WO2003106677A1 - ホッコクアカエビ由来の新規なカテプシンl様システインプロテアーゼ - Google Patents

ホッコクアカエビ由来の新規なカテプシンl様システインプロテアーゼ Download PDF

Info

Publication number
WO2003106677A1
WO2003106677A1 PCT/JP2003/007661 JP0307661W WO03106677A1 WO 2003106677 A1 WO2003106677 A1 WO 2003106677A1 JP 0307661 W JP0307661 W JP 0307661W WO 03106677 A1 WO03106677 A1 WO 03106677A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathepsin
dna
amino acid
acid sequence
seq
Prior art date
Application number
PCT/JP2003/007661
Other languages
English (en)
French (fr)
Inventor
青木 仁史
渡部 終五
モハメド・ナズムル アーサン
Original Assignee
株式会社ニチレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニチレイ filed Critical 株式会社ニチレイ
Priority to AU2003241717A priority Critical patent/AU2003241717A1/en
Priority to CA002489736A priority patent/CA2489736A1/en
Priority to JP2004513490A priority patent/JP4355287B2/ja
Publication of WO2003106677A1 publication Critical patent/WO2003106677A1/ja
Priority to US10/849,162 priority patent/US7595183B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6402Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from non-mammals
    • C12N9/6405Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from non-mammals not being snakes
    • C12N9/641Cysteine endopeptidases (3.4.22)

Definitions

  • the present invention relates to a novel cathepsin L-like enzyme extracted from P. cruzi, a method of purifying the same, a polynucleotide encoding a novel protease, catebucin L-like cysteine protease enzyme, newly identified from P. cruzi, and a polynucleotide encoded thereby.
  • Peptides the use of such polynucleotides and polypeptides.
  • Protease is a general term for enzymes that hydrolyze peptide bonds in proteins. It is widely distributed in microorganisms, plants and animals, and many proteases with different catalytic groups and substrate specificities have been isolated. It has a wide range of applications, for example, it is used for food modifiers, detergents, cosmetic raw materials, beer clarification agents, leather tanning agents, and pharmaceuticals.
  • Proteases are one of the most important groups of enzymes that hydrolyze peptide bonds in proteins, are widely distributed in microorganisms, plants and animals, and are involved in a wide variety of biological processes.
  • proteases are classified into four families based on catalytic groups: aspartic acid mono-, cysteine mono-, serine mono-, and metallo-lipase. The molecular mechanisms of action of these enzymes have been extensively studied.
  • SH protease cyste protease having an SH group at its active center includes enzymes such as promelain.
  • Cathepsins which belong to the papains superfamily of cysteine proteases, are divided into the cathepsin L subfamily and the force-tepsin B subfamily. Cathepsin L subfamily
  • the former ER (F / W) NIN motif is absent in cathepsin B family and cathepsin C, 0, and X.
  • Cathepsin L is present in lysosomes in mammals and has strong endoprotease activity, but has no exotype activity. To date, cathepsin L and cathepsin L-like cysteine protease have been identified and sequenced from several animals. These are listed below.
  • Nephrops norvegicus (Norway lobster) Le Boulay C., Van Wormhoudt A., Sellos D. Molecular cloning and sequencing of two cDNAs encoding cathepsin related cysteine proteinases in the nervous system and in the stomach of the Norway lobster (Nephrops norvegicus) .Comp.Biochem.Physiol. 111: 353-359 (1995).
  • Rattus norvegicus (Norway rat)
  • Cathepsin L shown above has an optimal pH under acidic conditions and an optimal temperature of 50-70 ° C.
  • the cloning of the gene alone has not identified the enzyme and has not been characterized.
  • cathepsin L which retains high activity even at low temperatures under neutral to alkaline conditions, is not known to date. If cathepsin L can be found to maintain high activity even at low temperatures under neutral to alkaline conditions, it will be possible to avoid the deterioration of properties due to protein denaturation and to modify the properties of protein materials. It is possible to provide a very useful enzyme when it is applied to modifiers, detergents, cosmetic raw materials, and pharmaceuticals.
  • the present inventors sought naturally a protease capable of degrading collagen even in a low-temperature region, and as a result of intensive screening, by chance, Japanese pink By using prawns, we succeeded in finding a new protease in the liver that retains activity even in the low-temperature region.
  • This protease is a cathepsin L-like cysteine protease.
  • Red-necked shrimp are cold-adapted species distributed in the North Pacific Ocean and the North Atlantic Ocean, usually in a low temperature environment of -1.6 to 5 ° C.
  • Some cold-adapted enzymes have been reported to exhibit substantially higher catalytic efficiencies than their mammalian counterparts. For example, it has been reported that, for trypsin, a serine protease that is particularly well studied among proteases, salmon trypsin has a 40-fold higher catalytic efficiency than dicitribins.
  • the present inventors at the time of screening, removed liver liver from unfrozen raw pink squash to prevent the cells of liver liver from being destroyed by freezing, and the enzyme in liver liver cells was degraded. We devised it so that it can be extracted without receiving it. Furthermore, the present inventors have found a method for purifying the cathepsin L-like cysteine protease of the present invention from the rapidly frozen liver and knee.
  • This cathepsin L-like protein can be purified from pink squash by appropriately combining ion exchange column, gel filtration column, adsorption column, salting out, dialysis, ultrafiltration, centrifugation and the like.
  • liver liver is isolated from raw pink squash, homogenized, defatted, proteins are precipitated with ammonium sulfate, redissolved, the supernatant is purified by anion exchange column, separated by adsorption chromatography, and It can be purified and prepared by ion exchange chromatography.
  • anion-exchange chromatography for example, Q Sepharose and Mono Q can be used, and as the adsorption chromatography, for example, hydroxyapatite can be used.
  • anion exchange chromatography examples include Q Sepharose and Mono Q
  • examples of gel filtration chromatography include Superdex
  • examples of adsorption chromatography include hydroxypatite.
  • the thus purified pink quake shrimp cathepsin L-like cysteine protease has (1) a molecular weight of about 3 OKDa, (2) an optimum pH of about 7 to 8, and (3) an optimum temperature of about 35 ° C.
  • the expressed isoform of P. aeruginosa cathepsin L-like cysteine protease has (1) a molecular weight of about 30 KDa, (2) an optimal PH of about 6-8, and (3) an optimal temperature of about 40 ° C ( (It was active even at 20 ° C)), (4) it showed collagen degradability, and (5) it showed cathepsin L-like activity.
  • pink quack shrimp cathepsin L1 and pink quack shrimp cathepsin L2 were named pink quack shrimp cathepsin L1 and pink quack shrimp cathepsin L2, respectively.
  • pink quake shrimp cathepsin L1 may be referred to as NSL1 or NsCtL
  • pink quack shrimp cathepsin L2 may be referred to as NSL2
  • pink quack shrimp cystine protease, NsCys, or Crustapain pink quack shrimp cystine protease, NsCys, or Crustapain.
  • the gene coding for P. catechusin L1 and L2 is recombined into an appropriate expression vector, and the recombinant expression vector is introduced into a suitable host.
  • a suitable host Can be produced.
  • various well-known vectors can be used.For example, when the host is E. coli, a series of pUR vectors, pATH vectors, pGEX vectors, etc. When animal cells are used as hosts, vectors such as pXM and pDC201 can be used.
  • the gene of the present invention is inserted into expression vectors pGEX (Amersham Pharmacia), pET39b (Novagen), and pRSET (Invitorgen), and introduced into Escherichia coli. Expression could be induced.
  • SDS-PAGE SDS-PAGE, It was confirmed that a gene having a target molecular weight was expressed.
  • the yeast expression vector p PICZ into which the present gene has been introduced is introduced into the host yeast strain P. pastoris X-33 or KM71H by electroporation to obtain a high-concentration (2000 M g / ml) of a zeocin-containing medium.
  • a band having a size corresponding to the target enzyme was detected.
  • the present invention encompasses the two isolated cathepsin L-like proteases and naturally occurring variants thereof. Further, the present invention relates to a protein comprising an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence of L. or L. cathepsin L1 or L2, and having a cathepsin L-like enzyme activity. Include. The present invention also includes prepro-forms of these cathepsin L-like enzymes. Also included are polypeptides that are 80% or more identical to all or part of the amino acid sequence of these cathepsins L1 or L2. Further, the present invention also includes signal peptides and propeptides of these cathepsin L-like enzymes. These propeptides are also useful as inhibitors of the present cathepsin-like enzyme. The present invention also includes DNAs encoding these enzymes, their signal peptides, and propeptides.
  • the present invention provides a method for hybridizing with the DNA comprising the complementary strand of the above-mentioned squamous lobster 'cathepsin L1, the squamous lobster .cathepsin L2, or the respective prepro-compounds under stringent engineering conditions, and a cathepsin L-like Includes DNA encoding a protein having enzymatic activity.
  • the stringent conditions are, for example, a condition in which the DNA is bound by treating at 120 ° C for 20 minutes with Hybond N + Nia membrane (Amersham Pharmacia) in a church phosphate buffer solution (0.5M Na 2 HPO 1 mM EDTA, 7%
  • the creation of the probe for example, a cDNA fragment was amplified by P CR, using a Takara randara primer DNA labeling kit Ver.2 ( Takara), [a u2 P] - performs labeling of the probe by d CTP. Then, remove the unreacted isotope using a centrifugal filter (Millipore).
  • the present invention provides an amino acid sequence in which one or several amino acids have been deleted, substituted or added to the amino acid sequence of the pink prawn 'Catebsin L 1, Pink prawn' Catebsin L 1, or its prepro-form, and A DNA encoding a protein having a cathepsin L-like enzyme activity, or a DNA encoding a prepro-form of a protein having a cathepsin L-like enzyme activity is also included.
  • the present invention relates to the present invention comprising 1 to 100, preferably 1 to 10, and more preferably 1 to 100, preferably 1 to 100, DNAs encoding the pink quake shrimp cathepsin L 1, the pink quake shrimp force tepsin L 2, and its prepro-form.
  • DNAs encoding the pink quake shrimp cathepsin L 1, the pink quake shrimp force tepsin L 2, and its prepro-form One to several bases are deleted, substituted or added DNAs, including DNAs encoding proteins having the activity of L. or L2.
  • polypeptide-producing ability that is 80% or more, preferably 90% or more, particularly preferably 95% or more identical to the whole or part of the amino acid sequence of L. or cathepsin L1 or L2.
  • DNA has a cathepsin L-like enzyme activity having a homology of 80% or more, preferably 90% or more, and particularly preferably 95% or more with respect to the DNA sequence encoding these cathepsin L or preprocatecatin L.
  • DNAs encoding proteins or proteins that function as prebub cathepsin L-like enzymes are included.
  • the present invention provides primers for detecting these genes, for example, a sequence of 15 or more bases in 1 or 2 base sequences or one or several deletions, substitutions, or additions to the sequences. Includes base sequence.
  • the amino acid sequence of L. or L. 2 comprises one or more amino acids deleted, substituted or added in the amino acid sequence of L. or L.2, and L. or L.2 for L. or L.
  • 6 7 and 6 8 are Val
  • 13 3 are Cys
  • 1 5 7 force S Ile 1 6 0 is Ala
  • 2 5 5 is Gin
  • 6 7 is Trp
  • 68 Pro
  • 133 Cys
  • 157 is Ala
  • 160 Ala
  • 205 is Tyr. I do.
  • FIG. 1 shows the nucleotide sequence and amino acid sequence of P. catecabin L1.
  • FIG. 2 shows the nucleotide sequence and amino acid sequence of P. catecabin L2.
  • FIG. 3 shows the SDS-PAGE of P. catebucin L1.
  • Lanel Molecular weight marker
  • Lane2 Pink squab.
  • Figure 4 shows the degradation pattern of collagen by Pink squab 'Cathepsin L1.
  • Lanel Molecular weight marker
  • Lane2 Collagen
  • Lane3 0 hour reaction
  • Lane4 25 ° C, 30 Minute reaction
  • FIG. 5 is a graph showing the optimum pH of the stag beetle catechusin L1.
  • FIG. 6 is a graph showing the optimum temperature of the stag beetle catebucin L1.
  • FIG. 7 is a diagram showing the temperature stability of Pseudomonas catechusin L1.
  • Figure 8 shows the amino acid sequences of L. and L2 07661 Sequence comparison with shellfish cathepsin L, rat cathepsin L and papain
  • Position numbers are based on papain position numbers, identical residues are indicated by dots, and gaps are added to maximize matching.
  • the cysteines that form the three S—S bonds are gray, and the active centers Cys and His Asp are outlined.
  • the brown squid 'cathepsin L 1 and L 2 correspond to Northern Shrimp 1 and 2, respectively.
  • Figure 9 shows (A) phylogenetic tree of cathepsins belonging to papain superfamily and (B) homology between amino acid sequences.
  • the phylogenetic tree was created by the neighbor-joining method based on the parallel alignment of the mature enzyme sequences. The sequences that appear in FIG. 8 are in bold. The number beside the branch indicates the bootstrap value (%).
  • Pink cat shrimp cathepsin L-like cysteine proteases L1 and L2 are papain, rat tepsins B, H, K, S, and L (RCB, RCH, RCB, respectively).
  • RCK, RCL and RCL American Mouth Buster ⁇ Homarus amen'c cysteine proteases 1, 2, and 3 (abbreviated as LCP1, LCP2, and LCP3, respectively), and No.
  • NCP 1 and NCP 2 Nervous system and gastric cathepsin L
  • CPe prawn-related species
  • PCP 1 and PCP 2 Cathepsin L 1 and L 2
  • Figure 10 shows PAS (periodic acid Schiff) staining of pink squid 'cathepsin L1 in acrylamide.
  • Lane 1 shows the protein-containing protein, L. catechusin L2 (NsCys), and lane 2 shows the mature protein, L. catechusin L2 (NsCys).
  • Fig. 13 (Reference 1 Fig. 6) pH profile and pH stability of the activity of cat bacterium L2
  • Fig. 15 Substrate specificity of L. catechusin L2
  • FR in Fig. 15 is Z-Phe-Arg-MCA
  • RR is Z-Arg-Arg-MCA
  • PR is Z-Pro-Arg-MCA
  • VVR is Z-Val-Val-Arg-MCA
  • LLR stands for Z-Leu-Leu-Arg-MCA, respectively.
  • Figure 17 SDS-PAGE showing the results of degradation of type I collagen by Aspergillus catechusin L2 The best mode for carrying out the invention
  • a live pink squid was purchased from the fishermen's cooperative and dissected to collect liver and liver. To this liver-knee, 2 times the volume of 50 mM Tris-HCl (pH 7.5) was added and homogenized. Next, 1/5 volume of tetrachloromethane was added, and the mixture was stirred at 4 ° C for 1 hour to degrease, and then centrifuged (18,000 g, 4 ° C, 30 minutes) to obtain The supernatant was subjected to ammonium sulfate fractionation. 1 7.6-4 7.2% The (wZ V) ammonium sulfate, 5 mM CaCl 2, 20mM containing 0. 02% NaN 3 Tris- HC1 ( pH7. 5)
  • Buffer A dialyzed, and then subjected to Q Sepharose column (Amersham Pharmacia) equilibrated with Buffer A. After the non-adsorbed fraction was washed with Buffer A, it was eluted with a linear gradient between Buffer A and Buffer A containing 0.6 M NaCl.
  • the active fraction was collected, dialyzed against 10 mM potassium phosphate buffer ( ⁇ 6.9), and added to a hydroxyapatite (Bio-Rad) column equilibrated with the same buffer. Elution was performed with a linear gradient with mM potassium phosphate buffer (pH 6.9). Further, the active fraction was applied to a MonoQ column. Elution was performed with a linear gradient between Buffer A and Buffer A containing 1 M NaCl. By the above-mentioned method, red lipstick L1 was purified. Tables 1 and 2 show the specific activity of each purification step measured using the synthetic substrate.
  • the collagen-degrading activity of the fractions at each purification step and the purified enzyme was confirmed by SDS-PAGE after reacting with acid-soluble type I collagen (Wako Pure Chemical Industries) as a substrate at pH 7.5 and 25 ° C for 30 minutes. . ( Figure 4) 1
  • the enzymatic activity during the purification process was quantitatively monitored by a method using the following synthetic substrate.
  • DNP-Pro-Gln-Gly-Ile-Ala-Gly-Gly-Gln-D-Arg (hereinafter referred to as DNP-peptide) (Peptide Research Institute) was used. DNP-peptide was dissolved at a concentration of 1 mM in a 50 mM Tris_HCl buffer (pH 7.5) containing 150 mM NaCl to obtain a substrate solution. An equal volume of the enzyme solution of each fraction was added to 100 ml of the substrate solution, and reacted at 25 ° C for 10 minutes.
  • the reaction was stopped by adding 0.5 ml of 1N HC1, a mixed solution of ethyl acetate and n-butanol (1: 0.15) was added, and the mixture was shaken vigorously. Then, after centrifugation, the absorbance of the supernatant was measured at 365 nm. The amount of enzyme used to hydrolyze 1 ⁇ of substrate per minute was defined as 1 unit.
  • Bz-DL-Arg-pNA BAPA
  • Sue- (Ala) 3-pNA STANA
  • Suc-Ala -Ala-Pro-Arg-pNA APR
  • Sue-Ala-Ala-Pro-Le-pNA AAPL
  • BACHEM B z is Benzoyl
  • p NA is p-Nitroanilide
  • S uc stands for Succinyl, respectively.
  • AAPL and AAPR are substrates on which force-derived serine collagenase acts.
  • a substrate solution was prepared using dimethylsulfoxide at a concentration of 50 mM.
  • the reaction was carried out at 5 ° C for 5 minutes, and the released p-nitroaline was colorimetrically determined at 405 nm.
  • the amount of enzyme used to hydrolyze 1 ⁇ mol of substrate per minute was defined as 1 unit.
  • the activity was measured using Z-Phe-Arg-MCA as a substrate.
  • a substrate solution was prepared at a concentration of 2 OmM using dimethyl sulfoxide. Pre-incubate the enzyme solution in 50 mM Tris-HC1 buffer (pH 7.5) containing 50 mM NaC1, add the substrate solution to a final concentration of 50 / M, and add 25 ° C. After reacting for 5 minutes at C, the released 7-amine 4-methylcoumarin (AMC) was measured for fluorescence intensity at an excitation wavelength of 380 nm and a fluorescence wavelength of 460 ⁇ m. A standard curve was prepared and quantified using AMC (Peptide Research Institute), and the amount of enzyme used to hydrolyze 1 / zmo1 substrate per minute was 1 U. At the final stage of purification, 10.2 UZmg of activity was observed.
  • FIG. 4 shows the degradation pattern of collagen by the pink squid 'cathepsin L1. As shown in the figure, the enzyme well degraded collagen by a reaction at 25 ° C for 30 minutes.
  • FIG. 3 shows the SDS-PAGE pattern of 1 s. A single band around 30 kDa was obtained.
  • PAS staining was performed as follows.
  • the activity was measured at 25 ° C. in a Britton-Robinson buffer (pH 4-13) using DNP-peptide.
  • the final reaction solution was 200 ⁇ l, the final concentration of DNP-peptide was 0.5 mM, and the final concentration of the enzyme was 1.5 gZm1.
  • the optimum pH of this enzyme was about 7-8 (Fig. 5).
  • This enzyme (300 ng) was added to 50 mM Tris-HCl buffer (pH 7.5) containing 150 mM NaCl, incubated at each temperature (20 ° C to 70 ° C) for 30 minutes and 60 minutes, and immediately cooled with water. . The residual activity was measured at 25 ° C. using DNP-peptide as a substrate.
  • the final reaction solution was 200 ⁇ l, the final concentration of DNP-peptide was 0.5 mM, and the final concentration of the enzyme was
  • the enzyme was stable at 25 ° C, 1 hour and 30 ° C for 30 minutes, and was inactivated at 50 ° C, 1 hour and 60 ° (30 minutes ( Figure 7).
  • Oligonucleotides were prepared with reference to DWRDKGA which is a part of the determined N-terminal amino acid sequence.
  • the prepared primer is 5'-GAY TGG CGN GAY AAR GGN GC- 3 '
  • the determined base sequence and deduced amino acid sequence of L. and L2 are shown in Figure 1 (SEQ ID NOS: 1 and 2) and Figure 1, respectively. 2 (SEQ ID NOS: 3 and 4).
  • Excluding the putative signal sequence (residues 1 to 15: Met to Ala) and prosequence (16 to 105: Ser to Ala) of the putative Lactobacillus cathepsin L1 the N-terminal part is the N-terminal of the purified enzyme It was completely identical to the amino acid sequence.
  • catechusin L1 are nucleotides 29 to 73 in SEQ ID NO: 1, and the nucleotides encoding the pro sequence are nucleotides in SEQ ID NO: 1 and nucleotide 74 in FIG. 3 4 3 bases.
  • the putative signal sequence of cathepsin L2 is Met to Val of 1 to 14 residues, the pro sequence is Ser to Met of 15 to 106 residues, and the bases encoding each are: It is the 1st to 54th bases and the 55th to 330th bases of SEQ ID NO: 3.
  • Table 5 shows the homology of the amino acid sequences of Procathepsin L1 and L2 and Procatebcin L of other organisms.
  • the crude extract was fractionated with 25-70% (v / v) cold acetone, 19,00 Ox Centrifuged at g for 15 minutes.
  • the obtained precipitate was redissolved in 50 mM Tris-HC1 ( ⁇ 7.5, containing 50 mM NaCl) (buffer 1) and dialyzed against the same buffer 1 for 1 ⁇ .
  • the dialyzed solution was filtered through a 0.45 ⁇ m filter, and then applied to a Q Separose ion exchange column (1.6 ⁇ 40 cm Amersham Pharmacia Biotech) equilibrated with the same buffer solution 1. After washing the column with the same buffer, the bound protein was
  • Elution was with a linear gradient of NaCl in the M range.
  • proteolytic activity was measured using Z-Phe-Arg-MCA, Z-Arg-Arg-MCA, and gelatin zymography.
  • the solution was added to a Superdex75pg gel filtration column (1.6 ⁇ 100 cm Amersham Pharmacia Biotech), and the column was eluted at a flow rate of 0.4 ml / min.
  • Enzyme activity was measured at 25 ° C using an MCA (methylcoumalyl amide) substrate whose fluorescence was lost in the molecule at 100 mM sodium acetate, pH 6.0, 100 mM NaCl, 2 mM DTT, 2 mM EDTA and The test was performed in 0.01% Brij-35 gently diluted solution. Substrate solutions were prepared at a concentration of 20 raM in dimethyl sulfoxide. The hydrolysis reaction is started by adding an enzyme diluted in the same buffer, and the enzyme activity is determined by exposing the released 7-amino-4-methylcoumarin (AMC) to an excitation wavelength of 380 nm and an emission wavelength of 460 nm. The fluorescence intensity was measured at 0 nm. ⁇ Assay for substrate specificity>
  • pseudo-first-order conditions refer to conditions that use substrate concentrations much lower than the estimated m value, where the initial velocity V is directly proportional to c K m .
  • the following fluorescent peptide substrates were used as substrates.
  • pink 'akaebi catebucin L 1 is located at position P 2 (Schechter and d Berger. 1967 On the size of the active site in proteinases, I. Papain. Biochem. Biophys. Res.Commun. 27, 157-162) shows that it can cleave with high specificity a synthetic substrate having a non-aromatic attribute hydrophobic residue.
  • This specificity pattern is similar to cathepsins K and S, both of which are more specific to Leu than Phe at this position.
  • Cathepsin L has the opposite order of specificity.
  • the enzyme solution is E64 (L-trans-epoxysuccinyl-leucyl-agmatine) Z-Phe-Phe-CHN 2 , and Z-Phe-Tyr (t-Bu) -CHN 2 , leupeptin ⁇ antipain, PMSF (phenylmethylsulfonyl fluoride) , And 1,10-phenanthroline inhibitor and a buffer (containing 1 OOmM sodium acetate, 2mM DTT, 2mM EDTA, and 0.05% Triton X-100) in a buffer solution Residual enzyme activity was measured by Z-Phe-Arg-MCA. The final concentrations of enzyme and substrate were InM and ⁇ , respectively, and the residual enzyme activity was measured as described above.
  • Pink squid 'Catebcin L1 shows a typical cystin protease inhibition profile. Pink scabine cathepsin L1 is strongly inhibited by the cysteine protease inhibitor E64 even at a concentration of 0.1 tM. L1 binds to both cysteine and serine proteases It is also strongly inhibited by leupeptin and ant ipain.
  • Z-Phe-Phe-CHN 2 is an effective inhibitor of cathepsin L, but not cathepsin B or
  • Z - Phe - Tyr (t - Bu) - CHN 2 is a specific inhibitor to the force cathepsin L.
  • this pink 'akaebi catebucin L1 is a completely new enzyme, differing in both the specificity and the inhibition by the inhibitor from the conventionally known cathepsin L-like protease. it can.
  • Pink prawn a 92-base cDNA encoding the full-length precursor, excluding the cathepsin L2 (NsCys) signal peptide, was amplified by PCR, and the pUniD / V5- It was subcloned into the His-TOP0 vector.
  • the resulting vector is a PPICA pastoris shuttle vector, pPICZ ⁇ , so that the cDNA of P. catechusin L2 (NsCys) is located downstream of the yeast ⁇ -mating factor secretion signal. -Recombined in Plasmid fusion via Cre recombinase.
  • the P. pastoris KM71H strain (arg4 aoxl :: ARG4) was transformed by the electroporation method (GenePulser Biorad). Positive transformants in which multiple copies of cat bacterium 'cathepsin L 2 (NsCys) were incorporated were prepared at a concentration of 200 g of zeocin in a medium (YPDS) containing yeast extract, peptone extract and sorbitol.
  • Pichia nostrils (P. pastoris) clones were inoculated into 1 liter of GCM (glycerol complex medium) prior to induction of expression and pre-cultured at 30 ° C under aeration conditions for 4 days.
  • the cells were collected by centrifugation at 3000 Xg for 5 minutes at room temperature, and the expression was induced in 100 ml of BMM (buffered Minimal Methanol medium) or MM (Minimal Methanol medium) medium. Methanol was added daily to a final concentration of 0.75% to compensate for evaporation loss from the medium.
  • BMM buffere.glycerol complex medium
  • Methanol was added daily to a final concentration of 0.75% to compensate for evaporation loss from the medium.
  • samples were taken daily and centrifuged at 12,000 xg for 20 minutes at 4 ° C, and the supernatant was subjected to SDS-PAGE using a polyacrylamide slab gel with a gradient of 420%. Was done.
  • the supernatant from the cell-free medium was concentrated to about 10 ml at 4 ° C by ultrafiltration using a YM-10 membrane (Amicon).
  • the concentrate was dialyzed against 50 mM Tri-HCl (containing 150 mM NaCl).
  • the dialyzed material was subjected to gel filtration chromatography using a Superdex75pg column (1.6 x 100 cm) equilibrated with the same buffer, and the protein was eluted using an FPLC system at a flow rate of 0.3 ml / min. Was.
  • enzyme activity was measured using Z-Phe-Arg-MCA, and the fraction showing the highest activity was further analyzed by SDS-PAGE and zymography to confirm the uniformity of the purity. .
  • Gelatin zymography was used with a slight modification of the method of Heussen and Dowdle et al.
  • Electrophoresis was performed at 4 ° C, containing 0.1% gelatin at 15 ° /. Performed on polyacrylamide slab gel. After electrophoresis, SDS was removed by washing twice in 2.5% Triton-X for 30 minutes. Gel 3 hours the enzyme reaction solution at room temperature (100mM sodium acetate, pH5. 5,100mM NaCl s 2mM DTT , 2mM EDTA ⁇ Pi 0. 01% Bri j) were incubated in coma Sheep Brilliant Blue R 2 5 0 And destained with 10% acetic acid. The results are shown in FIG. 12 (Reference 1, FIG. 5).
  • the concentration of the purified recombinant pink squab 'cathepsin L 2 was determined by the method of Bradford using bovine serum albumin as a standard.
  • the molar amount of the enzyme was determined by titrating the active site with E-64 by the method of Barrett and Kirschke.
  • the pH activity profile of the recombinant P. catechusin L2 was measured at a 10 M substrate concentration under the pseudo-primary conditions described above.
  • the following buffers were used: LOOmM sodium citrate buffer for PH3.0-6.0, lOOmM sodium phosphate buffer for pH 6.0-8.0, and lOOmM sodium phosphate buffer for pH 8.0-11.0. Each pH buffer further contains 2 mM DTT, 2 mM EDTA, and 300 mM NaCl.
  • Enzymes were incubated in these buffers at 25 ° C for 30 minutes to determine pH stability. Residual activity was measured using the fluorescent substrates described above.
  • cathepsins L and S prefer more substrates with Phe and Leu, which have a larger side chain at the P2 site that is more hydrophobic than the small] 3 branch Val.
  • Val and Leu are reversed for pink squid.
  • Cathepsin L 2 NsCys.
  • Mammalian cathepsin K also prefers Pro at P2, but differs in that it also accepts Leu as a P2 residue and has considerable affinity for Phe. Disassembly of glucagon>
  • ⁇ of glucagon sample is 12.5 ⁇ in 100 mM NaCl, 2mMDTT, and lOOmM sodium acetate buffer ( ⁇ 6.0) containing 0.01% Brij-35. ) At 25 ° C for 4 hours. The sample was then acidified with 15% acetic acid, and the resulting peptide fragments were immediately separated on a reverse-phase HPLC (0 DS-120A column (25 ⁇ 0.4 cm toso)).
  • the column is washed with water containing 0.1% trifluoroacetic acid until the absorbance at 215 nm reaches the baseline, and the elution is performed with 95% acetonitrile containing 0.1% trifluoroacetic acid using a 0-60% linear gradient with a flow rate of l.Oml. / min.
  • Glucagon does not contain Pro, but it is consistent with the results of degradation of the synthetic substrate.
  • the preference of the residue at the P2 position is Val, Thr, and Ala. Has a very low affinity. K collagen digestion>
  • LOOmM sodium acetate buffer pH 6.0, containing 150mM NaCl, 2mM DTT, and 2mM EDTA
  • concentration of acid-soluble type I collagen in pig skin is 2.5 ⁇ .
  • NsCys pink quache-catebucin L 2
  • a novel cathepsin L-like enzyme derived from Aspergillus niger that degrades collagen is provided.
  • the enzyme can be obtained from the liver and knee of the stomach or by introducing a gene encoding the enzyme and culturing transformed host cells, and is useful in a wide range of fields such as the food field, cosmetics field, and pharmaceutical field. Can be used.
  • the present application was filed with the Japanese Patent Office on June 17, 2002, filed with the Japanese Patent Office in Japanese Patent Application No. 2002-175773, and on May 20, 2003, filed with the United States Patent Office by the present inventors.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

