WO2004007741A1 - PROCESS FOR PRODUCING OPTICALLY ACTIVE β-AMINONITRILE COMPOUND AND AMIDE COMPOUND AS ANTIPODE THEREOF - Google Patents

PROCESS FOR PRODUCING OPTICALLY ACTIVE β-AMINONITRILE COMPOUND AND AMIDE COMPOUND AS ANTIPODE THEREOF Download PDF

Info

Publication number
WO2004007741A1
WO2004007741A1 PCT/JP2003/008826 JP0308826W WO2004007741A1 WO 2004007741 A1 WO2004007741 A1 WO 2004007741A1 JP 0308826 W JP0308826 W JP 0308826W WO 2004007741 A1 WO2004007741 A1 WO 2004007741A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
ifo
candida
production method
Prior art date
Application number
PCT/JP2003/008826
Other languages
French (fr)
Japanese (ja)
Inventor
Noriyuki Ito
Shigeru Kawano
Yoshihiko Yasohara
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to AU2003280995A priority Critical patent/AU2003280995A1/en
Publication of WO2004007741A1 publication Critical patent/WO2004007741A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/24Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton
    • C07C255/29Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton containing cyano groups and acylated amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/006Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures
    • C12P41/007Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by reactions involving C-N bonds, e.g. nitriles, amides, hydantoins, carbamates, lactames, transamination reactions, or keto group formation from racemic mixtures by reactions involving acyl derivatives of racemic amines

Definitions

  • the present invention relates to a method for producing an optically active 3-aminonitrile compound which is useful as a raw material for pharmaceuticals, agricultural chemicals and the like or as a synthetic intermediate.
  • the method for producing the optically active 0-aminonitrile compound includes a chemical method and a biochemical method.
  • a chemical method for producing an optically active 0-aminonitrile compound is a method in which an optically active aminoalcohol is used as a raw material, a protecting group is introduced into an amino group, and then cyanation is performed using sodium cyanide (J . N at. Prod., 65, 29-31, 2002) have been reported.
  • this method cannot be said to be industrially advantageous because it uses expensive optically active amino alcohol as a raw material and has a problem in safety of sodium cyanide.
  • the biochemical method is generally considered to be industrially advantageous because the reaction can be carried out under mild conditions and does not easily cause side reactions such as hydrolysis of nitrile. There have been no reports on the production of 3-aminonitrile compounds. Summary of the Invention
  • An object of the present invention is to provide a new method for biochemically and efficiently producing an optically active aminonitrile compound useful as a raw material for pharmaceuticals, agricultural chemicals and the like or as a synthetic intermediate.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found no enzyme having an activity to stereoselectively hydrolyze a racemic or amide compound of monoaminoethrile having low optical purity.
  • the source has been discovered and the invention has been completed. That is, the present invention provides a compound represented by the general formula (I):
  • R 2 represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms or an alkynyl group having 2 to 8 carbon atoms, and R 2 represents
  • the amide compound of 0-aminonitrile which is a raw material of the present invention, has the general formula (I): Is represented by In the formula (I), represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkynyl group having 2 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms may be linear or branched. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butynole group, and an isobutynole group. Group, sec-butynole group, tert-butynole group, pentynole group, hexyl group, heptyl group, octyl group and the like.
  • alkoxy group having 1 to 8 carbon atoms examples include an alkoxy group in which an alkyl moiety is the above-described alkyl group.
  • alkenyl group having 2 to 8 carbon atoms examples include a butyl group and an aryl group.
  • alkynyl group having 2 to 8 carbon atoms examples include an ethynyl group and a propynyl group.
  • the alkyl group, alkoxy group, alkenyl group and alkynyl group may have a substituent, and examples of the substituent include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom and an iodine atom), a hydroxyl group, an amino group and a nitro group. And the like.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom and an iodine atom
  • a hydroxyl group an amino group and a nitro group.
  • R 2 is an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkynyl group having 2 to 8 carbon atoms, and 6 carbon atoms. 1 to 14 aryl groups or heterocyclic residues having 5 to 14 carbon atoms.
  • the alkyl group, alkoxy group, alkenyl group, and alkynyl group of R 2 may be linear or branched, and the same groups as those described above can be mentioned.
  • Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group and a naphthyl group.
  • heterocyclic residue having 5 to 14 carbon atoms examples include a pyridyl group.
  • alkyl group, alkoxy group, anorecenyl group, anorecynyl group, aryl group and heterocyclic residue of R 2 may have a substituent.
  • the same substituents as those exemplified in the above R can be mentioned.
  • R 2 is preferably an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 14 carbon atoms, more preferably a methyl group, an n-propyl group, an isopropyl group, an isobutyl group, a t-butyl group, A pentyl group and a phenyl group, most preferably an isopropyl group.
  • the amide compound (I) of —aminonitrile described above may be in a racemic form or may have a low optical purity.
  • Racemic] 3-aminonitrile amide compound (I) can be obtained by synthesizing a racemic / 3-aminonitrile compound represented by racemic 3-aminopentanenitrile by a method described in, for example, US Pat. It can be obtained by reacting this with acid anhydride or acid chloride by the method described in (1).
  • the amide compound (III) includes both racemic forms and optically active forms. That is, the optically active amide compound (III) or a salt thereof obtained by asymmetric hydrolysis of the racemic amide compound (III) by the method of the present invention described below is included in the present invention. It is a new compound.
  • Examples of the alkyl group having 2 to 4 carbon atoms as R 3 include those corresponding to 2 to 4 carbon atoms among the above-mentioned examples of the alkyl group having 1 to 8 carbon atoms.
  • the alkyl group having 1 to 8 carbon atoms and the aryl group having 6 to 14 carbon atoms as R 4 are the same as those described above.
  • R 3 is preferably an ethyl group.
  • R 4 is preferably a methyl group, an n-propyl group, an isopropyl group, an isobutynole group, a t-butyl group, a pentyl group, or a phenyl group, and more preferably an isopropyl group.
  • the salt include a metal salt, an ammonium salt, an organic amine salt, an inorganic acid salt, an organic acid salt and the like.
  • metal salts include lithium salts and magnesium salts
  • organic amine salts include triethylamine salts and cyclohexylamine salts
  • organic acid salts include acetates and methanesulfones. Acid salts and the like can be mentioned.
  • the enzyme source having asymmetric hydrolysis activity used in the present invention may be any enzyme species having the ability to asymmetrically hydrolyze the amide compound of racemic / 3-aminonitrile represented by the above formula (I). Although not particularly limited, among them, enzymes called lipases, esterases, proteases, amidases, and acylases are particularly effective.
  • the source of such enzymes is not particularly limited, but is preferably a representative of the genus Alcaligenes (A1ca1igenes), the genus Agrobacterium grobacterium, or the genus Corynebacterium. um), Klebsiella, Nocardia, Rhodococcus, Candida, Cryptococcus, C1aV Enzyme sources derived from microorganisms belonging to the genus ispora, the genus Debarvomvces, the genus Pichia, the genus Tricosporon, and the like.
  • Alcaligenes 'Faecaris (A 1 ca 1 igenesfaeca 1 is), Agrobacterium' Ammobacterium ume faciens, Corynenoc kuterium .Ammoniagenes (C orynebacteriuma mmonia ⁇ en_es), Sierra ⁇ Planticola (K leb—siella jg 1 antic o_la) Linebacterium flovesense (C orynebacteri um f 1 av _e scens), Noka 7 rea 'Crovenorela (Nocardiagloberu 1a), Nocanoredia.
  • C andidac & ntare 1 1 ii Candita.Catenulata (C andidaeatenu 1 ata), Candida.Guiriamondi (C andidagui 1 1 iermondii), Cantigu' Moki (C andidamogii), Candida tropicaris.
  • C andidatropica 1 is), Candida versatilis (C andidaversati 1 is), Cryptococcus' Fumicoffs (Cryptococcushumico 1 us_), Cryptococcus.
  • Alcaligenes' Faecaris (A 1 ca 1 igenesfaeca 1 is) IFO 1 3 1 1 1, Agrobacterium tamefaciens (A grobacterium tumefacie ns) IF 0 1 3 2 6 3, Corynebata teredium.
  • it may be an enzyme source derived from microorganisms such as Corynebacterium flavescens (Corynebacteri um flavescens), Nocanoleia globulinera (Nocardiag 1 devisu 1a), and Nocardia asteroides (Nocardia a_steroides). Particularly preferred.
  • the enzyme source is derived from a microorganism of Nocardiaasteroides IFO3384.
  • Nocardia'globerula Nocadariagloberu1a IFO13510.
  • microorganisms can be obtained from the Fermentation Research Institute (IFO), the Microbial Microalgae Center (IAM), the Institute of Applied Microbiology, The University of Tokyo, or can be isolated from nature. Mutations can be generated in these microorganisms to obtain strains having advantageous properties by this reaction.
  • IFO Fermentation Research Institute
  • IAM Microbial Microalgae Center
  • Mutations can be generated in these microorganisms to obtain strains having advantageous properties by this reaction.
  • the enzyme source a microorganism culture obtained by culturing the microorganism in an appropriate medium can be used, and a treated product of the culture can also be used.
  • the processed product include a culture supernatant obtained by a cell collection operation such as centrifugation from a microbial culture solution, microbial cells, a crushed microbial cell, a cell-free extract obtained from the crushed product, and an immobilized bacterium. Body, purified purified enzyme, immobilized enzyme and the like.
  • Microbial cells are preferred as the enzyme source.
  • the asymmetric hydrolysis reaction is usually carried out using one kind of the enzyme source, but it is also possible to carry out the reaction by mixing two or more kinds of enzyme sources having the same ability.
  • any medium can be used as long as these microorganisms can grow.
  • the carbon source of the medium include sugars such as glucose, sucrose, and maltose; organic acids such as acetic acid, citric acid, and fumaric acid and salts thereof; and alcohols such as ethanol and glycerol.
  • the nitrogen source of the above-mentioned medium for example, various inorganic acid ammonium salts, various organic acid ammonium salts and the like can be used in addition to general natural nitrogen sources such as peptone, meat extract, yeast extract, amino acids and the like.
  • inorganic salts, trace metal salts, vitamins and the like can be added to the above-mentioned medium as needed.
  • a compound having an ester bond or an amide bond for example, it is also effective to add a / 3-aminonitrile amide compound represented by the above formula (I) to the medium as an inducer of enzyme production.
  • the microorganism may be cultured according to a conventional method. For example, it is preferable to culture at pH 4 to 10 and at a temperature of 15 to 45 ° for 6 to 96 hours.
  • an enzymatic source having an asymmetric hydrolysis activity is allowed to act on a racemic [3-aminonitrile amide compound represented by the above formula (I)] to cause optically selective hydrolysis (asymmetric hydrolysis).
  • a racemic 0-aminonitrile amide compound represented by the above formula (I) as a substrate is dissolved or suspended in a reaction solvent. Before or after the substrate is added to the reaction solvent, an enzyme source having the above-mentioned asymmetric hydrolysis ability as a catalyst is added. The reaction is performed while controlling the reaction temperature and, if necessary, the reaction pH.
  • the substrate concentration of the reaction solution is not particularly limited as long as it is between 0.01 and 50% by weight, but is preferably 0.1 to 30% by weight in consideration of productivity.
  • the enzyme concentration of the reaction solution is usually 0.01 to 50% by weight, preferably 0.05 to 30% by weight.
  • the pH of the reaction solution depends on the optimum pH of the enzyme to be used, but is generally in the range of pH 4 to 11. From the viewpoint of suppressing a decrease in yield due to chemical hydrolysis and a decrease in optical purity due to racemization, etc., it is preferable to perform the reaction at pH 5 to 9.
  • the pH changes as the hydrolysis proceeds. In this case, it is desirable to adjust the pH to an optimum value by adding an appropriate neutralizing agent, for example, an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, or hydrochloric acid.
  • the reaction temperature is preferably 5 to 70 ° C, more preferably 10 to 50.
  • reaction solvent an aqueous medium such as water or a buffer (phosphate buffer, Tris buffer, glycine buffer, etc.) is usually used, but an asymmetric hydrolysis reaction can be performed even in a system containing an organic solvent. it can.
  • a buffer phosphate buffer, Tris buffer, glycine buffer, etc.
  • organic solvent examples include alcohol solvents such as methanol, ethanol, propanol, isopropanol, and butanol; and aliphatic solvents such as pentane and hexane.
  • Hydrocarbon solvents Aromatic hydrocarbon solvents such as benzene and toluene; Halogenated hydrocarbon solvents such as methylene chloride and chloroform; Ether solvents such as getyl ether and diisopropyl ether; Ester solvents such as acetone; ketone solvents such as acetone and methyl ethyl ketone; and other solvents such as acetate-tolyl.
  • the asymmetric hydrolysis reaction is preferably performed until about half the amount of the racemic amide compound (I) is hydrolyzed.
  • the reaction time is generally 1 hour to 1 week, preferably 1 to 72 hours, and it is preferable to select reaction conditions under which the reaction is completed.
  • the reaction may be interrupted at the initial stage of the reaction or may be caused to proceed excessively depending on the required optical purity and yield of the product.
  • the amide compound of the above formula (I)] is hydrolyzed stereoselectively, and the optically active / 3-aminoetrile compound (II) and the unreacted enantiomer are hydrolyzed.
  • An amide compound is formed.
  • the unreacted enantiomer amide compound is, particularly, a compound represented by the general formula (1 ′):
  • the generated optically active / 8-aminonitrile compound (II) and the unreacted enantiomeric amide compound should be isolated from the reaction mixture by a known method such as extraction, distillation, recrystallization, or column separation. Can be.
  • ⁇ ⁇ to acidic acetyl ether, diisopropyl ether, etc.
  • Ethers esters such as ethyl acetate and butyl acetate
  • hydrocarbons such as hexane, octane, and benzene
  • optically active monoamino acids formed by common solvents such as halogenated hydrocarbons such as methylene chloride.
  • Unreacted enantiomeric amide compounds can be selectively extracted while the nitrile compound (II) remains in the aqueous phase.
  • the optically active aminonitrile compound (II) remaining in the aqueous phase can be extracted and separated with a common organic solvent in the same manner, for example, after adjusting ⁇ to basicity.
  • the optical purity of the product can be measured by high-performance liquid chromatography (HPLC) using an optically active column after conversion to a derivative by acylation if necessary.
  • HPLC high-performance liquid chromatography
  • the optically active 3-aminopentane ditrinole obtained by this reaction is acylated with a benzoyl compound and then subjected to high performance liquid chromatography (HPLC) using an optical resolution column (Daicel Chemical Industry Co., Ltd., Chiral Cell OD).
  • HPLC high performance liquid chromatography
  • the unreacted enantiomeric amide compound can be hydrolyzed by an ordinary method while maintaining the optical activity, and the optically active compound obtained by the above-described asymmetric hydrolysis reaction] 3-aminonitrile compound ] -Aminonitrile compounds having a configuration opposite to that of (II).
  • Optical activity] 3-aminonitrile compound (II) can be amidated while maintaining the optical activity.
  • a target compound having higher optical purity is obtained. It is also possible.
  • optically active] 3-aminonitrile compound obtained by the present invention can be easily converted into an optically active] 3-amino acid carboxylic acid by hydrolyzing nitrile by acid treatment or the like while maintaining its optical activity.
  • Amide compounds and optically active] 3-amino acids can be produced.
  • Carrier gas Helium (lOOkPa)
  • Infrared absorption spectrum (cm- 1 ): 3288, 2968, 2934, 224, 1651, 1549, 1375, 1306, 1138, 1078, 962, 748, 621, 608.
  • the microorganisms listed in Table 1 were combined with 10 g of peptone, 10 g of meat extract, 5 g of yeast extract, and 3 g of sodium chloride (each 1 L) in sterile medium 1 Om 1 (pH 7.2).
  • the inoculated test tube was inoculated, and cultured at 30 at 2 days with reciprocal shaking. Next, 2 mL of the culture solution was taken from each test tube, the cells were collected by centrifugation, and washed once with 1 mL of 100 mM phosphate buffer (pH 7.0). The cells are suspended in 0.5 mL of lO OmM phosphate buffer (pH 7.0), and the racemic N-acetyl
  • 3-aminopentanenitrile was added to a test tube containing 2.5 mg, and reacted at 30 ° C. with shaking for 18 hours.
  • Alcal 1 genes faecai is IFO 13111 ku 88 34 R
  • Rhodococcus erythropol is IFO 12320 875 18 R
  • Rhodococcus erythropol is 1AM 1474 175 15 R
  • glucose 40 g yeast extract 3 g, diammonium hydrogen phosphate 6.5 g, potassium dihydrogen phosphate 1 g, magnesium sulfate heptahydrate 0.8 g, zinc sulfate water
  • Sterile culture medium consisting of 60 mg of hydrate, 90 mg of iron sulfate heptahydrate, 5 mg of copper sulfate pentahydrate, 1 Omg of manganese sulfate tetrahydrate, and lO Omg of sodium chloride (each per liter)
  • the cells were inoculated into a test tube containing 1 Om 1 (pH 7.0) and cultured at 30 ° C. for 2 days with reciprocal shaking.
  • Candida tropical is IFO 0618 ku 88 28 S
  • Candida versati 1 is IFO 1228 c 88 29 S
  • Infrared absorption spectrum (cm- 1 ): 3286, 2974, 2245, 1651, 1541, 1263, 242, 1136, 1095, 951, 721.
  • Example 7 Method for producing N-isopentanoyl-1-aminopentanenitrile 9.8 g of 3-aminopentanenitrile and 10.3 g of pyridine were dissolved in 10 OmL of methylene chloride, and isovaleric anhydride was added under ice-cooling. 20.5 g was added dropwise, and the mixture was stirred for 1 hour under ice cooling and for 4 hours at room temperature. After completion of the reaction, 2N hydrochloric acid 20 OmL 3 times, 2N The extract was washed three times with 20 OmL of a constant aqueous sodium hydroxide solution and once with 20 OmL of a saturated saline solution. After the washed reaction product was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain NTsopentanoyl-13-aminopentanenitrile (1.5Og). Yield 82%.
  • the microorganisms described in Table 3 were cultured as in Example 2. After taking 1 OmL of each culture solution, the cells were collected by centrifugation, and washed once with 2 mL of 10 OmM phosphate buffer (pH 7.0). The cells were suspended in 1 mL of 10 OmM phosphate buffer (pH 7.0), and added to a test tube previously filled with 37.5 ⁇ 1 of the substrate shown in Table 3 manufactured in Examples 1 and 4 to 9. The reaction was carried out with shaking at 19 ° C for 19-45 hours.
  • Substrate A (RS) -1-N-acetyl-1-3-aminopentanenitrile
  • Nocanoledia No cardiagloberula IFO 135 10 strains, 20 g of peptone, 10 g of meat extract, 5 g of yeast extract, 10 g of darcose, 3 g of sodium chloride, 1 drop of Adekinol
  • the cells were inoculated into a Sakaguchi flask containing 40 Om 1 (pH 7.2) of a sterilized medium having the following composition (per L) and cultured at 29 ° C. with reciprocal shaking for 2 days. The culture was centrifuged, and the cells were collected and washed once with 100 mL of 200 mM phosphate buffer ( ⁇ 7.0).
  • the cells were suspended in 40 mL of 20 OmM phosphate buffer (pH 7.0) to obtain a cell suspension.
  • Nokanolady completed ⁇ Grovenorella (Nocadaria_g1qberuu1a_) IFO13510 strain was cultured in the same manner as in Example 11 to prepare a cell suspension.
  • OmL of the bacterial cell suspension was added to a Sakaguchi flask containing 7.1 mmo1, and the mixture was shaken at 30 ° C for 64 hours. While reacting.
  • 3-aminopentanitrile was formed at a conversion of 28%.
  • the reaction mixture was adjusted to pH 5 by adding 2N hydrochloric acid, 3 OmL of ethyl acetate was added, and the mixture was sufficiently stirred. After centrifugation, the ethyl acetate phase was removed. After adding 2N sodium hydroxide to adjust the pH to 10, the mixture was extracted with 9 OmL of ethyl acetate. After the extraction solvent was dehydrated with anhydrous sodium sulfate, purification was carried out by distillation to obtain 139 mg of 3-aminopentanenitrinole.
  • Nocardia globulare obtained by the culture method described in Example 11 was added thereto.
  • the above cell suspension was added to a 5 L-volume jafermenter containing 30 g of racemic N-isobutylyl-3_aminopentanenitrile in advance, and the reaction was carried out with stirring at 30 ° C for 26 hours. After the completion of the reaction, the product was analyzed in the same manner as in Example 11 to find that 3-aminopentanitrile was formed at a conversion of 35%.
  • the reaction solution was adjusted to pH 4 by adding 15% sulfuric acid, and the reaction solution was extracted twice with 2.5 volumes of methylene chloride to give N- ⁇ fsobutyryl 3- 3-aminopentane nitrile. Was recovered.
  • the aqueous phase was adjusted to pH 11 using 30% sodium hydroxide, and the reaction solution was subjected to extraction using 2.5 times the volume of methylene chloride three times to recover 3-aminopentane nitrile.
  • the solvent was distilled off under reduced pressure, and 5.8 g of 3-aminopentane nitrile and 18.1 g of N-isobutyryl_-3-aminopentane nitrile were obtained. I got it.
  • Carrier gas Helium (140 kPa) Industrial applicability
  • the present invention provides an optically active aminonitrile compound and its enantiomer by reacting an enzymatic source having asymmetric hydrolysis activity to stereoselectively hydrolyze an amide compound of 0-aminonitrile.
  • Amid compounds can be produced efficiently:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A process for efficiently producing an optically active β-aminonitrile compound that is useful as a starting material or synthetic intermediate for drugs, agricultural chemicals, etc. In particular, a process for producing an optically active β-aminonitrile compound and an amide compound as antipode thereof, comprising bringing a β-aminonitrile amide compound of racemic form or low optical purity into contact with an enzyme source capable of asymmetric hydrolysis.

