WO2004000734A1 - 含フッ素乳化剤の回収方法 - Google Patents

含フッ素乳化剤の回収方法 Download PDF

Info

Publication number
WO2004000734A1
WO2004000734A1 PCT/JP2003/007772 JP0307772W WO2004000734A1 WO 2004000734 A1 WO2004000734 A1 WO 2004000734A1 JP 0307772 W JP0307772 W JP 0307772W WO 2004000734 A1 WO2004000734 A1 WO 2004000734A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
aqueous liquid
acid
fluorinated emulsifier
mass
Prior art date
Application number
PCT/JP2003/007772
Other languages
English (en)
French (fr)
Inventor
Hiroshi Funaki
Koichi Yanase
Hiroki Kamiya
Masao Uehara
Kenichiro Nagatomo
Yasushi Nishimura
Shiro Ohno
Satoru Hirano
Original Assignee
Sasakura Engineering Co., Ltd.
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co., Ltd., Asahi Glass Company, Limited filed Critical Sasakura Engineering Co., Ltd.
Priority to DE60304469T priority Critical patent/DE60304469T2/de
Priority to JP2004515513A priority patent/JP4455327B2/ja
Priority to EP03760892A priority patent/EP1514848B1/en
Priority to AU2003244295A priority patent/AU2003244295A1/en
Publication of WO2004000734A1 publication Critical patent/WO2004000734A1/ja
Priority to US11/012,334 priority patent/US7351342B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/007Energy recuperation; Heat pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/08Thin film evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/325Emulsions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/38Polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/063Underpressure, vacuum
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a method for recovering a fluorinated emulsifier using a vacuum concentration method.
  • IER anion exchange resin
  • JP-B-47-51233 describes a method of coagulating and washing latex of emulsion polymerization, collecting an emulsifier as an aqueous solution, evaporating the obtained aqueous solution to dryness, and recovering the fluorinated emulsifier with an organic solvent.
  • the text also describes a method of recovering the fluorinated emulsifier using an ion exchange resin.
  • US Pat. No. 4,282,162 describes a method in which a dilute emulsifier aqueous solution is brought into contact with a weakly basic anion exchange resin in the pH range of 0 to 7, the emulsifier is adsorbed, and desorbed with ammonia water.
  • a nonionic or thiothionic surfactant is added to the coagulated waste water of the fluoropolymer to stabilize the polytetrafluoroethylene (hereinafter referred to as PTFE) fine particles in the coagulated waste water, A method for preventing clogging of packed columns is described.
  • PTFE polytetrafluoroethylene
  • JP-A-55-120630, US Pat. No. 4,369,266 and DE2908001 describe a part of ammonium perfluorooctanoate (hereinafter referred to as APFO) used for concentrating PTFE coagulated wastewater by ultrafiltration and producing PTFE.
  • APFO ammonium perfluorooctanoate
  • JP-A-55-104651 US Pat. No. 4,282,162 and DE2903981 disclose a method of adsorbing APFO to IER and then desorbing and recovering perfluorooctanoic acid using a mixture of an acid and an organic solvent.
  • WO 99/62858 states that after adding lime water to the coagulated waste water of tetrafluoroethylene Z perfluoro mouth (alkyl vinyl ether) copolymer (hereinafter referred to as PFA), the pH is adjusted to 6 to 7.5.
  • metal salts such as aluminum chloride and iron chloride are added to agglomerate the unagglomerated PFA, and then the aggregates are mechanically separated and removed.
  • the pH of the obtained wastewater is adjusted to 7 or less with sulfuric acid.
  • Japanese Patent Application Laid-Open No. 2001-62313 describes a method for desorbing APFO adsorbed on IER using a mixed solution of water, alkali and organic solvent.
  • Japanese Patent Application Laid-Open No. 2002-59160 discloses a method for desorbing a fluorine-containing emulsifier adsorbed on an IER using a mixed solution of water, alcohol (especially sodium hydroxide), and an organic solvent (especially methanol, ethanol, and acetate). Has been described.
  • JP-A-2002-58966 describes a method for concentrating and recovering a fluorine-containing emulsifier using a reverse osmosis membrane.
  • WO 02/10104 A1 and WO 02/10105 A1 are prepared by adding a divalent metal and a trivalent metal to an aqueous solution containing a fluorinated emulsifier to form a layered double hydroxide. A method for recovery is described.
  • the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for efficiently recovering a fluorinated emulsifier from a low-concentration aqueous liquid such as coagulated waste water of a fluorinated polymer by a simple method. Disclosure of the invention
  • the present invention provides an aqueous liquid (A) in which the concentration of the fluorinated emulsifier is 1 mass% or more and 1 mass% or less, a pressure of 100 kPa or less, and a temperature of the aqueous liquid (A) of 100 ° C.
  • the concentration of the fluorinated emulsifier in the aqueous liquid (B) is 5% by mass or more in order to efficiently recover the fluorinated emulsifier at a high recovery rate.
  • the concentration of the fluorinated emulsifier in the aqueous liquid (A) is from 1% by mass to 1% by mass, preferably from 10% by mass to 1% by mass, particularly preferably from 10% by mass to 500% by mass. 0 mass ppm or less is preferable.
  • the concentration of the fluorinated emulsifier in the aqueous liquid (A) is too low, a large amount of water is required to concentrate the highly concentrated aqueous liquid (B), particularly the aqueous liquid (B) having the preferred concentration of the fluorinated emulsifier (5% by mass or more). Energy is needed. If the concentration of the fluorine-containing emulsifier in the aqueous liquid (A) is too high, the meaning of the specific vacuum concentration in the present invention is lost. In the case of such a high concentration, for example, The fluorinated emulsifier can be recovered by a simpler and more efficient method such as precipitation of the fluorinated emulsifier by changing pH.
  • the aqueous liquid (A) used in the step of producing a fluorine-containing polymer obtained by emulsion polymerization or aqueous dispersion polymerization of at least one fluorine-containing monomer in an aqueous medium containing a fluorine-containing emulsifier is used.
  • An aqueous solution containing the fluorinated emulsifier obtained by washing the waste water after separating the fluoropolymer (A 1) and the waste gas from the drying step and / or the heat treatment step of the fluoropolymer with the aqueous liquid (A 2) ) Is preferably at least one aqueous liquid selected from the group consisting of:
  • the wastewater (A 1) after the separation of the fluoropolymer is usually preferably coagulated wastewater of the fluoropolymer after emulsion polymerization or aqueous dispersion polymerization, and is particularly preferably a polymer of a fluoromonomer or a fluoromonomer. Coagulated wastewater from the process of producing a copolymer with a monomer other than the fluorine-containing monomer is preferred.
  • the coagulated waste water from the production process is a fluorine-containing monomer, or a monomer other than a fluorine-containing monomer and a fluorine-containing monomer, which is subjected to emulsion polymerization or aqueous dispersion polymerization in an aqueous medium containing a fluorine-containing emulsifier.
  • This refers to waste water after the fluoropolymer is aggregated from the obtained aqueous dispersion of the fluoropolymer by salting out or the like and the fluoropolymer is separated.
  • the wastewater contains the fluorine-containing emulsifier used during the polymerization of the fluorine-containing monomer, and also contains an SS content such as a non-aggregated fluorine-containing polymer.
  • coagulated wastewater hereinafter, sometimes referred to as coagulated wastewater (aA)
  • A aqueous liquid
  • the exhaust gas in the aqueous f night (A 2) the exhaust gas in the drying step and the Z or heat treatment step of the fluoropolymer, which is usually obtained by emulsion polymerization or aqueous dispersion polymerization in an aqueous medium containing a fluorine-containing emulsifier, Is preferred.
  • an aqueous solution of a fluorine-containing polymer obtained by emulsion polymerization or aqueous dispersion polymerization of a fluorine-containing monomer or a fluorine-containing monomer and a monomer other than a fluorine-containing monomer in an aqueous medium containing a fluorine-containing emulsifier is used.
  • the fluoropolymer is coagulated and separated from the dispersion by salting out or the like, and when the separated fluoropolymer is dried and Z or heat-treated using a heat treatment device such as an oven, the fluorine-containing polymer is separated from the heat treatment device.
  • Discharged Exhaust gas containing a small amount of solid droplets.
  • the aqueous liquid (A 2) may be referred to as an aqueous liquid containing a fluorinated emulsifier obtained by washing the exhaust gas with the aqueous liquid (hereinafter, may be referred to as an aqueous liquid (A 2 a)). This will be described as a representative.
  • a suspended solid such as an unagglomerated fluoropolymer contained in the coagulated wastewater (a A), or a metal salt used for salting-out and coagulation of the fluoropolymer, and a change in pH of the coagulated wastewater.
  • Substances that can become suspended solids such as substances that precipitate and substances that precipitate when the temperature of the coagulated wastewater falls or rises (hereinafter, suspended solids and substances that can become suspended solids are collectively referred to as SS content).
  • the content of SS is preferably set to 0.3% by mass or less, and particularly preferably 0.05% by mass, since it may adhere to the inside of the concentration device during the vacuum concentration in the present invention and reduce the thermal efficiency. % Is more preferable.
  • An effective method of removing the SS content of unagglomerated fluoropolymers is to add a metal salt (a salting-out agent) containing a polyvalent metal cation to aggregate the SS content.
  • metal salts include aluminum chloride, aluminum chloride hexahydrate, magnesium chloride, magnesium chloride hexahydrate, ferrous chloride, ferric chloride, ferric chloride hexahydrate, and polychlorinated chloride.
  • Metal chlorides such as aluminum are exemplified.
  • the pH is adjusted to 7 or more by adding sodium hydroxide and Z or a hydroxylating lime. It is preferable that the fluorinated emulsifier is redissolved from the aggregate in water.
  • the coagulated waste water (aA) is preferably stirred.
  • the stirring method is not particularly limited, but a method using a stirrer that does not mechanically destroy the aggregate particles generated by stirring is preferable.
  • the stirring blade of the stirring device is preferably a stirring blade capable of uniformly mixing the entire coagulated waste water (aA) at a low rotation speed, and is preferably one member selected from the group consisting of a full zone blade, a max blend blade and an amplifier blade.
  • G value during stirring at the stirring blade is preferably from 1 to 3 0 0 s-1, more preferably 5 ⁇ 2 5 0 s- 1, 1 0 ⁇ 2 0 0 s _ 1 is most preferred.
  • the G value is a value derived from the following equation. One.
  • stirring power (W)
  • V liquid volume (m 3 )
  • Pa * s liquid viscosity coefficient
  • a general solid-liquid separation method can be adopted as a method for removing the aggregated SS component.
  • the filtration is also preferably performed under pressure.
  • it is preferable that the wastewater containing the aggregates is allowed to stand still, the aggregates are settled, and the supernatants are filtered to remove the aggregates.
  • a solid-liquid separation method using a thickener or a screw decanter is most preferable.
  • the aqueous liquid (A) is concentrated under reduced pressure at a pressure of 10 OkPa or lower.
  • the pressure is preferably 50 kPa or less, particularly preferably 30 kPa or less. If the pressure is too large, a high temperature is required to evaporate the solvent containing water as a main component, so that not only the required energy cannot be reduced sufficiently, but also the fluorine-containing emulsifier is used in the solvent due to the high temperature. Loss may be caused by flying together.
  • the temperature of the aqueous liquid (A) is adopted to be 100 ° C. or less.