中性からアルカリ性条件下、低温領域においても高い活性を保持するカテプシンLを探索し生産すること。 日本産ホコックアカエビを用いることで、その肝膵臓中に低温領域においても活性を保持する新規カテプシンLを見出すことに成功した。 更に、当該新規カテプシンLの遺伝子配列を決定し、遺伝子組み換え法による生産を可能とした。

Description

T/JP03/07661 明 細 書 ホッコクァカェビ由来の新規なカテブシン L様システィンプロテアーゼ
技術分野
本発明はホッコクァカェビより抽出した新規カテブシン L様酵素、 その精製方 法、 ホッコクァカェビより新たに同定された新規プロテアーゼであるカテブシン L様システィンプロテアーゼ酵素をコードするポリヌクレオチド、 それによりコ 一ドされるポリべプチド、 このようなポリヌクレオチドおよびポリぺプチドの使 用に関する。 背景技術
プロテアーゼは、 タンパク質のペプチド結合を加水分解する酵素の総称で、 微 生物、 植物おょぴ動物に広く分布しており、 触媒基や基質特異性の異なるプロテ ァーゼが数多く単離されている。 その応用範囲も多岐にわたっており、 例えば、 食品の改質剤用、 洗剤用、 化粧品原料用、 ビールの清澄剤用、 皮革なめし剤用、 医薬用などに利用されている。
プロテアーゼは、 タンパク質のぺプチド結合を加水分解する最も重要な酵素群 の一つで、 微生物、 植物おょぴ動物に広く分布しており、 多種多様な生物学的プ 口セスに関与する。 また、 プロテアーゼは、 触媒基に基づいて、 ァスパラギン酸 一、 システィン一、 セリン一、 メタロープ口テアーゼの大きく 4つのファミ リー に分類されている。 これらの酵素の分子的作用機序は広く研究されている。 活性 中心に S H基を有する S Hプロテアーゼ (システィンプロテアーゼ) には、 プロ メライン等の酵素が含まれている。 このシスティンプロテアーゼのパパインス一 パーファミリーに属するカテブシンは、 カテブシン Lサブファミリーと力テプシ ン Bサブファミリーに分けられる。 カテブシン Lサブファミ リ一は、 カテブシン
H, L,S,F, V,及び W が含まれ、 2つの重要なモチーフ、 散在するモチーフである
ER (F/W) NINモチーフと、 GNFDモチーフで、 前者の ER (F/W) NINモチーフは、 カテ プシン Bフアミリー並びにカテブシン C, 0、 及び Xには存在しない。 カテブシン Lは、 哺乳類ではリソゾームに存在し、 強力なエンドプロテアーゼ 活性があるが、ェキソ型活性は示さないという特徴がある。 現在までのところ、 カテブシン L及びカテブシン L様システィンプロテア一ゼは数種類の動物から同 定され、 配列が決定されている。 以下にそれを列挙する。
Bombyx mori (domestic silkworm)
Yamamoto Y., Takimoto K., Izumi S., Tor i y ama-Sakur a i M., Kageyama T., Takahashi S. Y. Molecular cloning and sequencing of cDNA that encodes cysteine proteinase in the eggs of the silkmoth, Bombyx mori. J. Biochem. 116 (6) : 1330- 1335 (1994) .
Bos taurus (cow)
Unpublished.
Drosophila melanogaster (fruit i丄 y)
Tryselius Y., Hu It mark D. Cysteine proteinase 1 (CP1), a cathepsin し - like enzyme expressed in the Drosophila melanogaster haemocyte ceil line mbn一 2. Insect Mol. Biol. 6 (2) : 173— 181 (1997) ·
Homo sapiens (human)
Joseph L. J., Chang L. C., Stamenkovich D., Sukhatme V. P. Complete nucleotide and deduced amino acid sequences of human and murine preprocathepsin L. An abundant transcript induced by transformation of fibroblasts. J. Clin. Invest. 81 (5): 162ト 1629 (1988) .
Homarus americanus (American lobster)
Laycock M. V., MacKay R. M., Di Fruscio M., Gallant J. W. Molecular cloning of three cDNAs that encode cysteine proteinases in the digestive gland of the American lobster (Homarus americanus) . FEBS Lett. 292: 115-120 (1991) . Mus musculus (Mouse)
Portnoy D. A. , Erickson A. Hリ Kochan J. , Ravetch J. V. , Unkeless J. C. Cloning and characterization of a mouse cysteine proteinase. J. Biol. し hem.
261 : 14697-14703 (1986) .
Nephrops norvegicus (Norway lobster) Le Boulay C., Van Wormhoudt A. , Sellos D. Molecular cloning and sequencing of two cDNAs encoding cathepsin related cysteine proteinases in the nervous system and in the stomach of the Norway lobster (Nephrops norvegicus) . Comp. Biochem. Physiol. 111 : 353-359 (1995) .
Penaeus vannamei (Pacific white shrimp)
Le Boulay C. , Van Wormhoudt A., Sellos D. Cloning and expression of cathepsin し一 l ike proteinases in the hepatopancreas of the shrimp penacus vannamei during the intermoltcycle. J. Comp. Physiol. B 166: 310-318 (1996) .
Rattus norvegicus (Norway rat)
Ishidoh K. , To atari T. , Imajoh S., Kawasaki H. , Kominami E. , Katunuma N. Suzuki K. Molecular clonig and sequencing of cDNA for rat cathepsin L. FEBS Lett. 223 : 69-73 (1987) .
カテブシン Lのコラーゲン分解活性については、 ラットのカテブシン Lが酸性 条件下、 37°Cでコラーゲンを分解するという報告がある。 Barrett, A. J. and Kirschke, H. Cathepsin B, Cathepsin h, and Cathepsin L. Metnods Enzymol. 80, 535-561. (1981) 発明の開示
上記に示したカテブシン Lは、 酸性条件下に至適 pHがあり、 至適温度が 50〜 70°Cである。 上記文献の報告の内には、 遺伝子のクローニングのみで酵素が特定 されず性状が調べられていないものもある。 いずれにせよ、 中性からアルカリ性 条件下、 低温領域においても高い活性を保持するカテブシン Lは現在まで知られ ていない。 もし、 中性からアルカリ性条件下、 低温領域においても高い活性を保 持するカテブシン Lを見出すことができれば、 蛋白質の変性による特性の悪化を 避けて蛋白質材料の性質を改変することが可能となり、食品の改質剤用、洗剤用、 化粧品原料用、 医薬用などに応用する際に、 非常に有用な酵素を提供できること となる。
本発明者等は、 低温領域においてもコラーゲンを分解するようなプロテアーゼ を自然界に求め、 鋭意スクリーニングを重ねた結果、 偶然にも、 日本産ホッコク ァカェビを用いることで、 その肝鸱臓中に低温領域においても活性を保持する新 規プロテアーゼを見出すことに成功した。 本プロテアーゼは、 カテブシン L様シ スティンプロテアーゼである。
ホッコクァカェビは、 北太平洋、 北大西洋に分布し、 通常、 - 1. 6〜5°Cの低温環 境下に生息する低温適応種である。 低温適応種の酵素はそれらに対応する哺乳類 の酵素より、 実質的に高い触媒効率を示すことがいくつか報告されている。 例え ば、 プロテアーゼの中でも特によく研究されているセリンプロテアーゼのトリプ シンでは、ゥシトリブシンと比較してサケトリブシンの触媒効率は 40倍高いこと が報告されている。
本発明者等は、 スクリーニングに際し、 冷凍されていない生のホッコクァカェ ビから肝滕臓を取り出すことにより、 肝滕臓の細胞が冷凍により破壊されること を防ぎ、肝膝細胞中の酵素が分解を受けることなく抽出できるように工夫をした。 更に、 本発明者らは、 急速凍結した肝膝臓から、 本発明のカテブシン L様システ インプロテアーゼを精製する方法もみいだした。
本カテブシン L様蛋白質は、 ホッコクァカェビから、 イオン交換カラム、 ゲル 濾過カラム、 吸着カラム、 塩析、 透析、 限外ろ過、 遠心分離等、 を適宜組み合わ せることにより、 精製できる。 例えば、 生のホッコクァカェビから肝腾臓を摘出 し、 ホモジヱナイズし、 脱脂処理後、 蛋白質を硫安沈殿させた後、 再度溶解し、 上清を陰イオン交換カラムで精製、 吸着クロマトグラフィーで分離し、 再度ィォ ン交換ク口マトグラフィ一で精製して調製できる。 陰イオン交換ク口マトグラフ ィ一としては、 例えば、 Qセファロース、 M o n o Qが、 吸着クロマトグラフィ 一としては、 例えば、 ハイ ドロキシァパタイトを用いることができる。 解凍した ホッコクァカェビの肝腠臓からも、 同様に、 ホモジヱナイズし、 脱脂処理後、 遠 心分離し蛋白質を沈殿させた後、 再度溶解し、 透析後、 透析物を陰イオン交換力 ラムで精製、 ゲルろ過クロマトグラフィーで分離し、 吸着クロマトグラフィーで 精製して調製できる。 陰イオン交換クロマトグラフィーとしては、 例えば、 Qセ ファロース、 M o n o Qが、 ゲルろ過クロマトグラフィ一としては、 例えば、 Superdexが、 吸着クロマトグラフィーとしては、 例えば、 ハイドロキシァパタイ トを用いることができる。 こうして精製されたホッコクァカェビ カテブシン L様システィンプロテア一 ゼは、 (1) 分子量は、約 3 OKDa、 (2) 至適 PHは、約 7〜8、 (3) 至適温度は、 約 35°C、 (4) コラーゲン分解性を示す、 及び (5) カテブシン L様活性を示こ とが分かった。 さらに、 遺伝子工学的手法を駆使して種々研究した結果、 この 酵素をコードする遺伝子をクローニングすることに成功し、 遺伝子の塩基配列お ょぴ演繹アミノ酸配列のすべてを明らかにし、 本発明を完成させるに至った。 ま た、 本酵素と同様の立体構造を持つことが予想されるァイソフォームをコードす る遺伝子のクローニングにも成功し、 酵母を用いた系で発現させることで性状を 明らかにした。
発現されたホッコクァカェビ カテブシン L様システィンプロテアーゼのアイ ソフォームは、 (1) 分子量は、 約 30KDa、 (2) 至適 PHは、 約 6〜8、 (3) 至 適温度は、 約 40°C (20°Cでも活性を有していた)、 (4) コラーゲン分解性を 示す、 及ぴ (5) カテブシン L様活性を示していた。
これらのホッコクァカェビ由来新規カテブシン L様システィンプロテア一ゼをそ れぞれホッコクァカェビ ·カテブシン L1 およぴホッコクァカェビ ·カテブシン L2と命名した。なお、ホッコクァカェビ'カテブシン L1は、 NSL1又は NsCtLと、 ホッコクァカェビ · カテブシン L2は NSL2、 ホッコクァカェビ · システィンプロ テアーゼ、 NsCys、 又は Crustapainと呼ぶこともある。
ホッコクァカェビ ·カテブシン L 1及ぴ L 2をコードする遺伝子を適切な発現 ベクターに組み換え、 該組み換え発現ベクターを適切な宿主に導入することによ り、 ホッコクァカェビ 'カテブシン L 1又は L 2を遺伝子組み換え法により生産 することができる。 発現ベクターとしては、 周知の種々のベクターを用いること ができるが、 例えば、 宿主を大腸菌とする場合には、 一連の pURベクター、 p ATHベクター、 p GEXベクター等が挙げられ、 CO Sや CHO等動物細胞を 宿主として用いる場合には、 p XM、 pDC201等のベクターを用いることが できる。
例えば、 大腸菌を用いた系では、 発現ベクター p GEX (アマシャムフアルマ シァ)、 p ET 39 b (Novagen) , p RS ET (Invitorgen)、 に本発明の遺伝子 を挿入し、 大腸菌に導入して、 発現誘導することができた。 SDS- PAGEにより、 目 的の分子量を持つ遺伝子が発現されたことを確認した。 また、 酵母を用いた系で は、 本遺伝子を揷入した酵母発現ベクター p P I C Zひをエレク トロポレーショ ン法により、 宿主酵母 P.pastorisX— 33株又は KM71H株に導入し、 高濃度 (2 000 M g/ml) の z e o c i nを含む培地で生える形質転換体を選別した。 ゼ ラチンザィモグラフィ一で活性を確認したところ、 目的の酵素に相当するサイズ のバンドが検出された。
本発明は、 上記単離された 2つのカテブシン L様プロテア一ゼ及ぴその天然に 存在する変異体を包含するものである。 更に、 本発明には、 ホッコクァカェビ ' カテブシン L 1又は L 2のアミノ酸配列において 1若しくは数個のアミノ酸が欠 失、 置換若しくは付加されたアミノ酸配列からなり、 かつカテブシン L様酵素活 性を有する蛋白質を包含する。 また、 本発明は、 これらのカテブシン L様酵素の プレプロ体をも包含する。 また、 これらカテブシン L 1又は L 2とアミノ酸配列 の全部または 1部と 80%以上同一であるポリペプチドをも包含する。 更に、 本発 明は、 これらカテブシン L様酵素のシグナルぺプチド及びプロべプチドをも包含 する。これらプロべプチドは本件カテブシン様酵素の阻害剤としても有用である。 そして、 本発明は、 これら酵素、 そのシグナルペプチド、 及ぴプロペプチドをコ 一ドする DNAも包含する。
例えば、 本発明には、 上記ホッコクァカェビ 'カテブシン L 1、 ホッコクァカ ェビ .カテブシン L 2、 又はそれぞれのプレプロ体の相補鎖からなる DNAとス トリンジ工ントな条件下でハイプリダイズし、 かつカテブシン L様酵素活性を有 する蛋白質をコードする DN Aを包含する。
なお、 ストリンジェントな条件下とは、 例えば、 120 °Cで 20分間処理し て DNAを結合させた Hybond N+ ナイ口ンメンブレン(アマシャムフアルマシア) をチャーチリン酸塩緩衝液 (0. 5M N a2HPO 1 mM EDTA、 7 %
SDS) 中、 65°Cで 5分間処理し、 プレハイブリダィゼーシヨンを行う。 ハイ プリダイゼーションは同緩衝液中、後述の操作で得られたプローブを加え、 65°C で 1 7時間行う。ハイプリダーゼーシヨン後のメンブレンは室温で 20分間、 0.
1 % S D Sを含む 2 X S S C (standard saline citrate; l x S SCは 150m
M Na C l、 1 5mM sodiumcitrate、 pH7.0)で処理下後、 0. 1%SDSを 含む l x S S C中 6 5。じで 20分間の洗浄を 2回行う。 さらに◦ . 1 % S D Sを 含む 0. l x S S C、 65°Cで 20分間処理し洗浄を完了する。 X線フィルムへ の感光は一 80でで 24時間行う。
プローブの作成では、例えば、 P CRにより増幅した cDNA断片を、 Takara randara primer DNA labeling kit Ver.2 (Takara)を用いて、 [au2P] — d CTPによる プローブの標識を行う。 その後、遠心フィルター (Millipore) を用いて未反応の アイソトープを除去する。
更に、 本発明には、 ホッコクァカェビ 'カテブシン L 1 , ホッコクァカェビ ' カテブシン L 2 , そのプレプロ体のァミノ酸配列に対し 1若しくは数個のァミノ 酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつカテブシン L様 酵素活性を有する蛋白質をコードする DNA、 又は、 カテブシン L様酵素活性を 有する蛋白質のプレプロ体をコードする DNAも包含される。
又、 本発明には、 ホッコクァカェビ ·カテブシン L 1 , ホッコクァカェビ '力 テプシン L 2、 そのプレプロ体をコードする DNAに対して、 1〜1 00個, 好 ましくは 1〜1 0個, 更に好ましくは 1〜数個の塩基が、 欠失、 置換若しくは付 加した DN Aであって、 ホッコクァカェビ 'カテブシン L 1又は L 2の活性を有 する蛋白質をコードする DN Aを包含するものである。
また、 ホッコクァカェビ ·カテブシン L 1又は L 2のアミノ酸配列の全部また は 1部と 80%以上、 好適には 90%以上、 特に好適には 95%以上同一であるポ リぺプチドの産生能を有する DNAを包含する。 更にこれらのカテブシン L又はプ レプロカテブシン Lをコードする DNA配列に対し、 相同性が 80%以上、 好適 には、 90%以上、 特に好適には 9 5%以上となるカテブシン L様酵素活性を有 する蛋白質又はプレブ口カテブシン L様酵素として機能する蛋白質をコードする DNAを包含する。
本発明は、 これら遺伝子を検出するためのプライマー、 例えば、 1又は 2 の塩基配列中の連続する 1 5塩基以上の配列又は当該配列に 1又数個の欠失、 置 換、 付加がなされた塩基配列を包含する。
本発明のホッコクァカェビ · カテブシン L 1又は L 2の S 2ポケッ ト
(Schechter, I. and Berger, A. (1967) On the size of the active site in proteinases, I. Papain. Biochem. Biophys. Res. Commun. 27, 157-162 の表胃 d に従う) は、 主として疎水性で、 成熟型パパインのアミノ酸配列の番号で 6 7 , 6 8 , 1 5 7 , 1 6 0, 及び 2 0 5からなつており、 ホッコクァカェビ 'カテブ シンし 1については、成熟型パパインのアミノ酸配列の番号 6 7及び 6 8が Val、 同 1 3 3が Cys、 1 5 7が Ile、 1 6 0が Ala、 2 0 5が Ginであり、 ホッコクァ カェビ ·カテブシン L 2については、 同 6 7が Trp、 同 6 8が Pro、 同 1 3 3が Cys、 同 1 5 7が 13、 同 1 6 0が Ala、 同 2 0 5が Tyrである。
本発明には、 ホッコクァカェビ ·カテブシン L 1又は L 2のアミノ酸配列にお いて 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列か らなり、 かつホッコクァカェビ ·カテブシン L 1又は L 2と基質特異性を同じく するカテブシン L様酵素活性を有する蛋白質であって、 ホッコクァカェビ 'カテ プシン L 1又は L 2の S 2ポケットを保持するように、 成熟型パパインのアミノ 酸配列番号で ( 1 ) 同 6 7及び同 6 8が Val、 同 1 3 3が Cys、 同 1 5 7力 S Ile、 同 1 6 0が Ala、 及ぴ同 2 0 5が Ginである力、 又は、 (2 ) 同 6 7が Trp、 同 6 8が Pro、同 1 3 3が Cys、同 1 5 7が Ala、同 1 6 0が Ala、及ぴ同 2 0 5が Tyr、 であることを特徴とするタンパク質を包含する。
図面の簡単な説明 図 1は、 ホッコクァカェビ ·カテブシン L1の塩基配列及ぴアミノ酸配列 図 2は、 ホッコクァカェビ ·カテブシン L2の塩基配列及びアミノ酸配列 図 3は、 ホッコクァカェビ 'カテブシン L1の SDS- PAGE
Lanel: 分子量マーカー、 Lane2 : ホッコクァカェビ .カテブシン L1 (10 μg) 図 4は、 ホッコクァカェビ 'カテブシン L1 によるコラーゲンの分解パターン Lanel : 分子量マーカー、 Lane2 : コラーゲン、 Lane3 : 0時間反応、 Lane4 : 25°C、 30分間反応
図 5は、 ホッコクァカェビ ·カテブシン L1の至適 pHを示す図である。
図 6は、 ホッコクァカェビ ·カテブシン L1の至適温度を示す図である。
図 7は、 ホッコクァカェビ ·カテブシン L1の温度安定性を示す図である。 図 8は、 ホッコクァカェビ ·カテブシン L 1及ぴ L 2のアミノ酸配列と他の甲 07661 殻類のカテブシン L、 ラットのカテブシン L及ぴパパインとの配列比較
位置番号はパパインの位置番号に基づき、 同一の残基はドットで示され、 マツ チングが最大となるようにギャップが入れられている。 3つの S— S結合を形成 するシスティンが灰色で、 活性中心の Cys,His Aspが白抜きで示されている。 な お、 ホッコクァカェビ'カテブシン L 1及び L 2は、 それぞれ、 Northern Shrimp 1 及ぴ 2に相当する。
図 9は、 (A)パパインスーパーフアミリーに属するカテブシン類の系統樹及ぴ (B) アミノ酸配列間の相同性
系統樹は成熟型酵素配列の並列ァラインメントに基づく近隣結合法により作成 された。 図 8に現れる配列は太字で記載されている。 分岐脇の数字はブートス ト ラップ値 (%) を表す。 ホッコクァカェビのカテブシン L様システィンプロテア ーゼ L 1及び L 2 (それぞれ、 NSL1及び NSL2と略す。) がパパイン、 ラット力 テプシン類 B、 H、 K、 S、 及び L (それぞれ、 R CB、 R CH、 RCK、 R C L及び R C Lと略す。 )、 アメリカン口ブスタ—{Homarus amen'cめシスティンプロ テアーゼ類 1 , 2 , 及ぴ 3 (それぞれ、 L C P 1 , L C P 2 , 及び L C P 3と略 す。)、ノ ウェー VIプスター (_Nephros norvegicus~) 神経系及ぴ胃カテブシン L (そ れぞれ、 N C P 1及ぴ N C P 2と略す。) 並びにクルマエビ近縁種 CPe"fle vamw e/)カテブシン L 1及ぴ L 2 (それぞれ、 P C P 1及ぴ P C P 2と略す。) と比較される。
図 1 0は、ァクリルアミ ド中でのホッコクァカェビ'カテブシン L 1の PA S (過 よう素酸 シッフ) 染色
第 1 レーン:分子量マーカー
第 2レーン :ホッコクァカェビ ·カテブシン L 1 ( 1 0 μg)
第 3 レーン : トランスフェリン ( 1 0 μ§)
図 1 1 : (文献 3図 5 )
「ホッコクァカェビ ·カテブシン L 1の基質特異性をジ又はトリぺプチドの蛍光 基質を用いた検定。 Z-Xaa-Xaa-Arg-MCA(Xaaはァミノ酸 1文字表記で表される異 なるアミノ酸を意味する)で示されるジ又はトリぺプチド蛍光 MCA基質が用いら れた。」 図中の FRは Z-Phe-Arg-MCA、 RRは Z-Arg-Arg-MCA, PRは Z-Pro-Arg-MCA, VVRは Z-Val-Val-Arg-MCA, LLRは Z-Leu-Leu-Arg-MCA,そして FVRは Z-Phe- Val-Arg-MCAをそれぞれ表す。 図 1 2 (文献 1図 5 ) 酵母発現系により生産したホッコクァカェビ 'カテブシン L2の SDS - PAGE (図 1 2 A) およびゼラチンチモグラフィー (図 1 2 B ) を示す。
レーン 1は、 プロぺプチドを含むホッコクァカェビ ·カテブシン L 2 (NsCys) を、 レーン 2は、 成熟型のホッコクァカェビ 'カテブシン L 2 (NsCys)を示す。 図 1 3 : (文献 1図 6 ) ホッコクァカェビ 'カテブシン L 2の活性の pHプロファ ィル及ぴ p H安定性
A:偽 1次反応条件下で測定された Z-Pro-Arg-MCA及ぴ Z-Phe-Arg-MCAの加水 分解についてホッコクァカェビ ·カテブシン L (NsCys) の pH—依存活性の 2次 速度定数 ( cat/ fJ が左及び右軸に示されている。
B :様々な pHの緩衝液中で 3 0分間処理した後、 pH6.0で Z-Pro-Arg-MCAに対 する残存活性を測定した。 各 pHにおけるデータは、 未処理試料に対する百分率 で示された。
図 1 4 :ホッコクァ力ェビ 'カテブシン L2の温度安定性
図 1 5 :ホッコクァカェビ ·カテブシン L 2の基質特異性
Z-Xaa-Xaa-Arg-MCA(Xaa はアミノ酸 1文字表記で表わされ異なるアミノ酸を意 味する)で示されるジ又はトリぺプチド蛍光 MCA基質が用いられた。
図 1 5中に記載の FRは Z-Phe-Arg-MCA、 RRは Z-Arg-Arg-MCA, PRは Z-Pro-Ar g-MCA, VVRは Z-Val-Val-Arg-MCA, そして LLRは Z-Leu-Leu-Arg-MCAをそれ ぞれ表す。
図 1 6 :ホッコクァカェビ 'カテブシン L 2によるグルカゴンの分解
A: グルカゴンをホッコクァカェビ 'カテブシン L 2で分解して生じた断片の逆相
HPLCによる分離の結果を示すピーク(番号で表示)
B:逆相 HPLCにより分離された靳片(ピーク番号)のアミノ酸配列を決定した。 下にグルカゴンのアミノ酸配列が記載されている。 各切断部位の感受性は、 クロ マトグラフィ一のピークの高さから推定され、 主要切断部位は太い矢印で、 中程 度の切断部位は、 細い矢印で、 あまり切靳されない切断部位は破線で示され、 ラ ットカテブシン Lによる切断部位とあわせて示されている。
他のカテブシン Lとの切断部位との違いがよく示された。
図 1 7 : タイプ Iコラーゲンのホッコクァカェビ ·カテブシン L 2による分解の 結果を示す SDS- PAGE 発明を実施するための最良の形態
実施例は例示であって、 本発明を限定するものではない。
[実施例 1 ] ホッコクァカェビからカテブシン L様酵素の分離 ·精製 くホッコクァカェビ ·カテブシン L1の精製 >
漁協より生きたホッコクァカェビを購入し、 解剖して肝瞵臓を採取した。 この 肝膝臓に 2倍量の 50 mM Tris- HC1 (pH7. 5)を加え、 ホモジェナイズした。 次に、 1/5量のテトラクロロメタンを加え、 4°Cで 1時間、 攪拌して脱脂した後、 遠心分 離 (18, 000g、 4°C、 30分間) して、 得られた上清を硫安分画に供した。 1 7 . 6 〜4 7 . 2 % (wZ V )硫安を、 5 mM CaCl2、 0. 02% NaN3を含む 20mM Tris- HC1 (pH7. 5)
(Buffer A)に再溶解して、 透析した後、 Buff er Aで平衡化した Qセファロースカ ラム(アマシャムフアルマシア)に供した。 Buffer Aで非吸着画分を洗浄後、 Buffer Aと 0. 6 M NaClを含む Buffer Aとの直線的勾配で溶出した。
活性画分を回収して、 10 mM リン酸カリウム緩衝液 (ρΗ6· 9)に対して透析後、 同緩衝液で平衡化したハイドロキシアパタイト (バイオラッド) のカラムに添加 し、同緩衝液と 400 mMリン酸カリゥム緩衝液 (pH6. 9)との直線的勾配で溶出した。 さらに、 活性画分を MonoQカラムに供した。 溶出は Buffer Aと 1 M NaClを含む Buffer Aとの直線的勾配で行った。 以上の方法で、 ホッコクァカェビ ·力テプシ ン L1を精製した。合成基質を用いて測定した各精製段階の比活性を表 1および表 2に示した。
<酵素活性測定法 >
各精製段階の画分および精製した酵素のコラーゲン分解活性は、 酸可溶性 I型 コラーゲン (和光純薬) を基質として、 pH7. 5、 25°Cで 30分間反応後、 SDS- PAGE 法により確認した。 (図 4 ) 1 また、 以下に示す合成基質を用いた方法で精製過程の酵素活性を定量的にモニ タリングした。
コ ラ ゲ ナ ー ゼ 様 酵 素 の 活 性 を 測 定 す る 基 質 と し て 、
DNP-Pro-Gln-Gly-I l e-Ala-Gly-Gln-D-Arg (以下、 DNP-ペプチドと記す) (ぺプチ ド研究所) を用いた。 150 mM NaClを含む 50 mM Tri s_HCl緩衝液(pH7. 5)に 1 mM の濃度で DNP-ぺプチドを溶解して基質溶液とした。 この基質溶液 100 mlに各画 分の酵素溶液を等量加え、 25°Cで、 10分間反応させた。 1N HC1を 0, 5ml加えて反 応を停止させ、 酢酸ェチルと n -ブタノールの混液 (1 : 0. 15) を加えた後、 激し く振盪した。 次いで、 遠心分離後、 上清の吸光度を 365 nmで測定した。 1分間に 1 μ ιαοΐの基質を加水分解するときの酵素量を 1 unitとした。
トリプシン様酵素おょぴエラスターゼ様酵素の活性を測定する基質として、 Bz-DL-Arg-pNA (BAPA) 、 Sue- (Ala) 3-pNA (STANA) (ぺプチ ド研究所) 、 Suc-Ala-Ala-Pro-Arg-pNA (AAPR)、 Sue- Ala- Al a- Pro- Leu- pNA (AAPL) (BACHEM) (なお、 B zは Benzoylを、 p NAは p - Nitroani l ideを、 S u cは Succinylをそ れぞれ表す。
) を用いた。 B A P Aの分解性により トリプシン様酵素活性の有無が、 S T A N Aの分解性によりエラスターゼ様酵素活性の有無が確認できる。 また、 AAPL及び AAPRは、 力-由来のセリンコラゲナーゼが作用する基質である。 ジメチルスルホ キシドを用いて、 50 mMの濃度で基質溶液を調製した。各画分の酵素溶液を Ι δΟ ηιΜ NaClを含む 50 mM Tri s-HCl緩衝液(pH7. 5)に加えてプレインキュベート後、 基質 溶液を終濃度 0. 5 mMになるように添加して 25°Cで、 5分間反応させ、 遊離した p-二トロア二リンを 405 nmで比色定量した。 1分間に 1 μ molの基質を加水分解 するときの酵素量を 1 unitとした。
各画分の蛋白質量は、 BSAを標準試料として Bradford法で定量した。 1 表 1
DNP-ペプチドを用いて測定した各精製段階の比活性
ie 蛋 (±1暂全鼉 全ミ 件 口ェ 精製度
(U) (U/mg) (fold) (%) A 916 30605 0.033 1 100
Q—セファロ一ス F 31.7 7.892 0.249 7.4 25.8 ノヽイド、口 、、/ァ / タイ 1.1 G 2.562 2.213 66.2 8.37 卜
MonoU 0.153 1.521 9.944 297.5 4.97
工程 比活性 (U/mg)
AAPL AAPR BAPA STANA
硫安沈殿 0.169 0.068 0.006 0.018
Q—セファロース FF 0.351 0.112 0.002 0.020
ハイドロキシァノ タイト 2.548 0.722 0.000 0.106
MonoQ 12.094 2.441 0.000 0.182 精製したホッコクァカェビ'カテブシン LIはコラゲナーゼの合成基質に対して よく作用した (表 1)。 また、 BAPAに対しては全く作用せず、 P2部位にプロリン が配置する基質(AAPL、 AAPR)に対して、 よく作用した (表 2)。
更に、 カテブシン L様活生の確認のために、 Z— P h e— Ar g—MCAを基 質として用い活性を測定した。 ジメチルスルホキシドを用いて 2 OmMの濃度で 基質溶液を調製した。 酵素溶液を 1 50 mMN a C 1を含む 50 mMT r i s— HC 1緩衝液 (pH7. 5) に加えてプレインキュベート後、 基質溶液を最終濃 度 50 / Mとなるように、 添加して 25°Cで、 5分間反応させ、 遊離した 7—ァ ミノー 4—メチルクマリン (AMC) を励起波長 380 nm、 蛍光波長 46 0 η mで蛍光強度を測定した。 AMC (ペプチド研究所) を用いて標準曲線を作成し て定量し、 1分間に 1 /zmo 1の基質を加水分解するときの酵素量を 1 Uとした。 精製の最終段階で、 1 0. 2UZmgの活性が認められた。
ホッコクァカェビ'カテブシン L1によるコラーゲンの分解パターンを図 4に示 した。 図に示したように、 本酵素は、 25°C、 30分間の反応でコラーゲンをよく分 角早した。 1 ホッコクァカェビ .カテブシン L1の SDS-PAGEパターンを図 3に示した。 約 30 kDa付近に単一のパンドとして得られた。
また、 PA S染色は次のようにして行った。
S D S— PAGEした後、 1 2. 5 %トリクロ口酢酸に 3 0分間浸漬し、 蒸留 水で 3 0秒洗浄、 0. 5 %過よう素酸溶液 (PA S染色用) (和光純薬) に 5 0分 浸漬し、 蒸留水で 1 0分 6回よく洗浄し、 Cold Schiff' s Reagent (和光純薬)で 5 0分処理し 0. 5 %亜硫酸水素ナトリゥムを含む 0. 0 5 NHC 1で 1 0分 3回、 蒸留水で洗浄し、 5 %酢酸に浸漬した。 これにより、 糖鎖を持つことが示唆され た。 (図 1 0)
<至適 pH>
活性の測定は、 Britton- Robinsonの緩衝液 (pH4- 13) 中で、 DNP-ペプチドを用 いて 25°Cで行った。 最終的な反応液は、 2 0 0 μ 1 、 DNP—ぺプチドの終濃度 は 0. 5 mM、 酵素の終濃度は、 1. 5 gZm 1であった。 本酵素の至適 pH は、 約 7〜8であった (図 5)。
ぐ至適温度 >
1 mM DNP-ぺプチド、 150 mM NaClを含む 50 mM Tris-HCl緩衝液(pH7.5)を各温 度で 5分間プレインキュペートした後、 酵素を加えて活性を測定した。 最終的な 反応液は、 2 0 0 1 、 DNP—ペプチドの終濃度は 0. 5 mM、 酵素の終濃度 は、 1. 5 gZm 1であった。 本酵素の至適温度は、 約 35°Cであった (図 6)。 <温度安定性〉
150 mM NaCl を含む 50 mM Tris-HCl緩衝液(pH7.5)に本酵素 (300ng) を加え、 各温度 (20°C〜70°C) で 30分間及び 60分間インキュベーションした後、 直ちに 水冷した。 DNP-ペプチドを基質として、 25°Cで残存活性を測定した。 最終的な反 応液は、 2 0 0 μ 1 、 D N P—ぺプチドの終濃度は 0. 5 mM、酵素の終濃度は、
1. 5 μ g /m 1であった。 本酵素は 25°C、 1時間および 30°C、 30分間まで安定 であり、 50°C、 1時間および 60° (、 30分間で失活した (図 7)。
[実施例 2 ]
<N末端ァミノ酸配列の解析〉
精製したホッコクァカェビ'カテブシン L1を電気泳動後、 SDSポリアクリルァ T JP03/07661 ミ ドゲルから PVDF膜に転写し、対応するパンドを切出して、プロティンシークェ ンサ一に供した。 本酵素の N末端ァミノ酸配列は、 DTVDWRDKGAVTPVKDQGQであつ た。 相同性検索を行った結果、 活性型システィンプロテアーゼの N末端近傍に対 応していた。
[実施例 3 ]
<カテブシン Lのクローニング〉
決定した N末端アミノ酸配列の一部分である DWRDKGAを参考にして、 オリゴヌ クレオチドを作製した。作製したプライマーは、 5 ' -GAY TGG CGN GAY AAR GGN GC- 3 '
(R : A/G、 Y : C/T、 N.-A/G/C/T) である。
ホッコクァカェビの肝膝臓より IS0GEN (二ツボンジーン)を用いて、 total RNA を調製後、 3, RACE System (GIBCO BRL)により、 1本鎖 cDNAを合成した。 その 1 本鎖 cDNAを錶型にして前述のプライマーと 3 ' RACE Systemの AUAPを用いて PCR (30サイクル、 94°C、 30秒、 55°C、 30秒、 72°C、 1分)を行った。 約 900bpの PCR 産物が得られ、 この断片を pGEM- T Easyベクター (Promega) に挿入して、 サブク ローニングし、 3 ' 末端側の塩基配列を決定した。 その結果、 2種類の配列が得ら れた。これらの配列を基に、表 3に示したアンチセンス鎖のプライマーを作製し、 5 ' RACE System (GIBCO BRL)を用いて得られた PCR断片を、 同様にサプクロー二 ングし、 5 ' 末端側の塩基配列を決定した。
表 3
5'RACEに用いたプライマー
ヌクレ才チドシークェンス
し 1-R1 5'-GCA TCA ATA CAG ACG CTG AC-3'
L1-R2 5'-CAT CAG CAT AAG GGA TAT CTG-3'
L1-R3 5'-AAC GTG TGC AGC GTC GAA TC-3'
L2-R1 5'-GTC TCA TCT CCT TCG GTT AC-3'
L2-R2 5'-ACC TTG AAT GGT GGC ACC GA-3'
L2-R3 5'-CGC ACT TGT CAT CAA CAG CA-3' さらに、 5, 末端より表 4に示したプライマーを作製して、 上述の 1本鎖 cDNA からホッコクァカェビ ·カテブシン L1および L2をコードする全長の cDNAを単離 した。 表 4
全長の cDNAのクローニングに用いたプライマ一
ヌクレオチドシークェンス
L1- -F 5'-TGA GTC AGT TCT GCT CAA CTC TGA TAG G-3'
L2- -F 5'-CAC TT AGC AAG ATG AGG TCT CTG-3' 決定したホッコクァカェビ ·カテブシン L 1及ぴ L 2の塩基配列と演繹アミノ 酸配列をそれぞれ図 1 (配列番号 1及び 2 ) および図 2 (配列番号 3及び 4 ) に 示した。 ホッコクァカェビ ·カテブシン L1の推定されるシグナル配列 (1〜1 5 残基: Met〜Ala) とプロ配列 (1 6〜1 0 5 : Ser〜Ala) を除いた N末端部分は 精製した酵素の N末端ァミノ酸配列と完全に一致した。 ホッコクァカェビ ·カテ プシン L1のシグナル配列をコードする塩基は、配列番号 1の第 2 9塩基から 7 3 塩基であり、 プロ配列をコードする塩基は同じく配列番号 1及び図 1中の第 7 4 塩基から 3 4 3塩基である。 又、 カテブシン L 2の推定されるシグナル配列は 1 ~ 1 4残基の Met〜Valで、 プロ配列は 1 5から 1 0 6残基の Ser〜Metで、 それ ぞれをコードする塩基は、 配列番号 3の第 1 3から 5 4塩基、 及び第 5 5から 3 3 0塩基である。
ホッコクァカェビ .プロカテブシン L1および L2 と他生物のプロカテブシン L とのアミノ酸配列の相同性を表 5に示す。
図 8から明らかなように、 ホッコクァカェビ ·カテブシン L 1及ぴ L 2は、 触 媒基の Cys, His, Asnが保存されており、 パパインスーパーファミリーに属する システィンプロテアーゼである。 更に、 S— S結合位置も保存されている。 そし て、 近隣結合法により系統榭を作成すること (図 9 ) により、 L 1及ぴ L 2は、 いずれもカテブシン L様酵素であることが分かる。 表 5 他生物のカテブシンしとの比較
相同性 (%)
ホッコクァカェビ'カテブシン ホッコクァカェビ'カテブシン
し 1 し 2
ホッコクァカェビ 'カテブシンし 2 55
homarus amencanus 1 55 57
homarus amencanus 2 57 55
Homarus amencanus δ 55 53
Nephrops norvegicus 1 57 54
Nephrops norvegicus 2 53 56
Penaeus vannamei 1 52 52
Penaeus vannamei 2 54 51
Bombyx mori 52 48
Drosophila melanogaster 54 47
Mus musculus 47 45
Rattus norvegicus 47 44
Bos taurus 47 46
Homo sapiens 47 43 ホッコクァカェビ ' プロカテブシン LI は、 アメ リカンロブスターの Cys protease 2 との相同性が 57%で最も高かった (表 5 )。 ホッコクァカェビ 'プロ カテブシン L2はァメ リカンロブスターの Cys protease 1 との相同性が 57%で最 も高力 つた (表 5 )。
[実施例 4] ホッコクァカェビの凍結試料からのカテブシン L様酵素の分離 ·
<ホッコクァカェビ ·カテブシン L1の粗抽出物 >
全ての精製工程は 4 °Cで行われた。 一 8 0 °Cで凍結された肝膝臓が部分的に解 凍され 2倍量の 50 raM Tris- HC1 (pH7. 5、 150mMNaCl、 3mMNaN3含有)を加え、 ポリ トロンホモゲナイザーで 5分間ホモジヱナイズした。 次に、 1/5 量のテトラクロ ロメタンをゆつく り と攪拌しながら加え、 遠心分離 (19, 000g、 30 分間) して、 脂質を下層のテトラクロロメタンに抽出した。 脱脂された上清は、 粗抽出物とし て用いられた。
くホッコクァカェビ 'カテブシン L1様プロテアーゼの精製〉
粗抽出物は 2 5〜 7 0 % ( v / v ) の冷アセトンで分画され、 1 9 , 0 0 O x gで 1 5分間遠心分離された。 得られた沈殿は、 5 0mM Tris - HC1 (ρΗ7· 5、 50mM NaCl含有) (緩衝液 1) に再溶解して、 同じ緩衝液 1で 1晚透析した。 透析した溶 液は、 0 . 45 μ mフィルターで濾過した後、 同じ緩衝液 1で平衡化した Q Sephar ose イオン交換カラム ( 1 . 6 X 4 0 c m アマシャムファルマシアバイォテッ ク) に供した。 同じ緩衝液でカラムを洗浄後、 結合したタンパク質を◦から 0. 5
M の範囲の NaClの直線的勾配で溶出した。 分画は、 Z-Phe-Arg-MCA、 Z-Arg-Arg-MCA, 及ぴゼラチンチモグラフィーを用 いて蛋白質分解活性を測定した。
Z-Phe-Arg-MCAに対して高い活性を示すが, Z-Arg-Arg-MCAに対してはほとん ど活性を示さない画分を回収して、 5 0mM Tris- HC1 (PH7. 5、 150mM NaCl含有) (緩 衝液 2) に対して透析後、 Biomax-5K Ultrafree (ミリポア社製) を用いた限外ろ 過により濃縮した。 濃縮して回収された画分は、 緩衝液 2で平衡化された
Superdex75pgゲル濾過カラム (1. 6X100cm アマシャムフアルマシアバイオテツ ク) に添加し、 同カラムは 0. 4ml/minの流速で、 流出させた。
Z-Phe-Arg-MCAに対して活性のある画分を回収し、 10mMリン酸カリゥム緩衝 液(pH6. 8)に対し透析した。 透析した溶液は、 同緩衝液で平衡化した Bio-Scale CHT10-I ハイ ドロキシアパタイ ト (1. 2X8. 8cm バイオラッド) のカラムに添加 した。 非特異的結合タンパク質を洗浄除去し、 結合タンパク質は、 リン酸力リウ ム緩衝液 (pH6. 8)の 10〜400 m の直線的勾配で溶出した。
N末のァミノ酸配列を確認したところ、 L 1であることが確認された。
<カテブシン L様酵素活性測定 >
酵素活性測定は、 2 5 °Cで、 分子内で蛍光が消失された MCA (メチルクマリル アミ ド)基質を用い、 100 mM sodium acetate, pH6. 0, 100 mM NaCl, 2 mM DTT, 2 mM EDTA and 0. 01% Brij-35 の緩種 ί液中で行った。 基質溶液は、 ジメチルスル ホキシド中で 20raMの濃度で調製された。加水分解反応は、同じ緩衝液で薄められ た酵素を添加することにより開始し、 酵素活性は、 遊離した 7—アミノー 4ーメ チルクマリン (AM C ) を励起波長 3 8 0 n m、 蛍光波長 4 6 0 n mで蛍光強度 を測定した。 <基質特異性の検定 >
S 2サブサイ トの特異性は、 種々のジぺプチド MCA又はトリぺプチド MCA基質 を用いて、 偽 1次反応条件で行われた。 (ここで偽 1次条件とは、 初速度 V。が c Kmに直接比例する、 推定 m値よりはるかに低い基質濃度を用いる条件を意味 する。) 結果は、 図 1 1に示される。
基質として、次の蛍光べプチド基質を用いた。 Z-Phe-Arg-MCA, Z- Arg- Arg- MCA, Z - Pro- Arg - MCA, Z-Val-Val-Arg-MCA, Z-Leu-Leu-Arg-MCA, Z-Phe-Val-Arg-MCA, H-Arg-MCA 及ぴ Z- Arg- MCA。
図 1 1より、 ホッコク 'ァカェビカテブシン L 1は、 P 2の位置 (Schechter an d Berger. 1967 On the size of the active site in proteinases, I. Papain. B iochem. Biophys. Res. Commun. 27, 157- 162の表記法)に非芳香属性の疎水性残 基がある合成基質を高い特異性で切断することが分かる。この特異性パターンは、 カテブシン K及ぴ Sに類似していおり、 両者とも、 この位置で Pheより Leuに特 異性が高い。 他方、 カテブシン Lは、 逆の順序の特異性である。
しかしながら、 カテブシン K及ぴ Sとは異なり、 ホッコク 'ァカェビ力テプシ ン L 1は、 P 2の位置で Pheよりも Valを選択的に受容する。 ぐ阻害剤の影響〉
酵素溶液は、 E64 (L-trans-epoxysuccinyl-leucyl-agmatine) Z-Phe-Phe-CHN 2、 及び Z - Phe - Tyr (t- Bu) - CHN2、 leupeptin^ antipain, PMSF (phenylmethylsu lfonyl fluoride) ,及ぴ 1, 10- phenanthrolineのいずれかの阻害剤と、緩衝液 (1 OOmM酢酸ナトリゥム、 2mM DTT、 2mM EDTA、 及び 0. 05% Triton X-100含有) 中で 前処理した後、 蛍光基質 Z- Phe- Arg- MCAにより残存酵素活性を測定した。 酵素と 基質の最終濃度は、 それぞれ、 I nM及び ΙΟΟ μ Μで、 残存酵素活性を上述の方法 で測定した。
結果は表 6に示す。 表 6
Figure imgf000021_0001
表 6に示されるように、 ホッコクァカェビ 'カテブシン L 1は、 典型的なシス ティンプロテアーゼの阻害プロファイルを示す。 ホッコクァカェビ ·カテブシン L 1は、 システィンプロテアーゼ阻害剤 E64により 0 . 1 t Mの濃度でも強く阻 害される。 L 1は、 システィンプロテアーゼ及ぴセリンプロテアーゼの両者に対 する阻害剤である leupeptin, 及び ant ipainにも強く阻害される。
Z- Phe- Phe- CHN2は、 カテブシン Lの有効な阻害剤であるが、 カテブシン B及ぴ
Sもわずかに阻害することが知られている。 また、 Z - Phe - Tyr (t - Bu) - CHN2は、 力 テプシン Lに特異的阻害剤である。
し力、しながら、 Z - Phe- Phe- CHN2、 及び Z- Phe - Tyr (t-Bu) - CHN2は、 本酵素活性を ほとんど阻害しなかった。 また、 セリンプロテアーゼ及びメタ口プロテアーゼ群 に特異的である阻害剤には阻害作用はなかった。
以上から、 本ホッコク 'ァカェビカテブシン L 1は、 従来公知のカテブシン L 様蛋白質分解酵素とは、 その特異性、 阻害剤による阻害いずれも相違し、 全く新 しい酵素であると結論づけることができる。
[実施例 5 ] ホッコクァカェビ ·カテブシン L 2の発現 ホッコクァカェビ ·カテブシン L 2 (ホッコクァカェビ · システィンプロテア ーゼ: NsCys) をコードする遺伝子が、 メタノール資化酵母であるピキア パスト リス {Pichia pas tor is) で、 EasySelectTM Echo - AdaptedTM Pichia 発現キッ卜
(Invitrogen) .を用いて異種発現させられた。
ホッコクァカェビ.カテブシン L 2 (NsCys) のシグナルぺプチドを除く完全長 の前駆体をコードする 9 2 4塩基の cDNAが P C Rで増幅され、キットのプロ トコ ールに従って、 キットに付属の pUniD/V5-His - T0P0ベクターにサブクローンされ た。 得られたベクターは、 ホッコクァカェビ ·カテブシン L 2 (NsCys) の cDNA が酵母の α -接合因子分泌シグナルの下流におかれるようにピキア パス トリス {P. pas tor is) シャトルべクタ一である pPICZ α - Εに Cre リコンビナーゼを介す るプラスミ ド融合により組み換えられた。
融合されたプラスミ ドベクターが制限酵素 ¾elで直鎖化された後、 P. pastori s KM71H株 (arg4 aoxl : : ARG4) をエレク トロポレーシヨン法 (GenePulser バ ィォラッド) により形質転換した。 ホッコクァカェビ 'カテブシン L 2 (NsCys) が複数コピー組み込まれた陽性の形質転換体は、 酵母エキス、 ペプトンエキスお ょぴソルビトー を含む培地 (YPDS) 中のゼォシン(zeocin)の濃度 2 0 0 0 g
/m 1まで上げることで選択された。 単一コロニーの高生産性クローンを組換え タンパク質の大量生産のために選択し、 濃縮培地からゲルろ過クロマ —による 1段階の精製のみで、 ホッコクァカェビ 'カテブシン L 2 (ホッコクァ 力ェビ 'システィンプロテアーゼ:NsCys) の純粋な調製物を得た。
ピキア ノ ス トリス P. pastoris) クローンは、 発現誘導前に 1 リ ッ トルの G C M (グリセロール複合培地) に接種され、 通気条件下、 3 0 °Cで、 4日間前培 養した。 細胞は、 室温で 3000Xg、 5分間遠心分離して、 回収され、 100ml の BMM (buffered Minimal Methanol medium) 又 MM (Minimal Methanol medium) 培 地で発現が誘導された。 メタノールは、 培地からの蒸発損失を補うため、 毎日最 終濃度が 0. 75%になるように添加された。 発現を確認するために、 サンプルは毎 日採取され、 4 °Cで 12000Xg、 2 0分間遠心分離され、 上清は、 4一 2 0 %の勾 配のポリアクリルァミ ドスラブゲルを用いた SDS - PAGEに供された。
<組み換えタンパク質の精製〉
無細胞培地上精は、 YM - 10膜 (アミコン) を用いた限外ろ過により、 4 °Cで約 10mlまで濃縮された。 濃縮物は、 5 0 mMの Tri- HC1 (150mMNaCl含有) に対し て、 透析された。 透析されたものは、 同じ緩衝液で平衡化された Superdex75pg カラム (1. 6x100cm) を用いたゲルろ過クロマトグラフィーに供され、 タンパク質 は、 流速 0. 3ml/minで FPLCシステムを用いて、 溶出された。 分画は、 Z-Phe-Arg - MCAを用いて、 酵素活性を測定し、 最も高い活性を示す分画が更に SDS- PAGE及 ぴザィモグラフィ一で分析され、 精製度の均一性が確認された。 ゼラチンザィモ グラフィ一は、 Heussen及び Dowdleらの方法を若干修正して用いた。
電気泳動は、 4 °Cで、 0. 1%ゼラチン含有 15°/。ポリアクリルアミ ドスラブゲルで 行われた。 電気泳動後、 SDSは 3 0分間 2 . 5 %Triton-X中で 2回洗浄すること で除去された。 ゲルは、室温で 3時間酵素反応溶液(100mM酢酸ナトリウム、 pH5. 5、100mM NaCl s 2mM DTT、 2mM EDTA及ぴ 0. 01% Bri j)中でインキュベートし、 コマシープリリアントブルー R 2 5 0で染色され、 1 0 %酢酸で脱色された。 結果を図 1 2 (文献 1図 5 ) に示す。
なお、 図 1 2 Aの (レーン 2 ) 3 0 KDa のタンパク質の N末端アミノ酸配列を 決定したところ、塩基配列から演繹されたホッコクァカェビ'カテブシン L 2 (N sCys) 成熟型の N末端アミノ酸配列と一致した。 質濃度の決定〉
精製された組み換えホッコクァカェビ'カテブシン L 2 (NsCys) の濃度は、 牛 血清アルブミンを標準として用いて、 Bradfordの方法により測定された。 ェビプ 口テアーゼの速度論研究のため、 酵素のモル量が Barrett 及ぴ Kirschkeの方法 で、 E - 64で活性部位を滴定することにより測定された。
<酵素活性〉
実施例 4と同様になされた。
<活性及び安定性の pH及ぴ温度依存性〉
組換えホッコクァカェビ 'カテブシン L 2 (NsCys)の pH活性プロファイルは、 上述の偽 1次条件下で、 10 M基質濃度で測定された。
次の緩衝液が用いられた。: PH3. 0-6. 0については lOOmMクェン酸ナトリゥム緩 衝液、 pH6. 0-8. 0については lOOmMリン酸ナトリゥム緩衝液、 及び pH8. 0-11. 0に ついては lOOmMホゥ酸ナトリゥム緩衝液。 それぞれの pH緩衝液は更に、 2mM DT T、 2mM EDTA、 及び 300mMNaClを含む。
pH安定性を決定するために、 酵素はこれらの緩衝液中で 2 5 °C, 3 0分間イン キュベートされた。 残存活性が上述の蛍光基質を用いて測定された。
結果は、 図 1 3に示される。 哺乳類のカテブシン Lは、 アルカリ側では完全に 不活性又は非常に活性が低いが、 本ホッコクァカェビ 'カテブシン L 2 (NsCys) は、 pH 8 . 5でさえも、 約 8 0 %の活性を有している。 ホッコクァカェビ.カテブシン L 2 (NsCys) が Z- Pro- Arg_MCAを加水分解する 活性に対する温度の影響を測定するために、 基質を含む緩衝液を各温度で、 1 0 分間プレインキュペートした後、 酵素溶液を添加した。 反応は 5分間進行させら れ、 蛍光変化が上述のように記録された。 熱安定性については、 酵素溶液が 3 0 〜6 0 °Cで処理され、何度かの間隔で試料が採取され、 直ちに氷上で冷却され、 Z - Pro- Arg- MCAに対する残存活性を 2 5 °Cで測定した。
結果は、 図 1 4に示される。 <基質特異性の検定 >
基質特異性は、 実施例 4と同様にして測定された。
結果は、 図 1 5に示される。
一般に、 カテブシン L及ぴ Sは、 P2部位に小さな ]3分岐鎖の Valより疎水性の 大きな側鎖を有する Phe及び Leuのある基質をより選好する。 ところがホッコク ァカェビ .カテブシン L 2 (NsCys) は、 Val と Leuの選好性が逆となっている。 また、 他の既知のカテブシンとは異なり、 Proよりも Pheに対する親和性が 1 0 倍も低い。 哺乳類のカテブシン Kも P2において Proを選好するが、 P2残基とし て同様に Leuを受容し Pheにも相当の親和性を有する点で異なる。 くグルカゴンの分解〉
Ι μΜのグルカゴン試料が 100mMNaCl、 2mMDTT、 及び 0.01%Brij-35を含有す る lOOmM酢酸ナトリゥム緩衝液 (ρΗ6·0) 中で 1 2 .5 η Μの組換えホッコクァカ ェビ .カテブシン L 2 (NsCys) により 2 5 °C、 4時間分解された。 そして、 試 料は 15%酢酸で酸性化され、 得られたペプチド断片は、 すぐに逆相 H P L C (0 DS-120Aカラム (25X0.4cm トーソ一)) で分離された。 カラムは、 215nmの吸 収がベースラインに達するまで、 0.1%トリフルォロ酢酸含有水で洗浄され、 溶出 は 0.1%トリフルォロ酢酸を含む 95%ァセトニトリルにより 0— 6 0 %直線勾配 を用いて流速 l.Oml/minで行われた。
215nm の吸収の各ピークに対応する溶出物が回収され、 真空下で乾燥され、 了 プライ ドバイオシステム社タンパク質シークェンサ一モデル 4 7 6 Aに供された。 結果は図 1 6に示される。
グルカゴンには、 Proは含まれないが、 合成基質の分解結果と一致し、 P2位置 における残基の選好は、 Val, Thr, Alaの順で、 P2に Leuを持つ断片がないことは、 Leuには非常に親和性が低いことを示している。 くコラーゲンの消化 >
Proを多量に含むタイプ Iのコラーゲンの分解性を調べた。
豚皮膚の酸可溶性タイプ I コラーゲンが、 2. 5μΜ の濃度となるように、 lOOmM 酢酸ナトリウム緩衝液 (pH6. 0、 150mMNaCl 2mM DTT、 及び 2mM EDTAを含有) に希釈され、 ΙΟ^Μ E-64 の存在下又は不存在下で、 125nMのホッコクァカェ ビ -カテブシン L 2 (NsCys) を用いて処理された。
試料を予め決められた間隔で回収し、直ちに SDS- PAGEサンプルバッファーに添 加し、 5分間沸縢させた。 コラーゲンの分解は、 4 - 20%の勾配ゲル (TEFC0) を用 いて、 コマシーブルー染色により確認した。
結果は、 図 1 7に示される。
結果は、 既知のシスティンプロテアーゼと比較し、 タイプ Iのコラーゲンの分 解性が非常に高いことがわかった。 産業上の利用の可能性
本発明により、 コラーゲンを分解するホッコクァカェビ由来新規カテブシン L 様酵素が提供される。 本酵素はホッコクァカェビ肝膝臓より、 あるいは本酵素を コードする遺伝子を導入し、 形質転換した宿主細胞を培養することにより得るこ とができ、 食品分野、 化粧品分野、 医薬分野など幅広い分野において有用に利用 することができる。 本件出願は、 2002年 6月 1 7日に日本国特許庁になされた特願 2002- 1 75 7 73号、 及び 2003年 5月 20日付けで本件発明者らにより米国特許 庁になされた仮出願 (60/4 7 1 73 3) に基づく優先権を主張する出願であ つて、 両出願の内容を引用により、 取り込むものである。

Claims

請求の範囲
1. 以下の性状を有する精製したホッコクァカェビ由来の カテブシン L様 システィンプロテアーゼ
(1) 分子量は、 約 3 0KDa、
(2) 至適 PHは、 約 7〜8、
(3) 至適温度は、 約 35°C、
(4) コラーゲン分解性を示す、 及ぴ
(5) カテブシン L様活性を示す。
2. DTVDWRDKGAVTPVKDQGQ で表される N末端ァミノ酸配列を有する請求項 1 記載のカテブシン L様蛋白質。
3. 以下の (a) 又は (b) の蛋白質
( a ) 配列番号 2の位置番号 1 0 6番以降のアミノ酸配列又配列番号 4の位置番 号 1 07以降のアミノ酸配列を含む蛋白質
(b) アミノ酸配列 (a) において 1若しくは数個のアミノ酸が欠失、 置換若し くは付加されたアミノ酸配列を含み、 かつカテブシン L様システィンプロテア一 ゼ酵素活性を有する蛋白質。
4. 以下の (a) 又は (b) である請求項 3記載の蛋白質
( a ) 配列番号 2の位置番号 1 0 6番以降のァミノ酸配列又配列番号 4の位置番 号 1 0 7以降のアミノ酸配列からなる蛋白質
(b) アミノ酸配列 (a) において 1若しくは数個のアミノ酸が欠失、 置換若し くは付加されたアミノ酸配列からなり、 かつカテブシン L様システィンプロテア ーゼ酵素活性を有する蛋白質。
5. 請求項 3—4記載の蛋白質をコードする DNA。
6. 以下の (a) 又は (b) の DNA。
(a) 配列番号 1の 344塩基から 982塩基を含む DNA又は配列番号 3の 33 1塩基から 98 1塩基を含む DNA、
(b) (a) の相補的な塩基配列からなる DNAとス トリンジェントな条件下でハ ィプリダイズし、 かつカテブシン L様酵素活性を有する蛋白質をコードする DN A。
7. 以下の (a) 又は (b) である請求項 6記載の DNA。
( a ) 配列番号 1の 344塩基から 9 82塩基からなる DNA又は配列番号 3の 3 3 1塩基から 9 8 1塩基からなる DNA、
(b) (a) の相補的な塩基配列からなる DNAとス トリンジェントな条件下でハ イブリダィズし、 かつカテブシン L様酵素活性を有する蛋白質をコードする DN A。
8. 以下の (a) 又は (b) のプレプロ型カテブシン L様システィンプロテ ァーゼ蛋白質
(a) 配列番号 2又は 4に記載のアミノ酸配列からなる蛋白質、
(b) アミノ酸配列 (a) において 1若しくは数個のアミノ酸が欠失、 置換若し くは付加されたアミノ酸配列からなり、 かつカテブシン L様酵素活性を有する蛋 白質のプレブ口体。
9. 請求項 8項記載のプレプロ型カテブシン L様システィンプロテアーゼを コードする DNA。
1 0. 以下の (a) 又は (b) の DNA
( a ) 配列番号 1又は 3記載の D N A配列
(b) (a) の相補的な塩基配列からなる DNAとス トリンジェントな条件下でハ イブリダィズし、 かつカテブシン L様酵素活性を有する蛋白質のプレブ口型をコ 一ドする DNA。
1 1. 請求項 4又は 8記載のアミノ酸配列の全部または 1部と 80%以上同一 であるポリべプチドの産生能を有する DNA。
1 2. 請求項 5— 6又は請求項 9— 1 1のいずれか 1項に記載の DN Aを含 むべクタ一。
1 3. 請求項 1 2記載のベクターで形質転換されたカテブシン L様システィ ンプロテアーゼ酵素を発現することができる宿主細胞。
1 4. 請求項 1 3記載の宿主細胞を用いてカテブシン L様蛋白質を発現させ、 回収することを含むカテブシン L様システィンプロテアーゼ蛋白質の製造方法。
1 5. 以下の (a) 又は (b) のカテブシン L様システィンプロテアーゼの シグナルぺプチド
(a) 配列番号 2の位置番号 1から 1 5 (Met〜Ala) 又は配列番号 4の 1から 1 4 (Mei:〜 Val)に記載のアミノ酸配列からなるぺプチド
(b) アミノ酸配列 (a) において 1若しくは数個のアミノ酸が欠失、 置換若し くは付加されたアミノ酸配列からなり、 かつカテブシン L様酵素のシグナルぺプ チドとして機能できるぺプチド。
1 6. 請求項 1 5記載のカテブシン L様システィンプロテアーゼのシグナル ぺプチドをコードする DNA。
1 7. 以下の (a) 又は (b) の DNA。
( a ) 配列番号 1の 29塩基から 7 3塩基からなる DNA又は配列番号 3の 1 3塩 基から 54塩基からなる DNA、
(b) (a) の相補的な塩基配列からなる DNAとストリンジェントな条件下でハ イブリダィズし、 かつカテブシン L様酵素のシグナルぺプチドをコ一ドする DN A。
1 8. 以下の (a) 又は (b) のカテブシン L様システィンプロテアーゼの プロぺプチド
( a ) 配列番号 2の位置番号 1 6カゝら 1 ひ 5 (Ser〜Ala) 又は配列番号 4の 1カ ら 1 5〜 1 06 (Ser〜Met)に記載のアミノ酸配列からなるぺプチド
(b) アミノ酸配列 (a) において 1若しくは数個のアミノ酸が欠失、 置換若し くは付加されたアミノ酸配列からなり、 かつカテブシン L様システィンプロテア ーゼのプロべプチドとして機能できるぺプチド。
1 9. 請求項 1 8記載のカテブシン L様システィンプロテアーゼのプロぺプ チドをコードする DNA。
20. 以下の (a) 又は (b) の DNA。
( a ) 配列番号 1の 74塩基から 343塩基からなる DNA又は配列番号 3の 5 5 塩基から 3 30塩基からなる DNA、
(b) (a ) の相補的な塩基配列からなる DNAとス トリンジ ントな条件下でハ イブリダィズし、 かつカテブシン L様酵素のプロぺプチドをコ一ドする DNA。
2 1. 請求項 4— 5項又は 7— 8項いずれか 1項記載の DNA又はその相補鎖 の連続する 1 5塩基以上からなるカテブシン L様システィンプロテアーゼ遺伝子 検出用のプライマー。
PCT/JP2003/007661 2002-06-17 2003-06-17 ホッコクアカエビ由来の新規なカテプシンl様システインプロテアーゼ WO2003106677A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003241717A AU2003241717A1 (en) 2002-06-17 2003-06-17 Novel cathepsin l-like cysteine protease originating in pink shrimp
CA002489736A CA2489736A1 (en) 2002-06-17 2003-06-17 Novel cathepsin l-like cysteine protease originating in pink shrimp
JP2004513490A JP4355287B2 (ja) 2002-06-17 2003-06-17 ホッコクアカエビ由来の新規なカテプシンl様システインプロテアーゼ
US10/849,162 US7595183B2 (en) 2002-06-17 2004-05-20 Cathepsins L-like cysteine protease derived from northern shrimp (Pandalus eous)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-175773 2002-06-17
JP2002175773 2002-06-17
US47173303P 2003-05-20 2003-05-20
US60/471,733 2003-05-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/849,162 Continuation US7595183B2 (en) 2002-06-17 2004-05-20 Cathepsins L-like cysteine protease derived from northern shrimp (Pandalus eous)

Publications (1)

Publication Number Publication Date
WO2003106677A1 true WO2003106677A1 (ja) 2003-12-24

Family

ID=29738421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007661 WO2003106677A1 (ja) 2002-06-17 2003-06-17 ホッコクアカエビ由来の新規なカテプシンl様システインプロテアーゼ

Country Status (6)

Country Link
US (1) US7595183B2 (ja)
JP (1) JP4355287B2 (ja)
CN (1) CN100408681C (ja)
AU (1) AU2003241717A1 (ja)
CA (1) CA2489736A1 (ja)
WO (1) WO2003106677A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101886065B (zh) * 2010-06-28 2012-05-02 浙江大学 鲤鱼背肌中组织蛋白酶l的分离纯化方法
CN112852846B (zh) 2021-02-05 2021-11-23 中国水产科学研究院淡水渔业研究中心 青虾Cathepsin L基因、其dsRNA及应用
CN113846078B (zh) * 2021-11-30 2022-02-11 中国水产科学研究院黄海水产研究所 一种南极磷虾组织蛋白酶及其异源表达方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544767B1 (en) * 1994-10-27 2003-04-08 Axys Pharmaceuticals, Inc. Cathespin O2 protease
US5736357A (en) * 1994-10-27 1998-04-07 Arris Pharmaceutical Cathespin O protease
US5776759A (en) * 1996-09-26 1998-07-07 Incyte Pharmaceuticals, Inc. Two novel human cathepsin proteins
US6033893A (en) * 1997-06-26 2000-03-07 Incyte Pharmaceuticals, Inc. Human cathepsin
US7045333B1 (en) * 1998-01-16 2006-05-16 Incyte Corporation Human protease molecules
US6232454B1 (en) * 1998-02-27 2001-05-15 Incyte Genomics, Inc. Human proteinase molecules
CN1295128A (zh) * 2000-12-19 2001-05-16 中国科学院武汉病毒研究所 中国棉铃虫病毒组织蛋白酶基因

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BERRI MUSTAPHA ET AL.: "Purification and characterization of a new potential in vivo inhibitor of cathepsin L from bovine skeletal muscle", COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY, vol. 119B, no. 2, 1998, pages 283 - 288, XP002971092 *
JOSEPH LOREN J. ET AL.: "Complete nucleotide and deduced amino acid sequences of human and murine preprocathepsin L", J. CLIN. INVEST., vol. 81, no. 5, 1988, pages 1621 - 1629, XP002971091 *
LAYCOCK MAURICE V. ET AL.: "Molecular cloning of three cDNAs that encode cysteine proteinases in the digestive gland of the American lobster (Homarus americanus)", FEBS LETT., vol. 292, no. 1-2, 1991, pages 155 - 120, XP001105191 *
LE BOULAY C. ET AL.: "Cloning and expression of cathepsin L-like proteinases in the hepatopancreas of the shrimp penaeus vannamel during the intermolt cycle", J. COM. PHYSIOL. B, vol. 166, 1996, pages 310 - 318, XP002971090 *
LE BOULAY C. ET AL.: "Molecular cloning and sequencing of two cDNAs encoding cathepsin L-related cysteine proteinases in the nervous system and in the stomach of the Norway lobster (nephrops norvegicus)", COMP. BIOCHEM. PHYSIOL., vol. 111B, no. 3, 1995, pages 353 - 359, XP002971089 *

Also Published As

Publication number Publication date
US20040253707A1 (en) 2004-12-16
AU2003241717A1 (en) 2003-12-31
CN100408681C (zh) 2008-08-06
US7595183B2 (en) 2009-09-29
JPWO2003106677A1 (ja) 2005-10-13
CN1675358A (zh) 2005-09-28
JP4355287B2 (ja) 2009-10-28
CA2489736A1 (en) 2003-12-24

Similar Documents

Publication Publication Date Title
Villalba-Villalba et al. Trypsin from viscera of vermiculated sailfin catfish, Pterygoplichthys disjunctivus, Weber, 1991: Its purification and characterization
JP2003521926A (ja) プロテアーゼ、これに対する遺伝子およびその用途
Poonsin et al. Anionic trypsin from the spleen of albacore tuna (Thunnus alalunga): Purification, biochemical properties and its application for proteolytic degradation of fish muscle
Wang et al. Expression and characterization of common carp (Cyprinus carpio) matrix metalloproteinase-2 and its activity against type I collagen
EP1036166B1 (en) Procedure for extraction and use of hatching fluid from atlantic salmon
Balti et al. Cathepsin D from the hepatopancreas of the cuttlefish (Sepia officinalis): purification and characterization
Capasso et al. Cathepsin D from the liver of the Antarctic icefish Chionodraco hamatus exhibits unusual activity and stability at high temperatures
JPH02504465A (ja) オキアミ組織からの活性酵素の単離の改良
WO2003106677A1 (ja) ホッコクアカエビ由来の新規なカテプシンl様システインプロテアーゼ
JP3550409B2 (ja) ジクチオステリウムのジペプチジルアミノペプチダーゼ
Jeong et al. Purification and characterization of proteases from hepatopancreas of crawfish (Procambarvs clarkii) 1
Miyaji et al. Molecular cloning of a multidomain cysteine protease and protease inhibitor precursor gene from the tobacco hornworm (Manduca sexta) and functional expression of the cathepsin F-like cysteine protease domain
Okamoto et al. Purification and characterization of a glutamic-acid-specific endopeptidase from Bacillus subtilis ATCC 6051; application to the recovery of bioactive peptides from fusion proteins by sequence-specific digestion
US6592866B2 (en) Non-selfdegrading endoprotease
JP5757555B2 (ja) 新規酸性プロテアーゼ及びその用途
Tan et al. Occurrence of two distinct molecular species of cathepsin B in carp Cyprinus carpio
Tsuji et al. Identification and enzymatic characterization of clip domain serine protease in the digestive fluid of the sea hare, Aplysia kurodai
JP2001261698A (ja) アンジオテンシンi変換酵素阻害剤およびその製造法
JP3751086B2 (ja) 新規システインプロテアーゼ
JP3751144B2 (ja) 新規システインプロテアーゼ
Villalba-Villalba et al. Trypsin from jumbo squid (dosidicus gigas) hepatopancreas: Purification and characterization
KR100638318B1 (ko) 피브린 용해 활성을 갖는 흰이빨참갯지렁이의 세린 계열프로테아제 및 이를 암호화하는 유전자
Choi et al. Properties of proteases responsible for degradation of muscle proteins during anchovy sauce fermentation
Jiang Cloning and characterization of midgut-specific gene/gene products in the mosquito Aedes aegypti
US6066471A (en) Proteinase inhibitor for food processing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10849162

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004513490

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2489736

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20038194902

Country of ref document: CN

122 Ep: pct application non-entry in european phase