003-08-08 Process for producing an alumina coating comprised mainly of α crystal structure
EP03784598.9A EP1553210B1 (en) 2002-08-08 2003-08-08 PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF a-TYPE CRYSTAL STRUCTURE
AU2003254888A AU2003254888A1 (en) 2002-08-08 2003-08-08 PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF Alpha-TYPE CRYSTAL STRUCTURE, ALUMINA COATING COMPOSED MAINLY OF Alpha-TYPE CRYSTAL STRUCTURE, LAMINATE COATING INCLUDING THE ALUMINA COATING, MEMBER CLAD WITH THE ALUMINA COATING OR LAMINATE COATING, PROCESS FOR PRODUCING THE MEMBER, AND PHYSICAL EVAPORATION APPARATU
IL166622A IL166622A (en) 2002-08-08 2005-02-01 Process for making alumina and layered coatings containing them
US12/402,755 US8323807B2 (en) 2002-08-08 2009-03-12 Process for producing alumina coating composed mainly of α-type crystal structure
US12/402,763 US20090173625A1 (en) 2002-08-08 2009-03-12 Process for producing an alumina coating comprised mainly of alpha crystal structure
IL218369A IL218369A0 (en) 2002-08-08 2012-02-28 A process for producing an alumina coating and laminate coatings including the same

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP2002-231954 2002-08-08
JP2002231954 2002-08-08
JP2002-357210 2002-12-09
JP2002357210A JP3971293B2 (ja) 2002-08-08 2002-12-09 耐摩耗性および耐熱性に優れた積層皮膜およびその製造方法、並びに耐摩耗性および耐熱性に優れた積層皮膜被覆工具
JP2003117353A JP4402898B2 (ja) 2003-04-22 2003-04-22 物理的蒸着装置
JP2003-117353 2003-04-22
JP2003125519A JP3971337B2 (ja) 2003-04-30 2003-04-30 α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜で被覆された部材およびその製造方法
JP2003125549A JP2004332007A (ja) 2003-04-30 2003-04-30 α型結晶構造のアルミナ皮膜
JP2003-125549 2003-04-30
JP2003-125548 2003-04-30
JP2003-125550 2003-04-30
JP2003-125519 2003-04-30
JP2003125550A JP3971339B2 (ja) 2003-04-30 2003-04-30 α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜で被覆された部材およびその製造方法
JP2003125548A JP3971338B2 (ja) 2003-04-30 2003-04-30 α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜で被覆された部材およびその製造方法
JP2003-125517 2003-04-30
JP2003125517A JP3971336B2 (ja) 2003-04-30 2003-04-30 α型結晶構造主体のアルミナ皮膜の製造方法およびα型結晶構造主体のアルミナ皮膜で被覆された部材の製造方法

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10523931 A-371-Of-International 2003-08-08
US12/402,755 Division US8323807B2 (en) 2002-08-08 2009-03-12 Process for producing alumina coating composed mainly of α-type crystal structure
US12/402,763 Division US20090173625A1 (en) 2002-08-08 2009-03-12 Process for producing an alumina coating comprised mainly of alpha crystal structure

Publications (1)

Publication Number Publication Date
WO2004015170A1 true WO2004015170A1 (ja) 2004-02-19

Family

ID=31721980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010114 WO2004015170A1 (ja) 2002-08-08 2003-08-08 α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜と該アルミナ皮膜を含む積層皮膜、該アルミナ皮膜または該積層皮膜で被覆された部材とその製造方法、および物理的蒸着装置

Country Status (6)

Country Link
US (3) US7531212B2 (ja)
EP (3) EP1553210B1 (ja)
CN (1) CN100413998C (ja)
AU (1) AU2003254888A1 (ja)
IL (2) IL166622A (ja)
WO (1) WO2004015170A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1616978A1 (en) 2004-07-16 2006-01-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Multilayer coating excellent in wear and heat resistance