Description

明細書  Specification
光学活性 ]3—ァミノ二トリル化合物及びその対掌体アミ ド化合物の製造方法 技術分野  OPTICAL ACTIVITY] PROCESS FOR PRODUCING 3-AMINONITRILE COMPOUNDS AND ANTEMIAME AMIDE COMPOUNDS
本発明は、 医薬、 農薬等の原料又は合成中間体として有用な光学活性 ]3—アミ ノニトリル化合物の製造方法に関する。 背景技術  The present invention relates to a method for producing an optically active 3-aminonitrile compound which is useful as a raw material for pharmaceuticals, agricultural chemicals and the like or as a synthetic intermediate. Background art
光学活性 0—ァミノ二トリル化合物の製造方法としては、 化学的方法と生化学 的方法が挙げられる。  The method for producing the optically active 0-aminonitrile compound includes a chemical method and a biochemical method.
光学活性 0—ァミノ二トリル化合物の化学的製法としては、 従来、 光学活性ァ ミノアルコールを原料として、 ァミノ基に保護基を導入した後、 シアン化ナトリ ゥムを用いてシァノ化する方法 (J . N a t . P r o d . , 6 5 , 2 9— 3 1, 2 0 0 2 ) が報告されている。 しかし、 この方法は高価な光学活性アミノアルコ ールを原料とすること、 またシアン化ナトリウムの安全性に問題があることから 工業的に有利な方法であるとは言い難い。  Conventionally, a chemical method for producing an optically active 0-aminonitrile compound is a method in which an optically active aminoalcohol is used as a raw material, a protecting group is introduced into an amino group, and then cyanation is performed using sodium cyanide (J . N at. Prod., 65, 29-31, 2002) have been reported. However, this method cannot be said to be industrially advantageous because it uses expensive optically active amino alcohol as a raw material and has a problem in safety of sodium cyanide.
一方、 生化学的方法は一般に温和な条件で反応を行うことができ、 二トリルの 加水分解等の副反応を引き起こしにくいため、 工業的に有利と考えられるが、 生 化学的製法による光学活性 ]3—アミノニトリル化合物の製法に関しては今までに 報告がない。 発明の要約  On the other hand, the biochemical method is generally considered to be industrially advantageous because the reaction can be carried out under mild conditions and does not easily cause side reactions such as hydrolysis of nitrile. There have been no reports on the production of 3-aminonitrile compounds. Summary of the Invention
本発明の課題は、 医薬、 農薬等の原料又は合成中間体として有用な光学活性 ーァミノ二トリル化合物を生化学的に効率よく製造するための新たな方法を提供 することである。  An object of the present invention is to provide a new method for biochemically and efficiently producing an optically active aminonitrile compound useful as a raw material for pharmaceuticals, agricultural chemicals and the like or as a synthetic intermediate.
本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、 ラセミ体又は低光 学純度の 一アミノエトリルのアミド化合物を立体選択的に加水分解する活性を 有する今までに報告例のない酵素源を発見し、 本発明を完成するに至った。 即ち、 本発明は、 一般式 ( I ) ;
Figure imgf000003_0001
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found no enzyme having an activity to stereoselectively hydrolyze a racemic or amide compound of monoaminoethrile having low optical purity. The source has been discovered and the invention has been completed. That is, the present invention provides a compound represented by the general formula (I):
Figure imgf000003_0001
(式中、 は炭素数 1〜8のアルキル基、 炭素数 1〜8のアルコキシ基、 炭素 数 2〜 8のアルケニル基又は炭素数 2 ~ 8のアルキニル基を示し、 R 2は炭素数(In the formula, represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms or an alkynyl group having 2 to 8 carbon atoms, and R 2 represents
1〜8のアルキル基、 炭素数 1〜8のアルコキシ基、 炭素数 2〜8のアルケニル 基、 炭素数 2〜 8のアルキニル基、 炭素数 6〜 1 4のァリール基又は炭素数 5〜Alkyl group having 1 to 8 carbon atoms, alkoxy group having 1 to 8 carbon atoms, alkenyl group having 2 to 8 carbon atoms, alkynyl group having 2 to 8 carbon atoms, aryl group having 6 to 14 carbon atoms or 5 to 5 carbon atoms
1 4の複素環残基を示す。 ) で表されるアミ ド化合物に、 不斉加水分解活性を有 する酵素源を作用させることを特徴とする、 一般式 ( I I ) ;It shows 14 heterocyclic residues. Wherein an enzyme source having asymmetric hydrolysis activity is allowed to act on the amide compound represented by the general formula (II);
Figure imgf000003_0002
Figure imgf000003_0002
(式中、 は上記一般式 (I ) 中で定義した通り。 *は不斉炭素原子を示す。 ) で表される光学活性 /3—ァミノ二トリル化合物及びその対掌体アミ ド化合物の 製造方法に関する。 発明の詳細な開示 (Wherein is as defined in the above general formula (I). * Represents an asymmetric carbon atom.) Production of an optically active / 3-aminonitrile compound represented by the following formula: About the method. Detailed Disclosure of the Invention
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の原料である 0—アミノニトリルのアミ ド化合物は、 一般式 ( I ) ;
Figure imgf000003_0003
で表される。 • 前記式 ( I ) において、 は炭素数 1〜8のアルキル基、 炭素数 1〜8のァ ルコキシ基、 炭素数 2〜 8のアルケニル基又は炭素数 2〜 8のアルキニル基を示 す。
The amide compound of 0-aminonitrile, which is a raw material of the present invention, has the general formula (I):
Figure imgf000003_0003
Is represented by In the formula (I), represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkynyl group having 2 to 8 carbon atoms.
前記炭素数 1〜8のアルキル基としては、 直鎖状であっても分岐鎖状であって も良く、 例えば、 メチル基、 ェチル基、 n—プロピル基、 イソプロピル基、 n— ブチノレ基、 イソブチノレ基、 s e c一プチノレ基、 t e r t—プチノレ基、 ペンチノレ基、 へキシル基、 ヘプチル基、 ォクチル基等が挙げられる。  The alkyl group having 1 to 8 carbon atoms may be linear or branched. Examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butynole group, and an isobutynole group. Group, sec-butynole group, tert-butynole group, pentynole group, hexyl group, heptyl group, octyl group and the like.
前記炭素数 1〜8のアルコキシ基としては、 アルキル部分が上記アルキル基で あるアルコキシ基が挙げられる。  Examples of the alkoxy group having 1 to 8 carbon atoms include an alkoxy group in which an alkyl moiety is the above-described alkyl group.
前記炭素数 2〜8のアルケニル基としては、 ビュル基、 ァリル基等が挙げられ る。  Examples of the alkenyl group having 2 to 8 carbon atoms include a butyl group and an aryl group.
前記炭素数 2〜 8のアルキニル基としては、 ェチニル基、 プロピニル基等が挙 げられる。  Examples of the alkynyl group having 2 to 8 carbon atoms include an ethynyl group and a propynyl group.
上記アルキル基、 アルコキシ基、 アルケニル基及びアルキニル基は置換基を有 していても良く、 置換基としては、 ハロゲン原子 (フッ素原子、 塩素原子、 臭素 原子、 ヨウ素原子) 、 水酸基、 アミノ基、 ニトロ基等が挙げられる。  The alkyl group, alkoxy group, alkenyl group and alkynyl group may have a substituent, and examples of the substituent include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom and an iodine atom), a hydroxyl group, an amino group and a nitro group. And the like.
として、 好ましくは炭素数 1〜8のアルキル基であり、 より好ましくは炭 素数 1〜4のアルキル基であり、 最も好ましくはェチル基である。  Is preferably an alkyl group having 1 to 8 carbon atoms, more preferably an alkyl group having 1 to 4 carbon atoms, and most preferably an ethyl group.
前記式 ( I ) において、 R 2は炭素数 1〜8のアルキル基、 炭素数 1〜8のァ ルコキシ基、 炭素数 2〜 8のアルケニル基、 炭素数 2〜 8のアルキニル基、 炭素 数 6〜 1 4のァリール基又は炭素数 5〜 1 4の複素環残基を示す。 In the above formula (I), R 2 is an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkynyl group having 2 to 8 carbon atoms, and 6 carbon atoms. 1 to 14 aryl groups or heterocyclic residues having 5 to 14 carbon atoms.
上記 R 2のアルキル基、 アルコキシ基、 アルケニル基及びアルキニル基は、 直 鎖状であっても分岐鎖状であってもよく、 前記 における例示と同様の基が挙 げられる。 The alkyl group, alkoxy group, alkenyl group, and alkynyl group of R 2 may be linear or branched, and the same groups as those described above can be mentioned.
炭素数 6〜 1 4のァリール基としては、 フエニル基、 ナフチル基等が挙げられ る。  Examples of the aryl group having 6 to 14 carbon atoms include a phenyl group and a naphthyl group.
炭素数 5〜 1 4の複素環残基としては、 ピリジル基等が挙げられる。  Examples of the heterocyclic residue having 5 to 14 carbon atoms include a pyridyl group.
なお、 上記 R 2のアルキル基、 アルコキシ基、 ァノレケニル基、 ァノレキニル基、 ァリール基及び複素環残基は、 置換基を有していても良く、 置換基としては、 前 記 R において例示したものと同様の置換基が挙げられる。 In addition, the alkyl group, alkoxy group, anorecenyl group, anorecynyl group, aryl group and heterocyclic residue of R 2 may have a substituent. The same substituents as those exemplified in the above R can be mentioned.
R2として、 好ましくは炭素数 1〜8のアルキル基、 炭素数 6〜 14のァリー ル基であり、 より好ましくはメチル基、 n—プロピル基、 イソプロピル基、 イソ プチル基、 t一ブチル基、 ペンチル基、 フエニル基であり、 最も好ましくはイソ プロピル基である。 R 2 is preferably an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 14 carbon atoms, more preferably a methyl group, an n-propyl group, an isopropyl group, an isobutyl group, a t-butyl group, A pentyl group and a phenyl group, most preferably an isopropyl group.
上記 —ァミノ二トリルのアミ ド化合物 (I ) は、 ラセミ体であっても良く、 また低光学純度のものであっても良い。  The amide compound (I) of —aminonitrile described above may be in a racemic form or may have a low optical purity.
ラセミ体 ]3—アミノニトリルのアミ ド化合物 ( I ) は、 例えば US 59028 83公報に記載の方法によりラセミ体 3—ァミノペンタン二トリルに代表される ラセミ体 /3 _アミノニトリル化合物を合成後、 公知の方法によりこのものに酸無 水物又は酸クロライ ドを反応させることにより得られる。  Racemic] 3-aminonitrile amide compound (I) can be obtained by synthesizing a racemic / 3-aminonitrile compound represented by racemic 3-aminopentanenitrile by a method described in, for example, US Pat. It can be obtained by reacting this with acid anhydride or acid chloride by the method described in (1).
なお、 前記式 ( I ) において が炭素数 2〜4のアルキル基であり、 R2が 炭素数 1〜8のアルキル基又は炭素数 6〜14のァリール基であるアミ ド化合物、 即ち、 下記式 ( I I I ) ; In the formula (I), is an amide compound in which is an alkyl group having 2 to 4 carbon atoms, and R 2 is an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms; (III);
Figure imgf000005_0001
Figure imgf000005_0001
(式中、 R 3は炭素数 2〜 4のアルキル基を示し、 R4は炭素数 1〜8のアルキ ル基又は炭素数 6〜14のァリール基を示す。 ) で表されるアミ ド化合物又はそ の塩は、 文献未収載の新規化合物である。 上記アミ ド化合物 ( I I I) は、 ラセ ミ体も光学活性体も含むものである。 つまり、 ラセミ体の前記アミ ド化合物 (I I I) を、 以下に述べる本発明の方法で不斉加水分解して得られる光学活性なァ ミ ド化合物 ( I I I) 又はその塩も本発明に含まれ、 言うまでもなく、 新規化合 物である。 (Wherein, R 3 represents an alkyl group having 2 to 4 carbon atoms, and R 4 represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.) Or its salt is a novel compound that has not been published in the literature. The amide compound (III) includes both racemic forms and optically active forms. That is, the optically active amide compound (III) or a salt thereof obtained by asymmetric hydrolysis of the racemic amide compound (III) by the method of the present invention described below is included in the present invention. It is a new compound.
上記 R 3としての炭素数 2〜 4のアルキル基は、 前述した炭素数 1〜 8のアル キル基の例示のうち、 炭素数 2〜4に対応するものが挙げられる。 上記 R4としての炭素数 1〜 8のアルキル基及び炭素数 6〜 14のァリール基 は、 前述したものと同様のものが挙げられる。 Examples of the alkyl group having 2 to 4 carbon atoms as R 3 include those corresponding to 2 to 4 carbon atoms among the above-mentioned examples of the alkyl group having 1 to 8 carbon atoms. The alkyl group having 1 to 8 carbon atoms and the aryl group having 6 to 14 carbon atoms as R 4 are the same as those described above.
上記 R3としては、 好ましくはェチル基である。 R 3 is preferably an ethyl group.
上記 R4としては、 好ましくはメチル基、 n—プロピル基、 イソプロピル基、 イソブチノレ基、 t一ブチル基、 ペンチル基、 フエニル基であり、 より好ましくは イソプロピル基である。 ' 上記塩としては、 金属塩、 アンモニゥム塩、 有機アミン塩、 無機酸塩、 有機酸 塩等が挙げられる。 具体的には、 金属塩としてはリチウム塩、 マグネシウム塩等 が挙げられ、 有機アミン塩としては、 トリェチルァミン塩、 シクロへキシルアミ ン塩等が挙げられ、 そして有機酸塩としては、 酢酸塩、 メタンスルホン酸塩等を 挙げることができる。 R 4 is preferably a methyl group, an n-propyl group, an isopropyl group, an isobutynole group, a t-butyl group, a pentyl group, or a phenyl group, and more preferably an isopropyl group. 'Examples of the salt include a metal salt, an ammonium salt, an organic amine salt, an inorganic acid salt, an organic acid salt and the like. Specifically, metal salts include lithium salts and magnesium salts, and organic amine salts include triethylamine salts and cyclohexylamine salts, and organic acid salts include acetates and methanesulfones. Acid salts and the like can be mentioned.
本発明において使用する不斉加水分解活性をもつ酵素源は、 前記式 ( I) に示 されるラセミ体 /3—ァミノ二トリルのアミ ド化合物を不斉加水分解する能力を有 すれば酵素種を問わないが、 その中でもリパーゼ類、 エステラーゼ類、 プロテア ーゼ類、 アミダーゼ類、 アシラーゼ類と称される酵素が特に有効である。  The enzyme source having asymmetric hydrolysis activity used in the present invention may be any enzyme species having the ability to asymmetrically hydrolyze the amide compound of racemic / 3-aminonitrile represented by the above formula (I). Although not particularly limited, among them, enzymes called lipases, esterases, proteases, amidases, and acylases are particularly effective.
そのような酵素源としては、 特に制限はないが、 代表的なものとして、 好まし くは、 アルカリゲネス (A 1 c a 1 i g e n e s) 属、 ァグロパクテリゥム g r o b a c t e r i um) 属、 コリネノ クテリゥム (C o r y n e b a c t e r i um) 属、 クレブシエラ (K l e b s i e l l a) 属、 ノカルディア (No c a r d i a ) 属、 ロドコッカス (Rh o d o c o c c u s) 属、 キャンディダ (C a n d i d a) 属、 タリプトコッカス (C r y p t o c o c c u s) 属、 ク ラビスポラ (C 1 a V i s p o r a ) 属 、 デバリオマイセス (D e b a r v o m v c e s ) 属 、 ピキア (P i c h i a ) 属 、 トリコスポロン (T r i c h o s p o r o n) 属に属する微生物由来の酵素源等が挙げられる。  The source of such enzymes is not particularly limited, but is preferably a representative of the genus Alcaligenes (A1ca1igenes), the genus Agrobacterium grobacterium, or the genus Corynebacterium. um), Klebsiella, Nocardia, Rhodococcus, Candida, Cryptococcus, C1aV Enzyme sources derived from microorganisms belonging to the genus ispora, the genus Debarvomvces, the genus Pichia, the genus Tricosporon, and the like.
より好ましくは、 アルカリゲネス 'ファェカリス (A 1 c a 1 i g e n e s f a e c a 1 i s ) 、 ァグロパクテリゥム 'ッメファシエンス (A g r o b a c t e r i u m t ume f a c i e n s) 、 コリネノくクテリゥム .アンモニアゲ ネス (C o r y n e b a c t e r i u m a mm o n i a ^ e n_e s ) 、 クレブ シエラ ■プランティコラ (K l e b—s i e l l a jg 1 a n t i c o_l a ) 、 コ リネバクテリゥム .フラベセンス (C o r y n e b a c t e r i um f 1 a v _e s c e n s ) 、 ノカ 7レアィァ 'クロベノレ一ラ (N o c a r d i a g l o b e r u 1 a ) 、 ノカノレディア .ァステロイデス (N o c a r d i a a s t e r o i d e s ) 、 ロドコッカス 'エリス口ポリス (R h o d o c o c c u s e r y t h r o p o 1 i s ) 、 キャンディダ 'キャンタレリ (C a n d i d a c & n t a r e 1 1 i i ) 、 キャンディタ .カテヌラタ (C a n d i d a e a t e n u 1 a t a ) 、 キャンディダ .グイリアモンディ (C a n d i d a g u i 1 1 i e r m o n d i i ) 、 キャンティグ 'モキ (C a n d i d a m o g i i ) 、 キャンディダ . トロピカリス (C a n d i d a t r o p i c a 1 i s ) 、 キヤ ンデイダ .ベルサティリス (C a n d i d a v e r s a t i 1 i s ) 、 クリプ トコッカス ' フミコフス (C r y p t o c o c c u s h u m i c o 1 u s_) 、 クリプトコッカス .ラウレンティ (C r y p t o c o c c u s 1 a u r e n t i i ) 、 クラビスホラ 'ノレシタユエ (C 1 a V i s p o r a 1 u s i t a n i a e ) 、 デノくリォマィセス 'カスレソニ (D e b a r y o m y c e s c a r s o n i i ) 、 デノくリォマイセス .カステリ (D e b a r y o m y c e s c a s t e 1 1 i i ) 、 ピキア .ブルトニ (P i c h i a b u r t o n i i ) 、 トリコ スポロン .カタネゥム (T r i c h o s p o r o n c u t a n e u m) の微生 物に由来する酵素源である。 More preferably, Alcaligenes 'Faecaris (A 1 ca 1 igenesfaeca 1 is), Agrobacterium' Ammobacterium ume faciens, Corynenoc kuterium .Ammoniagenes (C orynebacteriuma mmonia ^ en_es), Sierra ■ Planticola (K leb—siella jg 1 antic o_la) Linebacterium flovesense (C orynebacteri um f 1 av _e scens), Noka 7 rea 'Crovenorela (Nocardiagloberu 1a), Nocanoredia. 'Canterelli (C andidac & ntare 1 1 ii), Candita.Catenulata (C andidaeatenu 1 ata), Candida.Guiriamondi (C andidagui 1 1 iermondii), Cantigu' Moki (C andidamogii), Candida tropicaris. C andidatropica 1 is), Candida versatilis (C andidaversati 1 is), Cryptococcus' Fumicoffs (Cryptococcushumico 1 us_), Cryptococcus. usitaniae), Denoku Ryomyses' Kaslesoni (D ebaryomycescarsonii) ), Denoyomyces caste (D ebaryomycescaste 1 1 ii), Pichia burtonii (Pichiaburtonii), and Trichosporone.
更に好ましくは、 アルカリゲネス 'ファェカリス (A 1 c a 1 i g e n e s f a e c a 1 i s ) I F O 1 3 1 1 1、 ァグロバタテリゥム ' ッメファシエンス (A g r o b a c t e r i u m t u m e f a c i e n s ) I F 0 1 3 2 6 3、 コリネバタテリゥム .アンモニアゲネス (C o r y n e b a c t e r i u m _a_ mm o n i a g e n e s ) I F 0 1 2 6 1 2、 クレブシエラ 'プランティコラ ( K l e b s i e l l a p 1 a n t i c o 1 a ) I F O 3 3 1 7 コリネバクテ リウム,フラべセンス ( C o r V n e b a c t e r i u m f l a y e s c e n s_) I F O 1 4 1 3 6 N ノカルディア ' グロべルーラ (N o c a r d i a g 1 o b e r u 1 a ) I F O 1 3 5 1 0、 ノカルディア 'ァステロイデス o c & r d i a a s t e r o i d e s ) I F O 3 4 2 3 , ノカルディア 'ァステロイ デス (N o c a r d i a a s t e r o i d e s.) I F O 3 3 8 4、 ロドコッカ ス ·エリス口ポリス (R h o d o c o c c u s e r y t h r o p o l i s ) I FO 1 2 3 20、 ロ ドコッカス 'エリス口ポリス (R h o d o c o c c u s _e_ r y t h r o p o l i s ) I AMI 4 74, キャンディダ · キャンタレリ (C a n d i d a c a n t a r e l l i i ) I F O 1 26 1、 キャンディダ ·カテヌ ラタ (C a n d i d a c a t e n u l a t a) I F O 74 5、 キャンディダ . グイリアモンディ (C a n d i d a g u i l l i e r mo n d i i ) I F O 4 54、 キャンディダ 'モギ (C a n d i d a m o g i i ) I F04 3 6、 キヤ ンディダ . トロピカリス (C a n d i d a t r o p i c a 1 i s ) I FO 6 1 8、 キャンディダ .ベノレサティリ ス (C a n d i d a v e r s a t i 1 i s ) I F01 2 28、 タリプトコッカス ' フミコラス (C r y p t o c o c c u s h urn i c o 1 u s ) I F01 5 2 7、 クリプトコッカス ' ラウレンティ (C r y p t o c o c c u s _1 a u r e n t i i ) I FO 60 9、 クラビスポラ 'ノレ シタニェ (C l a v i s p o r a 1 u s i t a n i a e ) I F O 1 0 1 9、 デ バリオマイセス - カスレソニ (D e b a r y omy c e s c a r s o n i i ) I FO 946、 デバリオマイセス ' カノレソニ (D e b a r v omv c e s c a r s o n i i ) I FO 7 9 5、 デバリオマイセス ' カステリ (D e b a r v o my c e s c a s t e 1 1 i i ) I F O 1 3 5 9、 ピキア · ブルトニ (P i c h i a_ b u r t o n i i ) I F0844、 トリコスポロン ' カタネゥム (T r i e h o s p o r o n c u t a n e um) I F O 1 1 9 8に由来する酵素源である。 上記酵素源の中でも、 コリネバタテリゥム (C o r y n e b a c t e r i um ) 属、 ノカルディア (No c a r d i a) 属に属する微生物由来の酵素源が特に 好ましい。 More preferably, Alcaligenes' Faecaris (A 1 ca 1 igenesfaeca 1 is) IFO 1 3 1 1 1, Agrobacterium tamefaciens (A grobacterium tumefacie ns) IF 0 1 3 2 6 3, Corynebata teredium. (C orynebacterium _a_ mm oniagenes) IF 0 1 2 6 1 2, Klebsiella 'Planticola (Klebsiellap 1 antico 1a) IFO 3 3 1 7 Corynebacterium, Flabescens (C or V nebacteriumflayescen s_) IFO 1 4 1 3 6 N Nocardia 'globerula (Nocardiag 1 oberu 1a) IFO 1 3 5 10 0, Nocardia' Asteroides oc & rdiaasteroides) IFO 3 4 2 3, Nocardia 'Asteroides (Nocardiaasteroide s.) IFO 3 3 8 4, Rodococka Sus Ellis Mouth Police (R hodococcuserythropoli s) I FO 1 2 3 20, Rhodococcus' Eris Mouth Police (R hodococcus _e_rythropolis) I AMI 474, Candida Canterelli (C andidacantarellii) IFO 1 26 1, Candida Catenulata (C andidacatenulata) IFO 74 5, Candida. Guilliamundi (C andidaguillier mo ndii) IFO 454, Candida 'Mogi (C andidamogii) I F04 36, Candida. Tropicalis (C andidatropica 1 is) I FO 6 1 8 Candida venoresatiris (C andidaversati 1 is) I F01 2 28, Cryptococcus urn ico 1 us I F01 5 27, Cryptococcus laurentii (Cryptococcus _1 aurentii) IFO 60 9, Clavispora 'Nore Citagné (C lavispora 1 usitaniae) IFO 110, 9, De Barrio Myces-Kaslesoni (D ebary omy cescarsonii) I FO 946, De Bario Myces' Canole Sonni (D ebarv omv cescarsonii) IFO795, Debariomyces s castelli (Debarvo my cescaste 1 1 ii) IFO1359, Pichia burtonii (Pichia_burtonii) I F0844, Trichosporon's (T riehoscuton) It is an enzyme source derived from IFO 1 198. Among the above enzyme sources, an enzyme source derived from a microorganism belonging to the genus Corynebacterium or the genus Nocardia is particularly preferred.
また、 コリネバクテリウム · フラベセンス (C o r y n e b a c t e r i um f l a v e s c e n s) 、 ノカノレアイァ . グロべノレーラ (N o c a r d i a g 1 o b e r u 1 a ) 、 ノカルディア 'ァステロイデス (N o c a r d i a a_ s t e r o i d e s) の微生物に由来する酵素源であることが、 特に好ましい。 更に、 コリネバクテリゥム 'ブラべセンス (C o r y n e b a c t e r i um f l a v e s c e n s) I F01 4 1 3 6、 ノカルディア ' グロべルーラ (N o c a r d i a ¾ 1 o b e r u 1 a ) I FO 1 3 5 1 0、 ノカルディァ · ァス テロイデス (N o c a r d i a a s t e r o i d e s) I F。 34 2 3、 ノカ ノレディア .ァステロイデス (N o c a r d i a a s t e r o i d e s ) I FO 3 3 8 4の微生物に由来する酵素源であることが、 特に好ましい。 In addition, it may be an enzyme source derived from microorganisms such as Corynebacterium flavescens (Corynebacteri um flavescens), Nocanoleia globulinera (Nocardiag 1 oberu 1a), and Nocardia asteroides (Nocardia a_steroides). Particularly preferred. Furthermore, Corynebacterium 'Corynebacteri um flavescens) I F01 4 1 36, Nocardia' globerulla (Nocardia ¾ 1 oberu 1a) I FO 13 1510, Nocardia vas Teloides (Nocardiaasteroides) IF. It is particularly preferable that the enzyme source is derived from a microorganism of Nocardiaasteroides IFO3384.
最も好ましくは、 ノカルディア 'グロべルーラ (N o c a r d i a g l o b e r u 1 a ) I F O 1 3 5 1 0に由来する酵素源である。  Most preferably, it is an enzyme source derived from Nocardia'globerula (Nocadariagloberu1a) IFO13510.
これらの微生物は、 財団法人発酵研究所 (I FO) 、 東京大学応用微生物研究 所微生物微細藻類総合センター (I AM) 等から入手することができるが、 自然 界から分離することもできる。 なお、 これらの微生物に変異を生じさせて本反応 により有利な性質を有する株を得ることもできる。  These microorganisms can be obtained from the Fermentation Research Institute (IFO), the Microbial Microalgae Center (IAM), the Institute of Applied Microbiology, The University of Tokyo, or can be isolated from nature. Mutations can be generated in these microorganisms to obtain strains having advantageous properties by this reaction.
また、 これらの微生物から単離した酵素遺伝子を、 通常の方法で各種宿主べク タ一系に導入した遺伝子操作微生物の利用も可能である。  It is also possible to use genetically engineered microorganisms in which enzyme genes isolated from these microorganisms have been introduced into various host vector systems by a usual method.
本発明においては、 酵素源として、 上記微生物を適当な培地中で培養して得ら れる微生物培養液を使用できるほか、 培養液の処理物を使用することもできる。 該処理物としては、 微生物培養液から遠心分離等の集菌操作によって得られる培 養上清、 微生物菌体、 微生物菌体の破砕物、 該破砕物より得られる無細胞抽出物、 固定化菌体、 精製された精製酵素、 固定化酵素等が挙げられる。  In the present invention, as the enzyme source, a microorganism culture obtained by culturing the microorganism in an appropriate medium can be used, and a treated product of the culture can also be used. Examples of the processed product include a culture supernatant obtained by a cell collection operation such as centrifugation from a microbial culture solution, microbial cells, a crushed microbial cell, a cell-free extract obtained from the crushed product, and an immobilized bacterium. Body, purified purified enzyme, immobilized enzyme and the like.
上記酵素源としては、 微生物菌体が好ましい。  Microbial cells are preferred as the enzyme source.
本発明においては、 前記酵素源を通常 1種類用いて不斉加水分解反応を実施す るが、 同様な能力を有する 2種類以上の酵素源を混合して反応を行うことも可能 である。  In the present invention, the asymmetric hydrolysis reaction is usually carried out using one kind of the enzyme source, but it is also possible to carry out the reaction by mixing two or more kinds of enzyme sources having the same ability.
本発明においてこれらの微生物を培養するための培地としては、 通常これらの 微生物が生育し得るものであればレ、ずれのものでも使用できる。 上記培地の炭素 源としては、 例えばグルコース、 シユークロース、 マルトース等の糖類;酢酸、 クェン酸、 フマル酸等の有機酸又はその塩;エタノール、 グリセロール等のアル コール類等を使用できる。 上記培地の窒素源としては、 例えば、 ペプトン、 肉ェ キス、 酵母エキス、 アミノ酸等の一般天然窒素源のほか、 各種無機酸アンモニゥ ム塩、 各種有機酸アンモニゥム塩等が使用できる。 上記培地には、 その他、 無機 塩、 微量金属塩、 ビタミン等を必要に応じて添加することができる。  In the present invention, as a medium for culturing these microorganisms, generally, any medium can be used as long as these microorganisms can grow. Examples of the carbon source of the medium include sugars such as glucose, sucrose, and maltose; organic acids such as acetic acid, citric acid, and fumaric acid and salts thereof; and alcohols such as ethanol and glycerol. As the nitrogen source of the above-mentioned medium, for example, various inorganic acid ammonium salts, various organic acid ammonium salts and the like can be used in addition to general natural nitrogen sources such as peptone, meat extract, yeast extract, amino acids and the like. In addition, inorganic salts, trace metal salts, vitamins and the like can be added to the above-mentioned medium as needed.
また、 高い酵素活性を得るために、 エステル結合又はアミ ド結合をもつ化合物、 例えば前記式 ( I ) で示される /3—ァミノ二トリルのアミ ド化合物等を酵素産生 の誘導物質として培地に添加することも有効である。 In addition, in order to obtain high enzyme activity, a compound having an ester bond or an amide bond, For example, it is also effective to add a / 3-aminonitrile amide compound represented by the above formula (I) to the medium as an inducer of enzyme production.
微生物の培養は常法に従って行えばよく、 例えば、 pH4〜10、 温度 1 5〜 45°〇の範囲で6〜96時間培養するのが好ましい。  The microorganism may be cultured according to a conventional method. For example, it is preferable to culture at pH 4 to 10 and at a temperature of 15 to 45 ° for 6 to 96 hours.
本発明においては、 前記式 ( I) で示されるラセミ体 ]3—アミノニトリルのァ ミ ド化合物に、 不斉加水分解活性を有する酵素源を作用させて光学選択的加水分 解 (不斉加水分解) を行うことにより、 前記式 ( I I) で表される光学活性 ]3— アミノニトリル化合物及びその対掌体アミ ド化合物を製造するが、 具体的には以 下の方法で行うことができる。  In the present invention, an enzymatic source having an asymmetric hydrolysis activity is allowed to act on a racemic [3-aminonitrile amide compound represented by the above formula (I)] to cause optically selective hydrolysis (asymmetric hydrolysis). Decomposition) to produce an optically active 3-aminonitrile compound represented by the above formula (II) and an enantiomer amide compound thereof, which can be specifically carried out by the following method. .
反応溶媒に基質である前記式 (I) で示されるラセミ体 0—ァミノ二トリルの アミ ド化合物を溶解又は懸濁する。 また、 基質を反応溶媒に添加する前に又は添 加した後に、 触媒となる上記不斉加水分解能力を有する酵素源を添加する。 そし て、 反応温度、 必要により反応 P Hを制御しながら反応を行う。  A racemic 0-aminonitrile amide compound represented by the above formula (I) as a substrate is dissolved or suspended in a reaction solvent. Before or after the substrate is added to the reaction solvent, an enzyme source having the above-mentioned asymmetric hydrolysis ability as a catalyst is added. The reaction is performed while controlling the reaction temperature and, if necessary, the reaction pH.
反応液の基質濃度は 0. 0 1〜50重量%の間であれば特に制限は無いが、 生 産性を考慮すると 0. 1~30重量%が好ましい。  The substrate concentration of the reaction solution is not particularly limited as long as it is between 0.01 and 50% by weight, but is preferably 0.1 to 30% by weight in consideration of productivity.
反応液の酵素濃度は、 通常 0. 01〜50重量%であり、 好ましくは 0. 05 〜30重量%である。  The enzyme concentration of the reaction solution is usually 0.01 to 50% by weight, preferably 0.05 to 30% by weight.
反応液の pHは、 用いる酵素の至適 p Hに依存するが、 一般的には pH4〜l 1の範囲である。 化学的加水分解による収率の低下及びラセミ化による光学純度 の低下等を抑制する観点から、 pH5〜9で行うのが好ましレ、。 加水分解が進行 するに従い pHが変化するが、 この場合は適当な中和剤、 例えば、 水酸化ナトリ ゥム水溶液、 水酸化カリウム水溶液、 塩酸等を添加して最適 pHに調整すること が望ましい。  The pH of the reaction solution depends on the optimum pH of the enzyme to be used, but is generally in the range of pH 4 to 11. From the viewpoint of suppressing a decrease in yield due to chemical hydrolysis and a decrease in optical purity due to racemization, etc., it is preferable to perform the reaction at pH 5 to 9. The pH changes as the hydrolysis proceeds. In this case, it is desirable to adjust the pH to an optimum value by adding an appropriate neutralizing agent, for example, an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, or hydrochloric acid.
反応温度は 5〜 70 °Cが好ましく、 10〜 50でがより好ましい。  The reaction temperature is preferably 5 to 70 ° C, more preferably 10 to 50.
反応溶媒は、 通常、 水、 緩衝液 (リン酸緩衝液、 トリス緩衝液、 グリシン緩衝 液等) 等の水性媒体を使用するが、 有機溶媒を含んだ系でも不斉加水分解反応を 行うことができる。  As the reaction solvent, an aqueous medium such as water or a buffer (phosphate buffer, Tris buffer, glycine buffer, etc.) is usually used, but an asymmetric hydrolysis reaction can be performed even in a system containing an organic solvent. it can.
有機溶媒としては、 例えば、 メタノール、 エタノール、 プロパノール、 イソプ ロバノール、 ブタノール等のアルコール系溶媒;ペンタン、 へキサン等の脂肪族 炭化水素系溶媒;ベンゼン、 トルエン等の芳香族炭化水素系溶媒;塩化メチレン、 クロ口ホルム等のハロゲン化炭化水素系溶媒;ジェチルエーテル、 ジイソプロピ ルエーテル等のエーテル系溶媒;醉酸ェチル、 酢酸プチル等のエステル系溶媒; アセトン、 メチルェチルケトン等のケトン系溶媒;その他ァセ卜-トリル等を適 宜使用することができる。 Examples of the organic solvent include alcohol solvents such as methanol, ethanol, propanol, isopropanol, and butanol; and aliphatic solvents such as pentane and hexane. Hydrocarbon solvents; Aromatic hydrocarbon solvents such as benzene and toluene; Halogenated hydrocarbon solvents such as methylene chloride and chloroform; Ether solvents such as getyl ether and diisopropyl ether; Ester solvents such as acetone; ketone solvents such as acetone and methyl ethyl ketone; and other solvents such as acetate-tolyl.
これらの有機溶媒を水への溶解度以上に加えて 2相系で反応を行うことも可能 である。 有機溶媒を反応系に共存させることで、 選択率、 変換率、 収率等が向上 する場合も多く、 好ましい。  It is also possible to add two or more of these organic solvents so as to carry out the reaction in a two-phase system by adding them to water or more. The coexistence of an organic solvent in the reaction system is preferred because the selectivity, conversion, yield, and the like are often improved.
上記不斉加水分解反応は、 通常、 ラセミ体のアミ ド化合物 ( I ) の半量程度が 加水分解されるまで行うことが好ましい。 上記反応時間は、 通常、 1時間〜 1週 間、 好ましくは 1〜 7 2時間であり、 そのような時間で反応が終了する反応条件 を選択することが好ましい。 なお、 求められる生成物の光学純度や収率に応じて、 反応の初期段階で反応を中断したり、 又は過剰に反応させてもよい。  Usually, the asymmetric hydrolysis reaction is preferably performed until about half the amount of the racemic amide compound (I) is hydrolyzed. The reaction time is generally 1 hour to 1 week, preferably 1 to 72 hours, and it is preferable to select reaction conditions under which the reaction is completed. The reaction may be interrupted at the initial stage of the reaction or may be caused to proceed excessively depending on the required optical purity and yield of the product.
上記の反応により、 前記式 (I ) で示される ]3—アミノニトリルのアミ ド化合 物が立体選択的に加水分解され、 光学活性 /3—アミノエトリル化合物 ( I I ) 及 び未反応の対掌体アミ ド化合物が生成する。 当該未反応の対掌体アミ ド化合物は、 特に一般式 (1 ' ) ;  By the above reaction, the amide compound of the above formula (I)] is hydrolyzed stereoselectively, and the optically active / 3-aminoetrile compound (II) and the unreacted enantiomer are hydrolyzed. An amide compound is formed. The unreacted enantiomer amide compound is, particularly, a compound represented by the general formula (1 ′):
Figure imgf000011_0001
Figure imgf000011_0001
(式中、 R 2、 *は上記と同じ。 ) で表すことができ、 光学活性 β —アミ ノニトリル化合物 ( I I ) と逆の立体配置を有するものである。 (In the formula, R 2 and * are the same as above.), Which has a configuration opposite to that of the optically active β-aminonitrile compound (II).
生成した光学活性 /8—ァミノ二トリル化合物 (I I ) 及び未反応の対掌体アミ ド化合物は、 反応混合液から抽出、 蒸留、 再結晶、 カラム分離等の公知の方法に よって単離することができる。  The generated optically active / 8-aminonitrile compound (II) and the unreacted enantiomeric amide compound should be isolated from the reaction mixture by a known method such as extraction, distillation, recrystallization, or column separation. Can be.
例えば ρ Ηを酸性に調整後、 ジェチルエーテル、 ジイソプロピルエーテル等の エーテル類;酢酸ェチル、 酢酸ブチル等のエステル類;へキサン、 オクタン、 ベ ンゼン等の炭化水素類;塩化メチレン等のハロゲン化炭化水素類等の一般的な溶 媒により、 生成した光学活性 一アミノニトリル化合物 ( I I ) を水相に残存さ せたまま、 未反応の対掌体アミ ド化合物を選択的に抽出することができる。 水相 に残存した光学活性 —アミノニトリル化合物 (I I ) は、 例えば ρ Ηを塩基性 に調整後、 同様に一般的な有機溶媒で抽出分離することができる。 For example, after adjusting ρ 酸性 to acidic, acetyl ether, diisopropyl ether, etc. Ethers; esters such as ethyl acetate and butyl acetate; hydrocarbons such as hexane, octane, and benzene; optically active monoamino acids formed by common solvents such as halogenated hydrocarbons such as methylene chloride. Unreacted enantiomeric amide compounds can be selectively extracted while the nitrile compound (II) remains in the aqueous phase. The optically active aminonitrile compound (II) remaining in the aqueous phase can be extracted and separated with a common organic solvent in the same manner, for example, after adjusting ρ to basicity.
生成物の光学純度は、 必要に応じてァシルイ匕等により誘導体に変換した後、 光 学活性カラムを用いた高速液体クロマトグラフィー (H P L C ) により、 測定す ることができる。 例えば、 本反応により得られる光学活性 3—ァミノペンタン二 トリノレは、 ベンゾイルク口ライ ドでァシル化した後、 光学分割カラム (ダイセル 化学工業社製キラルセル O D ) を用いた高速液体クロマトグラフィー (H P L C ) により光学純度を決定することができる。  The optical purity of the product can be measured by high-performance liquid chromatography (HPLC) using an optically active column after conversion to a derivative by acylation if necessary. For example, the optically active 3-aminopentane ditrinole obtained by this reaction is acylated with a benzoyl compound and then subjected to high performance liquid chromatography (HPLC) using an optical resolution column (Daicel Chemical Industry Co., Ltd., Chiral Cell OD). Optical purity can be determined.
未反応の対掌体アミ ド化合物は、 光学活性を維持したままアミ ド部分を通常の 方法で加水分解することができ、 上記不斉加水分解反応で得られた光学活性 ]3— アミノニトリル化合物 ( I I ) とは逆の立体配置を有する ]3—アミノニトリル化 合物に導くことができる。  The unreacted enantiomeric amide compound can be hydrolyzed by an ordinary method while maintaining the optical activity, and the optically active compound obtained by the above-described asymmetric hydrolysis reaction] 3-aminonitrile compound ] -Aminonitrile compounds having a configuration opposite to that of (II).
また、 光学活性 ]3—ァミノ二トリル化合物 ( I I ) は光学活性を維持したまま アミ ド化することができる。 このように、 光学活性を維持したままアミ ド化して 得られたアミ ド化合物を基質として、 本発明の不斉加水分解反応を複数回繰り返 すことにより、 より光学純度の高い目的化合物を得ることも可能である。  [Optical activity] 3-aminonitrile compound (II) can be amidated while maintaining the optical activity. By repeating the asymmetric hydrolysis reaction of the present invention several times using the amide compound obtained by amidation while maintaining the optical activity as a substrate, a target compound having higher optical purity is obtained. It is also possible.
また、 本発明により得られた光学活性 ]3—ァミノ二トリル化合物は、 その光学 活性を維持したまま酸処理等により二トリルを加水分解することにより、 容易に 光学活性 ]3—アミノ酸のカルボン酸アミ ド化合物及び光学活性 ]3—アミノ酸を製 造することができる。 発明を実施するための最良の形態  Further, the optically active] 3-aminonitrile compound obtained by the present invention can be easily converted into an optically active] 3-amino acid carboxylic acid by hydrolyzing nitrile by acid treatment or the like while maintaining its optical activity. Amide compounds and optically active] 3-amino acids can be produced. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例により本発明を更に詳しく説明するが、 本発明はこれらの実施例 により何ら限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
なお、 以下の記載において、 「%」 は特に断らない限り 「重量%」 を意味する。 また、 ]3—アミノニトリル化合物の分析は以下の条件にて実施した。 In the following description, “%” means “% by weight” unless otherwise specified. The analysis of] 3-aminonitrile compound was performed under the following conditions.
ぐ定量分析 > Quantitative analysis>
[ガスク口マトグラフィー]  [Gask mouth chromatography]
カラム: DB— 624 (J &W s c i e n t i f i c社製) ( 0. 53m mX 30 m)  Column: DB—624 (manufactured by J & Wscientifc) (0.53m mX 30m)
検出: F I D  Detection: F I D
カラム温度: 1 70°C  Column temperature: 1 70 ° C
注入温度: 200 °C  Injection temperature: 200 ° C
検出温度: 200°C  Detection temperature: 200 ° C
キャリアーガス : ヘリ ウム (l O O k P a)  Carrier gas: Helium (lOOkPa)
[薄層クロマトグラフィー (TLC) ]  [Thin layer chromatography (TLC)]
薄層プレート : T L Cプレートシリカゲル 60 F 254 (メルク社製) 展開溶媒: n—ブタノール/酢酸 水 =4/1/ 1  Thin layer plate: TLC plate silica gel 60 F 254 (Merck) Developing solvent: n-butanol / acetic acid water = 4/1/1
検出: ニンヒ ドリ ン ぐ光学異性体分析 >  Detection: Ninhydrin optical isomer analysis>
[高速液体クロマトグラフィー (HPLC) ]  [High Performance Liquid Chromatography (HPLC)]
カラム : キラルセル OD (ダイセル化学工業社製)  Column: Chiral Cell OD (manufactured by Daicel Chemical Industries, Ltd.)
移動相 : n—へキサン イソプロパノール =9/1  Mobile phase: n-hexane isopropanol = 9/1
検出: UV 254 nm  Detection: UV 254 nm
カラム温度:室温  Column temperature: room temperature
流速: 1. OmL/分 (実施例 1) N—ァセチルー 3—ァミノペンタン二トリルの製造方法  Flow rate: 1. OmL / min (Example 1) Method for producing N-acetyl-3-aminopentane nitrile
3—ァミノペンタン二トリル 9. 8 gとピリジン 10. 3 gを塩化メチレン 1 0 OmLに溶解させ、 氷冷下、 無水酢酸 1 1. 2 gを滴下し、 氷冷下で 1時間、 室温で 4時間攪拌した。 この反応液に 2規定塩酸 20 OmLを加えた後、 塩化メ チレン相と水相に分液した。 塩化メチレン相を 2規定水酸化ナトリウム水溶液 2 O OmLで洗浄後、 無水硫酸ナトリウムで乾燥した。 減圧下溶媒を留去し、 粗ォ ィルを得た。 このオイルを蒸留精製し、 N—ァセチルー 3—ァミノペンタンニト リル 3. 9 gを得た。 収率 28%。 Dissolve 9.8 g of 3-aminopentanenitrile and 10.3 g of pyridine in 10 OmL of methylene chloride, add dropwise 11.2 g of acetic anhydride under ice-cooling, and add ice-cooling for 1 hour and room temperature for 4 hours. Stirred for hours. After adding 2 O hydrochloric acid (20 OmL) to the reaction mixture, the mixture was separated into a methylene chloride phase and an aqueous phase. Methylene chloride phase into 2N sodium hydroxide aqueous solution 2 After washing with O OmL, it was dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain a crude oil. The oil was purified by distillation to obtain 3.9 g of N-acetyl-3-aminopentanenitrile. Yield 28%.
:H-NMR (40 OMH z , CDC 13) 6 p p m: 4. 04— 3. 98 ( 1 Η, m) , 2. 68 ( 2 H, d q) , 2. 03 (1 H, s ) , 1. 65— 1. 7 : H-NMR (40 OMH z , CDC 1 3) 6 ppm: 4. 04- 3. 98 (1 Η, m), 2. 68 (2 H, dq), 2. 03 (1 H, s), 1.65—1.7
2 ( 2 H, m) , 0. 99 (3 H, t) 。 2 (2H, m), 0.99 (3H, t).
赤外吸収スペク トル (c m—1) : 3288, 2968, 2934, 224 5, 1651, 1 549, 1 375, 1 306, 1 1 38, 1078, 962, 74 8 , 621, 608。 Infrared absorption spectrum (cm- 1 ): 3288, 2968, 2934, 224, 1651, 1549, 1375, 1306, 1138, 1078, 962, 748, 621, 608.
(実施例 2 ) (Example 2)
表 1記載の微生物を、 ぺプトン 10 g、 肉エキス 10 g、 酵母エキス 5 g、 塩 化ナトリウム 3 g (いずれも 1 L当たり) の組成からなる滅菌培地 1 Om 1 (p H7. 2) を入れた試験管に植菌し、 30でで 2日間往復振盪しながら培養した。 次に各試験管から培養液 2 mLをとり、 遠心分離により菌体を回収後、 100m Mリン酸緩衝液 (pH7. 0) lmLで 1回洗浄した。 菌体を l O OmMリン酸 緩衝液 (pH7. 0) 0. 5mLに懸濁し、 あらかじめラセミ体 N—ァセチル一 The microorganisms listed in Table 1 were combined with 10 g of peptone, 10 g of meat extract, 5 g of yeast extract, and 3 g of sodium chloride (each 1 L) in sterile medium 1 Om 1 (pH 7.2). The inoculated test tube was inoculated, and cultured at 30 at 2 days with reciprocal shaking. Next, 2 mL of the culture solution was taken from each test tube, the cells were collected by centrifugation, and washed once with 1 mL of 100 mM phosphate buffer (pH 7.0). The cells are suspended in 0.5 mL of lO OmM phosphate buffer (pH 7.0), and the racemic N-acetyl
3—ァミノペンタン二トリル 2. 5m gを入れた試験管に加えて、 30°Cにて 1 8時間振盪しながら反応した。 3-aminopentanenitrile was added to a test tube containing 2.5 mg, and reacted at 30 ° C. with shaking for 18 hours.
反応液上清 4 μ Lを上記条件による薄層クロマトグラフィー上で展開させ、 二 ンヒ ドリンによる発色から生成した 3—ァミノペンタン二トリルを定量した。 生 成した光学活性 3—ァミノペンタン二トリルに塩基性条件下にてジニトロべンゾ ィノレクロライ ドを作用させて誘導体化し、 HP LCを用いて光学純度を分析した。 結果を表 1に示す。 微生物 3-アミハ'ンタン二トリル光学純度 絶対配置 4 μL of the reaction solution supernatant was developed on thin-layer chromatography under the above conditions, and 3-aminopentanenitrile generated from coloring with dihydrin was quantified. The resulting optically active 3-aminopentane nitrile was derivatized by the action of dinitrobenzene chlorochloride under basic conditions, and the optical purity was analyzed using HP LC. Table 1 shows the results. Microorganism 3-Ami-Hantan nitrile Optical purity Absolute configuration
( g) ( %e.e.)  (g) (% e.e.)
Alcal 1 genes faecai is IFO 13111 く 88 34 R Alcal 1 genes faecai is IFO 13111 ku 88 34 R
Agrobacterium tumefaciens IFO 13263 〈88 17 RAgrobacterium tumefaciens IFO 13263 <88 17 R
Corynebacterium ammon i agenes IFO 12612 く 88 11 RCorynebacterium ammon i agenes IFO 12612 Ku 88 11 R
Klebsiel la planticola IFO 3317 175 5 RKlebsiel la planticola IFO 3317 175 5 R
Corynebacterium flavescens IFO 14136 く 88 >97 SCorynebacterium flavescens IFO 14136 c 88> 97 S
Nocardia globerula IFO 13510 88 >97 RNocardia globerula IFO 13510 88> 97 R
Nocardia aster o ides IFO 3384 く 88 〉97 RNocardia aster o ides IFO 3384 Ku 88〉 97 R
Rhodococcus erythropol is IFO 12320 875 18 RRhodococcus erythropol is IFO 12320 875 18 R
Rhodococcus erythropol is 1AM 1474 175 15 R Rhodococcus erythropol is 1AM 1474 175 15 R
(実施例 3 ) (Example 3)
表 2記載の微生物を、 グルコース 40 g、 酵母エキス 3 g、 リン酸水素二アン モニゥム 6. 5 g、 リン酸二水素カリウム 1 g、 硫酸マグネシウム 7水和物 0. 8 g、 硫酸亜鉛 Ί水和物 60 m g、 硫酸鉄 7水和物 90 m g、 硫酸銅 5水和物 5 mg、 硫酸マンガン 4水和物 1 Omg、 塩化ナトリウム l O Omg (いずれも 1 L当たり) の組成からなる滅菌培地 1 Om 1 (pH7. 0) を入れた試験管に植 菌し、 30°Cで 2日間往復振盪しながら培養した。 次に試験管から培養液 1. 5 m Lをとり、 遠心分離により菌体を回収後、 100 mMリン酸緩衝液 ( p H 7. 0) 1111しで1回洗浄した。 菌体を 10 OmMリン酸緩衝液 (pH7. 0) 0. 5mLに懸濁し、 あらかじめラセミ体 N—ァセチル一3—ァミノペンタン二トリ ル 2. 5m gを入れた試験管に加えて、 30°Cにて 18時間振盪しながら反応し た。  Using the microorganisms listed in Table 2, glucose 40 g, yeast extract 3 g, diammonium hydrogen phosphate 6.5 g, potassium dihydrogen phosphate 1 g, magnesium sulfate heptahydrate 0.8 g, zinc sulfate water Sterile culture medium consisting of 60 mg of hydrate, 90 mg of iron sulfate heptahydrate, 5 mg of copper sulfate pentahydrate, 1 Omg of manganese sulfate tetrahydrate, and lO Omg of sodium chloride (each per liter) The cells were inoculated into a test tube containing 1 Om 1 (pH 7.0) and cultured at 30 ° C. for 2 days with reciprocal shaking. Next, 1.5 mL of the culture solution was taken from the test tube, and the cells were collected by centrifugation, followed by washing once with 100 mM phosphate buffer (pH 7.0) 1111. The cells were suspended in 0.5 mL of 10 OmM phosphate buffer (pH 7.0), added to a test tube previously containing 2.5 mg of racemic N-acetyl-13-aminopentane nitrile, and added at 30 ° C. At 18 hours with shaking.
生成した光学活性 3—ァミノペンタン二トリルを実施例 2と同様の方法で分析 した。 結果を表 2に示す。 表 2 微生物 3-アミノへ°ンタンこトリル光学純度絶対配置 The resulting optically active 3-aminopentanenitrile was analyzed in the same manner as in Example 2. Table 2 shows the results. Table 2 Absolute configuration of optical purity of microorganism 3-aminopentane
( u g) (%e. e. ) (u g) (% e.e.)
Παη i rfa f wiutln Ltaaip C7 / 1 / 1 / 1 / 1 I 1F 1O 1261 88 50 / R 1 vailU 1 Ua <3 lu 1 a La I 1 *tw ぐ 88 U ?2 s Παη i rfa f wiutln Ltaaip C7 / 1/1 / 1/1 / 1 I 1F 1O 1261 88 50 / R 1 vailU 1 Ua <3 lu 1 a La I 1 * tw
Π Ρ  Π Ρ
Ο iαfsΠnΟri 1 ua gu 1111 erniuiiUi ι 11 p lnU OAH-O^AH 1 /3  Ο iαfsΠnΟri 1 ua gu 1111 erniuiiUi ι 11 p lnU OAH-O ^ AH 1/3
Candida mogi i IFO 0436 く 88 59 S Candida mogi i IFO 0436 K 88 59 S
Candida tropical is IFO 0618 く 88 28 SCandida tropical is IFO 0618 ku 88 28 S
Candida versati 1 is IFO 1228 く 88 29 SCandida versati 1 is IFO 1228 c 88 29 S
Cryptococcus hum i col us IFO 1527 350 22 RCryptococcus hum i col us IFO 1527 350 22 R
Cryptococcus laurenti i IFO 0609 く 88 31 SCryptococcus laurenti i IFO 0609 c 88 31 S
Clavispora lusitaniae IFO 1019 く 88 38 SClavispora lusitaniae IFO 1019 c 88 38 S
Debaryomyces car son i i IFO 0795 〈88 64 RDebaryomyces car son i i IFO 0795 <88 64 R
Debar yomyces car son i i IFO 0946 く 88 47 RDebar yomyces car son i i IFO 0946 ku 88 47 R
Debaryomyces caste//// IFO 1359 88 66 SDebaryomyces caste //// IFO 1359 88 66 S
Pichia burton// IFO 0844 175 61 RPichia burton // IFO 0844 175 61 R
Trichosporon cutaneum IFO 1198 88 42 R Trichosporon cutaneum IFO 1198 88 42 R
(実施例 4) Ν—プチリル— 3—ァミノペンタン二トリルの製造方法 (Example 4) Method for producing p-butyryl-3-aminopentane nitrile
3—ァミノペンタン二トリノレ 9. 8 gとピリジン 10. 3 gを塩化メチレン 1 0 OmLに溶解させ、 氷冷下、 無水酪酸 1 7. 4 gを滴下し、 氷冷下で 1時間、 室温で 4時間攪拌した。 反応終了後、 2規定塩酸 20 OmLで 3回、 2規定水酸 ィ匕ナトリウム水溶液 200mLで 3回、 飽和食塩水 200 m Lで 1回洗浄した。 洗浄した反応生成物を無水硫酸ナトリウムで乾燥後、 減圧下溶媒を留去し、 粗ォ ィルを得た。 このオイルを蒸留精製し、 N_プチリル一 3—ァミノペンタンニト リノレ 8. 4 gを得た。 収率 5 0 %  Dissolve 9.8 g of 3-aminopentane ditrinole and 10.3 g of pyridine in 10 OmL of methylene chloride, add 17.4 g of butyric anhydride dropwise under ice cooling, and add 4 hours at room temperature under ice cooling for 1 hour. Stirred for hours. After the completion of the reaction, the resultant was washed three times with 20 N 2N hydrochloric acid, three times with 200 mL of 2N aqueous sodium chloride solution, and once with 200 mL of saturated saline. After the washed reaction product was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain a crude oil. The oil was purified by distillation to obtain 8.4 g of N-butyryl-13-aminopentanenitrinole. Yield 50%
'H-NMR (400MH z, CDC 13) δ p p m 4. 0 1 -4. 05 ( 1 H m) , 2. 68 ( 2 H, d q) , 2. 19 (2 H, t ) , 1. 6 1— 1. 7 2 (2HX 2, m) , 0. 95- 1. 0 1 (3HX 2, m) 。 'H-NMR (400MH z, CDC 1 3) δ ppm 4. 0 1 -4. 05 (1 H m), 2. 68 (2 H, dq), 2. 19 (2 H, t), 1. 6 1—1.72 (2HX 2, m), 0.95-1.01 (3HX 2, m).
赤外吸収スペク トル ( c m_1) 3277, 2966 2245, 1 647, 1 55 1 1458, 1 288, 1 2 1 5 1 1 38, 957, 895 Infrared absorption spectrum ( cm_1 ) 3277, 2966 2245, 1 647, 1 55 1 1458, 1 288, 1 2 1 5 1 1 38, 957, 895
(実施例 5) N—へキサノィル一 3—了ミノペンタンニトリルの製造方法 (Example 5) Method for producing N-hexanoyl-1-3-aminopentanenitrile
3—ァミノペンタン二トリノレ 9. 8 gとピリジン 10. 3 gを塩化メチレン 0 OmLに溶解させ、 水冷下、 無水カプロン酸 23. 6 gを滴下し、 氷冷下で 時間、 室温で 4時間攪拌した。 反応終了後、 2規定塩酸 20 OmLで 3回、 2規 定水酸化ナトリウム水溶液 200 m Lで 3回、 飽和食塩水 200 m Lで 1回洗浄 した。 洗浄した反応生成物を無水硫酸ナトリウムで乾燥後、 減圧下溶媒を留去し、 N—へキサノィル _ 3—ァミノペンタン二トリル 18. 4 gを得た。 収率 94%。 XH-NMR (400MH z , CDC 13) δ p p m: 4. 00— 4. 05 ( 1 H, m) , 2. 68 (2 H, d q) , 2. 20 (2H, t ) , 1. 61— 1. 7 2 (2 HX 2, m) , 1. 3 1— 1. 35 (2HX 2, m) , 0. 89— 1. 0 1 ( 3 HX 2 , m) 。 Dissolve 9.8 g of 3-aminopentane nitrinole and 10.3 g of pyridine in 0 OmL of methylene chloride, add dropwise 23.6 g of caproic anhydride under cooling with water, and cool with ice. The mixture was stirred at room temperature for 4 hours. After the completion of the reaction, the reaction mixture was washed three times with 20 N 2N hydrochloric acid, three times with 200 mL of a 2N aqueous sodium hydroxide solution, and once with 200 mL of a saturated saline solution. After the washed reaction product was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 18.4 g of N-hexanoyl-3-aminopentanenitrile. 94% yield. X H-NMR (400MH z, CDC 1 3) δ ppm: 4. 00- 4. 05 (1 H, m), 2. 68 (2 H, dq), 2. 20 (2H, t), 1. 61—1.72 (2 HX 2, m), 1.3 1—1.35 (2HX 2, m), 0.89—1.0 1 (3 HX 2, m).
赤外吸収スペク トル ( c m—1) : 3290, 296 1, 29 32, 23 5 9,Infrared absorption spectrum (cm- 1 ): 3290, 296, 2932, 2359,
2249, 1 647, 1 54 1, 1460。 2249, 1 647, 1 54 1, 1460.
(実施例 6) N—ィソブチリル一 3—ァミノペンタン二トリルの製造方法(Example 6) Method for producing N-isobutyryl-1-3-aminopentane nitrile
3—ァミノペンタン二トリル 9. 8 gとピリジン 10. 3 gを塩化メチレン 1 0 OmLに溶解させ、 氷冷下、 無水イソ酪酸 1 7. 4 gを滴下し、 氷冷下で 1時 間、 室温で 4時間攪拌した。 反応終了後、 2規定塩酸 20 OmLで 3回、 2規定 水酸化ナトリウム水溶液 200mLで 3回、 飽和食塩水 200 m Lで 1回洗浄し た。 洗浄した反応生成物を無水硫酸ナトリウムで乾燥後、 減圧下溶媒を留去し、 N—ィソブチリル一 3—ァミノペンタン二トリル 1 7. 5 gを得た。 収率 89%。 XH-NMR (40 OMH z, CDC 13) δ p p m: 3. 98— 4. 03 ( 1 H, m) , 2. 68 ( 2 H, d q) , 2. 36- 2. 43 ( 1 H, m) , 1. 6 6— 1. 73 (2 H, m) , 1. 28— 1. 16 (3HX 2, m) , 0. 99 (Dissolve 9.8 g of 3-aminopentanenitrile and 10.3 g of pyridine in 10 OmL of methylene chloride, add dropwise 17.4 g of isobutyric anhydride under ice-cooling, and room temperature for 1 hour under ice-cooling For 4 hours. After the completion of the reaction, the reaction mixture was washed three times with 20 N 2N hydrochloric acid, three times with 200 mL of 2N aqueous sodium hydroxide solution, and once with 200 mL of saturated saline. After the washed reaction product was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 17.5 g of N-isobutyryl-13-aminopentanenitrile. Yield 89%. XH-NMR (40 OMH z, CDC 1 3) δ ppm: 3. 98- 4. 03 (1 H, m), 2. 68 (2 H, dq), 2. 36- 2. 43 (1 H, m), 1.66-1.73 (2 H, m), 1.28-1.16 (3HX 2, m), 0.99 (
3 H, t ) 。 3H, t).
赤外吸収スペク トル ( c m—1) : 3286, 2974, 2245, 1 65 1, 1 54 1, 1 263, 1 242, 1 1 36, 1095, 95 1, 72 1。 Infrared absorption spectrum (cm- 1 ): 3286, 2974, 2245, 1651, 1541, 1263, 242, 1136, 1095, 951, 721.
(実施例 7) N—イソペンタノィル一 3—ァミノペンタン二トリルの製造方法 3—ァミノペンタン二トリル 9. 8 gとピリジン 10. 3 gを塩化メチレン 1 0 OmLに溶解させ、 氷冷下、 無水イソ吉草酸 20. 5 gを滴下し、 氷冷下で 1 時間、 室温で 4時間攪拌した。 反応終了後、 2規定塩酸 20 OmLで 3回、 2規 定水酸化ナトリゥム水溶液 20 OmLで 3回、 飽和食塩水 20 OmLで 1回洗浄 した。 洗浄した反応生成物を無水硫酸ナトリウムで乾燥後、 減圧下溶媒を留去し、 N Tソペンタノィル一 3—ァミノペンタン二トリル 1 5. O gを得た。 収率 8 2%。 (Example 7) Method for producing N-isopentanoyl-1-aminopentanenitrile 9.8 g of 3-aminopentanenitrile and 10.3 g of pyridine were dissolved in 10 OmL of methylene chloride, and isovaleric anhydride was added under ice-cooling. 20.5 g was added dropwise, and the mixture was stirred for 1 hour under ice cooling and for 4 hours at room temperature. After completion of the reaction, 2N hydrochloric acid 20 OmL 3 times, 2N The extract was washed three times with 20 OmL of a constant aqueous sodium hydroxide solution and once with 20 OmL of a saturated saline solution. After the washed reaction product was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain NTsopentanoyl-13-aminopentanenitrile (1.5Og). Yield 82%.
^-NMR (40 OMH z , CDC 13) δ p p m: 4. 00— 4. 07 ( 1 H, m) , 2. 68 (2 H, d q ) , 2. 05— 2. 1 5 (1HX 1, 2 HX 1 , m) , 1. 6 1— 1. 74 (2H, m) , 0. 96- 1. 0 1 (3HX 3, m) D 赤外吸収スペク トル ( c m—1) : 3279, 2959, 2245, 1 645, 1 553, 1 37 1, 1306, 1 259, 1 221, 1 140, 727, 60 90 . ^ -NMR (40 OMH z, CDC 1 3) δ ppm: 4. 00- 4. 07 (1 H, m), 2. 68 (2 H, dq), 2. 05- 2. 1 5 (1HX 1 , 2 HX 1, m), 1.6 1— 1.74 (2H, m), 0.96-1.0 1 (3HX 3, m) D- infrared absorption spectrum (cm— 1 ): 3279, 2959, 2245, 1 645, 1 553, 1 37 1, 1306, 1 259, 1 221, 1 140, 727, 60 9 0.
(実施例 8) N—ビバロイルー 3—ァミノペンタンニトリルの製造方法 Example 8 Method for Producing N-Vivaloylu 3-Aminopentanenitrile
3—ァミノペンタン二トリノレ 9. 8 gとピリジン 10. 3 gを塩化メチレン 1 9.8 g of 3-aminopentane ditrinole and 10.3 g of pyridine were treated with methylene chloride 1
0 OmLに溶解させ、 氷冷下、 ビバリン酸クロライド 1 3. 3 gを滴下し、 氷冷 下で 1時間、 室温で 4時間攪拌した。 反応終了後、 2規定塩酸 20 OmLで 3回、 2規定水酸化ナトリゥム水溶液 20 OmLで 3回、 飽和食塩水 20 OmLで 1回 洗浄した。 洗浄した反応生成物を無水硫酸ナトリウムで乾燥後、 減圧下溶媒を留 去し、 N—ビバロイル一 3—ァミノペンタン二トリル 14. 7 gを得た。 収率 8 1%。 The solution was dissolved in 0 OmL, and under ice cooling, 13.3 g of vivalic acid chloride was added dropwise. The mixture was stirred for 1 hour under ice cooling and for 4 hours at room temperature. After the completion of the reaction, the resultant was washed three times with 20 N 2N hydrochloric acid, three times with 20 OmL of a 2 N aqueous sodium hydroxide solution, and once with 20 OmL of saturated saline. After the washed reaction product was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 14.7 g of N-bivaloyl-13-aminopentanenitrile. Yield 81%.
^- MR (400MH z, CDC 13) δ p p m: 3. 95 -4. 03 ( 1 H, m) , 2. 68 (2H, d q) , 1. 68— 1. 76 (2 H, m) , 1. 2 2— 1. 27 ( 3 HX 3 , m) , 0. 99 ( 3 H, t) 。 ^ - MR (400MH z, CDC 1 3) δ ppm:. 3. 95 -4 03 (1 H, m), 2. 68 (2H, dq), 1. 68- 1. 76 (2 H, m) , 1.22—1.27 (3HX3, m), 0.99 (3H, t).
赤外吸収スペク トル ( c m— 1) : 3 329, 2962, 225 1, 1 636,Infrared absorption spectrum (cm— 1 ): 3 329, 2962, 225 1, 1 636,
1 533, 1 364, 1304, 1 223, 1 1 32, 1078, 89 1, 68 1 533, 1 364, 1304, 1 223, 1 1 32, 1078, 89 1, 68
(実施例 9) N—ベンゾィル一 3—ァミノペンタン二 トリルの製造方法 (Example 9) Method for producing N-benzoyl-3-aminopentanenitrile
3—ァミノペンタン二トリル 9. 8 gとピリジン 10. 3 gを塩化メチレン 1 0 OmLに溶解させ、 氷冷下、 ベンゾイルク口ライド 1 5. 5 gを滴下し、 氷冷 下で 1時間、 室温で 4時間攪拌した。 反応終了後、 2規定塩酸 20 OmLで 3回、 2規定水酸化ナトリゥム水溶液 20 OmLで 3回、 飽和食塩水 20 OmLで 1回 洗浄した。 洗浄した反応生成物を無水硫酸ナトリウムで乾燥後、 減圧下溶媒を留 去し、 N—ベンゾィル一 3—ァミノペンタン二トリル 18. 6 gを得た。 収率 9 2%。 9.8 g of 3-aminopentanenitrile and 10.3 g of pyridine are dissolved in 10 OmL of methylene chloride, and under ice cooling, 15.5 g of benzoyl chloride is added dropwise and cooled with ice. The mixture was stirred at room temperature for 1 hour and at room temperature for 4 hours. After the completion of the reaction, the resultant was washed three times with 20 N 2N hydrochloric acid, three times with 20 OmL of a 2 N aqueous sodium hydroxide solution, and once with 20 OmL of saturated saline. After the washed reaction product was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 18.6 g of N-benzoyl-13-aminopentanenitrile. Yield 92%.
一 NMR (400MH z, CD C 13) δ p p m: 7. 44— 7. 79 (5 H, m) , 4. 20-4. 28 ( 1 H, m) , 2. 8 1 (2 H, d q) , 1. 7 8— 1. 86 (2H, m) , 1. 07 (3 H, t) 。 One NMR (400MH z, CD C 1 3) δ ppm:. 7. 44- 7. 79 (5 H, m), 4. 20-4 28 (1 H, m), 2. 8 1 (2 H, dq), 1.78-1.86 (2H, m), 1.07 (3 H, t).
赤外吸収スペク トル ( c m—つ : 3230, 2972, 2 25 1, 1 63 7, 1 5 29, 1 3 1 3, 1 076, 700。 Infrared absorption spectrum (cm: 3230, 2972, 2 25 1, 163 7, 1 529, 1 3 1, 3, 1 076, 700.
(実施例 10) (Example 10)
表 3記載の微生物を、 実施例 2と同様に培養した。 各培養液 1 OmLをとり、 遠心分離により菌体を回収後、 10 OmMリン酸緩衝液 (pH7. 0) 2mLで 1回洗浄した。 菌体を 10 OmMリン酸緩衝液 (pH7. 0) lmLに懸濁し、 実施例 1、 4〜 9で製造した表 3記載の基質 37. 5 μιηο 1をあらかじめ入れ た試験管に加えて、 30°Cにて 1 9〜45時間振盪しながら反応した。  The microorganisms described in Table 3 were cultured as in Example 2. After taking 1 OmL of each culture solution, the cells were collected by centrifugation, and washed once with 2 mL of 10 OmM phosphate buffer (pH 7.0). The cells were suspended in 1 mL of 10 OmM phosphate buffer (pH 7.0), and added to a test tube previously filled with 37.5 μιηο1 of the substrate shown in Table 3 manufactured in Examples 1 and 4 to 9. The reaction was carried out with shaking at 19 ° C for 19-45 hours.
生成した光学活性 3—ァミノペンタン二トリルを実施例 2と同様の方法で分析 した。 結果を表 3に示す。 The resulting optically active 3-aminopentanenitrile was analyzed in the same manner as in Example 2. Table 3 shows the results.
表 3 Table 3
Figure imgf000020_0001
Figure imgf000020_0001
基質 A: {RS)一 N—ァセチル一 3—ァミノペンタン二トリル  Substrate A: (RS) -1-N-acetyl-1-3-aminopentanenitrile
B:(/?S)— N—ブチリルー 3—ァミノペンタン二トリル  B: (/? S) — N—Butyleru 3-Aminopentane nitrile
C: ( ?S)—N—へキサノィルー 3—ァミノペンタン二トリル  C: (? S) —N—Hexanoyl 3- 3-Aminopentane nitrile
D:( ?S)— N—イソブチリルー 3—ァミノペンタン二トリル  D :(? S) — N-isobutylyl 3- 3-aminopentane nitrile
E: (RS)—N—イソペンタノィルー 3—ァミノペンタン二トリル  E: (RS) -N-isopentanoyl 3-aminopentane nitrile
F:(/?S)— N—ビバロイルー 3—ァミノペンタン二トリル  F: (/? S) — N—Vivaloylue 3-Aminopentane nitrile
G:(/?S)-N—べンゾィルー 3—ァミノペンタン二トリル  G: (/? S) -N—Benzoyl 3-Aminopentane nitrile
微生物 C. flavescens: Corynebactenum flavescens  Microorganisms C. flavescens: Corynebactenum flavescens
N. globerula: Nocaraia globerula  N. globerula: Nocaraia globerula
N. asteroides: Nocardia asteroides  N. asteroides: Nocardia asteroides
(実施例 1 1 ) (Example 11)
ノカノレディア .グロべノレーラ (No c a r d i a g l o b e r u l a) I F O 1 35 10株を、 ペプトン 20 g、 肉エキス 10 g、 酵母エキス 5 g、 ダルコ ース 10 g、 塩化ナトリウム 3 g、 アデ力ノール 1滴 (いずれも 1 L当たり) 、 の組成からなる滅菌培地 40 Om 1 (p H 7. 2) を入れた坂口フラスコに植菌 し、 29 °Cで 2日間往復振盪しながら培養した。 培養液を遠心分離し、 菌体を回 収後、 200mMリン酸緩衝液 (ρΗ7· 0) 100 m Lで 1回洗浄した。 菌体 を 20 OmMリン酸緩衝液 (pH7. 0) 40mLに懸濁し、 菌体懸濁液とした。 あらかじめ基質であるラセミ体 N—ィソブチリルー 3 _アミノペンタン二トリル 35 7 / mo 1を入れた試験管に菌体懸濁液 3 m Lを加えて、 30°Cにて 25時 間振盪しながら反応した。 反応液 100 μ Lをとり、 これに 2規定水酸化ナトリ ゥム 100 / L、 酢酸ェチル lmLを加えて充分攪拌し、 遠心分離した後、 その 酢酸ェチル相をガスクロマトグラフィー及び HP LCを用いて分析したところ、 変換率 26%で 98. 2 % e . e . の ( ) _ 3—ァミノペンタン二トリルが生 成していた。 Nocanoledia. No cardiagloberula IFO 135 10 strains, 20 g of peptone, 10 g of meat extract, 5 g of yeast extract, 10 g of darcose, 3 g of sodium chloride, 1 drop of Adekinol The cells were inoculated into a Sakaguchi flask containing 40 Om 1 (pH 7.2) of a sterilized medium having the following composition (per L) and cultured at 29 ° C. with reciprocal shaking for 2 days. The culture was centrifuged, and the cells were collected and washed once with 100 mL of 200 mM phosphate buffer (ρΗ7.0). The cells were suspended in 40 mL of 20 OmM phosphate buffer (pH 7.0) to obtain a cell suspension. Add 3 mL of the cell suspension to a test tube containing racemic N-isobutyryl 3-aminopentanenitrile 35 7 / mo 1 as the substrate in advance, and react with shaking at 30 ° C for 25 hours. did. Take 100 μL of the reaction solution, add 2N sodium hydroxide 100 / L, and 1 mL of ethyl acetate, stir well, centrifuge, and then separate the ethyl acetate phase using gas chromatography and HP LC. Analysis showed that 98.2% e.e. of () _- 3-aminopytanenitrile was formed at a conversion of 26%.
(実施例 1 2 ) (Example 12)
ノカノレディ了 · グロべノレーラ (N o c a r d i a _g 1 q b e r u 1 a_) I F O 1 3510株を、 実施例 1 1と同様に培養し、 菌体懸濁液を調製した。 あらか じめ基質であるラセミ体 N—ィソブチリル一 3—ァミノペンタン二トリノレ 7. 1 3mmo 1を入れた坂口フラスコに菌体懸濁液 3 OmLを加えて、 30°Cにて 6 4時間振盪しながら反応した。 実施例 1 1と同様の方法で分析したところ、 変換 率 28%で 3—ァミノペンタニトリルが生成していた。 この反応液に 2規定塩酸 をカロえて pH 5とし、 酢酸ェチル 3 OmLを加えて充分攪拌し、 遠心分離した後、 その酢酸ェチル相を除いた。 これに 2規定水酸化ナトリゥムを加えて pH 10と した後、 酢酸ェチル 9 OmLを用いて抽出した。 抽出溶媒を無水硫酸ナトリウム で脱水後、 蒸留にて精製を行い、 3—ァミノペンタンニトリノレ 1 39mgを取得 した。  Nokanolady completed · Grovenorella (Nocadaria_g1qberuu1a_) IFO13510 strain was cultured in the same manner as in Example 11 to prepare a cell suspension. Racemic N-isobutyryl-1- 3-aminopentane nitrinole, which is a substrate, was added in advance.3 OmL of the bacterial cell suspension was added to a Sakaguchi flask containing 7.1 mmo1, and the mixture was shaken at 30 ° C for 64 hours. While reacting. When analyzed by the same method as in Example 11, 3-aminopentanitrile was formed at a conversion of 28%. The reaction mixture was adjusted to pH 5 by adding 2N hydrochloric acid, 3 OmL of ethyl acetate was added, and the mixture was sufficiently stirred. After centrifugation, the ethyl acetate phase was removed. After adding 2N sodium hydroxide to adjust the pH to 10, the mixture was extracted with 9 OmL of ethyl acetate. After the extraction solvent was dehydrated with anhydrous sodium sulfate, purification was carried out by distillation to obtain 139 mg of 3-aminopentanenitrinole.
これをガスクロマトグラフィー及び HP LCを用いて光学純度を分析したとこ ろ、 1^体で9 7. 9 % e . e . であった。  When this was analyzed for its optical purity by gas chromatography and HP LC, it was found to be 97.9% e.e.
(実施例 1 3 ) (Example 13)
実施例 1 1記載の液体培地 4 Lを 10 L容のジャーフアーメンターに入れて殺 菌後、 これに実施例 1 1記載の培養方法で得られるノカルディア ·グロべルーラ (N o c a r d i a g 1 o b e r u 1 a ) I F O 1 35 1 Oの培養液 4 O m L を無菌的に接種し、 通気 O. 5 V vm、 温度 28°C、 攪拌数 260 r pmにて 5 6時間培養した。 得られた培養液から菌体を回収し、 l O OmMリン酸緩衝液 ( pH7. 0) 1. 5 Lに懸濁した。 あらかじめラセミ体 N—イソブチリルー 3_ ァミノペンタン二トリル 30 gを入れた 5 L容のジャ一ファーメンターに上記菌 体懸濁液を加え、 30°Cで 26時間攪拌しながら反応を行った。 反応終了後、 実 施例 1 1と同様の方法で分析したところ、 変換率 35%で 3—ァミノペンタニト リルが生成していた。 この反応液に 1 5%硫酸を加えて pH4に調整後、 反応液 に対して 2. 5倍容量の塩化メチレンを用いた抽出操作を 2回行い、 N— ^ f ソブ チリルー 3—ァミノペンタン二トリルを回収した。 水相を 30%水酸化ナトリゥ ムを用いて pHl 1に調整後、 反応液に対して 2. 5倍容量の塩化メチレンを用 いた抽出操作を 3回行い、 3—ァミノペンタン二トリルを回収した。 それぞれの 抽出液を無水硫酸ナトリウムで脱水後、 減圧下にて溶媒を留去し、 3—アミノぺ ンタン二トリル 5. 8 g、 及び N—イソプチリル _ 3—ァミノペンタン二トリル 1 8. 1 gを取得した。 After 4 L of the liquid medium described in Example 11 was placed in a 10 L jar armmenter to kill the bacteria, Nocardia globulare (Nocardiag 1 oberu 1) obtained by the culture method described in Example 11 was added thereto. a) 4 OmL of a culture solution of IFO1351O was aseptically inoculated and cultured for 56 hours at an aeration of 0.5 Vvm, a temperature of 28 ° C, and a stirring speed of 260 rpm. The cells were recovered from the obtained culture solution, and lO OmM phosphate buffer ( pH 7.0) and suspended in 1.5 L. The above cell suspension was added to a 5 L-volume jafermenter containing 30 g of racemic N-isobutylyl-3_aminopentanenitrile in advance, and the reaction was carried out with stirring at 30 ° C for 26 hours. After the completion of the reaction, the product was analyzed in the same manner as in Example 11 to find that 3-aminopentanitrile was formed at a conversion of 35%. The reaction solution was adjusted to pH 4 by adding 15% sulfuric acid, and the reaction solution was extracted twice with 2.5 volumes of methylene chloride to give N- ^ fsobutyryl 3- 3-aminopentane nitrile. Was recovered. The aqueous phase was adjusted to pH 11 using 30% sodium hydroxide, and the reaction solution was subjected to extraction using 2.5 times the volume of methylene chloride three times to recover 3-aminopentane nitrile. After dehydrating each extract with anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and 5.8 g of 3-aminopentane nitrile and 18.1 g of N-isobutyryl_-3-aminopentane nitrile were obtained. I got it.
得られた 3—ァミノペンタン二トリルをべンゾイルク口ライ ドで誘導体化後、 HP L Cにて光学純度を分析したところ、 尺体98. 2 % e . e . であった。  After derivatization of the obtained 3-aminopentanenitrile with a benzoyl alcohol-based lid, the optical purity was analyzed by HPLC. As a result, it was 98.2% e.e.
— NMR (40 OMH z, CD C 13) δ ρ p m : 0. 98 (3H, t ) , 1. 43- 1. 63 (2H, m) , 2. 42 (2 H, d q) , 2. 92— 3. 0 8 ( 1 H, m) 。 - NMR (40 OMH z, CD C 1 3) δ ρ pm: 0. 98 (3H, t), 1. 43- 1. 63 (2H, m), 2. 42 (2 H, dq), 2. 92—3.08 (1H, m).
また、 得られた N—ィソブチリル一 3—ァミノペンタン二トリルの光学純度を 下記条件で分析したところ、 S体 6 1. 2 % e . e . であった。  The optical purity of the obtained N-isobutyryl-13-aminopentanenitrile was analyzed under the following conditions. As a result, it was found that the S form was 61.2% e.e.
^-NMR (40 OMH z , CDC ) δ p p m: 4. 0 1 (1 H, m) , 2. 68 (2 H, d q) , 2. 39 ( 1 H, m) , 1. 69 (2H, m) , 1. 2 1 (6 H, m) , 0. 99 (3 H, t) 。  ^ -NMR (40 OMH z, CDC) δ ppm: 4.01 (1 H, m), 2.68 (2 H, dq), 2.39 (1 H, m), 1.69 (2H, m), 1.21 (6H, m), 0.99 (3H, t).
[キヤビラリ一ガスクロマトグラフィー分析条件] [Capillary gas chromatography analysis conditions]
カラム: ASTEC社製 Ch i r a l d e x G~TA ( 20 m X 0. 25m m)  Column: ASTEC Chiraldex G ~ TA (20mX0.25mm)
検出: F I D  Detection: F I D
カラム温度: 1 30°C  Column temperature: 1 30 ° C
注入温度: 200 °C 検出温度: 200°C Injection temperature: 200 ° C Detection temperature: 200 ° C
キャリアーガス :ヘリウム (140 k P a) 産業上の利用可能性  Carrier gas: Helium (140 kPa) Industrial applicability
本発明は、 不斉加水分解活性を有する酵素源を作用させて、 0—ァミノ二トリ ルのアミ ド化合物を立体選択的に加水分解させることにより、 光学活性 —アミ ノニトリル化合物及びその対掌体ァミ ド化合物を効率よく製造することができる:  The present invention provides an optically active aminonitrile compound and its enantiomer by reacting an enzymatic source having asymmetric hydrolysis activity to stereoselectively hydrolyze an amide compound of 0-aminonitrile. Amid compounds can be produced efficiently:

Claims

請求の範囲 The scope of the claims
-般式 ( I ) ;
Figure imgf000024_0001
-General formula (I);
Figure imgf000024_0001
(式中、 は炭素数 1〜8のアルキル基、 炭素数 1〜 8のアルコキシ基、 炭素 数 2〜 8のアルケニル基又は炭素数 2〜 8のアルキニル基を示し、 R 2は炭素数 1〜8のアルキル基、 炭素数 1〜8のァノレコキシ基、 炭素数 2〜 8のアルケニル 基、 炭素数 2〜 8のアルキニル基、 炭素数 6〜 1 4のァリール基又は炭素数 5〜 1 4の複素環残基を示す。 ) で表されるアミ ド化合物に、 不斉加水分解活性を有 する酵素源を作用させることを特徴とする、 一般式 ( I I ) ;(Wherein represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, or an alkynyl group having 2 to 8 carbon atoms, and R 2 represents 1 to 8 carbon atoms. 8 alkyl groups, 1 to 8 carbon atoms anoreoxy group, 2 to 8 carbon atoms alkenyl group, 2 to 8 carbon atoms alkynyl group, 6 to 14 carbon atoms aryl group or 5 to 14 carbon atoms complex A ring residue.) An enzyme source having asymmetric hydrolysis activity is allowed to act on the amide compound represented by the general formula (II);
Figure imgf000024_0002
Figure imgf000024_0002
(式中、 は上記一般式 (I ) 中で定義した通り。 *は不斉炭素原子を示す。 ) で表される光学活性 —ァミノ二トリル化合物及びその対掌体アミ ド化合物の 製造方法。 (Wherein is as defined in the above general formula (I). * Represents an asymmetric carbon atom.) A process for producing an aminonitrile compound and an enantiomer amide compound represented by the formula:
2 . R 2がメチル基、 n—プロピル基、 イソプロピル基、 イソブチル基、 t— ブチル基、 ペンチル基又はフエニル基である請求の範囲第 1項記載の製造方法。 2. The production method according to claim 1, wherein R 2 is a methyl group, an n-propyl group, an isopropyl group, an isobutyl group, a t-butyl group, a pentyl group or a phenyl group.
3 . R。がィソプロピル基である請求の範囲第 1項記載の製造方法。 3. R. The production method according to claim 1, wherein is a isopropyl group.
4. が炭素数 1〜4のアルキル基である請求の範囲第 1〜 3項のいずれか に記載の製造方法。 4. The production method according to any one of claims 1 to 3, wherein is a C1 to C4 alkyl group.
5. Rjがェチル基である請求の範囲第 1〜 3項のいずれかに記載の製造方法。 5. The production method according to any one of claims 1 to 3, wherein Rj is an ethyl group.
6. 酵素源がアルカリゲネス (A l c a l i g e n e s) 属、 ァグロバタテリ ゥム (Ag r o b a c t e r i um) 属、 コリネノ クテリゥム (C o r y n e b a c t e r i u m) 属、 クレブシエラ (K l e b s i e l l a) 属、 ノカノレディ ァ (N o c a r d i a ) 属 、 ロドコッカス (Rh o d o c o c c u s ) 属、 キ ャンディダ (C a n d i d a) 属、 タリプトコッカス (C r y p t o c o c c u 属、 クラビスポラ (C 1 a V ΐ s p o r a ) 属、 デバリオマイセス (D e b a r v omv c e s) 属、 ピキア (P i c h i a ) 属及びトリコスポロン (T r i c h o s p o r o n) 属からなる群から選択される少なくとも 1種の微生物の 培養液又はその処理物である請求の範囲第 1〜 5項のいずれかに記載の製造方法。 6. Enzyme sources include Alcaligenes, Agrobacterium, Corynebacterium, Klebsiella, Nocardia, and Rhodocca. Genus, genus Candida, genus Cryptococcu (genus Cryptococcu, genus Clavispora), genus Debarv omv ces, genus Pichia, and trichosporon (Trichosporon) The production method according to any one of claims 1 to 5, which is a culture solution of at least one microorganism selected from the group consisting of genera or a processed product thereof.
7. 酵素源がアルカリゲネス · ファェカリス (A 1 c a 1 i e n e s f a e c a 1 i s ) 、 ァグロバタテリゥム 'ッメファシエンス (Ag r o b a c t e r i um t ume f a c i e n s ) 、 コリネバクテリゥム 'アンモニアゲネス (C o r y n e b a c t e r i um a mm o n i a g e n e s ) 、 クレブシェ ラ .プランティコラ (K l e b s i e l l a 1 a n t i c o 1 a ) 、 コリネ / クテリゥム ·フラベセンス (C o r y n e b a c t e r i um f l a v e s c e n s 7. Enzyme sources are Alcaligenes faecalis (A 1 ca 1 ienesfaeca 1 is), Agrobacterium ッ mmefaciens (Ag robacteri um t ume faciens), Corynebacterium 'Ammoniagenes (C orynebacteri um amm oniagenes), Klebsiella 1 plant, Klebsiella 1 antico 1a, Corynebacteri um flavescens
(No c a r d i a a s t e r o i d e s (R h o d o c o c c u s e r v t h r o υ o l i s ) 、 キャンデイタ "■キャンタレリ (C a n d i d a c a n t a r e 1 1 i i ) 、 キャンディダ .カテヌラタ (C a n d i d a c a t e n u 1 a t a ) 、 キャンデイダ -グイリアモンディ (C a n d i d a g u i 1 1 i e r m o n d i i ) 、 キヤンァイダ 'モ=" C a n d i d a m ο ε i i ) 、 キヤ ンディダ . トロピカリス (C a n d i d a t r o p i c a l i s) 、 キャンデ ィダ -ベノレサティリス (C a n d i d a v e r s a t i 1 i s ) 、 クリプトコ ッカス · フミコラス (C r y p t_p c o c c u s h u m i c o 1 u s ) 、 クリ プトコッカス ·ラウレンティ (_Q_r V p t o c o c c u_s_ 1 a u r e n t i i ) 、 クラビスポラ 'ノレシタニェ (C 1 a v. i s β_ r a_ 1 u s i t a n i a e ) 、 デノ リオマイセス . カノレソニ (D e b a r y omv c e s c a r s o n i 丄) 、 テノ "^リオマイセス . カステリ (D e b a r y omy c e s c a s t e 1 1 i i ) 、 ピキア -ブルトニ (P i c h i a b u r t o n i i ) 及びトリコス ポロン .カタネゥム (T r i c h o s p o r o n_ c u t a n e u m) 力 らなる 群から選択される少なくとも 1種の微生物の培養液又はその処理物である請求の 範囲第 1〜 5項のいずれかに記載の製造方法。 (No cardiaasteroides (R hodococcuservthro oli olis), Candida "■ Cantarelli (C andidacantare 1 1 ii), Candida. Catenumata (C andidacatenu 1 ata), Candida-Guiriamondi (C andidagui 1 1 iermondii) andidam ο ε ii) Candidatropicalis, Candida-Venoresatilis (C andidaversati 1 is), Cryptococcus humicolas (Cryp t_p coccushumico 1 us), Cryptococcus laurenti (_Q_r V (C 1 av. Is β_ r a_ 1 usitaniae), deno liomyces. Canolesoni (D ebary omv cescarsoni 、), teno "^ rio myces. Castelli (D ebary omy cescaste 1 1 ii), pichia-burtonni The production method according to any one of claims 1 to 5, which is a culture solution of at least one microorganism selected from the group consisting of Trichosporon. Cataneum (T richosporon_ cutaneum) and a processed product thereof.
8. 酵素源がアルカリゲネス ' ファェカリス (A 1 c a 1 i e n e s f a e c a 1 i s ) I FO 1 3 1 1 1、 ァグロパクテリゥム · ッメファシエンス ( ¾ r o b a c t e r i um t ume f a c i e n s) I F01 3 26 d、 コリ ネノ クテリゥム . アンモニアゲネス (C o r y n e b a c t e r i um a mm o n i a g e n e s) I F01 26 1 2、 クレブシエラ -プランティコラ (K 1 e b s i e 1 l a p 1 a n t i c o 1 a ) I F03 3 1 7、 コリネバクテリウ ム · フフべセンス (C o r y n e b a c t e r i u m 丄 1 a v_e s c e n s ) I F01 4 1 3 6、 ノカルディア ' グロべルーラ (N o c a r d i a g l o b e r u 1 a ) I FO 1 3 5 1 0、 ノカルディア ' ァステロイデス (N o c a r d i a a s t e r o i d e s ) I F034 2 3、 ノカルディア 'ァステロイデス8. The enzyme source is Alcaligenes' faecalis (A 1 ca 1 ienesfaeca 1 is) I FO 13 1 1 1, Agrobacterium umme faciens (Frobacteri um t ume faciens) I F01 326 d, Corynenocterium. Ammoniagenes (C orynebacteri um a mm oniagenes) I F01 26 12 2, Klebsiella-Planticola (K 1 ebsie 1 lap 1 antico 1a) I F03 317, Corynebacterium fubesense (C orynebacterium 丄 1 a) v_e scens) I F01 4 1 3 6, Nocardia 'Globerula (Nocardiagloberu 1a) IFO 1 3 5 1 0, Nocardia' Nastiaroides (Nocardiaasteroides) I F034 23, Nocardia 'Asteroides
(N o c a r d i a a s t e r o i d e s) I F03 3 84、 ロ ドコッカス ' エリス口ポリス (Rh o d o c o c c u s_ e r y t h r o p o 1 i s ) I F O 1 2 3 20、 ロ ドコッカス 'エリス口ポリス (R h o d o c o c c u s e r v t h r o p o 1 i s ) I AM 1 474, キャンディダ 'キャンタレリ (C a n d i d a c a n t a r e 1 1 i i ) I FO 1 26 1、 キャンディダ 'カテヌラタ(Nocardiaasteroides) I F03 3 84, Rhodococcus' Eris mouth police (Rhodococcu s_erythropo 1 is) IFO 1 2 3 20, Rhodococcus' Eris mouth police (Rhodococcuservthropo 1is) IAM1 474, Candida 'Cantarelli (C andidacantare 1 1 ii) I FO 1 26 1, Candida 'Catenulata
(C a n d i d a c a t e n u l a t a) I F O 74 5、 キャンディダ ·グイ リアモンディ (C a n d i d a _g_u i 1 1 i e r mo n d i i ) I F0454, キャンディダ 'モギ (C a n d i d a mo g i i ) I F0436、 キャンディ ダ - トロピカリス (C a n d i d a t r o p i c a 1 i s ) I F O 6 18、 キ ャンディダ ·べノレサティリス (C a n d i d a v e r s a t i 1 i s ) I F O 1 228、 クリプトコッカス .フミコラス (C r y p t o c o c c u s h um i c o 1 u s ) I F01527、 タリプトコッカス 'ラウレンティ (C r y t(C andidacatenulata) IFO 74 5, Candida guília mondi (C andida _g_u i 11 ier mo ndii) I F0454, Candida mogi (C andida mo gii) I F0436, Candida-tropicalis (C andidatropica 1 is) IFO 618, Candida venoresatiris (C andidaversati 1 is) IFO 1228, Cryptococcus fumikolas (Cryptococcum) ico 1 us) I F01527, T. laurentii (Cryt
0 c o c c u s 1 a u r e n t i i ) I FO 609、 クラビスポラ .ノレシタニ ェ (C l a v i s p o r a 1 u s i t a n i a e ) I F O 10 1 9、 デノくリォ マイセス ' カノレソニ (D e b a r y omy c e s c a r s o n i i ) I F O 9 46、 テノヽリオマづセス ■ 力ノレソニ ( D e b a r v o m v c e s c a r s o n0 coccus 1 aurentii) I FO 609, Clavispora 1 C., IFO 10 19, Deno Clio Maises' Canole soni (D ebary omy cescarsonii) I FO 946, テ 、 ■ 力D ebarvomvcescarson
1 i ) I F O 795、 デバリオマイセス 'カステリ (D e b a r y omy c e s c a s t e 1 1 i i ) I F O 1 359、 ピキア 'ブノレト二 (P i c h i a b_ u r t o n i i ) I F O 844及びトリコスポロン 'カタネゥム (T r i c h o s p o r o n c u t a n e um) I F O 1 1 98からなる群から選択される少 なくとも 1種の微生物の培養液又はその処理物である請求の範囲第 1〜 5項のい ずれかに記載の製造方法。 1 i) IFO 795, Debaryomyces' castelli (D ebary omy cescaste 1 1 ii) IFO 1359, Pichia 'Punoa_butonetoni (Pichia b_urtonii) IFO 844 and Trichosporon' Trichosporoncutane um IFO 1 198 The production method according to any one of claims 1 to 5, which is a culture solution of at least one microorganism selected from the group consisting of:
9. 酵素源がコリネバクテリゥム (C o r y n e b a c t e r i um) 属及び ノカルディア (No c a r d i a) 属からなる群から選択される少なくとも 1種 の微生物の培養液又はその処理物である請求の範囲第 1〜 5項のいずれかに記載 の製造方法。 9. The enzyme source is a culture solution of at least one microorganism selected from the group consisting of the genus Corynebacterium and the genus Nocardia, or a processed product thereof. 6. The production method according to any one of the above items 5.
10. 酵素源が、 コリネバクテリゥム 'フラベセンス (C o r v n e b a c t e r _ i u m f 1 _v_e _s c e n s 、 ノカルティ了 · グロべノレーラ (N o c a r d i a g 1 o b e r u 1 a ) 及ぴノカルディア .ァステロイデス (N o c a r d i a a s t e r o i d e s) からなる群から選択される少なくとも 1種の 微生物の培養液又はその処理物である請求の範囲第 1〜 5項のいずれかに記載の 製造方法。 10. The enzyme source is from the group consisting of Corynebacterium 'flavesense (Corvnebacter _ iumf 1 _v_e _s cens, Nocardi globulinella (Nocardiag 1 oberu 1 a) and Nocardia. Nocardiaasteroides) The production method according to any one of claims 1 to 5, which is a culture solution of at least one selected microorganism or a processed product thereof.
1 1. 酵素源がコリネバクテリゥム ·フラベセンス (C o r y n e b a c t e r i u m f l a v e s c e n s) I F O 14 1 3 6 ノカルディァ .グロべノレ ーラ (N o c a r d i a g 1 o b e r u 1 a ) I FO 1 3 5 1 0, ノカルディ ァ -ァステロイデス (N o c a r d i a a s t e r o i d e s) I F0342 3及びノカルディア .ァステロイデス (N o c a r d i a a s t e r o i d e _s_) I FO 3 3 84からなる群から選択される少なくとも 1種の微生物の培養液 又はその処理物である請求の範囲第 1〜 5項のいずれかに記載の製造方法。 1 1. The enzyme source is Corynebacterium flavesense riumflavescens) IFO 14 1 3 6 Nocardiag 1 oberu 1a IFO 1 3 5 1 0, Nocardia-asteroides (Fo342) and Nocardia asteroides (Nocardiaasteroide _s_) The production method according to any one of claims 1 to 5, which is a culture solution of at least one kind of microorganism selected from the group consisting of IFO33384 or a processed product thereof.
1 2. 酵素源がノカルディア 'グロべルーラ (N o c a r d i a g l o b e r u 1 a) I FO 1 3 5 1 0の培養液又はその処理物である請求の範囲第 1〜 5 項のいずれかに記載の製造方法。 1 2. The production method according to any one of claims 1 to 5, wherein the enzyme source is a culture solution of Nocardiagloberu 1a (Nocardiagloberu 1a) IFO 13510 or a processed product thereof. .
1 3. 酵素源として微生物菌体を用いることを特徴とする請求の範囲第 1〜1 2項のいずれかに記載の製造方法。 13. The method according to any one of claims 1 to 12, wherein microbial cells are used as an enzyme source.
4. 一般式 ( I I I ) ; 4. General formula (I I I);
Figure imgf000028_0001
Figure imgf000028_0001
(式中、 R 3は炭素数 2〜4のアルキル基を示し、 R4は炭素数 1〜8のアルキ ル基又は炭素数 6〜1 4のァリール基を示す。 ) で表されるアミ ド化合物又はそ の塩。 (Wherein, R 3 represents an alkyl group having 2 to 4 carbon atoms, and R 4 represents an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 14 carbon atoms.) Compound or salt thereof.
1 5. R4がメチル基、 n—プロピル基、 イソプロピル基、 イソプチル基、 t 一ブチル基、 ペンチル基又はフエニル基である請求の範囲第 1 4項記載のアミ ド 化合物又はその塩。 15. The amide compound or a salt thereof according to claim 14, wherein R 4 is a methyl group, an n-propyl group, an isopropyl group, an isobutyl group, a t-butyl group, a pentyl group or a phenyl group.
1 6. R4がイソプロピル基である請求の範囲第 14項記載のアミ ド化合物又 はその塩。 16. The amide compound or a salt thereof according to claim 14, wherein R 4 is an isopropyl group.
1 7. R3がェチル基である請求の範囲第 14〜 1 6項のいずれかに記載のァ ミ ド化合物又はその塩。 1 7. R 3 is § mi de compound or a salt thereof according to any one range of fourteenth 1-6 of claims is Echiru group.
1 8. 光学活性体である請求の範囲第 14〜1 7項のいずれかに記載のアミ ド 化合物又はその塩。 18. The amide compound or a salt thereof according to any one of claims 14 to 17, which is an optically active substance.
PCT/JP2003/008826 2002-07-12 2003-07-11 PROCESS FOR PRODUCING OPTICALLY ACTIVE β-AMINONITRILE COMPOUND AND AMIDE COMPOUND AS ANTIPODE THEREOF WO2004007741A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003280995A AU2003280995A1 (en) 2002-07-12 2003-07-11 PROCESS FOR PRODUCING OPTICALLY ACTIVE Beta-AMINONITRILE COMPOUND AND AMIDE COMPOUND AS ANTIPODE THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-204592 2002-07-12
JP2002204592 2002-07-12
JP2003-047363 2003-02-25
JP2003047363A JP2006021999A (en) 2002-07-12 2003-02-25 METHOD FOR PRODUCING OPTICALLY ACTIVE beta-AMINONITRILE COMPOUND AND ITS MIRROR IMAGE AMIDE COMPOUND

Publications (1)

Publication Number Publication Date
WO2004007741A1 true WO2004007741A1 (en) 2004-01-22

Family

ID=30117454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008826 WO2004007741A1 (en) 2002-07-12 2003-07-11 PROCESS FOR PRODUCING OPTICALLY ACTIVE β-AMINONITRILE COMPOUND AND AMIDE COMPOUND AS ANTIPODE THEREOF

Country Status (3)

Country Link
JP (1) JP2006021999A (en)
AU (1) AU2003280995A1 (en)
WO (1) WO2004007741A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457294A (en) * 1966-04-22 1969-07-22 Abbott Lab N-(substituted-benzoyl) aminoaceto- and aminopropionitriles
EP0654533A2 (en) * 1993-11-18 1995-05-24 Mitsubishi Rayon Co., Ltd. A process for producing D-lactic acid and L-lactamide
JP2000157294A (en) * 1998-11-27 2000-06-13 Kanegafuchi Chem Ind Co Ltd Production of optically active alpha-amino acid having asymmetric carbon at beta position
WO2002088069A2 (en) * 2001-04-30 2002-11-07 Pfizer Products Inc. Compounds useful as intermediates for 4-aminoquinoline derivatives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457294A (en) * 1966-04-22 1969-07-22 Abbott Lab N-(substituted-benzoyl) aminoaceto- and aminopropionitriles
EP0654533A2 (en) * 1993-11-18 1995-05-24 Mitsubishi Rayon Co., Ltd. A process for producing D-lactic acid and L-lactamide
JP2000157294A (en) * 1998-11-27 2000-06-13 Kanegafuchi Chem Ind Co Ltd Production of optically active alpha-amino acid having asymmetric carbon at beta position
WO2002088069A2 (en) * 2001-04-30 2002-11-07 Pfizer Products Inc. Compounds useful as intermediates for 4-aminoquinoline derivatives

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ROMUALDO CAPUTO ET AL.: "Synthesis of enantiopure N- and C-protected homo-beta-amino acids by direct homologation of alpha-amino acids", TETRAHEDRON, vol. 51, no. 45, 1995, pages 12337 - 12350, XP004104701 *
TOUJAS JEAN LOUIS ET AL.: "Synthesis of homochiral N-Boc-beta-aminoaldehydes from N-Boc-beta-aminonitriles", BULL. SOC. CHIM. FR., vol. 134, 1997, pages 713 - 717, XP009003362 *

Also Published As

Publication number Publication date
AU2003280995A1 (en) 2004-02-02
JP2006021999A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4051082B2 (en) Stereoselective bioconversion of aliphatic dinitriles to cyanocarboxylic acids.
JP5096435B2 (en) Process for producing optically active α-methylcysteine derivative
EP0449648B1 (en) Process for producing R(-)-mandelic acid and derivatives thereof
JP2676568B2 (en) Method for producing R (-)-mandelic acid and its derivatives
JPWO2004022766A1 (en) Method for producing L-α-methylcysteine derivative
WO2007026860A1 (en) METHOD FOR PRODUCTION OF OPTICALLY ACTIVE α-HYDROXYCARBOXYLIC ACID
JP3941184B2 (en) Process for producing optically active 1-acyloxy-3-chloro-2-propanol and optically active 3-chloro-1,2-propanediol
JP4735263B2 (en) Process for producing optically active 2-alkylcysteine, its derivative and process
WO2004007741A1 (en) PROCESS FOR PRODUCING OPTICALLY ACTIVE β-AMINONITRILE COMPOUND AND AMIDE COMPOUND AS ANTIPODE THEREOF
JP3078599B2 (en) Method for producing L-3,4-dihydroxyphenylserine derivative
JP3078597B2 (en) Method for producing L-threo-3- (3,4-dihydroxyphenyl) serine derivative
JP4711367B2 (en) Method for producing optically active amino alcohol derivative
JP2000086605A (en) Production of l-allicin acetal
JPH06319591A (en) Production of optically active norstatin derivative
US20060166337A1 (en) Process for producing optically active erythro 3-cyclohexylserines
JP2002034593A (en) METHOD FOR PRODUCING OPTICALLY ACTIVE alpha-AMINO ACID
WO2004063385A1 (en) PROCESS FOR PRODUCING OPTICALLY ACTIVE α-METHYLCYSTEINE DERIVATIVE
JP3960667B2 (en) β-carbamoylisobutyric acid and process for producing the same
JP2674076B2 (en) Method for producing D-α-amino acid
JP4658315B2 (en) Process for producing optically active carboxylic acid and its enantiomer ester
JP2003002872A (en) Method for preparation of lysine derivative
JPH01181797A (en) Production of d-threo-3-(3,4-dihydroxyphenyl)serine derivative
JPH06125787A (en) Production of l-threo-beta-hydroxyamino acid
JPH06319588A (en) Production of optically active norstatin derivative
JPH06125786A (en) Production of l-beta-hydroxyamino acid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP