WO2004003937A1 - 導電接点素子及び電気コネクタ - Google Patents

導電接点素子及び電気コネクタ Download PDF

Info

Publication number
WO2004003937A1
WO2004003937A1 PCT/JP2003/008090 JP0308090W WO2004003937A1 WO 2004003937 A1 WO2004003937 A1 WO 2004003937A1 JP 0308090 W JP0308090 W JP 0308090W WO 2004003937 A1 WO2004003937 A1 WO 2004003937A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
contact element
conductive contact
parts
silicone rubber
Prior art date
Application number
PCT/JP2003/008090
Other languages
English (en)
French (fr)
Inventor
Koji Nishizawa
Original Assignee
Shin-Etsu Polymer Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Polymer Co., Ltd. filed Critical Shin-Etsu Polymer Co., Ltd.
Priority to AU2003246199A priority Critical patent/AU2003246199A1/en
Priority to US10/487,900 priority patent/US7001191B2/en
Priority to EP03738521A priority patent/EP1560226A4/en
Publication of WO2004003937A1 publication Critical patent/WO2004003937A1/ja
Priority to NO20050277A priority patent/NO20050277L/no

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2414Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means conductive elastomers

Definitions

  • the present invention relates to a conductive contact element and an electrical connector used for electrical connection of various electrical and electronic devices, for example, when an area-type semiconductor package including an LGA and a BGA is connected to a mounting board.
  • a semiconductor package composed of an LGA or BGA is directly soldered onto a mounting board, or connected to a mounting board by a movable pin that moves up and down by a leaf spring or a coil spring.
  • the number of external connection terminals has been increasing with the high performance and high functionality of semiconductor packages, and it has become difficult to perform batch connection by solder from the viewpoint of connection reliability.
  • the connection distance of conventional leaf springs and coil springs is long, so that the inductance component becomes large, which hinders high-speed signal transmission.
  • an electrical connector in which a plurality of conductive elastomer elements are penetrated and supported on an insulating substrate has been studied.
  • a silicone rubber composition containing a metal powder is preferably used, and silver powder is usually used in the silicone rubber composition in view of resistance and cost. Have been.
  • Silver powder is a reduced silver powder obtained by reducing an aqueous silver nitrate solution with a reducing agent such as hydrazine, formaldehyde, or ascorbic acid; an electrolytic silver powder obtained by depositing an aqueous silver nitrate solution on a cathode by electrolysis; And atomized silver powder obtained by spraying molten silver heated and melted at a temperature of more than 000 ° C into water or an inert gas.
  • a reducing agent such as hydrazine, formaldehyde, or ascorbic acid
  • an electrolytic silver powder obtained by depositing an aqueous silver nitrate solution on a cathode by electrolysis
  • atomized silver powder obtained by spraying molten silver heated and melted at a temperature of more than 000 ° C into water or an inert gas.
  • the shape of these silver powders can be divided into granular, flake, dendritic, and irregular shapes.
  • granular silver powders tend to agglomerate with each other, and when mixed with silicone rubber, the dispersed state Because of this, the resistance value fluctuates easily and the resistance value becomes unstable, so it is often used in combination with flake-shaped silver powder.
  • flake-like silver powder generally produces lauric acid
  • a saturated or unsaturated higher fatty acid such as myristic acid, palmitic acid, stearic acid, and oleic acid, metal stone, higher aliphatic amine, polyethylene wax, and the like. May cause vulcanization inhibition. It is known that the resistance value of silver powder not subjected to the above-mentioned treatment becomes unstable when added to silicone rubber.
  • An electrical connector obtained by molding such a conductive silicone rubber composition with a mold or the like has an unstable conduction resistance when a semiconductor package is mounted, resulting in stable operation of the semiconductor package and the like. Will not. Furthermore, repeated compression of the semiconductor package against the mounting substrate breaks the agglomeration structure and chain of the silver powder, significantly increasing the conduction resistance and making it impossible to use repeatedly. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and has a conductive contact element and an electrical connector that have a stable conduction resistance when molded with a mold and that can prevent an increase in the conduction resistance even when used repeatedly.
  • the purpose is to provide.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, as a silver powder, a silicone blended with a granular silver powder having a tap density of 2.OgZcm 3 or less and a specific surface area of 0.7 m 2 / g or less.
  • a silver powder a silicone blended with a granular silver powder having a tap density of 2.OgZcm 3 or less and a specific surface area of 0.7 m 2 / g or less.
  • R 1 is the same or different unsubstituted or substituted monovalent hydrocarbon group, and ⁇ is a positive number of 1.98 to 2.02.
  • organopolysiloxane having at least two aliphatic unsaturated groups
  • FIG. 1 is a side view showing a state where a conductive contact element and an electric connector according to the present invention are interposed between a substrate and a semiconductor package.
  • FIG. 2 is a perspective view of a conductive contact element and an electrical connector according to the present invention.
  • FIG. 3 is an explanatory view showing a manufacturing method in one embodiment of the conductive contact element and the electrical connector according to the present invention.
  • FIG. 3 (a) shows a state in which a conductive silicone rubber composition is overlaid on a substrate and set in a mold.
  • (B) is a cross-sectional view showing a state in which the mold of (a) is clamped and subjected to pressure and heat molding, and (c) is an electric connector in which the substrate and the conductive contact element are taken out. It is sectional drawing which shows a state.
  • FIG. 4A and 4B are cross-sectional views showing another embodiment of the conductive contact element and the electrical connector according to the present invention.
  • FIG. 4A is a diagram showing a conductive contact element having a roughly abacus section in cross section
  • FIG. 3C is a view showing a columnar conductive contact element
  • FIG. 3C is a view showing a thin, substantially columnar conductive contact element
  • FIG. 4D is a view showing a substantially oval-shaped conductive contact element.
  • FIG. 5A and 5B are cross-sectional views showing another embodiment of the conductive contact element and the electrical connector according to the present invention.
  • FIG. 5A is a view showing a conductive contact element having a substantially circular cross section
  • FIG. A diagram showing a state in which edges are chamfered and rounded (c) a diagram showing a conductive contact element having a substantially octagonal cross section, and (d) a diagram showing a state in which the peripheral surface of the conductive contact element is partially curved. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • the conductive contact element of the present invention is a conductive contact element obtained by curing and molding the above-mentioned conductive silicone rubber composition.
  • the component (A) of the conductive silicone rubber composition is represented by the above average composition formula (1), An organopolysiloxane having at least two aliphatic unsaturated groups.
  • R 1 is an alkyl group such as a methyl group, an ethyl group, a propyl group or a butyl group; a cycloalkyl group such as a cyclohexyl group; an alkenyl group such as a vinyl group, an aryl group, a butenyl group, or a hexenyl group; Aryl groups such as phenyl and tolyl groups, aralkyl groups such as benzyl and phenylethyl groups, or chloromethyl groups in which part or all of the hydrogen atoms bonded to carbon atoms of these groups have been substituted with halogen atoms, cyano groups, etc.
  • R 1 is preferably a methyl group, a vinyl group, or a phenyl group, and particularly preferably a methyl group accounts for 50 mol% or more, and particularly 80 mol% or more, of all R 1 .
  • Organopolysiloxane represented by the average composition formula (1) it is necessary to have at least two aliphatic unsaturated groups (especially an alkenyl group), an aliphatic unsaturated group in R 1 Is preferably 0.001 to 20 mol%, more preferably 0.025 to 5 mol%.
  • the aliphatic unsaturated group may be at the terminal of the molecular chain, may be at the side chain of the molecular chain, or may be at both the terminal and the side chain.
  • N is a positive number from 1.98 to 2.02.
  • the organopolysiloxane represented by the above average composition formula (1) is preferably basically linear, but may be one or a mixture of two or more compounds having different molecular structures and molecular weights.
  • the organopolysiloxane preferably has an average degree of polymerization of 100 to 10,000, particularly preferably 3,000 to 20,000.
  • component (B) which is the second essential component of the present invention, is a granular silver powder having a tap density of 2.0 g / cm 3 or less and a specific surface area of 0.7 m 2 Zg or less.
  • tap density ISO 3953-19977
  • BET specific surface area is given as constants indicating the aggregation of silver powder.
  • the tap density of the silver powder of the present invention is 2.0 g / cm 3 or less, and the BET specific surface area is 0.7 m 2 Zg or less.
  • the lower limit is applied Yichun selected, tap density, 0. 05 gZcm 3 or more, particularly, it is preferably 0. 1 g / cm 3 or more, BET specific surface area, 0. 0 5 m 2 Zg As described above, it is particularly preferable to be 0.1 lm 2 Zg or more.
  • Silvest F 20 manufactured by Tokuka Chemical Laboratory Co., Ltd.