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553210B1 (en) 2002-08-08 2014-05-28 Kabushiki Kaisha Kobe Seiko Sho PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF a-TYPE CRYSTAL STRUCTURE
JP2004284003A (ja) 2003-02-28 2004-10-14 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4173762B2 (ja) * 2003-04-04 2008-10-29 株式会社神戸製鋼所 α型結晶構造主体のアルミナ皮膜の製造方法および積層皮膜被覆部材の製造方法
JP4427271B2 (ja) * 2003-04-30 2010-03-03 株式会社神戸製鋼所 アルミナ保護膜およびその製造方法
JP4205546B2 (ja) * 2003-09-16 2009-01-07 株式会社神戸製鋼所 耐摩耗性、耐熱性および基材との密着性に優れた積層皮膜の製造方法
US20060219325A1 (en) * 2005-03-31 2006-10-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing alpha-alumina layer-formed member and surface treatment
SE529051C2 (sv) * 2005-09-27 2007-04-17 Seco Tools Ab Skärverktygsskär belagt med aluminiumoxid
US20070078521A1 (en) * 2005-09-30 2007-04-05 Depuy Products, Inc. Aluminum oxide coated implants and components
CA2564539C (en) * 2005-11-14 2014-05-06 Sulzer Metco Coatings B.V. A method for coating of a base body with a platinum modified aluminide ptmal by means of a physical deposition out of the gas phase
DE112006003471B4 (de) * 2006-01-18 2017-02-09 Mitsubishi Heavy Industries, Ltd. Feststoffteilchenerosionsbeständige Beschichtung und damit behandelte rotierende Maschine
MX2008012236A (es) * 2006-03-28 2009-02-10 Sumitomo Metal Ind Herramienta cortante y método para producir la misma.
DE102006019000A1 (de) * 2006-04-25 2007-12-13 Vtd Vakuumtechnik Dresden Gmbh Einrichtung und Verfahren zur plasmagestützten Abscheidung von Hartstoffschichten
KR101052036B1 (ko) * 2006-05-27 2011-07-26 한국수력원자력 주식회사 고온 내 부식성 향상을 위한 세라믹 코팅 및 이온빔 믹싱장치 및 이를 이용한 박막의 계면을 개질하는 방법
JP4762077B2 (ja) * 2006-08-09 2011-08-31 日本パーカライジング株式会社 鉄鋼部材の焼入れ方法、焼入れ鉄鋼部材及び焼入れ表面保護剤
US7939181B2 (en) * 2006-10-11 2011-05-10 Oerlikon Trading Ag, Trubbach Layer system with at least one mixed crystal layer of a multi-oxide
JP5232942B2 (ja) * 2007-01-02 2013-07-10 デグテック エルティーディー 切削工具の表面処理方法
US20080207964A1 (en) * 2007-02-23 2008-08-28 Velliyur Nott Mallikarjuna Rao Compositions containing chromium, oxygen and gold, their preparation, and their use as catalysts and catalyst precursors
JP5016961B2 (ja) * 2007-03-30 2012-09-05 株式会社神戸製鋼所 刃部材
US8129040B2 (en) * 2007-05-16 2012-03-06 Oerlikon Trading Ag, Truebbach Cutting tool
DE102007030735A1 (de) * 2007-07-02 2009-01-08 Walter Ag Werkzeug mit mehrlagiger Metalloxidbeschichtung
EP2042261A3 (en) * 2007-09-26 2015-02-18 Sandvik Intellectual Property AB Method of making a coated cutting tool
