WO2004011659A1 - Method of microbial production of hydrogen and hydrogen production apparatus - Google Patents

Method of microbial production of hydrogen and hydrogen production apparatus

Info

Publication number
WO2004011659A1
WO2004011659A1 PCT/JP2003/009413 JP0309413W WO2004011659A1 WO 2004011659 A1 WO2004011659 A1 WO 2004011659A1 JP 0309413 W JP0309413 W JP 0309413W WO 2004011659 A1 WO2004011659 A1 WO 2004011659A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
microalgae
hydrogen
bacteria
carrier
Prior art date
Application number
PCT/JP2003/009413
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiharu Miura
Original Assignee
Yoshiharu Miura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002217929A external-priority patent/JP2004057045A/en
Priority claimed from JP2002264655A external-priority patent/JP2004097116A/en
Application filed by Yoshiharu Miura filed Critical Yoshiharu Miura
Publication of WO2004011659A1 publication Critical patent/WO2004011659A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/24Draft tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide

Definitions

  • the present invention relates to a method and an apparatus for producing hydrogen using microorganisms, and more particularly, to a method for producing hydrogen using microalgae having photosynthetic ability and bacteria having photosynthetic ability. It aims to mass-produce and industrialize. Background art
  • the present invention provides a production method, and further discloses a step of culturing microalgae having photosynthetic ability under light and aerobic conditions to obtain a photosynthetic product in Japanese Patent Application Laid-Open No. 2000-102793. Culturing the microalgae under dark anaerobic conditions to obtain a fermented solution of the photosynthesis; A step of allowing bacteria having photosynthetic ability to act on the fermentation broth under anaerobic conditions.
  • the step of culturing the microalgae under the bright and aerobic conditions and / or the step of causing bacteria to act on the fermentation solution under the bright and anaerobic conditions is carried out in a transparent tower type air-lift tank. Has proposed a production method.
  • Japanese Patent Application Laid-Open No. 10-42881 discloses a hydrogen production system using a marine algae / marine photosynthetic bacterium and the like, in which carbon dioxide is used as a purge gas in a fermentation tank of a green algae fermentation process. What has been proposed.
  • Japanese Patent Application Laid-Open No. 2000-102703 uses a transparent tower-type air lift tank for culturing microalgae under light aerobic conditions and for producing hydrogen by photosynthetic bacteria under light anaerobic conditions. This enables efficient hydrogen production.
  • microalgae cultivation and the production of photosynthetic products such as starch are performed at the same time, so a large amount of light energy is required for cultivation and starch synthesis. Is still not enough. Therefore, there is still room for improvement in terms of mass production of z-elements and industrialization, and further simplification of the production process and reduction of manufacturing equipment are desired.
  • H10-42881 discloses a purge gas. Although carbon dioxide is used to improve carbon dioxide production, green algae are cultivated in a culture tank and starch is accumulated using the cultured green algae fluid, which is necessary for cultivation and starch synthesis. Large amounts of light energy are required, the efficiency of nitrogen production is low, and there is a problem that mass production is not possible. In addition, there is a problem that it cannot respond to mass production and industrialization because it is operated in a batch processing operation.
  • the present invention has been made in view of the above-described problems, and in the production of hydrogen using microalgae, the efficiency of hydrogen production has been improved, and the mass production of hydrogen The task is to plan.
  • the present invention firstly comprises a step of obtaining a hydrogen-producing assimilate by a microalgae having photosynthetic ability, and using the assimilable substance to produce hydrogen by a bacteria having photosynthetic ability.
  • a hydrogen production method comprising a series of steps including a step,
  • the microalgae and / or the cultivation of the bacterium is performed in advance, and the microalgae cells and the bacterial cells are supplied to the above step in a state where the cell concentration is increased by promoting the growth of the cells. It provides a method for producing hydrogen by using microorganisms.
  • the microalgae and bacteria having photosynthetic ability for culturing the cells in advance are microalgae and bacteria in the late logarithmic phase to the stationary phase in which the cell growth has progressed, and have a cell concentration of 1.0 ⁇ 10 8 ce 11. It is present in a saturated state in a solution containing seawater or / and at least a nitrogen supply source, an inorganic component, and a vitamin so that s / ml or more.
  • the above solution preferably contains a small amount of nitrogen source, and the concentration of the nitrogen source such as ammonium chloride is preferably 0.1 mM or less.
  • the salt concentration is set to 1.0% to 10.0%, preferably 3.0% to 5.0%.
  • Salinity refers to the concentration of NaCl.
  • the microalgae can efficiently secrete the seven-source as an extracellular source.
  • microalgae and bacteria in the late logarithmic phase to the stationary phase, the rise time of the reaction in each step can be shortened, and high production efficiency can be obtained from the initial state. Also, when microalgae and bacteria whose cell concentration has been increased by culturing in advance are introduced into the hydrogen production line, the process of culturing microalgae and bacteria in the line is not required, and the 7_K element is produced very efficiently. can do.
  • microalgae and bacteria whose cells have been pre-cultured to increase the cell concentration, light energy is not used for cell growth of microalgae and bacteria in the cell production line, so the final production
  • the production efficiency of hydrogen, which is a product, can be improved, and mass production and industrialization of hydrogen can be realized.
  • the present invention comprises a series of steps including a step of obtaining a hydrogen-producing assimilable substance from a microalga having photosynthetic ability, and a step of producing hydrogen from a photosynthesizing bacterium using the assimilable substance.
  • a hydrogen generation method characterized in that the microalga or the bacterium and the bacterium are fixed to a liquid-insoluble carrier and are present in a solution.
  • the microalgae or bacteria and bacteria immobilized on the carrier are obtained by culturing the cells in advance and increasing the cell concentration.
  • microalgae and bacteria immobilized on the carrier are not limited to microalgae and bacteria that have been cultured in advance to increase the cell concentration, and can be applied to microalgae and bacteria supplied to the above-described series of hydrogen production steps.
  • the microalgae may be used in a carrier of 30 mg dry weight / cm 3 (carrier) to 70 mg dry weight / cm 3 (carrier), preferably 40 mg dry weight / cm 3 (carrier) to 5 O mg dry It is immobilized with a weight of Z cm 3 (carrier).
  • the above bacterium is added to the carrier in an amount of 10 mg dry cell weight / cm 3 (carrier) to 50 mg. It is immobilized at a dry cell weight / cm 3 (carrier), preferably 20 mg dry cell weight / cm 3 (carrier) to 40 mg dry cell weight / cm 3 (carrier).
  • a dry cell weight / cm 3 carrier
  • immobilizing microalgal and bacterial cells on a carrier rather than using them as floating cells, not only stresses the cells but also increases the cell density per unit volume, The activity can be stabilized, and the action of microalgae and bacteria can be maintained for a long time.
  • the immobilized microalgae or bacteria die, they are easily detached from the carrier, and then the microalgae or bacteria are newly grown and adhere to the carrier.
  • the carrier on which the microalgae or bacteria are immobilized can be easily separated from the liquid by solid-liquid separation using a filter or the like. Can be. Therefore, the carrier on which the microalgae or bacteria are immobilized can be collected and recycled, or only the necessary solution can be circulated, or the microalgae and bacteria can be separated so that they do not mix.
  • the above bacteria have an activity of nitrogenase of 200 to 1000 nmo 1 C 2 H 4 / g cell dry wt / hr (this activity is measured by the reduction rate of acetylene to ethylene). It is used in a state of high induction.
  • the nitrogenase may be induced in the bacteria at a high level and then the bacteria may be immobilized on the carrier, or the bacteria may be immobilized on the carrier and the nitrogenase induced in the bacteria at a high level.
  • a porous body is suitably used as a carrier for immobilizing the microalgae and bacteria.
  • the porous body include porous glass beads, polyvinyl alcohol, polyurethane foam, polystyrene foam, polyacrylamide, polyvinyl formal resin L-form, silicon foam, and cellulose L-form.
  • the pore size of the porous body is preferably about 10 to 500 ⁇ m.
  • the shape of the carrier is not limited, but considering the strength and culture efficiency of the carrier, the shape is spherical or cubic. If the size is spherical, the diameter is l mn! 550 mm. In the case of a cubic shape, a square of 1 mm mm50 mm is preferred.
  • the carrier binding method includes a chemical adsorption method or a physical adsorption method in which the resin is adsorbed on an ion-exchangeable resin.
  • Microalgae especially blue algae, are generally sticky and many can be easily adhered and fixed to carriers.
  • the carrier can be easily immobilized by coating the carrier with a positively charged polylysine in advance, and binding the bacteria to the lysine by electrical attraction.
  • ⁇ algae When immobilized by the above method, ⁇ algae can be immobilized at about 5 Omg dry weight / cm 3 (carrier). Bacteria can be immobilized at about 3 O mg dry weight / cm 3 (carrier).
  • the microalgae having photosynthetic ability used in the present invention include: Cyanobacteria and the like are preferred.
  • green algae include Chlamydomonas reinhardtii, Chlamydomonas reinhardtii, Chlamydomonas' moebushii (Chlamydomonas moewusi i), Chlamydomonas moewusi i, Chlamydomonas sp.
  • Chlamydoraonas eugametos Chlamydoraonas eugametos (Chlamydoraonas eugametos) yd Chlamydomo-nas segnis Chlorel la vulgaris belonging to the genus Chlorel la; 1 guus) and Dunaliella laterro-lecta belonging to the genus Dunaliella (Duna-1 iel la).
  • Anabaena variabilis belonging to the genus Anabaena (Anabanena variabi l is) ATCC 29413, Cyanothece sp. ATCC 51142 from the genus Cy-anothece, Synechococcus (Synec- hococcus)
  • the genus includes Synechococcus sp. PCC 7942 belonging to the genus and Anacystis nidulans belonging to the genus Anacystis, and one or more species may be used.
  • Chlamydomonas reinhardi belonging to the genus Chlamydomonas is preferable because of its excellent secretion ability of hydrogen source.
  • the alga Chlamydomonas MG A161 strain and Chlamydomonas W-80 strain are strains isolated from seawater by a conventional method, and have high photosynthetic ability under light and aerobic conditions, as well as dark anaerobic conditions. It is preferable because it has an excellent ability to rapidly adapt to a photosynthetic system when the fermentation under the conditions is fast and when the conditions are returned to the light and aerobic conditions, and it is easy to immobilize on a carrier.
  • Chlamydomonas MG A161 and Chlamydomonas W-80 strains or equivalents are strains that can be easily isolated from seawater samples by a person skilled in the art with photosynthetic ability and resolution.
  • the bacteria having the photosynthetic ability there are used photosynthetic vegetative bacteria and photosynthetic organotrophic bacteria (such as red-colorless sulfur-free bacterium and blue-sliding bacterium), and one or more species may be used.
  • a photosynthetic organic vegetative bacterium is preferably used because a photosynthetic organic substance is used as a substrate (electron donor).
  • a red sulfur-free bacterium belonging to the family Rhodospi-ril laceae is used.
  • green gliding bacteria belonging to the Chloro lexaceae family is used.
  • the photosynthetic organotrophic bacterium can be obtained, for example, by selecting a microorganism that generates hydrogen from a seawater sample using lactic acid (eg, 0.3 mM) as a substrate.
  • lactic acid eg, 0.3 mM
  • photosynthetic bacteria include, for example, Rhodoseudomonas palustris belonging to the genus Rhodoseudomonas and Rhodopseudomonas acidopni la belonging to the genus Rhodoseudomonas.
  • the solution containing seawater and / or a nitrogen supply source, an inorganic component, and a vitamin in which the microalgae and bacteria are present may be a solution containing an appropriate nitrogen supply source, an inorganic component, and a vitamin.
  • Seawater is a medium containing inorganic components.
  • Modified Okamoto medium preferably used is the force ⁇ following composition (hereinafter, referred to as MOM medium): NaC "30 g, C a C 1 2 ⁇ 2H 2 0 ⁇ 2 ⁇ 0 mg, MgSO 4 '7H 2 O ⁇ 250mg , FeSO 4 '7H 2 O ⁇ 20mg, KH 2 P0 4 -40. 8mg, K 2 HP0 4 -495mg, vitamin ... 100 ⁇ g, vitamin ⁇ 12 ⁇ 1 ⁇ g, 1 ⁇ NE C doctor "5m 1, Fine metal mixture A5... 1.0 ml, distilled water... 1000 ml pH 8.0 is also used.
  • composition of the trace metal mixture A5 is as follows.
  • the present invention relates to a microalgae in which cells are cultured in advance and the cell concentration is increased in a state of being fixed to the carrier, or a z-element production method using Z and bacteria.
  • a first step of obtaining a photosynthetic product a second step of using the obtained photosynthetic product by the microalgae to obtain a source of hydrogen generation under anaerobic conditions, and having a photosynthetic ability using the source of photosynthesis. It provides a hydrogen production method that includes three steps: a third step in which hydrogen is produced by bacteria under light and anaerobic conditions.
  • a suspension in which microalgae fixed to the carrier and having a cell concentration increased in advance are present in a solution is supplied.
  • a suspension in which bacteria having a cell concentration increased in advance and fixed to the carrier are present in a solution is supplied. .
  • microalgae and bacteria culture step is not required in a series of hydrogen production steps, and the efficiency is extremely high. Produce hydrogen be able to.
  • microalgae whose cell concentration has been increased are supplied in advance, so that light energy obtained under bright and aerobic conditions is not used for cell growth of microalgae, and generation of photosynthetic products The photosynthetic product can be obtained efficiently. As a result, it is possible to increase the production efficiency of a source of hydrogen production obtained using photosynthesis products.
  • bacteria with an increased cell concentration are supplied in advance, so the light energy obtained under light-anaerobic conditions is not used for bacterial cell growth, but is concentrated on hydrogen generation. Is spent on, and you can get 7 elements efficiently.
  • a first step of obtaining photosynthetic products from the microalgae a second step of obtaining a utilization source by fermentation and decomposition by the microalgae under anaerobic conditions, and a third step of producing hydrogen by bacteria from the purification source Continuous production of three micro-algae with photosynthetic ability used in the first step to the second step, thereby increasing the production speed and increasing the mass production of hydrogen be able to.
  • the above-mentioned assimilable source and microalgae are separated, and the assimilable source and the bacteria having photosynthetic ability that are separated in the third step are allowed to act on the microalgae.
  • the algae is circulated to the first step.
  • the microalgae can be circulated and reused, so that the microalgae having a stable and high cell concentration can always be used.
  • a carbon source is required, so it is preferable to ventilate air or a mixed gas of air and carbon dioxide.
  • the concentration of carbon dioxide in the gas is preferably about 2 to 20%, preferably 2 to; L 0%, and more preferably about 2 to 5%.
  • the cell concentration is determined by preliminarily culturing cells in a state where the cells are fixed to the carrier.
  • Another method of producing hydrogen using enhanced microalgae and / or bacteria is the production of hydrogen by microalgae with photosynthetic ability under light and aerobic conditions, with a liquid phase osmotic pressure of 5.0 atm or more.
  • the present invention provides a hydrogen production method including two steps of producing hydrogen by bacteria having photosynthetic ability using the above-mentioned assimilation source under light and anaerobic conditions.
  • a suspension containing microalgae whose cell concentration has been increased by cell culture in advance in a state of being fixed to the carrier is supplied, and in the second step, the cell is cultured in advance in a state of being fixed to the carrier. It supplies a suspension containing bacteria with increased cell concentration.
  • the method of the present invention omits the second step of obtaining a hydrogen-producing material under anaerobic conditions in the method described above.
  • the omission of the second step is based on the results obtained by the present inventor by repeating experiments.
  • microalgae having photosynthetic ability accumulate photosynthetic products consisting of organic substances such as starch obtained by photosynthesis in cells.
  • photosynthetic products consisting of organic substances such as starch obtained by photosynthesis in cells.
  • increasing the osmotic pressure of the liquid phase, immobilizing the microalgae on the carrier, and increasing the concentration of carbon dioxide in the gas phase may cause stress on the microalgae.
  • the microalgae use light energy to generate a utilization source of hydrogen generation mainly composed of low-molecular-weight organic substances such as glycerol by photosynthesis, and secrete the utilization source out of the cell.
  • a micro-algae with photosynthetic ability can be used as a source of hydrogen production such as glycerol without using the micro-algae under the anaerobic conditions, without going through an enzymatic and decomposition process.
  • (1) the hydrogen production process can be simplified and the 7_K element production efficiency can be improved.
  • the reason why the osmotic pressure is set to 5.0 atm or more is that if the osmotic pressure is lower than this, photosynthetic products generated by the microalgae are accumulated in the microalgae, and the photosynthetic products are used as a source of hydrogen generation. This is because they are not secreted out of the microalgae, and the above-mentioned resources are insufficient, and the hydrogen generation efficiency is reduced.
  • the osmotic pressure of the liquid phase is preferably at least 10.0 atm, more preferably at least 20.0 atm. The higher the osmotic pressure of the liquid phase is, the more effective it is to obtain the assimilation source.
  • the osmotic pressure of the liquid phase is preferably 10.0 atm to 30.0 atm.
  • the volume concentration of carbon dioxide in the first step is 1.0% to 20.0%, preferably 2%.
  • a gas that is between 0% and 15.0% is ventilated.
  • the present invention provides an element production apparatus based on the above-described hydrogen production method.
  • the first of the hydrogen production equipment is
  • the first tank, the second tank, and the third tank are sequentially connected via a pipe or a filter, and the suspension in which the photosynthetic product and the microalga are present is passed from the first tank to the second tank. Then, the suspension from which the microalgae has been removed is circulated from the second tank to the third tank, and a pipe for taking out the hydrogen generated without flowing the bacteria out of the tank is continuously connected to the third tank.
  • a suspension containing the microalgae fixed to a liquid-insoluble carrier and having a cell concentration increased in advance is supplied to the first tank, and the third tank is supplied with a liquid-insoluble carrier.
  • the cell is fixed and the cell concentration is increased in advance.
  • An element production apparatus characterized in that a suspension in which bacteria are present is supplied.
  • the pipe between the second tank and the third tank is provided with a pipe that circulates the separated microalgae to the first tank while interposing the microalgae separating means.
  • the first tank Under aerobic conditions, under the condition that the osmotic pressure of the liquid phase is 5.0 atm or more, the first tank to obtain a source of 7_ nitrogen production by photosynthetic microalgae,
  • a second tank for producing hydrogen by bacteria having photosynthetic ability using the above-mentioned assimilable source under light and anaerobic conditions is provided.
  • the first tank and the second tank are sequentially connected via a pipe or a filter, and
  • the suspension from which the microalgae was removed was circulated from the first tank to the second tank, and a pipe for taking out the generated hydrogen without flowing the bacteria out of the tank was connected to the second tank.
  • the first tank is supplied with a suspension in which the microalgae are fixed in a liquid-insoluble carrier and the cell concentration is increased in advance, and the second tank is fixed on a liquid-insoluble carrier.
  • the present invention also provides a hydrogen production apparatus characterized in that a suspension in which the above-mentioned bacteria whose cell concentration has been increased in advance is supplied.
  • Filters are arranged at the outlets of the first tank and the second tank, respectively, so that the microalgae and the bacteria do not flow out of the tank.
  • a filter made of polysulfone, which is most preferably used, or a filter made of polyethylene, polypropylene, polyvinylidenefluorite or the like is also used.
  • first and third tanks of the above-described hydrogen production apparatus and the first and second tanks of the hydrogen production apparatus to be described later provide a flow for transmitting light energy and heat energy evenly to microalgae and bacteria. Proposed by the applicant It is preferable to use a transparent type air lift tank having a helical flow described in the above-mentioned JP-A No. 2000-110297, but it is also possible to use a stirring type tank.
  • All of the above hydrogen production devices are preferably installed in places where sunlight can be used.
  • light irradiation equipment may be provided as a light energy source when the amount of light is insufficient such as in cloudy weather or at night.
  • Each of the tanks has a discharge port for discharging unnecessary gas.
  • FIG. 1 is a schematic configuration diagram of the hydrogen production process of the first invention.
  • FIG. 2 is a schematic configuration diagram of the hydrogen production process of the second invention.
  • FIG. 3 is a schematic configuration diagram of a transparent tower type airlift tank used in the hydrogen production apparatus of the present invention.
  • FIG. 1 shows a schematic configuration of a hydrogen production device 10 of the first embodiment.
  • the hydrogen production device 10 is a first tank 11 that performs the process of obtaining photosynthetic products under light and aerobic conditions using microalgae with photosynthetic ability.
  • the microalgae with photosynthetic ability using photosynthetic products is used under dark anaerobic conditions.
  • a second tank 12 is provided for performing the step of obtaining a source of hydrogen generation