  • the particle size of the silver powder of the present invention is not particularly limited, but is preferably in the range of 0.05 to 100 x m, and the average particle size thereof is preferably in the range of 1 to 10 / m.
  • the silver powder is not completely independent but is partially connected to silver powder.
  • the method for producing the raw material silver powder used in the present invention is not particularly limited, and examples thereof include an electrolytic method, a pulverizing method, a heat treatment method, an atomizing method, and a reduction method.
  • the reduction method is preferable because it is easy to obtain a powder having a small tap density and a small BET specific surface area by controlling the reduction method.
  • the silver powder may be ground and used within a range that satisfies the above numerical range.
  • the apparatus for grinding the silver powder is not particularly limited, and examples thereof include a stamp mill, a pole mill, a vibration mill, a hammer mill, a rolling roller, and a mortar. And other known devices.
  • the amount of the silver powder of the component (B) is from 300 to 700 parts by weight, preferably from 400 to 600 parts by weight, based on 100 parts by weight of the organopolysiloxane of the component (A). Department is preferred. If the amount of the silver powder (B) is less than 300 parts by weight, the compounding amount is small and stable resistance cannot be obtained. If the amount exceeds 700 parts by weight, the mechanical properties of the conductive silicone rubber are deteriorated and the elasticity is reduced. And the compression set characteristic deteriorates.
  • the conductive silicone rubber composition of the present invention may contain other conductive materials other than the silver powder of the component (B) as long as the object of the present invention is not impaired.
  • a conductive material conductive carbon black, conductive zinc white, conductive titanium oxide and the like may be used alone or in combination of two or more.
  • conductive force pump rack those commonly used in conductive rubber compositions can be used.
  • acetylene black conductive furnace black (C F)
  • C F conductive furnace black
  • S F superconductive furnace black
  • acetylene black examples include electrified acetylene black (manufactured by Denki Kagaku), Such as Gan Acetylene Black (manufactured by Shadanigan Chemical), Continex CF (manufactured by Continental Carbon), Vulcan C (manufactured by Kyapot), etc. as conductive furnace black; SCF (Continental Carbon), Vulcan SC (Kyapot), etc.
  • Ketjen Black EC and Ketjen Black EC—600 JD are a type of furnace black. Company) It can be.
  • acetylene black has excellent conductivity since it has a secondary structure structure that has a low impurity content and is developed, and is particularly preferably used in the present invention.
  • Ketjen Black EC ⁇ ⁇ ⁇ Ketjen Black EC-600 JD which exhibits excellent conductivity even at a low filling amount due to its excellent specific surface area, can also be preferably used.
  • the white conductive titanium oxide examples include ET-500 W (manufactured by Ishihara Sangyo Co., Ltd.).
  • the basic composition is preferably a those de one up to S b to T i 0 2 ⁇ S N_ ⁇ 2.
  • the compounding amount of these other conductive materials is
  • the amount is preferably 1 to 500 parts by weight, more preferably 2 to 300 parts by weight, based on 100 parts by weight of the component.
  • Component (C), which is the third essential component of the present invention, is a curing agent of component (A), and is vulcanized by utilizing a radical reaction, an addition reaction, and the like which are usually used for vulcanizing a conductive silicone rubber composition.
  • the curing mechanism is not limited as long as it cures, and various conventionally known curing agents can be used.
  • an organic peroxide is used in a radical reaction, and a platinum-based catalyst and an organocatalyst are used in an addition reaction.
  • a combination of hydrogen polysiloxanes can be used. Of these, organic peroxides are particularly preferred.
  • the compounding amount of the curing agent is an amount capable of curing the organopolysiloxane of the component (A), and may be the same as that of a normal conductive silicone rubber composition.
  • examples of the organic peroxide curing agent include, for example, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, o-methylbenzoyl peroxide.
  • Oxide p-methylbenzoyl peroxide, 2,4-dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylpropyl) hexane, di-t-butyl peroxide, t Monobutyl perbenzoate and the like.
  • the amount of the organic peroxide is preferably from 0.1 to 5 parts by weight based on 100 parts by weight of the organopolysiloxane (A).
  • platinum-based catalysts can be used as the curing agent for the addition reaction. Specifically, platinum element simple substance, platinum compound, platinum complex, chloroplatinic acid, alcohol compound of chloroplatinic acid, aldehyde compound, Examples thereof include ether compounds and complexes with various olefins.
  • the amount of the platinum-based catalyst is preferably in the range of 1 to 2,000 ppm as platinum atoms based on the organopolysiloxane of the component (A).
  • organohydrogenpolysiloxane those having two or more, especially three or more, hydrogen atoms (SiH groups) bonded to a silicon atom in one molecule are used as the organohydrogenpolysiloxane. Is preferred.
  • R is preferably a monovalent hydrocarbon group similar to R 1 having no aliphatic unsaturated bond
  • a and b are 0 ⁇ a ⁇ 3, 0 ⁇ b ⁇ 3, 0 Is a positive number that satisfies a + b ⁇ 3, preferably 0 ⁇ a ⁇ 2.2, 0.002 ⁇ b ⁇ 2, and 1. 002 ⁇ a + b ⁇ 3.
  • the organohydrogenpolysiloxane of the present invention has two or more, preferably three or more, SiH groups in one molecule, which may be at the molecular chain terminal or in the middle of the molecular chain. It may be in both.
  • This organohydrogenpolysiloxane has a viscosity of 0.5 to 25 t at 25 t; L 0,000 mm 2 / s (c St), especially :! Is preferably ⁇ 300mm 2 Zs.
  • the organohydrogenpolysiloxane may be linear, branched, or cyclic, but preferably has a degree of polymerization of 300 or less, and is a diorganopolyene whose terminal is blocked with a dimethylhydrogensilyl group.
  • siloxane copolymers of dimethylsiloxy hexane units and methylhydrogensiloxane units and terminal trimethylsiloxy units, dimethyl siloxane units [H (CH 3) 2 S i ⁇ .
  • S I_ ⁇ low viscosity fluid consisting of two units, 1, 3, 5, 7-tetraazaindene hydrogen-1, 3, 5, 7-tetramethylcyclotetrasiloxane, 1-propyl one 3, 5, 7 _ trihydrogen-1,3,5,7-tetramethylcyclotetrasiloxane, 1,5-dihydrogen-1,3,7-dihexyl 1,3,5,7-tetramethylcyclotetrasiloxane Is done.
  • the amount of the organohydrogenpolysiloxane used as the curing agent is such that the amount of hydrogen directly bonded to the silicon atom of the organohydrogenpolysiloxane is based on the amount of the aliphatic unsaturated group (alkenyl group) of the organopolysiloxane (A). It is preferable to use the atom (S i H group) at a ratio of 50 to 500 mol%.
  • the conductive silicone rubber composition of the present invention may include silica hydrogel (hydrous silicic acid), silica air-opening gel (silicic anhydride-fumed silica) and the like, if necessary, as long as the object of the present invention is not impaired.
  • Fillers such as reinforcing silica fillers, fillers such as clay, calcium carbonate, diatomaceous earth, and titanium dioxide; dispersants such as low-molecular siloxane esters and diphenylsilane diol; heat-resistance improvers such as iron oxide, cerium oxide, and iron octylate
  • Various functional silanes for improving adhesiveness and moldability, octogen compounds for imparting flame retardancy and the like may be added and mixed.
  • the silver powder (B) may be mixed with finely powdered silica or the like in advance to prevent aggregation of the silver powder.
  • the fine powder silica to be mixed has a specific surface area of 50 m 2 / g or more, and preferably 100 to 300 m 2 Zg. If the specific surface area is less than 50 m 2 / g, a sufficient aggregation-preventing effect may not be obtained.
  • Examples of the finely divided silica include fumed silica and precipitated silica, and those obtained by hydrophobizing the surface thereof with chlorosilane, hexamethyldisilazane, organopolysiloxane, alkoxysilane, or the like are also preferably used.
  • the amount of these silicas can be 0 to 5 parts by weight, particularly 0.5 to 2 parts by weight, based on 100 parts by weight of the component (B).
  • alumina, quartz powder, or boron nitride powder may be added to impart thermal conductivity.
  • the silicone rubber composition used in the present invention is obtained by uniformly mixing the above components using a rubber kneader such as a two-roll, Banbury mixer, or a dough mixer (kneader). It can be obtained by performing a heat treatment as needed.
  • a rubber kneader such as a two-roll, Banbury mixer, or a dough mixer (kneader). It can be obtained by performing a heat treatment as needed.
  • the present invention relates to a conductive contact element obtained by curing the above-mentioned conductive silicone rubber composition and an electrical connector including the conductive contact element.
  • the conductive contact element is a volume resistivity 1 X 1 0- 5 ⁇ ⁇ less, and preferably less, especially 6 ⁇ 1 0- 6 ⁇ ⁇ .
  • Conductive contact elements and electrical connectors are used for electrical connection of various electrical and electronic equipment, office automation equipment, mobile phones, and information terminal equipment. Specifically, it is used for the electrical connection of various mounting boards (for example, printed circuit boards and flexible printed circuit boards), semiconductor packages, liquid crystal displays, batteries, electroacoustic components, and small electronic components that make up these components. You.
  • the conductive contact element When the conductive contact element is supported by a substrate, it is generally in the form of a column, a truncated cone, or the like, but when it is not supported by the substrate, it is substantially linear, tape-shaped, rod-shaped, or block-shaped. Etc. can be formed. This conductive contact element may be singular or plural.
  • an electric connector according to the present embodiment is composed of opposed first and second electrical joints.
  • An insulating substrate 20 interposed between a flat mounting substrate 1 and a semiconductor package 10 of the LGA type and a plurality of through-holes 21 provided in the substrate 20 have both ends insulated.
  • each of the elastic conductive contact elements 22 is formed of a cured product of the conductive silicone rubber composition 23.
  • the insulating substrate 20 is made of a thin flat surface made of glass epoxy resin or a known engineering plastic (eg, PET, PEN, PEI, PPS, PEEK, liquid crystal polymer, polyimide, etc.). It is formed in a substantially square shape, and a plurality of circular small-diameter through holes 21 are formed by drilling in the vertical thickness direction.
  • the material of the substrate 20 is preferably an engineering plastic from the viewpoint of excellent heat resistance, and particularly preferably a polyimide from the viewpoint of a small coefficient of thermal expansion. Its thickness The thickness is preferably 25 Xm to 3 mm, particularly 50 to 200 mm, from the viewpoint of strength and handling workability. It is preferable that the plurality of through holes 21 are arranged side by side at a pitch of 0.5 to 1.27 mm, and are formed to have a diameter of 0.25 to 0.8 mm.
  • the conductive contact element 22 has a substantially abacus section in cross section formed by combining a pair of truncated cones, and is fitted and supported in a plurality of through holes 21 provided in an insulating substrate 20, and both ends of the conductive contact element 22 are insulated. It protrudes from the front and back surfaces of the substrate 20, and is electrically connected to the mounting substrate 1 and the plurality of electrodes 2, 11 of the semiconductor package 10.
  • the conductive contact element 22 is manufactured by filling a mold 30 with the conductive silicone rubber composition 23 and molding the same.
  • the mold 30 includes a pair of upper and lower molds 30-a and 30-b having a frustoconical cavity 31 corresponding to the shape of the conductive contact element 22.
  • a method for manufacturing the electric heat connector using the mold 30 will be described.
  • a plurality of through holes 21 are formed in the thickness direction of the substrate 20 in a matrix shape by a method such as laser processing or etching so as to correspond to the electrodes 11 of the semiconductor package 10.
  • the lower mold (30—a) of the mold 30 is attached to the through hole 21 on the back surface of the substrate 20, and a sufficient amount of the conductive silicone rubber composition 23 necessary for molding the conductive contact element 22 is placed on the substrate 20.
  • the upper mold (30—b) of the mold 30 is placed on the conductive silicone rubber composition 23, and the mold 30 (the upper and lower molds 30—a, 30) — In step b), the substrate 20 is sandwiched from above and below (see Fig.
  • both ends of the conductive contact element 22 of the obtained electrical connector protruding from the front and back surfaces of the substrate 20 are brought into contact with the mounting substrate 1 and the plurality of electrodes 2 and 11 of the semiconductor package 10.
  • the mounting board 1 and the semiconductor package 10 can be electrically connected by the electrical connector. Since the conductive contact element 22 is compressed while being interposed between the mounting substrate 1 and the semiconductor package 10, the hardness of the rubber is 50-80, preferably 60-80. (JISK 6253: Durome overnight hardness type A) is preferred.
  • the rubber hardness of the conductive contact element 22 is less than 50, sufficient repulsive load cannot be obtained, and stable connection may not be expected. If it exceeds 80, the load required for compression increases, and mounting is performed. The substrate 1 and the semiconductor package 10 may be damaged.
  • the conductive contact element 22 is formed from the conductive silicone rubber composition 23, even when the conductive contact element 22 is formed using the mold 30, the conductive resistance greatly changes or the conductive resistance is unstable. Therefore, the operation of the semiconductor package 10 can be stabilized during mounting, and the semiconductor package 10 can be used continuously for a long period of time. Further, even if the semiconductor package 10 is repeatedly compressed with respect to the mounting board 1, the signal is not affected by external noise because the conduction resistance value is as small as 5 ⁇ or less and the connection distance is short. It is possible to sufficiently cope with high-speed transmission.
  • the conductive contact element 22 is formed into a pair of truncated cones and formed into a substantially abacus-shaped cross section (see FIG. 4 (a)), but the shape is not limited to this. Instead, it is appropriately selected according to the shape of the electrodes of the mounting substrate 1 and the semiconductor package 10 and the load at the time of conducting connection.
  • the conductive contact element 22 may be formed in a thick section with a substantially columnar shape (a cylindrical shape or a prismatic shape may be used) (see FIG. 4 (b)), or a thin cross-sectionally substantially columnar shape (see FIG. 4 (c)). Or a roughly oval cross section (see Fig. 4 (d)).
  • the conductive contact element 22 may be formed into a substantially circular or elliptical cross section (see FIG. 5 (a)), or the conductive contact element 22 may be formed by rounding the flat upper and lower ends. (See Fig. 5 (b)). Further, the conductive contact element 22 may be formed in a substantially octagonal cross section (see FIG. 5 (c)), or the peripheral surface of the conductive contact element 22 may be partially curved (see FIG. 5 (d)). It is possible.
  • the upper and lower shapes may be the same or different (asymmetric). Particularly, from the viewpoints of resistance and load, a substantially abacus-shaped cross section in which a pair of truncated cones are combined as shown in FIG.
  • 1156 (34 x 34) through-holes with a diameter of 0.5 mm were formed at a lmm pitch in the thickness direction on an insulating square substrate (thickness lOO ⁇ m) made of polyimide.
  • a plurality of through holes were provided.
  • the prepared conductive silicone rubber composition was placed so as to cover multiple holes, and the front and back surfaces of the insulating substrate were sandwiched between upper and lower molds, at 160 ° C for 5 minutes. Heat and pressure molding was performed under the molding conditions described above to produce an electrical connector in which the substrate and a plurality of conductive contact elements were integrated.
  • Each conductive contact element has a substantially abacus ball shape in cross-section in which a pair of truncated cones are combined.For each conductive contact element, the height of the roughly abacus ball shape in cross section is lmm and the truncated cone is reduced. The diameter of the diameter end was 0.5 mm, the diameter of the frusto-conical cone was 0.6 mm, and each was projected 0.45 mm from the front and back surfaces of the substrate.
  • the electrical connector thus manufactured was sandwiched between a mounting board and a semiconductor package of LGA type, and the mounting board and the semiconductor package were electrically connected by the electrical connector with a compression amount of 20%.
  • the conduction resistance of all the conductive contact elements was measured, the average value was 17 ⁇ and the maximum value was 30 ⁇ , and it was confirmed that the resistance of all the conductive contact elements was as low as 50 ⁇ or less and had a small variation.
  • the compression operation was repeated 100 times, it was confirmed that the change was a little 1.3 times the initial value.
  • the diameter of the conductive cross-sectional area of the conductive connection element was 0.5 mm, and the conductive distance of the conductive connection element was 1 mm, and the volume resistivity was converted by the following equation (2).
  • IO is the volume resistivity
  • R is the measured conduction resistance
  • A is the conduction cross section
  • L is the conduction distance
  • the conductive silicone composition was added to 100 parts of methylvinylpolysiloxane in the form of granular silver powder A (average particle size: 7.3 zm, tap density: 1.4 gZcm 3 , specific surface area: 0.6 m Vg: Silvest F20 Co., Ltd.
  • a conductive silicone rubber composition was prepared by mixing 500 parts of Tokika Chemical Laboratories and 100 parts of the mixture of methylvinylpolysiloxane and silver powder A with 0.5 part of dicumyl peroxide.
  • Each conductive contact element and electrical connector were prepared in the same manner as in Example 1 except that the average value was 10 ⁇ , the maximum value was 15 ⁇ , and the resistance was low. When the compression operation was repeated 100 times, a slight change of 1.1 times the initial value was confirmed.
  • the conductive silicone composition is prepared by adding granular silver powder C (100 g in methylvinylpolysiloxane) (tap density: 3.0 gZcm 3 , specific surface area: 1.7 m 2 Zg: AgC_D (Fukuda Metal Foil Powder Co., Ltd.)) 0.5 part of dicumyl peroxide with 100 parts of the mixture of methylvinylpolysiloxane and silver powder C described above.
  • granular silver powder C 100 g in methylvinylpolysiloxane
  • tap density 3.0 gZcm 3 , specific surface area: 1.7 m 2 Zg: AgC_D (Fukuda Metal Foil Powder Co., Ltd.)
  • the conductive resistance can be stabilized when the conductive silicone rubber composition is molded, and the conductive contact element and the electrical connector can suppress and prevent an increase in the conductive resistance even when repeatedly used. Can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