EP2072636B1 (en) 2007-12-21 2016-08-31 Sandvik Intellectual Property AB Method of making a coated cutting tool
SE532048C2 (sv) * 2008-03-07 2009-10-13 Seco Tools Ab Oxidbelagt skärverktygsskär för spånavskiljande bearbetning av stål
DE102008013965A1 (de) * 2008-03-12 2009-09-17 Kennametal Inc. Hartstoffbeschichteter Körper
JP5375497B2 (ja) * 2009-10-01 2013-12-25 トヨタ自動車株式会社 半導体装置、及び、半導体装置の製造方法
KR101616600B1 (ko) 2009-11-12 2016-04-28 오에스지 가부시키가이샤 경질 피막 피복 공구
US8526137B2 (en) * 2010-04-16 2013-09-03 International Business Machines Corporation Head comprising a crystalline alumina layer
US8507082B2 (en) 2011-03-25 2013-08-13 Kennametal Inc. CVD coated polycrystalline c-BN cutting tools
JP5935125B2 (ja) 2011-05-10 2016-06-15 住友電工ハードメタル株式会社 表面被覆切削工具
US9492872B2 (en) 2011-08-01 2016-11-15 Hitachi Tool Engineering, Ltd. Surface-modified, WC-based cemented carbide member, hard-coated, WC-based cemented carbide member, and their production methods
EP2565291A1 (en) * 2011-08-31 2013-03-06 Hauzer Techno Coating BV Vaccum coating apparatus and method for depositing nanocomposite coatings
CN103828077B (zh) * 2011-09-29 2016-10-12 京瓷株式会社 发光元件安装用基板及发光装置
TW201321542A (zh) * 2011-11-29 2013-06-01 Chenming Mold Ind Corp 製造ic屏蔽鍍膜之設備及ic之金屬屏蔽膜層
KR101471615B1 (ko) * 2012-12-11 2014-12-11 한국에너지기술연구원 수소 분리막 및 그의 제조 방법
US9028953B2 (en) 2013-01-11 2015-05-12 Kennametal Inc. CVD coated polycrystalline c-BN cutting tools
CN105051248B (zh) 2013-03-21 2018-03-20 钴碳化钨硬质合金公司 用于切削工具的涂层
US9371580B2 (en) 2013-03-21 2016-06-21 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same
DE112014001520B4 (de) 2013-03-21 2023-06-15 Kennametal Inc. Beschichtungen für Schneidwerkzeuge
DE102013104254A1 (de) * 2013-04-26 2014-10-30 Walter Ag Werkzeug mit CVD-Beschichtung
US8889534B1 (en) * 2013-05-29 2014-11-18 Tokyo Electron Limited Solid state source introduction of dopants and additives for a plasma doping process
KR101536462B1 (ko) * 2013-12-23 2015-07-24 한국야금 주식회사 난삭재 및 주철가공 절삭공구용 피막
TWI503174B (zh) * 2013-12-26 2015-10-11 Univ Far East The process of making the powder by arc
US11674212B2 (en) * 2014-03-28 2023-06-13 Kubota Corporation Cast product having alumina barrier layer
CN104157681A (zh) * 2014-07-22 2014-11-19 京东方科技集团股份有限公司 一种上部电极及其制造方法和干法刻蚀设备
US9719175B2 (en) 2014-09-30 2017-08-01 Kennametal Inc. Multilayer structured coatings for cutting tools
JP6488106B2 (ja) * 2014-10-30 2019-03-20 三菱マテリアル株式会社 高速断続切削加工においてすぐれた耐チッピング性を発揮する表面被覆切削工具
US9650714B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Nanocomposite refractory coatings and applications thereof
US9650712B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Inter-anchored multilayer refractory coatings
US9764986B2 (en) 2015-01-22 2017-09-19 Kennametal Inc. Low temperature CVD coatings and applications thereof
US10286631B2 (en) 2015-06-03 2019-05-14 Precision Glass Bending Corporation Bent, veneer-encapsulated heat-treated safety glass panels and methods of manufacture
DE102016212874A1 (de) * 2016-07-14 2018-01-18 Oerlikon Surface Solutions Ag, Pfäffikon Schutzbeschichtung für eine thermisch beanspruchte Struktur
JP2019066313A (ja) * 2017-09-29 2019-04-25 ミネベアミツミ株式会社 ひずみゲージ
JP2019066454A (ja) * 2017-09-29 2019-04-25 ミネベアミツミ株式会社 ひずみゲージ、センサモジュール
JP2019066312A (ja) 2017-09-29 2019-04-25 ミネベアミツミ株式会社 ひずみゲージ
JP2019066453A (ja) 2017-09-29 2019-04-25 ミネベアミツミ株式会社 ひずみゲージ
JP6793103B2 (ja) 2017-09-29 2020-12-02 ミネベアミツミ株式会社 ひずみゲージ
JP2019078726A (ja) * 2017-10-27 2019-05-23 ミネベアミツミ株式会社 ひずみゲージ、センサモジュール
JP2019082424A (ja) * 2017-10-31 2019-05-30 ミネベアミツミ株式会社 ひずみゲージ
JP2019082426A (ja) * 2017-10-31 2019-05-30 ミネベアミツミ株式会社 ひずみゲージ
JP2019090722A (ja) * 2017-11-15 2019-06-13 ミネベアミツミ株式会社 ひずみゲージ
JP2019090723A (ja) 2017-11-15 2019-06-13 ミネベアミツミ株式会社 ひずみゲージ
JP2019090724A (ja) * 2017-11-15 2019-06-13 ミネベアミツミ株式会社 ひずみゲージ
US11447657B2 (en) * 2017-12-12 2022-09-20 3M Innovative Properties Company Compositions including alpha-alumina particles and methods of their use
JP2019113411A (ja) * 2017-12-22 2019-07-11 ミネベアミツミ株式会社 ひずみゲージ、センサモジュール
CN111771011B (zh) * 2018-02-27 2022-07-05 日立金属株式会社 被覆构件及其制造方法
JP2019174387A (ja) 2018-03-29 2019-10-10 ミネベアミツミ株式会社 ひずみゲージ
JP2019184284A (ja) * 2018-04-03 2019-10-24 ミネベアミツミ株式会社 ひずみゲージ
JP2019184344A (ja) 2018-04-05 2019-10-24 ミネベアミツミ株式会社 ひずみゲージ及びその製造方法
WO2020085247A1 (ja) 2018-10-23 2020-04-30 ミネベアミツミ株式会社 アクセルペダル、ステアリング、6軸センサ、エンジン、バンパー等
CN109111244B (zh) * 2018-10-26 2019-10-29 北京安颂科技有限公司 氧化锆陶瓷制品及其制备方法
EP3650584A1 (en) 2018-11-08 2020-05-13 Walter Ag An industrial pvd method for producing a coated cutting tool
JP2020141123A (ja) 2019-02-27 2020-09-03 Toto株式会社 半導体製造装置用部材および半導体製造装置用部材を備えた半導体製造装置並びにディスプレイ製造装置
CN110656302A (zh) * 2019-11-04 2020-01-07 北方工业大学 一种抗扩展燃烧的长寿命钛火防护涂层及其制备方法
CN114807871A (zh) * 2022-04-18 2022-07-29 东莞理工学院 一种抗硅中毒铝合金晶粒细化剂的制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851687A (en) * 1993-12-23 1998-12-22 Sandvik Ab Alumina coated cutting tool
JP2000218409A (ja) * 1999-02-03 2000-08-08 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆超硬合金製切削工具
JP2002053946A (ja) 2000-08-04 2002-02-19 Kobe Steel Ltd 硬質皮膜および耐摩耗部材並びにその製造方法