  • a third tank 13 is provided for performing a step of generating hydrogen under light and anaerobic conditions using bacteria having photosynthetic ability using the source of hydrogen. I have. With these three tanks, the process of obtaining photosynthesis products, the process of obtaining a source of hydrogen generation, and the process of generating z-elements are sequentially performed.
  • the first tank 11 and the second tank 12 are connected by a pipe ⁇ 1, and the second tank 12 and the third tank 13 are connected by pipes ⁇ 2 and ⁇ 3 through a separation device 14. Separation group 14 is also connected to the first tank 11 by pipe # 4.
  • the third tank 13 is provided with a pipe P5 for hydrogen recovery.
  • the temperature of the above tanks 11 to 13 is 15 ° C to 35 ° C, the pressure of the gas phase is about 1 atm, which is normal pressure, and the dilution rate of the suspension is 0.05 hr- 1 to lhr—the average of the suspension.
  • the residence time ranges from 1 ⁇ 11 "to 20111: the pH of the suspension circulating in the first tank 11 is 5 to 8, the pH of the suspension in the second tank 12 is 3 to 6, 3 The pH of the suspension in the tank 13 is set to be 5-8.
  • carbon dioxide as a carbon source air (oxygen), seawater, and microalgae such as green algae having photosynthetic ability are supplied from the inlet of the first tank 11.
  • the microalga to be supplied to the first tank 11 is in a state in which cells are cultured in another container in advance and the cell concentration is increased.
  • the microalgae is fixed in a suspension mainly composed of seawater on a carrier insoluble in the suspension to obtain microalgae in the late logarithmic growth phase or stationary phase in which cell growth has progressed, Cell concentration
  • 1. is a saturated state where the O xl 0 8 cells / ml or more.
  • the first tank 11 is irradiated with light, such as sunlight, so that the conditions are bright and aerobic.
  • the microalgae having the photosynthetic ability described above uses carbon dioxide as a carbon source and uses energy to obtain a photosynthetic product containing starch, and the starch obtained by the photosynthesis is stored in the microalgae.
  • the microalgae are not proliferating, but almost only synthesize starch, and the starch concentration is increased.
  • the starch concentration in the suspension was increased to 1.0 to 3.0 mol 1 Zm1, preferably 1.8 to 2.5 mol Zml, and the second concentration was passed through the pipe P 1 from the first tank 11.
  • the concentration of carbon dioxide is reduced by the amount used for starch synthesis, and the concentration of microalgae is about the same as at the inlet.
  • the second tank 12 no light such as sunlight is irradiated, and no oxygen is present. And 100% carbon dioxide gas is ventilated.
  • Microalgae containing starch which is a photosynthetic product, are degraded under anaerobic conditions, fermented, and ethanol, glycerol, acetic acid, etc. are released from microalgae into suspension.
  • organic acids such as formic acid and lactic acid and alcohols are also released outside the microalgae. Ethanol, glycerol, acetic acid, etc. released in this way are used as sources of hydrogen generation.
  • the organic matter of the utilization source is used as an electron donor for hydrogen production by bacteria having photosynthetic ability.
  • the anaerobic condition in the second tank 12 is a condition under which fermentative production of organic matter is smoothly performed, and particularly preferably a condition under which a large amount of lactic acid is fermented.
  • the anaerobic condition by passing carbon dioxide gas promotes the decomposition of photosynthetic products, while minimizing the generation of hydrogen by microalgae.
  • the time required for fermentation in the second tank 12 may be substantially the same as the time required for starch synthesis in the first tank 11.
  • the product of the concentration of the source at the outlet of the second tank 12 and the flow rate of the suspension is the production rate of the source, and the second tank 12 is the production rate of this source. Is the highest condition.
  • the suspension containing assimilable resources and microalgae flowing out of the second tank 12 is sent to the separation device 14 through the pipe P2, and is fixed to the carrier by the filter 1 provided in the separation device 14.
  • the resulting microalgae are cut off and separated from the suspension containing assimilable resources.
  • the separated microalgae is circulated through the pipe P4 to the first tank 11 and reused in the step of obtaining photosynthetic products.
  • the suspension containing the separated resources flows into the third tank 13 through the pipe P3.
  • the source of inflow from the second tank 12 is reacted with bacteria having photosynthetic ability to generate ⁇ -element.
  • bacteria having photosynthetic ability are immobilized on a carrier insoluble in the suspension, and cells are cultured in advance to increase the cell concentration.
  • the above bacteria are bacteria in the late logarithmic growth phase or stationary phase in which cell growth has progressed, and are present in a suspension mainly composed of seawater, and have a cell concentration of 1.0 X 1 It is saturated so that it is not less than 0 8 cells / ml.
  • This ditrogenase is activated by an activity of 200 to 100 nmol C 2 H 4 / mg cell dry wet / hr (this activity is measured by the reduction rate of acetylene to ethylene).
  • the third tank 13 is irradiated with light, such as sunlight, and is in a light-anaerobic condition.
  • the above bacteria produce hydrogen from light sources such as ethanol using light energy, and the obtained hydrogen is recovered through pipes. Note that a part of the generated hydrogen may be circulated to the third tank 13.
  • microalgae and bacteria having photosynthetic ability are supplied in a state where the cell concentration is increased in advance, so that products required for hydrogen production can be efficiently obtained.
  • the process of obtaining photosynthetic products in the first tank 11, the step of obtaining a source of hydrogen generation in the second tank 12, and the step of generating hydrogen in the third tank 13 are being continuous. Therefore, hydrogen can be produced very efficiently in the end, and mass production of zK element and industrialization of hydrogen production can be realized.
  • FIG. 2 shows a schematic configuration of a hydrogen production apparatus 20 of the second embodiment.
  • the hydrogen production apparatus 20 includes a first tank 21 for generating a source of hydrogen generation using microalgae having photosynthetic ability, and hydrogen generating by bacteria having a photosynthetic ability using the above-mentioned sources.
  • a second tank 22 is provided.
  • the first tank 21 and the second tank 22 are configured to be able to transmit light energy and heat energy evenly to the microalgae and bacteria.
  • a supply pipe 23 for supplying seawater is connected to the first tank 21 and the first tank 21 is connected to the first tank 21.
  • the outlet of the tank 21 is connected to the second tank 22 via the first filter F 1 and the first pipe P ⁇ .
  • the microalgae in the first tank 21 is prevented from flowing out of the tank by the first filter F 1, and only the suspension in the first tank 21 flows out to the second tank 22.
  • the osmotic pressure of the liquid phase is set to 5. 0 atm or more and 30.0 atm or less, and in the present embodiment, 24.6 atm (atmospheric pressure). Further, a gas having a volume concentration of carbon dioxide of 1.0% to 20.0% (5.0% in the present embodiment) is ventilated.
  • the second tank 22 is connected to a second pipe P 2 ′ for hydrogen recovery, and is provided with a discharge pipe 24 for discharging seawater.
  • a second filter F2 is provided at the outlet from the second tank 22 to the second pipe P2 ', and a third filter F3 is provided at the outlet of the discharge pipe 24 from the second tank 22. Is not allowed to flow out of the second tank 22 out of the tank.
  • the temperatures of the tanks 21 and 22 and the residence time of the suspension were the same as in the first embodiment, and the pH of the suspensions in the first tower 21 and the second tank 22 was 5 to 8. It is set to be.
  • carbon dioxide as a carbon source air (oxygen), seawater, microalgae such as algae, etc.
  • air oxygen
  • seawater water
  • microalgae such as algae, etc.
  • the volume concentration of carbon dioxide in the gas to be ventilated is 5.0.
  • the microalgae is the same as in the first embodiment, is present in a suspension in a state of being fixed to a carrier, and has a previously increased cell concentration.
  • the microalgae uses carbon dioxide as a carbon source, generates starch of a photosynthetic product using photoenergy, accumulates in a cell, Glycerite is secreted from microalgal cells into the suspension. Secreted glycerol, etc., is a source of hydrogen production.
  • the suspension containing the microalgae in the first tank 21 and a source of hydrogen production secreted from the microalgae is separated by the filter F1, and the microalgae remains in the first tank 21.
  • the suspension containing the utilization source flows through the first pipe P ⁇ and continuously flows out to the second tank 22.
  • the microalgae since the microalgae are fixed to the carrier, the microalgae can be surely separated by the filter F1.
  • the product of the concentration of the source of hydrogen generation at the outlet of the first tank 21 and the outflow rate of the suspension is the production rate of the source of hydrogen generation, and the first tank 21
  • the conditions are such that the speed is highest.
  • the source of hydrogen generation flowing from the first tank 21 and the bacteria having the photosynthetic ability are allowed to act to generate zK element.
  • the bacteria in the second tank 22 are the same as the bacteria supplied to the third tank of the first embodiment, are present in a suspension in a state of being fixed to a carrier, and have a predetermined cell concentration. It is said that the condition has been enhanced and that ditrogenase has been highly induced.
  • the second tank 22 is in a light-anaerobic condition in which there is no oxygen present due to irradiation with light such as sunlight.
  • the bacteria produce hydrogen using light energy from a source of hydrogen generation such as glycerol and ethanol. ing.
  • the obtained hydrogen is recovered through the second pipe 'P 2' and continuously produces hydrogen.
  • the suspension containing the bacteria is separated by the filter F3, and the bacteria remain in the second tank 22.Seawater, which is the main component of the suspension, is discharged from the discharge pipe 24. I have. A part of the generated hydrogen may be circulated to the second tank 22.
  • the microalgae since the osmotic pressure of the liquid phase of the microalgae having photosynthetic ability is 24.6 atm under bright and aerobic conditions, the microalgae obtains a photosynthetic product by photosynthesis, and under dark anaerobic conditions.
  • a source of hydrogen generation such as glycerol can be obtained by photosynthesis without going through the fermentation process below.
  • the fermentation step performed under dark anaerobic conditions of the first embodiment can be omitted, and a product required for hydrogen production can be efficiently obtained with a simple system.
  • the microalgae and the bacteria are not fixed to the carrier, but are preliminarily cultured to increase the cell concentration. Then, as in the second embodiment, the suspension of the microalgae with the increased cell concentration is increased. Suspended liquid is supplied to the first tank, and the bacteria whose cell concentration has been increased are supplied to the second tank.
  • the cell concentration of the microalgae and bacteria is defined as microalgae and bacteria in the late logarithmic phase to the stationary phase in which the growth of cells has progressed, and the cell concentration is not less than 1.0 ⁇ 10 8 eel Is / ml.
  • the concentration of a nitrogen source such as ammonium chloride is set to 0.1 mM or less.
  • the salt concentration is set to 1.0% to 10.0%.
  • the suspension of the microalgae which is not fixed to the carrier but has a previously increased cell concentration, is similarly used.
  • the solution may be supplied to the first tank, and the bacteria with an increased cell concentration may be supplied to the third tank.
  • the microalgae and the bacterium having photosynthetic ability are not previously raised in cell concentration, but are present in a suspension in a state of being fixed to a carrier insoluble in a suspension.
  • the hydrogen is supplied to the first tank and the second tank of the same hydrogen production apparatus as in the second embodiment. Note that the first embodiment of the hydrogen production apparatus of the first embodiment It may be supplied to the tank and the third tank.
  • the microalgae is 30 mg dry weight / cm 3 (carrier) to 70 mg dry weight / cm 3 (carrier) in the carrier, and the above bacteria is 10 mg dry cell weight / cm 3 (carrier) in the carrier. 5 O mg dry cell weight Z cm 3 (carrier), fixed in this embodiment, ⁇ ⁇ algae as microalgae, fixed at 50 mg dry weight / cm 3 (carrier), bacteria Fixed at mg dry weight / cm 3 (carrier).
  • the carrier is made of a porous polymer material consisting of polynivir formal and has a diameter of 1 mn! It is a sphere of up to 5 O mm or a cube of 1 mm to 5 O mm square. To 500 m. A microalgae having adhesiveness is used as the microalgae for this carrier, and the microalgae is fixed by a carrier binding method.
  • the above-mentioned bacterium has a negatively charged cell surface.
  • the carrier is coated with a positively charged polylysine in advance, and the bacterium is bound to the lysine by electrical attraction and fixed.
  • the nitrogenase is activated by the activity of 500 to 1000 nmo 1 C 2 H 4 / mg cell dry wtZhr and is highly induced. Used. At this time, it is good to induce nitrogenase in the above bacteria at a high level and then immobilize the bacteria on the carrier, but it is also possible to immobilize the bacteria on the carrier and then induce a high level of ditrogenase in the bacteria. .
  • the cell concentration of the microalgae and bacterial cells has not been increased in advance, the cells are not used as floating cells but are immobilized on a carrier to not only stress the cells, but also to increase the cell density per unit volume.
  • the cell activity can be stabilized, and the action of microalgae and bacteria can be maintained for a long period of time.
  • immobilized microalgae When the microbes and bacteria die, they are easily detached from the carrier, and then the microalgae and bacteria are newly grown and adhere to the carrier, so that the action of the microalgae and bacteria can be continuously obtained.
  • the carrier is insoluble in the liquid in which microalgae and bacteria are present, the outflow to the outside of the tank can be blocked by a filter provided at the outlet of the supplied tank.
  • the microalgae can be circulated to the first tank without flowing into the third tank by a separation device interposed between the second tank and the third tank.
  • the first tank 11 to the third tank 13 of the first embodiment, the first tank 21 and the second tank 22 of the second to fourth embodiments are each a transparent tower type airlift tank 30 shown in FIG. Power
  • the air lift tank 30 is installed so as to be irradiated with sunlight in the tank under the bright aerobic condition and the bright and anaerobic condition, and is shielded from the sunlight in the tank under the dark anaerobic condition.
  • each of the above-mentioned tanks is not limited as long as the structure can perform the required bright and aerobic conditions, bright and anaerobic conditions, or ⁇ anaerobic conditions.
  • the transparent tower type airlift tank 30 has a double cylindrical structure in which an inner cylinder 32 is arranged below the outer cylinder 31 with a space enough for liquid to flow.
  • the space between the outer cylinder 31 and the inner cylinder 32 and the inside of the inner cylinder 32 are used as circulation channels for the suspension 33, respectively.
  • a ventilation device 34 is arranged in the lower part inside the inner cylinder 32 to ventilate, and a suspension 33 flows from the lower part to the upper part inside the inner cylinder 32 to generate a flow of the suspension 33.
  • the suspension 33 is circulated downward from the upper surface inside 2 to the flow path between the inner cylinder 32 and the outer cylinder 31.
  • the suspension 33 is configured to be irradiated with the strongest light when flowing through the outer peripheral flow path between the outer cylinder 31 and the inner cylinder 32.
  • a helical mouth promoter 36 for generating a spiral or radial flow is arranged.
  • the transparent tower type airlift tank 30 having the above-mentioned configuration is designed to uniformly apply heat energy to tanks under anaerobic conditions, heat energy and light energy to cells under bright and aerobic conditions and light and anaerobic conditions. Because of the provision of a flow path that can be provided, a suspension containing microalgae having photosynthetic ability circulating in the flow path and a suspension containing bacteria having photosynthetic ability can uniformly and cyclically emit light energy. As a result, photosynthetic ability is enhanced. In addition, the irradiation time of light on microalgae and bacteria can be made longer and the amount of photosynthesis can be increased because microalgae and bacteria are circulated more efficiently than in the case of using a conventional stirred-type culture tank.
  • Example 1 and Comparative Example 1 according to the hydrogen production method of the first embodiment will be described in detail.
  • an air-lift bioreactor with a helical flow promoter with an actual volume of 50 L was used.
  • the height of the transparent tower type air lift tank made of acryl resin was 1.8 m
  • the outer diameter was 0.2 m
  • the diameter of the inner cylinder made of acrylic resin was 0.125 m.
  • a gas inlet which is a ventilation device, was installed at a position of 0.05 m from the bottom of the tank. Specifically, 50 holes with an inner diameter of 0.001 m were drilled in a 0.01 m inner diameter circular tube (circle diameter: 0.1 m), and gas was blown from there. Examples and Comparative Examples are the same.
  • the bright and aerobic conditions were performed using sunlight and a light source (18 W / m 2 ).
  • the main component of the suspension was seawater.
  • the alga Chlamydomonas W-80 strain was used as the microalgae having photosynthetic ability.
  • the bacteria having photosynthetic ability used were oral Dobram sulphide dophyllum W-1S.
  • a porous polymer material made of polyvinyl formal was used as the carrier.
  • Example 1 As shown in Table 1 below, microalgae and bacteria were used in a state where the cell concentration was increased in advance. Using stationary phase microalgae and bacteria, they were immobilized on a carrier.
  • microalgae and bacteria were used in a state where the cell concentration was not high and cells could grow.
  • Microalgae and bacteria in logarithmic growth phase were used and used as floating cells without immobilization on a carrier.
  • Hydrogen was produced by the methods of the above Examples and Comparative Examples, and the rate of hydrogen production and the rate of hydrogen production were measured.
  • the dilution ratio was 0.1 lhr- 1 .
  • Table 2 shows the measurement results.
  • Example 1 had a much higher hydrogen production rate than Comparative Example 1 and could efficiently produce hydrogen. Therefore,
  • 7_ nitrogen can be mass-produced, and it has been confirmed that the method is very useful for industrialization of element production by microorganisms.
  • Example 2 and Comparative Example 2 of the hydrogen production method using the hydrogen production apparatus of the second embodiment will be described in detail.
  • Hydrogen was produced under the conditions shown in Table 3 below, and the hydrogen production rate was measured. Cells used
  • the following experiment was conducted on the hydrogen production method of the second embodiment.
  • an airlift bioreactor with a helical mouth and one promoter having an actual volume of 50 L was used as a first tank and a second tank.
  • the height of the transparent tower type air lift tank made of acryl resin was 1.8 m
  • the outer diameter was 0.2 m
  • the diameter of the inner cylinder made of acrylic resin was 0.125 m.
  • the gas inlet which is a ventilation device, was installed at a position of 0.05 m from the bottom of the tank.
  • 50 holes with an inner diameter of 0.001 m were made in a circular tube with an inner diameter of 0.0 lm (diameter of a circle of 0.1 lm), and gas was blown from there.
  • the bright and aerobic conditions were performed using sunlight and a light source (18 W / m 2 ).
  • the main component of the suspension was seawater.
  • a green alga Chlamydomonas W-80 was used as a microalga having photosynthetic ability.
  • Bacteria having photosynthetic ability were oral doplum sulphide dophyllum W-1S.
  • the osmotic pressure of the liquid phase in the first column was 1.9 atm. Others were the same as in Example 2.
  • Example 2 since the osmotic pressure of the liquid phase in the first column was high, the hydrogen production rate was much higher than that in Comparative Example 2, and the z-element could be produced efficiently. Was confirmed. Therefore, according to the method of the second invention, hydrogen can be mass-produced by a simple system in which the number of columns is small and the number of fermentation steps is reduced, which is very useful for industrialization of hydrogen production by microorganisms. Was confirmed.
  • the present invention uses microalgae and bacteria in a state in which cells have been cultured in advance and the cell concentration has been increased.
  • the light energy obtained below is concentrated on the production of photosynthetic products and the production of hydrogen, so that hydrogen can be obtained efficiently and mass production of hydrogen can be achieved.
  • the cell density per unit volume can be increased, and the cell activity can be stabilized. It has various advantages such that the action of bacteria can be maintained for a long time.
  • microalgae with photosynthetic ability when used under conditions where the osmotic pressure of the liquid phase is high, the microalgae can use light energy to utilize hydrogen as a main source of low-molecular-weight organic substances such as glycerol. Since photosynthesis is performed and secreted outside the cells, the fermentation process can be reduced.
  • carbon dioxide can be recycled and used in flue gas such as thermal power plants.
  • Carbon dioxide etc. can be used as a carbon source, which is very friendly to the global environment.
  • hydrogen can be generated using seawater, and water can be finally obtained by using the generated hydrogen as an energy source, so it can be applied to desalination of seawater.
  • the apparatus for producing hepatocellular microorganisms of the present invention can produce hydrogen very easily and efficiently using microorganisms, and can reduce unnecessary production facilities and the like, thereby greatly reducing production costs. You can also.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A method of producing hydrogen which comprises a series of steps involving the step of obtaining a metabolic source for producing hydrogen by a microalga having a photosynthesis ability and the step of producing hydrogen by a bacterium having a photosynthesis ability with the use of the above metabolic source. In this method, the above-described microalga and/or the above-described bacterium is fixed on a support insoluble in a liquid and then pre-cultured as being in the liquid so as to elevate the cell density before supplying to the above steps. The microalga and the bacterium the cell densities of which have been preliminarily elevated are a microalgae and a bacterium which are in the latter logarithmic growth phase or the stationary phase where the growth of the cells has progressed and present in the saturated state in marine water and/or a solution containing a nitrogen source, inorganic matters and vitamins.

