WO2004007820A1 - Method for producing fine carbon fiber - Google Patents

Method for producing fine carbon fiber Download PDF

Info

Publication number
WO2004007820A1
WO2004007820A1 PCT/JP2003/009027 JP0309027W WO2004007820A1 WO 2004007820 A1 WO2004007820 A1 WO 2004007820A1 JP 0309027 W JP0309027 W JP 0309027W WO 2004007820 A1 WO2004007820 A1 WO 2004007820A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine carbon
gas
carbon fiber
reaction
post
Prior art date
Application number
PCT/JP2003/009027
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeo Maruyama
Kunio Nishimura
Takayuki Tsukada
Original Assignee
Bussan Nanotech Research Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bussan Nanotech Research Institute Inc. filed Critical Bussan Nanotech Research Institute Inc.
Priority to US10/521,453 priority Critical patent/US20060099134A1/en
Priority to JP2004521220A priority patent/JP4388890B2/en
Priority to AU2003252658A priority patent/AU2003252658A1/en
Publication of WO2004007820A1 publication Critical patent/WO2004007820A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols

Definitions

  • the present invention relates to a method for producing fine carbon fibers such as vapor-grown carbon fibers and carbon nanotubes, and more particularly, to a technique for continuously and stably producing fine carbon fibers at low cost.
  • Carbon nanotubes are a type of vapor-grown carbon fiber (VGCF) that has been studied for a long time, and have various names depending on the thickness of the fiber. In general, those with a fiber diameter of 1 or more are vapor-grown carbon fiber (VGCF), those with a fiber diameter of 50 nm or less are carbon nanotubes (CNT), and those with a fiber diameter of 50 nm between them. Larger and smaller than 1 m are called carbon nanofibers (CNF).
  • VGCF vapor-grown carbon fiber
  • CNT carbon nanotubes
  • CNF carbon nanofibers
  • the crystal structure of these fine carbon materials takes a variety of forms, including single-walled carbon nanotubes (SWNTs), each of which is made up of a single layer of graphene sheet made of carbon, and multiple layers of graphene. Sheets are laminated and have a concentric laminated structure (or an annual ring-shaped structure) as a multi-walled carbon nanotube (MWNT), and further, a crystal structure intermediate between the two, that is, a crystal plane is formed. There is a nano-cone having a cone-shaped crystal structure that spreads at a certain angle with respect to its central axis.
  • SWNTs single-walled carbon nanotubes
  • MWNT multi-walled carbon nanotube
  • the fine carbon material having a shape other than the tube shape examples include a ribbon-like fine carbon material having a structure in which graph ensheets are laminated so as to be orthogonal to the fiber direction, and a coil-like material having an amorphous structure which does not exhibit crystallinity.
  • carbon nanotubes can be used as electron beam sources used in image display devices and semiconductor manufacturing devices and as filler materials for composite materials. It is preferable that the fibers have high crystallinity and are straight, and that the fiber diameter is small and uniform. If the carbon nanotubes are not straight and are forced, the carbon fibers are likely to be entangled with each other and easily become flocked. When it becomes a floc, it is difficult to grind and it is difficult to arrange carbon fibers when used. In addition, even when added to a resin or the like as a filler material, it is difficult to uniformly disperse, and it is difficult to obtain a composite material having desired characteristics.
  • the arc method and the laser method have a low productivity because it is difficult to scale up the manufacturing equipment, and it is also difficult to make the manufacturing process continuous.
  • the arc method and the laser method have a low productivity because it is difficult to scale up the manufacturing equipment, and it is also difficult to make the manufacturing process continuous.
  • non-fibrous carbon is easily generated at the same time, so the production efficiency is low, and it is also difficult to separate and collect carbon nanotubes and non-fibrous carbon. Therefore, it is difficult to produce high quality carbon nanotubes suitable for industrial products using the arc method or the laser method.
  • the CVD method is the most preferable method for mass production, but it is difficult to reduce the fiber diameter by the CVD method, and the fiber diameter tends to be uneven. Furthermore, even if the fiber diameter can be reduced according to the manufacturing conditions, there is a problem that curled carbon nanotubes are easily generated.
  • the CCVD method which uses a fixed layer carrying a catalyst to produce carbon nanotubes with a small fiber diameter, has attracted attention.
  • the production of carbon nanotubes by the CCVD method is almost the same as the CC VD method studied in the early stage of the development of the VGCF, except that a porous material having fine pores such as zeolite as a carrier is used. It differs in that it is used.
  • fine catalyst particles can be produced using these pores, and it has become possible to produce extremely fine carbon nanotubes.
  • FIG. 5 is a schematic configuration diagram of a production process for producing fine carbon fibers by a conventional batch-type CCVD method.
  • the manufacturing apparatus 200 shown in this figure includes a cylindrical reactor 201 arranged horizontally, a heater 202 disposed around the outer periphery of the reactor 201 to heat the reactor 201 from outside, and
  • the reactor 201 includes a source gas supply unit 203 and a carrier gas supply unit 204 connected to the right end of the reactor 201 in the figure, and a supported catalyst supply unit 205 connected to the left end of the reactor 201 in the figure.
  • a first carbon fiber recovery section 206 for recovering the supported catalyst introduced into the reaction furnace from the supported catalyst supply section 205 and subjected to the reaction together with the fine carbon fibers generated on the supported catalyst is provided in the reaction furnace.
  • a bag filter 208 is connected to the right end of the reactor 201 to derive the post-reaction gas from the reactor 201 and separate the post-reaction gas into fine carbon fibers and exhaust gas. Connected to the side.
  • the bagfill 208 has a gas discharge section 208a and a solid discharge section 208b.
  • An exhaust gas treatment device 210 is connected to the gas discharge portion 208a, and a second carbon fiber recovery portion 209 is connected to the solid discharge portion 208b.
  • the fine carbon fibers which are discharged to 210 and are solid are collected by the second carbon fiber collecting section 209.
  • a supported catalyst such as zeolite supporting a catalyst is introduced from a supported catalyst supply unit 205 into a reaction furnace 201 into which a raw material gas and a carrier gas have been charged, and a chemical thermal decomposition reaction is performed.
  • a chemical thermal decomposition reaction is performed.
  • fine carbon fibers are grown on the supported catalyst.
  • the supported catalyst holding the fine carbon fibers on the surface is recovered to the first carbon fiber recovery unit 206.
  • the reaction After the reaction, the post-reaction gas is discharged from the reactor 201 to the bag filter 208, and separated into fine carbon fibers and exhaust gas by the bag filter 208.
  • fine carbon fibers separated by the bag filter 208 are collected in the carbon fiber collection unit 209, and the exhaust gas is sent to the exhaust gas treatment device 210.
  • fine carbon fibers can be produced by the CC VD method using the production apparatus shown in FIG.
  • the unreacted raw material gas and low- and high-boiling components of by-products are contained in the gas after being subjected to the reaction.
  • exhaust gas treatment such as combustion treatment or adsorption treatment is required.
  • a large amount of carrier gas is used as described above, so that the amount of exhaust gas itself increases and the cost of exhaust gas treatment increases.
  • sulfuric acid such as hydrogen sulfide and thiophene
  • sulfuric acid such as hydrogen sulfide and thiophene
  • the sulfur compound is contained in the exhaust gas after the reaction, so it is necessary to remove the sulfur compound.
  • the treatment cost becomes extremely large due to the large amount of the exhaust gas itself.
  • the present invention is intended to continuously and stably produce fine carbon fibers such as vapor-grown carbon fibers and carbon nanotubes having an arbitrary fiber diameter, particularly a fine fiber diameter, at a low cost. It is an object of the present invention to provide a method for producing fine carbon fibers that can be used. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, using ultra-fine particles composed of transition metal as a catalyst, a chemical pyrolysis method of CO and organic compounds (C VD method and CC VD method).
  • C VD method and CC VD method a chemical pyrolysis method of CO and organic compounds
  • high-quality fine carbon fibers with extremely small fiber diameters are obtained by using at least one organic compound containing a Group VIB element of the periodic table of elements in the molecule as a raw material. Fibers are produced, and when such an organic compound is used as a raw material, reaction by-products and undecomposed raw materials can be easily separated and recovered from the gas after the reaction, and the carrier gas and the carrier gas can be recycled by recycling the gas after the reaction to the reaction furnace. It has been found that the amount of exhaust gas can be reduced.
  • a raw material gas composed of an organic compound, a carrier gas composed of hydrogen and Z or an inert gas, and an ultrafine catalyst containing at least one transition metal are introduced into a reaction furnace.
  • a chemical pyrolysis reaction in the reaction furnace wherein an organic compound containing a Group III element of the Periodic Table of Elements in the molecule is used as a raw material organic compound.
  • the reaction is carried out in 2 X 1 0 5 P a pressure below.
  • the post-reaction gas preferably a gas obtained by removing by-products and undecomposed gas from the post-reaction gas, is re-introduced into the reaction furnace by a recycle means connected to the reaction furnace and used.
  • Examples of the organic compound containing a Group VIB element in a molecule used in the present invention include, as compounds containing oxygen, alcohols, ketones, phenols, ethers, aldehydes, organic acids, and esters. .
  • sulfur compound examples include thiols, thioethers, and thiophenes, and thiophene is particularly preferably used.
  • These starting organic compounds can be supplied to a reaction furnace by spraying a liquid, a solution or a solid even in a gaseous state.
  • a fine carbon fiber is produced by a CVD method or a CCVD method, and ultrafine particles made of a transition metal are used as a catalyst.
  • Transition metals include, for example, iron, connort, nickel, yttrium, titanium
  • Vanadium, manganese, chromium, copper, niobium, molybdenum, palladium, tungsten, platinum, and the like can also be used as a catalyst. Further, these may be used alone or in combination of two or more selected from them. Depending on the combination, a greater catalytic effect can be obtained.
  • the form of the compound may be an organic compound, an inorganic compound, or a combination thereof. Can be used.
  • the organic compound Hua-Sen, nickel sen, cobalt sen and the like can be used.
  • the inorganic compound may be in any form such as an oxide, a nitrate, a sulfate, and a chloride.
  • sulfur, H 2 S, CS 2, S 0 2 it may be added to the sulfur compound such Chiofen.
  • the starting organic compound is an organic compound such as a hydrocarbon containing no Group VIB element in the molecule.
  • the catalyst may be the metal or compound fine particles as they are (CVD method), or the metal or compound may be supported on the inorganic carrier of the fine particles (CCVD method).
  • the inorganic carrier for example, alumina, zeolite, carbon, magnesium, calcium and the like can be used.
  • any method such as a method of gasifying alone, a method of mixing with a carbon raw material and then gasifying, a method of diluting with a carrier gas, and a method of dissolving in a carbon raw material and charging it in a liquid state are used. Good.
  • the post-reaction gas used for producing the fine carbon fibers is re-introduced into the reaction furnace by the recycling means, so that the post-reaction gas, which has been conventionally exhausted as exhaust gas, is discharged to the outside. Can be used effectively.
  • the amount of carrier gas used can be reduced and the amount of exhaust gas can also be reduced, so that both the cost of carrier gas and the cost of exhaust gas treatment can be reduced. Therefore, it is possible to reduce the cost related to the production of fine carbon fibers as compared with the related art.
  • the production of the fine carbon fiber of the present invention is a method of producing a fine carbon fiber by a chemical pyrolysis method using an organic compound containing a Group VIB element as a raw material and using ultrafine particles composed of a transition metal as a catalyst.
  • Carrier gas supply unit carbon fiber separation device for separating and recovering the fine carbon fibers generated inside the reactor from the gas after the reaction, and recycling for cooling the gas after the reaction and introducing it into the reactor again It is carried out by a process comprising means and preferably a device for condensing and separating condensed components in the gas after the reaction.
  • the separation device is connected to a carbon fiber recovery device, and the fine carbon fiber separated from the gas after the reaction by the separation device is recovered to the fine carbon fiber recovery device.
  • the cooling gas is passed through another separation device to further collect fine carbon fibers.
  • the gas that has exited the fine carbon fiber recovery apparatus can be discharged as it is after exhaust gas treatment.
  • the gas from which the fine carbon fiber has been recovered is recycled to the reaction furnace by the recycling means.
  • the gas is further cooled to condense condensed components such as water generated by the reaction in the gas and unreacted raw materials, and then separated and introduced into a reaction furnace.
  • the separated condensate is discharged after drainage treatment.
  • unreacted raw materials can be separated from condensate and recycled as raw materials.
  • unreacted raw material compounds, generated water, and high-boiling by-products may also adhere to the fine carbon fiber that is the product obtained from the separation and recovery device, so the product is once heated and vaporized.
  • a method combining one or two or more of distillation, PJ: deposition, and membrane separation can be used.
  • the fine carbon fiber is separated from the post-reaction gas, and the fine carbon fiber is also recovered from the cooled post-reaction gas. It is possible to prevent an increase in production cost due to a decrease in recovery rate.
  • the fine carbon fibers produced by the chemical pyrolysis reaction have extremely low bulk density and are light, so that all or those separated from the catalyst float in the reactor. Therefore, these fine carbon fibers and reaction by-products accompany the post-reaction gas discharged from the reactor. Then, when the fine carbon fibers are mixed with the gas to be recycled and re-introduced into the reaction furnace and subjected to the reaction, the carbon further grows on the fine carbon fibers, and the fiber diameter becomes coarse ( There is a possibility that the desired fiber diameter may not be obtained. Therefore, in the present invention, by providing the separation means, the fine carbon fibers in the gas after the reaction are removed, so that only the gas components are re-introduced into the reaction furnace, and the fiber diameter is prevented from being increased. ing. Thus, fine carbon fibers having a desired fiber diameter can be stably manufactured.
  • a filter / cyclone having a function of efficiently separating a solid from a gas, or a combination thereof is preferably used as a separating means.
  • the selection of these filters and cyclones may be appropriately selected according to the amount of gas, the temperature, and the like. For example, if the amount of post-reaction gas is large, the amount of fine carbon fibers recovered by the separation means also increases, so it is necessary to prevent the load on one filter from increasing. In this case, a combination of a large-filled filter and a fine-filled bag filter or a combination of a cyclone and a bag filter may be used.
  • the gas discharged from the reactor has a high temperature of about 600 ° C or more, depending on the temperature of the reactor.
  • a cooling means such as a water cooling jacket is provided in the path from the reaction furnace or the carbon fiber recovery section to the separation device to cool the post-reaction gas. Then, after cooling to 40 ° C. or more and 150 ° C. or less (preferably 100 ° C. or less) by this cooling, separation by a bag filter may be performed.
  • a filter that can withstand as high a temperature as possible, since a solid product that is difficult to cool may be mixed in the gas after the reaction.
  • the gas after separating the fine carbon fibers is further cooled to collect unreacted raw material organic compounds and condensates such as generated water and separate them.
  • the separation can be an apparatus combining at least one of distillation, adsorption and membrane separation.
  • the temperature of the gas re-introduced into the reaction furnace is preferably set to 40 ° C. or higher.
  • the post-reaction gas discharged from the reactor includes unreacted hydrocarbons and organic compounds with low and high boiling components. Included as a by-product.
  • these organic compounds adhere to the inner surface of the manufacturing apparatus, there is a possibility that the pipes constituting the manufacturing apparatus may be blocked. In order to manufacture safely, it is necessary to take measures to prevent these pipes from clogging.
  • the present inventor has conducted various studies on the manufacturing conditions for the purpose, and as a result, if at least the temperature of the gas passed through the recycling means and re-introduced into the reactor is set to 40 ° C. or more, It has been found that the precipitation of such organic compounds can be almost completely prevented, and as a result, clogging of the piping can be prevented.
  • the gas temperature by setting the gas temperature to 40 ° C or higher when passing through the recycling means where the temperature of the gas is the lowest in the entire manufacturing equipment, the raw material gas in the equipment, the post-reaction gas, or the recycled gas Gas power and organic compounds can be prevented from precipitating. Therefore, if the temperature of the gas is less than 40 ° C at the position where the temperature of the gas is the lowest, the temperature may be maintained at 40 ° C or more by keeping or heating by means such as coating as necessary. To do.
  • the temperature of the gas that passes through the inside of the recycling means and is re-introduced into the reaction furnace is 60 ° C. or higher. That is, if the temperature of the gas is set to 60 ° C. or higher, the precipitation of the organic compound from the gas can be more effectively suppressed, so that more stable production is possible.
  • the position where the reaction gas is reintroduced into the reaction furnace may be directly returned to the reaction furnace, or may be reintroduced into the reaction furnace after being mixed with the raw material gas and Z or the carrier gas. In the latter case, for example, when a liquid raw material is gasified and used, it is preferable to raise the temperature of the reacted gas in advance to a predetermined temperature so that the raw material gas and the mixed gas after the reaction do not liquefy. .
  • the post-reaction gas is re-introduced into a reaction furnace by a recycling means and used.
  • the concentration is preferably 50% or more.
  • the amount of gas re-introduced into the reactor for recycling is at most the same as the amount of carrier gas introduced into the reactor.
  • the pressure is positive with respect to the atmospheric pressure.
  • the gas after the reaction when the gas after the reaction is circulated and reused, the gas after the reaction always contains hydrogen gas and raw material organic compounds. If oxygen is mixed into this hydrogen gas or organic compound, a fire or a large explosion may occur. In order to prevent this, it is necessary to maintain the inside of the system including the piping at positive pressure instead of negative pressure. In particular, since the suction side of the gas circulating means for circulating gas in the device is most likely to be under negative pressure, it is preferable to take measures to prevent this part from being under negative pressure.
  • the following measures can be taken to prevent negative pressure.
  • a safety gas for example, an inert gas such as N 2 or A 1-
  • an inert gas such as N 2 or A 1-
  • a circulation system for adjusting pressure is added before and after the gas circulation means.
  • the raw material gas supplied from the raw material gas supplied from the raw material gas
  • a reaction gas may be generated by separately or mixing with a carrier gas supplied from a carrier gas supply source, and the reaction gas may be supplied to a reaction furnace. In the latter case, a raw material gas and a carrier gas are mixed to generate a reactive gas, and this reactive gas is introduced into a reactor.
  • the recycled gas is mixed with the carrier gas and introduced into the reactor.
  • FIG. 1 is a configuration diagram schematically showing a manufacturing process according to an embodiment of the reference example.
  • FIG. 2 is a configuration diagram schematically showing the manufacturing process of the first embodiment.
  • FIG. 3 is a configuration diagram schematically showing the manufacturing process of the second embodiment.
  • FIG. 4 is a configuration diagram schematically showing the manufacturing process of the third embodiment.
  • FIG. 5 is a diagram schematically showing a conventional production process by a batch CCVD method.
  • FIG. 1 is a configuration diagram schematically showing a process for producing fine carbon fibers which is an embodiment of a reference example serving as a reference of the present invention.
  • the manufacturing process of the present invention shown in this figure is a manufacturing process for manufacturing fine carbon fibers by the CC VD method, and includes a cylindrical reactor 3 and a raw material gas supply unit connected to the inlet end of the reactor. 2.Carrier gas supply unit 1 and catalyst input device 20; Fine carbon fiber separation and recovery device 4 connected to the outlet end of reactor 3; Fine carbon connected to the bottom of fine carbon fiber separation and recovery device 4 Fiber recovery tank 8, post-reaction gas cooling device 6 connected to the upper part, second fine carbon fiber separation and recovery device 5 for further separating fine carbon fibers from the cooling gas, and exhaust gas treatment device 1 and 2.
  • the reactor 3 is heated to 600 ° C or higher and 125 ° C or lower by a heater provided in the reactor 3. .
  • the temperature of the above-mentioned reactor is an example of the production conditions. Actually, the temperature of the carbon source (oxygen-containing organic compound, etc.) used as a raw material, the type of catalyst, the type of carrier gas, etc. The optimum condition is set by the combination of.
  • a raw material gas composed of an organic compound containing a Group VIB element in a molecule is introduced into the reaction furnace 3 from the raw material supply unit 2, and hydrogen, methane, or an inert gas is introduced.
  • the carrier gas composed of the above is introduced from the carrier gas supply unit 1 into the reaction furnace 3.
  • a catalyst for causing a reaction to convert carbon into fibers in the reactor 3 is introduced into the reactor 3.
  • the raw material gas is decomposed by heat in the reaction furnace 3, and fine carbon fibers are generated by the action of the catalyst.
  • the generated fine carbon fibers are sent to the fine carbon fiber separation / recovery device 4 together with the gas in the reaction furnace.
  • the fine carbon fiber is separated from the post-reaction gas by the fine carbon fiber separation / recovery device 4 and sent to the fine carbon fiber tank 8.
  • the gas that has exited the fine carbon fiber separation / recovery device 4 is cooled by the cooling device 6 to 40 ° C. or higher and 150 ° C. or lower, and enters the second fine carbon separation / recovery device 5.
  • fine carbon fibers are further recovered by a separation device that can be used for low-temperature gas such as a bag filter and stored in the recovery tank 8.
  • the gas that has exited the second fine carbon fiber separation / recovery device 5 is treated by an exhaust gas treatment device and then discharged out of the system.
  • FIG. 2 is a schematic diagram illustrating a process for producing fine carbon fibers according to the first embodiment of the present invention.
  • FIG. The production process of the present invention shown in this figure is a production process for producing fine carbon fibers by the CC VD method, and is a process provided with a recycling device. That is, in the embodiment of the above reference example, the gas discharged from the second fine carbon fiber separation / recovery device 5 was exhausted out of the system after being treated by the exhaust gas treatment device. Is a process of circulating a part of it to the reactor. In this process, the circulating gas and the exhaust gas can be freely controlled, and therefore, the gas circulation amount in the reaction system can be easily controlled.
  • FIG. 3 is a configuration diagram schematically showing a process for producing fine carbon fibers according to a second embodiment of the present invention.
  • a part of the gas exiting the second fine carbon fiber separation / recovery device 5 is circulated to the reaction furnace by the gas circulation blower 9.
  • the temperature of the gas is further reduced by a cooling device 7 separate from the cooling device 6, and reaction by-products such as water contained in the gas and undecomposed raw material organic matter are condensed from the gas. It is a process of separating and removing gas and circulating gas.
  • the separated condensate passes through a condensate tank 10 and is sent to a moisture separator 11 where condensates such as water and organic gas are recovered, and this gas is also circulated to the reactor 3.
  • the condensate accumulated in the water separator 11 is discharged out of the system after being treated by the wastewater treatment device 15.
  • the circulating gas does not contain water or organic compounds with relatively high boiling points As a result, the water concentration can be kept low, so that the condensation of water can be suppressed, and clogging of piping and the like can be prevented.
  • FIG. 4 is a configuration diagram schematically showing a process for producing fine carbon fibers according to a third embodiment of the present invention.
  • the gas circulated to the reaction furnace by the circulation blower 9 out of the gas exiting the second fine carbon fiber separation / recovery device 5 is described in the second embodiment.
  • This is a process in which the gas is cooled by the cooling device 7 to further reduce the temperature of the gas, condensing reaction by-products such as water contained in the gas, and undecomposed raw material organic matter, and separating and removing it from the gas for circulation.
  • this is a process in which the gas discharged from the second fine carbon fiber separation / recovery device 5 is cooled by the total amount cooling device 7 and the condensate in the gas is separated.
  • Part of the gas from which the condensate has been separated is circulated to the reaction furnace by the blower 9, and the remaining gas is sent to the exhaust gas treatment device 12, where it is discharged out of the system after treatment.
  • the separated condensate passes through the condensate tank 10 and is sent to the moisture separator 11 to collect condensate such as water and organic matter, and this gas is also circulated to the reaction furnace 3.
  • the condensate accumulated in the gas-liquid separator 11 is treated by the wastewater treatment device 15 and then discharged out of the system.
  • the process was performed as shown in FIG.
  • the reactor used was a one-piece, one-piece reactor with a structure that heats a 200-diameter SiC reaction tube from the outside and can rotate the reaction tube at a constant speed.
  • Ethyl alcohol was used as a raw material carbon source, and was continuously charged at a flow rate of 7.4 NL / min.
  • Argon gas was used as the carrier gas, and the flow rate was 5 NL / min.
  • the catalyst used was a two-component system consisting of molybdenum and cobalt.
  • the catalyst was supported on magnesium oxide with an average particle size of 0.1 im or less according to a conventional method, and then concentrated in an inert gas at a rate of 15 g / min. It was put in.
  • the reaction temperature was 810 ° C
  • the reaction pressure was normal pressure
  • the reaction was continuously performed at a rotation speed of 3 rpm.
  • crude CNTs of 1 S gZmin were obtained by adding volatile components to the catalyst recovered in the CNT recovery tank.
  • the CNT content in the crude CNT was 3.8 gmin.
  • the reaction furnace is a rotary type reaction tube which heats a reaction tube made of SiC having an inner diameter of 200 ⁇ similar to that of the reference example from the outside and which can rotate the reaction tube at a constant speed.
  • Ethyl alcohol was used as the carbon source of the raw material in the same manner as in the Reference Example, and was continuously charged at a flow rate of 7.4 NLZmin.
  • Molybdenum and cobalt catalysts were used, supported on magnesium oxide with an average particle size of 0.1 zm or less, and then charged in an inert gas at a rate of 15 g / min.
  • the reaction temperature was 805, the reaction pressure was normal pressure, and the reaction was continuously performed at a rotation speed of 2 rpm.
  • the reacted gas (including unreacted ethyl alcohol and decomposition products) equivalent to 20% of the argon gas in the outlet reaction gas was recycled, and the remainder was sent to an exhaust gas treatment system. Therefore, the carrier gas in the furnace was adjusted so that the newly introduced argon gas was 4 NL / min.
  • the amount of the catalyst and crude CNT recovered in the CNT recovery tank was 19.3 gZ min.
  • the CNT content in the crude CNT is 4.OgZmin.
  • the CNT yield was improved by 0.2 gZmin over the case without recycling, and the amount of argon input was reduced by 20%.
  • This example was implemented by the process shown in FIG.
  • the reaction furnace used in this reaction was to heat a reaction tube made of SiC having an inner diameter of 200 ⁇ from the outside, and a rotary reaction tube having a structure capable of rotating the reaction tube at a constant speed was used.
  • Ethyl alcohol was used as a raw material carbon source in the same manner as in the Reference Example, and was continuously charged at a flow rate of 7.4 NL / min.
  • Molybdenum and cobalt catalysts were used, supported on magnesium oxide with an average particle size of 0.1 m or less, and then charged in an inert gas at a rate of 15 g / min.
  • the reaction temperature was 815 ° C
  • the reaction pressure was normal pressure
  • the reaction was continuously performed at a rotation speed of 1 rpm.
  • the gas after the reaction corresponding to 50% of the outlet reaction gas argon gas was cooled by the cooler 7, water was removed by the water separator, and then recycled to the reaction system.
  • the residue was sent to an exhaust gas treatment system.
  • Carrier gas in the furnace is 3 NL / min for newly charged gas and 3 NL / min for recycled gas.
  • the amount of the catalyst and crude CNT recovered in the CNT recovery tank was 19.6 g / min.
  • the CNT content in the crude CNT was 4.2 g / min.
  • the CNT yield improved by 0.4 g / min compared to the case without recycling, and the amount of argon input was reduced by 50%.
  • the reaction furnace used in this reaction was to heat a reaction tube made of SiC with an inner diameter of 200 ⁇ from the outside, and a mouth-to-mouth type reaction tube capable of rotating the reaction tube at a constant speed was used.
  • Ethyl alcohol was used as the raw material carbon source in the same manner as in the Reference Example, and was continuously charged at a flow rate of 7.4 N I / min.
  • Molybdenum and cobalt catalysts are used, and the average particle size is 0.1 After that, what was condensed in an inert gas was introduced at a rate of 15 g / min.
  • the reaction temperature was 800 ° C
  • the reaction pressure was normal pressure
  • the reaction was continuously performed at a rotation speed of 1 rpm.
  • the outlet reaction gas was cooled in its entirety by the cooler 7 to recover unreacted components and carbon containing an oxygen-containing hydrid, and then water was removed by the separator 11 before being recycled to the reaction system.
  • the gas after the reaction corresponding to 50% of the argon gas after the reaction at the outlet of the cooler 7 was recycled, and the remainder was sent to an exhaust gas treatment system.
  • the amount of carrier gas in the furnace is 3 NL / min for new input and 3 NLZ min for recycle.
  • the amount of the catalyst and crude CNT recovered in the CNT recovery tank was 19.6 g / min.
  • the CNT content in the crude CNT was 4.7 g / min.
  • the CNT yield was improved by 0.7 g / min compared to the case without recycling, and the amount of argon input was reduced by 50%.
  • the present invention is a method capable of continuously and stably producing fine carbon fibers at a high yield at a low cost, and is suitable for producing high-quality carbon nanotubes and the like.

Abstract

A method for producing a fine carbon fiber involving chemically pyrolyzing at least one organic compound having a VIB Group element of the Periodic Table in the molecule thereof in the presence of ultra-fine particles comprising at least one transition metal as a catalyst, wherein a gas from a reaction furnace is separated from a fine carbon fiber, the separated gas is again subjected to the recovery of the fine carbon fiber, a part or the whole of the resultant gas is cooled to remove condensing components present in the reaction gas, and then, the gas freed of condensing components is recycled to the reaction furnace, and the condensing components are freed of water and the like and the resultant unreacted law material organic compound is recycled to the reaction furnace.

Description

明 細 書 微細炭素繊維の製造方法 技術分野  Description Manufacturing method of fine carbon fiber
本発明は、 気相法炭素繊維や力一ボンナノチューブ等の微細炭素繊維の製造方 法に係り、 特に、 微細炭素繊維を低コストで連続的に安定して製造する技術に関 するものである。 背景技術  The present invention relates to a method for producing fine carbon fibers such as vapor-grown carbon fibers and carbon nanotubes, and more particularly, to a technique for continuously and stably producing fine carbon fibers at low cost. . Background art
微細炭素繊維の中で最も注目されているのは、 力一ボンナノチューブある。 力 一ボンナノチューブは、 古くから研究されてきた気相法炭素繊維 (V G C F) の 一種で、 繊維の太さによって種々の呼称がある。 一般的に繊維径が 1 以上の ものを気相法炭素繊維 (V G C F) 、 繊維径 5 0 nm以下のものをカーボンナノ チューブ (C N T) 、 そして、 両者の中間にある 5 0 n mより繊維径が大きく、 1 mより細いものをカーボンナノファイバ (C N F) と呼ばれる。  The most notable among the fine carbon fibers are carbon nanotubes. Carbon nanotubes are a type of vapor-grown carbon fiber (VGCF) that has been studied for a long time, and have various names depending on the thickness of the fiber. In general, those with a fiber diameter of 1 or more are vapor-grown carbon fiber (VGCF), those with a fiber diameter of 50 nm or less are carbon nanotubes (CNT), and those with a fiber diameter of 50 nm between them. Larger and smaller than 1 m are called carbon nanofibers (CNF).
これらの微細炭素材料の結晶構造は多様な形態をとり、 カーボンで構成される グラフエンシート 1層が円筒状に丸まつた形状のシングルカ一ボンナノチューブ ( S WNT) や、 幾層ものグラフエンシー卜が積層し、 同心円状の積層構造 (又 は、 年輪状の構造) を有するものを多層カーボンナノチューブ (MWN T) 、 さ らには、 前記両者の中間的な結晶構造、 すなわち結晶面がその中心軸に対して一 定の角度を成して広がりを有するコーン状の結晶構造を有するナノコーンなどが ある。  The crystal structure of these fine carbon materials takes a variety of forms, including single-walled carbon nanotubes (SWNTs), each of which is made up of a single layer of graphene sheet made of carbon, and multiple layers of graphene. Sheets are laminated and have a concentric laminated structure (or an annual ring-shaped structure) as a multi-walled carbon nanotube (MWNT), and further, a crystal structure intermediate between the two, that is, a crystal plane is formed. There is a nano-cone having a cone-shaped crystal structure that spreads at a certain angle with respect to its central axis.
また、 チューブ状以外の形状の微細炭素材料としては、 グラフエンシートが繊 維方向に対して直交するように積層された構造のリボン状微細炭素材料や、 結晶 性を示さないアモルファス構造のコイル状微細炭素材料などが挙げられる。 これらの VGCF、 CNF、 CNTは、 いずれも微細炭素繊維であることから 、 その生成は炭化水素、 COなどを遷移金属等の触媒を用いる化学熱分解法によ り、 気相から炭素を結晶化させるものが従来一般的である。 Examples of the fine carbon material having a shape other than the tube shape include a ribbon-like fine carbon material having a structure in which graph ensheets are laminated so as to be orthogonal to the fiber direction, and a coil-like material having an amorphous structure which does not exhibit crystallinity. Fine carbon materials and the like. Since VGCF, CNF, and CNT are all fine carbon fibers, they are produced by crystallizing carbon from the gas phase by chemical pyrolysis of hydrocarbons, CO, etc. using a catalyst such as a transition metal. Conventionally, it is general.
本分野の研究の端緒は、 1970年代の気相法炭素繊維の研究である。 初期の VGCFの開発は繊維径も太く、 その製造は触媒を基板上に置いたり、 また担体 に担持して反応させる固定層法 (C a t a 1 y t i c Chemi c a l Va po r D e p o s i t i on : CCVD法) が中心であった。 ところが、 比較 的繊維径の太い V G C Fの作製を目的とした初期の固定層法では、 繊維の成長速 度が遅く、 また反応収率が低いこともあって、 工業的に実用化し難いものであつ た。 しかしながら、 径 5 Onm以下の極めて細い繊維の生成ができる点に着目し て、 1990年代になって米国ハイペリオンカタリストインタ一ナショナル社で 工業化された。  The starting point of the research in this field was the study of vapor grown carbon fiber in the 1970s. In the early development of VGCF, the fiber diameter was large, and its production was carried out using a fixed-bed method in which the catalyst was placed on a substrate or supported on a carrier and reacted (Cata 1 ytic Chemical Vapor Deposition: CCVD method). Was central. However, in the early fixed-bed method for the production of VGCF with a relatively large fiber diameter, the growth rate of the fiber was slow and the reaction yield was low, making it difficult to commercialize it industrially. Was. However, it was commercialized in the 1990s by Hyperion Catalyst International in the United States, focusing on the fact that extremely fine fibers with a diameter of 5 Onm or less could be produced.
一方、 1980年代に入り、 担体を使用せず、 触媒を流動させて反応させる C VD (Chemi c a l Vapo r D e p o s i t i o n) 法が開発され、 収率が著しく向上し、 1990年代になって径 100 nmレベルの CNFの工業 化に成功した (昭和電工、 日機装) 。  On the other hand, in the 1980s, the CVD (Chemical Vapor Deposition) method was developed, in which the catalyst was flowed without using a carrier and the catalyst was allowed to react.The yield was significantly improved, and the diameter was 100 nm in the 1990s. Successful industrialization of high-level CNF (Showa Denko, Nikkiso).
最も繊維径の細い力一ボンナノチューブも、 アーク法で比較的容易に生成でき ることが報告 (Na t u r e, 1991 (354) , 56〜58) されて以来、 より細い繊維径の炭素繊維を開発しょうとする動きが活発なのものとなった。 そ して、 50 nm以下、 特に 10 nm以下の細い繊維径の単層カーボンナノチュー ブゃ、 多層カーボンナノチューブの製造方法の開発は、 アーク法やレーザ法のよ うに極めて高温で炭素を蒸発させて製造する方法と、 従来のセラミック担体に触 媒を担持させた固定層上にカーボンナノチューブを形成する CCVD法とが中心 として行われるようになった。  Since carbon nanotubes with the smallest fiber diameter have been reported to be relatively easy to produce by the arc method (Nature, 1991 (354), 56-58), carbon fibers with smaller fiber diameters have been developed. The movement to try was brisk. Development of methods for producing single-walled carbon nanotubes and multi-walled carbon nanotubes with a fine fiber diameter of 50 nm or less, especially 10 nm or less, has been carried out by evaporating carbon at extremely high temperatures such as the arc method and laser method. The main focus has been on a method of producing carbon nanotubes and a conventional CCVD method of forming carbon nanotubes on a fixed layer in which a catalyst is supported on a ceramic carrier.
ところで、 カーボンナノチューブは画像表示装置や半導体製造装置に用いられ る電子線源や複合材のフイラー材として用いることができるが、 その場合、 良好 な結晶性を有し、 真直であること、 また繊維径が細く、 かつ均一であることが好 ましい。 カーボンナノチューブが真直でなく、 力一ルしている場合には、 この炭 素繊維どうしが絡みやすくなり、 フロック状になりやすくなる。 フロック状にな ると、 粉碎しにくく、 使用時に炭素繊推を配列させ難くなる。 また、 フイラー材 として樹脂等に添加する場合にも、 均一に分散し難くなるので、 所望の特性の複 合材を得にくくなる。 By the way, carbon nanotubes can be used as electron beam sources used in image display devices and semiconductor manufacturing devices and as filler materials for composite materials. It is preferable that the fibers have high crystallinity and are straight, and that the fiber diameter is small and uniform. If the carbon nanotubes are not straight and are forced, the carbon fibers are likely to be entangled with each other and easily become flocked. When it becomes a floc, it is difficult to grind and it is difficult to arrange carbon fibers when used. In addition, even when added to a resin or the like as a filler material, it is difficult to uniformly disperse, and it is difficult to obtain a composite material having desired characteristics.
上記のような特性を備えた力一ボンナノチューブを製造するために、 アーク法 やレーザ法、 あるいは CVD法を適用する場合には、 以下のような問題点があつ た。  When the arc method, the laser method, or the CVD method is applied to manufacture carbon nanotubes having the above characteristics, there are the following problems.
まず、 アーク法やレーザ法については、 第 1に製造装置を大規模化し難いため に生産性が低く、 また製造工程の連続化も困難である。 第 2に、 現状のアーク法 では、 非繊維性の力一ボンが同時に生成し易いために、 生成効率が低く、 さらに はカーボンナノチューブと非繊維性のカーボンとの分離回収も困難である。 従つ て、 アーク法やレーザ法を用いて工業製品に適した高品質のカーボンナノチュ一 ブを生産することは難しい。  First, the arc method and the laser method have a low productivity because it is difficult to scale up the manufacturing equipment, and it is also difficult to make the manufacturing process continuous. Second, in the current arc method, non-fibrous carbon is easily generated at the same time, so the production efficiency is low, and it is also difficult to separate and collect carbon nanotubes and non-fibrous carbon. Therefore, it is difficult to produce high quality carbon nanotubes suitable for industrial products using the arc method or the laser method.
一方、 CVD法は、 大量生産の方法としては最も好ましい方法であるが、 CV D法による製造では繊推径を細くするのが困難であり、 また繊維径が不揃いにな りやすい。 さらに、 製造条件により繊維径を細くすることができても、 カールし た力一ボンナノチューブが生成され易いという問題があった。  On the other hand, the CVD method is the most preferable method for mass production, but it is difficult to reduce the fiber diameter by the CVD method, and the fiber diameter tends to be uneven. Furthermore, even if the fiber diameter can be reduced according to the manufacturing conditions, there is a problem that curled carbon nanotubes are easily generated.
そこで、 触媒を担持させた固定層を用いて細い繊維径のカーボンナノチューブ を製造する CCVD法が注目されている。 この CCVD法によるカーボンナノチ ユーブの製造は、 前記 V G C Fの開発初期に検討されてきた C C VD法とほぼ同 等であるが、 担体としてゼォライトなどの細かい孔 (ポア) を有する多孔質のも のを用いる点で異なっている。 このような特殊な担体を用いることで、 このポア を利用して微細な触媒粒子を作製することができ、 極めて細かい力一ボンナノチ ユーブを製造できるようになった。 (K i ng s uk Muk op adhya y , Ak i r a Ko s h i no, To s h i k i Suga i, Nobuo T a n a k a, H i s a n o r i S i noha r a, Z o 1 t an K o n y a, B. N a g y ; C h e m i c a 1 Phys i c s Le t t e r s 3 03 (1997) 117) Therefore, the CCVD method, which uses a fixed layer carrying a catalyst to produce carbon nanotubes with a small fiber diameter, has attracted attention. The production of carbon nanotubes by the CCVD method is almost the same as the CC VD method studied in the early stage of the development of the VGCF, except that a porous material having fine pores such as zeolite as a carrier is used. It differs in that it is used. By using such a special support, fine catalyst particles can be produced using these pores, and it has become possible to produce extremely fine carbon nanotubes. (Kings uk Muk op adhya y, Ak ira Ko shi no, To shiki Suga i, Nobuo Tanaka, Hisanori S i noha ra, Zo 1 t an Konya, B. Nagy; Chemica 1 Physics Le tters 3 03 (1997) 117 )
図 5は、 従来のバッチ式の CCVD法による微細炭素繊維を製造するための製 造プロセスの模式構成図である。 この図に示す製造装置 200は、 横向きに配置 された円筒状の反応炉 201と、 この反応炉 201を外側から加熱するために反 応炉 201の外周を取り囲んで配設されたヒータ 202と、 反応炉 201の図示 右端部側に接続された原料ガス供給部 203及びキャリアガス供給部 204、 反 応炉 201の図示左端部側に接続された担持触媒供給部 205とを備えている。 また、 この担持触媒供給部 205から反応炉に導入され、 反応に供された担持触 媒をこの担持触媒上に生成された微細炭素繊維とともに回収するための第 1炭素 繊維回収部 206が反応炉 201の右端部側に接続されており、 反応炉 201力、 ら反応後ガスを導出し、 この反応後ガスを微細炭素繊維と排ガスに分離するため のバグフィルタ 208が、 反応炉 201の左端部側に接続されている。  FIG. 5 is a schematic configuration diagram of a production process for producing fine carbon fibers by a conventional batch-type CCVD method. The manufacturing apparatus 200 shown in this figure includes a cylindrical reactor 201 arranged horizontally, a heater 202 disposed around the outer periphery of the reactor 201 to heat the reactor 201 from outside, and The reactor 201 includes a source gas supply unit 203 and a carrier gas supply unit 204 connected to the right end of the reactor 201 in the figure, and a supported catalyst supply unit 205 connected to the left end of the reactor 201 in the figure. A first carbon fiber recovery section 206 for recovering the supported catalyst introduced into the reaction furnace from the supported catalyst supply section 205 and subjected to the reaction together with the fine carbon fibers generated on the supported catalyst is provided in the reaction furnace. A bag filter 208 is connected to the right end of the reactor 201 to derive the post-reaction gas from the reactor 201 and separate the post-reaction gas into fine carbon fibers and exhaust gas. Connected to the side.
バグフィル夕 208には、 ガス排出部 208 aと、 固体排出部 208 bとが設 けられている。 そして、 前記ガス排出部 208 aに排ガス処理装置 210が接続 され、 前記固体排出部 208 bに第 2炭素繊維回収部 209が接続されており、 それぞれバグフィルタ 208により分離された排ガスが排ガス処理装置 210へ 排出され、 固体である微細炭素繊維が第 2炭素繊維回収部 20 9へ回収されるよ うになつている。  The bagfill 208 has a gas discharge section 208a and a solid discharge section 208b. An exhaust gas treatment device 210 is connected to the gas discharge portion 208a, and a second carbon fiber recovery portion 209 is connected to the solid discharge portion 208b. The fine carbon fibers which are discharged to 210 and are solid are collected by the second carbon fiber collecting section 209.
図 5に示す微細炭素繊維の製造装置においては、 触媒を担持したゼォライトな どの担持触媒を担持触媒供給部 205から、 原料ガスとキャリアガスが投入され た反応炉 201へ導入し、 化学熱分解反応によりこの担持触媒上に微細炭素繊維 を成長させるようになつている。 そして、 表面に微細炭素繊維を保持している担 持触媒を、 第 1炭素繊維回収部 206へ回収するようになっている。 また、 反応 に供された後の反応後ガスは、 反応炉 2 0 1からバグフィルタ 2 0 8へ排出され 、 このバグフィルタ 2 0 8により微細炭素繊維と、 排ガスとに分離される。 そし て、 バグフィルタ 2 0 8により分離された微細炭素繊維は炭素繊維回収部 2 0 9 へ回収され、 排ガスは排ガス処理装置 2 1 0へと送られる。 このようにして、 図 5に示す製造装置を用いた C C VD法により微細炭素繊維を製造することができ る。 In the fine carbon fiber manufacturing apparatus shown in Fig. 5, a supported catalyst such as zeolite supporting a catalyst is introduced from a supported catalyst supply unit 205 into a reaction furnace 201 into which a raw material gas and a carrier gas have been charged, and a chemical thermal decomposition reaction is performed. Thus, fine carbon fibers are grown on the supported catalyst. Then, the supported catalyst holding the fine carbon fibers on the surface is recovered to the first carbon fiber recovery unit 206. Also, the reaction After the reaction, the post-reaction gas is discharged from the reactor 201 to the bag filter 208, and separated into fine carbon fibers and exhaust gas by the bag filter 208. Then, the fine carbon fibers separated by the bag filter 208 are collected in the carbon fiber collection unit 209, and the exhaust gas is sent to the exhaust gas treatment device 210. In this way, fine carbon fibers can be produced by the CC VD method using the production apparatus shown in FIG.
ところで、 上記の C C VDや C VD法により気相法炭素繊維やカーボンナノチ ュ一ブを製造する際には、 大量のキャリアガス (水素や不活性ガスなど) を反応 炉に投入する必要があることから、 製造コストが高くなる大きな要因となってい る。  By the way, when producing vapor-grown carbon fibers or carbon nanotubes by the CC VD or C VD method described above, it is necessary to put a large amount of carrier gas (hydrogen, inert gas, etc.) into the reactor. Therefore, this is a major factor in increasing manufacturing costs.
また、 上記の C C VD法や C VD法による製造では、 反応に供された後のガス 中に未反応の原料ガスや、 副生成物の低沸成分や高沸成分が含まれているので、 環境汚染を防止するためには、 そのままでは外部に放出することができない。 従 つて、 このガスを外部に放出するためには、 例えば、 燃焼処理や吸着処理等の排 ガス処理が必要となる。 C C VD法や C VD法による製造では、 上記のように大 量のキャリアガスが使用されるので、 排ガス自体の量が多くなり、 排ガス処理の コストが増加する。 '  In addition, in the above-mentioned production by the CC VD method or the C VD method, the unreacted raw material gas and low- and high-boiling components of by-products are contained in the gas after being subjected to the reaction. To prevent environmental pollution, it cannot be released to the outside as it is. Therefore, in order to release this gas to the outside, for example, exhaust gas treatment such as combustion treatment or adsorption treatment is required. In the CCVD or CVD production, a large amount of carrier gas is used as described above, so that the amount of exhaust gas itself increases and the cost of exhaust gas treatment increases. '
さらに、 炭素繊維を生成する反応を促進する目的で、 硫化水素ゃチォフェンな どの硫ィヒ物が添加されることもある。 この場合には、 硫黄化合物が反応後の排ガ スに含まれるため、 これも取り除く必要があるが、 上記のように排ガス量自体が 多いために、 処理コストが極めて大きくなる。  In addition, sulfuric acid, such as hydrogen sulfide and thiophene, may be added to accelerate the reaction to produce carbon fibers. In this case, the sulfur compound is contained in the exhaust gas after the reaction, so it is necessary to remove the sulfur compound. However, as described above, the treatment cost becomes extremely large due to the large amount of the exhaust gas itself.
以上のように、 (:(:¥0法ゃ( ¥0法にぉぃては、 そのガス使用量と、 排ガス 量の多さから、 製造コストが高くならざるを得ず、 微細炭素繊維を量産する際の 大きな問題となっていた。  As mentioned above, (:(: ¥ 0 method (In the case of the ¥ 0 method, the production cost must be increased due to the amount of gas used and the large amount of exhaust gas. This was a major problem in mass production.
本発明は、 任意の繊維径、 特に細い繊維径を有する気相法炭素繊維やカーボン ナノチューブなどの微細炭素繊維を、 安定にしかも低コストで、 連続的に製造す ることができる微細炭素繊維の製造方法の提供を目的とする。 発明の開示 The present invention is intended to continuously and stably produce fine carbon fibers such as vapor-grown carbon fibers and carbon nanotubes having an arbitrary fiber diameter, particularly a fine fiber diameter, at a low cost. It is an object of the present invention to provide a method for producing fine carbon fibers that can be used. Disclosure of the invention
本発明者は、 上記課題を解決するため、 鋭意研究を重ねた結果、 遷移金属から なる超微粒子を触媒として用いて、 C Oや有機化合物の化学熱分解法 (C VD法 及び C C VD法) によって微細炭素繊維を製造する方法において、 原料として、 分子中に元素の周期律表の第 VI B族元素を含有する有機化合物を少なくとも 1 種使用することで高品質で、 繊維径の極めて細い微細炭素繊維ができ、 また、 こ のような有機化合物を原料とすると、 反応後ガスから反応副生物や未分解原料を 容易に分離、 回収でき、 反応後ガスを反応炉にリサイクルすることによりキヤリ ァガス及び排ガスの量を低減することができることを見出した。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, using ultra-fine particles composed of transition metal as a catalyst, a chemical pyrolysis method of CO and organic compounds (C VD method and CC VD method). In the process for producing fine carbon fibers, high-quality fine carbon fibers with extremely small fiber diameters are obtained by using at least one organic compound containing a Group VIB element of the periodic table of elements in the molecule as a raw material. Fibers are produced, and when such an organic compound is used as a raw material, reaction by-products and undecomposed raw materials can be easily separated and recovered from the gas after the reaction, and the carrier gas and the carrier gas can be recycled by recycling the gas after the reaction to the reaction furnace. It has been found that the amount of exhaust gas can be reduced.
本発明の微細炭素繊維の製造方法は、 反応炉へ有機化合物からなる原料ガスと 、 水素及び Z又は不活性ガスからなるキャリアガスと、 少なくとも 1種の遷移金 属を含む超微粒子の触媒を導入し、 前記反応炉内で化学熱分解反応によって微細 炭素繊維を生成する微細炭素繊維の製造であって、 原料有機化合物として分子中 に元素の周期律表第 Ή Β族元素を含む有機化合物を用い、 2 X 1 0 5 P a以下の 圧力で反応を行う。 微細炭素繊維の生成に使用された反応後ガスから微細炭素繊 維を回収した後、 さらに反応後ガスを冷却し、 別のより分離能力の高い分離回収 装置で微細炭素繊維を回収する。 その後、 該反応後ガス、 好ましくは反応後ガス から副生成物や未分解ガスを除いたガスの少なくとも一部を、 前記反応炉に接続 されたリサイクル手段により反応炉へ再導入して使用する。 In the method for producing fine carbon fibers of the present invention, a raw material gas composed of an organic compound, a carrier gas composed of hydrogen and Z or an inert gas, and an ultrafine catalyst containing at least one transition metal are introduced into a reaction furnace. And producing fine carbon fibers by a chemical pyrolysis reaction in the reaction furnace, wherein an organic compound containing a Group III element of the Periodic Table of Elements in the molecule is used as a raw material organic compound. , the reaction is carried out in 2 X 1 0 5 P a pressure below. After recovering the fine carbon fiber from the post-reaction gas used to produce the fine carbon fiber, the post-reaction gas is further cooled, and the fine carbon fiber is recovered by another separation and recovery device with higher separation capacity. Thereafter, at least a part of the post-reaction gas, preferably a gas obtained by removing by-products and undecomposed gas from the post-reaction gas, is re-introduced into the reaction furnace by a recycle means connected to the reaction furnace and used.
反応炉中で生成されるのは、 微細炭素繊維のみならず、 分解反応による低沸点 成分や高沸点成分、 水素ガスなどが副生成物として生成し、 反応炉を出るガスに 未分解の原料ガス、 キャリアガスと共に含まれている。 そして、 これらの副生成 物が製造装置の内面に付着すると、 製造装置を構成する配管、 機器を閉塞する惧 れがある。 本発明では、 原料として分子中に周期律表第 VI B族元素を含む有機化合物を 使用する。 第 VI B族元素としては、 酸素、 硫黄が好ましく、 特に酸素が好まし い。 例えば、 酸素を含む化合物を使用した場合、 副生成物として水、 C O、 C O 2、 水素などが発生する。 In the reactor, not only fine carbon fibers but also low-boiling components and high-boiling components due to the decomposition reaction, hydrogen gas, etc. are generated as by-products, and undecomposed raw material gas is generated as gas leaving the reactor. Included with the carrier gas. When these by-products adhere to the inner surface of the manufacturing apparatus, there is a concern that the piping and equipment constituting the manufacturing apparatus may be blocked. In the present invention, an organic compound containing a Group VIB element in the periodic table in the molecule is used as a raw material. As the Group VIB element, oxygen and sulfur are preferable, and oxygen is particularly preferable. For example, when a compound containing oxygen is used, water, CO, CO 2 , and hydrogen are generated as by-products.
本発明で使用する分子中に第 VI B族元素を含む有機化合物としては、 酸素を 含む化合物にはアルコール類、 ケトン類、 フエノール類、 エーテル類、 アルデヒ ド類、 有機酸類及びエステル類が挙げられる。  Examples of the organic compound containing a Group VIB element in a molecule used in the present invention include, as compounds containing oxygen, alcohols, ketones, phenols, ethers, aldehydes, organic acids, and esters. .
具体的には、 例えば、 メタノール、 エタノール、 プロパノール、 シクロへキサ ノール、 アセトン、 メチルェチルケトン、 ァセ卜フエノン、 シクロへキサノン、 フエノール、 クレゾール、 ホルムアルデヒド、 ァセトアルデヒド、 ギ酸、 酢酸、 プロピオン酸、 シユウ酸、 コハク酸、 アジピン酸、 ジメチルェ一テル、 ジェチル エーテル、 ジォキサン、 酢酸メチル、 酢酸ェチル等が挙げられる。  Specifically, for example, methanol, ethanol, propanol, cyclohexanol, acetone, methyl ethyl ketone, acetate phenone, cyclohexanone, phenol, cresol, formaldehyde, acetaldehyde, formic acid, acetic acid, propionic acid Oxalic acid, succinic acid, adipic acid, dimethyl ether, dimethyl ether, dioxane, methyl acetate, ethyl acetate and the like.
また、 硫黄化合物としては、 チオール、 チォエーテル、 チォフェン類が挙げら れ、 特にチォフェンが好ましく使用できる。  Examples of the sulfur compound include thiols, thioethers, and thiophenes, and thiophene is particularly preferably used.
これらの原料有機化合物は、 ガス状でも液体、 溶液あるいは固体を噴霧するこ とによつて反応炉に供給することができる。  These starting organic compounds can be supplied to a reaction furnace by spraying a liquid, a solution or a solid even in a gaseous state.
これらの化合物は 1種又は 2種以上混合して使用することができる。  These compounds can be used alone or in combination of two or more.
本発明の微細炭素繊維の製造は、 C VD法、 C C VD法により微細炭素繊維を 製造するものであって、 触媒としては遷移金属からなる超微粒子を用いる。 遷移金属としては、 例えば、 鉄、 コノルト、 ニッケル、 イットリウム、 チタン In the production of the fine carbon fiber of the present invention, a fine carbon fiber is produced by a CVD method or a CCVD method, and ultrafine particles made of a transition metal are used as a catalyst. Transition metals include, for example, iron, connort, nickel, yttrium, titanium
、 バナジウム、 マンガン、 クロム、 銅、 ニオブ、 モリブデン、 パラジウム、 タン ダステン、 白金等が挙げられ、 単体の金属のほか、 これらの化合物も触媒として 用いることができる。 さらに、 これらは単独でも、 これらから選ばれた 2種以上 を組み合わせて用いてもよい。 組合せによっては、 より大きな触媒効果が得られ る。 , Vanadium, manganese, chromium, copper, niobium, molybdenum, palladium, tungsten, platinum, and the like. In addition to a single metal, these compounds can also be used as a catalyst. Further, these may be used alone or in combination of two or more selected from them. Depending on the combination, a greater catalytic effect can be obtained.
化合物の形態としては、 有機化合物、 無機化合物、 あるいはこれらを組み合わ せたものを使用することができる。 例えば、 有機化合物としては、 フエ口セン、 ニッケルセン、 コバルトセン等を用いることができる。 また、 無機化合物として は、 酸化物、 硝酸塩、 硫酸塩、 塩化物等のいずれの形態であってもよい。 The form of the compound may be an organic compound, an inorganic compound, or a combination thereof. Can be used. For example, as the organic compound, Hua-Sen, nickel sen, cobalt sen and the like can be used. The inorganic compound may be in any form such as an oxide, a nitrate, a sulfate, and a chloride.
さらに繊維化の効率を上げるために、 原料及び触媒を反応炉に投入する際に、 硫黄、 H2 S、 C S 2、 S 02、 チォフェン等の硫黄化合物を添加してもよい。 こ のような化合物を使用する時は、 原料有機化合物が分子中に第 VI B族元素を含 まない炭化水素のような有機化合物でも同様な効果が得られる。 To further increase the efficiency of the fiberizing, when introducing the feedstock and catalyst in reactor, sulfur, H 2 S, CS 2, S 0 2, it may be added to the sulfur compound such Chiofen. When such a compound is used, the same effect can be obtained even when the starting organic compound is an organic compound such as a hydrocarbon containing no Group VIB element in the molecule.
触媒は、 上記金属または化合物微粒子そのままでもよいが (C VD法) 、 上記 の金属又は化合物を微粒子の無機担体に担持させてもよい (C C VD法) 。 無機 担体としては、 例えばアルミナ、 ゼォライト、 炭素、 マグネシァおよびカルシァ 等が使用できる。  The catalyst may be the metal or compound fine particles as they are (CVD method), or the metal or compound may be supported on the inorganic carrier of the fine particles (CCVD method). As the inorganic carrier, for example, alumina, zeolite, carbon, magnesium, calcium and the like can be used.
触媒の導入方法としては、 単独でガス化する方法、 炭素原料と混合してからガ ス化する方法、 キヤリァガスで希釈する方法及び炭素原料に溶解して液状で投入 する方法等、 いずれの方法でもよい。  As a method for introducing the catalyst, any method such as a method of gasifying alone, a method of mixing with a carbon raw material and then gasifying, a method of diluting with a carrier gas, and a method of dissolving in a carbon raw material and charging it in a liquid state are used. Good.
本発明では、 遷移金属からなる触媒を用い、 第 VI B族元素を分子中に含有す る有機化合物を原料とすることで結晶性を持たない炭素と VI B族元素とが反応 に与かり、 純度の高い、 しかも繊維径が 1 O n m以下という極めて細い軸性キラ ル構造をもつ単層及び多層力一ボンナノチューブを得ることができるのである。 本発明の微細炭素繊維の製造方法によれば、 微細炭素繊維の生成に用いた反応 後ガスをリサイクル手段により反応炉へ再度導入することで、 従来排ガスとして 全て外部へ排出されていた反応後ガスを有効に利用することができる。 これによ りキヤリァガスの使用量を低減することができるとともに、 排ガス量も低減でき るので、 キャリアガスのコストと、 排ガス処理のコストのいずれも低減すること ができる。 従って、 従来に比して微細炭素繊維の製造に係るコストを低減するこ とが可能である。 特に、 1 0 nm以下というような細い繊維径のカーボンナノチ ユーブを製造するには、 反応炉中の原料ガスの濃度を薄く保つ必要がある。 すな わち、 キャリアガスの量を多くして原料の濃度を薄くする。 その点において、 反 応後ガスをリサイクルすることは有効である。 In the present invention, using a catalyst composed of a transition metal and using an organic compound containing a Group VIB element in a molecule as a raw material, carbon having no crystallinity and a Group VIB element participate in the reaction, It is possible to obtain single-wall and multi-walled carbon nanotubes having high purity and an extremely thin axial chiral structure with a fiber diameter of 1 O nm or less. According to the method for producing fine carbon fibers of the present invention, the post-reaction gas used for producing the fine carbon fibers is re-introduced into the reaction furnace by the recycling means, so that the post-reaction gas, which has been conventionally exhausted as exhaust gas, is discharged to the outside. Can be used effectively. As a result, the amount of carrier gas used can be reduced and the amount of exhaust gas can also be reduced, so that both the cost of carrier gas and the cost of exhaust gas treatment can be reduced. Therefore, it is possible to reduce the cost related to the production of fine carbon fibers as compared with the related art. In particular, in order to produce carbon nanotubes having a fiber diameter as small as 10 nm or less, it is necessary to keep the concentration of the raw material gas in the reactor low. sand That is, the concentration of the raw material is reduced by increasing the amount of the carrier gas. In that respect, it is effective to recycle gas after the reaction.
本発明の微細炭素繊維の製造は、 第 VI B族元素含有有機化合物を原料とし、 遷移金属からなる超微粒子を触媒として用い、 化学熱分解法によって微細炭素繊 維を製造する方法であって、 内部で化学熱分解反応を進行させて微細炭素繊維を 生成するための反応炉と、 該反応炉内へ原料ガスを供給するための原料ガス供給 部と、 反応炉内へキャリアガスを供給するためのキャリアガス供給部と、 反応炉 内部で生成された微細炭素繊維を反応後ガスから分離、 回収するための炭素繊維 分離装置と、 反応後ガスを冷却し、 再度反応炉に導入するためのリサイクル手段 と、 好ましくは該反応後ガス中の凝縮成分を凝縮分離する装置とを備えたプロセ スにより行われる。  The production of the fine carbon fiber of the present invention is a method of producing a fine carbon fiber by a chemical pyrolysis method using an organic compound containing a Group VIB element as a raw material and using ultrafine particles composed of a transition metal as a catalyst. A reaction furnace for generating a fine carbon fiber by advancing a chemical pyrolysis reaction therein; a raw material gas supply section for supplying a raw material gas into the reaction furnace; and a supply gas for supplying a carrier gas into the reaction furnace. Carrier gas supply unit, carbon fiber separation device for separating and recovering the fine carbon fibers generated inside the reactor from the gas after the reaction, and recycling for cooling the gas after the reaction and introducing it into the reactor again It is carried out by a process comprising means and preferably a device for condensing and separating condensed components in the gas after the reaction.
本発明の微細炭素繊維の製造においては、 前記分離装置と、 炭素繊維回収装置 が接続されており、 分離装置により反応後ガスから分離された微細炭素繊維を、 微細炭素繊維回収装置へ回収するとともに、 該分離装置を出たあとの反応後ガス を冷却した後、.冷却ガスを別の分離装置に通して、 さらに微細炭素繊維を回収す る。 微細炭素繊維回収装置を出たガスは、 そのまま排ガス処理後排出することも できるが、 本発明の方法では微細炭素繊維を回収した後のガスを前記リサイクル 手段により反応炉へリサイクルする。 その際、 該ガスをさらに冷却してガス中に ある反応によって生成した水などの凝縮成分や未反応原料などを凝縮させた後、 それを分離し、 反応炉へ導入する。 一方、 分離した凝縮物は排液処理したあと排 出する。 また、 凝縮物から未反応原料を分離し、 原料としてリサイクルすること もできる。  In the production of the fine carbon fiber of the present invention, the separation device is connected to a carbon fiber recovery device, and the fine carbon fiber separated from the gas after the reaction by the separation device is recovered to the fine carbon fiber recovery device. After cooling the post-reaction gas after leaving the separation device, the cooling gas is passed through another separation device to further collect fine carbon fibers. The gas that has exited the fine carbon fiber recovery apparatus can be discharged as it is after exhaust gas treatment. However, in the method of the present invention, the gas from which the fine carbon fiber has been recovered is recycled to the reaction furnace by the recycling means. At that time, the gas is further cooled to condense condensed components such as water generated by the reaction in the gas and unreacted raw materials, and then separated and introduced into a reaction furnace. On the other hand, the separated condensate is discharged after drainage treatment. In addition, unreacted raw materials can be separated from condensate and recycled as raw materials.
さらに、 分離回収装置から得た製品となる微細炭素繊維にも未反応原料化合物、 生成した水、 高沸点の副生物などが付着していることもあるので、 製品を一旦加 熱してこれらを気化させ、 より高純度の製品とし、 気化成分から原料化合物を分 離し、 原料としてリサイクルすることもできる。 上記凝縮物や気化成分から原料化合物を分離するには、 蒸留、 PJ:着及び膜分離 の 1つ又は 2つ以上を組み合わせた方法によることができる。 Furthermore, unreacted raw material compounds, generated water, and high-boiling by-products may also adhere to the fine carbon fiber that is the product obtained from the separation and recovery device, so the product is once heated and vaporized. As a result, it is possible to separate the raw material compounds from the vaporized components and recycle them as raw materials. In order to separate the raw material compound from the condensate or vaporized component, a method combining one or two or more of distillation, PJ: deposition, and membrane separation can be used.
このような構成とするならば、 反応後ガスから微細炭素繊維を分離した後、 冷 却した反応後ガスからも微細炭素繊維を回収することで、 原料の投入量に対する 微細炭素繊維の回収率をあげることができ、 回収率の低下による製造コストの増 加を防ぐことができる。  With such a configuration, the fine carbon fiber is separated from the post-reaction gas, and the fine carbon fiber is also recovered from the cooled post-reaction gas. It is possible to prevent an increase in production cost due to a decrease in recovery rate.
化学熱分解反応により生成される微細炭素繊維は、 極めて嵩密度が小さく、 軽 いために、 その全量または触媒から剥離したものが反応炉内に浮遊している。 従 つて、 反応炉から導出された反応後ガスにはこれらの微細炭素繊維や反応副生成 物が同伴してくる。 そして、 リサイクル使用されるガスに微細炭素繊維が混入し たまま、 反応炉に再導入されて反応に供されると、 この微細炭素繊維上にさらに 炭素が成長し、 繊維径が粗大になり (繊維径の幅が広くなり) 所望の繊維径が得 られなくなる惧れがある。 そこで、 本発明では前記分離手段を設けることで、 反 応後ガス中の微細炭素繊維を取り除き、 ガス成分のみが反応炉に再導入されるよ うにし、 繊維径が太くなるのを防ぐようにしている。 これによつて、 所望の繊維 径の微細炭素繊維を安定して製造することができる。  The fine carbon fibers produced by the chemical pyrolysis reaction have extremely low bulk density and are light, so that all or those separated from the catalyst float in the reactor. Therefore, these fine carbon fibers and reaction by-products accompany the post-reaction gas discharged from the reactor. Then, when the fine carbon fibers are mixed with the gas to be recycled and re-introduced into the reaction furnace and subjected to the reaction, the carbon further grows on the fine carbon fibers, and the fiber diameter becomes coarse ( There is a possibility that the desired fiber diameter may not be obtained. Therefore, in the present invention, by providing the separation means, the fine carbon fibers in the gas after the reaction are removed, so that only the gas components are re-introduced into the reaction furnace, and the fiber diameter is prevented from being increased. ing. Thus, fine carbon fibers having a desired fiber diameter can be stably manufactured.
また、 反応後ガスに含まれる微細炭素繊維などの固体や高沸点の反応副生成物 が、 反応炉ゃリサイクル手段の内部を循環されると、 これらを接続している管の 内部に付着して管を閉塞するおそれがあるが、 上記構成によれば、 微細炭素繊維 などの固体や凝縮物は分離装置により分離され、 反応炉に再導入されるガスには 固体や凝縮物が含まれない状態となるので、 このような不具合を未然に防止する ことができ、 安定した製造が可能となる。  In addition, when solids such as fine carbon fibers and high-boiling reaction by-products contained in the post-reaction gas are circulated inside the reactor and the recycling means, they adhere to the inside of the pipe connecting them. Although the pipe may be clogged, according to the above configuration, solids and condensates such as fine carbon fibers are separated by the separation device, and the gas re-introduced into the reactor does not contain solids or condensates Therefore, such problems can be prevented beforehand, and stable production can be achieved.
本発明の微細炭素繊維の製造方法では、 分離手段として、 気体から固体を効率 よく分離する機能を有するフィルタゃサイクロン、 あるいはこれらを組み合わせ たものが好適に用いられる。 これらのフィルタやサイクロンの選択は、 ガスの量 や温度などに応じて適宜最適なものを選択すればよい。 例えば、 反応後ガスの量が多い場合には、 分離手段に回収される微細炭素繊維 の量も多くなるので、 1箇所のフィル夕に対する負荷が大きくならないようにす る必要がある。 この場合には、 目の大きいフィル夕と、 目の細かいバグフィル夕 との組み合わせや、 サイクロンとバグフィルタの組み合わせとすればよい。 また、 反応炉から出たガスは、 反応炉の温度にもよるが、 概ね 6 0 0 °C以上の 高温となっている。 バグフィル夕を用いる場合には、 このような高温のガスを通 過させることはできないので、 反応後ガスの温度を下げた後に前記バグフィルタ による分離を行うのが好ましい。 具体的には、 反応炉または炭素繊維回収部から 分離装置に到るまでの経路中に、 水冷ジャケットなどの冷却手段を付設して反応 後ガスを冷却する。 そして、 この冷却により 4 0 °C以上、 1 5 0 °C以下 (好まし くは 1 0 0 °C以下) に冷却した後、 バグフィルタによる分離を行えばよい。 場合 によっては、 反応後ガス中に冷却されにくい固体生成物が混入している場合があ るのでフィルタには、 可能な限り高温に耐えるバグを用いるのがよい。 In the method for producing fine carbon fibers of the present invention, a filter / cyclone having a function of efficiently separating a solid from a gas, or a combination thereof is preferably used as a separating means. The selection of these filters and cyclones may be appropriately selected according to the amount of gas, the temperature, and the like. For example, if the amount of post-reaction gas is large, the amount of fine carbon fibers recovered by the separation means also increases, so it is necessary to prevent the load on one filter from increasing. In this case, a combination of a large-filled filter and a fine-filled bag filter or a combination of a cyclone and a bag filter may be used. Also, the gas discharged from the reactor has a high temperature of about 600 ° C or more, depending on the temperature of the reactor. When using a bag filter, it is not possible to pass such a high-temperature gas. Therefore, it is preferable to lower the temperature of the gas after the reaction and then perform the separation by the bag filter. Specifically, a cooling means such as a water cooling jacket is provided in the path from the reaction furnace or the carbon fiber recovery section to the separation device to cool the post-reaction gas. Then, after cooling to 40 ° C. or more and 150 ° C. or less (preferably 100 ° C. or less) by this cooling, separation by a bag filter may be performed. In some cases, it is advisable to use a filter that can withstand as high a temperature as possible, since a solid product that is difficult to cool may be mixed in the gas after the reaction.
本発明の微細炭素繊維の製造方法において、 微細炭素繊維を分離後のガスをさ らに冷却して、 未反応の原料有機化合物や生成した水などの凝縮物を回収し、 こ れを分離するための分離装置は蒸留、 吸着及び膜分離の少なくとも 1つ以上の方 法を組み合わせた装置によることができる。  In the method for producing fine carbon fibers of the present invention, the gas after separating the fine carbon fibers is further cooled to collect unreacted raw material organic compounds and condensates such as generated water and separate them. For the separation can be an apparatus combining at least one of distillation, adsorption and membrane separation.
次に、 本発明の微細炭素繊維の製造方法において、 反応後ガスをリサイクルす る場合、 反応炉に再導入されるガスの温度を 4 0 °C以上とすることが好ましい。 反応炉中で生成されるのは微細炭素繊維のみとは限らず、 反応炉から排出され る反応後ガスには、 未反応のハイドロカ一ボンや、 低沸点成分や高沸点成分の有 機化合物が副生成物として含まれている。 これらの有機化合物が、 製造装置の内 面に付着すると、 製造装置を構成する配管を閉塞するおそれがある。 安全に製造 を行うためには、 これらの配管の閉塞を防止する対策が必要である。 本発明者は 、 そのための製造条件について種々検討を重ねた結果、 少なくとも前記リサイク ル手段を通過して反応炉へ再導入されるガスの温度を 4 0 °C以上とすれば、 この ような有機化合物の析出をほぼ完全に防止することができ、 結果として配管の閉 塞を防止することができることを知見した。 すなわち、 製造装置全体で最もガス の温度が低温になるリサイクル手段を通過する際のガスの温度を 4 0 °C以上とす ることにより、 装置内の原料ガスや反応後ガス、 あるいはリサイクルされるガス 力、ら有機化合物が析出しないようにすることができる。 従って、 ガスの温度が最 も低温となる位置で、 ガスの温度が 4 0 °C未満となるような場合、 必要に応じて 被覆などの手段により保温または加熱し、 4 0 °C以上となるようにする。 Next, in the method for producing fine carbon fibers of the present invention, when recycling the gas after the reaction, the temperature of the gas re-introduced into the reaction furnace is preferably set to 40 ° C. or higher. Not only fine carbon fibers are produced in the reactor, but the post-reaction gas discharged from the reactor includes unreacted hydrocarbons and organic compounds with low and high boiling components. Included as a by-product. When these organic compounds adhere to the inner surface of the manufacturing apparatus, there is a possibility that the pipes constituting the manufacturing apparatus may be blocked. In order to manufacture safely, it is necessary to take measures to prevent these pipes from clogging. The present inventor has conducted various studies on the manufacturing conditions for the purpose, and as a result, if at least the temperature of the gas passed through the recycling means and re-introduced into the reactor is set to 40 ° C. or more, It has been found that the precipitation of such organic compounds can be almost completely prevented, and as a result, clogging of the piping can be prevented. In other words, by setting the gas temperature to 40 ° C or higher when passing through the recycling means where the temperature of the gas is the lowest in the entire manufacturing equipment, the raw material gas in the equipment, the post-reaction gas, or the recycled gas Gas power and organic compounds can be prevented from precipitating. Therefore, if the temperature of the gas is less than 40 ° C at the position where the temperature of the gas is the lowest, the temperature may be maintained at 40 ° C or more by keeping or heating by means such as coating as necessary. To do.
また、 前記リサイクル手段の内部を通過して前記反応炉に再導入されるガスの 温度は 6 0 °C以上とすることがより好ましい。 すなわち、 前記ガスの温度を 6 0C以上とするならば、 より効果的にガスからの有機化合物の析出を抑えることが できるので、 さらに安定した製造が可能である。  Further, it is more preferable that the temperature of the gas that passes through the inside of the recycling means and is re-introduced into the reaction furnace is 60 ° C. or higher. That is, if the temperature of the gas is set to 60 ° C. or higher, the precipitation of the organic compound from the gas can be more effectively suppressed, so that more stable production is possible.
前記反応ガスを反応炉に再導入する位置は、 直接反応炉に戻してもよいし、 原 料ガス及び Z又はキャリアガスと混合した後に反応炉に再導入してもよい。 後者 の場合、 例えば液体原料をガス化して使用する場合には、 原料ガスや混合された 反応後ガスが液化しないように、 予め反応後ガスを所定の温度に昇温しておくこ とが好ましい。  The position where the reaction gas is reintroduced into the reaction furnace may be directly returned to the reaction furnace, or may be reintroduced into the reaction furnace after being mixed with the raw material gas and Z or the carrier gas. In the latter case, for example, when a liquid raw material is gasified and used, it is preferable to raise the temperature of the reacted gas in advance to a predetermined temperature so that the raw material gas and the mixed gas after the reaction do not liquefy. .
次に、 本発明の微細炭素繊維の製造方法においては、 前記反応後ガスの 2 0 % 以上をリサイクル手段により反応炉へ再導入して使用することが好ましい。 この ような構成とすることで、 キャリアガスの使用量の低減と、 排ガス量の低減によ る顕著なコスト削減効果を得ることができる。 さらに望ましくは、 5 0 %以上と するのがよいが、 原料ガスに有機化合物を用いると、 化学熱分解反応により水素 が発生するので、 キヤリァガスとして導入した水素よりも反応炉を出るガスの水 素量が増えることになる。 従って、 ガス発生によって増加する分を排出する必要 がある。 すなわち、 リサイクル使用するために反応炉に再導入されるガス量は、 最大でも導入される反応炉内のキャリアガスと同量までとなる。  Next, in the method for producing fine carbon fibers of the present invention, it is preferable that 20% or more of the post-reaction gas is re-introduced into a reaction furnace by a recycling means and used. With such a configuration, a remarkable cost reduction effect can be obtained by reducing the amount of carrier gas used and the amount of exhaust gas. More desirably, the concentration is preferably 50% or more.However, when an organic compound is used as a raw material gas, hydrogen is generated by a chemical pyrolysis reaction, so that hydrogen in the gas exiting the reactor is less than hydrogen introduced as a carrier gas. The amount will increase. Therefore, it is necessary to discharge the increased amount due to gas generation. That is, the amount of gas re-introduced into the reactor for recycling is at most the same as the amount of carrier gas introduced into the reactor.
本発明の微細炭素繊維の製造方法においては、 前記リサイクル手段の内部を大 気圧に対して正圧とすることが好ましい。 In the method for producing fine carbon fibers of the present invention, Preferably, the pressure is positive with respect to the atmospheric pressure.
本発明の微細炭素繊維の製造方法において、 反応後ガスを循環させて再利用す る場合、 この反応後ガスは必ず水素ガスや原料有機化合物を含有する。 この水素 ガスや有機化合物に酸素が混入すると火災や大きな爆発を起こすおそれがある。 これを防ぐためには、 配管を含め装置の系内を負圧にせず、 正圧に保つことが必 要である。 特に、 装置内にガスを循環させるためのガス循環手段の吸引側が最も 負圧になりやすいので、 この部分が負圧にならないように対策することが好まし レ^  In the method for producing fine carbon fibers of the present invention, when the gas after the reaction is circulated and reused, the gas after the reaction always contains hydrogen gas and raw material organic compounds. If oxygen is mixed into this hydrogen gas or organic compound, a fire or a large explosion may occur. In order to prevent this, it is necessary to maintain the inside of the system including the piping at positive pressure instead of negative pressure. In particular, since the suction side of the gas circulating means for circulating gas in the device is most likely to be under negative pressure, it is preferable to take measures to prevent this part from being under negative pressure.
負圧を防止する対策としては、 具体的には、 以下のようなものを挙げることが できる。  Specifically, the following measures can be taken to prevent negative pressure.
①前記ガス循環手段の吸引側の配管径を可能な限り大きくする。  (1) Make the pipe diameter on the suction side of the gas circulation means as large as possible.
②前記ガス循環手段の吸引側の圧力をモニタしながら運転する。  ② Operate while monitoring the pressure on the suction side of the gas circulation means.
③圧力が負圧となった場合に装置を停止できるように制御する。  (3) Control so that the device can be stopped when the pressure becomes negative.
④圧力が負圧となった場合に、 装置内に保安ガス (例えば N 2や A 1-等の不活 性ガス) を導入できるようにする。 (4) When the pressure becomes negative, a safety gas (for example, an inert gas such as N 2 or A 1-) can be introduced into the equipment.
⑤ガス循環手段の前後に、 圧力を調整するための循環系を付加して構成する。 本発明の微細炭素繊維の製造では、 原料ガス供給源から供給された原料ガスと 循環 A circulation system for adjusting pressure is added before and after the gas circulation means. In the production of the fine carbon fiber of the present invention, the raw material gas supplied from the raw material gas
、 キヤリァガス供給源から供給されたキヤリァガスとを別々又は混合して反応ガ スを生成するとともに、 該反応ガスを反応炉へ供給してもよい。 後者の場合、 原 料ガスとキヤリァガスとを混合して反応ガスを生成しておき、 この反応ガスを反 応炉へ導入するようにしたものである。 A reaction gas may be generated by separately or mixing with a carrier gas supplied from a carrier gas supply source, and the reaction gas may be supplied to a reaction furnace. In the latter case, a raw material gas and a carrier gas are mixed to generate a reactive gas, and this reactive gas is introduced into a reactor.
また、 反応後ガスをリサイクルする場合、 リサイクルガスはキャリアガスと混 合して反応炉に導入することが好ましい。  In the case of recycling the gas after the reaction, it is preferable that the recycled gas is mixed with the carrier gas and introduced into the reactor.
このような構成とすることにより、 例えば原料ガスに液化し易い有機化合物を 用いる場合に、 該原料ガスの液ィヒを防止することができるので、 配管の閉塞や原 料濃度の不具合を防止することができる。 従って、 装置を安定に稼動することが でき、 これにより、 製造される微細炭素繊維の均一性も高めることができる。 また、 新たに投入するキャリアガスの量を低減することができるとともに、 排 ガス量も低減されるので、 キャリアガスの原料コストと、 排ガスの処理コストの 両方を低減することが可能である。 従って、 本発明の微細炭素繊維の製造装置に よれば、 C VD法及び C C VD法による微細炭素繊維の製造を、 容易かつ低コス トで行うことができる。 図面の簡単な説明 With such a configuration, for example, when an organic compound that is easily liquefied is used as the raw material gas, it is possible to prevent the raw material gas from being liquefied, so that it is possible to prevent clogging of the piping and a defect in the raw material concentration. be able to. Therefore, stable operation of the device Thus, the uniformity of the produced fine carbon fibers can be improved. In addition, the amount of newly introduced carrier gas can be reduced and the amount of exhaust gas can be reduced, so that both the cost of raw material for carrier gas and the cost of treating exhaust gas can be reduced. Therefore, according to the apparatus for producing fine carbon fibers of the present invention, the production of fine carbon fibers by the CVD method and the CC VD method can be performed easily and at low cost. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 参考例の実施形態の製造プロセスを模式的に示す構成図である。 図 2は、 第一の実施形態の製造プロセスを模式的に示す構成図である。  FIG. 1 is a configuration diagram schematically showing a manufacturing process according to an embodiment of the reference example. FIG. 2 is a configuration diagram schematically showing the manufacturing process of the first embodiment.
図 3は、 第二の実施形態の製造プロセスを模式的に示す構成図である。  FIG. 3 is a configuration diagram schematically showing the manufacturing process of the second embodiment.
図 4は、 第三の実施形態の製造プロセスを模式的に示す構成図である。  FIG. 4 is a configuration diagram schematically showing the manufacturing process of the third embodiment.
図 5は、 従来のバッチ式の C C VD法による製造プロセスを模式的に示す図で ある。 発明を実施するための最良の形態  FIG. 5 is a diagram schematically showing a conventional production process by a batch CCVD method. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
参考例の実施形態  Embodiment of Reference Example
図 1は、 本発明の基準となる参考例の実施形態である微細炭素繊維の製造プロ セスを模式的に示す構成図である。 この図に示す本発明の製造プロセスは、 C C VD法により微細炭素繊維を製造するための製造プロセスであり、 円筒状の反応 炉 3、 反応炉の入口側端部に接続された原料ガス供給部 2、 キャリアガス供給部 1及び触媒投入機 2 0と、 反応炉 3の出口側端部に接続された微細炭素繊維分離 回収装置 4、 微細炭素繊維分離回収装置 4の下部に接続された微細炭素繊維回収 タンク 8、 同上部に接続された反応後ガス冷却装置 6、 冷却ガスから微細炭素繊 維をさらに分離するための第 2の微細炭素繊維分離回収装置 5及び排ガス処理装 置 1 2で構成されている。 FIG. 1 is a configuration diagram schematically showing a process for producing fine carbon fibers which is an embodiment of a reference example serving as a reference of the present invention. The manufacturing process of the present invention shown in this figure is a manufacturing process for manufacturing fine carbon fibers by the CC VD method, and includes a cylindrical reactor 3 and a raw material gas supply unit connected to the inlet end of the reactor. 2.Carrier gas supply unit 1 and catalyst input device 20; Fine carbon fiber separation and recovery device 4 connected to the outlet end of reactor 3; Fine carbon connected to the bottom of fine carbon fiber separation and recovery device 4 Fiber recovery tank 8, post-reaction gas cooling device 6 connected to the upper part, second fine carbon fiber separation and recovery device 5 for further separating fine carbon fibers from the cooling gas, and exhaust gas treatment device 1 and 2.
図 1に示す製造プロセスにより微細炭素繊維を製造するには、 まず反応炉 3に 備えられたヒー夕により反応炉 3を 6 0 0 °C以上 1 2 5 0 °C以下に加熱、 保持す る。 尚、 上記反応炉の温度は製造条件の一例を示すもので、 実際には、 原料とし て使用される炭素源 (含酸素有機化合物など) の霄顔、 触媒の種類、 キャリアガ スの種類等の組合せにより最適な条件に設定する。  In order to produce fine carbon fibers by the production process shown in Fig. 1, first, the reactor 3 is heated to 600 ° C or higher and 125 ° C or lower by a heater provided in the reactor 3. . The temperature of the above-mentioned reactor is an example of the production conditions. Actually, the temperature of the carbon source (oxygen-containing organic compound, etc.) used as a raw material, the type of catalyst, the type of carrier gas, etc. The optimum condition is set by the combination of.
次に、 微細炭素繊維の炭素源として、 分子中に第 VI B族元素を含む有機化合 物からなる原料ガスを原料供給部 2から反応炉 3内へ導入し、 水素やメタンまた は不活性ガス等からなるキヤリァガスをキヤリァガス供給部 1から反応炉 3へ導 入する。 また、 これらのガスとともに、 反応炉 3で炭素を繊維化する反応を起さ せるための触媒を反応炉 3内へ導入する。 すると、 反応炉 3内で原料ガスが熱に より分解されるとともに、 触媒の作用により、 微細炭素繊維が生成される。 次いで、 この生成された微細炭素繊維は、 反応炉内のガスとともに微細炭素繊 維分離回収装置 4へ送られる。 そして、 この微細炭素繊維分離回収装置 4により 反応後ガスより微細炭素繊維が分離され、 微細炭素繊維タンク 8へ送られる。 微 細炭素繊維分離回収装置 4を出たガスは、 冷却装置 6で 4 0 °C以上、 1 5 0 °C以 下に冷却され、 第 2の微細炭素分離回収装置 5に入る。 ここで、 バグフィルタの ような低温ガスに使用できる分離装置により、 さらに微細炭素繊維が回収され、 回収タンク 8に貯えられる。 一方、 第 2の微細炭素繊維分離回収装置 5を出たガ スは、 排ガス処理装置で処理された後、 系外へ排出する。 第一の実施形態  Next, as a carbon source of the fine carbon fibers, a raw material gas composed of an organic compound containing a Group VIB element in a molecule is introduced into the reaction furnace 3 from the raw material supply unit 2, and hydrogen, methane, or an inert gas is introduced. The carrier gas composed of the above is introduced from the carrier gas supply unit 1 into the reaction furnace 3. In addition, together with these gases, a catalyst for causing a reaction to convert carbon into fibers in the reactor 3 is introduced into the reactor 3. Then, the raw material gas is decomposed by heat in the reaction furnace 3, and fine carbon fibers are generated by the action of the catalyst. Next, the generated fine carbon fibers are sent to the fine carbon fiber separation / recovery device 4 together with the gas in the reaction furnace. Then, the fine carbon fiber is separated from the post-reaction gas by the fine carbon fiber separation / recovery device 4 and sent to the fine carbon fiber tank 8. The gas that has exited the fine carbon fiber separation / recovery device 4 is cooled by the cooling device 6 to 40 ° C. or higher and 150 ° C. or lower, and enters the second fine carbon separation / recovery device 5. Here, fine carbon fibers are further recovered by a separation device that can be used for low-temperature gas such as a bag filter and stored in the recovery tank 8. On the other hand, the gas that has exited the second fine carbon fiber separation / recovery device 5 is treated by an exhaust gas treatment device and then discharged out of the system. First embodiment
次に、 本発明の第一の実施形態を図 2を参照して説明する。  Next, a first embodiment of the present invention will be described with reference to FIG.
尚、 図 2に示す構成要素のうち、 図 1に示す構成要素と同一の要素には同一の 符号を付し、 その詳細な説明は省略する (以下の実施形態も同様) 。  Note that among the constituent elements shown in FIG. 2, the same elements as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted (the same applies to the following embodiments).
図 2は、 本発明の第一の実施形態である微細炭素繊維の製造プロセスを模式的 に示す構成図である。 この図に示す本発明の製造プロセスは、 C C VD法により 微細炭素繊維を製造するための製造プロセスであり、 リサイクル装置を備えたプ ロセスである。 すなわち、 前記参考例の実施形態において、 第 2の微細炭素繊維 分離回収装置 5を出たガスを、 排ガス処理装置で処理した後、 系外へ排出してい たのに対して、 ガス循環ブロア 9によってその一部を反応炉に循環するプロセス である。 このプロセスでは、 循環するガスと排出するガスを自在に制御すること ができ、 従って反応系におけるガス循環量を容易に制御できる。 FIG. 2 is a schematic diagram illustrating a process for producing fine carbon fibers according to the first embodiment of the present invention. FIG. The production process of the present invention shown in this figure is a production process for producing fine carbon fibers by the CC VD method, and is a process provided with a recycling device. That is, in the embodiment of the above reference example, the gas discharged from the second fine carbon fiber separation / recovery device 5 was exhausted out of the system after being treated by the exhaust gas treatment device. Is a process of circulating a part of it to the reactor. In this process, the circulating gas and the exhaust gas can be freely controlled, and therefore, the gas circulation amount in the reaction system can be easily controlled.
これによつて、 補給するキャリアガス量、 それに伴う排ガス量を削減すること ができる。 さらに未反応の原料ガス、 含 VI族元素化合物、 副生成物を反応系に 戻すことができるので、 収量を増大できる。  This makes it possible to reduce the amount of carrier gas to be replenished and the amount of exhaust gas associated therewith. Further, unreacted raw material gas, group VI element compounds, and by-products can be returned to the reaction system, so that the yield can be increased.
また、 微細炭素繊維の分離が分離装置 4、 5により二段で行われているので、 循環ガス中には微細炭素繊維が混入することがなく、 繊維上にさらに炭素が成長 して繊維が太くなるのを防ぐことができる。 第二の実施形態  In addition, since the separation of fine carbon fibers is performed in two stages by the separation devices 4 and 5, fine carbon fibers do not enter the circulating gas, and the carbon grows further on the fibers and the fibers become thicker. Can be prevented. Second embodiment
図 3は、 本発明の第二の実施形態である微細炭素繊維の製造プロセスを模式的 に示す構成図である。 この図に示す本発明の製造プロセスは、 前記第一の実施形 態において、 第 2の微細炭素繊維分離回収装置 5を出たガスの一部をガス循環ブ ロア 9によって反応炉に循環するに前に、 冷却装置 6とは別の冷却装置 7によつ てガスの温度をさらに下げ、 ガス中に含まれる水のような反応副生成物や未分解 の原料有機物などを凝縮させてガスから分離除去して、 ガスを循環するプロセス である。 分離された凝縮物は凝縮物タンク 1 0を経て、 水分分離器 1 1に送り、 水などの凝縮物と有機物ガスを回収し、 このガスも反応炉 3に循環する。 水分分 離器 1 1に溜まった凝縮物は、 排水処理装置 1 5で処理された後系外に排出され る。  FIG. 3 is a configuration diagram schematically showing a process for producing fine carbon fibers according to a second embodiment of the present invention. In the manufacturing process of the present invention shown in this figure, in the first embodiment, a part of the gas exiting the second fine carbon fiber separation / recovery device 5 is circulated to the reaction furnace by the gas circulation blower 9. Before that, the temperature of the gas is further reduced by a cooling device 7 separate from the cooling device 6, and reaction by-products such as water contained in the gas and undecomposed raw material organic matter are condensed from the gas. It is a process of separating and removing gas and circulating gas. The separated condensate passes through a condensate tank 10 and is sent to a moisture separator 11 where condensates such as water and organic gas are recovered, and this gas is also circulated to the reactor 3. The condensate accumulated in the water separator 11 is discharged out of the system after being treated by the wastewater treatment device 15.
このプロセスでは、 循環ガスに水や沸点の比較的高い有機物化合が含まれない ので、 水分濃度が低く抑えられ、 したがって水分の凝縮を抑えることが可能とな り、 配管などの詰まりが防止される。 第三の実施形態 In this process, the circulating gas does not contain water or organic compounds with relatively high boiling points As a result, the water concentration can be kept low, so that the condensation of water can be suppressed, and clogging of piping and the like can be prevented. Third embodiment
図 4は、 本発明の第三の実施形態である微細炭素繊維の製造プロセスを模式的 に示す構成図である。 この図に示す本発明の製造プロセスは、 前記第二の実施形 態が、 第 2の微細炭素繊維分離回収装置 5を出たガスのうち、 循環ブロア 9によ つて反応炉に循環するガスを冷却装置 7によって冷却し、 ガスの温度をさらに下 げ、 ガス中に含まれる水のような反応副生成物や未分解の原料有機物など凝縮さ せてガスから分離除去して循環するプロセスであるのに対して、 前記第 2の微細 炭素繊維分離回収装置 5を出たガスを全量冷却装置 7で冷却して、 該ガス中の凝 縮物を分離するプロセスである。 凝縮物を分離したガスは、 一部がブロア 9によ り反応炉に循環され、 残りのガスは排ガス処理装置 1 2に送られ、 処理後、 系外 に排出される。 一方、 分離された凝縮物は凝縮物タンク 1 0を経て、 水分分離器 1 1に送られ、 水などの凝縮物と有機物を回収し、 このガスも反応炉 3に循環さ れる。 気液分離器 1 1に溜まった凝縮物は、 排水処理装置 1 5で処理された後系 外に;^出される。  FIG. 4 is a configuration diagram schematically showing a process for producing fine carbon fibers according to a third embodiment of the present invention. In the manufacturing process of the present invention shown in this figure, in the second embodiment, the gas circulated to the reaction furnace by the circulation blower 9 out of the gas exiting the second fine carbon fiber separation / recovery device 5 is described in the second embodiment. This is a process in which the gas is cooled by the cooling device 7 to further reduce the temperature of the gas, condensing reaction by-products such as water contained in the gas, and undecomposed raw material organic matter, and separating and removing it from the gas for circulation. On the other hand, this is a process in which the gas discharged from the second fine carbon fiber separation / recovery device 5 is cooled by the total amount cooling device 7 and the condensate in the gas is separated. Part of the gas from which the condensate has been separated is circulated to the reaction furnace by the blower 9, and the remaining gas is sent to the exhaust gas treatment device 12, where it is discharged out of the system after treatment. On the other hand, the separated condensate passes through the condensate tank 10 and is sent to the moisture separator 11 to collect condensate such as water and organic matter, and this gas is also circulated to the reaction furnace 3. The condensate accumulated in the gas-liquid separator 11 is treated by the wastewater treatment device 15 and then discharged out of the system.
このプロセスでは、 有効な有機物が全量リサイクルされるだけでなく、 循環ガ スに水や沸点の比較的高い有機物化合が含まれないので、 系内の水分濃度が低く 抑えられ、 従って、 水分の凝縮が抑えられて配管などの詰まりが防止される。 ま た、 排ガス処理装置に凝縮する成分が含まれないので、 その負荷が軽減される。 実施例  This process not only recycles all of the useful organic matter, but also keeps the water content in the system low because the circulation gas does not contain water or organic compounds with a relatively high boiling point, thus condensing water. And the clogging of piping and the like is prevented. In addition, since the condensed components are not contained in the exhaust gas treatment device, the load is reduced. Example
以下、 実施例及び比較例を挙げて本発明を更に詳しく説明するが、 本発明は下 記の実施例に何ら限定されるものではない。 図 1に示すプロセスで実施した。 使用した反応炉は、 内径 200 φの S i C製 の反応管を外部から加熱する構造で、 反応管を一定速度で回転できる口一タリ一 型の反応炉である。 原料の炭素源にはエチルアルコールを用い、 7. 4NL/m i nの流量で連続的に投入した。 キャリアガスにはアルゴンガスを用い、 その流 量は 5NL/mi nとした。 触媒はモリブデン、 コバルトの 2成分系を用い、 常 法に従って、 平均粒径 0. 1 im以下の酸化マグネシウムに担持させた後、 不活 性ガス中で賦括したものを 15 g/m i nの速度で投入した。 反応温度は 810 °Cで、 反応圧力は常圧とし、 3 r pmの回転速度で連続的に反応させた。 . 反応の結果、 C NT回収タンクに回収された触媒と揮発性分込みで 1 S gZm i nの粗 CNTが得られた。 そして、 粗 CNT中の CNT含有量は 3. 8 g m i nであった。 実施例 1 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. The process was performed as shown in FIG. The reactor used was a one-piece, one-piece reactor with a structure that heats a 200-diameter SiC reaction tube from the outside and can rotate the reaction tube at a constant speed. Ethyl alcohol was used as a raw material carbon source, and was continuously charged at a flow rate of 7.4 NL / min. Argon gas was used as the carrier gas, and the flow rate was 5 NL / min. The catalyst used was a two-component system consisting of molybdenum and cobalt.The catalyst was supported on magnesium oxide with an average particle size of 0.1 im or less according to a conventional method, and then concentrated in an inert gas at a rate of 15 g / min. It was put in. The reaction temperature was 810 ° C, the reaction pressure was normal pressure, and the reaction was continuously performed at a rotation speed of 3 rpm. As a result of the reaction, crude CNTs of 1 S gZmin were obtained by adding volatile components to the catalyst recovered in the CNT recovery tank. The CNT content in the crude CNT was 3.8 gmin. Example 1
本実施例は図 2のプロセスで実施した。 反応炉は、 参考例と同様の内径 200 Φの S i C製の反応管を外部から加熱するもので、 反応管を一定速度で回転でき る構造のロータリ一型の反応管を用いた。 原料の炭素源には、 参考例と同様にェ チルアルコールを用い、 7. 4NLZmi nの流量で連続的に投入した。 触媒に はモリブデン、 コバルト系を用い、 平均粒径 0. 1 zm以下の酸化マグネシウム に担持させた後、 不活性ガス中で賦括したものを 15 g/mi nの速度で投入し た。 反応温度は 805 で、 反応圧力は常圧とし、 2 r pmの回転速度で連続的 に反応させた。 出口反応ガスのアルゴンガスの 20%分に相当する反応後のガス (未反応のエチルアルコールや分解生成物を含む) をリサイクルし、 残りを排ガ ス処理系に送った。 従って、 炉内のキャリアガスは新規投入されるアルゴンガス は 4NL/m i nと成るようにアルゴンガスを調節した。  This example was implemented by the process of FIG. The reaction furnace is a rotary type reaction tube which heats a reaction tube made of SiC having an inner diameter of 200 Φ similar to that of the reference example from the outside and which can rotate the reaction tube at a constant speed. Ethyl alcohol was used as the carbon source of the raw material in the same manner as in the Reference Example, and was continuously charged at a flow rate of 7.4 NLZmin. Molybdenum and cobalt catalysts were used, supported on magnesium oxide with an average particle size of 0.1 zm or less, and then charged in an inert gas at a rate of 15 g / min. The reaction temperature was 805, the reaction pressure was normal pressure, and the reaction was continuously performed at a rotation speed of 2 rpm. The reacted gas (including unreacted ethyl alcohol and decomposition products) equivalent to 20% of the argon gas in the outlet reaction gas was recycled, and the remainder was sent to an exhaust gas treatment system. Therefore, the carrier gas in the furnace was adjusted so that the newly introduced argon gas was 4 NL / min.
反応の結果、 CNT回収タンクに回収された触媒と粗 CNTは、 19. 3 gZ m i nであった。 そして粗 CNT中の CNT含有量は、 4. O gZmi nであつ た。 リサイクルしない場合より CNT収量が 0. 2 gZmi n向上し、 しかも、 投入されるアルゴン量は 20 %低減された。 実施例 2 As a result of the reaction, the amount of the catalyst and crude CNT recovered in the CNT recovery tank was 19.3 gZ min. The CNT content in the crude CNT is 4.OgZmin. Was. The CNT yield was improved by 0.2 gZmin over the case without recycling, and the amount of argon input was reduced by 20%. Example 2
本実施例は図 3に示すプロセスで実施した。 本反応の反応炉は、 内径 200 φ の S i C製の反応管を外部から加熱するもので、 反応管を一定速度で回転できる 構造のロータリー型の反応管を用いた。 原料の炭素源には参考例と同様にェチル アルコールを用い、 7. 4 N L/m i nの流量で連続的に投入した。 触媒にはモ リブデン、 コバルト系を用い、 平均粒径 0. 1 m以下の酸化マグネシウムに担 持させた後、 不活性ガス中で賦括したものを 15 g/m i nの速度で投入した。 反応温度は 815°Cで、 反応圧力は常圧とし、 1 r pmの回転速度で連続的に反 応させた。 出口反応ガスのアルゴンガスの 50 %分に相当する反応後のガスは、 冷却器 7で冷却し、 水を水分分離器で除去した後、 反応系へリサイクルした。 そ して、 残-りを排ガス処理系に送つた。 炉内のキヤリァガスは新規投入分が 3 N L /mi n、 リサイクルされる分が 3 NL/m i nと成る。  This example was implemented by the process shown in FIG. The reaction furnace used in this reaction was to heat a reaction tube made of SiC having an inner diameter of 200 φ from the outside, and a rotary reaction tube having a structure capable of rotating the reaction tube at a constant speed was used. Ethyl alcohol was used as a raw material carbon source in the same manner as in the Reference Example, and was continuously charged at a flow rate of 7.4 NL / min. Molybdenum and cobalt catalysts were used, supported on magnesium oxide with an average particle size of 0.1 m or less, and then charged in an inert gas at a rate of 15 g / min. The reaction temperature was 815 ° C, the reaction pressure was normal pressure, and the reaction was continuously performed at a rotation speed of 1 rpm. The gas after the reaction corresponding to 50% of the outlet reaction gas argon gas was cooled by the cooler 7, water was removed by the water separator, and then recycled to the reaction system. The residue was sent to an exhaust gas treatment system. Carrier gas in the furnace is 3 NL / min for newly charged gas and 3 NL / min for recycled gas.
反応の結果、 CNT回収タンクに回収された触媒と粗 CNTは 19. 6 g/m i nであった。 そして粗 CNT中の CNT含有量は 4. 2 g/m i nであった。 リサイクルしない場合より CNT収量が 0. 4g/mi n向上し、 しかも、 投入 されるアルゴン量は 50%低減された。 実施例 3  As a result of the reaction, the amount of the catalyst and crude CNT recovered in the CNT recovery tank was 19.6 g / min. The CNT content in the crude CNT was 4.2 g / min. The CNT yield improved by 0.4 g / min compared to the case without recycling, and the amount of argon input was reduced by 50%. Example 3
本実施例は図 4に示すプロセスで実施した。 本反応の反応炉は、 内径 200 φ の S i C製の反応管を外部から加熱するもので、 反応管を一定速度で回転できる 構造の口一夕リー型の反応管を用いた。 原料の炭素源には、 参考例と同様にェチ ルアルコールを用い、 7. 4N I /m i nの流量で連続的に投入した。 触媒には モリブデン、 コバルト系を用い、 平均粒径 0. 1 酸化マグネシウムに担持さ せた後、 不活性ガス中で賦括したものを 15 g/mi nの速度で投入した。 反応 温度は 800°Cで、 反応圧力は常圧とし 1 r pmの回転速度で連続的に反応させ た。 出口反応ガスは冷却器 7で全量冷却し、 未反応成分や含酸素ハイド口カーボ ンを回収した後、 分離器 11で水分を除去した後、 反応系へリサイクルした。 冷 却器 7の出口反応後ガスのアルゴンガスの 50 %分に相当する反応後のガスをリ サイクルし、 残りを排ガス処理系に送った。 炉内のキャリアガスは新規投入分が 3NL/m i n、 リサイクルされる分が 3 NLZm i nと成る。 This example was implemented by the process shown in FIG. The reaction furnace used in this reaction was to heat a reaction tube made of SiC with an inner diameter of 200 φ from the outside, and a mouth-to-mouth type reaction tube capable of rotating the reaction tube at a constant speed was used. Ethyl alcohol was used as the raw material carbon source in the same manner as in the Reference Example, and was continuously charged at a flow rate of 7.4 N I / min. Molybdenum and cobalt catalysts are used, and the average particle size is 0.1 After that, what was condensed in an inert gas was introduced at a rate of 15 g / min. The reaction temperature was 800 ° C, the reaction pressure was normal pressure, and the reaction was continuously performed at a rotation speed of 1 rpm. The outlet reaction gas was cooled in its entirety by the cooler 7 to recover unreacted components and carbon containing an oxygen-containing hydrid, and then water was removed by the separator 11 before being recycled to the reaction system. The gas after the reaction corresponding to 50% of the argon gas after the reaction at the outlet of the cooler 7 was recycled, and the remainder was sent to an exhaust gas treatment system. The amount of carrier gas in the furnace is 3 NL / min for new input and 3 NLZ min for recycle.
反応の結果、 CNT回収タンクに回収された触媒と粗 CNTは 19. 6 g/m i nであった。 そして粗 CNT中の CNT含有量は 4. 7 g/m i nであった。 リサイクルしない場合より CNT収量が 0. 7 g/mi n向上し、 しかも、 投入 されるアルゴン量は 50%低減された。 産業上の利用可能性  As a result of the reaction, the amount of the catalyst and crude CNT recovered in the CNT recovery tank was 19.6 g / min. The CNT content in the crude CNT was 4.7 g / min. The CNT yield was improved by 0.7 g / min compared to the case without recycling, and the amount of argon input was reduced by 50%. Industrial applicability
本発明は、 微細炭素繊維を高収率で連続的に安定して、 低コストで製造するこ とができる方法で、 高品質のカーボンナノチューブなどの製造に適している。  INDUSTRIAL APPLICABILITY The present invention is a method capable of continuously and stably producing fine carbon fibers at a high yield at a low cost, and is suitable for producing high-quality carbon nanotubes and the like.

Claims

m 求 の 範 囲 m Range of request
1 . 少なくとも 1種以上の遷移金属からなる超微粒子を触媒として、 少なくとも 1種の分子中に周期律表第 VI B族元素を含有する有機化合物の化学熱分解法に よって微細炭素繊維を製造する方法において、 製造プロセスが、 少なくとも原料 ガス供給部、 キャリアガス供給部、 反応炉、 微細炭素繊維分離回収装置、 微細炭 素繊維タンク、 反応後ガス冷却装置、 第 2の微細炭素分離回収装置及びガスリサ ィクル装置からなり、 微細炭素繊維分離回収装置、 反応後ガス冷却装置を通した 反応後ガスから第 2の微細炭素繊維分離回収装置で微細炭素繊維を回収後、 反応 後ガスの一部をガスリサイクル装置によりリサイクルすることを特徴とする微細 炭素繊維の製造方法。 1. Ultrafine particles consisting of at least one transition metal are used as a catalyst to produce fine carbon fibers by the chemical pyrolysis method of an organic compound containing at least one Group VIB element in the molecule. In the method, at least the raw material gas supply unit, the carrier gas supply unit, the reaction furnace, the fine carbon fiber separation / recovery device, the fine carbon fiber tank, the post-reaction gas cooling device, the second fine carbon separation / recovery device, and the gas After collecting the fine carbon fibers from the post-reaction gas through the fine carbon fiber separation and recovery device and the post-reaction gas cooling device using the second fine carbon fiber separation and recovery device, a part of the post-reaction gas is recycled. A method for producing fine carbon fibers, wherein the method is recycled by an apparatus.
2 . 少なくとも 1種以上の遷移金属からなる超微粒子を触媒として、 少なくとも 1種の分子中に周期律表第 VI B族元素を含有する有機化合物の化学熱分解法に よって微細炭素繊維を製造する方法において、 製造プロセスが、 少なくとも原料 ガス供給部、 キャリアガス供給部、 反応炉、 微細炭素繊維分離回収装置、 微細炭 素繊維タンク、 反応後ガス冷却装置、 第 2の微細炭素分離回収装置、 ガスリサィ クル装置、 第 2の反応後ガス冷却装置、 凝縮物タンク及び水分分離器からなり、 微細炭素繊維分離回収装置、 反応後ガス冷却装置を通した反応後ガスから第 2の 微細炭素繊維分離回収装置で微細炭素繊維を回収後、 反応後ガスを第 2の反応後 ガス冷却装置で冷却し、 凝縮物を分離し、 反応後ガスをガスリサイクル装置によ りリサイクルすると共に、 凝縮物から水分分離器により水及び高沸点生成物を分 離して未反応原料有機化合物をリサイクルすることを特徴とする微細炭素繊維の 製造方法。  2. Using ultrafine particles of at least one transition metal as a catalyst, produce fine carbon fibers by chemical pyrolysis of an organic compound containing a Group VIB element in at least one molecule. In the method, at least the raw material gas supply unit, the carrier gas supply unit, the reaction furnace, the fine carbon fiber separation and recovery device, the fine carbon fiber tank, the post-reaction gas cooling device, the second fine carbon separation and recovery device, and the gas And a second post-reaction gas cooling device, a condensate tank and a water separator, and a fine carbon fiber separation and recovery device, and a second fine carbon fiber separation and recovery device from the post-reaction gas passed through the post-reaction gas cooling device After collecting the fine carbon fibers, the post-reaction gas is cooled by a second post-reaction gas cooling device to separate condensate, and the post-reaction gas is recycled by a gas recycling device. Method for producing fine carbon fibers with, characterized by recycling the water and high-boiling products away min unreacted raw material organic compound by moisture separators from the condensate to.
3 . 請求の範囲 2に記載の微細炭素繊維の製造方法において、 反応後ガスから第 2の微細炭素繊維分離回収装置で微細炭素繊維及を回収後、 反応後ガスの一部を 第 2の反応後ガス冷却装置で冷却する微細炭素繊維の製造方法。 3. In the method for producing fine carbon fibers according to claim 2, after the fine carbon fibers and the fine carbon fibers are recovered from the post-reaction gas by the second fine carbon fiber separation and recovery device, a part of the post-reaction gas is subjected to the second reaction. A method for producing fine carbon fibers, which is cooled by a gas cooling device.
4. 請求の範囲 2に記載の微細炭素繊維の製造方法において、 反応後ガスから第 2の微細炭素繊維分離回収装置で微細炭素繊維及を回収後、 反応後ガスの全量を 第 2の反応後ガス冷却装置で冷却する微細炭素繊維の製造方法。 4. In the method for producing fine carbon fibers according to claim 2, after the fine carbon fibers and the like are recovered from the post-reaction gas by the second fine carbon fiber separation and recovery device, the entire amount of the post-reaction gas is recovered after the second reaction. A method for producing fine carbon fibers cooled by a gas cooling device.
5 . 反応後ガスの 2 0 %以上をリサイクルする請求の範囲 1〜4のいずれかに記 載の微細炭素繊維の製造方法。  5. The method for producing fine carbon fibers according to any one of claims 1 to 4, wherein at least 20% of the post-reaction gas is recycled.
6 . 反応後ガスの 5 0 %以上をリサイクルする請求の範囲 5に記載の微細炭素繊 維の製造方法。  6. The method for producing a fine carbon fiber according to claim 5, wherein 50% or more of the post-reaction gas is recycled.
7 . 第 2の微細炭素繊維分離回収装置が、 反応後ガスを 4 0 °C以上、 1 5 0 °C以 下に冷却後、 フィルタによって分離する機構を含むことを特徴とする請求の範囲 1〜 6のいずれかに記載の微細炭素繊維の製造方法。  7. The second fine carbon fiber separation and recovery device includes a mechanism for cooling the post-reaction gas to 40 ° C. or higher and 150 ° C. or lower, and then separating the gas by a filter. 7. The method for producing a fine carbon fiber according to any one of items 6 to 6.
8 . 水分分離器が、 蒸留、 吸着又は膜分離の少なくとも 1つの方法を用いる請求 の範囲 2〜 7のいずれかに記載の微細炭素繊維の製造方法。  8. The method for producing fine carbon fibers according to any one of claims 2 to 7, wherein the water separator uses at least one of distillation, adsorption, and membrane separation.
9 . 微細炭素繊維が、 繊維径 0 . l nm以上、 1 以下の微細炭素繊維である 請求の範囲 1〜 8のいずれかに記載の微細炭素繊維の製造方法。  9. The method for producing a fine carbon fiber according to any one of claims 1 to 8, wherein the fine carbon fiber is a fine carbon fiber having a fiber diameter of 0.1 nm or more and 1 or less.
1 0 . 微細炭素繊維が、 少なくとも繊維径 5 nm以下の軸性キラル構造を持つ単 層力一ボンナノチューブからなる微細炭素繊維である請求の範囲 1〜9のいずれ かに記載の微細炭素繊維の製造方法。  10. The fine carbon fiber according to any one of claims 1 to 9, wherein the fine carbon fiber is a single carbon nanotube having an axial chiral structure having a fiber diameter of at least 5 nm or less. Production method.
1 1 . 微細炭素繊維が、 少なくとも繊維径 1 O nm以下の軸性キラル構造を持つ 多層力一ボンナノチューブからなる微細炭素繊維である請求の範囲 1〜 9のいず れかに記載の微細炭素繊維の製造方法。  11. The fine carbon fiber according to any one of claims 1 to 9, wherein the fine carbon fiber is a fine carbon fiber comprising a multilayered carbon nanotube having an axial chiral structure having a fiber diameter of at least 1 O nm or less. Fiber manufacturing method.
PCT/JP2003/009027 2002-07-17 2003-07-16 Method for producing fine carbon fiber WO2004007820A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/521,453 US20060099134A1 (en) 2002-07-17 2003-07-16 Method for producing fine carbon fiber
JP2004521220A JP4388890B2 (en) 2002-07-17 2003-07-16 Method for producing fine carbon fiber
AU2003252658A AU2003252658A1 (en) 2002-07-17 2003-07-16 Method for producing fine carbon fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-208800 2002-07-17
JP2002208800 2002-07-17

Publications (1)

Publication Number Publication Date
WO2004007820A1 true WO2004007820A1 (en) 2004-01-22

Family

ID=30112857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009027 WO2004007820A1 (en) 2002-07-17 2003-07-16 Method for producing fine carbon fiber

Country Status (4)

Country Link
US (1) US20060099134A1 (en)
JP (1) JP4388890B2 (en)
AU (1) AU2003252658A1 (en)
WO (1) WO2004007820A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004155628A (en) * 2002-11-08 2004-06-03 Japan Science & Technology Agency Method and apparatus for producing raw material-circulated carbon structure
JP2006290682A (en) * 2005-04-12 2006-10-26 Kitami Institute Of Technology Method and catalyst reactor for producing nano-carbon
WO2006117924A1 (en) * 2005-04-28 2006-11-09 Bussan Nanotech Research Institute Inc. Transparent electrically conductive film, and coating composition for transparent electrically conductive film
JP2006315891A (en) * 2005-05-11 2006-11-24 Japan Steel Works Ltd:The Method of manufacturing functional nanocarbon and hydrogen by direct decomposition of lower hydrocarbon
WO2008149792A1 (en) * 2007-05-31 2008-12-11 Showa Denko K. K. Carbon nanofiber, method for producing the same, and use of the same
JP2009161426A (en) * 2007-12-31 2009-07-23 Semes Co Ltd Fluidized bed carbon nanotube production apparatus, and carbon nanotube production apparatus and method using the same
US7879261B2 (en) 2007-03-26 2011-02-01 Showa Denko K.K. Carbon nanofiber, production process and use
JP2015520104A (en) * 2012-04-23 2015-07-16 シーアストーン リミテッド ライアビリティ カンパニー Carbon nanotubes with bimodal size distribution
JP2016516158A (en) * 2013-02-26 2016-06-02 ブリローイン エナジー コーポレイション Control of low energy nuclear reactions in hydrides and autonomously controlled heat generation module
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
JP2018035368A (en) * 2017-10-27 2018-03-08 住友大阪セメント株式会社 Method for treating resin waste, and system for treating resin waste
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445236A1 (en) 2003-02-05 2004-08-11 Université de Liège Method and apparatus for producing carbon nanotubes
JP4129459B2 (en) * 2005-02-10 2008-08-06 有限会社末富エンジニアリング Nonwoven fabric and woven fabric for reforming catalyst
AT502901B1 (en) * 2005-10-31 2009-08-15 Electrovac Ag DEVICE FOR HYDROGEN MANUFACTURE
KR101864455B1 (en) * 2010-02-19 2018-06-04 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Apparatus for producing nanocarbon material and method for producing nanocarbon material
EP2681153A4 (en) * 2011-02-28 2015-07-22 Univ Rice William M Doped multiwalled carbon nanotube fibers and methods of making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007559A1 (en) * 1986-06-06 1987-12-17 Hyperion Catalysis International, Inc. Novel carbon fibrils, method for producing same, and compositions containing same
JPH01207418A (en) * 1988-02-10 1989-08-21 Nkk Corp Production of carbon fiber by vapor-phase growth
JP2001019413A (en) * 1999-07-01 2001-01-23 Ebara Corp Production of carbon nanofiber and device therefor
US20010051127A1 (en) * 2000-06-12 2001-12-13 Showa Denko K.K. Carbon fiber, method for producing the same and apparatus therefor
JP2002121673A (en) * 2000-10-13 2002-04-26 Ulvac Japan Ltd Thermal cvd system for depositing graphite nanofiber thin film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3378345A (en) * 1965-03-22 1968-04-16 Union Carbide Corp Process for producing pyrolytic graphite whiskers
FR2471733B1 (en) * 1979-12-20 1986-10-03 Belrecolt Sa AGRICULTURAL MACHINE FOR TEDDING OR PACKING OF PLANTS
US5165909A (en) * 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
JP2662413B2 (en) * 1988-04-12 1997-10-15 昭和電工株式会社 Method for producing vapor grown carbon fiber
ATE404497T1 (en) * 1998-11-03 2008-08-15 Univ Rice William M GASPHASE DEPOSITION AND GROWTH OF SINGLE-WALLED CARBON NANOTUBE FROM CARBON MONOXIDE UNDER HIGH PRESSURE
FR2790750B1 (en) * 1999-03-10 2001-04-20 Air Liquide PROCESS AND DEVICE FOR PRODUCING HYDROGEN BY THERMOCATALYTIC DECOMPOSITION OF HYDROCARBONS
US6878360B1 (en) * 1999-09-01 2005-04-12 Nikkiso Company Limited Carbon fibrous matter, production device of carbon fibrous matter, production method of carbon fibrous matter and deposit prevention device for carbon fibrous matter
US6919064B2 (en) * 2000-06-02 2005-07-19 The Board Of Regents Of The University Of Oklahoma Process and apparatus for producing single-walled carbon nanotubes
US6905544B2 (en) * 2002-06-26 2005-06-14 Mitsubishi Heavy Industries, Ltd. Manufacturing method for a carbon nanomaterial, a manufacturing apparatus for a carbon nanomaterial, and manufacturing facility for a carbon nanomaterial

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007559A1 (en) * 1986-06-06 1987-12-17 Hyperion Catalysis International, Inc. Novel carbon fibrils, method for producing same, and compositions containing same
JPH01207418A (en) * 1988-02-10 1989-08-21 Nkk Corp Production of carbon fiber by vapor-phase growth
JP2001019413A (en) * 1999-07-01 2001-01-23 Ebara Corp Production of carbon nanofiber and device therefor
US20010051127A1 (en) * 2000-06-12 2001-12-13 Showa Denko K.K. Carbon fiber, method for producing the same and apparatus therefor
JP2002121673A (en) * 2000-10-13 2002-04-26 Ulvac Japan Ltd Thermal cvd system for depositing graphite nanofiber thin film

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004155628A (en) * 2002-11-08 2004-06-03 Japan Science & Technology Agency Method and apparatus for producing raw material-circulated carbon structure
JP2006290682A (en) * 2005-04-12 2006-10-26 Kitami Institute Of Technology Method and catalyst reactor for producing nano-carbon
US9403682B2 (en) 2005-04-12 2016-08-02 National University Corporation Kitami Institute Of Technology Method for producing nanocarbon and catalytic reaction device for producing nanocarbon
US7947245B2 (en) 2005-04-12 2011-05-24 National University Corporation Kitami Institute Of Technology Method for producing nanocarbon and catalytic reaction device for producing nanocarbon
WO2006117924A1 (en) * 2005-04-28 2006-11-09 Bussan Nanotech Research Institute Inc. Transparent electrically conductive film, and coating composition for transparent electrically conductive film
JP4697941B2 (en) * 2005-05-11 2011-06-08 株式会社日本製鋼所 Method for producing functional nanocarbon and hydrogen by direct decomposition of lower hydrocarbons
JP2006315891A (en) * 2005-05-11 2006-11-24 Japan Steel Works Ltd:The Method of manufacturing functional nanocarbon and hydrogen by direct decomposition of lower hydrocarbon
US7879261B2 (en) 2007-03-26 2011-02-01 Showa Denko K.K. Carbon nanofiber, production process and use
WO2008149792A1 (en) * 2007-05-31 2008-12-11 Showa Denko K. K. Carbon nanofiber, method for producing the same, and use of the same
US8308990B2 (en) 2007-05-31 2012-11-13 Showa Denko K.K. Carbon nanofiber, production process and use
JP5242563B2 (en) * 2007-05-31 2013-07-24 昭和電工株式会社 Carbon nanofiber, production method and use thereof
JP2009161426A (en) * 2007-12-31 2009-07-23 Semes Co Ltd Fluidized bed carbon nanotube production apparatus, and carbon nanotube production apparatus and method using the same
JP2015520104A (en) * 2012-04-23 2015-07-16 シーアストーン リミテッド ライアビリティ カンパニー Carbon nanotubes with bimodal size distribution
US9896341B2 (en) 2012-04-23 2018-02-20 Seerstone Llc Methods of forming carbon nanotubes having a bimodal size distribution
JP2018095552A (en) * 2012-04-23 2018-06-21 シーアストーン リミテッド ライアビリティ カンパニー Carbon nanotubes having bimodal size distribution
JP2016516158A (en) * 2013-02-26 2016-06-02 ブリローイン エナジー コーポレイション Control of low energy nuclear reactions in hydrides and autonomously controlled heat generation module
US11752459B2 (en) 2016-07-28 2023-09-12 Seerstone Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
US11951428B2 (en) 2016-07-28 2024-04-09 Seerstone, Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
JP2018035368A (en) * 2017-10-27 2018-03-08 住友大阪セメント株式会社 Method for treating resin waste, and system for treating resin waste

Also Published As

Publication number Publication date
US20060099134A1 (en) 2006-05-11
AU2003252658A1 (en) 2004-02-02
JP4388890B2 (en) 2009-12-24
JPWO2004007820A1 (en) 2005-11-10

Similar Documents

Publication Publication Date Title
JP4388890B2 (en) Method for producing fine carbon fiber
JP4968643B2 (en) Method for producing single-walled carbon nanotube
CN1297474C (en) Method and appts. for producing carbon nanotubes
JP4914218B2 (en) System and method for manufacturing carbon nanostructures
KR101753918B1 (en) Method for producing solid carbon by reducing carbon oxides
JP4413046B2 (en) Method for producing vapor grown carbon fiber
JP5594961B2 (en) Synthesis of narrow-diameter carbon single-walled nanotubes
US20020172767A1 (en) Chemical vapor deposition growth of single-wall carbon nanotubes
CN1373736A (en) Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure CO
JP5860547B2 (en) Manufacturing method and manufacturing apparatus for long carbon nanotube
JP4064759B2 (en) Carbon nanofiber manufacturing apparatus and method
CN112771002B (en) Method and apparatus for synthesizing multi-wall carbon nanotubes from high molecular polymer waste
Toussi et al. Effect of synthesis condition on the growth of SWCNTs via catalytic chemical vapour deposition
WO2005007565A2 (en) Continuous production of carbon nanomaterials using a high temperature inductively coupled plasma
JP2006112022A (en) Vapor-grown carbon fiber and method for producing the same
JP6403144B2 (en) Process for producing vapor-deposited fine carbon fiber
JP2004076196A (en) Method and apparatus for producing carbon nanofiber
JP2006231247A (en) Catalyst for producing nanocarbon material, catalyst particulate, method for producing catalyst for producing nanocarbon material and carbon material production system
Janowska et al. Macronized aligned carbon nanotubes for use as catalyst support and ceramic nanoporous membrane template
Yardimci et al. Synthesis methods of carbon nanotubes
JP4551240B2 (en) Catalyst for producing nanocarbon material, method for producing the same, and apparatus for producing nanocarbon material
Shivanna et al. Fe-Ni nanoparticle-catalyzed controlled synthesis of multi-walled carbon nanotubes on CaCO3
WO2003066521A1 (en) Method and apparatus for producing fine carbon material
JP2004076198A (en) Method and apparatus for producing carbon nanofiber
Shah et al. Parameters Involved in CVD Growth of CNT: A Review

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004521220

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006099134

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10521453

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10521453

Country of ref document: US