  • the temperature is preferably at most 80 ° C. If the temperature is too high, not only the required energy cannot be reduced sufficiently, but also because of the high temperature, the fluorinated emulsifier may be lost due to scattering along with the solvent.
  • the temperature fluctuation be within the set temperature ⁇ 2.
  • an antifoaming agent such as silicone.
  • an antifoaming agent is preferably avoided as much as possible because it may adversely affect the physical properties of the regenerated fluorinated emulsifier.
  • the device used for vacuum concentration is a device that uses steam generated by evaporation. Devices that can be efficiently reused to reduce energy consumption are preferred.
  • the apparatus for performing the decompression concentration may be configured such that the amount of energy required for evaporating the unit liquid of the aqueous liquid (A) per unit volume under atmospheric pressure is equal to the amount of energy required for evaporating the same unit volume at atmospheric pressure. It is preferable to use a reduced-pressure concentrator having a concentration of 50% or less. Examples of such a device include a heating tube surface evaporation type concentrator equipped with a heat pump and a flash type concentrator equipped with Z or an ejector.
  • the coagulated wastewater A is heated at a pressure of 100 kPa or lower. And is sprayed from the upper part of the heating evaporator to the heating tube portion by the circulation pump together with the circulating liquid in the heating evaporator, and the thin film evaporates on the surface of the heating tube portion. At this time, foaming can be suppressed by spraying a part of the circulating liquid near the surface of the liquid held in the heating evaporator.
  • the vapor evaporated on the surface of the heating tube is compressed by a heat pump, and the temperature is raised by 3-6.
  • the steam whose temperature has risen is introduced into the inside of the heating pipe, evaporates the circulating fluid sprayed outside the heating pipe, becomes condensed water, and is discharged out of the system by the condensed water pump.
  • a heating tube surface evaporating type concentrating device equipped with a heat pump a VVCC concentrating device or an EVCC concentrating device manufactured by Sasakura can be exemplified.
  • the concentration of the fluorinated emulsifier can be increased to 5% by mass or more, or even 10% by mass or more, using a heating tube surface evaporation type concentrator equipped with the above-mentioned heat pump.
  • a heating tube surface evaporation type concentrator equipped with the heat pump since the heating tube surface evaporation type concentrator equipped with the heat pump has a large number of heating tubes inside, when the concentration of the fluorinated emulsifier increases, the structure of the heating tube becomes fluorinated. Thermal efficiency may be reduced due to precipitation of emulsifier or adhesion of SS in coagulated wastewater (a A).
  • the concentration of the fluorinated emulsifier is usually limited to about 100 mass ppm to 5 mass%, particularly about 0.5 mass% to 3 mass%, in the concentration by the heating tube surface evaporating concentration apparatus equipped with the heat pump. preferable.
  • the concentration of the aqueous liquid (A) under reduced pressure may be performed using a flash-type concentrator (hereinafter, may be simply referred to as a flash evaporator).
  • a flash-type concentrator equipped with an ejector for example, an FTC concentrator manufactured by Sasakura, etc. can be used) can also be used.
  • these flash type concentrators do not have a problem due to a high concentration of the fluorinated emulsifier as in the above-mentioned heating evaporator, they are usually used for concentrating an aqueous liquid containing a fluorinated emulsifier having reached a relatively high concentration. It is preferably used.
  • the vacuum concentration of the aqueous liquid (A) in the present invention is preferably performed in two or more stages.
  • the first stage is performed using a heating tube surface evaporating concentrator equipped with a heat pump
  • the second and subsequent stages are performed using a heating tube surface evaporating concentrator or a flash type concentrator equipped with a heat pump.
  • the first step is performed using a heating tube surface evaporation type concentrator equipped with a heat pump
  • the second and subsequent steps are performed using a flash type concentrator.
  • the aqueous liquid of the fluorinated emulsifier which has been concentrated in the heating evaporator to reach a relatively high concentration is further concentrated using a flash evaporator.
  • a flash evaporator For example, when an aqueous liquid of a fluorinated emulsifier that has reached a relatively high concentration is introduced into a flash evaporator kept at 30 kPa or less, the inside of the flash evaporator is introduced due to reduced pressure. The aqueous liquid flash evaporates.
  • a part of the evaporated vapor is sucked into the ejector using a flash-type concentrator equipped with an ejector such as the FTC concentrator, and the circulating liquid is removed by the heater together with the driving steam for the ejector. It can be used as a heating source.
  • the condensed water discharged by the vacuum concentration operation in the present invention is used for washing the exhaust gas from the fluoropolymer drying step and Z or the exhaust gas from the heat treatment step to obtain the aqueous solution (A 2 a).
  • the concentration of the fluorinated emulsifier in the aqueous liquid (B) obtained in the vacuum concentration step is higher than that in the aqueous liquid (A).
  • the concentration of the fluorinated emulsifier in the aqueous liquid (B) is preferably at least 5% by mass, more preferably at least 10% by mass.
  • Concentration of fluorinated emulsifier in aqueous liquid (B) When the content is within the above range, the recovery of the fluorinated emulsifier in the present invention can be 90% by mass or more. If the concentration of the fluorinated emulsifier in the aqueous liquid (B) is too low, only the solubility of the free acid of the fluorinated emulsifier in water cannot be recovered. Recovery rate cannot be increased sufficiently.
  • the upper limit of the concentration of the fluorine-containing emulsifier is not necessarily limited, but is preferably 50% by mass or less.
  • the fluorinated emulsifier having a high concentration in the aqueous liquid (B) can be precipitated in the form of a free acid by making the aqueous liquid (B) acidic at pH 4 or less.
  • the precipitated free acid can be collected by filtration.
  • the aqueous liquid (B) may be made acidic for the purpose of purifying the fluorine-containing emulsifier, and it may be easily extracted with a water-insoluble organic solvent in a state where a precipitate is formed.
  • water-insoluble organic solvent examples include chloroform, dichloroethylene, methylene chloride, hexane, benzene, toluene, R-113, R-225 ca, R-225 cb, R-123 , R- 141 b, can be mentioned at least one kind of solvent selected Ri by the group consisting of C 6 F 1 3 H and C 8 F, 8. Particularly, in view of the solubility of the free acid in the solvent, R-113, R-225 ca, R-225 cb, R-123, R-141 b, C 6 F x 3 even without less selected from the group consisting of H and C 8 F x 8 is one non water-soluble fluorine-containing organic solvents preferred.
  • the free acid extracted in the solvent can be purified by removing impurities containing no fluorine by distillation with the solvent.
  • chloroform-form, dichloroethylene, methylene chloride, hexane, benzene, toluene, R-113, R-225 ca, R-225 cb, R-123, R-141 b recrystallization of the free acid using at least one solvent selected from the group consisting of C 6 F 13 H and C 8 F, 8 to remove and purify fluorine-containing impurities. be able to.
  • the recovery of the fluorine-containing emulsifier from the aqueous liquid (B) is particularly preferably performed by an extraction method using the non-water-soluble fluorine-containing organic solvent.
  • the purified fluorinated emulsifier is reused as an emulsifier for fluorinated polymer polymerization. Can be used.
  • the fluorinated emulsifier may be a salt having 5 to 13 carbon atoms, such as perfluoroalkanoic acid, ⁇ -hydroperfluoroalkanoic acid, ⁇ -chloroperfluoroalkanoic acid, or perfluoroalkanesulfonic acid. These are preferably a linear or branched structure, or a mixture thereof. Further, the molecule may contain an etheric oxygen atom. When the number of carbon atoms is in this range, the effect as an emulsifier is excellent.
  • the acid salt is preferably an alkaline metal salt such as a lithium salt, a sodium salt, or a potassium salt, or an ammonium salt, more preferably an ammonium salt or a sodium salt, and most preferably an ammonium salt.
  • the acid include perfluoropentanoic acid and perfluorohexanoic acid.
  • Perfluoroheptanoic acid perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluorododecanoic acid, ⁇ -hydroperfluoroheptanoic acid, ⁇ _hydro Perfluorooctanoic acid, ⁇ _hydroperfluorononanoic acid, ⁇ -chloroperfluoroheptanoic acid, ⁇ -chloroperfluorooctanoic acid, ⁇ monochloroperfluorononanoic acid, etc. Is mentioned.
  • the acid include CF 3 CF 2 CF 2 OCF (CF 3 ) COO H, CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) CO ⁇ H, CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 O] 2 CF (CF 3 ) COOH, CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 O] 3 CF (CF 3 ) COOH, CF 3 CF 2 CF 2 CF 2 CF 2 OCF (CF 3 ) C ⁇ OH and the like can also be mentioned.
  • perfluorohexanesulfonic acid perfluoroheptansulfonic acid, perfluorooctanesulfonic acid, perfluorononanesulfonic acid, perfluorononsulfonic acid, and the like are also included.
  • ammonium salt examples include ammonium perfluoropentanoate, ammonium perfluorohexanoate, ammonium perfluoroheptanoate, ammonium perfluorooctanoate (APFO), and perfluorononanoate.
  • ammonium salt examples include CF 3 CF 2 CF 2 OCF (CF 3 ) COONH 4 , CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3) COONH 4 , CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 ⁇ ] 2 CF (CF 3 ) COONH 4 , CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 O] 3 CF (CF 3 ) COONH 4 , CF 3 CF 2 CF 2 CF 2 OCF (CF 3 ) COONH 4 , CF 3 CF 2 CF 2 CF 2 OCF (CF 3 ) COONH 4 and the like.
  • ammonium perfluorohexane sulfonate ammonium perfluoroheptanesulfonic acid, ammonium perfluorooctane sulfonate, ammonium perfluorononane sulfonate, ammonium perfluorodecane sulfonate, etc.
  • ammonium perfluorohexane sulfonate ammonium perfluoroheptanesulfonic acid
  • ammonium perfluorooctane sulfonate ammonium perfluorononane sulfonate
  • ammonium perfluorodecane sulfonate etc.
  • lithium salt examples include lithium perfluoropentanoate, lithium perfluorohexanoate, lithium perfluoroheptanoate, lithium perfluorosiloxane, lithium perfluorononanoate, and lithium perfluoronate.
  • lithium salt examples include CF 3 CF 2 CF 2 OCF (CF 3 ) COOL i, CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOL i, CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 O] 2 CF (CF 3 ) COOL i, CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 ⁇ ] 3 CF (CF 3 ) COOL i, CF 3 CF 2 CF 2 CF 2 OCF (CF 3 ) COOL i.
  • lithium perfluorohexane sulfonate lithium perfluoroheptane sulfonate, lithium perfluorooctane sulfonate,
  • lithium fluorononane sulfonate lithium perfluorodecane sulfonate and the like can be mentioned.
  • sodium salt examples include sodium perfluoropentanoate, sodium perfluorohexanoate, sodium perfluoroheptanoate, sodium perfluorooctanoate, sodium perfluorononanoate, sodium perfluorodecanoate Sodium perfluorododecanoate, sodium ⁇ -hydroperfluoroheptanoate, sodium ⁇ -hydroperfluorooctanoate, ⁇ -sodium hydroperfluorononanoate, ⁇ -sodium sodium perfluoroheptanoate, ⁇ -clo mouth sodium perfluorooctanoate, ⁇ -clo mouth sodium perfluorononanoate and the like.
  • sodium salt examples include CF 3 CF 2 CF 2 OCF (CF 3) COONa, CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONa, CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 O] 2 CF (CF 3 ) COONa, CF 3 CF 2 CF 2 ⁇ [CF (CF 3 ) CF 2 O] 3 CF (CF 3) COONa, CF 3 CF 2 CF 2 CF 2 CF 2 OCF (CF 3 ) COON a and the like.
  • sodium perfluorohexanesulfonic acid sodium perfluoroheptanesulfonic acid, sodium perfluorooctanesulfonic acid, sodium perfluorononanesulfonic acid, sodium perfluorononanesulfonic acid, and the like are also available. No.
  • potassium salt examples include potassium perfluoropentanoate, potassium perfluorohexanoate, potassium perfluoroheptanoate, potassium perfluorooctanoate, potassium perfluorononanoate, perfluoropentanoate Potassium rodecanoate, potassium perfluorododecanoate, potassium ⁇ -hydroperfluoroheptanoate, potassium ⁇ -hydroperfluorooctanoate, ⁇ -potassium hydroperfluorononanoate, ⁇ And potassium ⁇ -chloroperfluoroheptanate, potassium ⁇ -chloroperfluorononanoate, and ⁇ -chloroperfluorononanoic acid potassium.
  • a specific example of the potassium salt is CF 3 CF.
  • CF 2 OCF (CF 3 ) COOK CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) CO OK, CF 3 CF 2 CF 2 O [CF (CF 3 ) CF 2 O] 2 CF (CF 3 ) CO OK, CF 3 CF 2 CF 2 ⁇ [CF (CF 3) CF 2 O] 3 CF (CF 3) CO OK, CF 3 CF 2 CF 2 CF 2 CF 2 OCF (CF 3) COOK , etc. Ru also mentioned.
  • Perfluorohexane sulfonate potassium perfluoroheptanesulfonate, potassium perfluorooctanesulfonate, perfluorononane sulfonate, perfluorodesulfonic acid, and the like.
  • an ammonium salt of a perfluoroalkanoic acid having 6 to 12 carbon atoms is particularly preferable, and ammonium perfluorohepnoate, APFO, ammonium perfluorononanoate or perfluorodeacid. Ammonia is more preferred, and APF is most preferred.
  • TFE tetrafluoroethylene
  • CF 2 CFC 1
  • CFH CF 2
  • CH 2 CH 2
  • VdF CF 2
  • Furuoroechiren such, the hexa full O b propylene (hereinafter,.
  • HEP CF full O b propylene
  • 2 CHCF 3
  • CF 2 CFOCF 3
  • CF 2 CFO (CF 2) 2 CF 3
  • PPVE Perfluoro vinyl ethers having 3 to 10 carbon atoms
  • CF 2 CFO (CF 2 ) 4 CF 3
  • fluorinated monomers may be used alone or in combination of two or more.
  • Monomers other than the fluorine-containing monomer include vinyl esters such as vinyl acetate, vinyl ethers such as ethyl vinyl ether, cyclohexyl vinyl ether and hydroxybutyl vinyl ether, and monomers having a cyclic structure such as norbornene and norponagen. Examples thereof include aryl ethers such as methyl aryl ether, and olefins such as ethylene (hereinafter, referred to as E), propylene (hereinafter, referred to as P), and isobutylene. Monomers other than the fluorinated monomer may be used alone or in combination of two or more.
  • the fluoropolymer is not particularly limited, but is preferably At least one selected from the group consisting of PTFE, TFE / P copolymer, TFEZP / VdF copolymer, TFE / HFP copolymer, TFE / PPVE copolymer, EZTFE copolymer and polyvinylidene fluoride is there. More preferably, it is PTFE, TFE / P copolymer, TFEZP VdF copolymer or TFE / PPVE copolymer, most preferably PTFE.
  • the method for recovering a fluorinated emulsifier of the present invention is particularly useful for the aqueous liquid (A) in which the concentration of the fluorinated emulsifier is 1 mass ppm or more and 1 mass% or less. (More than 1% by mass to less than 5% by mass). That is, the aqueous solution containing a relatively low concentration of the fluorinated emulsifier can be made to have a high concentration (for example, 5% by mass or more, particularly 10% by mass or more) by vacuum concentration in the present invention.
  • the method for recovering a fluorinated emulsifier of the present invention may include, in addition to the fluorinated emulsifier, a low-molecular-weight fluorinated carboxylic acid such as trifluoroacetic acid and pentafluoropropanoic acid and / or a salt thereof, trifluoromethanesulfonic acid and / or a salt thereof. Also applicable to salt and the like.
  • a low-molecular-weight fluorinated carboxylic acid such as trifluoroacetic acid and pentafluoropropanoic acid and / or a salt thereof, trifluoromethanesulfonic acid and / or a salt thereof. Also applicable to salt and the like.
  • the concentration of APFO, perfluorooctanoic acid or sodium perfluorooctanoate was measured by a high-performance liquid chromatography-mass spectral method using a mixed solution of methanol and water as a solvent. Species to be detected by this method is base Le full O Roo Kuta Noe Ichito (C 7 F 1 5 COO " ).
  • Coagulated wastewater after emulsion polymerization of PTFE (SS content: 230 ppm. Mark water 1.
  • the AP FO concentration was measured and found to be 208 ppm.
  • the APFO-containing wastewater from which PTFE has been removed in advance (hereinafter simply referred to as the wastewater) is concentrated under reduced pressure using a heating-tube-surface evaporation-type concentrator equipped with a heat pump (trade name: E VCC concentrator, manufactured by Sasakura). I let it.
  • the supply amount of the wastewater was 50 LZ, and the inside of the EVCC concentrator was kept at 20 kPa.
  • the temperature of the circulating fluid inside the EVCC concentrator was maintained at 65 ⁇ 2 ° C. Immediately after the start of operation, the liquid inside the EVCC concentrator started foaming, but did not generate a large amount of liquid.
  • 750 L of the wastewater was introduced into an EVCC concentrator to obtain 20 L of 37.5-fold concentrated water.
  • the evaporating water was condensed, collected in full, and analyzed to find that the APFO concentration was lppm. From this, APFO lost by vacuum concentration using the EVCC concentrator was 0.48% (0.73 g).
  • the energy used in the EVCC concentrator was 3.42 kW.
  • the 37.5-fold concentrated water concentrated by the EVCC concentrator was further concentrated using a flash-type concentrator equipped with an ejector (manufactured by Sasakura, trade name: FTC concentrator).
  • FTC concentrator manufactured by Sasakura, trade name: FTC concentrator.
  • the pressure inside the FTC concentrator was kept at 20 kPa.
  • the temperature was kept at 50 ⁇ 2 ° C.
  • 20 L of the 37.5-fold concentrated water was concentrated to 1.0 L of 750-fold concentrated water. All of the condensed water discharged from this FTC concentrator was collected and the APFO concentration was measured. From this, the APFO lost by the FTC concentrator was 0.013% (0.019 g).
  • the energy used in the FTC concentrator was 28.2 kW.
  • the APFO concentration in the 750-fold concentrated water was 15.0%.
  • the 750-fold concentrated water was cloudy, and a white precipitate was found at about 16% by volume. pH was 11.9.
  • the pH was adjusted to 1 by adding concentrated sulfuric acid to the 750-fold concentrated water. During the addition of sulfuric acid, the mixture was stirred with an anchor blade. From the point in time when the pH fell below 4, a large amount of white suspended matter began to be generated in the concentrated water. After adjusting the pH to 1, the mixture was stirred for 30 minutes. 100 g of R-225 cb was added to the concentrated water adjusted to this pH1. The white precipitate generated in the concentrated water was dissolved in the R-225 cb phase.
  • the R-225cb phase was separated and the entire amount of R-225cb was evaporated at room temperature to give 143.lg as a white solid.
  • this white solid was perfluorooctanoic acid.
  • the recovery rate of APFO in the enrichment operation using this EVCC enrichment unit and FTC enrichment unit is 99%.
  • PTFE produced by emulsion polymerization using APFO as an emulsifier was agglomerated.
  • This water-containing PTFE powder (10.0 kg, water content: 48% by mass) was placed in a hot-air circulation oven, heated at a rate of 100 to 51: / min over time, and then heat-treated at 200 ° C for 1 hour.
  • the amount of exhaust gas discharged from the hot-air circulation oven was 4.5 Nm 3 Zh.
  • the entire amount of the exhaust gas was introduced into a spray tower having a diameter of 50 cm and a height of 500 cm.
  • the linear velocity of the gas at this time was about 0.5 m / sec.
  • the spray tower 35 kg of ion-exchanged water whose pH was adjusted to 10 using sodium hydroxide was circulated and sprayed. After the drying and heat treatment of the PTFE powder, the APF O concentration in the alkaline water in the spray tower was analyzed, and was 498 mass ppm.
  • a 0.2 N aqueous sodium hydroxide solution was added to adjust the pH to 10.0.
  • the liquid temperature was 26 ° C.
  • the APFO-containing wastewater was concentrated under reduced pressure by a heating tube surface evaporation type concentrator equipped with a heat pump (trade name: EVCC concentrator manufactured by Sasakura).
  • the supply rate of the wastewater containing APFO was 10 L / hour, and the inside of the EVCC concentrator was maintained at 20 kPa.
  • the temperature of the circulating fluid inside the EVCC concentrator was kept at 65 ⁇ 2.
  • the 17.5-fold concentrated water concentrated by this EVCC concentrator was further concentrated using a single-tally evaporator. Reduce the pressure inside the rotary evaporator to 2
  • the temperature was kept at 50 ⁇ 2 ° C.
  • the 17.5-fold concentrated water was concentrated to 0.15 L of the 233-fold concentrated water over 2 hours.
  • the APFO lost by the rotary evaporator was 0.013% (0.0024 g).
  • the energy used on the rotary evaporator was 1.40 kW.
  • the APFO concentration in the 233-fold concentrated water was 11.6%.
  • the 233-fold concentrated water was cloudy, and a white precipitate was found at about 17% by volume. pH was 11.4.
  • Concentrated sulfuric acid was added to the 233-fold concentrated water to adjust the pH to 1. During the addition of sulfuric acid, the mixture was stirred with an anchor blade. From the point in time when the pH fell below 4, a large amount of white suspended matter began to be generated in the concentrated water. After adjusting the pH to 1, the mixture was stirred for 30 minutes. 10 g of n—C 8 F, 8 was added to the concentrated water adjusted to pH. White precipitation occurred concentrated water were dissolved in n- C 8 F, 8 phase. The nC 8 F x 8 phase was separated, the total amount of nC 8 8 evaporated at room temperature to obtain a white solid 16. 5 g. As a result of infrared spectroscopy, this white solid was perfluorooctanoic acid. The recovery rate of APFO in this enrichment operation using EVCC and a rotary evaporator was 99%
  • the APFO-containing wastewater was concentrated using a flash-type concentrator equipped with an ejector (trade name: FTC concentrator manufactured by Sasakura). During the concentration operation, the pressure inside the FTC concentrator was kept at 20 kPa. The temperature was kept at 60 ⁇ 2. 1 Over 200 hours, 200 L of the wastewater containing APFO was concentrated to 1.0 L of 200 times concentrated water. The total amount of condensed water discharged from this FTC concentrator was collected, and the APFO concentration was measured. From this, APFO lost by the FTC concentrator was 0.13% (0.198 g). The energy used in the FTC concentrator was 154.4 kW. The APFO concentration of this 200-fold concentrate was 15.6%.
  • the 200-fold concentrated water was cloudy, and a white precipitate was observed at about 16% by volume. pH was 11.2.
  • Concentrated sulfuric acid was added to the 200-fold concentrated water to adjust 11 to 1. During the addition of sulfuric acid, the mixture was stirred with an anchor blade. From the point in time when the pH fell below 4, a large amount of white suspended matter began to be generated in the concentrated water. After the pH was adjusted to 1, the mixture was stirred for 30 minutes. 100 g of R-225 cb was added to the concentrated water adjusted to pH. The white precipitate generated in the concentrated water was dissolved in the R-225 c b phase.
  • the R-225cb phase was separated, and the entire amount of R-225cb was evaporated at room temperature to obtain 148.6 g of a white solid.
  • this white solid was perfluorooctanoic acid.
  • the recovery of APFO in the concentration operation using this FTC concentrator was 99%.
  • the concentration of A PFO in the coagulated waste water (containing 2300 ppm of SS) after emulsion polymerization of PTF E was 148 ppm.
  • 65.0 g of aluminum chloride hexahydrate was added to 1000 of the coagulated waste water to coagulate uncoagulated PTFE particles.
  • the pH of the waste water was adjusted to 10.0 using 0.2N sodium hydroxide.
  • the supernatant of the drainage was colorless and transparent, and the SS content was 2 O ppm.
  • the concentration of APFO in the supernatant of the wastewater was 141 ppm.
  • a fluorinated emulsifier can be efficiently and easily recovered from flocculated waste water of a fluorinated polymer. Also, compared to known recovery methods, there is no need to add another chemical substance and the recovery efficiency is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

1質量ppm以上1質量%以下の低濃度で含フッ素乳化剤を含む水性液(たとえば、含フッ素ポリマーの乳化重合後の凝集排水や含フッ素ポリマーの乾燥工程および/または熱処理工程の排ガスを水性液で洗浄して得られる水性液)を、ヒートポンプを備えた加熱管面蒸発型濃縮装置等を用いて、圧力100kPa以下、かつ、該水性液の温度100℃以下で減圧濃縮せしめ、該含フッ素乳化剤の濃度が5質量%以上に高濃度化された水性液から該含フッ素乳化剤を回収する。本方法によれば、含フッ素ポリマーの凝集排水等の低濃度液より含フッ素乳化剤を高回収率で回収できる。

Description

含フッ素乳化剤の回収方法 技術分野
本発明は、 減圧濃縮法を用いた含フッ素乳化剤の回収方法に関する。 背景技術
従来から、 含フッ素ポリマーの乳化重合に使用される含フッ素乳化剤の回収方 法として、 陰イオン交換樹脂 (以下、 I ERという。 ) を用いる技術が知られて いる。
特公昭 47 - 51233には乳化重合のラテックスを凝集 ·洗浄し、 乳化剤を 水溶液として捕集し、 得られた水溶液を蒸発乾固した後に有機溶剤で該含フッ素 乳化剤を回収する方法が記載されており、 また本文中には陰ィォン交換樹脂を用 レ た該含フッ素乳化剤の回収方法も記載されている。
US 4282162には希薄乳化剤水溶液を p H 0〜 7の範囲で弱塩基性陰ィ オン交換樹脂に接触、 該乳化剤を吸着させ、 アンモニア水で脱着させる方法が記 載されている。
W099/62830には、 含フッ素ポリマーの凝集排水にノニオンまたは力 チオン性界面活性剤を添加し、 凝集排水中のポリテトラフルォロエチレン (以下 、 PTFEという。 ) 微粒子を安定化し、 I ERの充填塔の閉塞を防止する方法 が記載されている。
特開昭 55— 120630、 US 4369266および D E2908001に は、 P T F Eの凝集排水を限外ろ過法で濃縮するとともに P T F E製造に用いた ペルフルォロオクタン酸アンモニゥム (以下、 APFOという。 ) の一部を回収 した後、 I £ で八 0を吸着'回収する方法が記載されている。
特開昭 55— 104651、 US 4282162および DE2903981に は、 APFOを I ERに吸着させ、 ついで酸と有機溶剤との混合物を用いてパー フルォロオクタン酸を脱着し回収する方法が開示されている。 WO 99/62858には、 あらかじめテトラフルォロエチレン Zペルフルォ 口 (アルキルビニルエーテル) 共重合体 (以下、 PFAという。 ) の凝集排水に 石灰水を添加して pHを 6〜7. 5に調整後、 塩化アルミニウム、 塩化鉄等の金 属塩を添加して未凝集の P F Aを凝集させ、 ついで機械的に凝集物を分離 ·除去 した後に、 得られた排水の pHを硫酸で 7以下に調製し、 強塩基性 I ERを用い て APFOを吸着 ·回収する方法が記載されている。
特開 2001— 62313には I ERに吸着した AP FOを水、 アルカリ、 有 機溶剤の混合液を用いて脱着する方法が記載されている。
特開 2002— 59160には I E Rに吸着した含フッ素乳化剤を水、 アル力 リ (特に水酸化ナトリウム) 、 有機溶剤 (特にメタノール、 エタノール、 ァセト 二卜リル) の混合液を用いて脱着する方法が記載されている。
また、 特開 2002— 58966には逆浸透膜を用いて含フッ素乳化剤を濃縮 •回収する方法が記載されている。
さらに、 日本化学会第 76春季年会および日本化学会第 80秋季年会では、 ァ ルミニゥムと亜鉛の層状複水酸化物を用いて、 ペルフルォロォク夕ン酸およびそ のアンモニゥム塩を回収する技術が報告されている。
WO 02/10104 A 1および WO 02/10105 A1には含フッ素乳化 剤を含む水溶液に二価金属と三価金属を添加し、 層状複水酸化物を生成させるこ とによって、 該含フッ素乳化剤を回収する方法が記載されている。
しかしながら、 I ERを用いる方法や逆浸透膜を用いる方法では、 I ERまた は逆浸透膜との接触の前に未凝集の含フッ素ポリマーを含む、 浮遊固形分および /または浮遊固形分になりうる物質 (以下、 総称して SS分と記す。 ) を除去す る必要がある。 そして、 この S S分の除去が該含フッ素乳化剤の回収効率に多大 な影響を与えるだけでなく、 十分に有効な S S分除去方法が見つかっていないな ど、 実際の操作上での課題が多く残されている。
また、 日本化学会第 76春季年会および日本化学会第 80秋季年会で報告され た層状複水酸化物を用いた回収方法および WO02/10104 A 1および WO 02/10105 A1に記載された方法では、 該含フッ素乳化剤回収のために二 価金属や三価金属などの別の化学物質を加えなければならないため、 該含フッ素 乳化剤の回収後のリサイクル効率が十分高くならないなどの問題があつた。
さらに従来、 蒸発乾固によって該含フッ素乳化剤を回収する場合には、 非常に 大量のエネルギーが必要であり、 また水を蒸発させる際に該含フッ素乳化剤も同 伴してロスしてしまうという問題があった。
本発明は前記事情に鑑みてなされたものであり、 含フッ素ポリマーの凝集排水 などの低濃度水性液から、 含フッ素乳化剤を簡便な方法で効率よく回収する方法 を提供することを目的とする。 発明の開示
本発明は、 含フッ素乳化剤の濃度が 1質量 p p m以上 1質量%以下である水性 液 (A) を、 圧力 1 0 0 k P a以下、 かつ、 該水性液 (A) の温度 1 0 0 °C以下 で減圧濃縮せしめて、 該含フッ素乳化剤の濃度が高濃度化された水性液 (B ) と し、 該水性液 (B ) から該含フッ素乳化剤を回収することを特徴とする含フッ素 乳化剤の回収方法である。
本発明においては、 前記水性液 (B ) における含フッ素乳化剤の濃度を 5質量 %以上にすることが、 含フッ素乳化剤を効率よく高い回収率で回収するために好 ましい。 発明を実施するための形態
本発明において、 水性液 (A) 中の含フッ素乳化剤の濃度は 1質量 p p m以上 1質量%以下であり、 1 0質量 p p m以上 1質量%以下が好ましく、 特に 1 0質 量 p p m以上 5 0 0 0質量 p p m以下が好ましい。
水性液 (A) における含フッ素乳化剤の濃度が余りに低いと、 高濃度水性液 ( B) 、 特に好ましい含フッ素乳化剤の濃度 (5質量%以上) の水性液 (B ) まで 濃縮するのに大量のエネルギーが必要になる。 また、 水性液 (A) における含フ ッ素乳化剤の濃度が余りに高濃度の場合は、 本発明における特定の減圧濃縮を行 う意味が失われる。 このような高濃度の場合には、 たとえば、 そのまま回収工程 に用いてもよいし、 p Hを変化させることにより該含フッ素乳化剤を析出させる など、 より簡便で効率的な方法により回収できる。
本発明における水性液 (A) としては、 含フッ素乳化剤を含む水性媒体中で少 なくとも 1種の含フッ素モノマーを乳化重合または水性分散重合して得られる含 フッ素ポリマーの製造工程における、 該含フッ素ポリマーを分離した後の排水 ( A 1 ) 、 および該含フッ素ポリマーの乾燥工程および/または熱処理工程の排ガ スを水性液で洗浄して得られる該含フッ素乳化剤を含む水性液 ( A 2 ) からなる 群より選ばれる少なくとも 1種の水性液であることが好ましい。
前記含フッ素ポリマーを分離した後の排水 (A 1 ) は、 通常は乳化重合後また は水性分散重合後の含フッ素ポリマーの凝集排水が好ましく、 特に含フッ素モノ マーの重合体または含フッ素モノマーと含フッ素モノマー以外のモノマーとの共 重合体の製造工程からの凝集排水が好ましい。
具体的に、 前記製造工程からの凝集排水とは、 含フッ素モノマーを、 または含 フッ素モノマーと含フッ素モノマー以外のモノマーとを、 含フッ素乳化剤を含む 水性媒体中で乳化重合または水性分散重合して得られた含フッ素ポリマーの水性 分散液から、 含フッ素ポリマーを塩析等で凝集して、 該含フッ素ポリマーを分離 した後の排水をいう。 該排水には、 含フッ素モノマーの重合時に使用された含フ ッ素乳化剤が含有されるほか、 未凝集の含フッ素ポリマーなどの S S分も含まれ る。 以下、 該凝集排水 (以下、 凝集排水 (a A) と記すことがある。 ) を本発明 における水性液 (A) の典型例として説明する。
また、 前記水性 f夜 (A 2 ) における排ガスとしては、 通常は含フッ素乳化剤を 含む水性媒体中で乳化重合または水性分散重合して得られる、 含フッ素ポリマー の乾燥工程および Zまたは熱処理工程の排ガスが好ましい。
典型的には、 含フッ素モノマーを、 または含フッ素モノマーと含フッ素モノマ 一以外のモノマーとを、 含フッ素乳化剤を含む水性媒体中で乳化重合または水性 分散重合して得られた含フッ素ポリマーの水性分散液から、 該含フッ素ポリマー を塩析等で凝集して分離し、 該分離された含フッ素ポリマーをオーブン等の熱処 理装置を用いて乾燥および Zまたは熱処理する際に、 該熱処理装置から排出され る微量の固体の飛沫を含む排ガスが挙げられる。 以下、 前記水性液 (A 2 ) につ いては、 該排ガスを水性液で洗浄して得られる含フッ素乳化剤を含む水性液 (以 下、 水性液 (A 2 a ) と記すことがある。 ) で代表させて説明する。
前記凝集排水 (a A) 中に含まれる未凝集の含フッ素ポリマー等の浮遊固形物 、 または、 含フッ素ポリマーの塩析凝集に使用された金属塩、 該凝集排水の p H の変化によつて析出する物質、 該凝集排水の温度低下もしくは温度上昇によって 析出する物質などの浮遊固形物になりうる物質 (以下、 浮遊固形物および浮遊固 形物になりうる物質を合わせて S S分と記す。 ) は、 本発明における減圧濃縮の 際に濃縮装置内部に付着して熱効率を低下させることがあるため、 S S分の含有 量を 0 . 3質量%以下にするのが好ましく、 特に 0 . 0 5質量%以下にするのが より好ましい。
未凝集の含フッ素ポリマー等の S S分の除去方法としては、 多価金属カチオン を含有する金属塩 (塩析剤) を添加して S S分を凝集させる塩祈が効果的である 。 金属塩の具体例としては、 塩化アルミニウム、 塩化アルミニウム六水和物、 塩 化マグネシウム、 塩化マグネシウム六水和物、 塩化第一鉄、 塩化第二鉄、 塩化第 二鉄六水和物、 ポリ塩化アルミニウム等の金属塩化物が挙げられる。
前記塩析により得られる凝集物は含フッ素乳化剤を内包した状態で沈殿するこ とがあるため、 水酸化ナトリゥムおよび Zまたは水酸化力リゥムを添加して p H を 7以上に調整することにより、 該含フッ素乳化剤を該凝集物から水中に再溶解 させることが好ましい。
前記塩析において、 凝集排水 A) に塩析剤を添加する際に、 該凝集排水 ( a A) を撹拌することが好ましい。 撹拌方法としては、 特に限定されないが、 撹 拌によって生成した凝集物粒子を機械的に破壊しない撹拌装置を用いる方法が好 ましい。 該撹拌装置の撹拌翼としては、 低速回転で凝集排水 (a A) 全体を均一 に混合できる撹拌翼が好ましく、 フルゾーン翼、 マックスブレンド翼およびアン 力一翼からなる群より選ばれる 1種が好ましい。 該撹拌翼における撹拌時の G値 は、 1〜3 0 0 s— 1 が好ましく、 5〜2 5 0 s— 1 がより好ましく、 1 0〜2 0 0 s _ 1 が最も好ましい。 ここで、 G値とは以下の式によって導かれる値をい つ。
P
G
V - μ 上記式において、 Ρは撹拌動力 (W) 、 Vは液容積 (m3 ) 、 は液粘性係数 ( P a * s ) を表す。
前記塩析において、 凝集させた S S分の凝集物を除去する方法としては、 一般 的な固液分離方法が採用できる。 特に、 ろ過、 デカンテーシヨン、 遠心分離およ び重力沈降からなる群より選ばれる 1種以上の方法を用いることが好ましい。 ろ 過は、 加圧下に実施することも好ましい。 また、 凝集物を含む排水を静置し、 凝 集物を沈降させて、 上澄み液をろ過することにより凝集物を除去することが好ま しい。 また、 設備メンテナンスの容易さ等の点から、 シックナーまたはスクリュ ーデカンターを用いる固液分離方法が最も好ましい。
本発明において、 水性液 (A) の減圧濃縮は圧力 1 0 O k P a以下で実施され る。 該圧力は 5 0 k P a以下が好ましく、 特に 3 0 k P a以下が好ましい。 該圧 力が余りに大きいと、 水を主成分とする溶媒を蒸発させるのに高温が必要となり 、 必要なエネルギーを十分低くすることができないだけでなく、 また高温のため に含フッ素乳化剤も溶媒に同伴して飛散することによりロスしてしまうことがあ る。
また、 本発明における減圧濃縮では、 水性液 (A) の温度は 1 0 0 °C以下が採 用される。 該温度は 8 0 °C以下が好ましい。 該温度が余りにも高いと必要なエネ ルギーを十分低くすることができないだけでなく、 高温のために含フッ素乳化剤 も溶媒に同伴して飛散することによりロスしてしまうことがある。
また、 温度変化により装置内部の凝集排水が発泡するため、 温度変動は設定温 度 ± 2 の範囲内にするのが好ましい。
この発泡を抑えるために、 シリコーン系などの一般的な消泡剤を添加すること も有効である。 しかし、 再生された含フッ素乳化剤の物性に悪影響を及ぼすこと があるので、 消泡剤の使用は極力避けるのが好ましい。
本発明において、 減圧濃縮に用いる装置としては、 蒸発により発生した蒸気を 効率的に再利用してエネルギー消費量を低減できる装置が好ましい。 また、 該減 圧濃縮を行う装置が、 前記水性液 (A) の単位体積あたりを蒸発させるのに必要 なエネルギー量について、 大気圧下で同単位体積あたりを蒸発させるのに必要な エネルギー量の 5 0 %以下である減圧濃縮装置であることが好ましい。 かかる装 置としては、 ヒー卜ポンプを備えた加熱管面蒸発型濃縮装置および Zまたはェジ ェクタ一を備えたフラッシュ型濃縮装置を挙げることができる。
前記ヒートポンプを備えた加熱管面蒸発型濃縮装置 (以下、 単に加熱蒸発缶と 記すことがある。 ) の場合、 凝集排水 A) は圧力 1 0 0 k P a以下に保持さ れた加熱蒸発缶内に導入され、 該加熱蒸発缶内の循環液と共に循環ポンプにて加 熱蒸発缶上部から加熱管部分に散布され、 該加熱管部分の表面で薄膜蒸発する。 この際、 一部の循環液を加熱蒸発缶内に保持された液の表面近くに散布すること により、 泡立ちを抑えることができる。 加熱管部分の表面で蒸発した蒸気はヒー トポンプで圧縮され、 3〜6 温度上昇させられる。 この温度上昇した蒸気は加 熱管内側に導入され、 加熱管部分の外側に散布された循環液を蒸発させると共に 凝縮水となり、 凝縮水ポンプにより系外に排出される。