Description

微生物による水素生産方法および水素生産装置 技術分野  Hydrogen production method and hydrogen production device by microorganism
本発明は、 微生物による水素生産方法および水素生産装置に関し、 詳 しくは、 光合成能力を有する微細藻および光合成能力を有する細菌を用 いて水素を生産する方法において、 生産効率を高めて、 zK素生産の量産 化、 工業化を図るものである。 背景技術  The present invention relates to a method and an apparatus for producing hydrogen using microorganisms, and more particularly, to a method for producing hydrogen using microalgae having photosynthetic ability and bacteria having photosynthetic ability. It aims to mass-produce and industrialize. Background art
近年、 石油 ·石炭をはじめとする化石燃料の代替として、 クリーンェ ネルギ一源である水素が着目されている。 7j素エネルギーは燃料電池と して高い効率で電気エネルギーへ変換できること、 発熱量が石油の 3〜 4倍で、 燃焼後は水を生じて環境汚染の恐れが少ない等の利点を有して このような水素の生成方法としては、 本出願人は、 特公平 4 - 1 8 8 3 7号で、 zK素発生能を有する緑藻を、 明好気条件下に水中で培養する サイクルと、 暗嫌気条件下に水中で培養するサイクルを交互に繰り返し、 明好気条件下の培養中に光合成を行わせ、 暗嫌気条件下で、 光合成によ り蓄積した物質を分解して水素を発生させる ζΚ素生産方法を提供して 、 さらに、 本出願人は、 特開 2 0 0 0— 1 0 2 3 9 7号で、 光合成能力 を有する微細藻を明好気条件下培養して光合成産物を得る工程、 該微細 藻を暗嫌気条件下培養して上記光合成物の発酵液を得る工程、 および明 嫌気条件下で上記発酵液に光合成能力を有する細菌を作用させる工程を 含む水素の生産方法において、 該明好気条件下の微細藻の培養及び/又 は明嫌気条件下で該発酵液に細菌を作用させる工程を透明塔型ェァ一リ フト槽で行われる水素の生産方法を提案している。 In recent years, hydrogen has been attracting attention as a clean energy source as an alternative to fossil fuels such as oil and coal. The 7j elementary energy has the advantages of being able to be converted into electric energy with high efficiency as a fuel cell, generating three to four times the heat of petroleum, generating water after combustion, and reducing the risk of environmental pollution. As a method for producing hydrogen, the applicant of the present invention disclosed in Japanese Patent Publication No. 4-188737, a cycle of culturing green algae having zK element generating ability in water under bright and aerobic conditions, and The cycle of culturing in water under conditions is alternately repeated, causing photosynthesis to occur during culture under light aerobic conditions, and decomposing substances accumulated by photosynthesis under dark anaerobic conditions to generate hydrogen. The present invention provides a production method, and further discloses a step of culturing microalgae having photosynthetic ability under light and aerobic conditions to obtain a photosynthetic product in Japanese Patent Application Laid-Open No. 2000-102793. Culturing the microalgae under dark anaerobic conditions to obtain a fermented solution of the photosynthesis; A step of allowing bacteria having photosynthetic ability to act on the fermentation broth under anaerobic conditions. In the method for producing hydrogen containing hydrogen, the step of culturing the microalgae under the bright and aerobic conditions and / or the step of causing bacteria to act on the fermentation solution under the bright and anaerobic conditions is carried out in a transparent tower type air-lift tank. Has proposed a production method.
また、 特開平 1 0— 4 2 8 8 1号では、 海洋性綠藻ゃ海洋性光合成バ クテリァ等を用いた水素の生産システムにおいて、 緑藻醱酵プロセスの 醱酵槽のパージガスとして二酸化炭素を用いたものが提案されている。  Japanese Patent Application Laid-Open No. 10-42881 discloses a hydrogen production system using a marine algae / marine photosynthetic bacterium and the like, in which carbon dioxide is used as a purge gas in a fermentation tank of a green algae fermentation process. What has been proposed.
しかしながら、 前記特公平 4 - 1 8 8 3 7号で提供した水素生産方法 は、 7_素生産に適した条件が確立されておらず、 量産化、 工業化への対 応の点で改善の余地がある。  However, the hydrogen production method provided in the above-mentioned Japanese Patent Publication No. 4-188837 has not established conditions suitable for 7_elementary production, and there is room for improvement in terms of mass production and industrialization. There is.
さらに、 特開 2 0 0 0— 1 0 2 3 9 7号は、 明好気的条件下における 微細藻の培養及び明嫌気条件下における光合成細菌による水素生産を透 明塔型エアーリフト槽を用いることにより、 水素生産を効率よく行うこ とができる。 しかし、 光合成産物を得る工程において、 微細藻の培養と 澱粉等の光合成産物の生成とを同時に行っているため、 培養と澱粉合成 に必要な光エネルギーが大量に必要となり、 7]素の生産効率が未だ充分 とはいえない。 従って、 z素の量産化'工業化の点において未だ改善の 余地があり、 さらなる生産工程の簡略化、 製造設備の削減が望まれてい また、 特開平 1 0— 4 2 8 8 1号では、 パージガスを二酸化炭素とす ることで、 ζ素生産量を改善しているが、 培養槽において緑藻を培養し、 培養した緑藻液を用いて澱粉を蓄積しているため、 培養と澱粉合成に必 要な光エネルギーが大量に必要となり、 ζΚ素生産の効率が悪く、 量産化' 工業化に対応できないという問題がある。 また、 バッチ処理操作で運転 されるため、 量産化、 工業化へ対応できないという問題がある。  Furthermore, Japanese Patent Application Laid-Open No. 2000-102703 uses a transparent tower-type air lift tank for culturing microalgae under light aerobic conditions and for producing hydrogen by photosynthetic bacteria under light anaerobic conditions. This enables efficient hydrogen production. However, in the process of obtaining photosynthetic products, microalgae cultivation and the production of photosynthetic products such as starch are performed at the same time, so a large amount of light energy is required for cultivation and starch synthesis. Is still not enough. Therefore, there is still room for improvement in terms of mass production of z-elements and industrialization, and further simplification of the production process and reduction of manufacturing equipment are desired. Japanese Patent Application Laid-Open No. H10-42881 discloses a purge gas. Although carbon dioxide is used to improve carbon dioxide production, green algae are cultivated in a culture tank and starch is accumulated using the cultured green algae fluid, which is necessary for cultivation and starch synthesis. Large amounts of light energy are required, the efficiency of nitrogen production is low, and there is a problem that mass production is not possible. In addition, there is a problem that it cannot respond to mass production and industrialization because it is operated in a batch processing operation.
本発明は上記した問題に鑑みてなされたものであり、 微細藻を用いた 7素生産において、 ζ素の生産効率を向上し、 水素の量産化'工業化を 図ることを課題としている。 The present invention has been made in view of the above-described problems, and in the production of hydrogen using microalgae, the efficiency of hydrogen production has been improved, and the mass production of hydrogen The task is to plan.
発明の開示 Disclosure of the invention
上記課題を解決するため、 本発明は、 第 1に、 光合成能力を有する微 細藻により水素生成の資化物を得る工程と、 該資化物を用いて光合成能 力を有する細菌により水素を生成する工程を含む一連の工程からなる水 素生成方法において、  In order to solve the above-mentioned problems, the present invention firstly comprises a step of obtaining a hydrogen-producing assimilate by a microalgae having photosynthetic ability, and using the assimilable substance to produce hydrogen by a bacteria having photosynthetic ability. In a hydrogen production method comprising a series of steps including a step,
上記微細藻の培養および/あるいは上記細菌の培養を予め行って、 微 細藻の細胞及び細菌の細胞の増殖を進行させて細胞濃度を高めた状態で 上記工程に供給していることを特徴とする微生物による水素生産方法を 提供している。  The microalgae and / or the cultivation of the bacterium is performed in advance, and the microalgae cells and the bacterial cells are supplied to the above step in a state where the cell concentration is increased by promoting the growth of the cells. It provides a method for producing hydrogen by using microorganisms.
上記予め細胞を培養する光合成能力を有する微細藻および細菌は、 細 胞の増殖が進行した対数増殖期後期乃至定常期の微細藻および細菌とし、 細胞濃度が 1 . 0 X 1 0 8 c e 1 1 s /m l以上となるように、 海水あ るいは/及び少なくとも窒素供給源 ·無機成分 · ビタミンを含む溶液中 に飽和状態で存在させている。 The microalgae and bacteria having photosynthetic ability for culturing the cells in advance are microalgae and bacteria in the late logarithmic phase to the stationary phase in which the cell growth has progressed, and have a cell concentration of 1.0 × 10 8 ce 11. It is present in a saturated state in a solution containing seawater or / and at least a nitrogen supply source, an inorganic component, and a vitamin so that s / ml or more.
なお、上記溶液中には窒素源が少ない方が好ましく、 塩化アンモニゥ ム等の窒素源の濃度が 0. 1 mM以下が好ましい。  The above solution preferably contains a small amount of nitrogen source, and the concentration of the nitrogen source such as ammonium chloride is preferably 0.1 mM or less.
また、 微細藻の溶液として海水を用いる場合は、 塩分濃度を 1 . 0 % 〜1 0. 0 %、 好ましくは 3. 0 %〜5. 0 %としている。 塩分濃度と は、 N a C 1の濃度を指す。  When seawater is used as the microalgae solution, the salt concentration is set to 1.0% to 10.0%, preferably 3.0% to 5.0%. Salinity refers to the concentration of NaCl.
上記塩分濃度とすることにより、 微細藻の働きにより 7素資化源を効 率良く細胞外に分泌することができる。  With the above salt concentration, the microalgae can efficiently secrete the seven-source as an extracellular source.
微細藻や細菌の細胞濃度を 1 . 0 X 1 0 8 eel ls/ml以上としている のは、 それより小さいと各産物の生産効率が向上しないからである。 こ の細胞濃度は、 1 . 0 X 1 0 9 c e 1 1 s /m 1以上と高いほど好まし いが、 上限値は 1 . O x 1 0 1。 cells/m 1程度である。 1 cell concentration of microalgae and bacteria. 0 X 1 0 8 are we eel ls / ml or more is because smaller than not improved production efficiency of the product. Cell concentration of this is, 1. 0 X 1 0 9 ce 1 1 s / m 1 or more and a higher preference However, the upper limit is 1. O x 10 1 . It is about cells / m1.
このように、 対数増殖期後期乃至定常期の微細藻や細菌を用いること により、 各工程での反応の立ち上がり時間を早くでき初期の状態から高 い生産効率を得ることができる。 かつ、 予め培養して細胞濃度を高くし た微細藻や細菌を水素生産ラインに投入すると、 該ライン中に微細藻お よび細菌を培養する工程を必要とせず、 非常に効率良く 7_K素を生産する ことができる。  As described above, by using microalgae and bacteria in the late logarithmic phase to the stationary phase, the rise time of the reaction in each step can be shortened, and high production efficiency can be obtained from the initial state. Also, when microalgae and bacteria whose cell concentration has been increased by culturing in advance are introduced into the hydrogen production line, the process of culturing microalgae and bacteria in the line is not required, and the 7_K element is produced very efficiently. can do.
さらに、 予め細胞が培養されて細胞濃度が高められた微細藻および細 菌を用いることで、 素生産ラインにおいて、 光エネルギーが微細藻お よび細菌の細胞増殖に使われることがないため、 最終生成物である水素 の生産効率を向上することができ、 水素の量産化 ·工業化を実現するこ とができる。  Furthermore, by using microalgae and bacteria whose cells have been pre-cultured to increase the cell concentration, light energy is not used for cell growth of microalgae and bacteria in the cell production line, so the final production The production efficiency of hydrogen, which is a product, can be improved, and mass production and industrialization of hydrogen can be realized.
本発明は、 第 2に、 光合成能力を有する微細藻により水素生成の資化 物を得る工程と、 該資化物を用いて光合成能力を有する細菌により水素 を生成する工程を含む一連の工程からなる水素生成方法において、 上記微細藻あるいは Ζおよび細菌は、 液体に不溶な担体に固定して溶 液中に存在させていることを特徴とする水素生成方法を提供している。 この担体に固定した微細藻あるいは Ζおよび細菌は前記予め細胞を培 養して細胞濃度を高めたものである。  Secondly, the present invention comprises a series of steps including a step of obtaining a hydrogen-producing assimilable substance from a microalga having photosynthetic ability, and a step of producing hydrogen from a photosynthesizing bacterium using the assimilable substance. In the hydrogen generation method, there is provided a hydrogen generation method characterized in that the microalga or the bacterium and the bacterium are fixed to a liquid-insoluble carrier and are present in a solution. The microalgae or bacteria and bacteria immobilized on the carrier are obtained by culturing the cells in advance and increasing the cell concentration.
しかしながら、 担体に固定した微細藻および細菌は、 予め培養して細 胞濃度を高めたものに限定されず、上記一連の水素生産工程に供給する 微細藻および細菌にも適用できる。  However, the microalgae and bacteria immobilized on the carrier are not limited to microalgae and bacteria that have been cultured in advance to increase the cell concentration, and can be applied to microalgae and bacteria supplied to the above-described series of hydrogen production steps.
上記微細藻は担体に 3 0 m g乾燥重量ノ c m 3 (担体) 〜 7 0 m g乾 燥重量/ c m 3 (担体) 、 好ましくは 4 0 m g乾燥重量/ c m3 (担体) 〜 5 O m g乾燥重量 Z c m3 (担体) で固定化している。 The microalgae may be used in a carrier of 30 mg dry weight / cm 3 (carrier) to 70 mg dry weight / cm 3 (carrier), preferably 40 mg dry weight / cm 3 (carrier) to 5 O mg dry It is immobilized with a weight of Z cm 3 (carrier).
上記細菌は担体に 1 0 m g乾燥菌体重量/. c m 3 (担体) 〜 5 0 m g 乾燥菌体重量/ c m 3 (担体) 、 好ましくは 2 0 m g乾燥菌体重量/ c m 3 (担体) 〜4 O m g乾燥菌体重量/ c m 3 (担体) で固定化している。 このように、 微細藻および細菌の細胞を浮遊細胞として用いるのでは なく、 担体に固定化することで、 細胞にストレスを与えるだけでなく、 単位体積当たりの細胞密度を高めることができると共に、 細胞活性を安 定化することができ、 微細藻や細菌の作用を長期に渡つて持続させるこ とができる。 また、 固定化された微細藻や細菌が死滅すると自ら容易に 担体から外れ、 その後、 微細藻や細菌が新たに増殖等して担体に固着す るため、 連続的に微細藻や細菌の作用を得ることができる。 さらに、 上 記担体は微細藻や細菌を存在させる液体に不溶であるため、 微細藻や細 菌を固定化した担体と、液体とをフィルタ一等を用いて固液分離により 容易に分離することができる。 よって、 微細藻や細菌を固定化した担体 を回収して再循環させたり、 必要な溶液のみを流通させたり、 微細藻と 細菌とが混合しないように分離したりすることもできる。 The above bacterium is added to the carrier in an amount of 10 mg dry cell weight / cm 3 (carrier) to 50 mg. It is immobilized at a dry cell weight / cm 3 (carrier), preferably 20 mg dry cell weight / cm 3 (carrier) to 40 mg dry cell weight / cm 3 (carrier). Thus, immobilizing microalgal and bacterial cells on a carrier, rather than using them as floating cells, not only stresses the cells but also increases the cell density per unit volume, The activity can be stabilized, and the action of microalgae and bacteria can be maintained for a long time. In addition, when the immobilized microalgae or bacteria die, they are easily detached from the carrier, and then the microalgae or bacteria are newly grown and adhere to the carrier. Obtainable. Furthermore, since the above-mentioned carrier is insoluble in the liquid in which microalgae or bacteria are present, the carrier on which the microalgae or bacteria are immobilized can be easily separated from the liquid by solid-liquid separation using a filter or the like. Can be. Therefore, the carrier on which the microalgae or bacteria are immobilized can be collected and recycled, or only the necessary solution can be circulated, or the microalgae and bacteria can be separated so that they do not mix.
また、 上記細菌はニトロゲナーゼが 2 0 0〜1 0 0 0 n m o 1 C 2 H 4/ g cel l dry wt/hr の活性 (この活性はアセチレンのエチレン への還元速度で測定した活性) で活性ィヒされ高誘導された状態で用いら れる。 好ましくは、 5 0 0〜: L 0 0 0 n m o 1 C 2 H 4/m g cel l dry wt/hrである。 In addition, the above bacteria have an activity of nitrogenase of 200 to 1000 nmo 1 C 2 H 4 / g cell dry wt / hr (this activity is measured by the reduction rate of acetylene to ethylene). It is used in a state of high induction. Preferably, 5 0 0: a L 0 0 0 nmo 1 C 2 H 4 / mg cel l dry wt / hr.
これにより、 光合成能力を有する微細藻が生成したグリセロール等の 低分子有機物を主成分とする 7素資化源のほとんどを水素に変えること ができる。 ―  This makes it possible to change most of the 7-element assimilation sources mainly composed of low-molecular-weight organic substances such as glycerol produced by microalgae having photosynthetic ability to hydrogen. ―
細菌を担体に固定すると共に、 素生産を支配する酵素である二ト口 ゲナ一ゼが高誘導された状態で用いることにより、 二トロゲナーゼが高 活性の状態で安定化され、 細菌を高密度とできる。 よって、 細菌は、 細 胞の増殖に基質やエネルギーを使うことなく、 専ら水素生産に基質ゃェ ネルギーを使うので、 高速度で水素生産を行うことができる。 By immobilizing bacteria on a carrier and using it in a state where ditogenase, the enzyme that controls elemental production, is highly induced, ditrogenase is stabilized in a highly active state, allowing bacteria to grow at a high density. it can. Therefore, bacteria do not use substrates or energy to grow cells, but only use substrate substrates for hydrogen production. Since energy is used, hydrogen production can be performed at high speed.
なお、 細菌にニトロゲナーゼを高いレベルで誘導してから細菌を担体 に固定化しても良いし、 細菌を担体に固定化してから細菌にニトロゲナ ーゼを高いレベルで誘導しても良い。  The nitrogenase may be induced in the bacteria at a high level and then the bacteria may be immobilized on the carrier, or the bacteria may be immobilized on the carrier and the nitrogenase induced in the bacteria at a high level.
上記微細藻および細菌を固定する担体として多孔体が好適に用いられ る。 この多孔体としては、 多孔質ガラスビーズ、 ポリビニルアルコール、 ポリウレタンフォーム、 ポリスチレンフォーム、 ポリアクリルァミ ド、 ポリビニルホルマール樹脂多孑 L体、.シリコンフォーム、 セルロース多孑 L 体が挙げられる。  A porous body is suitably used as a carrier for immobilizing the microalgae and bacteria. Examples of the porous body include porous glass beads, polyvinyl alcohol, polyurethane foam, polystyrene foam, polyacrylamide, polyvinyl formal resin L-form, silicon foam, and cellulose L-form.
多孔体の空孔径の大きさは約 1 0〃m〜5 0 0〃mが好適である。 ま た、 担体の形状は問わないが、 担体の強度、 培養効率等を考慮すると、 球状あるいは立方体状で、 大きさは、 球状の場合、直径が l mn!〜 5 0 mm、 立方体状の場合、 1 mm〜5 O mm角が好ましい。  The pore size of the porous body is preferably about 10 to 500 μm. The shape of the carrier is not limited, but considering the strength and culture efficiency of the carrier, the shape is spherical or cubic. If the size is spherical, the diameter is l mn! 550 mm. In the case of a cubic shape, a square of 1 mm mm50 mm is preferred.
微細藻や細菌の固定化には、 担体,結合法、 架橋法および包括法等の公 知の方法が適用でき、 中でも担体結合法が最適である。 担体結合法には、 ィォン交換性の樹脂に吸着させる化学的吸着法あるいは物理的吸着法が 含まれる。  For immobilization of microalgae and bacteria, known methods such as a carrier, a binding method, a cross-linking method and an entrapment method can be applied, and the carrier binding method is most suitable. The carrier binding method includes a chemical adsorption method or a physical adsorption method in which the resin is adsorbed on an ion-exchangeable resin.
微細藻、 特に綠藻は、 一般的に粘着性があり、 容易に担体に粘着固定 できるものが多い。  Microalgae, especially blue algae, are generally sticky and many can be easily adhered and fixed to carriers.
細菌は細胞表面がマイナスに帯電しているものが多く、 従って、 担体 を予めプラスに帯電しているポリリジンによりコーティングし、 これに 細菌を電気的引力によって結合させると容易に固定化できる。  Many bacteria have a negatively charged cell surface. Therefore, the carrier can be easily immobilized by coating the carrier with a positively charged polylysine in advance, and binding the bacteria to the lysine by electrical attraction.
上記方法で固定化すると、 綠藻では 5 O m g乾燥重量/ c m3 (担体) 程度で固定化できる。 細菌では 3 O m g乾燥重量 / c m3 (担体)程度 で固定化できる。 When immobilized by the above method, 綠 algae can be immobilized at about 5 Omg dry weight / cm 3 (carrier). Bacteria can be immobilized at about 3 O mg dry weight / cm 3 (carrier).
本発明に用いられる光合成能力を有する上記微細藻としては、 綠藻、 藍藻等が好ましい。 緑藻としては、 クラミ ドモナス(Chlamydomonas)属 に厲するクラミ ドモナス ·ラインノヽノレディ (Chlamydomonas reinhardti i ) 、 クラミ ドモナス 'モエブシィ (Chlamydomonas moewusi i )、 クラミ ドモ ナス属の M G A161株, W— 8 0株、 クラミ ドモナス ユーガメタス (Chlamydoraonas eugametos)ヽ クラミ 卜モナス セグニス (Chlamydomo- nas segnis) クロレラ(Chlorel la)属に属するクロレラ ブルガリス (Chlorel la vulgaris)、 セネデスムス (Senedesmus)禺に属するセ不デ スムス ォブリガス (Senedesmus ob 1 i guus )およびデュナリエラ (Duna- 1 iel la)属に属するデュナリエラ テルトロレクタ(Dunal iel latertro - lecta)等が挙げられる。 The microalgae having photosynthetic ability used in the present invention include: Cyanobacteria and the like are preferred. Examples of green algae include Chlamydomonas reinhardtii, Chlamydomonas reinhardtii, Chlamydomonas' moebushii (Chlamydomonas moewusi i), Chlamydomonas moewusi i, Chlamydomonas sp. Chlamydoraonas eugametos (Chlamydoraonas eugametos) yd Chlamydomo-nas segnis Chlorel la vulgaris belonging to the genus Chlorel la; 1 guus) and Dunaliella laterro-lecta belonging to the genus Dunaliella (Duna-1 iel la).
また、 藍藻類としては、 アナべナ属 (Anabaena) に属するアナべナ' バリアビリス (Anabanena variabi l is) ATCC 29413, シァノテセ (Cy- anothece)属の Cyanothece sp. ATCC 51142ヽ シネノコッカス (Synec- hococcus) 属に属する Synechococcus sp. PCC 7942およびアナシスティ ス (Anacystis)属に属するアナシスティス 二デュランス(Anacystis nidulans)等が挙げられ、 1種または複数種を用 、ることができる。  In addition, as the cyanobacteria, Anabaena variabilis belonging to the genus Anabaena (Anabanena variabi l is) ATCC 29413, Cyanothece sp. ATCC 51142 from the genus Cy-anothece, Synechococcus (Synec- hococcus) The genus includes Synechococcus sp. PCC 7942 belonging to the genus and Anacystis nidulans belonging to the genus Anacystis, and one or more species may be used.
中でも、 クラミ ドモナス(Chlamydomonas)属に属するクラミ ドモナス · ラインハルディは、 水素資ィ匕源の分泌能力に優れるため好ましい。 また、 綠藻クラミ ドモナス M G A161株及びクラミ ドモナス W— 8 0株は、 海 水から常法により単離された株であり、 明好気条件下の光合成能力が高 い上に、 暗嫌気条件下における発酵が速く、 また、 明好気条件下に戻し たときに、 速やかに光合成系に適応できるという優れた能力を有し、 ま た担体に固定化しやすいので好ましい。 クラミ ドモナス M G A161株及 びクラミ ドモナス W— 8 0株あるいはこれに相当する株は、 海水サンプ ルから光合成能力と分解能とで当業者が容易に単離することができる株 Above all, Chlamydomonas reinhardi belonging to the genus Chlamydomonas is preferable because of its excellent secretion ability of hydrogen source. The alga Chlamydomonas MG A161 strain and Chlamydomonas W-80 strain are strains isolated from seawater by a conventional method, and have high photosynthetic ability under light and aerobic conditions, as well as dark anaerobic conditions. It is preferable because it has an excellent ability to rapidly adapt to a photosynthetic system when the fermentation under the conditions is fast and when the conditions are returned to the light and aerobic conditions, and it is easy to immobilize on a carrier. Chlamydomonas MG A161 and Chlamydomonas W-80 strains or equivalents are strains that can be easily isolated from seawater samples by a person skilled in the art with photosynthetic ability and resolution.
^める ο 上記光合成能力を有する細菌としては、 光合成無機栄養細菌および光 合成有機栄養細菌 (紅色無硫黄細菌、 綠色滑走細菌等) が用いられ、 1 種または複数種を用いることができる。 本発明においては、 光合成有機 物を基質 (電子供与体〉 とするので、 光合成有機栄養細菌が好適に用い られる。 光合成有機栄養細菌としては、 ロドスピリルム科 (Rhodospi - ril laceae) に属する紅色無硫黄細菌、 クロロフレクスス科 (Chlof le- xaceae ) に属する緑色滑走細菌等が挙げられる。 ^ Ο As the bacteria having the photosynthetic ability, there are used photosynthetic vegetative bacteria and photosynthetic organotrophic bacteria (such as red-colorless sulfur-free bacterium and blue-sliding bacterium), and one or more species may be used. In the present invention, a photosynthetic organic vegetative bacterium is preferably used because a photosynthetic organic substance is used as a substrate (electron donor). As the photosynthetic vegetative bacterium, a red sulfur-free bacterium belonging to the family Rhodospi-ril laceae is used. And green gliding bacteria belonging to the Chloro lexaceae family.
上記光合成有機栄養細菌は、 例えば、 海水サンプルから乳酸 (例えば、 0. 3mM) を基質として水素を発生する微生物を選択することにより得 ることができる。 光合成細菌としては、 例えば、 ロドシユードモナス (Ehodopseudomonas )属に属するロドシユードモナス パラストリス (Ehodopseudomonas palustris) およびロドシュードモナス ァシドフィ ラ (Rhodopseudomonas acidopni la ヽ 口卜スヒリラム (Rhoaospiri l l - urn)属(こ属するロドスピ ラム ノレフ、、ラム (Rhodospir i l ium rubrum ATCC 11170、 同 IF0 3986等、 ロドパクター(Khodobacter)属に属する口 クタ一 スフ デス (Rhodobacter sphaeroides)、 o ク ターカプスレイタス (Rhodobacter capsulatus) ATCC 23782、 ATCC 17 013等、 口ドブラム (Rhodovulum) 属に属する口ドブラム ストリク夕 ム (Rhodovulum strictura) ロドプラム アドリアティカム (Rhodovul- um adriaticum) 、 口ドブラム ·サノレフィ ドフィラム (Rhodovulum su— lf idophi lum)等が挙げられる。 特に、 海水サンプルから単離したロド プラム ·サルフィ ドフィラム W— 1 Sと名付けた株およびこれと同等の 活性を有する光合成細菌が好ましい。  The photosynthetic organotrophic bacterium can be obtained, for example, by selecting a microorganism that generates hydrogen from a seawater sample using lactic acid (eg, 0.3 mM) as a substrate. Examples of photosynthetic bacteria include, for example, Rhodoseudomonas palustris belonging to the genus Rhodoseudomonas and Rhodopseudomonas acidopni la belonging to the genus Rhodoseudomonas. Ram noref, rum (Rhodospirilium rubrum ATCC 11170, IF0 3986, etc.), Rhodobacter sphaeroides belonging to the genus Khodobacter, Rhodobacter capsulatus ATCC 23782, ATCC 17013 Mouth dobram (Rhodovulum strictura) belonging to the genus Rhodovulum (Rhodovulum strictura) Rhodovulum adriaticum (Rhodovul-um adriaticum); Rhodoplum sulfide isolated from seawater samples Photosynthetic bacteria having lines and this activity equivalent, termed Iramu W- 1 S are preferred.
上記微細藻および細菌を存在させる上記海水ある 、は/及び窒素供給 源 ·無機成分 · ビタミンを含む溶液は、 適切な窒素供給源と無機成分 · ビタミンを含む溶液であれば良い。 無機成分を含む培地としては海水が 好適に用いられる力^ 以下の組成の改変岡本培地 (以下、 MOM培地と いう) : NaC "30 g、 C a C 12 · 2H20〜2◦ 0 mg、 MgSO4' 7H2O〜250mg、 FeSO4' 7H2O〜20mg、 KH2P04 -40. 8mg、 K2HP04 -495mg, ビタミン … 100〃 g、 ビタミン Β12···1〃 g、 1Μ NE Cい "5m 1、 微 量金属混合物 A 5… 1. 0 m 1、蒸留水… 1000 ml pH8. 0 も用いられる。 The solution containing seawater and / or a nitrogen supply source, an inorganic component, and a vitamin in which the microalgae and bacteria are present may be a solution containing an appropriate nitrogen supply source, an inorganic component, and a vitamin. Seawater is a medium containing inorganic components. Modified Okamoto medium preferably used is the force ^ following composition (hereinafter, referred to as MOM medium): NaC "30 g, C a C 1 2 · 2H 2 0~2◦ 0 mg, MgSO 4 '7H 2 O~250mg , FeSO 4 '7H 2 O~20mg, KH 2 P0 4 -40. 8mg, K 2 HP0 4 -495mg, vitamin ... 100〃 g, vitamin Β 12 ··· 1〃 g, 1Μ NE C doctor "5m 1, Fine metal mixture A5… 1.0 ml, distilled water… 1000 ml pH 8.0 is also used.
上記微量金属混合物 A 5の組成は、 以下の通りである。  The composition of the trace metal mixture A5 is as follows.
H3B04-2. 85 g、 MnC 12 · 41120—1. 81 g、 H 3 B0 4 -2.85 g, MnC 1 2 · 411 2 0—1.81 g,
Z n S04 · 7H2O〜0. 22 g、 C u S 04 · 5 H20〜 0. 08 g、 Na2MoO4-0. 021 g、 C a C " · 6H2O〜0. 01 g、 EDTA - 2Na〜50 g、 蒸留水… 1000 m 1。 Z n S0 4 · 7H 2 O~0 . 22 g, C u S 0 4 · 5 H 2 0~ 0. 08 g, Na 2 MoO 4 -0. 021 g, C a C "· 6H 2 O~0 01 g, EDTA-2Na to 50 g, distilled water ... 1000 m1.
本発明は、 上記担体に固定した状態で、 予め細胞培養して細胞濃度を 高めた微細藻あるいは Zおよび細菌を用いた z素生産方法として、 光合成能力を有する微細藻により明好気条件下で光合成産物を得る第 1工程と、 得られた光合成産物を用いて上記微細藻により喑嫌気条件下 で水素生成の資化源を得る第 2工程と、 該資化源を用いて光合成能力を 有する細菌により明嫌気条件下で水素を生成する第 3工程との 3つのェ 程を備えた水素生産方法を提供している。  The present invention relates to a microalgae in which cells are cultured in advance and the cell concentration is increased in a state of being fixed to the carrier, or a z-element production method using Z and bacteria. A first step of obtaining a photosynthetic product, a second step of using the obtained photosynthetic product by the microalgae to obtain a source of hydrogen generation under anaerobic conditions, and having a photosynthetic ability using the source of photosynthesis. It provides a hydrogen production method that includes three steps: a third step in which hydrogen is produced by bacteria under light and anaerobic conditions.
上記第 1工程には、 上記担体に固定して予め細胞濃度を高めた微細藻 を溶液中に存在させた懸濁液が供給される。 また、 上記第 3工程には、 上記担体に固定して予め細胞濃度を高めた細菌を溶液中に存在させた懸 濁液が供給される。 .  In the first step, a suspension in which microalgae fixed to the carrier and having a cell concentration increased in advance are present in a solution is supplied. In the third step, a suspension in which bacteria having a cell concentration increased in advance and fixed to the carrier are present in a solution is supplied. .
このように、 予め細胞が培養され細胞濃度が高められた微細藻および 細菌を用いると、 前記したように、 一連の水素生産工程において、 微細 藻および細菌の培養工程が不要となり、 非常に効率良く水素を生産する ことができる。 As described above, by using microalgae and bacteria in which cells are cultured in advance and the cell concentration is increased, as described above, the microalgae and bacteria culture step is not required in a series of hydrogen production steps, and the efficiency is extremely high. Produce hydrogen be able to.
また、 第 1工程では、 予め細胞濃度を高めた微細藻を供給されている ため、 明好気条件下で得られる光エネルギーが、 微細藻の細胞増殖に使 われることがなく、 光合成産物の生成に集中的に費やされ、 光合成産物 を効率良く得ることができる。 その結果、 光合成産物を用いて得られる 水素生成の資化源の生産効率も高めることができる。 同様に、 第 3工程 では、 予め細胞濃度が高められた細菌が供給されているため、 明嫌気条 件下で得られる光エネルギーが、 細菌の細胞増殖に使われず、 水素の生 成に集中的に費やされ、 7素を効率良く得ることができる。  In the first step, microalgae whose cell concentration has been increased are supplied in advance, so that light energy obtained under bright and aerobic conditions is not used for cell growth of microalgae, and generation of photosynthetic products The photosynthetic product can be obtained efficiently. As a result, it is possible to increase the production efficiency of a source of hydrogen production obtained using photosynthesis products. Similarly, in the third step, bacteria with an increased cell concentration are supplied in advance, so the light energy obtained under light-anaerobic conditions is not used for bacterial cell growth, but is concentrated on hydrogen generation. Is spent on, and you can get 7 elements efficiently.
上記微細藻により光合成産物を得る第 1工程、 日音嫌気条件下での微細 藻による醱酵 ·分解で資化源を得る第 2工程、 該質化源を細菌により水 素を生成する第 3工程の 3つの工程を連続させ、 第 1工程で用いられた 光合成能力を有する微細藻を連続的に第 2工程に供給することにより、 より生産速度を速めることができ、 水素をより量産化することができる。 上記水素を生成する第 3工程の前に、 上記資化源と微細藻とを分離し、 第 3工程において分離された資化源と光合成能力を有する細菌とを作用 させる一方、 分離された微細藻を第 1工程に循環させることが好ましい。 これにより、 各工程に必要な物質のみを存在させることができると共に、 微細藻を循環して再度用いることができるため、 常時、 安定して細胞濃 度が高い微細藻を用いることができる。  A first step of obtaining photosynthetic products from the microalgae, a second step of obtaining a utilization source by fermentation and decomposition by the microalgae under anaerobic conditions, and a third step of producing hydrogen by bacteria from the purification source Continuous production of three micro-algae with photosynthetic ability used in the first step to the second step, thereby increasing the production speed and increasing the mass production of hydrogen be able to. Before the third step of producing hydrogen, the above-mentioned assimilable source and microalgae are separated, and the assimilable source and the bacteria having photosynthetic ability that are separated in the third step are allowed to act on the microalgae. Preferably, the algae is circulated to the first step. As a result, only the substances necessary for each step can be present, and the microalgae can be circulated and reused, so that the microalgae having a stable and high cell concentration can always be used.
また、 上記微細藻により明好気条件下で光合成産物を得る第 1工程に おいて、 炭素源が必要であるので、空気あるいは空気と二酸化炭素との 混合気体を通気するのが好ましい。 二酸化炭素を混合する場合は、 ガス 中の二酸化炭素濃度(体積%)が、 約 2〜2 0 %、 好ましくは 2〜; L 0 %、 さらに好ましくは、 約 2〜 5 %が良い。  In the first step of obtaining a photosynthetic product from the microalgae under bright and aerobic conditions, a carbon source is required, so it is preferable to ventilate air or a mixed gas of air and carbon dioxide. When carbon dioxide is mixed, the concentration of carbon dioxide in the gas (% by volume) is preferably about 2 to 20%, preferably 2 to; L 0%, and more preferably about 2 to 5%.
本発明は、 上記担体に固定した状態で、 予め細胞培養して細胞濃度を 高めた微細藻あるいは/および細菌を用いた他の水素生産方法として、 明好気条件下、 液相の浸透圧が 5. 0 a t m以上の条件で、 光合成能 力を有する微細藻により水素生成の資化源を得る第 1工程と、 In the present invention, the cell concentration is determined by preliminarily culturing cells in a state where the cells are fixed to the carrier. Another method of producing hydrogen using enhanced microalgae and / or bacteria is the production of hydrogen by microalgae with photosynthetic ability under light and aerobic conditions, with a liquid phase osmotic pressure of 5.0 atm or more. The first step of obtaining resources,
明嫌気条件下、 上記資化源を用いて光合成能力を有する細菌により水 素を生成する第 2工程との 2つの工程を備えた水素生産方法を提供して いる。  The present invention provides a hydrogen production method including two steps of producing hydrogen by bacteria having photosynthetic ability using the above-mentioned assimilation source under light and anaerobic conditions.
上記第 1工程に担体に固定した状態で予め細胞培養して細胞濃度を高 めた微細藻を存在させた懸濁液を供給し、 第 2工程に担体に固定した状 態で予め細胞培養して細胞濃度を高めた細菌を存在させた懸濁液を供給 している。  In the first step, a suspension containing microalgae whose cell concentration has been increased by cell culture in advance in a state of being fixed to the carrier is supplied, and in the second step, the cell is cultured in advance in a state of being fixed to the carrier. It supplies a suspension containing bacteria with increased cell concentration.
この発明の方法は前記した方法における喑嫌気条件での水素生成の資 化物を得る第 2工程を省略している。  The method of the present invention omits the second step of obtaining a hydrogen-producing material under anaerobic conditions in the method described above.
この第 2工程の省略は、本発明者が実験を繰り返して知見した結果に 基づくものである。  The omission of the second step is based on the results obtained by the present inventor by repeating experiments.
即ち、 太陽光等の光が照射されると共に酸素が存在する明好気条件下 において、 光合成能力を有する微細藻は、 光合成により得られた澱粉等 の有機物からなる光合成産物を細胞内に蓄積し、 この状態で、 液相の浸 透圧を高め、 かつ、 微細藻を担体に固定化すると共に気相中の二酸ィ匕炭 素の濃度を高めると、 微細藻に対してストレスを与えることができる。 これにより、 微細藻が光エネルギーを利用して光合成によりグリセロー ル等の低分子有機物を主成分とする水素生成の資化源を生成し、 その資 化源を細胞外に分泌する。 その結果、 喑嫌気条件下での微細藻による醱 酵 ·分解工程を経ることなく、 光合成能力を有する微細藻を用いてグリ 'セ口ール等の水素生成の資化源を得ることができ、 前記方法と比較して、 ■水素生産工程の簡略化、 7_K素生産効率の向上が図ることができる。  That is, under light and aerobic conditions where light such as sunlight is irradiated and oxygen is present, microalgae having photosynthetic ability accumulate photosynthetic products consisting of organic substances such as starch obtained by photosynthesis in cells. In this state, increasing the osmotic pressure of the liquid phase, immobilizing the microalgae on the carrier, and increasing the concentration of carbon dioxide in the gas phase may cause stress on the microalgae. Can be. As a result, the microalgae use light energy to generate a utilization source of hydrogen generation mainly composed of low-molecular-weight organic substances such as glycerol by photosynthesis, and secrete the utilization source out of the cell. As a result, a micro-algae with photosynthetic ability can be used as a source of hydrogen production such as glycerol without using the micro-algae under the anaerobic conditions, without going through an enzymatic and decomposition process. As compared with the above method, (1) the hydrogen production process can be simplified and the 7_K element production efficiency can be improved.
上記微細藻により水素生成の資化源を得る第 1工程において、 液相の 浸透圧を 5. 0 a t m以上としているのは、 浸透圧がこれより小さいと、 微細藻により生成された光合成産物が微細藻内に蓄積されてしまい、 光 合成産物が水素生成の資化源として微細藻外へ分泌されず、 上記資化源 が不足し、 水素の生成効率が低下するためである。 液相の浸透圧は、 好 ましくは 1 0 . 0 a t m以上、 より好ましくは 2 0. 0 a t m以上であ る。 液相の浸透圧が高い方が資化源を効率良く得ることができる力^ 微 細藻の存在環境等を考慮すると 3 0. O a t m以下が良い。 In the first step of obtaining a source of hydrogen generation from the microalgae, The reason why the osmotic pressure is set to 5.0 atm or more is that if the osmotic pressure is lower than this, photosynthetic products generated by the microalgae are accumulated in the microalgae, and the photosynthetic products are used as a source of hydrogen generation. This is because they are not secreted out of the microalgae, and the above-mentioned resources are insufficient, and the hydrogen generation efficiency is reduced. The osmotic pressure of the liquid phase is preferably at least 10.0 atm, more preferably at least 20.0 atm. The higher the osmotic pressure of the liquid phase is, the more effective it is to obtain the assimilation source.
上記光合成能力を有する細菌により水素を生成する第 2工程では、 液 相の浸透圧は 1 0. 0 a t m〜3 0. 0 a t mであるのが好ましい。 また、 上記微細藻により水素生成の資化源を得るには炭素源が必要で あるため、 上記第 1工程では、 二酸化炭素の体積濃度が 1 . 0 %〜 2 0. 0 %、 好ましくは 2. 0 %〜1 5 . 0 %である気体を通気している。 本発明は上記した水素生産方法に基づく 素生産装置を提供している。 該水素生産装置の第 1は、  In the second step in which hydrogen is produced by the bacteria having photosynthetic ability, the osmotic pressure of the liquid phase is preferably 10.0 atm to 30.0 atm. In addition, since a carbon source is required to obtain a source of hydrogen generation from the microalgae, the volume concentration of carbon dioxide in the first step is 1.0% to 20.0%, preferably 2%. A gas that is between 0% and 15.0% is ventilated. The present invention provides an element production apparatus based on the above-described hydrogen production method. The first of the hydrogen production equipment is
明好気条件下で光合成能力を有する微細藻より光合成物を得る第 1槽 と、 該光合成産物を用いて上記微細藻により暗嫌気条件下で水素生成の 資化物を得る第 2槽と、 該水素生成の資化物を用いて光合成能力を有す る細菌により明嫌気条件下で水素を生成する第 3槽を備え、  A first tank for obtaining photosynthesis from microalgae having photosynthetic ability under light and aerobic conditions, and a second tank for obtaining a hydrogen-producing assimilant under dark anaerobic conditions using the microalgae using the photosynthesis product; Equipped with a third tank that generates hydrogen under light and anaerobic conditions using bacteria capable of photosynthesis using hydrogen generation assimilates,
上記第 1槽、 第 2槽、 第 3槽をパイプあるいはフィルタを介して順次 連続させ、 上記第 1糟から第 2槽へ上記光合成産物と上記微細藻を存在 させた懸濁液を流通させると共に、 上記第 2槽から上記第 3槽へ上記微 細藻を除去した懸濁液を流通させ、 上記第 3槽には上記細菌を槽外に流 出させずに生成する水素を取り出すパイプを連続させ、  The first tank, the second tank, and the third tank are sequentially connected via a pipe or a filter, and the suspension in which the photosynthetic product and the microalga are present is passed from the first tank to the second tank. Then, the suspension from which the microalgae has been removed is circulated from the second tank to the third tank, and a pipe for taking out the hydrogen generated without flowing the bacteria out of the tank is continuously connected to the third tank. Let
• 上記第 1槽には液体に不溶な担体に固定されると共に予め細胞濃度が 高められた上記微細藻を存在させた懸濁液が供給され、 上記第 3槽には 液体に不溶な担体に固定されると共に予め細胞濃度が高められた上記細 菌を存在させた懸濁液が供給されていることを特徴とする 素生産装置 からなる。 • A suspension containing the microalgae fixed to a liquid-insoluble carrier and having a cell concentration increased in advance is supplied to the first tank, and the third tank is supplied with a liquid-insoluble carrier. The cell is fixed and the cell concentration is increased in advance. An element production apparatus characterized in that a suspension in which bacteria are present is supplied.
上記第 2槽と第 3槽の間の上記パイプには上記微細藻の分離手段を介 在させると共に分離された上記微細藻を上記第 1槽に循環させるパイプ を配管している。  The pipe between the second tank and the third tank is provided with a pipe that circulates the separated microalgae to the first tank while interposing the microalgae separating means.
ZK素生産装置として第 2に、  Second, as a ZK element production device,
明好気条件下、 液相の浸透圧が 5. 0 a t m以上の条件で、 光合成能 力を有する微細藻により 7_Κ素生成の資化源を得る第 1槽と、  Under aerobic conditions, under the condition that the osmotic pressure of the liquid phase is 5.0 atm or more, the first tank to obtain a source of 7_ nitrogen production by photosynthetic microalgae,
明嫌気条件下、上記資化源を用いて光合成能力を有する細菌により水 素を生成する第 2糟を備え、 これら第 1槽と第 2槽とをパイプあるいは フィルタを介して順次連続させ、 上記第 1槽から第 2槽へ上記微細藻を 除去した懸濁液を流通させ、 上記第 2槽には上記細菌を槽外に流出させ ずに生成する水素を取り出すパイプを連続させ、  A second tank for producing hydrogen by bacteria having photosynthetic ability using the above-mentioned assimilable source under light and anaerobic conditions is provided.The first tank and the second tank are sequentially connected via a pipe or a filter, and The suspension from which the microalgae was removed was circulated from the first tank to the second tank, and a pipe for taking out the generated hydrogen without flowing the bacteria out of the tank was connected to the second tank.
上記第 1槽には液体に不溶な担体に固定されると共に予め細胞濃度が 高められた上記微細藻を存在させた懸濁液が供給され、 上記第 2槽には 液体に不溶な担体に固定されると共に予め細胞濃度が高められた上記細 菌を存在させた懸濁液が供給されていることを特徴とする水素生産装置 を提供している。  The first tank is supplied with a suspension in which the microalgae are fixed in a liquid-insoluble carrier and the cell concentration is increased in advance, and the second tank is fixed on a liquid-insoluble carrier. The present invention also provides a hydrogen production apparatus characterized in that a suspension in which the above-mentioned bacteria whose cell concentration has been increased in advance is supplied.
上記第 1槽と第 2槽の出口にはそれぞれフィルタが配置され、 上記微 細藻および上記細菌を槽外に流出させない構成としている。  Filters are arranged at the outlets of the first tank and the second tank, respectively, so that the microalgae and the bacteria do not flow out of the tank.
上記フィルターとしては、 ポリスルフォン製が最も好適に用いられる 力、 ポリエチレン、 ポリプロピレン、 ポリビニリデンフロライト等から なるフィルタも用いられる。  As the above-mentioned filter, a filter made of polysulfone, which is most preferably used, or a filter made of polyethylene, polypropylene, polyvinylidenefluorite or the like is also used.
また、 前記した水素生産装置の第 1槽と第 3槽ぉよび後記した水素生 産装置の第 1糟と第 2槽は、 光エネルギー及び熱エネルギーを、 微細藻 および細菌に均等に伝達する流路を備えている点から、 本出願人が提案 した前記特開 2 0 0 0 - 1 0 2 3 9 7号に記載のヘリカルフローを持た せた透明型エアーリフト槽で行うことが好ましいが、 攪拌型の槽でもよ い。 In addition, the first and third tanks of the above-described hydrogen production apparatus and the first and second tanks of the hydrogen production apparatus to be described later provide a flow for transmitting light energy and heat energy evenly to microalgae and bacteria. Proposed by the applicant It is preferable to use a transparent type air lift tank having a helical flow described in the above-mentioned JP-A No. 2000-110297, but it is also possible to use a stirring type tank.
上記水素生産装置はいずれも、 太陽光を利用できる場所に設置するこ とが好ましいが、 曇天時、 夜間等の光量が不足する場合の光エネルギー 源として光照射設備を備えていても良い。  All of the above hydrogen production devices are preferably installed in places where sunlight can be used. However, light irradiation equipment may be provided as a light energy source when the amount of light is insufficient such as in cloudy weather or at night.
上記各槽には不要な気体を排出する排出口を備えている。 図面の簡単な説明  Each of the tanks has a discharge port for discharging unnecessary gas. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 第 1発明の水素生産プロセスの概略構成図である。 図 2は、 第 2発明の水素生産プロセスの概略構成図である。 図 3は、 本発明の水 素生産装置に用いる透明塔型ェアーリフト槽の概略構成図である。 発明を実施するための最良の形態  FIG. 1 is a schematic configuration diagram of the hydrogen production process of the first invention. FIG. 2 is a schematic configuration diagram of the hydrogen production process of the second invention. FIG. 3 is a schematic configuration diagram of a transparent tower type airlift tank used in the hydrogen production apparatus of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施形態を図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、 第.1実施形態の水素生産装置 1 0の概略構成を示す。  FIG. 1 shows a schematic configuration of a hydrogen production device 10 of the first embodiment.
水素生産装置 1 0は、 光合成能力を有する微細藻により明好気条件下 で光合成産物を得る工程を行う第 1槽 1 1、 光合成産物を用いて光合成 能力を有する微細藻により暗嫌気条件下で水素生成の資化源を得る工程 を行う第 2槽 1 2、 資化源を用いて光合成能力を有する細菌により明嫌 気条件下で水素を生成する工程を行う第 3槽 1 3を備えている。 これら の 3つの糟により、 順次、 光合成産物を得る工程、 水素生成の資化源を 得る工程、 z素を生成する工程を連続的に行う構成としている。  The hydrogen production device 10 is a first tank 11 that performs the process of obtaining photosynthetic products under light and aerobic conditions using microalgae with photosynthetic ability.The microalgae with photosynthetic ability using photosynthetic products is used under dark anaerobic conditions. A second tank 12 is provided for performing the step of obtaining a source of hydrogen generation, and a third tank 13 is provided for performing a step of generating hydrogen under light and anaerobic conditions using bacteria having photosynthetic ability using the source of hydrogen. I have. With these three tanks, the process of obtaining photosynthesis products, the process of obtaining a source of hydrogen generation, and the process of generating z-elements are sequentially performed.
第 1槽 1 1と第 2槽 1 2とは、 パイプ Ρ 1により連結され、 第 2槽 1 2と第 3槽 1 3とは、 分離装置 1 4を介してパイプ Ρ 2、 Ρ 3により連 結し、 分離装派 1 4は第 1槽 1 1ともパイプ Ρ 4により連結している。 第 3槽 13には水素回収用のパイプ P 5を設けている。 The first tank 11 and the second tank 12 are connected by a pipe Ρ1, and the second tank 12 and the third tank 13 are connected by pipes Ρ2 and Ρ3 through a separation device 14. Separation group 14 is also connected to the first tank 11 by pipe # 4. The third tank 13 is provided with a pipe P5 for hydrogen recovery.
上記槽 11〜13の温度は 15°C〜35°C、 気相の圧力は常圧である 1 a t m程度、 懸濁液の希釈率は 0. 05h r -1〜 l h r— 懸濁液 の平均滞留時間は1 ^1 1"〜20111:としてぃる。 第 1槽 11を循環させ る懸濁液の pHは 5〜8、 第 2槽 12内の懸濁液の pHは 3〜 6、 第 3 槽 13内の懸濁液の pHは 5〜8となるように設定している。 The temperature of the above tanks 11 to 13 is 15 ° C to 35 ° C, the pressure of the gas phase is about 1 atm, which is normal pressure, and the dilution rate of the suspension is 0.05 hr- 1 to lhr—the average of the suspension. The residence time ranges from 1 ^ 11 "to 20111: the pH of the suspension circulating in the first tank 11 is 5 to 8, the pH of the suspension in the second tank 12 is 3 to 6, 3 The pH of the suspension in the tank 13 is set to be 5-8.
次に、 7素生産装置 10による水素生産方法について詳述する。  Next, a method of producing hydrogen by the element production device 10 will be described in detail.
まず、 第 1槽 11の入口から炭素源となる二酸化炭素、 空気 (酸素) 、 海水、 光合成能力を有する緑藻等の微細藻を供給しておく。  First, carbon dioxide as a carbon source, air (oxygen), seawater, and microalgae such as green algae having photosynthetic ability are supplied from the inlet of the first tank 11.
この第 1槽 11に供給する微細藻は、 別の容器において予め細胞が培 養され、 細胞濃度が高められた状態としている。 具体的には、 微細藻は 海水を主成分とする懸濁液中に、 該懸濁液に不溶な担体に固定し、 細胞 の増殖が進行した対数増殖期後期乃至定常期の微細藻とし、 細胞濃度が The microalga to be supplied to the first tank 11 is in a state in which cells are cultured in another container in advance and the cell concentration is increased. Specifically, the microalgae is fixed in a suspension mainly composed of seawater on a carrier insoluble in the suspension to obtain microalgae in the late logarithmic growth phase or stationary phase in which cell growth has progressed, Cell concentration
1. O x l 08cells/ml以上となる飽和状態としている。 1. is a saturated state where the O xl 0 8 cells / ml or more.
第 1槽 11では、 太陽光等の光が照射され明好気条件としている。 上 記光合成能力を有する微細藻は、 二酸化炭素を炭素源とし、 エネルギ 一を利用して澱粉を含む光合成産物を得ており、 この光合成により得ら れた澱粉は微細藻中に蓄えられる。  The first tank 11 is irradiated with light, such as sunlight, so that the conditions are bright and aerobic. The microalgae having the photosynthetic ability described above uses carbon dioxide as a carbon source and uses energy to obtain a photosynthetic product containing starch, and the starch obtained by the photosynthesis is stored in the microalgae.
第 1槽 11では、 微細藻の細胞増殖は行われず、 ほぼ澱粉の合成のみ が行われ、 澱粉濃度が高められている。 懸濁液中の澱粉濃度は、 1. 0 〜3. 0 mo 1 Zm 1、 好ましくは 1. 8〜2. 5〃nio lZm lに 高められて第 1糟 11からパイプ P 1を経て第 2槽 12に流出させてい る  In the first tank 11, the microalgae are not proliferating, but almost only synthesize starch, and the starch concentration is increased. The starch concentration in the suspension was increased to 1.0 to 3.0 mol 1 Zm1, preferably 1.8 to 2.5 mol Zml, and the second concentration was passed through the pipe P 1 from the first tank 11. Outflow to tank 12
第 1槽 11の出口では、 二酸化炭素の濃度は、 澱粉合成に使用された だけ減少し、 微細藻の濃度は、 入口とほぼ同じである。  At the outlet of the first tank 11, the concentration of carbon dioxide is reduced by the amount used for starch synthesis, and the concentration of microalgae is about the same as at the inlet.
第 2槽 12では、 太陽光等の光が照射されず、 酸素が存在しない暗嫌 気条件としており、 1 0 0 %二酸化炭素ガスを通気している。 光合成産 物である澱粉を蓄えた微細藻は、 喑嫌気条件下で澱粉が分解され、 発酵 されて、 エタノール、 グリセロール、 酢酸等が微細藻中から懸濁液中に 放出される。 その他、 ぎ酸、 乳酸等の有機酸やアルコール等も微細藻体 外に放出される。 このように放出されたエタノール、 グリセロール、酢 酸等が水素生成の資化源として用いられる。 該資化源の有機物が電子供 与体として、 光合成能力を有する細菌による水素生産に用いられる。 従- て、 第 2槽 1 2における喑嫌気条件は有機物の発酵生産がスムーズに行 われる条件としており、 特に、 乳酸が多く発酵する条件とすることが好 ましい。 また、 二酸化炭素ガスを通気して嫌気条件としているため光合 成産物の分解を促進される一方、 微細藻による水素の発生をできるだけ 抑制している。 In the second tank 12, no light such as sunlight is irradiated, and no oxygen is present. And 100% carbon dioxide gas is ventilated. Microalgae containing starch, which is a photosynthetic product, are degraded under anaerobic conditions, fermented, and ethanol, glycerol, acetic acid, etc. are released from microalgae into suspension. In addition, organic acids such as formic acid and lactic acid and alcohols are also released outside the microalgae. Ethanol, glycerol, acetic acid, etc. released in this way are used as sources of hydrogen generation. The organic matter of the utilization source is used as an electron donor for hydrogen production by bacteria having photosynthetic ability. Accordingly, the anaerobic condition in the second tank 12 is a condition under which fermentative production of organic matter is smoothly performed, and particularly preferably a condition under which a large amount of lactic acid is fermented. In addition, the anaerobic condition by passing carbon dioxide gas promotes the decomposition of photosynthetic products, while minimizing the generation of hydrogen by microalgae.
上記第 2槽 1 2で、 醱酵に要する時間は、 第 1槽 1 1での澱粉合成に 要する時間とほぼ同じで良い。 第 2槽 1 2の出口での資化源の濃度と、 懸濁液の流出速度との積が資化源の生産速度であり、 第 2槽 1 2は、 こ の資化源の生産速度が最高となるような条件としている。  The time required for fermentation in the second tank 12 may be substantially the same as the time required for starch synthesis in the first tank 11. The product of the concentration of the source at the outlet of the second tank 12 and the flow rate of the suspension is the production rate of the source, and the second tank 12 is the production rate of this source. Is the highest condition.
第 2槽 1 2から流出される資化源と微細藻を含む懸濁液は、 パイプ P 2を通じて分離装置 1 4へ送られ、 分離装置 1 4に備えられたフィルタ 一により、 担体に固定化された微細藻は流通が遮断され、 資化源を含む 懸濁液と分離される。 分離された微細藻はパイプ P 4を通じて第 1槽 1 1へと循環させ、 光合成産物を得る工程で再度用いられる。 分離された 資化源を含む懸濁液はパイプ P 3を通じて第 3槽 1 3へ流入する。  The suspension containing assimilable resources and microalgae flowing out of the second tank 12 is sent to the separation device 14 through the pipe P2, and is fixed to the carrier by the filter 1 provided in the separation device 14. The resulting microalgae are cut off and separated from the suspension containing assimilable resources. The separated microalgae is circulated through the pipe P4 to the first tank 11 and reused in the step of obtaining photosynthetic products. The suspension containing the separated resources flows into the third tank 13 through the pipe P3.
第 3槽 1 3では、 第 2槽 1 2から流入する資化源を光合成能力を有す る細菌とを作用させて、 τ素を生成させている。  In the third tank 13, the source of inflow from the second tank 12 is reacted with bacteria having photosynthetic ability to generate τ-element.
この第 3槽 1 3には、 光合成能力を有する細菌が、 懸濁液中に不溶な 担体に固定され且つ予め細胞が培養されて細胞濃度が高められた状態で 供給している。 具体的には、上記細菌は、 細胞の増殖が進行した対数増 殖期後期乃至定常期の細菌とし、 海水を主成分とする懸濁液中に存在さ せ、 細胞濃度が 1 . 0 X 1 0 8 cells/ml 以上となるように飽和状態 としている。 In this third tank 13, bacteria having photosynthetic ability are immobilized on a carrier insoluble in the suspension, and cells are cultured in advance to increase the cell concentration. Supplying. Specifically, the above bacteria are bacteria in the late logarithmic growth phase or stationary phase in which cell growth has progressed, and are present in a suspension mainly composed of seawater, and have a cell concentration of 1.0 X 1 It is saturated so that it is not less than 0 8 cells / ml.
また、 上記細菌にはニトロゲナーゼを高いレベルで誘導している。 こ の二トロゲナーゼは 2 0 0〜1 0 0 0 n m o l C 2 H 4/m g cell dry wet/hrの活性(この活性はァセチレンのェチレンへの還元速度で測 定した活性) で活性化している。 In addition, the above bacteria induce nitrogenase at a high level. This ditrogenase is activated by an activity of 200 to 100 nmol C 2 H 4 / mg cell dry wet / hr (this activity is measured by the reduction rate of acetylene to ethylene).
第 3槽 1 3は太陽光等の光が照射され明嫌気条件としている。 上記細 菌はエタノール等の資化源から、 光エネルギーを利用して水素を生産し、 得られた水素はパイプを通して回収される。 なお、 生成した水素の一部 を第 3槽 1 3に循環させても良い。  The third tank 13 is irradiated with light, such as sunlight, and is in a light-anaerobic condition. The above bacteria produce hydrogen from light sources such as ethanol using light energy, and the obtained hydrogen is recovered through pipes. Note that a part of the generated hydrogen may be circulated to the third tank 13.
このように、 第 1実施形態では、 光合成能力を有する微細藻および細 菌は予め細胞濃度が高められた状態で供給しているため、 水素生産に必 要な産物を効率良く得ることができる。 かつ、 第 1槽 1 1での光合成産 物を得る工程、 第 2槽 1 2での水素生成の資化源を得る工程、 第 3槽 1 3での水素を生成する工程を連続化しているため、 最終的に水素を非常 に効率良く製造でき、 zK素の量産化、 水素生産の工業化を実現すること ができる。  As described above, in the first embodiment, microalgae and bacteria having photosynthetic ability are supplied in a state where the cell concentration is increased in advance, so that products required for hydrogen production can be efficiently obtained. In addition, the process of obtaining photosynthetic products in the first tank 11, the step of obtaining a source of hydrogen generation in the second tank 12, and the step of generating hydrogen in the third tank 13 are being continuous. Therefore, hydrogen can be produced very efficiently in the end, and mass production of zK element and industrialization of hydrogen production can be realized.
図 2は第 2実施形態の水素生産装置 2 0の概略構成を示す。  FIG. 2 shows a schematic configuration of a hydrogen production apparatus 20 of the second embodiment.
該水素生産装置 2 0は、 光合成能力を有する微細藻を用いて水素生成 の資化源を生成する第 1槽 2 1と、 上記資化源を用いて光合成能力を有 する細菌により水素を生成する第 2槽 2 2を備えている。 上記第 1槽 2 1および第 2糟 2 2は光エネルギー及び熱エネルギーを上記微細藻およ び細菌に均等に伝達可能な構成としている。  The hydrogen production apparatus 20 includes a first tank 21 for generating a source of hydrogen generation using microalgae having photosynthetic ability, and hydrogen generating by bacteria having a photosynthetic ability using the above-mentioned sources. A second tank 22 is provided. The first tank 21 and the second tank 22 are configured to be able to transmit light energy and heat energy evenly to the microalgae and bacteria.
第 1槽 2 1には海水を供給する供給管 2 3を連結すると共に、 該第 1 槽 2 1の出口に第 1フィルター F 1を介して第 2槽 2 2と第 1パイプ P Γ により連結している。 第 1槽 2 1内の微細藻は第 1フィルター F 1 で槽外へ流出が阻止され、 第 1槽 2 1の懸濁液のみを第 2槽 2 2に流出 させている。 A supply pipe 23 for supplying seawater is connected to the first tank 21 and the first tank 21 is connected to the first tank 21. The outlet of the tank 21 is connected to the second tank 22 via the first filter F 1 and the first pipe P Γ. The microalgae in the first tank 21 is prevented from flowing out of the tank by the first filter F 1, and only the suspension in the first tank 21 flows out to the second tank 22.
第 1槽 2 1では、 液相の浸透圧を 5. O a t m以上 3 0. 0 a t m以 下とし、 本実施形態では 2 4. 6 a t m (気圧) としている。 また、 二 酸化炭素の体積濃度が 1 . 0 %〜2 0. 0 % (本実施形態では 5. 0 %) の気体を通気している。  In the first tank 21, the osmotic pressure of the liquid phase is set to 5. 0 atm or more and 30.0 atm or less, and in the present embodiment, 24.6 atm (atmospheric pressure). Further, a gas having a volume concentration of carbon dioxide of 1.0% to 20.0% (5.0% in the present embodiment) is ventilated.
第 2槽 2 2には水素回収用の第 2パイプ P 2 ' を連結すると共に、 海 水を排出する排出管 2 4を設けている。 第 2槽 2 2から第 2パイプ P 2 ' への出口には第 2フィルター F 2を設けると共に、 第 2槽 2 2から排 出管 2 4の出口には第 3フィルター F 3を設け、 細菌が第 2槽 2 2より 槽外へ流出させない構成としている。  The second tank 22 is connected to a second pipe P 2 ′ for hydrogen recovery, and is provided with a discharge pipe 24 for discharging seawater. A second filter F2 is provided at the outlet from the second tank 22 to the second pipe P2 ', and a third filter F3 is provided at the outlet of the discharge pipe 24 from the second tank 22. Is not allowed to flow out of the second tank 22 out of the tank.
また、 槽 2 1、 2 2の温度、 懸濁液の滞留時間は第 1実施形態と同様 とし、 第 1塔槽 2 1及び第 2槽 2 2の懸濁液の p Hは 5〜8となるよう に設定している。  The temperatures of the tanks 21 and 22 and the residence time of the suspension were the same as in the first embodiment, and the pH of the suspensions in the first tower 21 and the second tank 22 was 5 to 8. It is set to be.
上記水素生産装置 2 0での水素生産方法について詳述する。  The method of producing hydrogen in the hydrogen producing apparatus 20 will be described in detail.
まず、 第 1槽 2 1の入口から炭素源となる二酸化炭素、 空気 (酸素〉 、 海水、 録藻等の微細藻を流入させている。 通気する気体中の二酸化炭素 の体積濃度を 5. 0 %としている。 また、上記微細藻は第 1実施形態と 同一で、 担体に固定した状態で懸濁液中に存在させ、 かつ、 予め細胞濃 度を高めている。  First, carbon dioxide as a carbon source, air (oxygen), seawater, microalgae such as algae, etc., are introduced from the inlet of the first tank 21. The volume concentration of carbon dioxide in the gas to be ventilated is 5.0. The microalgae is the same as in the first embodiment, is present in a suspension in a state of being fixed to a carrier, and has a previously increased cell concentration.
第 1槽 2 1では、太陽光等の光が照射され酸素が存在する明好気条件 とし、 液相の浸透圧を前記 2 4. 6 a t m (気圧) としているため、 第 1槽 2 1内において、 上記微細藻は二酸化炭素を炭素源とし、 光ェネル ギーを利用して光合成産物の澱粉を生成して細胞内に蓄積すると共に、 グリセ口一ル等を微細藻の細胞中から懸濁液中に分泌する。 分泌された グリセ口ール等が水素生成の資化源となる。 In the first tank 21, light and sunlight are radiated and oxygen is present, and the osmotic pressure of the liquid phase is 24.6 atm (atmospheric pressure). In the above, the microalgae uses carbon dioxide as a carbon source, generates starch of a photosynthetic product using photoenergy, accumulates in a cell, Glycerite is secreted from microalgal cells into the suspension. Secreted glycerol, etc., is a source of hydrogen production.
第 1槽 2 1内の微細藻と該微細藻から分泌された水素生成の資化源と を含む懸濁液は、 フィルター F 1により分離され、 微細藻は第 1槽 2 1 中に残存し、 資化源を含む懸濁液は第 1パイプ P Γ を流通し第 2槽 2 2へ連続的に流出する。 其の際、 微細藻を担体に固定しているためフィ ルター F 1で確実に分離できる。  The suspension containing the microalgae in the first tank 21 and a source of hydrogen production secreted from the microalgae is separated by the filter F1, and the microalgae remains in the first tank 21. However, the suspension containing the utilization source flows through the first pipe P Γ and continuously flows out to the second tank 22. At this time, since the microalgae are fixed to the carrier, the microalgae can be surely separated by the filter F1.
第 1槽 2 1の出口での水素生成の資化源の濃度と、 懸濁液の流出速度 との積が水素生成の資化源の生産速度であり、 第 1槽 2 1は、 この生産 速度が最高となるような条件とされるのが好ましい。  The product of the concentration of the source of hydrogen generation at the outlet of the first tank 21 and the outflow rate of the suspension is the production rate of the source of hydrogen generation, and the first tank 21 Preferably, the conditions are such that the speed is highest.
第 2槽 2 2では、 第 1槽 2 1から流入する水素生成の資化源と上記光 合成能力を有する細菌とを作用させ、 zK素を生成している。 第 2槽 2 2 中の細菌は、 第 1実施形態の第 3槽に供給している細菌と同一で、 担体 に固定した状態で懸濁液中に存在させ、 力、つ、 予め細胞濃度を高められ ると共に二トロゲナーゼが高誘導された状態とものとしている。  In the second tank 22, the source of hydrogen generation flowing from the first tank 21 and the bacteria having the photosynthetic ability are allowed to act to generate zK element. The bacteria in the second tank 22 are the same as the bacteria supplied to the third tank of the first embodiment, are present in a suspension in a state of being fixed to a carrier, and have a predetermined cell concentration. It is said that the condition has been enhanced and that ditrogenase has been highly induced.
第 2槽 2 2は、 太陽光等の光が照射され酸素が存在しない明嫌気条件 とし、 上記細菌はグリセロール、 エタノール等の水素生成の資化源から、 光エネルギーを利用して水素を生産している。 得られた水素は第 2パイ 'プ P 2 ' を通じて回収し連続的に水素を生産している。 また、 細菌を含 む懸濁液は、 フィルター F 3により分離され、 細菌は第 2槽 2 2中に残 存し、 懸濁液の主成分である海水は、 排出管 2 4から排出している。 な お、 生成した水素の一部を第 2槽 2 2に循環させても良い。  The second tank 22 is in a light-anaerobic condition in which there is no oxygen present due to irradiation with light such as sunlight.The bacteria produce hydrogen using light energy from a source of hydrogen generation such as glycerol and ethanol. ing. The obtained hydrogen is recovered through the second pipe 'P 2' and continuously produces hydrogen. The suspension containing the bacteria is separated by the filter F3, and the bacteria remain in the second tank 22.Seawater, which is the main component of the suspension, is discharged from the discharge pipe 24. I have. A part of the generated hydrogen may be circulated to the second tank 22.
. 上記第 2実施形態では、 光合成能力を有する微細藻を明好気条件下で 液相の浸透圧を 2 4. 6 a t mとしているため、 微細藻が光合成により 光合成産物を得ると共に、 暗嫌気条件下での醱酵ェ程を経ることなく光 合成によりグリセロール等の水素生成の資化源を得ることができる。 従つ て、 第 1実施形態の暗嫌気条件で行う醱酵工程を省略でき、 簡易なシス テムで水素生産に必要な産物を効率良く得ることができる。 In the second embodiment, since the osmotic pressure of the liquid phase of the microalgae having photosynthetic ability is 24.6 atm under bright and aerobic conditions, the microalgae obtains a photosynthetic product by photosynthesis, and under dark anaerobic conditions. A source of hydrogen generation such as glycerol can be obtained by photosynthesis without going through the fermentation process below. Follow Therefore, the fermentation step performed under dark anaerobic conditions of the first embodiment can be omitted, and a product required for hydrogen production can be efficiently obtained with a simple system.
第 3実施形態では、 担体に上記微細藻および細菌を固定せずに、 予 め培養して細胞濃度を高めた後に、 第 2実施形態と同様に、 細胞濃度が 高められた上記微細藻の懸濁液を第 1槽に供給すると共に、 細胞濃度が 高められた上記細菌を第 2槽に供給している。  In the third embodiment, the microalgae and the bacteria are not fixed to the carrier, but are preliminarily cultured to increase the cell concentration. Then, as in the second embodiment, the suspension of the microalgae with the increased cell concentration is increased. Suspended liquid is supplied to the first tank, and the bacteria whose cell concentration has been increased are supplied to the second tank.
上記微細藻および細菌の細胞濃度は、 細胞の増殖が進行した対数増殖 期後期乃至定常期の微細藻および細菌とし、 細胞濃度が 1 . 0 X 1 0 8 eel Is/ml以上となるように、 海水あるいは/及び窒素供給源 ·無機成 分 · ビタミンを含む溶液中に飽和状態で存在させている。 該溶液中では 塩化アンモニゥム等の窒素源の濃度が 0. I mM以下としている。また、 上記微細藻の溶液として海水を用いる場合は、 塩分濃度を 1 . 0 %〜 1 0. 0 %としている。 The cell concentration of the microalgae and bacteria is defined as microalgae and bacteria in the late logarithmic phase to the stationary phase in which the growth of cells has progressed, and the cell concentration is not less than 1.0 × 10 8 eel Is / ml. Saturated in seawater or / and nitrogen source, inorganic components, and solutions containing vitamins. In the solution, the concentration of a nitrogen source such as ammonium chloride is set to 0.1 mM or less. When seawater is used as the microalgae solution, the salt concentration is set to 1.0% to 10.0%.
このように、 7jc素生産ラインとして連続させている第 1槽および第 2 槽に、 予め細胞濃度を高めた光合成能力を有する微細藻および細菌を供 耠しておくと、 水素生産ラインにおいて光エネルギーを細胞増殖に利用 せずに最終生成物である水素の生成に集中的に利用できるため、 水素の 生産性を高めることができる。  In this way, if microalgae and bacteria with photosynthetic ability with increased cell concentration are supplied in advance to the first and second tanks that are continuous as 7jc element production lines, the light energy in the hydrogen production line Since hydrogen can be intensively used for the production of the final product, hydrogen, without using it for cell growth, hydrogen productivity can be increased.
なお、 前記第 1実施形態の第 1槽〜第 3槽を備えた水素生産装置にお いても、 同様で、 担体に固定されていなが、 予め細胞濃度が高められた 上記微細藻の懸濁液を第 1槽に供給すると共に、 細胞濃度が高められた 上記細菌を第 3槽に供給してもよい。  In the hydrogen production apparatus having the first to third tanks of the first embodiment, the suspension of the microalgae, which is not fixed to the carrier but has a previously increased cell concentration, is similarly used. The solution may be supplied to the first tank, and the bacteria with an increased cell concentration may be supplied to the third tank.
第 4実施形態では、 上記光合成能力を有する微細藻および細菌を、 予 め細胞濃度を高めていないが、 懸濁液に不溶な担体に固定した状態で懸 濁液中に存在させて、 上記第 2実施形態と同一の水素生産装置の第 1槽 と第 2槽とに供給している。 なお、 第 1実施形態の水素生産装置の第 1 槽と第 3槽とに供給してもよい。 In the fourth embodiment, the microalgae and the bacterium having photosynthetic ability are not previously raised in cell concentration, but are present in a suspension in a state of being fixed to a carrier insoluble in a suspension. The hydrogen is supplied to the first tank and the second tank of the same hydrogen production apparatus as in the second embodiment. Note that the first embodiment of the hydrogen production apparatus of the first embodiment It may be supplied to the tank and the third tank.
上記微細藻は担体に 3 0 m g乾燥重量/ c m 3 (担体) 〜 7 0 m g乾 燥重量/ c m3 (担体) 、上記細菌は担体に 1 0 m g乾燥菌体重量/ c m 3 (担体〉 ~ 5 O m g乾燥菌体重量 Z c m3 (担体) で固定しており、 本実施形態では、 微細藻として綠藻を用い 5 0 m g乾燥重量/ c m3 (担体) で固定し、 細菌は 3 O m g乾燥重量/ c m3 (担体〉 で固定し ている。 The microalgae is 30 mg dry weight / cm 3 (carrier) to 70 mg dry weight / cm 3 (carrier) in the carrier, and the above bacteria is 10 mg dry cell weight / cm 3 (carrier) in the carrier. 5 O mg dry cell weight Z cm 3 (carrier), fixed in this embodiment, 実 施 algae as microalgae, fixed at 50 mg dry weight / cm 3 (carrier), bacteria Fixed at mg dry weight / cm 3 (carrier).
上記担体はポリニビルホルマールからなる多孔性高分子材料から形成 し、 直径が 1 mn!〜 5 O mmの球体あるいは 1 mm〜5 O mm角の立方 体とし、 該多孔体からなる担体の空孑 L径は 1 0 π!〜 5 0 0 mの範囲 としている。 この担体に対して上記微細藻として粘着性を有する綠藻を 用い、 担体結合法により固定している。  The carrier is made of a porous polymer material consisting of polynivir formal and has a diameter of 1 mn! It is a sphere of up to 5 O mm or a cube of 1 mm to 5 O mm square. To 500 m. A microalgae having adhesiveness is used as the microalgae for this carrier, and the microalgae is fixed by a carrier binding method.
一方、 上記細菌は細胞表面がマイナスに帯電しているものを用い、 担 体を予めプラスに帯電しているポリリジンによりコーティングし、 これ に細菌を電気的引力によって結合させて固定している。  On the other hand, the above-mentioned bacterium has a negatively charged cell surface. The carrier is coated with a positively charged polylysine in advance, and the bacterium is bound to the lysine by electrical attraction and fixed.
上記細菌は第 1、 第 2実施形態と同様に、 ニトロゲナ一ゼが 5 0 0〜 1 0 0 0 n m o 1 C 2 H 4/m g cel l dry wtZhrの活性で活性化され 高誘導された状態で用いている。 其の際、上記細菌にニトロゲナーゼを 高いレベルで誘導してから細菌を担体に固定化しても良ているが、 細菌 を担体に固定化してから細菌に二トロゲナーゼを高いレベルで誘導して も良い。 In the above-mentioned bacterium, as in the first and second embodiments, the nitrogenase is activated by the activity of 500 to 1000 nmo 1 C 2 H 4 / mg cell dry wtZhr and is highly induced. Used. At this time, it is good to induce nitrogenase in the above bacteria at a high level and then immobilize the bacteria on the carrier, but it is also possible to immobilize the bacteria on the carrier and then induce a high level of ditrogenase in the bacteria. .
上記微細藻および細菌の細胞は予め細胞濃度を高めていないが、 細胞 を浮遊細胞として用いるのではなく、 担体に固定化することで、 細胞に ストレスを与えるだけでなく、 単位体積当たりの細胞密度を高めること ができると共に、 細胞活¾£を安定化することができ、 微細藻や細菌の作 用を長期に渡って持続させることができる。 また、 固定化された微細藻 や細菌が死滅すると自ら容易に担体から外れ、 その後、 微細藻や細菌が 新たに増殖等して担体に固着するため、 連続的に微細藻や細菌の作用を 得ることができる。 さらに、 上記担体は微細藻や細菌を存在させる液体 に不溶であるため、 供給した槽の出口に設置したフィルターで槽外への 流出を遮断できる。 なお、 第 1実施形態の場合は第 2槽と第 3槽の間に 介設する分離装置により、 微細藻を第 3槽に流入させずに第 1槽に循環 させることができる。 Although the cell concentration of the microalgae and bacterial cells has not been increased in advance, the cells are not used as floating cells but are immobilized on a carrier to not only stress the cells, but also to increase the cell density per unit volume. The cell activity can be stabilized, and the action of microalgae and bacteria can be maintained for a long period of time. Also, immobilized microalgae When the microbes and bacteria die, they are easily detached from the carrier, and then the microalgae and bacteria are newly grown and adhere to the carrier, so that the action of the microalgae and bacteria can be continuously obtained. Further, since the carrier is insoluble in the liquid in which microalgae and bacteria are present, the outflow to the outside of the tank can be blocked by a filter provided at the outlet of the supplied tank. Note that, in the case of the first embodiment, the microalgae can be circulated to the first tank without flowing into the third tank by a separation device interposed between the second tank and the third tank.
上記第 1実施形態の第 1槽 1 1〜第 3槽 1 3、 第 2〜第 4実施形態の 第 1槽 2 1、 第 2槽 2 2は、 図 3に示す透明塔型ェアーリフト槽 3 0力、 らなる。 このエアーリフト槽 3 0は明好気条件および明嫌気条件の槽で は太陽光で照射されるように設置し、 暗嫌気条件下の槽では太陽光を遮 蔽して設置している。  The first tank 11 to the third tank 13 of the first embodiment, the first tank 21 and the second tank 22 of the second to fourth embodiments are each a transparent tower type airlift tank 30 shown in FIG. Power The air lift tank 30 is installed so as to be irradiated with sunlight in the tank under the bright aerobic condition and the bright and anaerobic condition, and is shielded from the sunlight in the tank under the dark anaerobic condition.
なお、 上記各槽の構造は、 必要とされる明好気条件、 明嫌気条件ある いは喑嫌気条件下での作用を行える構成であれば限定されない。  The structure of each of the above-mentioned tanks is not limited as long as the structure can perform the required bright and aerobic conditions, bright and anaerobic conditions, or 喑 anaerobic conditions.
透明塔型ェアーリフト槽 3 0は、外部円筒 3 1の下部に、 液体が流れ る程度の空間をあけて内部円筒 3 2を配置し二重円筒構造としている。 外部円筒 3 1と内部円筒 3 2の間および内部円筒 3 2の内部をそれぞれ 懸濁液 3 3の循環流路としている。  The transparent tower type airlift tank 30 has a double cylindrical structure in which an inner cylinder 32 is arranged below the outer cylinder 31 with a space enough for liquid to flow. The space between the outer cylinder 31 and the inner cylinder 32 and the inside of the inner cylinder 32 are used as circulation channels for the suspension 33, respectively.
上記内部円筒 3 2の内側の下部に通気装置 3 4を配置して通気し、 内 部円筒 3 2の内側の下部から上部へ向かって懸濁液 3 3の流れを発生さ せ、 内部円筒 3 2の内側の上面から内部円筒 3 2と外部円筒 3 1の間の 流路へと懸濁液 3 3を下向きに流通させて循環させている。 懸濁液 3 3 は、 外部円筒 3 1と内部円筒 3 2との間の外周流路を流れる際に最も強 く光が照射される構成としている。 また、 内部円筒 3 2の上部には、 螺 旋状ゃ放射状の流れを生み出すへリカルフ口一プロモーター 3 6を配置 している。 上記構成からなる透明塔型ェアーリフト槽 3 0は、 喑嫌気条件下の槽 では熱エネルギーを、 明好気条件および明嫌気条件の糟では熱エネルギ 一と光エネルギ一を、 全ての細胞に均等に付与できる流路を備えている ため、 該流路内を循環する光合成能力を有する微細藻を含む懸濁液、 光 合成能力を有する細菌を含む懸濁液は、 均等且つ循環的に光エネルギー を受け、 光合成能力が高められる。 かつ、 従来の攪拌型の培養槽を用い る場合に比べて、 微細藻や細菌への光の照射時間を長くできるとともに、 微細藻や細菌が効率よく循環されるため、 光合成量が高められる。 A ventilation device 34 is arranged in the lower part inside the inner cylinder 32 to ventilate, and a suspension 33 flows from the lower part to the upper part inside the inner cylinder 32 to generate a flow of the suspension 33. The suspension 33 is circulated downward from the upper surface inside 2 to the flow path between the inner cylinder 32 and the outer cylinder 31. The suspension 33 is configured to be irradiated with the strongest light when flowing through the outer peripheral flow path between the outer cylinder 31 and the inner cylinder 32. At the upper part of the inner cylinder 32, a helical mouth promoter 36 for generating a spiral or radial flow is arranged. The transparent tower type airlift tank 30 having the above-mentioned configuration is designed to uniformly apply heat energy to tanks under anaerobic conditions, heat energy and light energy to cells under bright and aerobic conditions and light and anaerobic conditions. Because of the provision of a flow path that can be provided, a suspension containing microalgae having photosynthetic ability circulating in the flow path and a suspension containing bacteria having photosynthetic ability can uniformly and cyclically emit light energy. As a result, photosynthetic ability is enhanced. In addition, the irradiation time of light on microalgae and bacteria can be made longer and the amount of photosynthesis can be increased because microalgae and bacteria are circulated more efficiently than in the case of using a conventional stirred-type culture tank.
以下、 第 1実施形態の水素生産方法による実施例 1、 比較例 1につい て詳述する。  Hereinafter, Example 1 and Comparative Example 1 according to the hydrogen production method of the first embodiment will be described in detail.
上記第 1実施形態と同様の装置を用い、 以下の実験を行った。  The following experiment was performed using the same device as in the first embodiment.
第 1〜第 3槽は、 全て実容積 5 0 Lのヘリカルフロープロモーター付 きエア一リフト型バイオリアクターを用いた。 ァクリル樹脂製の透明塔 型エアーリフト槽の高さは 1 . 8 m、 外径は 0. 2 m、 アクリル樹脂製 'の内部円筒の直径は 0. 1 2 5 mとした。 通気装置であるガス吹き込み 口を槽の底から 0. 0 5 mの位置に設置した。 具体的には、 内径 0. 0 1 mの円形チューブ(円の直径 0. l m) に 5 0個の内径 0. 0 0 1 m の孔をあけ、 そこからガスを吹き込んだ。 実施例、 比較例共に同様とし For the first to third tanks, an air-lift bioreactor with a helical flow promoter with an actual volume of 50 L was used. The height of the transparent tower type air lift tank made of acryl resin was 1.8 m, the outer diameter was 0.2 m, and the diameter of the inner cylinder made of acrylic resin was 0.125 m. A gas inlet, which is a ventilation device, was installed at a position of 0.05 m from the bottom of the tank. Specifically, 50 holes with an inner diameter of 0.001 m were drilled in a 0.01 m inner diameter circular tube (circle diameter: 0.1 m), and gas was blown from there. Examples and Comparative Examples are the same.
/し o / Then o
明好気条件は、 太陽光と光源 (1 8 W/m 2) とを用いて行った。 懸 濁液の主成分は、 海水とした。 光合成能力を有する微細藻としては、 綠 藻クラミ ドモナス W— 8 0株を用いた。 光合成能力を有する細菌は、 口 ドブラム ·サルフィ ドフィラム W— 1 Sを用いた。 The bright and aerobic conditions were performed using sunlight and a light source (18 W / m 2 ). The main component of the suspension was seawater. The alga Chlamydomonas W-80 strain was used as the microalgae having photosynthetic ability. The bacteria having photosynthetic ability used were oral Dobram sulphide dophyllum W-1S.
担体としては、 ポリビニルホルマールからなる多孔性高分子材料を用 いた。  As the carrier, a porous polymer material made of polyvinyl formal was used.
(実施例 1 ) 下記の表 1のように予め細胞濃度が高められた状態で微細藻、 細菌を 用いた。 定常期の微細藻、 細菌を用い、 担体に固定化した。 (Example 1) As shown in Table 1 below, microalgae and bacteria were used in a state where the cell concentration was increased in advance. Using stationary phase microalgae and bacteria, they were immobilized on a carrier.
(比較例 1 )  (Comparative Example 1)
下記の表 1のように細胞濃度が高くなく、 細胞の増殖が行い得る状態 で微細藻、 細菌を用いた。 対数増殖期の微細藻、 細菌を用い、担体には 固定化せず、 浮遊細胞として用いた。  As shown in Table 1 below, microalgae and bacteria were used in a state where the cell concentration was not high and cells could grow. Microalgae and bacteria in logarithmic growth phase were used and used as floating cells without immobilization on a carrier.
【表 1】  【table 1】
Figure imgf000025_0001
上記実施例及び比較例の方法により水素を生産し、 z素生産速度、 水 素生産比を測定した。 なお、 希釈率は共に 0. l h r— 1とした。 測定 結果を表 2に示す。
Figure imgf000025_0001
Hydrogen was produced by the methods of the above Examples and Comparative Examples, and the rate of hydrogen production and the rate of hydrogen production were measured. The dilution ratio was 0.1 lhr- 1 . Table 2 shows the measurement results.
【表 2】
Figure imgf000025_0002
表 2に示すように、 実施例 1は、 比較例 1に比べて、 非常に水素生産 速度が早く、 水素を効率良く生産できることが確認できた。 よって、 第
[Table 2]
Figure imgf000025_0002
As shown in Table 2, it was confirmed that Example 1 had a much higher hydrogen production rate than Comparative Example 1 and could efficiently produce hydrogen. Therefore,
1実施形態の方法によれば、 7_Κ素を量産することができ、 微生物による 素生産の工業化に非常に有用であることが確認できた。 According to the method of one embodiment, 7_ nitrogen can be mass-produced, and it has been confirmed that the method is very useful for industrialization of element production by microorganisms.
次に、 第 2実施形態の水素生産装置による水素生産方法の実施例 2、 比較例 2について詳述する。  Next, Example 2 and Comparative Example 2 of the hydrogen production method using the hydrogen production apparatus of the second embodiment will be described in detail.
下記の表 3の条件で各々水素を生産し、 水素生産速度を測定した。 使用細胞 Hydrogen was produced under the conditions shown in Table 3 below, and the hydrogen production rate was measured. Cells used
使用反応装置 (塔) 細胞濃度 (cells/ml)  Reactor used (tower) Cell concentration (cells / ml)
tm) 型体  tm) type
低分子有機物合成塔 (1) 緑藻 (第 1塔) 光合成細菌 (第 2塔) 実施例 2 24.6  Low molecular organic matter synthesis tower (1) Green algae (first tower) Photosynthetic bacteria (second tower) Example 2 24.6
水素生産塔 (2) 固定化細胞  Hydrogen production tower (2) Immobilized cell
1.8X108 5.3X 108 緑藻 (第 1塔) 光合成細菌 (第 2塔) 比較例 2低分子有機物合成塔 (1) 1.8X10 8 5.3X 10 8 Green algae (1st tower) Photosynthetic bacteria (2nd tower) Comparative example 2 Low molecular organic matter synthesis tower (1)
1.9  1.9
水素生産塔 (2) 固定化細胞  Hydrogen production tower (2) Immobilized cell
1.8X108 5.3X108 1.8X10 8 5.3X10 8
(実施例 2 ) (Example 2)
上記第 2実施形態の水素生産方法について、 以下の実験を行った。 第 1槽、 第 2槽として実容積 5 0 Lのヘリカルフ口一プロモーター付 きェアーリフト型バイオリアクターを用いた。 ァクリル樹脂製の透明塔 型エアーリフト槽の高さは 1 . 8 m、 外径は 0. 2 m、 アクリル樹脂製 の内部円筒の直径は 0. 1 2 5 mとした。 通気装置であるガス吹き込み 口を槽の底から 0. 0 5 mの位置に設置した。 具体的には、 内径 0. 0 l mの円形チューブ(円の直径 0. l m) に 5 0個の内径 0. 0 0 1 m の孔をあけ、 そこからガスを吹き込んだ。  The following experiment was conducted on the hydrogen production method of the second embodiment. As a first tank and a second tank, an airlift bioreactor with a helical mouth and one promoter having an actual volume of 50 L was used. The height of the transparent tower type air lift tank made of acryl resin was 1.8 m, the outer diameter was 0.2 m, and the diameter of the inner cylinder made of acrylic resin was 0.125 m. The gas inlet, which is a ventilation device, was installed at a position of 0.05 m from the bottom of the tank. Specifically, 50 holes with an inner diameter of 0.001 m were made in a circular tube with an inner diameter of 0.0 lm (diameter of a circle of 0.1 lm), and gas was blown from there.
明好気条件は、 太陽光と光源 (1 8 W/m 2) とを用いて行った。 懸 濁液の主成分は、 海水とした。 光合成能力を有する微細藻としては、 緑 藻クラミ ドモナス W— 8 0を用いた。 光合成能力を有する細菌は、 口ド プラム ·サルフィ ドフィラム W— 1 Sを用いた。 -担体としては、 ポリビ ニルホルマールからなる多孔性高分子材料を用いた。 The bright and aerobic conditions were performed using sunlight and a light source (18 W / m 2 ). The main component of the suspension was seawater. A green alga Chlamydomonas W-80 was used as a microalga having photosynthetic ability. Bacteria having photosynthetic ability were oral doplum sulphide dophyllum W-1S. -As the carrier, a porous polymer material made of polyvinyl formal was used.
(比 例 2 )  (Comparative Example 2)
第 1塔の液相の浸透圧を 1 . 9 a t mとした。 その他は、 実施例 2と 同様とした。  The osmotic pressure of the liquid phase in the first column was 1.9 atm. Others were the same as in Example 2.
表 3に示すように、 実施例 2は、 第 1塔での液相の浸透圧が高いため、 比較例 2に比べて、 非常に水素生産速度が早く、 z素を効率良く生産で きることが確認できた。 よって、 第 2発明の方法によれば、 塔の数が少 なく醱酵工程を削減した簡易なシステムによつて水素を量産することが でき、 微生物による水素生産の工業化に非常に有用であることが確認で きた。  As shown in Table 3, in Example 2, since the osmotic pressure of the liquid phase in the first column was high, the hydrogen production rate was much higher than that in Comparative Example 2, and the z-element could be produced efficiently. Was confirmed. Therefore, according to the method of the second invention, hydrogen can be mass-produced by a simple system in which the number of columns is small and the number of fermentation steps is reduced, which is very useful for industrialization of hydrogen production by microorganisms. Was confirmed.
産業上の利用可能性 ― Industrial applicability-
以上の説明より明らかなように、本発明では、 予め細胞が培養され細 胞濃度が高められた状態の微細藻や細菌を用いて 、るため、 明好気条件 下で得られる光エネルギーが光合成産物の生成および水素の生成に集中 的に費やされ、 水素を効率よく得ることができ、 水素の量産化 '工業化 を実現することができる。 As is apparent from the above description, the present invention uses microalgae and bacteria in a state in which cells have been cultured in advance and the cell concentration has been increased. The light energy obtained below is concentrated on the production of photosynthetic products and the production of hydrogen, so that hydrogen can be obtained efficiently and mass production of hydrogen can be achieved.
かつ、 一連の水素生産工程には、 光合成能力を有する微細藻を培養す る工程および光合成能力を有する細菌を培養する工程を必要としないこ とからも非常に効率良く水素を生産することができると共に生産システ ムを簡単なものとすることができる。  In addition, since a series of hydrogen production steps does not require a step of culturing microalgae having photosynthetic ability and a step of culturing bacteria having photosynthetic ability, hydrogen can be produced very efficiently. In addition, the production system can be simplified.
また、 懸濁液中に存在させる微細藻および細菌を不溶な担体に固定し て用いると、 単位体積当たりの細胞密度を高めることができると共に、 細胞活性を安定化することができ、 微細藻や細菌の作用を長期に渡って 持続させることができるできる等の種々の利点を有する。  When microalgae and bacteria to be present in the suspension are immobilized on an insoluble carrier, the cell density per unit volume can be increased, and the cell activity can be stabilized. It has various advantages such that the action of bacteria can be maintained for a long time.
さらに、 光合成能力を有する微細藻を液相の浸透圧を高くた条件下で 用いると、 微細藻が光エネルギーによりグリセ口一ル等の低分子有機物 を主成分とする水素生成の資化源を光合成し、 細胞外へ分泌するため、 醱酵工程を削減できる。  Furthermore, when microalgae with photosynthetic ability are used under conditions where the osmotic pressure of the liquid phase is high, the microalgae can use light energy to utilize hydrogen as a main source of low-molecular-weight organic substances such as glycerol. Since photosynthesis is performed and secreted outside the cells, the fermentation process can be reduced.
さらに、 石油を分解して水素を生成する方法等では、 水素生成と共に 二酸化炭素が排出される力^ 本発明では、 二酸化炭素を循環利用するこ とができ、 火力発電所等の煙道ガス中の二酸化炭素等を炭素源として使 用することができ、 地球環境にも非常に優しいものとなる。 また、 海水 を利用して水素を生成することができ、 生成された水素をエネルギー源 として使用することで最終的には水が得られるため、 海水の淡水化への 適用も可能である。  Furthermore, in the method of generating hydrogen by cracking petroleum, etc., the power of emitting carbon dioxide along with the generation of hydrogen ^ In the present invention, carbon dioxide can be recycled and used in flue gas such as thermal power plants. Carbon dioxide etc. can be used as a carbon source, which is very friendly to the global environment. In addition, hydrogen can be generated using seawater, and water can be finally obtained by using the generated hydrogen as an energy source, so it can be applied to desalination of seawater.
本発明の微生物による 7素生産装置は、微生物を用いて非常に容易か つ効率良く水素を生産することができると共に、 不要な生産設備等を削 減することができ、 生産コストを大きく低減することもできる。  The apparatus for producing hepatocellular microorganisms of the present invention can produce hydrogen very easily and efficiently using microorganisms, and can reduce unnecessary production facilities and the like, thereby greatly reducing production costs. You can also.

Claims

請求の範囲  The scope of the claims
1 . 光合成能力を有する微細藻により水素生成の資化源を得る工程と、 該資化源を用いて光合成能力を有する細菌により水素を生成する工程と 含む一連の工程からなる z素生産方法において、 1. A method for producing z-elements comprising a series of steps including a step of obtaining a source of hydrogen generation by microalgae having photosynthetic ability and a step of generating hydrogen by bacteria having photosynthetic ability using the source of hydrogen. ,
上記微細藻および/あるいは上記細菌の細胞培養を予め行つて細胞濃 度を高めた後に、 上記工程に供給していることを特徴とする微生物によ る水素生産方法。  A method for producing hydrogen using a microorganism, which comprises supplying a cell culture of the microalgae and / or the bacterium in advance to increase the cell concentration, and then supplying the cell to the step.
2. 光合成能力を有する微細藻により水素生成の資化源を得る工程と、 該資化源を用 ヽて光合成能力を有する細菌により ζΚ素を生成する工程と 含む一連の工程からなる水素生産方法において、  2. A method for producing hydrogen comprising a series of steps including a step of obtaining a source of hydrogen production by a microalga having photosynthetic ability and a step of producing nitrogen by bacteria having photosynthetic ability using the source of hydrogen. At
上記微細藻および/あるいは上記細菌を、 液体に不溶な担体に固定し て該液体中に存在させた状態で、 上記工程に供給していることを特徴と する微生物による水素生産方法。  A method for producing hydrogen using microorganisms, wherein the microalgae and / or the bacterium is immobilized on a carrier insoluble in a liquid and supplied to the step in a state where the microalgae is present in the liquid.
3. 光合成能力を有する微細藻により水素生成の資化源を得る工程と、 該資化源を用いて光合成能力を有する細菌により水素を生成する工程と 含む一連の工程からなる水素生産方法において、  3. A method for producing hydrogen comprising a series of steps including a step of obtaining a source of hydrogen generation by microalgae having photosynthetic ability and a step of generating hydrogen by bacteria having photosynthetic ability using the source of hydrogen,
上記微細藻および/あるいは上記細菌を、 液体に不溶な担体に固定し て該液体中に存在させた状態で細胞培養を予め行って細胞濃度を高めた 後に、上記工程に供給していることを特徴とする微生物による 7j素生産 方法。  The microalgae and / or the bacteria are immobilized on a carrier that is insoluble in a liquid, and cell culture is performed in advance in a state where the microalgae is present in the liquid to increase the cell concentration. A unique method for producing 7j-elements by microorganisms.
4. 明好気条件下で上記微細藻より光合成物を得る第 1工程、 該光合成 産物を用いて上記微細藻により暗嫌気条件下で水素生成の資化物を得る 第 2工程、 該水素生成の資化物を用いて光合成能力を有する細菌により 明嫌気条件下で水素を生成する第 3工程を備え、  4. First step of obtaining photosynthesis from the microalgae under bright and aerobic conditions, second step of using the photosynthesis product to obtain assimilates of hydrogen production under dark anaerobic conditions by the microalgae, A third step of producing hydrogen under light and anaerobic conditions by bacteria capable of photosynthesis using assimilates,
上記第 1工程に予め細胞濃度を高めた上記微細藻を供給し、 上記第 3 工程に予め細胞濃度を高めた上記細菌を供給している請求項 1乃至請求 項 3のいずれか 1項に記載の微生物による水素生産方法。 In the first step, the microalgae whose cell concentration has been increased in advance is supplied, The method for producing hydrogen by a microorganism according to any one of claims 1 to 3, wherein the bacterium whose cell concentration is increased in advance is supplied to the step.
5. 明好気条件下、 液相の浸透圧が 5. 0 a t m以上の条件で、上記微 細藻により水素生成の資化源を得る第 1工程と、  5. a first step of obtaining a source of hydrogen generation by the microalgae under conditions of osmotic pressure of the liquid phase of 5.0 atm or more under light and aerobic conditions;
明嫌気条件下、 上記資化源を用いて上記細菌により水素を生成する第 2工程を備え、  A second step of producing hydrogen by the bacterium using the assimilable source under light-anaerobic conditions;
上記第 1工程に予細胞濃度を高めた上記微細藻を供給し、 上記第 2ェ 程に予め細胞濃度を高めた上記細菌を供給している請求項 1乃至請求項 3のいずれか 1項に記載の微生物による水素生産方法。  The microalgae with an increased cell concentration in the first step is supplied, and the bacteria with an increased cell concentration in the second step are supplied in any one of claims 1 to 3. A method for producing hydrogen by the microorganism according to the above.
6. 上記微細藻により水素生成の資化源を得る工程中、 二酸化炭素の体 積濃度が 1 . 0 %〜2 0. 0 %である気体を通気している請求項 1乃至 請求項 5のいずれか 1項に記載の微生物による水素生産方法。  6. The gas according to claim 1, wherein a gas having a volume concentration of carbon dioxide of 1.0% to 20.0% is aerated during the step of obtaining a source of hydrogen generation by the microalgae. A method for producing hydrogen by using the microorganism according to any one of the preceding claims.
7. 上記予め細胞濃度を高めた微細藻および細菌は、 細胞の増殖が進行 した対数増殖期後期乃至定常期の微細藻および細菌としている請求項 1 乃至請求項 6のいずれか 1項に記載の微生物による水素生産方法。  7. The microalgae or bacterium according to claim 1, wherein the microalgae and the bacterium whose cell concentration has been increased in advance are microalgae and bacterium in the late to stationary logarithmic growth phase in which cell growth has progressed. Hydrogen production method by microorganism.
8. 予め細胞濃度を高めた上記微細藻および上記細菌は、 細胞濃度が 1 . 0 X 1 0 8 cells/ml以上となるように、 海水あるいは Z及び窒素供給 源 ·無機成分 · ビタミンを含む溶液中に飽和状態で存在させている請求 項 1乃至請求項 7のいずれか 1項に記載の微生物による水素生産方法。8. The above microalgae and the above bacteria whose cell concentration has been increased in advance should be a solution containing seawater or Z and a nitrogen supply source, inorganic components, and vitamins so that the cell concentration will be 1.0 X 10 8 cells / ml or more. The method for producing hydrogen by a microorganism according to any one of claims 1 to 7, wherein the hydrogen is present in a saturated state therein.
9. 上記溶液は塩分濃度が 1 . 0 %〜1 0. 0 %である請求項 8に記載 の微生物による水素生産方法。 9. The method according to claim 8, wherein the solution has a salt concentration of 1.0% to 10.0%.
1 0. 上記細菌は、 ニトロゲナ一ゼが高誘導された状態で供給されてい る請求項 1乃至請求項 9のいずれか 1項に記載の微生物による水素生産 方法。  10. The method for producing hydrogen by a microorganism according to any one of claims 1 to 9, wherein the bacterium is supplied in a state in which nitrogenase is highly induced.
1 1 . 上記二トロゲナーゼが 2 0 0〜1 0 0 0 n m o 1 C 2 H 4/m g cel le dry wet/hrの活性(この活性はアセチレンのエチレンへの還元 速度で測定した活性) で活性化されて高誘導された状態とされている請 求項 1 0に記載の微生物による z素生産方法。 11. The activity of the ditrogenase is 200 to 100 nmo 1 C 2 H 4 / mg cell dry wet / hr (this activity is the reduction of acetylene to ethylene) 10. The method for producing zirconium by a microorganism according to claim 10, wherein the zirconium is activated by the activity measured at a rate and is in a highly induced state.
1 2. 上記微細藻は、 上記担体に 3 0 m g乾燥重量/ c m3 (担体) 〜1 2. The above microalgae is added to the above carrier by 30 mg dry weight / cm 3 (carrier)
7 0 m g乾燥重量/ c m3 (担体) で固定化し、 Immobilized at 70 mg dry weight / cm 3 (carrier)
上記細菌は上記担体に 1 0 m g乾燥菌体重量/ c m 3 (担体) 〜 5 0 m g乾燥菌体重量 / c m3 (担体) で固定化している請求項 2乃至請求 項 1 1のいずれか 1項に記載の微生物による水素生産方法。 The method according to any one of claims 2 to 11, wherein the bacterium is immobilized on the carrier at 10 mg dry cell weight / cm 3 (carrier) to 50 mg dry cell weight / cm 3 (carrier). Item 12. A method for producing hydrogen by using the microorganism according to Item.
1 3. 上記微細藻および/あるいは細菌を固定する担体は、 ガラスある いは樹脂製の多孔体からなると共に、 直径 l mm〜5 O mmの球体ある いは 1 mm〜5 O mm角の立方体からなり、 空孔径は 1 0〃π!〜 5 0 0 mとしている請求項 2乃至請求項 1 2のいずれか 1項に記載の微生物 による水素生産方法。  1 3. The carrier for immobilizing the microalgae and / or bacteria is made of a glass or resin porous body, and is a sphere having a diameter of lmm to 5 Omm or a cube of 1 mm to 5 Omm square. The pore diameter is 10 1π! The method for producing hydrogen by a microorganism according to any one of claims 2 to 12, wherein the diameter is from 500 to 500 m.
1 4. 上記微細藻として、綠藻類あるいは/および藍藻類を用い、 該綠 藻類のうちクラミ ドモナス属に属するクラミ ドモナス ·ラインハルディ、 クラミ ドモナス 'モエブシィ、 クラミ ドモナス属の M G A161株, W— 1 4. As the microalgae, algae and / or cyanobacteria are used. Among the algae, Chlamydomonas reinhardi belonging to the genus Chlamydomonas;
8 0株、 クラミ ドモナス ユーガメタス、 クラミ ドモナス セグニス、 クロレラ属に属するクロレラ ブルガリス、 セネデスムス属に属するセ ネデスムス ォブリガス, デュナリエラ属に属するデュナリエラ テル トロレクタを用い、 上記藍藻類としてアナべナ属に属するアナべナ ·ノ リアビリス ATCC 29413、 シァノテセ属の Cyanothece sp. ATCC 51142、 シネノコッカス属に属する Synechococcus sp. PCC 7942ヽ アナシスティ ス属に属するアナシスティス 二デュランスを用い、 80 strains, Chlamydomonas eugametas, Chlamydomonas segnis, Chlorella bulgaris belonging to the genus Chlorella, Senedesmus wobrigas belonging to the genus Senedesmus, Dunaliella tertororecta belonging to the genus Dunaliella, Anabena belonging to the genus Anabaena as the algae described above Nanolia bilis ATCC 29413, Cyanothece sp. ATCC 51142, Synechococcus sp.PCC 7942
上記細菌として、 光合成無機栄養細菌あるいは/および光合成有機栄 養細菌 (紅色無硫黄細菌、綠色滑走細菌等) を用い、 ロドスピリルム科 に属する II色無硫黄細菌、 クロロフレクスス科に属する綠色滑走細菌、 口ドシユードモナス属に属する口ドシユードモナス パラストリスおよ びロドシユードモナス ァシドフイラ、 ロドスピリラ属に属するロドス ピリラム ルブラ厶 ATCC 11170、 同 IF0 3986、 ロドパクター属に属する ロドパクター スフヱロイデス、 ロドパクター力ブスレイタス ATCC 237As the above-mentioned bacteria, photosynthetic vegetative bacteria and / or photosynthetic organic nutrient bacteria (such as red-colorless sulfur-free bacteria and blue-colored gliding bacteria) are used, and II-color sulfur-free bacteria belonging to Rhodospirilliaceae, blue-colored gliding bacteria belonging to chloroflexus family, Mouth Pseudomonas parastris belonging to the genus Mouth Pseudomonas Rhodospirillum rubrum ATCC 11170, belonging to the genus Rhodospirilla, IF0 3986, belonging to the genus Rhodospira, Rhodopter sp.
82、 ATCC 17013、 ロドプラム属に属するロドプラム ストリクタム、 口 ドプラム アドリアティカム、 ロドプラム ·サルフイ ドフイラムを用い ている請求項 1乃至請求項 1 3のいずれか 1項に記載の微生物による水 素生産方法。 82. The method for producing hydrogen by a microorganism according to any one of claims 1 to 13, which uses ATCC 17013, Rhodopram strictum, Rhodopram adriaticum, or Rhodopram sulphidophila belonging to the genus Rhodopram.
1 5. 明好気条件下で光合成能力を有する微細藻より光合成物を得る第 1槽と、 該光合成産物を用いて上記微細藻により喑嫌気条件下で水素生 成の資化物を得る第 2槽と、 該水素生成を用 、て光合成能力を有する細 菌により明嫌気条件下で水素を生成する第 3槽を備え、  1 5. A first tank for obtaining photosynthesis from microalgae having photosynthetic ability under light and aerobic conditions, and a second tank for using the photosynthesis products to obtain hydrogen-producing assimilates under anaerobic conditions using the microalgae. A third tank for generating hydrogen under light and anaerobic conditions using a bacterium having photosynthetic ability using the hydrogen generation;
上記第 1槽、 第 2槽、 第 3槽をパイプあるいはフィルタを介して順次 連続させ、 上記第 1槽から第 2槽へ上記光合成産物と上記微細藻を存在 させた懸濁液を流通させると共に、 上記第 2槽から上記第 3糟へ上記微 細藻を除去した懸濁液を流通させ、上記第 3槽には上記細菌を槽外に流 出させずに生成する水素を取り出すパイプを連続させ、  The first tank, the second tank, and the third tank are sequentially connected via a pipe or a filter, and the suspension in which the photosynthetic product and the microalga are present is flowed from the first tank to the second tank. The suspension from which the microalgae has been removed is circulated from the second tank to the third tank, and a pipe is continuously connected to the third tank to take out the generated hydrogen without causing the bacteria to flow out of the tank. Let
上記第 1槽には液体に不溶な担体に固定されると共に予め細胞濃度が 高められた上記微細藻を存在させた懸濁液が供給され、上記第 3槽には 液体に不溶な担体に固定されると共に予め細胞濃度が高められた上記細 菌を存在させた懸濁液が供給されていることを特徴とする水素生産装置。 The first tank is supplied with a suspension containing the microalgae, which is fixed on a liquid-insoluble carrier and whose cell concentration has been increased in advance, and the third tank is fixed on a liquid-insoluble carrier. A hydrogen production apparatus characterized in that a suspension in which the above-mentioned bacteria whose cell concentration has been increased in advance is supplied is supplied.
1 6. 明好気条件下、 液相の浸透圧が 5. 0 a t m以上の条件で、 光合 成能力を有する微細藻により 7素生成の資化源を得る第 1槽と、 1 6. A first tank to obtain a source of arsenic by microalgae with photo-synthesizing ability under light and aerobic conditions and an osmotic pressure of the liquid phase of 5.0 atm or more,
明嫌気条件下、上記資化源を用いて光合成能力を有する細菌により水 素を生成する第 2槽を備え、 これら第 1槽と第 2槽とをパイプあるいは フィルタを介して順次連続させ、 上記第 1槽から第 2槽へ上記微細藻を 除去した懸濁液を流通させ、 上記第 2槽には上記細菌を槽外に流出させ ずに生成する水素を取り出すパイプを連続させ、 Under light and anaerobic conditions, a second tank for producing hydrogen by bacteria having photosynthetic ability using the above-mentioned assimilation source is provided, and the first tank and the second tank are sequentially connected via a pipe or a filter. The suspension from which the microalgae has been removed is circulated from the first tank to the second tank, and the bacteria are allowed to flow out of the tank into the second tank. Without taking out the hydrogen generated without
上記第 1槽には液体に不溶な担体に固定されると共に予め細胞濃度が 高められた上記微細藻を存在させた懸濁液が供給され、 上記第 2槽には 液体に不溶な担体に固定されると共に予め細胞濃度が高められた上記細 菌を存在させた懸濁液が供給されていることを特徴とする z素生産装置。 The first tank is supplied with a suspension in which the microalgae, which is immobilized on a liquid-insoluble carrier and whose cell concentration has been increased in advance, is present, and the second tank is immobilized on a liquid-insoluble carrier. And a suspension in which the above-mentioned bacteria whose cell concentration has been increased is supplied in advance.
1 7. 請求項 1 5に記載の第 1槽と第 3槽および請求項 1 6に記載の第1 7. The first and third tanks described in claim 15 and the third tank described in claim 16
1槽と第 2槽は内夕 μ盾環流路を備えた透明塔型ェアーリフト槽からなり、 上記内外循環流路は光エネルギーおよび熱エネルギーが均等に供給さ れる構成としている請求項 1 5および請求項 1 6に記載の水素生産装置。Claims 15 and claim wherein the first tank and the second tank are each composed of a transparent tower type airlift tank provided with an inner and outer μ shield ring flow path, and the inner and outer circulation flow paths are configured to uniformly supply light energy and heat energy. Item 16. A hydrogen production apparatus according to Item 16.
1 8. 上記第 2槽と第 3槽の間の上記パイプには上記微細藻の分離手段 を介在させると共に分離された上記微細藻を上記第 1槽に循環させるパ イブを配管している請求項 1 5の記載の水素生産装置。 1 8. The pipe between the second tank and the third tank is provided with a means for separating the microalgae and a pipe for circulating the separated microalgae to the first tank. Item 15. A hydrogen production apparatus according to Item 15.
1 9. 上記第 1槽と第 2槽の出口にはそれぞれフィルタが配置され、 上 記微細藻および上記細菌を槽外に流出させない構成としている請求項 1 6に記載の水素生産装置。  19. The hydrogen production apparatus according to claim 16, wherein filters are arranged at outlets of the first tank and the second tank, respectively, so that the microalgae and the bacteria do not flow out of the tank.
PCT/JP2003/009413 2002-07-26 2003-07-24 Method of microbial production of hydrogen and hydrogen production apparatus WO2004011659A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002217929A JP2004057045A (en) 2002-07-26 2002-07-26 Method for producing hydrogen with microorganism
JP2002-217929 2002-07-26
JP2002264655A JP2004097116A (en) 2002-09-10 2002-09-10 Method and apparatus for producing hydrogen by microorganism
JP2002-264655 2002-09-10

Publications (1)

Publication Number Publication Date
WO2004011659A1 true WO2004011659A1 (en) 2004-02-05

Family

ID=31190302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009413 WO2004011659A1 (en) 2002-07-26 2003-07-24 Method of microbial production of hydrogen and hydrogen production apparatus

Country Status (1)

Country Link
WO (1) WO2004011659A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010030658A3 (en) * 2008-09-09 2010-07-01 Battelle Memorial Institute Production of bio-based materials using photobioreactors with binary cultures
US8017377B1 (en) * 2008-04-11 2011-09-13 Agoil International, Llc Mass culture of microalgae for lipid production
CN109929898A (en) * 2019-03-28 2019-06-25 河南农业大学 A method of promoting the energy-efficient production hydrogen of HAU-M1 photosynthetic bacteria group
CN109929897A (en) * 2019-03-13 2019-06-25 河南农业大学 A kind of promotion HAU-M1 photosynthetic bacteria flora produces culture medium and its application of hydrogen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077014A2 (en) * 1981-10-08 1983-04-20 Yoshiharu Miura Process for producing hydrogen by alga in alternating light/dark cycle
JPH1042881A (en) * 1996-07-30 1998-02-17 Tadashi Mizoguchi Useful gas producing process using microorganism
EP1099762A1 (en) * 1999-07-06 2001-05-16 Yoshiharu Miura Microbial process for producing hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077014A2 (en) * 1981-10-08 1983-04-20 Yoshiharu Miura Process for producing hydrogen by alga in alternating light/dark cycle
JPH1042881A (en) * 1996-07-30 1998-02-17 Tadashi Mizoguchi Useful gas producing process using microorganism
EP1099762A1 (en) * 1999-07-06 2001-05-16 Yoshiharu Miura Microbial process for producing hydrogen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRANCOU N., VIGNAIS P.M.: "Hydrogen production by rhodopseudomonas capsulata cells entrapped in carrageenan beads", BIOTECHNOLOGY LETTERS, vol. 6, no. 10, 1984, pages 639 - 644, XP002973395 *
YOKOI H. ET AL.: "Simultaneous production of hydrogen and bioflocculant by enterobacter sp. BY-29", WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, vol. 17, no. 6, 2001, pages 609 - 613, XP002973396 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017377B1 (en) * 2008-04-11 2011-09-13 Agoil International, Llc Mass culture of microalgae for lipid production
WO2010030658A3 (en) * 2008-09-09 2010-07-01 Battelle Memorial Institute Production of bio-based materials using photobioreactors with binary cultures
CN109929897A (en) * 2019-03-13 2019-06-25 河南农业大学 A kind of promotion HAU-M1 photosynthetic bacteria flora produces culture medium and its application of hydrogen
CN109929897B (en) * 2019-03-13 2022-08-30 河南农业大学 Culture medium for promoting HAU-M1 photosynthetic bacteria flora to produce hydrogen and application thereof
CN109929898A (en) * 2019-03-28 2019-06-25 河南农业大学 A method of promoting the energy-efficient production hydrogen of HAU-M1 photosynthetic bacteria group
CN109929898B (en) * 2019-03-28 2022-08-30 河南农业大学 Method for promoting HAU-M1 photosynthetic bacteria to produce hydrogen

Similar Documents

Publication Publication Date Title
Tiang et al. Recent advanced biotechnological strategies to enhance photo-fermentative biohydrogen production by purple non-sulphur bacteria: an overview
You et al. Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: A review
Sharma et al. Hydrogen from algal biomass: a review of production process
SundarRajan et al. A review on cleaner production of biofuel feedstock from integrated CO2 sequestration and wastewater treatment system
JP2020103277A (en) Use of oxyhydrogen microorganisms for non-photosynthetic carbon capture and conversion of inorganic and/or c1 carbon sources into useful organic compounds
WO2001002595A1 (en) Microbial process for producing hydrogen
Zhang et al. Performance of mixed LED light wavelengths on nutrient removal and biogas upgrading by different microalgal-based treatment technologies
US20130149755A1 (en) Use of oxyhydrogen microorganisms for non-photosynthetic carbon capture and conversion of inorganic and/or c1 carbon sources into useful organic compounds
US10179895B2 (en) Device for fuel and chemical production from biomass-sequestered carbon dioxide and method therefor
CN103789195A (en) Membrane microalgae photobioreactor for realizing in-situ solid-liquid separation and culture method thereof
Dębowski et al. Microalgae–cultivation methods
CN103966075B (en) Multilayer declines algae Immobilized culture photo-biological reactor
WO2018053071A1 (en) Methods of treating wastewater with microalgae cultures supplemented with organic carbon
Ghaffar et al. A review on the sustainable procurement of microalgal biomass from wastewaters for the production of biofuels
CN112830641A (en) High-density microalgae biofilm reactor based on membrane aeration and membrane concentration and algae culture method thereof
CN113233587A (en) Microalgae culture pond-artificial wetland coupling system and method for deep purification of sewage
Oncel et al. Carbon sequestration in microalgae photobioreactors building integrated
Janpum et al. Advancement on mixed microalgal-bacterial cultivation systems for nitrogen and phosphorus recoveries from wastewater to promote sustainable bioeconomy
CN117089544B (en) Microalgae culture method based on modified cellulose carrier
JP3549444B2 (en) Method for producing hydrogen by microorganisms
WO2004011659A1 (en) Method of microbial production of hydrogen and hydrogen production apparatus
JP2004097116A (en) Method and apparatus for producing hydrogen by microorganism
Azbar et al. Use of immobilized cell systems in biohydrogen production
KR101765833B1 (en) Cultivation method of microalgae using bicarbonate as carbon source
JP2004057045A (en) Method for producing hydrogen with microorganism

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase