WO2004010003A2 - Verfahren zur verdichtung des arbeitsfluids beim wasser-dampf-kombi-prozess - Google Patents

Verfahren zur verdichtung des arbeitsfluids beim wasser-dampf-kombi-prozess Download PDF

Info

Publication number
WO2004010003A2
WO2004010003A2 PCT/DE2003/002357 DE0302357W WO2004010003A2 WO 2004010003 A2 WO2004010003 A2 WO 2004010003A2 DE 0302357 W DE0302357 W DE 0302357W WO 2004010003 A2 WO2004010003 A2 WO 2004010003A2
Authority
WO
WIPO (PCT)
Prior art keywords
working fluid
coolant
water
compression
compressor
Prior art date
Application number
PCT/DE2003/002357
Other languages
English (en)
French (fr)
Other versions
WO2004010003A3 (de
Inventor
Wolfgang Harazim
Original Assignee
Rerum Cognitio Gesellschaft Für Marktintegration Deutscher Innovation Und Forschungsprodukte Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rerum Cognitio Gesellschaft Für Marktintegration Deutscher Innovation Und Forschungsprodukte Mbh filed Critical Rerum Cognitio Gesellschaft Für Marktintegration Deutscher Innovation Und Forschungsprodukte Mbh
Priority to AU2003257385A priority Critical patent/AU2003257385A1/en
Priority to DE10393450T priority patent/DE10393450D2/de
Priority to CA002497581A priority patent/CA2497581A1/en
Priority to US10/530,907 priority patent/US7331753B2/en
Publication of WO2004010003A2 publication Critical patent/WO2004010003A2/de
Publication of WO2004010003A3 publication Critical patent/WO2004010003A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/005Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the working fluid being steam, created by combustion of hydrogen with oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/5846Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D31/00Pumping liquids and elastic fluids at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/211Heat transfer, e.g. cooling by intercooling, e.g. during a compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/211Heat transfer, e.g. cooling by intercooling, e.g. during a compression cycle
    • F05B2260/212Heat transfer, e.g. cooling by intercooling, e.g. during a compression cycle by water injection