すなわち、 一旦蒸発した蒸気をヒートポンプで温度上昇させることにより、 ヒ ートポンプを用いない場合に比べて、 エネルギー消費量を低減できる。 ヒートポ ンプを備えた加熱管面蒸発型濃縮装置としては、 ササクラ社製の VV C C濃縮装 置または E V C C濃縮装置を例示することができる。
前記のヒートポンプを備えた加熱管面蒸発型濃縮装置を用いて、 含フッ素乳化 剤の濃度を 5質量%以上、 さらには 1 0質量%以上になるまで濃縮することもで きる。 この場合、 該ヒートポンプを備えた加熱管面蒸発型濃縮装置は内部に多数 の加熱管を有するため、 含フッ素乳化剤の濃度が高濃度化されてくると、 その構 造上加熱管表面に含フッ素乳化剤が析出したり、 凝集排水 (a A) 中の S S分が 付着したりすることにより、 熱効率が低下することがある。 したがって、 通常は 該ヒートポンプを備えた加熱管面蒸発型濃縮装置による濃縮は、 含フッ素乳化剤 の濃度を 1 0 0 0質量 p p m~ 5質量%、 特に 0 . 5〜 3質量%程度にとどめる のが好ましい。 本発明において、 前記水性液 (A) の減圧濃縮は、 フラッシュ型濃縮装置 (以 下、 単にフラッシュ蒸発缶と記すことがある。 ) を用いて行うこともできる。 ま た、 ェジェクタ一を備えたフラッシュ型濃縮装置 (たとえば、 ササクラ社製の F T C濃縮装置等が挙げられる。 ) を用いることもできる。 これらのフラッシュ型 濃縮装置は、 前記加熱蒸発缶におけるような含フッ素乳化剤の高濃度化などによ る問題がないので、 通常は比較的高濃度に達した含フッ素乳化剤を含む水性液の 濃縮に好ましく用いられる。
本発明における水性液 (A) の減圧濃縮は、 2段以上の複数段階に分けて行わ れるのが好ましい。 たとえば、 1段目がヒートポンプを備えた加熱管面蒸発型濃 縮装置を用いて行われ、 かつ、 2段目以降がヒートポンプを備えた加熱管面蒸発 型濃縮装置またはフラッシュ型濃縮装置を用いて行われる。 特に、 1段目がヒ一 卜ポンプを備えた加熱管面蒸発型濃縮装置を用いて行われ、 かつ、 2段目以降が フラッシュ型濃縮装置を用いて行われるのが好ましい。
通常は、 前記の加熱蒸発缶で濃縮されて比較的高濃度に達した含フッ素乳化剤 の水性液は、 フラッシュ蒸発缶を用いてさらに濃縮されるのが好ましい。 たとえ ば、 3 0 k P a以下に保持されたフラッシュ蒸発缶内に、 比較的高濃度に達した 含フッ素乳化剤の水性液が導入されると、 該フラッシュ蒸発缶内が減圧のため、 導入された水性液はフラッシュ蒸発する。 この場合、 前記 F T C濃縮装置等のェ ジェクタ一を備えたフラッシュ型濃縮装置を用いて、 蒸発した蒸気の一部をェジ ェクタ一に吸引せしめ、 ェジェクタ一の駆動蒸気とともにヒーターにて循環液の 加熱源として利用することができる。
なお、 本発明における上記減圧濃縮操作によって排出される凝縮水は、 前記含 フッ素ポリマーの乾燥工程および Zまたは熱処理工程の排ガスを洗浄して前記水 性液 (A 2 a ) を得る際に、 洗浄用の水性液として使用することができる。 本発明において、 前記減圧濃縮工程で得られる水性液 (B ) は、 水性液 (A) に比して含フッ素乳化剤の濃度が高濃度化されている。 通常は、 該水性液 (B) における含フッ素乳化剤の濃度は 5質量%以上であることが好ましく、 特に 1 0 質量%以上であることが好ましい。 水性液 (B) における含フッ素乳化剤の濃度 を上記範囲にすることにより、 本発明における含フッ素乳化剤の回収率を 9 0質 量%以上にできる。 水性液 (B) における含フッ素乳化剤の濃度が余りに低いと 、 該含フッ素乳化剤の遊離酸の水に対する溶解度分だけは回収できないことにな り、 減圧濃縮工程から回収工程までを含めた含フッ素乳化剤の回収率を十分に高 くできない。 なお、 含フッ素乳化剤の濃度の上限は、 必ずしも制限はないが、 5 0質量%以下が好ましい。
本発明において、 水性液 (B) 中の高濃度化された含フッ素乳化剤は、 該水性 液 (B) を pH4以下の酸性にすることによって、 遊離酸の形で析出させること ができる。 析出した遊離酸はろ過によって回収することができる。 また該含フッ 素乳化剤の精製のために該水性液 (B) を酸性にし、 沈殿を生成させた状態で非 水溶性有機溶剤で容易に抽出することもできる。
該非水溶性有機溶剤としては、 クロ口ホルム、 ジクロロエチレン、 塩化メチレ ン、 へキサン、 ベンゼン、 トルエン、 R— 1 1 3、 R— 2 2 5 c a、 R- 2 2 5 c b、 R— 1 2 3、 R— 141 b、 C6 F1 3 Hおよび C8 F, 8 からなる群よ り選ばれる少なくとも 1種の溶媒を挙げることができる。 特に、 該遊離酸の該溶 媒への溶解度の点から、 R— 1 1 3、 R- 2 2 5 c a, R— 2 2 5 c b、 R- 1 2 3、 R— 1 4 1 b、 C6 Fx 3 Hおよび C8 Fx 8 からなる群より選ばれる少 なくとも 1種の非水溶性含フッ素有機溶媒が好ましい。
該溶媒に抽出された遊離酸は、 該溶媒と共に蒸留することによって、 フッ素を 含有しない不純物を除去して精製することができる。 また、 クロ口ホルム、 ジク ロロエチレン、 塩化メチレン、 へキサン、 ベンゼン、 トルエン、 R— 1 1 3、 R - 2 2 5 c a, R— 2 2 5 c b、 R— 1 2 3、 R— 1 4 1 b、 C6 F 1 3 Hおよ び C8 F, 8 からなる群より選ばれる少なくとも 1種の溶媒を用いて、 前記遊離 酸を再結晶することによって、 フッ素含有不純物を除去して精製することができ る。
本発明において、 前記水性液 (B) からの含フッ素乳化剤の回収は、 前記非水 溶性含フッ素有機溶媒を用いる抽出法によって行われるのが特に好ましい。 精製された該含フッ素乳化剤は、 含フッ素ポリマー重合用の乳化剤として再使 用できる。
本発明において、 含フッ素乳化剤としては、 炭素原子数 5〜13の、 ペルフル ォロアルカン酸、 ω—ヒドロペルフルォロアルカン酸、 ω—クロ口ペルフルォロ アルカン酸、 ペルフルォロアルカンスルホン酸等の塩が好ましく、 これらは直鎖 構造でも分岐構造でもよく、 それらの混合物でもよい。 また、 分子中にエーテル 性の酸素原子を含有してもよい。 この炭素原子数の範囲にあると乳化剤としての 作用効果に優れる。 前記酸の塩としては、 リチウム塩、 ナトリウム塩、 カリウム 塩等のアル力リ金属塩またはァンモニゥム塩が好ましく、 アンモニゥム塩または ナトリゥム塩がより好ましく、 アンモニゥム塩が最も好ましい。
前記酸の具体例としては、 ペルフルォロペンタン酸、 ペルフルォ口へキサン酸
、 ペルフルォロヘプタン酸、 ペルフルォロオクタン酸、 ペルフルォロノナン酸、 ペルフルォロデカン酸、 ペルフルォロドデカン酸、 ω—ヒドロペルフルォロヘプ タン酸、 ω_ヒドロペルフルォロオクタン酸、 ω_ヒドロペルフルォロノナン酸 、 ω—クロ口ペルフルォロヘプタン酸、 ω—クロ口ペルフルォロオクタン酸、 ω 一クロ口ペルフルォロノナン酸等が挙げられる。
また、 前記酸の具体例としては、 CF3 CF2 CF2 OCF (CF3 ) COO H、 CF3 CF2 CF2 OCF (CF3 ) CF2 OCF (CF3 ) CO〇H、 C F3 CF2 CF2 O [CF (CF3 ) CF2 O] 2 CF (CF3 ) COOH、 C F3 CF2 CF2 O [CF (CF3 ) CF2 O] 3 CF (CF3 ) COOH、 C F3 CF2 CF2 CF2 CF2 OCF (CF3 ) C〇OH等も挙げられる。 さら に、 ペルフルォ口へキサンスルホン酸、 ペルフルォロヘプタンスルホン酸、 ペル フルォロオクタンスルホン酸、 ペルフルォロノナンスルホン酸、 ペルフルォロデ 力ンスルホン酸等も挙げられる。
前記アンモニゥム塩の具体例としては、 ペルフルォロペンタン酸アンモニゥム 、 ペルフルォ口へキサン酸アンモニゥム、 ペルフルォロヘプタン酸アンモニゥム 、 ペルフルォロオクタン酸アンモニゥム (APFO) 、 ペルフルォロノナン酸ァ ンモニゥム、 ペルフルォロデカン酸アンモニゥム、 ペルフルォロドデカン酸アン モニゥム、 ω—ヒドロペルフルォロヘプタン酸アンモニゥム、 ω—ヒドロペルフ ルォロオクタン酸アンモニゥム、 ω—ヒドロペルフルォロノナン酸アンモニゥム 、 ω—クロ口ペルフルォロヘプタン酸アンモニゥム、 ω—クロ口ペルフルォロォ ク夕ン酸アンモニゥム、 ω—クロ口ペルフルォロノナン酸ァンモニゥム等が挙げ られる。
また、 前記アンモニゥム塩の具体例としては、 CF3 CF2 CF2 OCF (C F3 ) COONH4 、 CF3 CF2 CF2 OCF (CF3 ) CF2 OCF (CF 3 ) COONH4 、 CF3 CF2 CF2 O [CF (CF3 ) CF2 〇] 2 CF ( CF3 ) COONH4 、 CF3 CF2 CF2 O [CF (CF3 ) CF2 O] 3 C F (CF3 ) COONH4 、 CF3 CF2 CF2 CF2 CF2 OCF (CF3 ) COONH4等も挙げられる。 さらに、 ペルフルォ口へキサンスルホン酸アンモ 二ゥム、 ペルフルォロヘプタンスルホン酸アンモニゥム、 ペルフルォロオクタン スルホン酸アンモニゥム、 ペルフルォロノナンスルホン酸アンモニゥム、 ペルフ ルォロデカンスルホン酸アンモニゥム等も挙げられる。
前記リチウム塩の具体例としては、 ペルフルォロペンタン酸リチウム、 ペルフ ルォ口へキサン酸リチウム、 ペルフルォロヘプタン酸リチウム、 ペルフルォロォ ク夕ン酸リチウム、 ペルフルォロノナン酸リチウム、 ペルフルォロデカン酸リチ ゥム、 ペルフルォロドデカン酸リチウム、 ω—ヒドロペルフルォロヘプタン酸リ チウム、 ω—ヒドロペルフルォロオクタン酸リチウム、 ω—ヒドロペルフルォロ ノナン酸リチウム、 ω—クロ口ペルフルォロヘプタン酸リチウム、 ω—クロロぺ ルフルォロォクタン酸リチウム、 ω—クロロペルフルォロノナン酸リチウム等が 挙げられる。
また、 前記リチウム塩の具体例としては、 CF3 CF2 CF2 OCF (CF3 ) COOL i , CF3 CF2 CF2 OCF (CF3 ) CF2 OCF (CF3 ) C OOL i、 CF3 CF2 CF2 O [CF (CF3 ) CF2 O] 2 CF (CF3 ) COOL i , CF3 CF2 CF2 O [CF (CF3 ) CF2 〇] 3 CF (CF3 ) COOL i、 CF3 CF2 CF2 CF2 CF2 OCF (CF3 ) COOL i等 も挙げられる。 さらにペルフルォ口へキサンスルホン酸リチウム、 ペルフルォロ ヘプタンスルホン酸リチウム、 ペルフルォロオクタンスルホン酸リチウム、 ペル フルォロノナンスルホン酸リチウム、 ペルフルォロデカンスルホン酸リチウム等 も挙げられる。
前記ナトリウム塩の具体例としては、 ペルフルォロペンタン酸ナトリウム、 ぺ ルフルォ口へキサン酸ナトリウム、 ペルフルォロヘプタン酸ナトリウム、 ペルフ ルォロオクタン酸ナトリウム、 ペルフルォロノナン酸ナトリウム、 ペルフルォロ デカン酸ナトリウム、 ペルフルォロドデカン酸ナトリウム、 ω—ヒドロペルフル ォロヘプタン酸ナトリウム、 ω—ヒドロペルフルォロオクタン酸ナトリウム、 ω —ヒドロペルフルォロノナン酸ナトリウム、 ω—クロ口ペルフルォロヘプタン酸 ナトリウム、 ω—クロ口ペルフルォロオクタン酸ナトリウム、 ω—クロ口ペルフ ルォロノナン酸ナトリゥム等が挙げられる。
また、 前記ナトリウム塩の具体例としては、 CF3 CF2 CF2 OCF (CF 3 ) COONa、 CF3 CF2 CF2 OCF (CF3 ) CF2 OCF (CF3 ) COONa、 CF3 CF2 CF2 O [CF (CF3 ) CF2 O] 2 CF (CF3 ) COONa、 CF3 CF2 CF2 〇 [CF (CF3 ) CF2 O] 3 CF (CF 3 ) COONa、 CF3 CF2 CF2 CF2 CF2 OCF (CF3 ) COON a 等もが挙げられる。 さらにペルフルォ口へキサンスルホン酸ナ卜リゥム、 ペルフ ルォロヘプタンスルホン酸ナトリゥム、 ペルフルォロオクタンスルホン酸ナ卜リ ゥム、 ペルフルォロノナンスルホン酸ナトリゥム、 ペルフルォロデ力ンスルホン 酸ナ卜リゥム等も挙げられる。
- 前記カリウム塩の具体例としては、 ペルフルォロペンタン酸カリウム、 ペルフ ルォ口へキサン酸カリウム、 ペルフルォロヘプタン酸カリウム、 ペルフルォロォ クタン酸カリウム、 ペルフルォロノナン酸カリウム、 ペルフルォロデカン酸カリ ゥム、 ペルフルォロドデカン酸カリウム、 ω—ヒドロペルフルォロヘプタン酸力 リウム、 ω—ヒドロペルフルォロオクタン酸カリウム、 ω—ヒドロペルフルォロ ノナン酸カリウム、 ω—クロ口ペルフルォロヘプタン酸カリウム、 ω—クロロぺ ルフルォロォクタン酸カリウム、 ω—クロロペルフルォロノナン酸力リゥム等が 挙げられる。
また、 前記カリウム塩の具体例としては、 CF3 CF。 CF2 OCF (CF3 ) COOK, CF3 CF2 CF2 OCF (CF3 ) CF2 OCF (CF3 ) CO OK、 CF3 CF2 CF2 O [CF (CF3 ) CF2 O] 2 CF (CF3 ) CO OK、 CF3 CF2 CF2 〇 [CF (CF3 ) CF2 O] 3 CF (CF3 ) CO OK, CF3 CF2 CF2 CF2 CF2 OCF (CF3 ) COOK等も挙げられ る。 ペルフルォ口へキサンスルホン酸力リゥム、 ペルフルォロヘプタンスルホン 酸カリウム、 ペルフルォロオクタンスルホン酸カリウム、 ペルフルォロノナンス ルホン酸力リゥム、 ペルフルォロデ力ンスルホン酸力リゥム等も挙げられる。 本発明における含フッ素乳化剤としては、 特に、 炭素原子数 6〜12のペルフ ルォロアルカン酸のアンモニゥム塩が好ましく、 ペルフルォロヘプ夕ン酸アンモ 二ゥム、 APFO、 ペルフルォロノナン酸アンモニゥムまたはペルフルォロデ力 ン酸ァンモニゥムがより好ましく、 A P F〇が最も好ましい。
含フッ素モノマ一としては、 テトラフルォロエチレン (以下、 TFEという。 ) 、 CF2 =CFC 1、 CFH=CF2 、 CFH=CH2 、 CF2 =CH2 (以 下、 VdFという。 ) 等のフルォロエチレン類、 へキサフルォロプロピレン (以 下、 HEPという。 ) 、 CF2 = C H C F 3等のフルォロプロピレン類、 CF2 = CFOCF3 、 CF2 =CFO (CF2 ) 2 CF3 (以下、 PPVEという。 ) 、 CF2 =CFO (CF2 ) 4 CF3等の炭素原子数 3〜10のペルフルォロ ビニルエーテル類、 CH2 =CH (CF2 ) 3 CF3等の炭素原子数 4〜10の (ペルフルォロアルキル) ェチレン類等が挙げられる。 これらの含フッ素モノマ —は、 単独で用いてもよいし、 2種以上を併用してもよい。
含フッ素モノマー以外のモノマ一としては、 酢酸ビニル等のビニルエステル類 、 ェチルビニルエーテル、 シクロへキシルビニルエーテル、 ヒドロキシプチルビ ニルエーテル等のビニルエーテル類、 ノルボルネン、 ノルポナジェン等の環状構 造を有する単量体、 メチルァリルエーテル等のァリルエーテル類、 エチレン (以 下、 Eという。 ) 、 プロピレン (以下、 Pという。 ) 、 イソブチレン等のォレフ イン類等が挙げられる。 含フッ素モノマーの以外のモノマーは、 単独で用いても よく、 2種以上を併用してもよい。
本発明において、 含フッ素ポリマーとしては特に限定されないが、 好ましくは PTFE、 TFE/P共重合体、 TFEZP/VdF共重合体、 TFE/HFP 共重合体、 TFE/PPVE共重合体、 EZTFE共重合体およびポリフッ化ビ 二リデンからなる群から選ばれる少なくとも 1種である。 より好ましくは、 PT FE、 TFE/P共重合体、 TFEZP VdF共重合体またはTFE/P PV E共重合体であり、 最も好ましくは PTFEである。
なお、 本発明の含フッ素乳化剤の回収方法は、 含フッ素乳化剤の濃度が 1質量 p pm以上 1質量%以下である水性液 (A) に対して特に有益であるが、 比較的 低濃度 (たとえば 1質量%超〜 5質量%未満) の含フッ素乳化剤含有水性液に対 しても適用できる。 すなわち、 該比較的低濃度の含フッ素乳化剤含有水性液を本 発明における減圧濃縮により高濃度化 (たとえば 5質量%以上、 特に 1 0質量% 以上) することもできる。 また、 本発明の含フッ素乳化剤の回収方法は、 前記含 フッ素乳化剤だけでなく、 トリフルォロ酢酸、 ペン夕フルォロプロパン酸等の低 分子量含フッ素カルボン酸および/またはその塩、 トリフルォロメタンスルホン 酸および またはその塩等にも適用できる。
次に実施例をあげて本発明を具体的に説明するが、 本発明はこれらに限定され ない。 なお、 APFO、 ペルフルォロオクタン酸またはペルフルォロオクタン酸 ナトリゥムの濃度は、 メタノールと水の混合溶液を溶媒とした高速液体クロマ卜 グラフィ一—マススぺクトル法を用いて測定した。 この方法で検出される種はべ ルフルォロォクタノエ一ト (C7 F1 5 COO" ) である。
水中の S S分の測定 (単位:質量%) ]
PTFEの水性分散液から P T F Eを凝集 ·分離した後の凝集排水の 1 0 gを メトラートレド製ハロゲン式水分測定器 HR— 7 3に入れ、 2 0 で質量が一 定になるまで乾燥させた後の蒸発残分を S S分とした。 この温度では PFOAも APFOも昇華してしまうため、 S S分としてカウントされない。
なお、 以下の実施例、 比較例において、 p pm、 %などは特に斬らない限り質 量基準である。
[実施例 1 ]
PTFEの乳化重合後の凝集排水 (S S分 2 3 0 0 p pm含有。 以下、 凝集排 水 1と記す。 ) について、 AP FOの濃度を測定したところ 208 p pmであつ た。 凝集排水 1の 1000 L (リツトル) に、 撹拌しながら、 65. 0 gの塩ィ匕 アルミニウム六水和物を添加し、 未凝集 PTFE粒子を凝集させ、 10分間撹拌 させた。 続いて 2 N水酸化ナトリウムを用いて、 該凝集排水 1の pHを 10. 0 に調整した。 撹拌を停止し、 1 5時間静置後の、 該排水の上澄みは無色透明であ り、 S S分は 20 p pmであった。 また、 該排水の上澄み中の A PFO濃度は 2 01 p pmであった。
この予め PTFEを除去した APFO含有排水 (以下、 単に該排水と記す。 ) を、 ヒートポンプを備えた加熱管面蒸発型濃縮装置 (ササクラ社製、 商品名: E VCC濃縮装置) を用いて減圧濃縮させた。 該排水の供給量は 50LZ時とし、 EVCC濃縮装置内部を 20 kP aに保った。 また、 EVCC濃縮装置内部の循 環液の温度を 65±2°Cに保った。 運転開始直後から EVCC濃縮装置内部の液 は発泡を始めたが、 あふれ出るほど大量には発生しなかった。 1 5時間かけて該 排水の 750 Lを EVCC濃縮装置に導入し、 37. 5倍濃縮水の 20 Lを得た 。 蒸発した水は凝縮させて全量採取し、 分析したところ、 APFO濃度は l p p mであった。 このことから、 EVCC濃縮装置による減圧濃縮によってロスした APFOは 0. 48% (0. 73 g) であった。 E V C C濃縮装置で使用したェ ネルギ一は 3. 42 kWであった。
この EVCC濃縮装置によって濃縮した 37. 5倍濃縮水を、 ェジェクタ一を 備えたフラッシュ型濃縮装置 (ササクラ社製、 商品名: FTC濃縮装置) を用い てさらに濃縮させた。 濃縮操作中、 FTC濃縮装置内部の圧力を 20 kP aに保 つた。 また、 温度は 50 ± 2 °Cに保つた。 20時間かけて 20 Lの 37. 5倍濃 縮水を 750倍濃縮水の 1. 0Lまで濃縮させた。 この FTC濃縮装置から排出 された凝縮水の全てを回収し、 APFO濃度を測定したところ、 l ppmであつ た。 このことから、 FTC濃縮装置によってロスした APFOは 0. 013% ( 0. 0 19 g) であった。 FT C濃縮装置で使用したエネルギーは 28. 2 kW であった。 この 750倍濃縮水中の APFO濃度は 1 5. 0%であった。
この 750倍濃縮水は白濁しており、 白色沈殿物が約 16容積%認められた。 pHは 11. 9であった。 この 750倍濃縮水に濃硫酸を加えて、 pHを 1に調 整した。 硫酸添加中はアンカー翼で撹拌した。 pHが 4を下回った時点から、 該 濃縮水中に白色浮遊物が多く発生し始めた。 PHを 1に調整後 30分間撹拌した 。 この pHlに調整した濃縮水に R— 225 c bの 100 gを添加した。 濃縮水 中に発生した白色沈殿は R— 225 c b相に溶解した。 R— 225 c b相を分液 し、 R— 225 c bの全量を室温で蒸発させ、 白色固体の 143. l gを得た。 赤外分光分析の結果、 この白色固体はペルフルォロオクタン酸であった。 この E V C C濃縮装置と F T C濃縮装置による濃縮操作での A P F Oの回収率は 99 % であつ/こ。
[実施例 2]
APFOを乳化剤として用いる乳化重合で製造した PTFEを凝集させた。 こ の含水 PTFE粉末 10. 0 kg (含水率 48質量%) を熱風循環式オーブンに 入れ、 100 から 51: /分の速度で経時的に昇温後、 200 °Cで 1時間熱処理 した。 この熱風循環式オーブンからの排ガスの排気量は 4. 5Nm3 Zhであつ た。 この排ガスの全量を直径 50 cm, 高さ 500 cmのスプレー塔に導入した 。 この時のガスの線速は約 0. 5m/秒であった。 このスプレー塔内に水酸化ナ トリウムを用いて pHを 10に調整したイオン交換水 35 kgを循環'噴霧させ た。 PTFE粉末の乾燥 ·熱処理終了後、 スプレー塔内のアルカリ水中の APF O濃度を分析したところ、 498質量 p pmであった。
この A P F O含有水溶液に 0. 2 Nの水酸化ナトリゥム水溶液を添加して p H を 10. 0に調整した。 液温は 26°Cであった。 この APFO含有排水をヒート ポンプを備えた加熱管面蒸発型濃縮装置 (ササクラ社製、 商品名: EVCC濃縮 装置) により減圧濃縮させた。 該 APFO含有排水の供給量は 10L/時とし、 EVCC濃縮装置内部を 20 kP aに保った。 また、 EVCC濃縮装置内部の循 環液の温度を 65±2 に保った。 4時間かけて該 APFO含有排水の 35Lを EVCC濃縮装置に導入し、 17. 5倍濃縮水の 2Lを得た。 蒸発した水は凝縮 させて全量採取し、 分析したところ、 APFO濃度は 1 p pmであった。 このこ とから、 EVCC濃縮装置による濃縮によってロスした APFOは 0. 011% (0. 002 g) であった。 EVCC濃縮装置で使用したエネルギーは 0. 1 5 8 kWであった。
この EVCC濃縮装置によって濃縮した 17. 5倍濃縮水を口一タリーエバポ レーターを用いてさらに濃縮させた。 ロータリーエバポレーター内部の圧力を 2
0 kP aに保つた。 また、 温度は 50 ± 2 °Cに保つた。 2時間かけてこの 17. 5倍濃縮水を 233倍濃縮水の 0. 1 5 Lまで濃縮させた。 このロータリ一エバ ポレー夕一から排出された凝縮水の全量を回収し、 APFO濃度を測定したとこ ろ、 l ppmであった。 このことから、 ロータリーエバポレーターによってロス した APFOは 0. 013% (0. 0024 g) であった。 ロータリ一エバポレ —ターで使用したエネルギーは 1. 40 kWであった。 この 233倍濃縮水中の APFO濃度は 1 1. 6%であった。
この 233倍濃縮水は白濁しており、 白色沈殿物が約 17容積%認められた。 pHは 1 1. 4であった。 この 233倍濃縮水に濃硫酸を加えて、 pHを 1に調 整した。 硫酸添加中はアンカー翼で撹 した。 pHが 4を下回った時点から、 該 濃縮水中に白色浮遊物が多く発生し始めた。 pHを 1に調整後 30分間撹拌した 。 この p HIに調整した濃縮水に n— C8 F, 8 の 10 gを添加した。 濃縮水中 に発生した白色沈殿は n— C8 F, 8相に溶解した。 n— C8 Fx 8相を分液し , n-C8 8 の全量を室温で蒸発させ、 白色固体 16. 5 gを得た。 赤外分 光分析の結果、 この白色固体はペルフルォロオクタン酸であった。 この EVCC とロータリ一エバポレーターによる濃縮操作での A P F Oの回収率は 99 %であ つた。
[実施例 3 ]
TFEZHFP/VdF2共重合体の排水 (33分50 111、 APFO含有 量 780 ppm) の 200Lを、 2 Ντ酸化カリウム水溶液を用いて p Hを 10 . 0に調整した。
この APFO含有排水を、 ェジェクタ一を備えたフラッシュ型濃縮装置 (ササ クラ社製、 商品名: FTC濃縮装置) を用いて濃縮させた。 濃縮操作中 FTC濃 縮装置内部の圧力を 20 kP aに保った。 また、 温度は 60±2 に保った。 1 00時間かけて 200 Lの APFO含有排水を 200倍濃縮水の 1. 0Lまで濃 縮させた。 この FTC濃縮装置から排出された凝縮水の全量を回収し、 APFO 濃度を測定したところ、 l ppmであった。 このことから、 FTC濃縮装置によ つてロスした APFOは 0. 13% (0. 198 g) であった。 FTC濃縮装置 で使用したエネルギーは 154. 4kWであった。 この 200倍濃縮液の AP F O濃度は 15. 6 %であった。
この 200倍濃縮水は白濁しており、 白色沈殿物が約 16容積%認められた。 pHは 11. 2であった。 この 200倍濃縮水に濃硫酸を加えて、 11を1に調 整した。 硫酸添加中はアンカー翼で撹拌した。 pHが 4を下回った時点から、 該 濃縮水中に白色浮遊物が多く発生し始めた。 PHを 1に調整後 30分間撹拌した 。 この p HIに調整した濃縮水に R— 225 c bの 100 gを添加した。 濃縮水 中に発生した白色沈殿は R— 225 c b相に溶解した。 R— 225 c b相を分液 し、 R— 225 c bの全量を室温で蒸発させ、 白色固体 148. 6 gを得た。 赤 外分光分析の結果、 この白色固体はペルフルォロオクタン酸であった。 この FT C濃縮装置による濃縮操作での A P F Oの回収率は 99 %であった。
[比較例]
P T F Eの乳化重合後の凝集排水 (SS分 2300 p pm含有) について、 A PFOの濃度を測定したところ 148 p pmであった。 この凝集排水の 1000 に65. 0 gの塩化アルミニウム六水和物を添加し、 未凝集 PTFE粒子を凝 集させた。 続いて 0. 2N水酸化ナトリウムを用いて、 該排水の pHを 10. 0 に調整した。 15時間静置後の、 該排水の上澄みは無色透明であり、 SS分は 2 O ppmであった。 また、 該排水の上澄み中の APFO濃度は 141 p pmであ つた。
このあらかじめ S S分を除去した凝集排水の 10Lを、 凝縮装置を備えた内容 積 20 Lのガラス製丸底フラスコに入れた。 この丸底フラスコをオイルバスにて 120Tに加熱し、 凝集排水を濃縮させた。 この操作を 75回行い、 750 Lの 凝集排水を 1. 3 Lに濃縮した。 濃縮倍率は 577倍であった。 濃縮操作中に、 凝縮装置内部に白色固体が付着し、 凝集排水の補給の 10回につき 1回内部を洗 浄する必要があった。 この凝縮装置を洗浄した水を分析したところ、 付着した白 色固体は APFOであった。 前記濃縮操作で使用したエネルギーは 584 kWで めった。
この 577倍濃縮水は白濁しており、 白色沈殿物が約 15容積%認められた。 pHは 11. 5であった。 この 577倍濃縮水の全量を平均口径 10 ^mのろ紙 でろ過した。 ろ液は淡黄色のやや粘調な液体であった。 ろ液中の APFO濃度を 測定したところ、 4. 8質量% (62. 4 g) であり、 回収率は 59. 0 %であ つた。 ろ液の全量をガラス製の内容積 2 Lのビーカーに入れ、 1N塩酸を加えて pHを 1にした。 塩酸添加中はアンカー翼で撹拌した。 pHが 4を下回った時点 から、 該濃縮水中に白色浮遊物が多く発生し始めた。 pHを 1に調整後 30分間 撹拌した。 この p HIに調整した濃縮水に R— 225 c bの 200 gを添加した 。 濃縮水中に発生した白色沈殿は R— 225 c b相に溶解した。 R— 225 c b 相を分液し、 R— 225 c bの全量を室温で蒸発させ、 白色固体 61. 6 gを得 た。 赤外分光分析の結果、 この白色固体はペルフルォロオクタン酸であった。 産業上の利用可能性
本発明の含フッ素乳化剤の回収方法によれば、 含フッ素ポリマーの凝集排水か ら効率的かつ簡便に含フッ素乳化剤を回収できる。 また、 既知の回収方法と比較 して、 あらたに別の化学物質を添加する必要がなく、 回収効率も高い。

Claims

請求の範囲
1 . 含フッ素乳化剤の濃度が 1質量 p p m以上 1質量%以下である水性液 (A) を、 圧力 1 0 0 k P a以下、 かつ、 該水性液 (A) の温度 1 0 0 °C以下で減圧濃 縮せしめて、 該含フッ素乳化剤の濃度が高濃度化された水性液 (B) とし、 該水 性液 (B ) カ ら該含フッ素乳化剤を回収することを特徴とする含フッ素乳化剤の 回収方法。
2 . 前記水性液 (B) における含フッ素乳化剤の濃度が 5質量%以上である請求 項 1に記載の回収方法。
3 . 前記水性液 (A) が、 含フッ素乳化剤を含む水性媒体中で少なくとも 1種の 含フッ素モノマーを乳化重合または水性分散重合して得られる含フッ素ポリマー の製造工程における、 該含フッ素ポリマーを分離した後の排水 (A 1 ) 、 および 該含フッ素ポリマーの乾燥工程および Zまたは熱処理工程の排ガスを水性液で洗 浄して得られる該含フッ素乳化剤を含む水性液 (A 2 ) からなる群より選ばれる 少なくとも 1種の水性液である請求項 1または 2に記載の回収方法。
4. 前記減圧濃縮が、 2段以上の複数段階に分けて行われる請求項 1、 2または 3に記載の回収方法。
5 . 前記水性液 (B) からの含フッ素乳化剤の回収が、 非水溶性含フッ素有機溶 媒を用いる抽出法によって行われる請求項 1〜4のいずれかに記載の回収方法。
6 . 前記排水 (A 1 ) 中の浮遊固形物および浮遊固形物になりうる物質の含有量 が 0 . 3質量%以下である請求項 1〜 5のいずれかに記載の回収方法。
7 . 前記減圧濃縮を行う装置が、 ヒートポンプを備えた加熱管面蒸発型濃縮装置 である請求項 1〜 6のいずれかに記載の回収方法。
8 . 前記減圧濃縮を行う装置が、 フラッシュ型濃縮装置である請求項 1〜6のい ずれかに記載の回収方法。
9 . 前記 2段以上の複数段階に分けて行われる減圧濃縮は、 1段目がヒートボン プを備えた加熱管面蒸発型濃縮装置を用いて行われ、 かつ、 2段目以降がヒート ポンプを備えた加熱管面蒸発型濃縮装置またはフラッシュ型濃縮装置を用いて行 われる請求項 4〜 6のいずれかに記載の回収方法。
10. 前記含フッ素ポリマーが、 ポリテトラフルォロエチレン、 テトラフルォロ ェチレン /ェチレン共重合体、 テトラフルォロエチレン/プロピレン共重合体、 テトラフルォロエチレン/プロピレン Zフッ化ビニリデン共重合体、 テトラフル ォロェチレン /へキサフルォ口プロピレン共重合体、 テトラフルォロエチレン z
CF2 =CFO (CF2 ) 2 CF3共重合体およびポリフッ化ビニリデンからな る群から選ばれる少なくとも一種である請求項 3〜 9のいずれかに記載の回収方. 法。
11. 前記含フッ素乳化剤が、 炭素原子数 5〜13であり、 分子中にエーテル性 の酸素原子を有していてもよい酸であり、 かつペルフルォロアルカン酸、 ω—ヒ ドロペルフルォロアルカン酸、 ω—クロロペルフルォロアルカン酸およびペルフ ルォロアルカンスルホン酸からなる群から選ばれる少なくとも 1種の酸の塩であ る請求項 1〜 10のいずれかに記載の回収方法。
12. 前記塩が、 ナトリウム塩、 カリウム塩、 リチウム塩およびアンモニゥム塩 からなる群から選ばれる少なくとも 1種である請求項 11に記載の回収方法。
PCT/JP2003/007772 2002-06-19 2003-06-19 含フッ素乳化剤の回収方法 WO2004000734A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE60304469T DE60304469T2 (de) 2002-06-19 2003-06-19 Verfahren zur gewinnung von fluor-enthaltenden emulgatoren
JP2004515513A JP4455327B2 (ja) 2002-06-19 2003-06-19 含フッ素乳化剤の回収方法
EP03760892A EP1514848B1 (en) 2002-06-19 2003-06-19 Process for the recovery of fluorine-containing emulsifiers
AU2003244295A AU2003244295A1 (en) 2002-06-19 2003-06-19 Process for the recovery of fluorine-containing emulsifiers
US11/012,334 US7351342B2 (en) 2002-06-19 2004-12-16 Method for recovering fluorine-containing emulsifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-178728 2002-06-19
JP2002178728 2002-06-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/012,334 Continuation US7351342B2 (en) 2002-06-19 2004-12-16 Method for recovering fluorine-containing emulsifier

Publications (1)

Publication Number Publication Date
WO2004000734A1 true WO2004000734A1 (ja) 2003-12-31

Family

ID=29996541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007772 WO2004000734A1 (ja) 2002-06-19 2003-06-19 含フッ素乳化剤の回収方法

Country Status (8)

Country Link
US (1) US7351342B2 (ja)
EP (1) EP1514848B1 (ja)
JP (1) JP4455327B2 (ja)
CN (1) CN100381366C (ja)
AU (1) AU2003244295A1 (ja)
DE (1) DE60304469T2 (ja)
RU (1) RU2315718C2 (ja)
WO (1) WO2004000734A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099624A (ja) * 2005-09-30 2007-04-19 Yunimatekku Kk 含フッ素カルボン酸の回収方法
JP2007283224A (ja) * 2006-04-18 2007-11-01 Asahi Glass Co Ltd 含フッ素乳化剤の回収方法
WO2009157416A1 (ja) 2008-06-24 2009-12-30 旭硝子株式会社 含フッ素化合物の精製方法
JP5163125B2 (ja) * 2005-10-14 2013-03-13 旭硝子株式会社 塩基性陰イオン交換樹脂の再生方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279522B2 (en) 2001-09-05 2007-10-09 3M Innovative Properties Company Fluoropolymer dispersions containing no or little low molecular weight fluorinated surfactant
US20080015304A1 (en) 2006-07-13 2008-01-17 Klaus Hintzer Aqueous emulsion polymerization process for producing fluoropolymers
GB0514398D0 (en) 2005-07-15 2005-08-17 3M Innovative Properties Co Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
US7671112B2 (en) 2005-07-15 2010-03-02 3M Innovative Properties Company Method of making fluoropolymer dispersion
GB0523853D0 (en) 2005-11-24 2006-01-04 3M Innovative Properties Co Fluorinated surfactants for use in making a fluoropolymer
GB0525978D0 (en) 2005-12-21 2006-02-01 3M Innovative Properties Co Fluorinated Surfactants For Making Fluoropolymers
GB2430437A (en) * 2005-09-27 2007-03-28 3M Innovative Properties Co Method of making a fluoropolymer
US7754795B2 (en) 2006-05-25 2010-07-13 3M Innovative Properties Company Coating composition
US8119750B2 (en) 2006-07-13 2012-02-21 3M Innovative Properties Company Explosion taming surfactants for the production of perfluoropolymers
EP2132143B1 (en) * 2007-02-16 2012-12-26 3M Innovative Properties Company System and process for the removal of fluorochemicals from water
US20080264864A1 (en) 2007-04-27 2008-10-30 3M Innovative Properties Company PROCESS FOR REMOVING FLUORINATED EMULSIFIER FROM FLUOROPOLMER DISPERSIONS USING AN ANION-EXCHANGE RESIN AND A pH-DEPENDENT SURFACTANT AND FLUOROPOLYMER DISPERSIONS CONTAINING A pH-DEPENDENT SURFACTANT
EP2155830A1 (en) * 2007-05-23 2010-02-24 3M Innovative Properties Company Aqueous compositions of fluorinated surfactants and methods of using the same
CN101679569A (zh) * 2007-06-06 2010-03-24 3M创新有限公司 氟化醚组合物以及使用该组合物的方法
ATE483739T1 (de) 2007-07-31 2010-10-15 Daikin Ind Ltd Verfahren zur herstellung eines fluorelastomers
FR2921565B1 (fr) * 2007-09-28 2011-05-20 Rhodia Operations Procede de recuperation d'acides fluorocarboxyliques
JP5392251B2 (ja) * 2008-04-14 2014-01-22 旭硝子株式会社 ポリテトラフルオロエチレンファインパウダーの製造方法
WO2010009191A2 (en) * 2008-07-18 2010-01-21 3M Innovative Properties Company Fluorinated ether compounds and methods of using the same
CN102282191A (zh) * 2008-11-25 2011-12-14 3M创新有限公司 氟化醚尿烷及其使用方法
US8629089B2 (en) 2008-12-18 2014-01-14 3M Innovative Properties Company Method of contacting hydrocarbon-bearing formations with fluorinated ether compositions
CN102740974A (zh) * 2010-02-03 2012-10-17 旭硝子株式会社 阴离子性含氟乳化剂的回收方法
FR2967151B1 (fr) * 2010-11-04 2014-05-23 Solvay Procede pour le traitement d'effluents aqueux provenant de la preparation d'un polymere halogene
FR2967153B1 (fr) * 2010-11-04 2014-10-03 Solvay Procede pour le traitement d'eaux usees provenant de la preparation d'un polymere halogene
CN102260378B (zh) * 2011-05-06 2013-03-20 广东生益科技股份有限公司 复合材料、用其制作的高频电路基板及其制作方法
JP6065836B2 (ja) * 2011-08-18 2017-01-25 旭硝子株式会社 界面活性剤水溶液の濃縮回収方法
WO2013038990A1 (ja) 2011-09-13 2013-03-21 旭硝子株式会社 アニオン性含フッ素乳化剤の回収方法
FR2996147B1 (fr) * 2012-10-03 2015-05-29 Rhodia Operations Procede de traitement d'acide fluore
DE102014100694A1 (de) * 2014-01-22 2015-07-23 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren und Vorrichtung zur Abtrennung von fluorierten Kohlenwasserstoffen aus einer wässrigen Phase
CN104986819B (zh) * 2015-07-27 2017-08-11 高凤林 一种光伏太阳能无能耗废热蒸发工艺
CN105776778B (zh) * 2016-05-24 2018-03-27 徐州工程学院 一种太阳能加热曝气法处理地下水中四氯化碳装置及其处理方法
CN107501081B (zh) * 2017-09-15 2023-05-26 四川宏图普新微波科技有限公司 一种从聚四氟乙烯分散树脂颗粒湿料中回收全氟辛酸的***及方法
CN107902828A (zh) * 2017-11-21 2018-04-13 四川理工学院 废水中高浓度非离子表面活性剂的回收方法
CN109651536A (zh) * 2018-12-18 2019-04-19 福建三农新材料有限责任公司 一种高品质聚四氟乙烯乳液自动化连续浓缩***及方法
US11452987B2 (en) 2019-06-19 2022-09-27 The Johns Hopkins University Contaminate sequestering coatings and methods of using the same
CN110627098B (zh) * 2019-09-12 2024-06-14 重庆蓝洁广顺净水材料有限公司 一种固体聚氯化铝的高效环保生产***
US11840471B1 (en) 2021-12-20 2023-12-12 Republic Services, Inc. Method for removing per- and polyfluoroalkyl substances (PFAS) from waste water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312935A (en) * 1992-04-22 1994-05-17 Hoechst Aktiengesellschaft Purification of fluorinated carboxylic acids
JPH078704A (ja) * 1993-06-29 1995-01-13 Takeshi Sakuma 真空濃縮装置
JPH1057702A (ja) * 1996-08-26 1998-03-03 Sasakura Eng Co Ltd 水溶液の自己蒸発圧縮式濃縮方法及びその装置
WO2002013953A1 (fr) * 2000-08-11 2002-02-21 Daikin Industries, Ltd. Procede de recuperation d'un tensioactif fluorochimique
JP2003160531A (ja) * 2001-11-29 2003-06-03 Asahi Glass Co Ltd ペルフルオロアルカン酸の抽出方法及び精製方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2908001C2 (de) * 1979-03-01 1981-02-19 Hoechst Ag, 6000 Frankfurt Verfahren zur Herstellung konzentrierter Dispersionen von Fluorpolymeren
JPS6457702A (en) * 1987-08-28 1989-03-06 Murata Manufacturing Co Coil device
US4952290A (en) * 1989-03-16 1990-08-28 Amp Incorporated Waste water treatment and recovery system
JP3394815B2 (ja) * 1993-08-30 2003-04-07 東静電気株式会社 減圧蒸留方法および減圧蒸留装置
DE19824615A1 (de) * 1998-06-02 1999-12-09 Dyneon Gmbh Verfahren zur Rückgewinnung von fluorierten Alkansäuren aus Abwässern
US7125941B2 (en) * 2001-03-26 2006-10-24 3M Innovative Properties Company Aqueous emulsion polymerization process for producing fluoropolymers
US20030125421A1 (en) * 2001-08-03 2003-07-03 Hermann Bladel Aqueous dispersions of fluoropolymers
JP2003220393A (ja) * 2001-11-22 2003-08-05 Asahi Glass Co Ltd 含フッ素乳化剤の吸着・回収方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312935A (en) * 1992-04-22 1994-05-17 Hoechst Aktiengesellschaft Purification of fluorinated carboxylic acids
JPH078704A (ja) * 1993-06-29 1995-01-13 Takeshi Sakuma 真空濃縮装置
JPH1057702A (ja) * 1996-08-26 1998-03-03 Sasakura Eng Co Ltd 水溶液の自己蒸発圧縮式濃縮方法及びその装置
WO2002013953A1 (fr) * 2000-08-11 2002-02-21 Daikin Industries, Ltd. Procede de recuperation d'un tensioactif fluorochimique
JP2003160531A (ja) * 2001-11-29 2003-06-03 Asahi Glass Co Ltd ペルフルオロアルカン酸の抽出方法及び精製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1514848A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099624A (ja) * 2005-09-30 2007-04-19 Yunimatekku Kk 含フッ素カルボン酸の回収方法
JP5163125B2 (ja) * 2005-10-14 2013-03-13 旭硝子株式会社 塩基性陰イオン交換樹脂の再生方法
JP2007283224A (ja) * 2006-04-18 2007-11-01 Asahi Glass Co Ltd 含フッ素乳化剤の回収方法
WO2009157416A1 (ja) 2008-06-24 2009-12-30 旭硝子株式会社 含フッ素化合物の精製方法
JP5691518B2 (ja) * 2008-06-24 2015-04-01 旭硝子株式会社 含フッ素化合物の精製方法
EP3385249A1 (en) 2008-06-24 2018-10-10 AGC Inc. Method for purifying fluorinated compound

Also Published As

Publication number Publication date
US7351342B2 (en) 2008-04-01
AU2003244295A1 (en) 2004-01-06
CN100381366C (zh) 2008-04-16
RU2315718C2 (ru) 2008-01-27
DE60304469D1 (de) 2006-05-18
AU2003244295A8 (en) 2004-01-06
US20050150833A1 (en) 2005-07-14
EP1514848B1 (en) 2006-04-05
JPWO2004000734A1 (ja) 2005-10-20
CN1662451A (zh) 2005-08-31
RU2005101086A (ru) 2005-06-27
DE60304469T2 (de) 2006-11-23
EP1514848A8 (en) 2006-03-01
JP4455327B2 (ja) 2010-04-21
EP1514848A1 (en) 2005-03-16
EP1514848A4 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
WO2004000734A1 (ja) 含フッ素乳化剤の回収方法
JP5055652B2 (ja) 含フッ素界面活性剤の回収方法
EP2298726B1 (en) Fluorine-containing compound purification method
JP2003220393A (ja) 含フッ素乳化剤の吸着・回収方法
JP4071111B2 (ja) フッ素化カルボン酸の再生と再利用
JP2007283224A (ja) 含フッ素乳化剤の回収方法
AU2020441128A1 (en) System and process for direct lithium extraction and production of low carbon intensity lithium chemicals from geothermal brines
JP4191929B2 (ja) 含フッ素乳化剤の回収方法
US11266934B2 (en) Method and system for treating aqueous fluid resulting from fluoropolymer production step
JP2007520552A5 (ja)
JP2007520552A (ja) フッ酸界面活性剤が付着した吸着性粒子からフッ酸界面活性剤を回収する方法
EP2162388B1 (en) Process for removing fluorinated compounds from an aqueous phase originating from the preparation of fluoropolymers
WO2003066533A1 (fr) Procede de recuperation d'un agent emulsifiant fluorochimique
JP2003284921A (ja) 含フッ素乳化剤の回収方法
JP2006181416A (ja) 吸着剤の再生方法およびフッ素含有界面活性剤の回収方法
WO2003066532A1 (fr) Procede de recuperation d'un agent emulsifiant fluorochimique
JP2003212921A (ja) 含フッ素乳化剤を回収する方法
JP2003212920A (ja) フッ素含有乳化剤の回収法
JP2006316242A (ja) フルオロポリマー水性分散液の製造方法
SU1060630A1 (ru) Способ коагул ции фторсополимерных латексов

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004515513

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003760892

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11012334

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038142651

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2005101086

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2003760892

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003760892

Country of ref document: EP