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US54430A (en) * 1866-05-01 Improvement in horse-rake teeth
US214894A (en) * 1879-04-29 Improvement in sewer ventilators and drains
US265206A (en) * 1882-09-26 Lens and manufacture thereof
US274370A (en) * 1883-03-20 Electric-arc lamp
SE406090B (sv) * 1977-06-09 1979-01-22 Sandvik Ab Belagd hardmetallkropp samt sett att framstalla en dylik kropp
US4310614A (en) * 1979-03-19 1982-01-12 Xerox Corporation Method and apparatus for pretreating and depositing thin films on substrates
US4501786A (en) * 1981-12-16 1985-02-26 General Electric Company Coated product with oxide wear layer
US4490191A (en) * 1981-12-16 1984-12-25 General Electric Company Coated product and process
JPS598679A (ja) 1982-07-07 1984-01-17 住友電気工業株式会社 被覆硬質焼結体
JPS61221369A (ja) * 1985-03-27 1986-10-01 Sumitomo Electric Ind Ltd 被覆超硬合金部材
US4714660A (en) * 1985-12-23 1987-12-22 Fansteel Inc. Hard coatings with multiphase microstructures
JPS6399867A (ja) * 1986-10-17 1988-05-02 ペルメレツク電極株式会社 リン酸カルシウム化合物被覆複合材及びその製造方法
JP2906411B2 (ja) 1988-04-23 1999-06-21 ソニー株式会社 半導体装置の製造方法
US5167943A (en) * 1989-06-06 1992-12-01 Norton Company Titanium nitride coated silicon carbide materials with an interlayer resistant to carbon-diffusivity
SE464818B (sv) * 1989-06-16 1991-06-17 Sandvik Ab Belagt skaer foer skaerande bearbetning
FR2654094B1 (fr) * 1989-11-09 1993-07-09 Aerospatiale Procede de fabrication d'un materiau carbone protege contre l'oxydation par du nitrure d'aluminium et materiau obtenu par ce procede.
US5069938A (en) * 1990-06-07 1991-12-03 Applied Materials, Inc. Method of forming a corrosion-resistant protective coating on aluminum substrate
US5516588A (en) * 1991-03-27 1996-05-14 Widia Gmbh Composite body, its use and a process for its production
CA2065581C (en) * 1991-04-22 2002-03-12 Andal Corp. Plasma enhancement apparatus and method for physical vapor deposition
US5310607A (en) 1991-05-16 1994-05-10 Balzers Aktiengesellschaft Hard coating; a workpiece coated by such hard coating and a method of coating such workpiece by such hard coating
JP2688872B2 (ja) 1992-03-30 1997-12-10 アネルバ株式会社 Pzt薄膜の作製方法及びスパッタリング装置
US5326380A (en) * 1992-10-26 1994-07-05 Smith International, Inc. Synthesis of polycrystalline cubic boron nitride
SE501527C2 (sv) * 1992-12-18 1995-03-06 Sandvik Ab Sätt och alster vid beläggning av ett skärande verktyg med ett aluminiumoxidskikt
US6495271B1 (en) * 1993-03-01 2002-12-17 General Electric Company Spallation-resistant protective layer on high performance alloys
US5635247A (en) * 1995-02-17 1997-06-03 Seco Tools Ab Alumina coated cemented carbide body
JPH08246134A (ja) * 1995-03-07 1996-09-24 Sumitomo Electric Ind Ltd レーザー蒸着法による薄膜製造方法及び薄膜製造装置
US5683761A (en) * 1995-05-25 1997-11-04 General Electric Company Alpha alumina protective coatings for bond-coated substrates and their preparation
US5879823A (en) * 1995-12-12 1999-03-09 Kennametal Inc. Coated cutting tool
JP3418066B2 (ja) * 1996-07-03 2003-06-16 日立金属株式会社 アルミナ被覆工具とその製造方法
JP3239779B2 (ja) * 1996-10-29 2001-12-17 日新電機株式会社 基板処理装置および基板処理方法
DE69730576T2 (de) * 1996-12-04 2005-02-03 Sumitomo Electric Industries, Ltd. Beschichtetes Werkzeug und Verfahren zu seiner Herstellung
JP3402146B2 (ja) * 1997-09-02 2003-04-28 三菱マテリアル株式会社 硬質被覆層がすぐれた密着性を有する表面被覆超硬合金製エンドミル
SE520802C2 (sv) * 1997-11-06 2003-08-26 Sandvik Ab Skärverktyg belagt med aluminiumoxid och process för dess tillverkning
JP2937187B1 (ja) 1998-03-23 1999-08-23 株式会社移動体通信先端技術研究所 超伝導薄膜の成膜方法、その方法に用いられるヒータユニット、および超伝導薄膜の成膜装置
JP3573256B2 (ja) 1998-07-27 2004-10-06 住友電気工業株式会社 Al2O3被覆cBN基焼結体切削工具
DE69901985T2 (de) * 1998-07-29 2002-12-05 Toshiba Tungaloy Co. Ltd., Kawasaki Aluminiumoxid-beschichteter Werkzeugteil
US6251508B1 (en) * 1998-12-09 2001-06-26 Seco Tools Ab Grade for cast iron
SE520795C2 (sv) 1999-05-06 2003-08-26 Sandvik Ab Skärverktyg belagt med aluminiumoxid och process för dess tillverkning
SE519108C2 (sv) * 1999-05-06 2003-01-14 Sandvik Ab Belagt skärverktyg för bearbetning av grått gjutjärn
SE521284C2 (sv) * 1999-05-19 2003-10-21 Sandvik Ab Aluminiumoxidbelagt skärverktyg för metallbearbetning
US6599062B1 (en) * 1999-06-11 2003-07-29 Kennametal Pc Inc. Coated PCBN cutting inserts
DE19962056A1 (de) * 1999-12-22 2001-07-12 Walter Ag Schneidwerkzeug mit mehrlagiger, verschleissfester Beschichtung
US6453913B2 (en) 2000-04-27 2002-09-24 Canon Kabushiki Kaisha Method of cleaning a film deposition apparatus, method of dry etching a film deposition apparatus, and an article production method including a process based on the cleaning or dry etching method
JP2001335917A (ja) 2000-05-31 2001-12-07 Agency Of Ind Science & Technol アルミナ結晶質薄膜の低温製法
ATE380890T1 (de) * 2000-05-31 2007-12-15 Mitsubishi Materials Corp Beschichtetes schneidwerkzeug aus zementiertem karbid und verfahren zu dessen herstellung
JP4449187B2 (ja) 2000-07-19 2010-04-14 住友電気工業株式会社 薄膜形成方法
SE522736C2 (sv) * 2001-02-16 2004-03-02 Sandvik Ab Aluminiumoxidbelagt skärverktyg och metod för att framställa detsamma
US6689450B2 (en) * 2001-03-27 2004-02-10 Seco Tools Ab Enhanced Al2O3-Ti(C,N) multi-coating deposited at low temperature
SE525581C2 (sv) * 2002-05-08 2005-03-15 Seco Tools Ab Skär belagt med aluminiumoxid framställt med CVD
EP1553210B1 (en) 2002-08-08 2014-05-28 Kabushiki Kaisha Kobe Seiko Sho PROCESS FOR PRODUCING ALUMINA COATING COMPOSED MAINLY OF a-TYPE CRYSTAL STRUCTURE
JP4173762B2 (ja) * 2003-04-04 2008-10-29 株式会社神戸製鋼所 α型結晶構造主体のアルミナ皮膜の製造方法および積層皮膜被覆部材の製造方法
JP4427271B2 (ja) * 2003-04-30 2010-03-03 株式会社神戸製鋼所 アルミナ保護膜およびその製造方法
JP4205546B2 (ja) * 2003-09-16 2009-01-07 株式会社神戸製鋼所 耐摩耗性、耐熱性および基材との密着性に優れた積層皮膜の製造方法
JP2006028600A (ja) * 2004-07-16 2006-02-02 Kobe Steel Ltd 耐摩耗性と耐熱性に優れた積層皮膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5851687A (en) * 1993-12-23 1998-12-22 Sandvik Ab Alumina coated cutting tool
JP2000218409A (ja) * 1999-02-03 2000-08-08 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆超硬合金製切削工具
JP2002053946A (ja) 2000-08-04 2002-02-19 Kobe Steel Ltd 硬質皮膜および耐摩耗部材並びにその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IKEDA ET AL., THIN SOLID FILMS, vol. 195, 1991, pages 99 - 110
See also references of EP1553210A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1616978A1 (en) 2004-07-16 2006-01-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Multilayer coating excellent in wear and heat resistance
US7169485B2 (en) 2004-07-16 2007-01-30 Kobe Steel, Ltd. Multilayer coating excellent in wear resistance and heat resistance

Also Published As

Publication number Publication date
EP1553210B1 (en) 2014-05-28
AU2003254888A1 (en) 2004-02-25
EP1553210A4 (en) 2010-03-31
US20090173625A1 (en) 2009-07-09
US8323807B2 (en) 2012-12-04
EP2848712B1 (en) 2018-05-30
US20090214894A1 (en) 2009-08-27
EP2865784A1 (en) 2015-04-29
US7531212B2 (en) 2009-05-12
EP1553210A1 (en) 2005-07-13
CN100413998C (zh) 2008-08-27
US20050276990A1 (en) 2005-12-15
CN1675409A (zh) 2005-09-28
IL166622A0 (en) 2006-01-15
IL218369A0 (en) 2012-04-30
EP2848712A1 (en) 2015-03-18
IL166622A (en) 2013-04-30

Similar Documents

Publication Publication Date Title
WO2004015170A1 (ja) α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜と該アルミナ皮膜を含む積層皮膜、該アルミナ皮膜または該積層皮膜で被覆された部材とその製造方法、および物理的蒸着装置
JP4205546B2 (ja) 耐摩耗性、耐熱性および基材との密着性に優れた積層皮膜の製造方法
JP4427271B2 (ja) アルミナ保護膜およびその製造方法
JP5368335B2 (ja) 硬質皮膜および硬質皮膜の製造方法
JP2006028600A (ja) 耐摩耗性と耐熱性に優れた積層皮膜
SE0600585L (sv) Förfarande för framställning av med a-aluminiumoxidskikt försett element och ytbehandling
WO2017094440A1 (ja) 硬質皮膜、硬質皮膜被覆部材及びその製造方法、及び硬質皮膜の製造に用いるターゲット及びその製造方法
JP3914686B2 (ja) 切削工具とその製造方法
JP5555835B2 (ja) 耐摩耗性にすぐれたターニング加工用表面被覆切削工具およびその製造方法
EP1616974B1 (en) Method for preparing an alpha alumina coating
JP3914687B2 (ja) 切削工具とその製造方法
JP3971336B2 (ja) α型結晶構造主体のアルミナ皮膜の製造方法およびα型結晶構造主体のアルミナ皮膜で被覆された部材の製造方法
JP3971293B2 (ja) 耐摩耗性および耐熱性に優れた積層皮膜およびその製造方法、並びに耐摩耗性および耐熱性に優れた積層皮膜被覆工具
JP4402898B2 (ja) 物理的蒸着装置
JP3971338B2 (ja) α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜で被覆された部材およびその製造方法
KR100682416B1 (ko) α형 결정 구조 주체의 알루미나 피막의 제조 방법, α형결정 구조 주체의 알루미나 피막과 그 알루미나 피막을포함하는 적층 피막, 그 알루미나 피막 또는 그 적층피막으로 피복된 부재와 그 제조 방법, 및 물리적 증착 장치
JP3971337B2 (ja) α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜で被覆された部材およびその製造方法
CN101445928A (zh) α型晶体结构为主体的氧化铝被膜相关技术
JP3971339B2 (ja) α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜で被覆された部材およびその製造方法
JP2011194518A (ja) 耐摩耗性にすぐれたミーリング加工用表面被覆切削工具およびその製造方法
JPH06248422A (ja) 被覆焼結体およびその製造方法
JP2004332007A (ja) α型結晶構造のアルミナ皮膜

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 166622

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 1020057002024

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038189275

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10523931

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003784598

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057002024

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003784598

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 218369

Country of ref document: IL