Definitions

  • the invention relates to a method for compressing the working fluid in the water-steam combination process in multi-stage turbocompressors with intermediate cooling in the individual compressor stages by adding a freezer to the working fluid.
  • Such a technical solution is required for the production of energy by means of water-steam combination processes.
  • the object of the invention is therefore to provide a technical solution by means of which the shortcomings of the known prior art can be overcome.
  • a technical solution is required which is suitable for efficient intermediate cooling of the working fluid during the compression step and thus for the greatest possible reduction in the compressor drive power.
  • the object is solved by the features of claim 1. Preferred design variants are described in the subclaims.
  • the intermediate cooling is carried out in the individual stages by adding a coolant to the working fluid.
  • finely divided water is used as a coolant, which is obtained by spray-atomizing water into micro-water drops.
  • the individual micro water drops have diameters of less than 50 ⁇ m, preferably between 2 and 20 ⁇ m.
  • the coolant in the form of water mist is added directly to the working fluid in at least one compression stage, the coolant passing into the physical state of the working fluid during the compression process.
  • the coolant is preferably added to the working fluid in an amount such that the thermodynamic equilibrium is maintained.
  • the evaporation of the coolant takes place along the saturation line.
  • an immediate increase in the working fluid mass flow is brought about.
  • several desirable technical effects are achieved at the same time.
  • the temperatures of the compressed working fluid and apparatus technology are reduced.
  • the mass flow through the compressor is increased and a reduced compressor output is addressed.
  • the steam turbine working on the same shaft can thus deliver an increased net power.
  • the coolant is obtained from the liquefied working fluid of the WDK process in the form of water vapor condensate.
  • the thermal energy required for the evaporation of the plasticizer during compression is taken from the compression system, consisting of a turbocompressor and working fluid, which leads directly to a reduction in the temperatures of the apparatus and media.
  • the mass flow of the working fluid in the turbocompressor can be made variable by the controllable addition of cooling agent components to the individual leg stages.
  • Figure 1 is a schematic sectional view through a turbocompressor with identification of the proportion of working fluid and coolant at the entrance to the turbocompressor.
  • FIG. 2 shows a diagram for characterizing the course of the coolant portion in the total mass flow of working fluid and coolant over the individual stages of a 13-stage turbocompressor.
  • the relaxed steam leaving the steam turbine is fed according to FIGS. 1 and 2 in a WDK process for recompression to a turbocompressor arranged on the common shaft.
  • the turbocompressor has 13 compression levels. Before the working fluid enters the turbocompressor, the working fluid is added in the ratio: 1 part by weight of working fluid: 0.15 part by weight of coolant.
  • the coolant consists of a water spray that is obtained by atomizing water vapor condensate. The diameter of the individual drops of the water spray is less than 25 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Verdichtung des Arbeitsfluids beim Wasser-Dampf-Kombi-Prozeß in mehrstufigen Turboverdichtern mit Zwischenkühlungen in den einzelnen Verdichterstufen durch Zusatz eines Kühlmittels zum Arbeitsfluid. Insbesondere wird eine technische Lösung benötigt, die zur effizienten Zwischenkühlung des Arbeitsfluids beim mehrstufigen Komprimieren und damit zur möglichst hohen Minderung der Verdichterantriebsleistung geeignet ist. Dazu wird als Kühlmittel feinstverteiltes Wasser eingesetzt, welches durch Druckzerstäuben von Wasser zu Microwassertropfen gewonnen wird. Das Kühlmittel wird dabei in einer der Aufrechterhaltung des thermodynamischen Gleichgewichts dienenden Menge unmittelbar in wenigstens einer Verdichtungsstufe dem Arbeitsfluid zugesetzt und geht beim Verdichten in den Zustand des Arbeitsfluids über, wobei die Verdampfung des Kühlmittels entlang der Sättigungslinie erfolgt. Mit dem Zusatz von Kühlmittel zwischen Verdichtereintritt und Verdichteraustritt wird eine Erhöhung des Arbeitsfluid-Massenstroms bewirkt.