 (A)下記平均組成式(1)   R1 nSiO(4−n) / 2            (1)(但し、式中R1は同一又は異種の非置換又は置換の1価炭化水素基であり、nは1.98~2.02の正数である。)で表され、脂肪族不飽和基を少なくとも2個有するオルガノポリシロキサン                              100重量部(B)タップ密度が2.0g/cm3以下であり、比表面積が0.7m2/g以下の粒状銀粉末                   300~700重量部(C)上記(A)成分の硬化剤         (A)成分を硬化させ得る量を含有する導電性シリコーンゴム組成物を硬化・成形してなることを特徴とする導電接点素子。

Description

明 細 書
導電接点素子及び電気コネク夕 技術分野
本発明は、 各種電気電子機器の電気的接続、 例えば L GAや B GAからなるェ リア .アレイ型の半導体パッケージを実装基板に接続する場合等に使用される導 電接点素子及び電気コネクタに関する。 背景技術
従来、 L GAや B GAからなる半導体パッケージは、 実装基板上に直接半田付 けされたり、 あるいは板ばね、 コイルスプリングにより上下動する可動ピン等に より実装基板に接続される。 ところが近年、 半導体パッケージの高性能、 高機能 化に伴い、 外部接続端子数が増加してきているので、 接続信頼性の観点から半田 による一括接続が困難になってきている。 また、 電気信号の高速化に伴い、 従来 の板ばねやコイルスプリングでは接続距離が長いためィンダク夕ンス成分が大き くなり、 高速の信号伝達に支障をきたすようになってきている。
以上の問題に鑑み、 近年、 絶縁性の基板に複数の導電性エラストマ一素子を貫 通支持させた電気コネクタが検討されている。 この電気コネクタを構成する材料 には、 金属粉末を配合したシリコーンゴム組成物が好適に用いられ、 シリコーン ゴム組成物に配合される金属粉末は、 通常、 抵抗やコストの観点から銀粉末が多 用されている。 銀粉末は、 硝酸銀水溶液をヒドラジン、 ホルムアルデヒド、 ァス コルビン酸等の還元剤により還元して得られた還元銀粉末、 硝酸銀水溶液を電気 分解により陰極上に析出して得られた電解銀粉末、 1, 0 0 0 °C以上に加熱溶融 した溶融銀を水中又は不活性ガス中に噴霧して得られたアトマイズ銀粉末とに分 類される。 これらの銀粉末の形状は、 粒状、 フレーク状、 樹枝状、 不定形状に分 けられるが、 一般的に粒状の銀粉末は粉末同士が凝集しやすく、 シリコーンゴム に配合した場合に、 その分散状態により抵抗値が変動しやすく、 抵抗値が不安定 になるため、 フレーク状の銀粉末と組み合わせて使用されることが多い。
しかし、 フレーク状の銀粉末は、 一般的に銀粉末を粉碎する際に、 ラウリン酸、 ミリスチン酸、 パルミチン酸、 ステアリン酸、 ォレイン酸等の飽和又は不飽和の 高級脂肪酸、 金属石鹼、 高級脂肪族ァミン、 ポリエチレンワックス等で処理する 方法があるが、 これらの方法はシリコーンゴムに添加した際に加硫阻害を引き起 こす可能性がある。 また、 上述した処理を施さない銀粉末は、 シリコーンゴムに 添加した場合、 抵抗値が不安定になることが知られている。
このような導電性シリコーンゴム組成物を金型等により成形して得られた電気 コネクタは、 半導体パッケージを実装する場合には、 導通抵抗が不安定になり、 結果として半導体パッケージ等の動作が安定しないこととなる。 更に、 実装基板 に対する半導体パッケージの圧縮を繰り返すと銀粉末の凝集構造や連鎖が破壊さ れ、 導通抵抗が著しく上昇し、 繰り返し使用できないという問題があった。 発明の開示
本発明は、 上記事情に鑑みてなされたものであり、 金型で成形する場合に導通 抵抗が安定し、 しかも繰り返して使用しても導通抵抗の上昇を抑制防止できる導 電接点素子及び電気コネクタを提供することを目的とする。
本発明者らは、 上記目的を達成するため鋭意検討した結果、 銀粉末としてタツ プ密度が 2. OgZcm3以下、 比表面積が 0. 7m2/g以下の粒状の銀粉末 が配合されたシリコーンゴム組成物を導電接点素子及び電気コネクタとすること により、 銀粉末の分散性にすぐれ、 凝集が少なく、 金型で成形する場合に導通抵 抗が安定し、 繰り返し使用しても導通抵抗の上昇を抑制 ·防止できることを知見 し、 本発明を完成させるに至った。
従って、 本発明は
(A) 下記平均組成式 (1)
η ° 10 (4-η) /2 (丄)
(但し、 式中 R1は同一又は異種の非置換又は置換の 1価炭化水素基であり、 η は 1. 98〜2. 02の正数である。 )
で表され、 脂肪族不飽和基を少なくとも 2個有するオルガノポリシロキサン
100重量部
(Β) タップ密度が 2. O g/cm3以下であり、 比表面積が 0. 7m2/g以 下の粒状銀粉末 3 0 0〜 7 0 0重量部
( C) 上記 (A) 成分の硬化剤 (A) 成分を硬化させ得る量 を含有する導電性シリコーンゴム組成物を硬化 ·成形してなることを特徴とする 導電接点素子及びこの導電接点素子を含有する電気コネクタを提供する。 図面の簡単な説明
図 1は、 本発明に係る導電接点素子及び電気コネクタを基板と半導体パッケ一 ジに介装した状態の側面図である。
図 2は、 本発明に係る導電接点素子及び電気コネク夕の斜視図である。
図 3は、 本発明に係る導電接点素子及び電気コネクタの一実施形態における製 造方法を示す説明図で、 (a ) は基板上に導電性シリコーンゴム組成物を重ねて 金型にセットした状態を示す断面図、 (b ) は (a ) の金型を型締めして加圧加 熱成形した状態を示す断面図、 (c ) は基板と導電接点素子とが一体化した電気 コネクタを取り出す状態を示す断面図である。
図 4は、 本発明に係る導電接点素子及び電気コネクタの他の実施形態を示す断 面図で、 (a ) は断面略算盤玉形の導電接点素子を示す図、 (b ) は太い断面略 柱形の導電接点素子を示す図、 (c ) は細い断面略柱形の導電接点素子を示す図、 ( d ) 図は断面略小判形の導電接点素子を示す図である。
図 5は、 本発明に係る導電接点素子及び電気コネクタの他の実施形態を示す断 面図で、 (a ) は断面略円形の導電接点素子を示す図、 (b ) は上下両端部の周 縁をそれぞれ面取りし丸めた状態を示す図、 ( c ) は断面略八角形の導電接点素 子を示す図、 (d ) 図は導電接点素子の周面を一部湾曲させた状態を示す図であ る。 発明を実施するための最良の形態
以下、 本発明につき更に詳しく説明する。
本発明の導電接点素子は、 上記導電性シリコーンゴム組成物を硬化 ·成形して なる導電接点素子である。
導電性シリコーンゴム組成物の (A) 成分は、 上記平均組成式 (1 ) で表され、 脂肪族不飽和基を少なくとも 2個有するオルガノポリシロキサンである。
上記式中、 R1はメチル基、 ェチル基、 プロピル基、 ブチル基等のアルキル基、 シクロへキシル基等のシクロアルキル基、 ビニル基、 ァリル基、 ブテニル基、 へ キセニル基等のアルケニル基、 フエニル基、 トリル基等のァリール基、 ベンジル 基、 フエニルェチル基等のァラルキル基、 又はこれらの基の炭素原子に結合した 水素原子の一部又は全部をハロゲン原子、 シァノ基等で置換したクロロメチル基、 トリフルォロプロピル基、 シァノエチル基等から選択される同一又は異種の好ま しくは炭素数 1〜10、 より好ましくは炭素数 1〜 8の非置換又は置換の一価炭 化水素基である。 R1としては、 メチル基、 ビニル基、 フエニル基が好ましく、 特にメチル基が全 R1中 50モル%以上、 特に 80モル%以上であることが好ま しい。
上記平均組成式 (1) で表されるオルガノポリシロキサンは、 脂肪族不飽和基 (特にアルケニル基) を少なくとも 2個有していることが必要であるが、 R1中 の脂肪族不飽和基の含有量は 0. 00 1〜20モル%、 特に 0. 025〜5モ ル%であることが好ましい。 なお、 脂肪族不飽和基は、 分子鎖末端にあってもよ く、 分子鎖の側鎖にあってもよく、 末端と側鎖の両方にあってもよい。
また、 nは 1. 98〜2. 02の正数である。 上記平均組成式 (1) で表され るオルガノポリシロキサンは基本的には直鎖状であることが好ましいが、 分子構 造や分子量の異なる 1種又は 2種以上の混合物であってもよい。 また、 上記オル ガノポリシロキサンは平均重合度が 100〜10, 000、 特に 3000〜20, 000であることが好ましい。
次に、 本発明の第 2必須成分である (B) 成分は、 タップ密度が 2. 0 g/c m3以下であり、 比表面積が 0. 7m2Zg以下の粒状の銀粉末である。
通常、 銀粉末の凝集を示す定数として、 タップ密度 (I SO 3953— 197 7 ) と BET比表面積が挙げられる。 本発明の銀粉末のタップ密度は 2. 0 g/ cm3以下、 BET比表面積は 0. 7m2Zg以下である。 なお、 その下限は適 宜選定されるが、 タップ密度は、 0. 05 gZcm3以上、 特に、 0. 1 g/c m3以上であることが好ましく、 BET比表面積は、 0. 0 5m2Zg以上、 特 に 0. lm2Zg以上であることが好ましい。 このような銀粉末としては、 市販品としてシルベスト F 2 0 ( (株) 徳カ化学 研究所製) が挙げられる。
本発明の銀粉末の粒径は特に限定されないが、 0 . 0 5〜 1 0 0 x mの範囲が 好ましく、 その平均粒径は 1〜1 0 / mの範囲が好ましい。 なお、 低抵抗のシリ コーンゴムを形成するためには完全に独立した分散ではなく、 銀の粉末が部分的 に連結していることが好ましい。
本発明で用いる原料銀粉末の製造方法は、 特に限定されないが、 例えば電解法、 粉碎法、 熱処理法、 アトマイズ法、 還元法等が挙げられる。 これらの中で還元法 が、 還元方法をコントロールすることによりタツプ密度と B E T比表面積のいず れも小さい粉末が得やすいため好ましい。
銀粉末は上記数値範囲を満たす範囲で粉碎して用いてもよく、 銀粉末を粉碎す る場合の装置は特に限定されず、 例えば、 スタンプミル、 ポールミル、 振動ミル、 ハンマーミル、 圧延ローラ、 乳鉢等の公知の装置が挙げられる。
(B ) 成分の銀粉末の配合量は、 (A) 成分のオルガノポリシロキサン 1 0 0 重量部に対して、 3 0 0〜7 0 0重量部であり、 特に 4 0 0〜6 0 0重量部が好 ましい。 (B ) 成分の銀粉末が 3 0 0重量部未満だと、 配合量が少なく安定した 抵抗が得られず、 7 0 0重量部を超えると導電性シリコーンゴムの機械的物性が 低下し、 弾性が低下し圧縮永久歪特性が悪化する。
なお、 本発明の導電性シリコーンゴム組成物には、 本発明の目的を損なわない 範囲で、 上記 (B ) 成分の銀粉末以外のその他の導電性材料を添加してもよい。 このような導電性材料としては、 導電性カーボンブラック、 導電性亜鉛華、 導 電性酸化チタン等を 1種単独で又は 2種以上を併用して用いてもよい。
ここで、 導電性力一ポンプラックとしては、 通常導電性ゴム組成物に常用され ているものを使用することができ、 例えばアセチレンブラック、 コンダクティブ ファーネスブラック (C F ) 、 ス一パーコンダクティブファーネスブラック (S
C F ) 、 ェクストラコンダクティブファーネスブラック (X C F) 、 コンダクテ イブチャンネルブラック (C C) 、 1, 5 0 0 °C程度の高温で熱処理されたファ —ネスブラックやチャンネルブラック等を挙げることができる。 具体的には、 ァ セチレンブラックとしては電化アセチレンブラック (電気化学社製) , シャゥ二 ガンアセチレンブラック (シャゥニガンケミカル社製) 等が、 コンダクティブフ アーネスブラックとしてはコンチネックス C F (コンチネンタルカーボン社製) , バルカン C (キヤポット社製) 等が、 スーパーコンダクティブファーネスブラッ クとしてはコンチネックス S C F (コンチネンタルカーボン社製) , バルカン S C (キヤポット社製) 等が、 ェクストラコンダクティブファーネスブラックとし ては旭 H S— 5 0 0 (旭カーボン社製) , バルカン X C— 7 2 (キヤポット社 製) 等が、 コンダクティブチャンネルブラックとしてはコゥラックス L (デグッ サ社製) 等が例示され、 また、 ファーネスブラックの一種であるケッチェンブラ ック E C及びケッチェンブラック E C— 6 0 0 J D (ケッチェンブラックインタ 一ナショナル社製) を用いることもできる。 なお、 これらのうちでは、 ァセチレ ンブラックが、 不純物含有率が少ない上に発達した二次ストラクチャー構造を有 するために導電性に優れており、 本発明において特に好適に用いられる。 また、 その卓越した比表面積から低充填量でも優れた導電性を示すケッチェンブラック E Cゃケッチェンブラック E C— 6 0 0 J D等も好ましく使用できる。
白色導電性酸化チタンとしては、 例えば E T— 5 0 0 W (石原産業 (株) 製) を挙げることができる。 この場合、 基本組成は T i 02 · S n〇2に S bをド一 プしたものとすることが好ましい。 なお、 これら他の導電性材料の配合量は、
(A) 成分 1 0 0重量部に対して 1〜 5 0 0重量部、 特に 2〜 3 0 0重量部であ ることが好ましい。
本発明の第 3必須成分の (C) 成分は、 (A) 成分の硬化剤であり、 通常導電 性シリコーンゴム組成物の加硫に使用されるラジカル反応、 付加反応等を利用し て加硫、 硬化させるものであれば、 その硬化機構に制限はなく、 従来公知の種々 の硬化剤を用いることができ、 例えばラジカル反応では有機過酸化物が使用され、 付加反応では、 白金系触媒とオルガノハイドロジエンポリシロキサンを組み合わ せたものが使用できる。 この中で特に有機過酸化物が好ましい。 なお、 硬化剤の 配合量は、 (A) 成分のオルガノポリシロキサンを硬化させ得る量であり、 通常 の導電性シリコーンゴム組成物と同様でよい。
より具体的には、 有機過酸化物硬化剤としては、 例えばベンゾィルパーォキサ イド、 2 , 4—ジクロ口べンゾィルパ一オキサイド、 o—メチルベンゾィルパ一 オキサイド、 p—メチルベンゾィルパーオキサイド、 2, 4ージクミルパ一ォキ サイド、 2, 5—ジメチルー 2, 5—ジ ( t一プチルパ一ォキシ) へキサン、 ジ 一 t一ブチルパーォキサイド、 t一ブチルパーべンゾエー卜等が挙げられる。 有 機過酸化物の配合量は、 (A) 成分のオルガノポリシロキサン 100重量部に対 して 0. 1〜 5重量部が好ましい。
また、 付加反応の硬化剤において、 白金系触媒としては公知のものが使用でき、 具体的には白金元素単体、 白金化合物、 白金複合体、 塩化白金酸、 塩化白金酸の アルコール化合物、 アルデヒド化合物、 エーテル化合物、 各種ォレフィン類との コンプレックス等が例示される。 白金系触媒の配合量は、 (A) 成分のオルガノ ポリシロキサンに対し白金原子として 1〜2, 000 p pmの範囲とすることが 好ましい。
—方、 オルガノハイドロジエンポリシロキサンとしては、 一分子中に 2個以上、 特に 3個以上のケィ素原子に結合した水素原子 (S iH基) を有するものが用い られ、 下記平均組成式で表されるものが好ましい。
^ a^b ° 1 O (4-a-b) /2
(式中、 Rは好ましくは脂肪族不飽和結合を有さない、 上記 R1と同様の一価炭 化水素基であり、 a、 bは 0≤a≤3、 0<b≤3、 0く a + b≤3、 好ましく は 0≤a≤2. 2、 0. 002く b≤2、 1. 002≤ a + b≤ 3を満足する正 数である。 )
本発明のオルガノハイドロジエンポリシロキサンは S iH基を 1分子中に 2個 以上、 好ましくは 3個以上有するが、 これは分子鎖末端にあっても、 分子鎖の途 中にあっても、 その両方にあってもよい。 また、 このオルガノハイドロジェンポ リシロキサンは 25 tにおける粘度が 0. 5〜; L 0, 000mm2/s (c S t) 、 特に:!〜 300mm2Zsであることが好ましい。
このオルガノハイドロジエンポリシロキサンは、 直鎖状、 分岐鎖状、 環状のい ずれであってもよいが、 重合度が 300以下のものが好ましく、 ジメチルハイド ロジェンシリル基で末端が封鎖されたジオルガノポリシロキサン、 ジメチルシロ キサン単位とメチルハイドロジェンシロキサン単位及び末端トリメチルシロキシ 単位との共重合体、 ジメチルハイドロジェンシロキサン単位 [H (CH3) 2S i〇。 5単位] と S i〇2単位とからなる低粘度流体、 1 , 3, 5 , 7—テトラ ハイドロジェンー 1 , 3 , 5 , 7—テトラメチルシクロテトラシロキサン、 1— プロピル一 3, 5 , 7 _トリハイドロジェン— 1, 3, 5, 7—テトラメチルシ クロテトラシロキサン、 1, 5—ジハイドロジェン一 3, 7—ジへキシルー 1 , 3 , 5 , 7—テトラメチルシクロテトラシロキサン等が例示される。
この硬化剤としてのオルガノハイドロジエンポリシロキサンの配合量は、 (A) 成分のオルガノポリシロキサンの脂肪族不飽和基 (アルケニル基) に対し て、 オルガノハイドロジエンポリシロキサンのケィ素原子に直結した水素原子 ( S i H基) が 5 0〜5 0 0モル%となる割合で用いることが好ましい。
本発明の導電性シリコーンゴム組成物には、 必要に応じて本発明の目的を損な わない範囲で、 シリカヒドロゲル (含水けい酸) 、 シリカエア口ゲル (無水けい 酸—煙霧質シリカ) 等の補強性シリカ充填剤、 クレイ、 炭酸カルシウム、 ケイソ ゥ土、 二酸化チタン等の充填剤、 低分子シロキサンエステル、 ジフエニルシラン ジオール等の分散剤、 酸化鉄、 酸化セリウム、 ォクチル酸鉄等の耐熱性向上剤、 接着性や成形加工性を向上させるための各種力一ポンファンクショナルシラン、 難燃性を付与させる八ロゲン化合物等を添加混合してもよい。
また、 (B) 成分の銀粉末の凝集防止のために事前に微粉末シリカ等と混合し ておいてもよい。 混合する微粉末シリカは、 比表面積は 5 0 m2/ g以上、 特に 1 0 0〜3 0 0 m2Z gであることが好ましい。 比表面積が 5 0 m2 / g未満だ と十分な凝集防止効果を得ることができない場合がある。 微粉末シリカとしては、 例えば煙霧質シリカ、 沈降シリカ等が挙げられ、 またこれらの表面をクロロシラ ンやへキサメチルジシラザン、 オルガノポリシロキサン、 アルコキシシラン等で 疎水化したものも好適に用いられる。 なお、 これらのシリカの配合量は (B ) 成 分 1 0 0重量部に対し、 0〜5重量部、 特に 0 . 5〜2重量部とすることができ る。
また、 熱伝導性を付与するために、 アルミナ、 石英粉、 窒化ホウ素粉を添加し てもよい。
本発明に用いるシリコーンゴム組成物は、 上記した成分を二本ロール、 バンバ リーミキサー、 ドウミキサー (ニーダー) 等のゴム混練機を用いて均一に混合し、 必要に応じ加熱処理を施すことにより得ることができる。
本発明は、 上記導電性シリコーンゴム組成物を硬化させてなる導電接点素子及 びこの導電接点素子を含む電気コネクタに係るものであるが、 ここで、 実装基板 に半導体パッケージを接続する場合、 導通抵抗を 5 Ο ηιΩ以下に保っためには、 導電接点素子は体積抵抗値が 1 X 1 0— 5 Ω πι以下、 特に 6 Χ 1 0— 6 Ω πι以下で あることが好ましい。
導電接点素子及び電気コネクタは、 各種の電気電子機器、 O A機器、 携帯電話、 情報端末機器の電気的な接続に使用される。 具体的には、 これらを構成する各種 の実装基板 (例えばプリント回路基板やフレキシブルプリント回路基板) 、 半導 体パッケージ、 液晶ディスプレイ、 電池、 電気音響部品、 小型電子部品の電気的 な接続に使用される。 また、 導電接点素子は、 基板に支持される場合には、 柱形、 切頭円錐形状等が主であるが、 基板に支持されない場合には、 略線状、 テープ状、 棒形、 ブロック形等に形成することができる。 この導電接点素子は、 単数、 複数 いずれでもよい。
以下、 図面を参照して本発明の好ましい実施形態を説明すると、 本実施形態に おける電気コネクタは、 図 1及び図 2に示すように、 対向する第一及び第二の電 気的接合物である平坦な実装基板 1と L G Aタイプからなる半導体パッケージ 1 0との間に介在する絶縁性の基板 2 0と、 この基板 2 0に設けられた複数の貫通 孔 2 1に、 両端部がそれぞれ絶縁性の基板 2 0の表裏面から突出した状態に嵌挿 されて支持され、 実装基板 1と半導体パッケージ 1 0の複数の電極 2 , 1 1間を 電気的に接続する複数の弾性導電接点素子 2 2とを備えたもので、 この場合これ ら弾性の各導電接点素子 2 2を上記導電性シリコーンゴム組成物 2 3の硬化物で 形成したものである。
絶縁性の基板 2 0は、 図 1 , 2に示すように、 ガラスエポキシ樹脂や公知のェ ンジニアリングプラスチック (例えば P E T、 P E N、 P E I、 P P S、 P E E K、 液晶ポリマー、 ポリイミド等) を用いて薄い平面略正方形に形成され、 複数 の円形状の小径貫通孔 2 1が上下厚さ方向に穿孔成形されているものである。 こ の基板 2 0の材質としては、 耐熱性に優れる点からエンジニアリングプラスチッ クが好ましく、 特に熱膨張係数が小さい点からポリイミドが好ましい。 その厚さ は、 強度や取り扱い作業性の点から、 25 X m〜 3 mm、 特に 50〜200 ΠΙ が好ましい。 複数の貫通孔 21は、 0. 5〜1. 27 mmのピッチで並設され、 0. 25〜0. 8mmの径に穿孔されることが好ましい。
導電接点素子 22は、 一対の切頭円錐が組み合わされた断面略算盤玉形であり、 絶縁性の基板 20に設けられた複数の貫通孔 21に嵌揷支持され、 その両端部が 絶縁性の基板 20の表裏面から突出し、 実装基板 1と半導体パッケージ 10の複 数の電極 2, 1 1に電気的に接続する。
図 3に示すように、 導電接点素子 22は、 金型 30に上記導電性シリコーンゴ ム組成物 23を充填し、 成形することにより製造される。 金型 30は、 導電接点 素子 22の形状に対応する切頭円錐型キヤビティ 31を有する一対の上下型 30 -a, 30— bからなる。
上記金型 30を用いて電熱コネクタの製造方法について説明する。 先ず、 半導 体パッケージ 10の電極 11に対応するように、 基板 20の厚さ方向に複数の貫 通孔 21をレーザ加工やエッチング等の方法でマトリックス状に穿孔する。 次に、 貫通孔 21に、 金型 30の下型 (30— a) を基板 20の裏面に取りつけ、 導電 接点素子 22の成形に必要十分な量の導電性シリコーンゴム組成物 23を、 基板 20の表面上に貫通孔 2 1を覆って配置し、 金型 30の上型 (30— b) を、 導 電性シリコーンゴム組成物 23上に置き、 金型 30 (上下型 30— a, 30— b) で基板 20を上下方向から挟着させ (図 3 (a) 参照) 、 金型 30を型締め して加圧加熱成形 (図 3 (b) 参照) することにより、 基板 20の複数の貫通孔 21に導電性シリコーンゴム組成物 23がそれぞれ充填 ·嵌挿されて、 該導電性 シリコーンゴム組成物 23が上記断面略算盤玉形に硬化 ·成形され、 基板 20と 導電接点素子 22とが一体化した電気コネクタを製造することができる (図 3 (c) 参照) 。
図 1に示すように、 得られた電気コネクタにおける導電接点素子 22の基板 2 0の表裏面から突出した両端部と、 実装基板 1と半導体パッケージ 10の複数の 電極 2, 1 1とを接触させ、 電気コネクタを実装基板 1と半導体パッケージ 10 の間に挟持させ、 20%の圧縮量にて圧縮することにより、 実装基板 1と半導体 パッケージ 10とを電気コネクタで導通させることができる。 なお、 導電接点素子 2 2は、 実装基板 1と半導体パッケージ 1 0との間に介在 された状態で圧縮されるので、 ゴムの硬さは、 5 0 - 8 0、 好ましくは 6 0〜8 0 ( J I S K 6 2 5 3 :デュロメ一夕硬さ タイプ A) が好ましい。 導電接点 素子 2 2のゴム硬さが 5 0未満だと、 十分な反発荷重が得られず、 安定した接続 が期待できないおそれがあり、 8 0を超えると、 圧縮に要する荷重が大きくなり、 実装基板 1や半導体パッケージ 1 0を損傷させるおそれがある。
上記製造方法によれば、 導電性シリコーンゴム組成物 2 3で導電接点素子 2 2 を成形するので、 金型 3 0で成形する場合にも、 導通抵抗が大きく変化したり、 導通抵抗が不安定になることがないので、 実装時に半導体パッケージ 1 0の動作 を安定させることができるとともに、 半導体パッケージ 1 0を継続して長期使用 することができる。 更に実装基板 1に対して半導体パッケージ 1 0の圧縮を繰り 返しても、 導通抵抗値が 5 Ο πιΩ以下と実に小さく、 しかも、 接続距離が短い関 係上、 外部ノイズの影響を受けにくいので信号伝達の高速化に十分対応すること が可能になる。
なお、 上記実施形態では導電接点素子 2 2を一対に切頭円錐が組み合わされた 断面略算盤玉形 (図 4 ( a ) 参照) に成形したものを示したが、 形はなんらこれ に限定されるものではなく、 実装基板 1や半導体パッケージ 1 0の電極の形状、 導通接続時の荷重等により適宜選択される。 例えば導電接点素子 2 2を太い断面 略柱形 (円柱形でもよいし、 角柱形でもよい) (図 4 ( b ) 参照) に形成したり、 細い断面略柱形 (図 4 ( c ) 参照) に形成したり、 あるいは断面略小判形 (図 4 ( d ) 参照) に形成することができる。 また、 導電接点素子 2 2を断面略円形あ るいは断面略楕円形 (図 5 ( a ) 参照) に形成したり、 導電接点素子 2 2の平坦 な上下両端部の周縁をそれぞれ丸めた形状 (図 5 ( b ) 参照) にすることもでき る。 更に導電接点素子 2 2を断面略八角形 (図 5 ( c ) 参照) に形成したり、 導 電接点素子 2 2の周面を一部湾曲させたり (図 5 ( d ) 参照) することも可能で ある。 また、 上下の形状は同一であっても、 別形状 (非対称) であってもよい。 特に、 抵抗と荷重の観点から図 4 ( a ) に示す一対に切頭円錐が組み合わされた 断面略算盤玉形が好ましい。
以下、 実施例及び比較例を示して本発明を具体的に説明するが、 本発明は下記 の実施例に制限されるものではない。 なお、 下記例中の部は重量部を示す。
[実施例 1 ]
ジメチルシロキサン単位 99. 85モル%とメチルビニルシロキサン単位 0. 15モル%とからなる末端がジメチルビニルシリル基で封鎖された平均重合度が 約 8, 000のメチルビ二ルポリシロキサン 100部に、 粒状の銀粉末 A (平均 粒径 7. 3 m, タップ密度 1. 4 gZcm3、 比表面積 0. 6mVg : シル ベスト F 20 ( (株) 徳カ化学研究所製) を 450部と、 上記のメチルビ二ルポ リシロキサンと銀粉末 Aの混合物 100部に対しジクミルパーォキサイドを 0. 5部配合し、 導電性シリコーンゴム組成物を調製した。
次いで、 ポリイミドからなる絶縁性の正方形基板 (厚さ l O O^m) に、 0. 5 mmの径の貫通孔を厚さ方向に lmmピッチで 1156個 (34個 X 34個) 穿孔することにより複数の貫通孔を設けた。 図 3に示したように、 調製した導電 性シリコーンゴム組成物を複数の孔を覆って配置し、 絶縁性の基板の表裏面を上 下型からなる金型で挟み、 160°C、 5分間の成形条件で加熱加圧成形し、 基板 と複数の導電接点素子とが一体化された電気コネクタを製造した。 また、 各導電 接点素子については一対の切頭円錐が組み合わされた断面略算盤玉形状を呈して おり、 各導電接点素子については、 断面略算盤玉形状の高さが lmm、 切頭円錐 の縮径端部の径が 0. 5mm、 切頭円錐の拡径端部が 0. 6 mm径の大きさとし、 基板の表裏面からそれぞれ 0. 45mm突出させるようにした。
こうして製造された電気コネクタを実装基板と L G Aタイプからなる半導体パ ッケージの間に挟持させ、 20%の圧縮量にて実装基板と半導体パッケージとを 電気コネクタで導通させた。 この際、 全導電接点素子の導通抵抗を測定したとこ ろ、 平均値 17πιΩ、 最大値 30πιΩであり、 全導電接点素子の抵抗が 50 πιΩ 以下と低抵抗でバラツキの小さいことが確認された。 また、 圧縮作業を 100回 繰り返したところ、 初期値の 1. 3倍と僅かな変化であることが確認された。 この時の測定値を基に、 導電接続素子の導通断面積の径を 0. 5mm、 導電接 続素子の導電距離を lmmとして、 下記式 (2) により、 体積抵抗率に換算した。 例えば、 導電接続素子の測定値が 5 ΟπιΩであった場合には、 下記式より体積抵 抗値 (率) は 9. 8X 10— 6Ωπιとなる。 p=RX (A/L) (2)
(iOは体積抵抗率、 Rは導通抵抗の測定値、 Aは導通断面積、 Lは導通距離であ る。 )
[実施例 2]
導電性シリコーン組成物を、 メチルビ二ルポリシロキサン 100部に粒状の銀 粉末 A (平均粒径 7. 3 zm, タップ密度 1. 4gZcm3、 比表面積 0. 6m Vg:シルベスト F 20 ( (株) 徳カ化学研究所製) を 500部と、 上記のメ チルビ二ルポリシロキサンと銀粉末 Aの混合物 100部に対しジクミルパーォキ サイドを 0. 5部配合し、 導電性シリコーンゴム組成物を調製したものに代えた 以外は実施例 1と同様の方法で各導電接点素子と電気コネクタを調製した。 実施例 1と同様にして評価したところ、 平均値 10πιΩ、 最大値 1 5πιΩであ り、 低抵抗でバラツキの極めて小さいことが確認された。 また、 圧縮作業を 10 0回繰り返したところ、 初期値の 1. 1倍と僅かな変化であるのが確認された。
[比較例 1 ]
導電性シリコーン組成物を、 メチルビ二ルポリシロキサン 100部に、 粒状の 銀粉末 Β (タップ密度 1. 7 g/c 比表面積 1. 5m2/g : AgC— B o (福田金属箔粉工業 (株) 製) を 500部と、 上記のメチルビ二ルポリシロキ サンと銀粉末 Bの混合物 100部に対しジクミルパーォキサイドを 0. 5部配合 し、 導電性シリコーンゴム組成物を調製したものに代えた以外は実施例 1と同様 の方法で各導電接点素子と電気コネクタを調製した。
実施例 1と同様にして評価したところ、 平均値 42πιΩ、 最大値 120πιΩで あり、 初期の導通抵抗が高く、 バラツキが大きいことが確認された。 また、 圧縮 作業を 100回繰り返したところ、 導通抵抗が大幅に上昇し、 良好な結果を得る ことができなかった。
[比較例 2 ]
導電性シリコーン組成物を、 メチルビ二ルポリシロキサン 100部に粒状の銀 粉末 C (タップ密度 3. 0 gZcm3、 比表面積 1. 7m2Zg : AgC_D (福田金属箔粉工業 (株) 製) ) を 500部と、 上記のメチルビ二ルポリシロキ サンと銀粉末 Cの混合物 100部に対しジクミルパーォキサイド 0. 5部を配合 し、 導電性シリコーンゴム組成物を調製したものに代えた以外は実施例 1と同様 の方法で各導電接点素子と電気コネクタを調製した。
実施例 1と同様にして評価したところ、 平均値 5 1 πι Ω、 最大値 2 2 0 πι Ωで あり、 初期の導通抵抗が高く、 また、 バラツキが大きいことが判明した。 更に、 圧縮作業を 1 0 0回繰り返したが、 不導通となる箇所が発生し、 良好な結果を得 ることができなかった。
Figure imgf000015_0001
本発明によれば、 導電性シリコーンゴム組成物を成形する場合に導通抵抗を安 定させることができ、 また繰り返し使用したとしても、 導通抵抗の上昇を抑制 - 防止可能な導電接点素子及び電気コネクタを得ることができる。

Claims

請求 の 範囲
1. (A) 下記平均組成式 (1)
R^S i O (4_n) /2 (1)
(但し、 式中 R1は同一又は異種の非置換又は置換の 1価炭化水素基であり、 n は 1. 98〜2. Θ 2の正数である。 )
で表され、 脂肪族不飽和基を少なくとも 2個有するオルガノポリシロキサン
100重量部
(B) タップ密度が 2. O gZcm3以下であり、 比表面積が 0. 7m2Zg以 下の粒状銀粉末 300〜 700重量部 (C) 上記 (A) 成分の硬化剤 (A) 成分を硬化させ得る量 を含有する導電性シリコーンゴム組成物を硬化 ·成形してなることを特徴とする 導電接点素子。
2. 体積抵抗値が 1 X 10— 5 Ωπι以下である請求項 1の導電接点素子。
3. 対向する第一及び第二の電気的接合物を電気的に導通させる電気コネクタで あって、 前記対向する第一及び第二の電気的接合物の間に介在する絶縁性の基板 と、 前記絶縁性の基板に設けられた複数の貫通孔に嵌挿、 支持され、 その両端部 が前記絶縁性の基板の表裏面から突出し、 前記対向する第一、 第二の電気的接合 物と接触する請求項 1又は 2記載の導電接点素子を有することを特徴とする電気 コネクタ。
PCT/JP2003/008090 2002-06-27 2003-06-26 導電接点素子及び電気コネクタ WO2004003937A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003246199A AU2003246199A1 (en) 2002-06-27 2003-06-26 Conducting contact elements and electric connectors
US10/487,900 US7001191B2 (en) 2002-06-27 2003-06-26 Conductive contact elements and electric connectors
EP03738521A EP1560226A4 (en) 2002-06-27 2003-06-26 CONTACT ELEMENTS CONDUCTORS AND ELECTRICAL CONNECTORS
NO20050277A NO20050277L (no) 2002-06-27 2005-01-18 Ledende kontaktelementer og elektrisk tilkoblingselement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-187676 2002-06-27
JP2002187676A JP2004031203A (ja) 2002-06-27 2002-06-27 導電接点素子及び電気コネクタ

Publications (1)

Publication Number Publication Date
WO2004003937A1 true WO2004003937A1 (ja) 2004-01-08

Family

ID=29996796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008090 WO2004003937A1 (ja) 2002-06-27 2003-06-26 導電接点素子及び電気コネクタ

Country Status (9)

Country Link
US (1) US7001191B2 (ja)
EP (1) EP1560226A4 (ja)
JP (1) JP2004031203A (ja)
KR (1) KR20050026933A (ja)
CN (1) CN1320554C (ja)
AU (1) AU2003246199A1 (ja)
NO (1) NO20050277L (ja)
TW (1) TW200404866A (ja)
WO (1) WO2004003937A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008061439A1 (en) * 2006-11-24 2008-05-29 The Hong Kong University Of Science And Technology Constructing planar and three-dimensional microstructures with pdms-based conducting composite

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846575B2 (ja) * 2002-06-27 2006-11-15 信越化学工業株式会社 導電性シリコーンゴム組成物
JP3649239B2 (ja) * 2002-10-28 2005-05-18 Jsr株式会社 シート状コネクターの製造方法
JP3991218B2 (ja) * 2002-12-20 2007-10-17 信越化学工業株式会社 導電性接着剤及びその製造方法
US7245022B2 (en) * 2003-11-25 2007-07-17 International Business Machines Corporation Semiconductor module with improved interposer structure and method for forming the same
JP2005322492A (ja) * 2004-05-07 2005-11-17 Polymatech Co Ltd 導電弾性体及びその製造方法
US7052290B1 (en) * 2005-08-10 2006-05-30 Sony Ericsson Mobile Communications Ab Low profile connector for electronic interface modules
JP5068950B2 (ja) * 2006-01-31 2012-11-07 株式会社リコー トナー及びこれを用いた画像形成方法
KR100722525B1 (ko) 2006-03-16 2007-05-28 주식회사 아이에스시테크놀러지 전자부품의 검사를 위한 콘택터 및 이 콘택터를 포함한프로브 유니트
JP4247254B2 (ja) * 2006-08-08 2009-04-02 マイクロプレシジョン株式会社 電磁駆動型光偏向素子
DE102008009865A1 (de) * 2008-02-19 2009-08-20 FRÖTEK Kunststofftechnik GmbH Polverbinder für Batterien
DE102008040343A1 (de) * 2008-07-11 2010-01-21 Robert Bosch Gmbh Akkumulator mit mehreren Akkumulatorzellen
JP2011071435A (ja) * 2009-09-28 2011-04-07 Fujitsu Ltd インターポーザ
KR20130114596A (ko) 2010-08-27 2013-10-17 후지고분시고오교오가부시끼가이샤 도전성 고무 부품 및 그 실장 방법
CN102250472B (zh) * 2011-05-18 2013-07-24 杨福河 一种高性能硅基导电橡胶及其制备方法
KR20140115316A (ko) * 2012-01-19 2014-09-30 도레이 카부시키가이샤 도전 페이스트 및 도전 패턴의 제조 방법
US9076698B2 (en) * 2012-10-23 2015-07-07 Intel Corporation Flexible package-to-socket interposer
JP5321723B1 (ja) * 2012-10-29 2013-10-23 横浜ゴム株式会社 導電性組成物および太陽電池セル
DE102012224424A1 (de) * 2012-12-27 2014-07-17 Robert Bosch Gmbh Sensorsystem und Abdeckvorrichtung für ein Sensorsystem
DE102013013984A1 (de) * 2013-08-23 2015-02-26 Elantas Gmbh Silikongel mit verringerter Schadgasemission
US11570890B2 (en) * 2017-05-30 2023-01-31 Denka Company Limited Ceramic circuit board and module using same
CN107951483A (zh) * 2017-11-21 2018-04-24 阿木(深圳)新科技有限公司 心电监护电极及信号采集上衣
KR102503420B1 (ko) * 2018-01-02 2023-02-24 삼성전자주식회사 탄성을 가지는 커넥터를 포함하는 카메라 모듈 및 이를 구비한 모바일 장치
CN112601411B (zh) * 2020-12-04 2022-08-16 Oppo广东移动通信有限公司 电路板结构和电子设备
US11894629B2 (en) * 2021-03-09 2024-02-06 Tyco Electronics Japan G.K. Electrical interconnect with conductive polymer contacts having tips with different shapes and sizes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817671A (ja) * 1994-06-27 1996-01-19 Kyocera Corp 導電性ペースト
JPH1192626A (ja) * 1997-09-22 1999-04-06 Sumitomo Bakelite Co Ltd 導電性樹脂ペースト及びこれを用いた半導体装置
JP2000299146A (ja) * 1999-04-13 2000-10-24 Shin Etsu Polymer Co Ltd マイクロフォンホルダ一体型コネクタ
EP1090959A1 (en) * 1999-10-06 2001-04-11 Shin-Etsu Chemical Co., Ltd. Conductive silicone rubber composition
EP1094555A2 (en) * 1999-10-22 2001-04-25 Shin-Etsu Polymer Co., Ltd. Rubber connector
JP2002109959A (ja) * 2000-09-29 2002-04-12 Toppan Forms Co Ltd 導電ペースト

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680037A (en) 1970-11-05 1972-07-25 Tech Wire Prod Inc Electrical interconnector
JPH0791464B2 (ja) * 1989-10-31 1995-10-04 信越化学工業株式会社 導電性シリコーンゴム組成物およびその硬化物
JPH07105174B2 (ja) 1990-08-30 1995-11-13 信越ポリマー株式会社 異方導電膜の製造方法
JP3219352B2 (ja) * 1994-06-28 2001-10-15 エヌイーシーモバイルエナジー株式会社 非水電解液二次電池
US6271482B1 (en) 1994-08-23 2001-08-07 Thomas & Betts International, Inc. Conductive elastomer interconnect
US6348659B1 (en) 1999-01-07 2002-02-19 Thomas & Betts International, Inc. Resilient electrical interconnects having non-uniform cross-section
JP2001107101A (ja) * 1999-10-12 2001-04-17 Mitsui Mining & Smelting Co Ltd 高分散性球状銀粉末及びその製造方法
US6323751B1 (en) * 1999-11-19 2001-11-27 General Electric Company Current limiter device with an electrically conductive composite material and method of manufacturing
US6433057B1 (en) * 2000-03-28 2002-08-13 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
US6361716B1 (en) * 2000-07-20 2002-03-26 Dow Corning Corporation Silicone composition and electrically conductive silicone adhesive formed therefrom
JP3999994B2 (ja) * 2002-04-03 2007-10-31 東レ・ダウコーニング株式会社 導電性シリコーンゴム組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817671A (ja) * 1994-06-27 1996-01-19 Kyocera Corp 導電性ペースト
JPH1192626A (ja) * 1997-09-22 1999-04-06 Sumitomo Bakelite Co Ltd 導電性樹脂ペースト及びこれを用いた半導体装置
JP2000299146A (ja) * 1999-04-13 2000-10-24 Shin Etsu Polymer Co Ltd マイクロフォンホルダ一体型コネクタ
EP1090959A1 (en) * 1999-10-06 2001-04-11 Shin-Etsu Chemical Co., Ltd. Conductive silicone rubber composition
EP1094555A2 (en) * 1999-10-22 2001-04-25 Shin-Etsu Polymer Co., Ltd. Rubber connector
JP2002109959A (ja) * 2000-09-29 2002-04-12 Toppan Forms Co Ltd 導電ペースト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1560226A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008061439A1 (en) * 2006-11-24 2008-05-29 The Hong Kong University Of Science And Technology Constructing planar and three-dimensional microstructures with pdms-based conducting composite
US8243358B2 (en) 2006-11-24 2012-08-14 The Hong Kong University Of Science & Technology Constructing planar and three-dimensional microstructures with PDMS-based conducting composite

Also Published As

Publication number Publication date
CN1320554C (zh) 2007-06-06
US20040203268A1 (en) 2004-10-14
NO20050277L (no) 2005-01-18
KR20050026933A (ko) 2005-03-16
CN1672221A (zh) 2005-09-21
EP1560226A1 (en) 2005-08-03
EP1560226A4 (en) 2006-06-21
JP2004031203A (ja) 2004-01-29
TW200404866A (en) 2004-04-01
US7001191B2 (en) 2006-02-21
AU2003246199A1 (en) 2004-01-19

Similar Documents

Publication Publication Date Title
WO2004003937A1 (ja) 導電接点素子及び電気コネクタ
JP4803350B2 (ja) 圧着性異方導電性樹脂組成物及び微細電極の接続方法
EP1983568B1 (en) Heat dissipating member and semiconductor device using same
EP2495285B1 (en) Method of manufacturing using silicone rubber composition
US6309563B1 (en) Conductive silicone rubber composition and low-resistance connector
JPH0564993B2 (ja)
JP5924303B2 (ja) 導電性シリコーンゴム組成物
KR20010040151A (ko) 고무 컨넥터
JP2003055553A (ja) 半導電ロール
JP2000299146A (ja) マイクロフォンホルダ一体型コネクタ
JP2003037341A (ja) 導電接点素子、フィルム型コネクタ及びその接続構造
JP4636233B2 (ja) 導電性シリコーンゴム組成物及びその製造方法
JP2003197289A (ja) 圧接型電気コネクタ
JP2008291122A (ja) 導電性シリコーンゴム組成物
JP3922342B2 (ja) 電気接点材料用又は電磁波シールド材料用導電性シリコーンゴム組成物及び電気接点材料用又は電磁波シールド材料用導電性部品
JP2005100884A (ja) 電気コネクタ
JP4392106B2 (ja) 低抵抗コネクタ
JP2007131733A (ja) 圧着性異方導電性樹脂組成物及び弾性異方導電部材
JPH08113713A (ja) 導電性シリコーンゴム組成物
JP2003243578A (ja) 導電接点素子及び電気コネクタ
JP3514441B2 (ja) コネクタ
JP2004311047A (ja) 導電接点素子及び電気コネクタ
JP2004027087A (ja) 導電性シリコーンゴム組成物及び導電性部材
JP3166026B2 (ja) 半導電性シリコーンゴム組成物及びシリコーンゴムロール
JP2005269115A (ja) ガラスアンテナの接続構造

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10487900

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047021182

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003738521

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038183706

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047021182

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003738521

Country of ref document: EP