Description

Verfahren zur Verdichtung des Arbeitsfluids beim Wasser-Dampf-Kombi- Prozeß
Die Erfindung betrifft ein Verfahren zur Verdichtung des Arbeitsfluids beim Wasser-Dampf-Kombi-Prozeß in mehrstufigen Turboverdichtern mit Zvvischenkühlungen in den einzelnen Verdichterstufen durch Zusatz eines Kürj mittels zum Arbeitsfluid. Eine derartige technische Lösung wird bei der Gebrauchsenergiegewinnung mittels Wasser-Dampf-Kombi-Prozessen benötigt.
Es ist bekannt, daß Zwischenkühlungen beim Komprimieren des Arbeitsfluids in Turbokompressoren die erforderliche Verdichterantriebsleistung mindern. Aus der Gastmbmentechnik ist bekannt (J. van LLERE/C.G. MEIJER/G.H.M. LAAGLAND: Leistungssteigerung und Nox-Reduktion der Gasturbinen durch SwirlFlash®-Overspray-Eindüsung, VGB PowerTech 2/2002), Leistungsreserven durch Minderung der Verdichterantriebsleistung infolge des Kühlmittelzustatzes bei der Gasverdichtung zu erschließen. Als Küfümittel wird dazu bevorzugt feinzerstäubtes Wasser in Form von Nebeln aus Microwassertropfen eingesetzt. Bei der Anwendung dieser Technik entsteht ein zweiphasiges Arbeitsfluid aus dem Brenngas oder dem Rauchgas und dem verdampftem Kühlmittel. Das führt in erster Linie zu der eπvünschten Temperatnrminderung des verdichteten Arbeitsfluids und der eingesetzten Apparatetechnik. Weiterhin werden infolge der Kühlprozesse Minderungen von Schadgaskonzentrationen in den Rauchgasen beschrieben. Die Erhöhung der Feuchte kann dabei jedoch durchaus zu Komplikationen in den nachgeschalteten Prozeßstufen fuhren. Beim Wasser-Dampf-Kombi-Prozeß wird ebenfalls angestrebt, bei der Verdichtung des Arbeitsfluids in Form von Wasserdampf durch Zwischenkühlungen der einzelnen Verdichterstufen die Leislnngsanforderungen für das Verdichten zu veπnindern, um von der gemeinsamen Turbinen- und Verdichterwelle eine größere Nutzleistung abnehmen zu können. erdings gestaltet sich infolge der hohen Sttömungsgeschwindigkeiten die indirekte Kühlung der Vercrichterstirfen technisch als sehr aufwendig. Eine praktikable und überzeugende technische Lösung dieses Problems konnte für den Wasser-Dampf- Kombi-Prozeß bisher nicht gefunden werden. Die Aufgabe der Erfindung besteht deshalb im Schaffen einer technischen Lösung, mit deren Hilfe die Mängel des bekannten Standes der Technik überwunden werden können. Insbesondere wird eine technische Lösung benötigt, die zur effizienten Zwischenkuhlung des Arbeitsfluids beim meln"stufigen Komprimieren und damit zur möglichst hohen Minderung der Verdichterantriebsleistung geeignet ist.
Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Bevorzugte Ausfüfrungsvarianten werden in den Unteransprüchen beschrieben. Danach wird beim Verdichten des Arbeitsfluids eines Wasser-Dampf-Kombi- Prozesses (WDK-Prozeß) in mehrstufigen Turboverdichtern die Zwischenkühlung in den einzelnen Verώchterstufen durch Zusatz eines Kühlmittels zum Arbeitsfluid vorgenommen. Dazu wird als Kühlmittel feinstverteiltes Wasser eingesetzt, welches durch Drackzerstäuben von Wasser zu Mikrowassertropfen gewonnen wird. Die einzelnen Mikrowassertropfen besitzen Durchmesser von weniger als 50 μm, vorzugsweise zwischen 2 - 20 μm. Das Kühlmittel in Form von Wassernebeln wird dabei unmittelbar in wenigstens einer Verdichtungsstufe dem Arbeitsfluid zugesetzt, wobei das Külilmittel während des Verdichtungsvorganges in den Aggregatzustand des Arbeitsfluids übergeht.
Das Kühlmittel wird dem Arbeitsfluid bevorzugt in einer solchen Menge zugeführt, daß das thermodynamische Gleichgewicht aufrechterhalten wird. Die Verdampfung des Kühlmittels erfolgt hierbei entlang der Sättigi gslinie. Mit dem Zusatz von Kühlmittelmengen zwischen Verdichtereintritt und Verdichteraustritt wird unmittelbar eine Erhöhung des Arbeitsfluid-Massenstroms bewirkt. Mit den genannten verfahrenstechnischen Maßnahmen werden gleichzeitig mehrere wünschenswerte technische Effekte erzielt. Indem die für die Verdampfung des Kühlmittels benötigte Verdampfungswärme dem Verdichtungsprozeß unmittelbar entzogen wird, kommt es zur Reduzierung der Temperaturen von verdichtetem Arbeitsfluid und Apparatetechnik. Parallel dazu wird der Massenstrom durch den Verdichter erhöht und eine reduzierte Verdichterleistung in Ansprach genommen. Die auf der gleichen Welle arbeitende Dampfturbine kann somit eine erhöhte Nettoleistung abgeben. In einer besonderen Ausfuf rungsform ist vorgesehen, daß das Kühlmittel aus dem verflüssigtem Arbeitsfluid des WDK-Prozesses in Form von Wasserdampf- Kondensat gewonnen wird.
Es besteht auch die Möglichkeit, das Kühlmittels bereits vor der ersten Verdichterstufe dem Arbeitsfluid zuzuführen. Die benötigte Wärmeenergie für die Verdampfung des KüMmittels beim Verdichten wird dem Verdichtungssystem, bestehend aus Turboverdichter und Arbeitsfluid, entnommen, was unmittelbar zu einer Absenkung der Apparate- und Medientemperaturen führt. Durch den steuerbaren Zusatz von Küfjtoittelanteilen zu den einzelnen Vermchtungsstufen kann der Massenstrom des Arbeitsfluids im Turboverdichter variabel gestaltet werden.
Infolge der inneren Kühlung des Arbeitsfluids wird das Verdichtungsvolumen vermindert. Bedarfsweise kann für die Zwecke der Zwischenkühlung beim Verdichten des Arbeitsfluids mittels Turboverdichtern auf die Nutzung von Kühlflächen und auf den Einsatz von indirekten Kühlmaßnahmen verzichtet werden.
Die Vorteile der Erfindung bestehen zusammengefaßt in der nun verfügbaren technischen Möglichkeit, den WDK-Prozeß nicht nur energetisch effektiver zu gestalten, sondern auch auf besondere apparatetechnische Maßnahmen zum Zwecke der Zwischenkühlung des Arbeitsfluids zwischen den einzelnen Verdichü gsstufen in Form von Kü einrichtungen außerhalb des Turboverdichters oder durch Kühlmaßnahmen an den Verdichterschaufeln vollständig verzichtet werden. Auftretende Verluste an Arbeitsfluid im gesamten WDK-Prozeß können gezielt zumindest teilweise über den Zusatz von Külnrnittel in der Verdichtungsstufe ausgeglichen werden. In anderen Fällen kann das WDK- Prozeß zu externen Zwecken entnommene Arbeitsfluid, beispielsweise bei der Auskopplung von Wasserdampf-Mengen zu Heizzwecken, beim Verdichtungsprozeß durch den Zusatz von Kühlmittel ersetzt werden.
Die Erfindung soll nachstehend mit einem Ausfuhrungsbeispiel näher erläutert werden.
In der beigefügten Zeichnung zeigen: Fig. 1 die schematische Schnittdarstellung durch einen Turboverdichter mit Kennzeichnung der Proportion von Arbeitsfluid und Kühlmittel beim Eingang in den Turboverdichter;
Fig. 2 ein Diagramm zur Kennzeichnung des Verlaufs des Kühlmittelanteils im Gesamtmassestrom von Arbeitsfluid und Kühlmittel über die einzelnen Stufen eines 13 -stufigen Turboverdichters.
Ausführungsbeispiel:
Der die Dampfturbine verlassende entspannte Wasserdampf wird gemäß der Figuren 1 und 2 in einem WDK-Prozeß für die erneute Verdichtung einem auf der gemeinsamen Welle angeordneten Turboverdichter zugeführt. Der Turboverdichter besitzt 13 Verdichtungsstufen. Vor dem Eintritt des Arbeitsfluids in den Turboverdichter werden dem Arbeitsfluid im Verhältnis: 1 Masseteil Arbeitsfluid : 0,15 Masseteile Kühlmittel zugesetzt. Das Kühlmittel besteht dabei aus einem Wasserspray, der durch Zerstäuben von Wasserdampf-Kondensat gewonnen wird. Die Durchmesser der Einzeltropfen des Wassersprays betragen weniger als 25 μm. Infolge der stufenweisen Verdichtung des Gemischs aus Wasserdampfund Wasserspray kommt es über die einzelnen Verdichtungsstufen bis zum Austritt des verdichteten Arbeitsfluids aus dem Turboverdichter zu einer quasi kontinuierhchen Temperaturerhöhung, die zur Verminderung des Kühlmittelanteils am Gesamtmassestrom parallel verläuft. Das verdichtete Arbeitsfluid gelang anschließend erneut zur Dampfturbine. Die von der Dampffurbine gewonnene mechanische Leistung wird an die Turbinenwelle abgegeben. Wegen der geringeren Antriebsleistung des Turboverdichters kann an der Turbinenwelle eine erhöhte Überschußleistung nach Außen abgegeben werden. Durch den unrnittelbaren Zusatz von Külihnittel zum Arbeitsfluid werden apparatetechnisch und steuerungstechnisch aufwendig Zwischenkühlungen zwischen den einzelnen Verώchtungsstufen eingespart.

Claims

Verfahren zur Verdichtung des Arbeitsfluids beim Wasser-Dampf-Kombi- ProzeßPatentansprüche
Verfahren zur Verdichtung des Arbeitsfluids beim Wasser-Dampf-Kombi- Prozeß in meinstufigen Turboverdichtern mit Zwischenkülilungen in den einzelnen Verdichterstufen durch Zusatz eines Kühlmittels zum Arbeitsfluid, dadurch gekennzeichnet, daß als Külihnittel feinstverteiltes Wasser eingesetzt wird, welches durch Druckzerstäuben von Wasser zu Microwassertropfen gewonnen wird, daß das Külilmittel i mittelbar in wenigstens einer Verdichtungsstufe dem Arbeitsfluid zugesetzt wird, daß das Külilmittel beim Verdichten in den Zustand des Arbeitsfluids übergeht, daß das KüMinittel dem Arbeitsfluid in einer der Aufrechterhaltung des mennodynamischen Gleichgewichts dienenden Menge zugesetzt wird, daß die Verdampfung des Kühlmittels entlang der Sättigungslinie erfolgt und daß mit dem Zusatz von Kühhnittel zwischen Verdichtereintritt und Verdicliteraustritt eine Erhöhung des Arbeitsfluid-Massenstroms bewirkt wird.
Verfahren nach dem Ansprach 1, dadurch gekennzeichnet, daß das Kühhnittel aus verflüssigtem Arbeitsfluid gewonnen wird.
3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, daß das Külihnittel vor der ersten Verdichterstufe dem Arbeitsfluid zugeführt wird.
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Verdampfungswärme des Kühlmittels in Verbindung mit der Absenkung der Apparate- und Medientemperaturen dem Verdichtungssystem entnommen wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß durch den steuerbaren Zusatz von Kühhnittel zu einzelnen Verdichtungsstufen der Massenstrom des Arbeitsfluids im Turboverdichter variabel gestaltet wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß infolge der inneren Kühlung des Arbeitsfluids das Verdichtungsvolumen vermindert wird.
PCT/DE2003/002357 2002-07-14 2003-07-14 Verfahren zur verdichtung des arbeitsfluids beim wasser-dampf-kombi-prozess WO2004010003A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003257385A AU2003257385A1 (en) 2002-07-14 2003-07-14 Method for compressing the working fluid during a water/steam combination process
DE10393450T DE10393450D2 (de) 2002-07-14 2003-07-14 Verfahren zur Verdichtung des Arbeitsfluids beim Wasser-Dampf-Kombi-Prozeß
CA002497581A CA2497581A1 (en) 2002-07-14 2003-07-14 Method for compressing the working fluid during a water/steam combination process
US10/530,907 US7331753B2 (en) 2002-07-14 2003-07-14 Method for compressing the working fluid during a water/steam combination process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10231532.9 2002-07-14
DE10231532 2002-07-14

Publications (2)

Publication Number Publication Date
WO2004010003A2 true WO2004010003A2 (de) 2004-01-29
WO2004010003A3 WO2004010003A3 (de) 2004-05-06

Family

ID=30128104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002357 WO2004010003A2 (de) 2002-07-14 2003-07-14 Verfahren zur verdichtung des arbeitsfluids beim wasser-dampf-kombi-prozess

Country Status (5)

Country Link
US (1) US7331753B2 (de)
AU (1) AU2003257385A1 (de)
CA (1) CA2497581A1 (de)
DE (2) DE10331978A1 (de)
WO (1) WO2004010003A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119409A2 (en) * 2005-05-02 2006-11-09 Vast Power Portfolio, Llc West compression apparatus and method
EP2199671A1 (de) * 2008-06-11 2010-06-23 Thermea.Energiesysteme GmbH Verfahren und Anordnung zur Erzeugung von Wasserdampf
EP2559867A1 (de) 2011-08-19 2013-02-20 Alstom Technology Ltd Verfahren zum Erzeugen von elektrischer Energie mittels eines Kombikraftwerkes sowie Kombikraftwerk zur Durchführung des Verfahrens
EP2609379A4 (de) * 2010-08-23 2016-07-27 Dresser Rand Co Verfahren zur drosselung eines komprimierten gases für verdunstungskühlung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070193300A1 (en) * 2006-02-21 2007-08-23 Tilton Donald E Two-phase liquid cooling system with active venting
DE102012013128A1 (de) * 2012-07-03 2014-01-09 RERUM COGNITIO Gesellschaft für Marktintegration deutscher Innovationen und Forschungsprodukte mbH Dampf-/Arbeitsprozess ohne Regenerator mit Wärmeauskopplung für die Elektroenergieerzeugung im Kreisprozess
JP2018509559A (ja) 2015-03-26 2018-04-05 エクソンモービル アップストリーム リサーチ カンパニー 圧縮機システムを制御する方法及び圧縮機システム
SG11201705459QA (en) * 2015-03-26 2017-10-30 Exxonmobil Upstream Res Co Wet gas compression

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331806A (en) * 1993-02-05 1994-07-26 Warkentin Daniel A Hydrogen fuelled gas turbine
EP0770771A1 (de) * 1995-10-26 1997-05-02 Asea Brown Boveri Ag Zwischengekühlter Verdichter
US5644911A (en) * 1995-08-10 1997-07-08 Westinghouse Electric Corporation Hydrogen-fueled semi-closed steam turbine power plant
NL1009484C2 (nl) * 1998-06-24 1999-12-27 Kema Nv Inrichting voor het comprimeren van een gasvormig medium en systemen die een dergelijke inrichting omvatten.
EP1138955A2 (de) * 2000-03-29 2001-10-04 Watson Cogeneration Company Verfahren und Anlage zur Wirkungsgradsteigerung eines mehrstufigen Verdichters

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2549819A (en) * 1948-12-22 1951-04-24 Kane Saul Allan Axial flow compressor cooling system
US4571151A (en) * 1983-08-26 1986-02-18 General Electric Company Liquid injection control in multi-stage compressor
US5669217A (en) * 1995-09-25 1997-09-23 Anderson; J. Hilbert Method and apparatus for intercooling gas turbines
JP2877098B2 (ja) * 1995-12-28 1999-03-31 株式会社日立製作所 ガスタービン,コンバインドサイクルプラント及び圧縮機
NL1011383C2 (nl) 1998-06-24 1999-12-27 Kema Nv Inrichting voor het comprimeren van een gasvormig medium en systemen die een dergelijke inrichting omvatten.
DE10055202A1 (de) * 2000-08-04 2002-02-21 Rerum Cognitio Ges Fuer Markti Dampfkraft-/Arbeitsprozeß mit erhöhtem mechanischen Wirkungsgrad für die Elektroenergiegewinnung im Kreisprozeß sowie Anordnung zu seiner Durchführung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331806A (en) * 1993-02-05 1994-07-26 Warkentin Daniel A Hydrogen fuelled gas turbine
US5644911A (en) * 1995-08-10 1997-07-08 Westinghouse Electric Corporation Hydrogen-fueled semi-closed steam turbine power plant
EP0770771A1 (de) * 1995-10-26 1997-05-02 Asea Brown Boveri Ag Zwischengekühlter Verdichter
NL1009484C2 (nl) * 1998-06-24 1999-12-27 Kema Nv Inrichting voor het comprimeren van een gasvormig medium en systemen die een dergelijke inrichting omvatten.
EP1138955A2 (de) * 2000-03-29 2001-10-04 Watson Cogeneration Company Verfahren und Anlage zur Wirkungsgradsteigerung eines mehrstufigen Verdichters

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119409A2 (en) * 2005-05-02 2006-11-09 Vast Power Portfolio, Llc West compression apparatus and method
WO2006119409A3 (en) * 2005-05-02 2009-09-03 Vast Power Portfolio, Llc West compression apparatus and method
EP2199671A1 (de) * 2008-06-11 2010-06-23 Thermea.Energiesysteme GmbH Verfahren und Anordnung zur Erzeugung von Wasserdampf
EP2609379A4 (de) * 2010-08-23 2016-07-27 Dresser Rand Co Verfahren zur drosselung eines komprimierten gases für verdunstungskühlung
EP2559867A1 (de) 2011-08-19 2013-02-20 Alstom Technology Ltd Verfahren zum Erzeugen von elektrischer Energie mittels eines Kombikraftwerkes sowie Kombikraftwerk zur Durchführung des Verfahrens

Also Published As

Publication number Publication date
DE10331978A1 (de) 2004-02-12
WO2004010003A3 (de) 2004-05-06
US20060083605A1 (en) 2006-04-20
DE10393450D2 (de) 2005-07-21
US7331753B2 (en) 2008-02-19
AU2003257385A1 (en) 2004-02-09
CA2497581A1 (en) 2004-01-29

Similar Documents

Publication Publication Date Title
DE102012011294B4 (de) Verfahren zum Kühlen einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens
DE69630359T2 (de) Gasturbine mit Wassereinspritzung
EP1509702B1 (de) Verfahren zum betreiben eines verdichters
DE2402043C3 (de) Anlage zur Verdampfung und Erwärmung von verflüssigtem Erdgas
EP0990801B1 (de) Verfahren zur isothermen Kompression von Luft sowie Düsenanordnung zur Durchführung des Verfahrens
WO2003027461A1 (de) Gasturbinenanlage für ein arbeitsmedium in form eines kohlendioxid/wasser-gemisches
EP0770771A1 (de) Zwischengekühlter Verdichter
DE3132351A1 (de) "schaftvorrichtung und verfahren zum herstellen eines nicht-linearen doppelbrennstoffwegschaftes fuer eingasturbinentriebwerk"
DE4036854C1 (de)
WO2004010003A2 (de) Verfahren zur verdichtung des arbeitsfluids beim wasser-dampf-kombi-prozess
CH630702A5 (de) Anlage zum erzeugen von druckgas.
DE102013002999A1 (de) Brennkraftrnaschine
DE69400794T2 (de) Gaskompressionsverfahren und Vorrichtung
DE3942042A1 (de) Brennkammer fuer eine gasturbine mit luftunterstuetzten brennstoffzerstaeuberduesen
DE19535318A1 (de) Verfahren und Anordnung zum Vorwärmen des Speisewassers eines Dampferzeugers in Kraftwerksprozessen
WO2003083307A1 (de) Pumpeinrichtung, verfahren zum betreiben einer pumpeinrichtung und dessen verwendung bei einer dampfturbinenanlage
DE2931178A1 (de) Gasturbinen-energiewandlungs-verfahren und vorrichtung zu seiner durchfuehrung
DE10331988A1 (de) Verfahren zur Trennung von Restgasen und Arbeitsfluid beim Wasser-Dampf-Kombi-Prozeß
DE718197C (de) Verfahren zum Betrieb von Brennkraftmaschinen
DE4114678A1 (de) Quasi-isotherme verdichtung kompressor mit einspritzung
EP3563098A1 (de) Verfahren zum betrieb einer wärmepumpenanlage, wärmepumpenanlage und kraftwerk mit einer wärmepumpenanlage
WO2013110366A2 (de) Wassereinspritzvorrichtung für ein umleitdampfsystem einer kraftwerksanlage
DE1035669B (de) Verfahren zum Betrieb einer Kompressor-Kuehlanlage mit mindestens zweistufiger Kompression eines in der Anlage umlaufenden Kaeltemittels sowie Kompressor-Kuehlanlage zur Durchfuehrung des Verfahrens
DE1601654B2 (de) Vorrichtung zum schutz einer mindestens zweiwelligen geschlos senen gasturbinenanlage
DE4118061A1 (de) Gasturbinenanordnung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003764891

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003257385

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 2003764891

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2497581

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2006083605

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10530907

Country of ref document: US

REF Corresponds to

Ref document number: 10393450

Country of ref document: DE

Date of ref document: 20050721

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393450

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10530907

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP