WO2003100846A2 - Glasmaterial für hochfrequenzanwendungen - Google Patents

Glasmaterial für hochfrequenzanwendungen Download PDF

Info

Publication number
WO2003100846A2
WO2003100846A2 PCT/EP2003/005414 EP0305414W WO03100846A2 WO 2003100846 A2 WO2003100846 A2 WO 2003100846A2 EP 0305414 W EP0305414 W EP 0305414W WO 03100846 A2 WO03100846 A2 WO 03100846A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
glass
glass material
substrate
conductor
Prior art date
Application number
PCT/EP2003/005414
Other languages
English (en)
French (fr)
Other versions
WO2003100846A3 (de
Inventor
Jürgen LEIB
Dietrich Mund
Original Assignee
Schott Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10222609A external-priority patent/DE10222609B4/de
Priority claimed from PCT/EP2003/003907 external-priority patent/WO2003088347A2/de
Application filed by Schott Ag filed Critical Schott Ag
Priority to US10/514,876 priority Critical patent/US8273671B2/en
Priority to JP2004508402A priority patent/JP5027992B2/ja
Priority to AU2003247287A priority patent/AU2003247287A1/en
Priority to EP03755118A priority patent/EP1506578A2/de
Priority to CA002484794A priority patent/CA2484794A1/en
Publication of WO2003100846A2 publication Critical patent/WO2003100846A2/de
Publication of WO2003100846A3 publication Critical patent/WO2003100846A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/02161Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31616Deposition of Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31625Deposition of boron or phosphorus doped silicon oxide, e.g. BSG, PSG, BPSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/003Manufacturing lines with conductors on a substrate, e.g. strip lines, slot lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/003Coplanar lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/467Adding a circuit layer by thin film methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/16Microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/355Temporary coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6627Waveguides, e.g. microstrip line, strip line, coplanar line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0106Neodymium [Nd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/049Nitrides composed of metals from groups of the periodic table
    • H01L2924/04955th Group
    • H01L2924/04953TaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1903Structure including wave guides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1903Structure including wave guides
    • H01L2924/19033Structure including wave guides being a coplanar line type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0179Thin film deposited insulating layer, e.g. inorganic layer for printed capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Definitions

  • the invention relates generally to the field of high-frequency circuits, in particular the invention relates to a glass material which is suitable for producing high-frequency conductor structures on a substrate, and to a high-frequency substrate.
  • HTCC and LTCC materials at very high frequencies - generally above 40GHz - is limited by relatively high dielectric constants (DK) and loss angles (tan ⁇ ) in these frequency ranges.
  • DK dielectric constants
  • Tan ⁇ loss angles
  • the HTCC and LTCC ceramics have an unavoidable grain size which has a negative influence on the high-frequency properties and which leads to the fact that the conductor tracks integrated therein are one of the Grain have corresponding surface roughness. This surface roughness leads to increased line losses.
  • the substrates inevitably also shrink during sintering, which makes it difficult to precisely maintain the desired dimensions.
  • the invention is therefore based on the object of providing improved materials for conductor track systems, in particular with regard to the radio frequency properties, and of improving the radio frequency properties of radio-frequency conductor arrangements.
  • This task is already carried out in a surprisingly simple manner by a glass material for the production of insulation layers for high-frequency substrates or high-frequency conductor arrangements, a method for producing a component with a high-frequency conductor arrangement or high-frequency conductor track system, and a component with high-frequency conductor arrangement according to the independent Claims solved.
  • Advantageous refinements and developments are the subject of the respective subclaims.
  • a glass material according to the invention for the production of insulation layers for high-frequency substrates or high-frequency conductor arrangements has an applied layer, in particular with a layer thickness in the range from 0.05 ⁇ m to 5 mm, preferably in the range from 0.05 ⁇ m to 1 mm, in at least one frequency range above of 1 GHz
  • Loss factor tan ⁇ less than or equal to 70 * 10 ⁇ 4 .
  • LTCC and HTCC materials are valued, among other things, for their good encapsulation properties, which make it possible to use such a substrate as part of the housing of components.
  • the encapsulation properties of glass layers are even better because glass has an extremely low permittivity for most gases.
  • the glass material according to the invention is outstandingly suitable for high-frequency applications.
  • a glass material according to the invention can be applied as a layer, in particular with a layer thickness in the range between 0.05 ⁇ m to 5 mm at a frequency of 40 GHz particularly advantageously have a loss factor tan ⁇ less than or equal to 50 * 10 ⁇ 4 .
  • This low loss factor makes the glass material according to the invention excellently applicable for high-frequency applications even at very high frequencies in the microwave range.
  • the loss factor tan ⁇ of a layer with a layer thickness in the range between 0.05 ⁇ m to 5 mm, which was applied using a glass material according to the invention is even less than or equal to 30 * 10 ⁇ 4 at a microwave frequency of 40 GHz.
  • This loss factor is even lower than the loss factors of LTCC and HTCC substrates in the microwave range.
  • the material can be evaporated to deposit a layer.
  • insulation layers can be deposited on a substrate using a glass material according to the invention by PVD coating or by vapor deposition.
  • this is particularly advantageous since only a moderate temperature load on the base or the substrate occurs.
  • the deposition of glass layers by evaporation of the glass material for example from a target with the glass material according to the invention arranged at a distance from the surface to be coated, enables the production of very thin, homogeneous insulation layers.
  • the use of the glass material thus also allows an increase in the
  • Integration density of high-frequency components such as high-frequency substrates.
  • a glass material according to this embodiment of the invention can accordingly be evaporated so that a glass layer or glass-like layer forms on the surface of a substrate, which faces the evaporation source and is exposed to the steam emitted by the source.
  • This property of a glass material according to the invention is not fulfilled by all glass materials. With many glass materials, no glass layers or glass-like layers are formed, only non-glass-like oxide layers are deposited, which then generally no longer have good encapsulation and / or high-frequency properties.
  • Glasses which comprise an at least binary material system are particularly suitable as steam glasses, or glass materials which can be vaporized and deposited again as glass-like or glass layers. Glass layers which have been deposited by evaporation of such glasses have particularly good encapsulation and high-frequency properties due to their low defect level.
  • a glass material according to the invention can be evaporated by electron beam evaporation.
  • electron beam evaporation a very small source spot can be created on a target with the glass material at the point of impact of the electron beam, on which the power of the electron beam is concentrated.
  • Electron beam evaporation can also achieve high deposition rates on the substrate to be coated.
  • the glass material can be processed easily, for example to form a glass target for electron beam evaporation, it is advantageous if the glass material has a processing temperature of less than 1300 ° C.
  • Processing temperature is generally understood to mean the temperature at which the viscosity of the glass is 10 4 dPas.
  • the glass material as an applied layer in particular with a layer thickness in the range between 0.05 ⁇ m to 5 mm, in at least one frequency range above 1 GHz, has a relative dielectric constant ⁇ R less than or equal to five having .
  • the glass material as an applied layer in particular with a layer thickness in the range between 0.05 ⁇ m to 5 mm, also in the microwave range at a frequency of 40 GHz, a relative dielectric constant ⁇ R less than or equal to 5, in particular a relative dielectric constant ⁇ R of 4 Have ⁇ 0.5.
  • the glass material as the applied layer in particular with a layer thickness in the range between 0.05 ⁇ m to 5 mm in a temperature range from 20 ° C. to 300 ° C., has a coefficient of thermal expansion ⁇ 2 o- 3 oo in the range is from 2.9xl0 "6 K " 1 to 3.5xl0 ⁇ 6 K "1.
  • This coefficient of expansion is well adapted, among other things, to the coefficient of expansion of silicon or Borofloat ® 33 glass. For example, temperature stresses when using silicon or Borofloat ® 33 glass as substrate materials can be largely avoided.
  • the glass material in particular, is applied as an applied layer a layer thickness in the range between 0.05 ⁇ m to 5 mm in a temperature range from 20 ° C. to 300 ° C.
  • a glass material which, in order to reduce temperature stresses when used as an insulation layer in silicon substrates as an applied layer, in particular with a layer thickness in the range between 0.05 ⁇ m to 5 mm in a temperature range of 20 ° C. up to 300 ° C has a coefficient of thermal expansion that deviates from the coefficient of thermal expansion of the substrate material, for example silicon, less than 1 ⁇ 10 6 K 1
  • the glass layer is as resistant as possible to the action of acids or alkalis.
  • One embodiment of the invention therefore provides a glass material which, as an applied layer, is acid-resistant in accordance with acid resistance class ⁇ 2.
  • the glass material as an applied layer is alkali-resistant according to alkali resistance class ⁇ 3.
  • Glass materials according to the invention preferably have the following composition in percent by weight:
  • T VA 1207 ° C
  • This particularly suitable glass is also referred to below as glass G018-189.
  • a further embodiment produces a suitable glass with the composition 84% by weight SiO 2 , 11% by weight B 2 0 3 , ⁇ 2% by weight A1 2 0 3 , 2.0% by weight Na 2 0 and in each case approximately 0.3% by weight Li 2 0 and K 2 0 the following properties were measured:
  • This glass which is also particularly suitable, is also referred to below as glass 8329.
  • compositions given above relate to the glass material before application.
  • the layer that was applied using such a glass material can also have a different composition.
  • the composition in the layer can change compared to the glass material according to the invention if the layer is deposited by vapor deposition and the components of the glass material have different vapor pressures.
  • a glass material as described above can be used particularly advantageously for producing an insulation layer for a high-frequency conductor structure or a high-frequency substrate.
  • a component with a high-frequency conductor arrangement can advantageously comprise the steps:
  • Component can be manufactured with high-frequency conductor arrangement, which
  • a substrate with at least one contacting area, on at least one side of the substrate a glass layer which has at least one opening with a via, and the via is in electrical contact with the contacting area, and at least one conductor structure on the glass layer which the via is in contact.
  • a component is not only understood to be an electronic component. Also a coated substrate with high frequency conductor arrangement, respectively
  • High-frequency conductor system which then serves as a whole as a carrier and for connecting further components, is understood as a component in the sense of this invention. Similar components with carrier material and high-frequency conductor system are generally also referred to as high-frequency substrates.
  • Silicon, ceramic, glass or even plastic are suitable as substrate materials.
  • Composite materials for example glass-plastic laminates, in particular also with integrated conductor arrangements can also be used.
  • other semiconductor materials such as gallium arsenide can also be used, for example.
  • Silicon, ceramics and glass as substrate material are also special due to their vapor-deposited glass very similar coefficients of thermal expansion.
  • the glass layer is particularly preferably deposited by evaporating glass material according to the invention.
  • the glass layer it is also conceivable for the glass layer to be deposited on the surface of the substrate to be coated, for example by sputtering, from a target with glass material according to the invention.
  • the glass layer is vapor-deposited by means of plasma ion-assisted vapor deposition (PIAD).
  • PIAD plasma ion-assisted vapor deposition
  • An ion beam is directed onto the surface to be coated during the vapor deposition process. This leads to a further compression and a reduction in the defect density.
  • one or more passive electrical components can also be applied to the glass layer and with the
  • Conductor structure brought into contact or connected For example, a capacitor, a resistor, a coil, a varistor, a PTC, an NTC, or a filter element can be applied to the glass layer as a passive electrical component.
  • a particularly advantageous embodiment of the invention provides for the production of a three-dimensional or multilayer conductor system on a substrate.
  • the steps of depositing a structured glass layer and applying at least one conductor structure are carried out several times.
  • the individual glass layers and / or conductor structures can be structured differently in order to form a three-dimensional conductor system, in particular also with passive components that are based on one or more Layers of the multilayer conductor system are formed.
  • a subsequently applied conductor structure can advantageously be connected or brought into contact with a contact area of a previously applied conductor structure, so that an electrical connection is created between two layers of the conductor arrangement and the layers can be electrically networked with one another.
  • a component can be formed which has a multilayer conductor arrangement with at least two vapor-deposited glass layers and a conductor structure applied thereon, a conductor structure on a first glass layer being in electrical contact with a conductor structure on a second glass layer via a plated-through hole.
  • such a structured intermediate layer can also be produced directly, for example by printing.
  • a further development of the method also provides for a conductive, opposite to, before the vapor deposition of the glass layer on the at least one contacting area
  • Intermediate layer is photolithographically structured together with a layer of conductive material, the layer of conductive material together with the intermediate layer being removed from the regions which surround the contacting region.
  • the glass layer can then advantageously be evaporated so that its thickness substantially corresponds to the thickness of the applied conductive material, so that an essentially flat surface is present after the glass layer has been lifted off over the contact area.
  • a glass layer with at least one opening is deposited directly above a contact area or advantageously offset laterally, and the at least one opening in the glass layer is then filled with conductive material.
  • the substrate is kept at a temperature between 50 ° C. and 200 ° C., preferably between 80 ° C. and 120 ° C., during the vapor deposition of the glass layer.
  • the moderate heating is also advantageous for the morphology of the glass layers, it being possible to produce particularly pore-free glass layers at these substrate temperatures.
  • a base pressure in the Aufdampfhimmmer which is in vapor deposition of the glass layer is at most in the range of 10 "4 mbar, preferably in the range of 10 -5 mbar or less retained.
  • the surface of the substrate to be coated is one
  • the glass layer to be vapor-deposited with a deposition rate of at least 0.5 ⁇ m layer thickness per minute.
  • This high deposition rate can be achieved without disadvantage for the layer quality of the glass layers and allows a short manufacturing time.
  • other vacuum deposition processes such as cathode sputtering, only achieve deposition rates of a few nanometers per minute.
  • the application of the conductor structure can also advantageously include the steps of applying a negatively structured intermediate layer and then depositing include conductive material on the base coated with the intermediate layer.
  • the base comprises the substrate and / or the substrate with one or more applied glass layers and conductor structures arranged thereon.
  • This intermediate layer can also be structured photolithographically or produced by structured printing.
  • the substrate itself can already have a conductor structure, for example in the form of conductor tracks. These can also advantageously be applied directly to the substrate before the step of depositing the structured glass layer.
  • a contacting area can then be provided on a conductor track applied directly on the substrate, which contact area is then brought into contact with a conductor structure subsequently applied on an insulating glass layer.
  • a multilayer, high-frequency conductor system, or a multilayer, high-frequency conductor arrangement can be created.
  • the substrate comprises a semiconductor substrate with one or more active semiconductor regions on a first side of the substrate.
  • the substrate can comprise a semiconductor integrated circuit.
  • the at least one conductor structure can be applied with a Connection point of the active semiconductor region are connected so that there is electrical contact with the conductor structure and thus also with the conductor arrangement.
  • the path has been disputed to monolithically integrate individual semiconductor components into cavities in the ceramic, so that the ceramic is the carrier for the semiconductor components.
  • the invention also enables the reverse route, in which the conductor arrangement is applied directly to a chip and thus serves as a carrier for the conductor arrangement.
  • a further embodiment of the invention provides a substrate which has at least one plated-through hole.
  • the at least one conductor structure can then be connected to the via through the substrate during application.
  • This embodiment of the invention makes it possible, among other things, to connect structures on one side of the substrate with a high-frequency conductor arrangement on a further side of the substrate.
  • a further, final glass layer can additionally be deposited by vapor deposition, which covers the layers previously applied.
  • at least one through-connection can advantageously be created through the final glass layer.
  • This glass layer can be produced in the same way as the production of the underlying glass layers of the conductor arrangement.
  • This further layer can serve as an insulation layer which insulates the conductor arrangement from the outside.
  • the substrate is coated in the wafer composite, so that a large number of components are processed simultaneously.
  • vapor-deposited glass layers are used as insulation layers.
  • the glass material according to the invention can also be used in particular for the methods and components described in this application, the disclosure content of this application in this regard being hereby expressly incorporated by reference.
  • a glass material according to the invention for the production of an insulation layer for a high-frequency conductor structure or a high-frequency substrate is generally considered in order to improve the high-frequency properties of such elements.
  • Fig. 1 is a sectional view of a first
  • FIG. 2 A sectional view of another
  • FIG. 3A with the aid of cross-sectional views the steps of a to 3G embodiment of the method according to the invention
  • FIG. 4A a variant of the method steps shown in FIGS
  • Fig. 8 is a schematic layer structure for HF
  • FIG. 10 shows a layer structure of buried coplanar lines CPW
  • Fig. 11 is a listing of properties of measured
  • FIG. 12 the amount of the scattering parameters and their up to 14 phase profile of the sample G1ACPW2 2 (glass 8329)
  • 15 shows the amount of the scattering parameters and their up to 17 phase profile of the sample G1ACPW3_2 (glass 8329)
  • FIG. 1 shows a simplified sectional illustration of a first embodiment of a component according to the invention, designated as a whole by reference number 10, having a substrate 1 with a first side 3 and a side 5 opposite to side 3 and a side 5 arranged on the substrate on the first side 3, as a whole with the reference number 4 high-frequency conductor arrangement.
  • a layer 6 with conductor structures 61-64 is arranged on the substrate 1.
  • the conductor structures 61-64 can be conductor tracks, for example.
  • some of the conductor structures 61-64 can also be designed as passive electrical components.
  • Contacting regions 71-74 are defined on these conductor structures 61-64 on the first side 3 of the substrate 1.
  • an insulating glass layer 9 is then deposited in a structured manner by vapor deposition on the first side 3 of the substrate, so that it has openings 8 above the contacting areas 71-74. These openings 8 are filled with a conductive material 19, so that the openings in connection with the conductive fillings each create vias through the insulating glass layer 9.
  • a layer 11 with further conductor structures 111, 112, 113 is applied to the glass layer 9. The conductor structures 111, 112, 113 are each in contact with at least one of the plated-through holes, so that an electrical connection of the conductor structures 111, 112, 113 to the conductor structures 61 - 64 of layer 6.
  • the substrate thus has a multilayer conductor arrangement, the layers 6 and 11 of which are separated from one another by an insulating glass layer 9 with excellent high-frequency properties.
  • the glass layer 9 can have a thickness in the range from 0.05 ⁇ m to 5 mm, glass layers produced by vapor deposition expediently having a thickness in the range from 0.05 ⁇ m to 1 mm.
  • a further, final vapor-deposition glass layer 13 is deposited on the layer 11 with the conductor structures 111, 112, 113 and serves as external insulation of the conductor structures 111, 112, 113.
  • Solder beads 17 are additionally applied to the plated-through holes 15 in order to attach and connect the component 10 to an SMT circuit board, for example.
  • a target with glass material according to the invention is preferably evaporated by electron beam evaporation and deposited on the substrate 1.
  • a glass according to the invention is used in particular as the glass material for producing the insulation layers 9, 13, which, as an applied layer with a layer thickness in the range between 0.05 ⁇ m to 5 mm, has a loss factor tan ⁇ less than or equal to 50 * 10 in at least one frequency range above 1 GHz ⁇ 4 .
  • the above-described glasses 8329 and in particular G018-189 are particularly suitable for this due to its excellent high-frequency properties.
  • Fig. 2 shows a sectional view of another
  • Embodiment of a component 10 according to the invention has a high-frequency conductor arrangement 41 and 42 on two opposite sides 3 and 5, respectively.
  • the conductor arrangements 41 and 42 are constructed analogously to the conductor arrangement 4 of the embodiment shown in FIG. 1.
  • the conductor arrangements 41 and 42 each have a glass layer 9 made of vapor-deposited glass with openings in which conductive material is used
  • Through-contacting is present and in electrical contact with contacting areas arranged under the openings.
  • Layers 6 with conductor structures are arranged on the glass layers 9 of the conductor arrangements 41 and 42, which are in turn in contact with the plated-through holes.
  • the conductor structures on the glass layer 9 are covered with further, final vapor-deposition glass layers 13, in which plated-through holes 15 are provided for the connection of the component.
  • 3A to 3G show, using cross-sectional views, the steps for producing a component according to the invention in accordance with an embodiment of the method according to the invention.
  • FIG. 3A shows a substrate 1 after a first processing step, in which a layer 6 with conductor structures 61-64, such as in particular of suitable conductor tracks, is produced on the side to which the high-frequency conductor arrangement is applied.
  • a layer 6 with conductor structures 61-64 such as in particular of suitable conductor tracks, is produced on the side to which the high-frequency conductor arrangement is applied.
  • these can For example, contact points of electronic components of the substrate, not shown in FIG. 3A, or connect to such contact points.
  • a glass layer 9 is evaporated, which covers both those with the structures 21 of the intermediate layer
  • the thickness of the glass layer 9 is preferably less than the thickness of the structured intermediate layer.
  • the intermediate layer is then removed, with the regions 90 of the glass layer 9 which cover the structures 21 of the intermediate layer or which are located on the structured intermediate layer being lifted off as well.
  • FIG. 3D shows the substrate after this step, which accordingly now has a glass layer 9 with openings 8 above the contacting areas 71-74 of the surface below.
  • the openings 8 can then, as shown in FIG. 3E, be filled with a conductive material 19, for example.
  • Layer 11 with conductor structures 111, 112, 113 and passive components 23 are applied, as shown in FIG. 3F.
  • the components 23 can comprise, for example, a capacitor, a resistor, a coil, a varistor, a PTC, an NTC, or a filter element.
  • Capacitors and coils can in particular also be realized by means of conductor structures of layers lying one above the other and insulated from one another by a vapor deposition glass layer. For example, a conductor structure of the layer 6 and a further conductor structure of the layer 11 lying above it can be used.
  • the conductor structures can be applied, for example, by applying a further, negatively structured intermediate layer and the deposition of electrically conductive material, the conductor structures 111, 112, 113 coming into contact with the conductive material 19 in the openings 8, so that an electrical connection is also made , or an electrical contact with the respective associated contacting areas 71 - 74 arises.
  • the conductor structures can also have structures with different conductive materials or also semiconductor materials, for example by applying the conductor structures in several steps using different materials. This allows further functionalities to be integrated into the conductor arrangement, for example by creating semiconductor-metal contacts or thermoelectric contacts.
  • the conductor structures 111, 112, 113 can also be produced by vapor deposition or sputtering, the contacting regions 71-74 and edges of the openings 8 also being able to be vapor-coated or coated, so that the respective conductor structures are in electrical contact with the contacting regions 71-74 come.
  • the intermediate layer can then be removed again, wherein conductive material deposited on the intermediate layer is lifted off and the provided conductor structures and possibly applied components also remain on the surface of the glass layer 9.
  • Contacting areas by vapor deposition using glass material according to the invention, such as, for example, glass G018-189 on the substrate and the application of conductor structures, can then be repeated to produce further layers of the conductor arrangement.
  • a subsequently applied conductor structure is brought into contact with a contact area of a previously applied conductor structure.
  • an intermediate layer with structures 21 is again applied to the provided contacting areas 75, 76 of the surface of the coated substrate 1, the contacting areas expediently being applied to applied conductor structures, or else Vias.
  • a further insulating glass layer 91 with vias is then produced through openings in the glass layer 91 above the contacting areas 75, 76, the production taking place analogously to the method steps described with reference to FIGS. 3C to 3E.
  • FIGS. 3B to 3E show a variant of the method steps of the method according to the invention shown with reference to FIGS. 3B to 3E.
  • This variant of the method according to the invention is based on applying a conductive material, which is adjacent to the respective contacting area and which is covered by the structure of the intermediate layer, on the contacting areas before the vapor deposition of the glass layer. This conductive material then forms the via.
  • a conductive layer 25 is applied and a photostructurable intermediate layer 27 is applied thereon, as is illustrated with reference to FIG. 4A.
  • FIG. 4B shows the substrate after a photolithographic structuring of the intermediate layer 27.
  • the layer is structured in such a way that structures 21 remain which cover the contacting areas 71-74 provided.
  • the conductive layer 25 is removed from the uncovered regions surrounding the contacting regions 71-74. This can be done in a customary manner, for example by etching. Accordingly, the contacting areas 71-74 are covered by a conductive material which is raised or protrudes from areas adjacent to the respective contacting area and which is covered in each case by a structure 21 of the intermediate layer 27. Then, as shown in FIG.
  • the insulating glass layer 9 is evaporated by evaporating glass material according to the invention, the thickness of the glass layer 9 preferably being selected so that it approximately corresponds to the thickness of the raised conductive material 19.
  • the structures 21 of the intermediate layer are removed, for example by using a suitable solvent, and the areas 90 of the glass layer 9 which cover the structures 21 are lifted off. In this way, a substrate with a glass layer is obtained, which has openings above the respective contacting areas and plated-through holes in the form of the conductive material located in the openings. This processing state is shown in Fig. 4E.
  • the surface of the conductive material and the glass layer 9 are approximately at the same height, so that a flat surface is obtained.
  • the method can then be continued as explained with reference to FIGS. 3F to 3G, the second glass layer 91 in FIG. 3G and any further glass layers with plated-through holes also being able to be produced in the same or similar manner as in FIG. 4A until 4E was explained.
  • the components 10 are produced by coating substrates in the wafer composite.
  • 5 to 7 show various embodiments of coated wafers 2, the components being obtained by separating individual substrates 1 from the wafer.
  • FIG. 5 shows an embodiment of the invention in which a semiconductor wafer 2 with a sequence of glass or Conductor layers have been provided. Silicon is preferably used as the wafer material for this purpose, since this material has a temperature expansion coefficient which corresponds very well with the vapor deposition glass.
  • the individual substrates 1 are after
  • the coating in the wafer assembly and the production of the processing state shown in FIG. 5 are separated by cutting along the intended separating axes 29 in order finally to obtain components 10 with a high-frequency conductor structure.
  • the wafer 2 has on a first side 3 individual active semiconductor regions 33 which are connected to connection points 35.
  • the conductor arrangement 4 is arranged on a second side 5 of the wafer 2 or the substrates 1 of the wafer 2, which lies opposite the first sides with the active semiconductor regions 33.
  • the conductor arrangement 4 is shown in a simplified manner for the sake of clarity, with all conductor structures being designated by reference number 100 here, among other things.
  • the individual layers of the conductor arrangement 4 can advantageously be produced as explained with reference to FIGS. 3A to 3G and / or FIGS. 4A to 4E.
  • the conductor arrangement 4 shown in FIG. 5 is also made in multiple layers, with the steps of depositing a structured glass layer and applying
  • Conductor structures 100 are accordingly carried out several times, and a subsequently applied conductor structure 100 is brought into contact with a contact area of a previously applied conductor structure 100.
  • Through-contacts 37 are also inserted into the wafer 2 through the substrates 1, which are electrically connected to the connection points 35.
  • the plated-through hole can preferably be produced by etching etching pits in the wafer from the second side 5 to the preferably metallic connection points 35, which simultaneously act as an etching stop.
  • a passivation layer 39 is then produced on the walls of the etching pit and the etching pit is filled with conductive material 43.
  • the conductive material 43 of the plated-through holes 37, which is exposed on the side 3, serves as a contact area for conductor structures 100 of the conductor arrangement 4.
  • Contacting areas are used for some of the conductor structures 100 of the conductor arrangement 4. If these conductor structures 100 are brought into contact with the contacting areas when they are applied to the previously deposited glass layer 9, the conductor structures are accordingly also electrically connected to the connection points 35 on the first side of the substrates 1. In this way, the active semiconductor regions 33 can then be supplied via the conductor arrangement and electrical signals from the active semiconductor regions can be applied to the conductor structures 100 of the conductor arrangement 4.
  • FIG. 6 shows a further embodiment of the invention, substrates which have also been connected in the wafer composite being coated with a conductor arrangement 4. This embodiment of the invention is similar to the embodiment shown in FIG. 5.
  • a semiconductor wafer 2 with active semiconductor regions 33, which are assigned to individual substrates 1, is also used in the embodiment shown in FIG. 6.
  • the connection points 35 of the active semiconductor regions 33 are connected to conductor structures 100.
  • conductor arrangement 4 is evaporated on the first side 3 of the substrates 1, on which the active semiconductor regions 33 are also arranged.
  • the plated-through holes 15 in the lowermost glass layer 9 of the conductor arrangement 4 are applied directly to the contact points 35, the
  • contact points 35 form the contacting areas of the substrates 1 for the corresponding conductor structures 100 on the first glass layer 9.
  • the components 10, which are obtained by separating from the coated wafers 2, as are shown by way of example in FIGS. 5 and 6, can be used, for example, as high-frequency transmission / reception modules for frequencies above 10 GHz, in particular for frequencies in the region around 40GHz or higher.
  • FIG. 7 shows yet another embodiment of substrates 1 which, according to the invention, have been provided with a high-frequency conductor arrangement 4 in the wafer assembly.
  • the conductor arrangement 4 with the glass layers 9, 91, 92, 93, 13 and the conductor structures 100 is here applied to a wafer, the substrates 1 of which are also
  • the components 10 with substrates 1 and conductor arrangements 4 serve after the separation from the wafer as a high-frequency rewiring substrate for further components that can be connected to the external contact points of the components 10.
  • the external contact points are provided with soldering beads 17, for example, so that further components in SMT technology can be attached and connected.
  • the substrates 1 have no active components here.
  • the substrate wafer 2 can also be made from insulating material, such as glass or plastic. A particularly well-suited glass as material for the wafer or the substrates 1 of the components 10 is
  • Borofloat ® glass which has a thermal expansion coefficient that almost matches the preferred vapor deposition glass.
  • Fig. 8 shows that for the characterization of the HF
  • the scattering parameters S12 and S21 are also used as transmission loss and the scattering parameters Sll and S22 referred to as reflection loss.
  • Attenuation values of less than -2 dB for the scattering parameters S12 and S21 can be recognized on the basis of the measured values shown in FIG. 13 up to a frequency of 50 GHz.
  • the scattering parameters S21 and S12 represent the values of the transmission of the electrical signal at the respective frequency. Up to a frequency of 50 GHz can be recognized.
  • the linear phase profile of the scattering parameter S21 indicates a very low dispersion up to a frequency of 50GHz.
  • the measured values shown with reference to FIGS. 12 to 14 can also be verified during measurements on further samples, the

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

Zur Verbesserung der Hochfrequenzeigenschaften von Hochfrequenz-Substraten oder Hochfrequenz­Leiteranordnungen wird ein Glasmaterial zur Herstellung von Isolationsschichten für Hochfrequenz-Substrate oder Hochfrequenz Leiteranordnungen vorgeschlagen, welches als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 um bis 5 mm in zumindest einem Frequenzbereich to oberhalb von 1 GHz einen Verlustfaktor tan8 kleiner oder gleich 70*10-4 aufweist.

Description

Glasmaterial für Hochfrequenzanwendungen
Beschreibung
Die Erfindung betrifft allgemein das Gebiet der Hochfrequenzschaltungen, insbesondere betrifft die Erfindung ein Glasmaterial welches zur Herstellung von hochfrequenztauglichen Leiterstrukturen auf einem Substrat geeignet ist, sowie ein Hochfrequenz-Substrat.
Der Trend in der Halbleiterindustrie geht bekanntermaßen zu immer höheren Datenübertragungsraten. Bei Frequenzen im Gigaherz-Bereich kommt es dabei verstärkt zur Signaldämpfung an den Zu- und Ableitungssystemen. Für derartige Systeme werden bisher vor allem bedruckte keramische (HTCC) und glaskeramische (LTCC) ultilayerschichten eingesetzt, die nach Bedruckung mit leitfähigen Schichten, Laminierung und Sinterung eine dreidimensionale oder mehrschichtige Verdrahtung für eine Hochfrequenz-Schaltung realisieren. Außerdem kommen organische Multilayerschichten zum Einsatz, die nicht hermetisch sind. Bei hohen Frequenzen nehmen jedoch bei derartigen Verdrahtungen die Übertragungsverluste durch die Dämpfung in den Leiternbahnen zu. Die Anwendung von HTCC- und LTCC-Materialien bei sehr hohen Frequenzen -im allgemeinen oberhalb von 40GHz- wird durch relativ hohe Dielektrizitätskonstanten (DK) und Verlustwinkel (tanδ) in diesen Frequenzbereichen begrenzt. Die HTCC-und LTCC- Keramiken weisen eine unvermeidbare Körnung auf, welche die Hochfrequenzeigenschaften negativ beeinflussen und die dazu führt, daß die darin integrierten Leiterbahnen eine der Körnung entsprechende Oberflächenrauhigkeit haben. Diese Oberflächenrauhigkeit führt zu erhöhten Leitungsverlusten.
Eine weitere Ursache für die hohe Dämpfung in bekannten Hochfrequenzleiter-Substraten ist unter anderem in der Aufbringung der Leiterbahnen, üblicherweise mittels Dickfilmtechnik, insbesondere mittels Siebdruck begründet. Die mit dieser Technik hergestellten Leiterbahnen weisen eine große Inhomogenität und Rauhigkeit der Leiterbahnkonturen auf. Die Inhomogenitäten der Leiterbahnen wirken dabei wie Antennen, so daß es zu großen Abstrahlungsverlusten kommt.
Ferner kommt es auch beim Sintern zwangsläufig zu einer Schrumpfung der Substrate, was ein genaues Einhalten von gewünschten Abmessungen erschwert.
Neuere Entwicklungen gehen dahin, die nachteilige Dickfilmtechnik durch Aufdampfen oder Aufsputtern der Leiterbahnen mittels verschiedener PVD-Verfahren zu ersetzen. Allerdings stellt das notwendige Sintern der HTCC- oder LTCC- Materialien für die Herstellung des Verdrahtungsstapels bei den bisherigen Verfahren immer noch ein großes Problem dar. So erfordert LTCC-Keramik zur Sinterung eine Temperatur von mindestens 950 °C. Für die Sinterung von HTCC-Keramiken ist sogar eine Temperatur von 1500 °C erforderlich. Bei diesen Temperaturen kommt es zu Veränderungen der Leiterbahnstrukturen und die Auswahl der Leiterbahn- Materialien ist eingeschränkt.
Der Erfindung liegt daher die Aufgabe zugrunde, insbesondere bezüglich der Hochfrequenzeigenschaften verbesserte Materialien für Leiterbahn-Systeme bereitzustellen und die Hochfrequenzeigenschaften von Hochfrequenz-Leiteranordnungen zu verbessern. Diese Aufgabe wird bereits in höchst überraschend einfacher Weise durch ein Glasmaterial zur Herstellung von Isolationsschichten für Hochfrequenz-Substrate oder Hochfrequenz-Leiteranordnungen, ein Verfahren zur Herstellung eines Bauelements mit Hochfrequenz-Leiteranordnung oder Hochfrequenz-Leiterbahnsystem, sowie ein Bauelement mit Hochfrequenz-Leiteranordnung gemäß den unabhängigen Ansprüchen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand der jeweiligen Unteransprüche .
Ein erfindungsgemäßes Glasmaterial zur Herstellung von Isolationsschichten für Hochfrequenz-Substrate oder Hochfrequenz-Leiteranordnungen weist als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich von 0,05 μm bis 5 mm, bevorzugt im Bereich von 0,05 μm bis 1 mm in zumindest einem Frequenzbereich oberhalb von 1 GHz einen
Verlustfaktor tanδ kleiner oder gleich 70*10~4 auf.
LTCC- und HTCC-Materialien werden unter anderem wegen ihrer guten Verkapselungseigenschaften geschätzt, die es gestatten, ein derartiges Substrat auch als Teil der Gehäusung von Bauelementen zu verwenden. Die Verkapselungseigenschaften Glasschichten sind sogar noch besser, da Glas für die meisten Gase eine extrem niedrige Permitivität aufweist.
Durch den niedrigen Verlustfaktor des als Schicht aufgebrachten Glasmaterials ist das erfindungsgemäße Glasmaterial hervorragend für Hochfrequenz-Anwendungen geeignet .
Ein erfindungsgemäßes Glasmaterial kann als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm bei einer Frequenz von 40GHz besonders vorteilhaft einen Verlustfaktor tanδ kleiner oder gleich 50*10~4 aufweisen. Dieser niedrige Verlustfaktor macht das erfindungsgemäße Glasmaterial hervorragend für Hochfrequenz-Anwendungen auch bei sehr hohen Frequenzen im Mikrowellenbereich anwendbar.
Gemäß einer Weiterbildung der Erfindung ist der Verlustfaktor tanδ einer Schicht mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm, welche unter Verwendung eines erfindungsgemäßen Glasmaterials aufgebracht wurde, bei einer Mikrowellenfrequenz von 40 GHz sogar kleiner oder gleich 30*10~4. Dieser Verlustfaktor ist sogar niedriger als die Verlustfaktoren von LTCC- und HTCC-Substraten im Mikrowellenbereich .
Gemäß einer besonders vorteilhaften Ausführungsform eines erfindungsgemäßen Glasmaterials kann das Material zum Abscheiden einer Schicht verdampft werden. Dadurch können Isolationsschichten unter Verwendung eines erfindungsgemäßen Glasmaterials durch PVD-Beschichtung, beziehungsweise durch Aufdampfen auf einer Unterlage abgeschieden werden. Dies ist unter anderem deshalb besonders vorteilhaft, da nur eine mäßige Temperaturbelastung der Unterlage, beziehungsweise des Substrats auftritt. Außerdem ermöglicht das Abscheiden von Glasschichten durch Verdampfen des Glasmaterials, beispielsweise von einem gegenüber der zu beschichtenden Oberfläche beabstandet angeordneten Target mit erfindungsgemäßem Glasmaterial die Herstellung sehr dünner, homogener Isolationsschichten. Die Verwendung des Glasmaterials erlaubt somit auch eine Erhöhung der
Integrationsdichte von Hochfrequenz-Bauelementen, wie beispielsweise von Hochfrequenz-Substraten.
Ein Glasmaterial gemäß dieser Ausführungsform der Erfindung läßt sich demgemäß so verdampfen, daß sich eine Glasschicht oder glasartige Schicht auf der Oberfläche eines Substrats ausbildet, welche der Verdampfungsquelle zugewandt und dem von der Quelle emittierten Dampf ausgesetzt ist. Diese Eigenschaft eines erfindungsgemäßen Glasmaterials wird nicht von allen Glasmaterialien erfüllt. Bei vielen Glasmaterialien bilden sich keine Glasschichten oder glasartigen Schichten, sondern es scheiden sich lediglich nicht glasartige Oxidschichten ab, welche dann im allgemeinen keine guten Verkapselungs- und/oder Hochfrequenzeigenschaften mehr aufweisen.
Besonders geeignet als Aύfdampfgläser, beziehhungsweise Glasmaterialien, welche verdampft und als glasartige oder Glasschichten wieder abgeschieden werden können, sind insbesondere auch Gläser, welche ein zumindest binäres Stoffsystem umfassen. Glasschichten, welche durch Verdampfung derartiger Gläser abgeschieden wurden, weisen aufgrund ihrer Defektarmut besonders gute Verkapselungs- und Hochfrequenzeigenschaften auf.
Insbesondere ist es günstig, wenn ein erfindungsgemäßes Glasmaterial durch Elektronenstrahlverdampfung verdampft werden kann. Bei der Elektronenstrahlverdampfung kann ein sehr kleiner Quellfleck auf einem Target mit dem Glasmaterial am Auftreffpunkt des Elektronenstrahls erzeugt werden, auf den sich die Leistung des Elektronenstrahls konzentriert. Durch Elektronenstrahlverdampfung können auch hohe Abscheideraten auf dem zu beschichtenden Substrat erreicht werden.
Damit das Glasmaterial leicht, beispielsweise zur Formung eines Glastargets zur Elektronenstrahlverdampfung verarbeitet werden kann, ist es vorteilhaft, wenn das Glasmaterial eine Verarbeitungstemperatur von kleiner als 1300 °C aufweist. Als Verarbeitungstemperatur wird dabei im allgemeinen die Temperatur verstanden, bei welcher die Viskosität des Glases 104 dPas beträgt.
Um niedrige Abstrahlungsverluste von Leiterstrukturen zu erreichen, ist es von Vorteil, wenn das Glasmaterial als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm in zumindest einem Frequenzbereich oberhalb von 1 GHz eine relative Dielektrizitätskonstante εR kleiner oder gleich fünf aufweist .
In vorteilhafter Weiterbildung kann das Glasmaterial als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm auch im Mikrowellenbereich bei einer Frequenz von 40 GHz eine relative Dielektrizitätskonstante εR kleiner oder gleich 5, insbesondere eine relative Dielektrizitätskonstante εR von 4 ± 0,5 aufweisen.
Gemäß einer weiteren Ausführungsform der Erfindung weist das Glasmaterial als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm in einem Temperaturbereich von 20 °C bis 300 °C einen Temperaturausdehnungskoeffizienten α2o-3oo auf, der im Bereich von 2,9xl0"6 K"1 bis 3,5xl0~6 K"1 liegt. Dieser Ausdehnungskoeffizient ist unter anderem gut an die Ausdehungskoeffizienten von Silizium oder Borofloat®33-Glas angepaßt. Damit können beispielsweise Temperaturspannungen bei der Verwendung von Silizium oder Borofloat®33-Glas als Substratmaterialien weitgehend vermieden werden.
Eine noch bessere thermische Anpassung wird erreicht, wenn das Glasmaterial als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm in einem Temperaturbereich von 20 °C bis 300 °C einen
Temperaturausdehnungskoeffizienten α20-3oo = (3, 2±0, 2) xl0~6K_1 aufweist .
Gemäß noch einer weiteren Ausführungsform der Erfindung ist ein Glasmaterial vorgesehen, welches zur Reduzierung von Temperaturspannungen bei der Verwendung als Isolationsschicht bei Silizium-Substraten als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm in einem Temperaturbereich von 20 °C bis 300 °C einen Temperaturausdehnungskoeffizienten aufweist, der vom Temperaturausdehnungskoeffizienten des Substratmaterials, beispielsweise von Silizium weniger als lxlO~6K 1 abweicht
Für die dauerhaften Verkapselungseigenschaften einer Glasschicht, welche mit erfindungsgemäßen Glasmaterial hergestellt wurde, ist es günstig, wenn die Glasschicht möglichst resistent gegen Säuren- oder Laugeneinwirkung ist. Eine Ausführungsform der Erfindung sieht daher ein Glasmaterial vor, welches als aufgebrachte Schicht säurebeständig gemäß Säurebeständigkeitsklasse <2 ist. Gemäß einer weiteren Ausführungsform der Erfindung ist das Glasmaterial als aufgebrachte Schicht laugenbeständig gemäß Laugenbeständigkeitsklasse <3.
Als geeignet haben sich Glasmaterialien erwiesen, deren Bestandteile sich im folgenden Zusammensetzungsbereich befinden: Komponente Zusammensetzungsbereich
Si02 40 - 90,
B203 10 - 40,
A1203 0 - 5,
K20 0 - 5, Li20 0 - 3,
Na20 0 - 3.
Die obigen Zahlenwerte sind dabei in Gewichtsprozent angegeben.
Die Hochfrequenzeigenschaften und die
Verdampfungseigenschaften lassen sich insbesondere mit erfindungsgemäßen Glasmaterialien verbessern, welche folgende Bestandteile in Gewichtsprozent aufweisen:
Komponenten Zusammensetzungsbereich
Si02 60 - 90,
B203 10 - 30,
A1203 0 - 3, K20 0 - 3,
Li20 0 - 2,
Na20 0 - 2.
Vorzugsweise weisen erfindungsgemäße Glasmaterialien dabei folgende Zusammensetzung in Gewichtsprozent auf:
Komponenten Glasl Glas2
Si02 84 ± 5 71 ± 5
B203 11 ± 5 26 ± 5
Na20 2 ± 0,2 0,5 ± 0,2
Li20 0,3 ± 0, 2 0,5 ± 0,2
K20 0,3 ± 0, 2 1,0 ± 0,2
A1203 0,5 ± 0, 2 1,0 ± 0,2
An einem solchen Glas mit der Zusammensetzung 71 Gew% Si02, 26 Gew% B203, 1 Gew% A1203, 1 Gew% K20 und jeweils 0,5 Gew% Li20 und Na20 wurden folgende Eigenschaften gemessen: Temperaturausdehungs- koeffizient zwischen 20 °C und
300 °C: 6 _, α2o-o=3,2xlO 5 K \
Brechungsindex: nd=l,465 ,
Transformationstemperatur: Tg=466 °C,
Erweichungstemperatur: TE =742 °C,
Verarbeitungstemperatur: TVA = 1207 °C,
Relative
Dielektrizitätskonstante bei
40 GHz: „ n εR = 3,9 ,
Verlustfaktor bei 40 GHz: tanδ = 26xl0~4,
Dichte: p = 2,12 g-cm"3,
Beständigkeitsklasse Wasser: 2,
Beständigkeitsklasse Säuren: 2,
Beständigkeitsklasse Laugen: 3.
Dieses besonders geeignete Glas mit wird im folgenden auch als Glas G018-189 bezeichnet.
Eine weitere Ausführungsform ergibt ein geeignetes Glas mit der Zusammensetzung 84 Gew% Si02, 11 Gew% B203, < 2 Gew% A1203, 2,0 Gew% Na20 und jeweils ca. 0,3 Gew% Li20 und K20 wurden folgende Eigenschaften gemessen:
Temperaturausdehungs- koeffizient zwischen 20 °C und
300 °C * α20-30o=2,75xlO'6 K"1,
Brechungsindex: nd=l,47 ,
Transformationstemperatur: Tg=562 °C,
Relative
Dielektrizitätskonstante bei
40 GHz: εR — 5 , Verlustfaktor bei 40 GHz: tanδ = 40xl0~4,
Dichte: p = 2,2 g-crrf3,
Beständigkeitsklasse Wasser: 1,
Beständigkeitsklasse Säuren: 1,
Beständigkeitsklasse Laugen: 2.
Dieses ebenfalls besonders geeignete Glas mit wird im folgenden auch als Glas 8329 bezeichnet.
Die oben angegebenen Zusammensetzungen beziehen sich auf das Glasmaterial vor dem Aufbringen. Die Schicht, die unter Verwendung eines solchen Glasmaterials aufgebracht wurde, kann auch eine davon abweichende Zusammensetzung haben. Beispielsweise kann sich die Zusammensetzung in der Schicht gegenüber dem erfindungsgemäßen Glasmaterial verändern, wenn die Schicht durch Aufdampfen abgeschieden wird und die Komponenten des Glasmaterials unterschiedliche Dampfdrücke haben.
Ein wie oben beschriebenes Glasmaterial kann besonders vorteilhaft zur Herstellung einer Isolationsschicht für eine Hochfrequenz-Leiterstruktur oder ein Hochfrequenz-Substrat verwendet werden.
Ein entsprechendes Verfahren zur Herstellung eines
Bauelements mit Hochfrequenz-Leiteranordnung kann dazu vorteilhaft die Schritte umfassen:
-Abscheiden einer strukturierten Glasschicht mit zumindest einer Öffnung über einem Kontaktierungsbereich auf einem Substrat unter Verwendung eines insbesondere wie vorstehend beschriebenen Glasmaterials, und
-Aufbringen zumindest einer Leiterstruktur auf die Glasschicht, welche einen elektrischen Kontakt mit dem Kontaktierungsbereich aufweist. Insbesondere ist aufgrund der oben genannten Vorteile daran gedacht, die Glasschicht durch Verdampfen des Glasmaterials abzuscheiden.
Mit dem erfindungsgemäßen Verfahren ist demgemäß ein
Bauelement mit Hochfrequenz-Leiteranordnung herstellbar, welches
-ein Substrat mit zumindest einem Kontaktierungsbereich, -auf zumindest einer Seite des Substrats eine Glasschicht, die zumindest eine Öffnung mit einer Durchkontaktierung aufweist, und wobei die Durchkontaktierung in elektrischem Kontakt mit dem Kontaktierungsbereich steht, und -zumindest eine Leiterstruktur auf der Glasschicht, welche mit der Durchkontaktierung in Kontakt ist, umfaßt.
Als Bauelement in diesem Sinne wird nicht nur ein elektronisches Bauelement verstanden. Auch ein beschichtetes Substrat mit Hochfrequenz-Leiteranordnung, beziehungsweise
Hochfrequenz-Leitersystem, welches dann als Ganzes als Träger und zur Verschaltung von weiteren Bauelementen dient, wird als Bauelement im Sinne dieser Erfindung verstanden. Ähnliche Bauelemente mit Trägermaterial und Hochfrequenz-Leitersystem werden im allgemeinen auch als Hochfrequenz-Substrate bezeichnet .
Als Substratmaterialien sind unter anderem Silizium, Keramik, Glas, oder sogar Kunststoff geeignet. Auch können Verbundmaterialien, beispielsweise Glas-Kunststoff-Laminate, insbesondere auch mit integrierten Leiteranordnungen verwendet werden. Neben Silizium können auch beispielsweise andere Halbleitermaterialien, wie etwa Galliumarsenid verwendet werden. Silizium, Keramik und Glas als Substratmaterial sind auch besonders aufgrund ihrer zum aufgedampften Glas sehr ähnlichen Temperaturausdehungskoeffizienten geeignet .
Die Glasschicht wird besonders vorzugsweise durch Verdampfen von erfindungsgemäßem Glasmaterial abgeschieden. Es ist jedoch auch denkbar, die Glasschicht beispielsweise durch Aufsputtern von einem Target mit erfindungsgemäßem Glasmaterial auf der zu beschichtenden Oberfläche des Substrats abzuscheiden.
Gemäß einer Weiterbildung der Erfindung erfolgt das Aufdampfen der Glasschicht durch Plasma-Ionen-unterstütztes Aufdampfen (PIAD). Dabei wird während des Aufdampfprozesse ein Ionenstrahl auf die zu beschichtende Oberfläche gerichtet. Dies führt zu einer weiteren Verdichtung und einer Verringerung der Defektdichte.
Auf die Glasschicht können neben Leiterstrukturen, wie beispielsweise Leiterbahnen auch ein oder mehrere passive elektrische Bauelemente aufgebracht und mit der
Leiterstruktur in Kontakt gebracht, beziehungsweise angeschlossen werden. Beispielsweise kann auf der Glasschicht als passives elektrisches Bauelement ein Kondensator, ein Widerstand, eine Spule, ein Varistor, ein PTC, ein NTC, oder ein Filterelement auf der Glasschicht aufgebracht werden.
Eine besonders vorteilhafte Ausführungsform der Erfindung sieht die Herstellung eines dreidimensionalen oder mehrlagigen Leitersystems auf einem Substrat vor. Dazu werden die Schritte des Abscheidens einer strukturierten Glasschicht und des Aufbringens zumindest einer Leiterstruktur mehrfach durchgeführt. Die einzelnen Glasschichten und/oder Leiterstrukturen können dabei unterschiedlich strukturiert sein, um ein dreidimensionales Leitersystem, insbesondere auch mit passiven Bauelementen, die auf einer oder mehreren Lagen des mehrlagigen Leitersystems ausgebildet werden, zu realisieren. Dabei kann vorteilhaft eine nachfolgend aufgebrachte Leiterstruktur mit einem Kontaktierungsbereich einer vorhergehend aufgebrachten Leiterstruktur verbunden oder in Kontakt gebracht werden, so daß zwischen zwei Lagen der Leiteranordnung ein elektrischer Anschluß geschaffen wird und die Lagen miteinander elektrisch vernetzt werden können. Dementsprechend kann damit ein Bauelement ausgebildet werden, das eine mehrlagige Leiteranordnung mit zumindest zwei aufgedampften Glasschichten und jeweils darauf aufgebrachter Leiterstruktur aufweist, wobei eine Leiterstruktur auf einer ersten Glasschicht mit einer Leiterstruktur auf einer zweiten Glasschicht über eine Durchkontaktierung in elektrischem Kontakt sind.
Es ist jedoch auch möglich, zwei oder mehr übereinanderliegende oder versetzte Durchkontaktierungen in einzelnen aufeinanderliegenden Glasschichten in Kontakt zu bringen, so daß beispielsweise ein Kontaktierungsbereich des Substrats durch mehrere Glasschichten hindurch nach außen durchkontaktiert oder mit einer Leiterstruktur einer weiteren Lage verbunden wird.
Eine vorteilhafte Ausführungsform des Verfahrens sieht weiterhin vor, daß der Schritt des Abscheidens einer strukturierten Glasschicht mit zumindest einer Öffnung über einem Kontaktierungsbereich durch Aufdampfen die Schritte umfaßt :
-Aufbringen einer strukturierten Zwischenschicht, welche den Kontaktierungsbereich abdeckt,
-Aufdampfen einer Glasschicht auf das Substrat und die darauf befindliche strukturierte Zwischenschicht, wobei die Dicke der Glasschicht vorzugsweise geringer ist als die der strukturierten Zwischenschicht , und -Entfernen der strukturierten Zwischenschicht, wobei die Bereiche der Glasschicht, die sich auf der strukturierten Zwischenschicht befinden, mit abgehoben werden.
Neben der photolithographischen Lackstrukturierung kann eine derartige strukturierte Zwischenschicht auch direkt, etwa durch Bedrucken hergestellt werden.
Eine Weiterbildung des Verfahrens sieht weiterhin vor, vor dem Aufdampfen der Glasschicht auf den zumindest einen Kontaktierungsbereich ein leitendes, gegenüber zum
Kontaktierungsbereich benachbarten Bereichen hervorragendes Material aufzubringen, welches von der Struktur der Zwischenschicht bedeckt wird. Damit wird eine leitende, erhabene Struktur auf dem Kontaktierungsbereich erzeugt. Dieser Schritt kann durchgeführt werden, indem etwa die
Zwischenschicht zusammen mit einer Schicht aus leitfähigem Material photolithographisch strukturiert wird, wobei die Schicht aus leitfähigem Material zusammen mit der Zwischenschicht von den Bereichen, welche den Kontaktierungsbereich umgeben entfernt wird. Die Glasschicht kann dann vorteilhaft so aufgedampft werden, daß ihre Dicke im wesentlichen der Dicke des aufgebrachten, leitenden Materials entspricht, so daß nach dem Abheben der Glasschicht über dem Kontaktierungsbereich eine im wesentlichen ebene Oberfläche vorhanden ist.
Gemäß noch einer Weiterbildung der Erfindung wird zunächst eine Glasschicht mit zumindest einer Öffnung direkt über einem Kontaktierungsbereich oder vorteilhaft seitlich versetzt abgeschieden und die zumindest eine Öffnung in der Glasschicht danach mit leitendem Material aufgefüllt. Auch auf diese Weise wird eine im wesentlichen ebene Oberfläche als Unterlage für das anschließende Aufbringen einer oder mehrerer Leiterstrukturen geschaffen. Es hat sich ferner als vorteilhaft erwiesen, wenn das Substrat während dem Aufdampfen der Glasschicht auf einer Temperatur zwischen 50 °C und 200 °C, bevorzugt zwischen 80 °C und 120 °C gehalten wird. Durch das Erwärmen des
Substrates wird unter anderem das Entstehen von mechanischen Spannungen vermieden. Auch ist das mäßige Erwärmen vorteilhaft für die Morphologie der Glasschichten, wobei bei diesen Substrattemperaturen besonders porenfreie Glasschichten erzeugt werden konnten.
Gleichermaßen positiv für die geforderte Schichtqualität ist auch ein Basisdruck in der Aufdampfkämmer, der beim Aufdampfen der Glasschicht höchstens im Bereich von 10"4 mbar, bevorzugt im Bereich von 10~5 mbar oder geringer gehalten wird.
Um geschlossene Glasschichten mit geringer Porendichte auf dem Substrat herzustellen, ist es außerdem günstig, wenn die zu beschichtende Oberfläche des Substrats eine
Oberflächenrauhigkeit von kleiner als 50 μm aufweist.
Noch eine weitere vorteilhafte Weiterbildung des erfindungsgemäßen Verfahrens sieht vor, die Glasschicht mit einer Abscheiderate von zumindest 0,5 μm Schichtdicke pro Minute aufzudampfen. Diese hohe Abscheiderate kann ohne Nachteil für die Schichtqualität der Glasschichten ohne weiteres erreicht werden und erlaubt eine kurze Herstellungszeit. Andere Vakuum-Abscheideverfahren, wie etwa Kathodenzerstäubung erreichen demgegenüber nur Abscheideraten von wenigen Nanometern pro Minute.
Das Aufbringen der Leiterstruktur kann außerdem vorteilhaft die Schritte des Aufbringens einer negativ strukturierten Zwischenschicht und des anschließenden Abscheidens von leitendem Material auf die mit der Zwischenschicht beschichtete Unterlage umfassen. Die Unterlage umfaßt dabei das Substrat und/oder das Substrat mit einer oder mehreren aufgebrachten Glasschichten und darauf angeordneten Leiterstrukturen. Auch diese Zwischenschicht kann photolithographisch strukturiert oder durch strukturiertes Bedrucken hergestellt sein.
Das Substrat selbst kann bereits eine Leiterstruktur, beispielsweise in Form von Leiterbahnen aufweisen. Diese können auch vorteilhaft vor dem Schritt des Abscheidens der strukturierten Glasschicht direkt auf das Substrat aufgebracht werden. Insbesondere kann dann auf einer direkt auf dem Substrat aufgebrachten Leiterbahn ein Kontaktierungsbereich vorgesehen werden, der dann mit einer nachfolgend auf einer isolierenden Glasschicht aufgebrachten Leiterstruktur in Kontakt gebracht wird. Auf diese Weise kann bereits nach einer einfachen Durchführung der Schritte des Abscheidens einer Glasschicht und des nachfolgenden Aufbringens zumindest einer Leiterstruktur auf die Glasschicht ein mehrlagiges, hochfrequenztaugliches Leiterbahnsystem, beziehungsweise eine mehrlagige hochfrequenztaugliche Leiteranordnung geschaffen werden. Selbstverständlich können dabei durch mehrfache Durchführung der Schritte des Abscheidens einer Glasschicht und
Aufbringens einer Leiterstruktur noch weitere Lagen eines dreidimensionalen Leiterbahnsystems, insbesondere auch mit darin integrierten passiven Bauelementen geschaffen werden.
Noch eine weitere Ausführungsform der Erfindung sieht vor, daß das Substrat ein Halbleitersubstrat mit einem oder mehreren aktiven Halbleiter-Bereichen auf einer ersten Seite des Substrats umfaßt. Beispielsweise kann das Substrat eine integrierte Halbleiterschaltung umfassen. Dabei kann die zumindest eine Leiterstruktur beim Aufbringen mit einer Anschlußstelle des aktiven Halbleiter-Bereichs in Verbindung gebracht werden, so daß ein elektrischer Kontakt mit der Leiterstruktur und damit auch mit der Leiteranordnung besteht .
Bisher wurde beispielsweise bei LTCC-Modulen der Weg bestritten, einzelne Halbleiterbausteine monolithisch in Kavitäten in der Keramik zu integrieren, so daß die Keramik der Träger für die Halbleiterbausteine ist. Die Erfindung ermöglicht demgegenüber auch den umgekehrten Weg, wobei die Leiteranordnung direkt' auf einem Chip aufgebracht wird und dieser so als Träger für die Leiteranordnung dient.
Eine weitere Ausführungsform der Erfindung sieht ein Substrat vor, welches zumindest eine Durchkontaktierung aufweist. Dann kann die zumindest eine Leiterstruktur beim Aufbringen mit der Durchkontaktierung durch das Substrat verbunden werden. Diese Ausführungsform der Erfindung ermöglicht es unter anderem, Strukturen auf einer Seite des Substrats mit einer Hochfrequenz-Leiteranordnung auf einer weitere Seite des Substrats anzuschließen.
Ist die ein- oder mehrlagige Leiteranordnung auf dem Substrat fertiggestellt, kann zusätzlich eine weitere, abschließende Glasschicht durch Aufdampfen abgeschieden werden, welche die vorherig aufgebrachten Schichten abdeckt. Um die Kontaktierung der Leiteranordnung auf dem Substrat zu ermöglichen, kann vorteilhaft zumindest eine Durchkontaktierung durch die abschließende Glasschicht geschaffen werden. Das Herstellen dieser Glasschicht kann dabei in gleicher Weise wie die Herstellung der darunterliegenden Glasschichten der Leiteranordnung erfolgen. Diese weitere Schicht kann als Isolationsschicht dienen, welche die Leiteranordnung nach außen hin isoliert. Für eine wirtschaftliche Fertigung erfindungsgemäßer Bauelemente ist es auch von Vorteil, wenn das Substrat im Waferverbund beschichtet wird, so daß eine Vielzahl von Bauelementen gleichzeitig bearbeitet wird.
In der am gleichen Tag wie die vorliegende Anmeldung eingereichte internationale Patentanmeldung der Anmelderin mit dem Titel "Verfahren zur Herstellung eines Bauelements mit hochfrequenztauglicher Leiteranordnung" werden
Bauelemente mit Hochfrequenz-Leiteranordnung, sowie Verfahren zu deren Herstellung offenbart, bei welchen aufgedampfte Glasschichten als Isolationsschichten verwendet werden. Das erfindungsgemäße Glasmaterial ist besonders auch für die in dieser Anmeldung beschriebenen Verfahren und Bauelemente einsetzbar, wobei der Offenbarungsgehalt dieser Anmeldung diesbezüglich hiermit ausdrücklich durch Referenz inkorporiert wird.
Die hier, sowie in der oben angegebenen, inkorporierten internationale Patentanmeldung der Anmelderin mit dem Titel "Verfahren zur Herstellung eines Bauelements mit hochfrequenztauglicher Leiteranordnung" beschriebenen Verfahren und Bauelemente sind besonders geeignet für die Verwendung erfindungsgemäßen Glasmaterials.
Selbstverständlich können aber auch ähnliche oder andersartige Bauelemente für Hochfrequenzanwendungen unter Verwendung des Glasmaterials hergestellt werden. Gemäß einem Aspekt der Erfindung ist demgemäß allgemein an die Verwendung eines erfindungsgemäßen Glasmaterials zur Herstellung einer Isolationsschicht für eine Hochfrequenz-Leiterstruktur oder ein Hochfrequenz-Substrat gedacht, um die Hochfrequenzeigenschaften solcher Elemente zu verbessern. Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und unter Bezugnahme auf die Zeichnungen näher erläutert, wobei gleiche und ähnliche Elemente mit gleichen Bezugszeichen versehen sind und die Merkmale verschiedener Ausführungsformen miteinander kombiniert werden können.
Es zeigen:
Fig. 1 eine Schnittdarstellung einer ersten
Ausführungsform der Erfindung, Fig. 2 Eine Schnittdarstellung einer weiteren
Ausführungsform der Erfindung mit zwei
Leiteranordnungen auf gegenüberliegenden Seiten eines Substrats, Fig. 3A Anhand von Querschnittansichten die Schritte einer bis 3G Ausführungsform des erfindungsgemäßen Verfahrens, Fig. 4A Eine Variante der in den Fig. 3B bis 3E gezeigten bis 4E Verfahrensschritten des erfindungsgemäßen
Verfahrens, Fig. 5 Ausführungsformen erfindungsgemäßer, im bis 7 Waferverbund mit einer Leiteranordnung versehener
Bauelemente, Fig. 8 einen schematischen Layeraufbau für HF
Messstruktur, Fig. 9 einen Layeraufbau offener Coplanarleitungen CPW 1 /
2, Fig. 10 einen Layeraufbau vergrabener Coplanarleitungen CPW
3, Fig. 11 eine Auflistung von Eigenschaften von vermessenen
Proben, wobei die Messwerte in den nachfolgenden
Fig. 12 bis 23 dargestellt sind, Fig. 12 den Betrag der Streuparameter und deren bis 14 Phasenverlauf der Probe G1ACPW2 2 (Glas 8329), Fig. 15 den Betrag der Streuparameter und deren bis 17 Phasenverlauf der Probe G1ACPW3_2 (Glas 8329),
Fig. 18 den Betrag der Streuparameter und deren bis 20 Phasenverlauf der Probe G2ACPW2_6 (Glas G018-189), und
Fig. 21 den Betrag der Streuparameter und deren bis 23 Phasenverlauf der Probe G2ACPW3_2 (Glas G018-189) .
Fig. 1 zeigt eine vereinfachte Schnittdarstellung einer ersten Ausführungsform eines erfindungsgemäßen, als Ganzes mit dem Bezugszeichen 10 bezeichneten Bauelements mit einem Substrat 1 mit einer ersten Seite 3 und einer der Seite 3 gegenüberliegenden Seite 5 und einer auf dem Substrat auf der ersten Seite 3 angeordneten, als Ganzes mit dem Bezugszeichen 4 bezeichneten Hochfrequenz-Leiteranordnung. Auf dem Substrat 1 ist eine Lage 6 mit Leiterstrukturen 61 - 64 angeordnet. Die Leiterstrukturen 61 - 64 können beispielsweise Leiterbahnen sein. Außerdem können einzelne der Leiterstrukturen 61 - 64 auch als passive elektrische Bauelemente ausgebildet sein. Auf diesen Leiterstrukturen 61 - 64 auf der ersten Seite 3 des Substrats 1 sind Kontaktierungsbereiche 71 - 74 definiert. Nachdem die
Leiterstrukturen der Lage 6 aufgebracht sind, wird auf die erste Seite 3 des Substrats dann eine isolierende Glasschicht 9 durch Aufdampfen strukturiert abgeschieden, so daß sie Öffnungen 8 über den Kontaktierungsbereichen 71 - 74 aufweist. Diese Öffnungen 8 sind mit einem leitenden Material 19 gefüllt, so daß die Öffnungen in Verbindung mit den leitenden Füllungen jeweils Durchkontaktierungen durch die isolierende Glasschicht 9 schaffen. Auf der Glasschicht 9 ist eine Lage 11 mit weiteren Leiterstrukturen 111, 112, 113 aufgebracht. Die Leiterstrukturen 111, 112, 113 sind dabei jeweils mit zumindest einer der Durchkontaktierungen in Kontakt, so daß eine elektrische Verbindung der Leiterstrukturen 111, 112, 113 mit den Leiterstrukturen 61 - 64 der Lage 6 besteht. Damit weist das Substrat eine mehrlagige Leiteranordnung auf, deren Lagen 6 und 11 durch eine isolierende Glasschicht 9 mit hervorragenden Hochfrequenzeigenschaften voneinander getrennt sind.
Die Glasschicht 9 kann, je nach Anwendungszweck eine Dicke im Bereich von 0,05 μm bis 5 mm aufweisen, wobei durch Aufdamfen hergestellte Glasschichten zweckmäßig eine Dicke im Bereich von 0,05 μm bis 1 mm aufweisen.
Auf der Lage 11 mit den Leiterstrukturen 111, 112, 113 ist eine weitere, abschließende Aufdampfglasschicht 13 abgeschieden, die als äußere Isolation der Leiterstrukturen 111, 112, 113 dient. Um eine Kontaktierung dieser Leiterstrukturen zu ermöglichen, sind außerdem weitere Durchkontaktierungen 15 in der abschließenden Aufdampfglasschicht 13 vorhanden, die mit den Leiterstrukturen 111, 112, 113 in Kontakt sind. Auf den Durchkontaktierungen 15 sind zusätzlich Lötperlen 17 aufgebracht, um das Bauelement 10 beispielsweise auf einer SMT-Platine zu befestigen und anzuschließen.
Zur Herstellung der Schichten 9, 13 wird vorzugsweise ein Target mit erfindungsgemäßem Glasmaterial durch Elektronenstrahlverdampfung verdampft und auf dem Substrat 1 abgeschieden.
Als Glasmaterial zur Herstellung der Isolationsschichten 9, 13 wird insbesondere ein erfindungsgemäßes Glas verwendet, welches als aufgebrachte Schicht mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm in zumindest einem Frequenzbereich oberhalb von 1 GHz einen Verlustfaktor tanδ kleiner oder gleich 50*10~4 aufweist. Besonders geeignet aufgrund seiner hervorragenden Hochfrequenzeigenschaften sind dazu die oben beschriebenen Gläser 8329 und insbesondere G018-189.
Fig. 2 zeigt eine Schnittdarstellung einer weiteren
Ausführungsform eines erfindungsgemäßen Bauelements 10. Diese Ausführungsform weist auf zwei gegenüberliegenden Seiten 3 und 5 jeweils eine Hochfrequenz-Leiteranordnung 41, beziehungsweise 42 auf. Die Leiteranordnungen 41 und 42 sind dabei in analoger Weise wie die Leiteranordnung 4 der in Fig. 1 dargestellten Ausführungsform aufgebaut.
Im einzelnen weisen die Leiteranordnungen 41 und 42 dabei jeweils wieder eine Glasschicht 9 aus aufgedampftem Glas mit Öffnungen auf, in denen leitendes Material zur
Durchkontaktierung vorhanden ist und in elektrischem Kontakt mit unter den Öffnungen angeordneten Kontaktierungsbereichen . steht. Auf den Glasschichten 9 der Leiteranordnungen 41, beziehungsweise 42 sind jeweils Lagen 6 mit Leiterstrukturen angeordnet, die ihrerseits mit den Durchkontaktierungen in Kontakt sind. Ebenso wie bei der in Fig. 1 gezeigten Ausführungsform sind die Leiterstrukturen auf der Glasschicht 9 mit weiteren, abschließenden Aufdampfglasschichten 13 abgedeckt, in denen Durchkontaktierungen 15 für den Anschluß des Bauelements vorhanden sind.
Die Fig. 3A bis 3G zeigen anhand von Querschnittansichten die Schritte zur Herstellung eines erfindungsgemäßen Bauelements gemäß einer Ausführungsform des erfindungsgemäßen Verfahrens.
Die Fig. 3A zeigt ein Substrat 1 nach einem ersten Verarbeitungsschritt, bei welchem auf die Seite, auf welche die Hochfrequenz-Leiteranordnung aufgebracht wird, eine Lage 6 mit Leiterstrukturen 61 - 64, wie insbesondere von geeigneten Leiterbahnen hergestellt wird. Diese können beispielsweise Kontaktstellen von in Fig. 3A nicht dargestellten elektronischen Bauelementen des Substrats sein, oder an solche Kontaktstellen anschließen.
Nachfolgend wird in weiteren Verfahrensschritten eine Glasschicht abgeschieden, die Öffnungen über Kontaktierungsbereichen 71 -74 der darunter liegenden Oberfläche aufweist. Dazu wird zunächst, wie anhand von Fig. 3B dargestellt ist, in einem weiteren Schritt eine strukturierte Zwischenschicht mit Strukturen 21 aufgebracht, welche die jeweiligen Kontaktierungsbereiche 71 - 74 abdecken. Dies wird bevorzugt durch photolithographisches Strukturieren einer geeigneten Photolack-Beschichtung bewerkstelligt. Alternativ kann jedoch auch ein anderes Verfahren, wie beispielsweise ein Bedrucken der Oberfläche eingesetzt werden, um die Strukturen 21 zu erzeugen.
Anschließend wird, wie anhand von Fig. 3C dargestellt ist, eine Glasschicht 9 aufgedampft, welche sowohl die mit den Strukturen 21 der Zwischenschicht bedeckten
Kontaktierungsbereiche 71 - 74, als auch die umgebenden Bereiche der Oberfläche der Unterlage bedeckt. Vorzugsweise ist dabei die Dicke der Glasschicht 9 geringer als die Dicke der strukturierten Zwischenschicht. Die Zwischenschicht wird dann entfernt, wobei die Bereiche 90 der Glasschicht 9, welche die Strukturen 21 der Zwischenschicht bedecken, beziehungsweise welche sich auf der strukturierten Zwischenschicht befinden, mit abgehoben werden.
Fig. 3D zeigt das Substrat nach diesem Schritt, welches dementsprechend nun eine Glasschicht 9 mit Öffnungen 8 über den Kontaktierungsbereichen 71 - 74 der darunter liegenden Oberfläche aufweist. Die Öffnungen 8 können dann, wie in Fig. 3E gezeigt ist, beispielsweise mit einem leitenden Material 19 aufgefüllt werden. Auf der Glasschicht 9 kann dann eine Lage 11 mit Leiterstrukturen 111, 112, 113 und passiven Bauelementen 23 aufgebracht werden, wie Fig. 3F zeigt. Die Bauelemente 23 können beispielsweise ein Kondensator, ein Widerstand, eine Spule, ein Varistor, ein PTC, ein NTC, oder ein Filterelement umfassen. Kondensatoren und Spulen lassen sich insbesondere auch durch Leiterstrukturen übereinanderliegender, durch eine Aufdampfglasschicht zueinander isolierter Lagen realisieren. Beispielsweise kann dazu eine Leiterstruktur der Lage 6 und eine weitere, darüber liegende Leiterstruktur der Lage 11 verwendet werden.
Das Aufbringen der Leiterstrukturen kann beispielsweise durch Aufbringen einer weiteren, negativ strukturierten Zwischenschicht und das Abscheiden von elektrisch leitendem Material erfolgen, wobei die Leiterstrukturen 111, 112, 113 in Kontakt mit dem leitenden Material 19 in den Öffnungen 8 kommt, so daß auch eine elektrische Verbindung, beziehungsweise ein elektrischer Kontakt mit den jeweiligen zugeordnete Kontaktierungsbereichen 71 - 74 entsteht.
Die Leiterstrukturen können auch Strukturen mit unterschiedlichen leitenden Materialien oder auch Halbleitermaterialien aufweisen, beispielsweise indem das Aufbringen der Leiterstrukturen in mehreren Schritten unter Verwendung unterschiedlicher Materialien erfolgt. Damit können noch weitere Funktionalitäten in die Leiteranordnung integriert werden, beispielsweise, indem dadurch Halbleiter- Metall-Kontakte oder thermoelektrische Kontakte geschaffen werden.
Das in Fig. 3E gezeigte Herstellen der Durchkontaktierungen durch die Glasschicht 9 mit leitendem Material 19 und das in Fig. 3F dargestellte Aufbringen der Leiterstrukturen kann auch in einem Schritt erfolgen. Beispielsweise können die Leiterstrukturen 19 durch galvanisches Abscheiden hergestellt werden, so daß das abgeschiedene Material ausgehend von den Kontaktierungsbereichen 71 - 74 zunächst die Öffnungen 8 ausfüllt und dann weiter auf der Oberfläche der Glasschicht 9 aufwächst, wo es die Leiterstrukturen bildet, und auch, falls vorgesehen, die passiven Bauelemente 23 bilden kann. Ebenso können die Leiterstrukturen 111, 112, 113 auch durch Aufdampfen oder Aufsputtern hergestellt werden, wobei auch die Kontaktierungsbereiche 71 - 74 und Ränder der Öffnungen 8 mit bedampft oder beschichtet werden können, so daß die jeweiligen Leiterstrukturen in elektrischen Kontakt mit den Kontaktierungsbereichen 71 - 74 kommen.
Die Zwischenschicht kann anschließend wieder entfernt werden, wobei auf der Zwischenschicht abgeschiedenes leitendes Material abgehoben wird und die vorgesehenen Leiterstrukturen und eventuell aufgebrachten Bauelemente auch der Oberfläche der Glasschicht 9 zurückbleiben.
Die in den Fig. 3B bis 3F gezeigten Schritte des Abscheidens einer strukturierten Glasschicht mit Öffnungen über
Kontaktierungsbereichen durch Aufdampfen unter Verwendung erfindungsgemäßen Glasmaterials, wie beispielsweise des Glases G018-189 auf das Substrat und des Aufbringens von Leiterstrukturen, können dann zur Herstelllung weiterer Lagen der Leiteranordnung wiederholt werden. Dabei wird eine nachfolgend aufgebrachten Leiterstruktur mit einem Kontaktierungsbereich einer vorhergehend aufgebrachten Leiterstruktur in Kontakt gebracht.
Dazu wird wieder, wie in Fig. 3F bis 3G gezeigt, eine Zwischenschicht mit Strukturen 21 auf vorgesehene Kontaktierungsbereiche 75, 76 der Oberfläche des beschichteten Substrats 1 aufgebracht, wobei die Kontaktierungsbereiche sich zweckmäßigerweise auf aufgebrachten Leiterstrukturen, oder auch auf Durchkontaktierungen befinden. Anschließend wird eine weitere isolierende Glasschicht 91 mit Durchkontaktierungen durch Öffnungen in der Glasschicht 91 über den Kontaktierungsbereichen 75, 76 hergestellt, wobei die Herstellung analog zu den anhand der Fig. 3C bis 3E beschriebenen Verfahrensschritten erfolgt.
Die Fig. 4A bis 4E zeigen eine Variante der anhand der Fig. 3B bis 3E gezeigten Verfahrensschritten des erfindungsgemäßen Verfahrens. Diese Variante des erfindungsgemäßen Verfahrens basiert darauf, vor dem Aufdampfen der Glasschicht auf die Kontaktierungsbereiche ein leitendes, gegenüber zum jeweiligen Kontaktierungsbereich benachbarten Bereichen hervorragendes Material aufzubringen, welches von der Struktur der Zwischenschicht bedeckt wird. Dieses leitfähige Material bildet dann später die Durchkontaktierung.
Im einzelnen wird zunächst, ausgehend von einem wie in Fig. 3A vorbereiteten Substrat 1 eine leitende Schicht 25 aus und darauf eine photostrukturierbare Zwischenschicht 27 aufgebracht, wie anhand von Fig. 4A dargestellt ist.
Fig. 4B zeigt das Substrat nach einer photolithographischen Strukturierung der Zwischenschicht 27. Die Schicht wird so strukturiert, daß Strukturen 21 stehen bleiben, welche die vorgesehenen Kontaktierungsbereiche 71 - 74 abdecken. Anschließend wird, wie Fig. 4C zeigt, die leitende Schicht 25 von den nicht bedeckten, die Kontaktierungsbereiche 71 - 74 umgebenden Bereichen entfernt. Dies kann in fachüblicher Weise beispielsweise durch Ätzen erfolgen. Dementsprechend werden die Kontaktierungsbereiche 71 - 74 von einem leitenden Material bedeckt, welches gegenüber zum jeweiligen Kontaktierungsbereich benachbarten Bereichen erhaben ist, beziehungsweise hervorragt und welches jeweils von einer Struktur 21 der Zwischenschicht 27 bedeckt wird. Anschließend wird, wie in Fig. 4D gezeigt, die isolierende Glasschicht 9 durch Verdampfen von erfindungsgemäßem Glasmaterial aufgedampft, wobei vorzugsweise die Dicke der Glasschicht 9 so gewählt wird, daß sie in etwa der Dicke des erhabenen leitenden Materials 19 entspricht. Schließlich werden die Strukturen 21 der Zwischenschicht, beispielsweise durch Anwendung eines geeigneten Lösungsmittels entfernt und dabei die Bereiche 90 der Glasschicht 9, welche die Strukturen 21 bedecken, abgehoben. Auf diese Weise wird ein Substrat mit einer Glasschicht erhalten, die Öffungen über den jeweiligen Kontaktierungsbereichen und Durchkontaktierungen in Gestalt des in den Öffnungen befindlichen leitenden Materials aufweist. Dieser Verarbeitungszustand ist in Fig. 4E gezeigt. Durch die geeignete Wahl der an die Dicke des leitenden Materials 19 angepaßten Schichtdicke der Glasschicht 9 sind die Oberfläche des leitenden Materials und der Glasschicht 9 in etwa auf gleicher Höhe, so daß eine ebene Oberfläche erhalten wird. Das Verfahren kann anschließend weiter wie anhand der Fig. 3F bis 3G erläutert ist, fortgesetzt werden, wobei auch die zweite Glasschicht 91 in Fig. 3G und eventuelle weitere Glasschichten mit Durchkontaktierungen in gleicher oder ähnlicher Weise hergestellt werden können, wie anhand der Fig. 4A bis 4E erläutert wurde.
Gemäß einer vorteilhaften Weiterbildung des Verfahrens werden die Bauelemente 10 durch Beschichten von Substraten im Waferverbund hergestellt. Die Fig. 5 bis 7 zeigen dazu verschiedene Ausführungsformen beschichteter Wafer 2, wobei die Bauelemente durch Abtrennen einzelner Substrate 1 vom Wafer erhalten werden.
Fig. 5 zeigt eine Ausführung der Erfindung, bei welcher ein Halbleiterwafer 2 mit einer Folge aus Glas- bzw. Leiterbahnenschichten versehen worden ist. Bevorzugt wird als Wafermaterial hierzu Silizium verwendet, da dieses Material einen sehr gut mit dem Aufdampfglas übereinstimmenden Temperaturausdehnungskoeffizienten aufweist. Die einzelnen Substrate 1 werden nach der
Beschichtung im Waferverbund und dem Herstellen des in Fig. 5 gezeigten Verarbeitungszustandes durch Abtrennen entlang der vorgesehenen Trennnachsen 29 abgetrennt, um schließlich Bauelemente 10 mit hochfrequenzfähiger Leiterstruktur zu erhalten.
Der Wafer 2 weist auf einer ersten Seite 3 einzelne aktive Halbleiter-Bereiche 33 auf, die mit Anschlußstellen 35 verbunden sind.
Die Leiteranordnung 4 ist bei dieser Ausführungsform der Erfindung auf einer zweiten Seite 5 des Wafers 2, beziehungsweise der Substrate 1 des Wafers 2 angeordnet, welche der ersten Seiten mit den aktiven Halbleiter-Bereichen 33 gegenüberliegt.
Die Leiteranordnung 4 ist zum Zwecke der Übersichtlichkeit vereinfacht dargestellt, wobei hier unter anderem alle Leiterstrukturen mit dem Bezugszeichen 100 bezeichnet sind. Die einzelnen Lagen der Leiteranordnung 4 können vorteilhaft wie anhand der Fig. 3A bis 3G und/oder der Fig. 4A bis 4E erläutert wurde, hergestellt werden. Insbesondere ist die in Fig. 5 gezeigte Leiteranordnung 4 auch mehrlagig gefertigt, wobei dazu entsprechend die Schritte des Abscheidens einer strukturierten Glasschicht und des Aufbringens von
Leiterstrukturen 100 entsprechend mehrfach durchgeführt werden, und wobei eine nachfolgend aufgebrachte Leiterstruktur 100 mit einem Kontaktierungsbereich einer vorhergehend aufgebrachten Leiterstruktur 100 in Kontakt gebracht wird. In den Wafer 2 sind außerdem Durchkontaktierungen 37 durch die Substrate 1 eingefügt, welche mit den Anschlußstellen 35 elektrisch verbunden sind. Die Herstellung der Durchkontaktierung kann bevorzugt durch Ätzen von Ätzgruben in den Wafer von der zweiten Seite 5 her bis auf die vorzugsweise metallischen Anschlußstellen 35 erfolgen, die gleichzeitig als Ätzstop wirken. Anschließend wird eine Passivierungsschicht 39 auf den Wänden der Ätzgrube erzeugt und die Ätzgrube mit leitendem Material 43 aufgefüllt. Das auf der Seite 3 offenliegende leitende Material 43 der Durchkontaktierungen 37 dient als Kontaktierungsbereich für Leiterstrukturen 100 der Leiteranordnung 4.
Die Bereiche der Oberfläche der zweiten Seite 5 mit den Durchkontaktierungen werden außerdem als
Kontaktierungsbereiche für einige der Leiterstrukturen 100 der Leiteranordnung 4 verwendet. Werden diese Leiterstrukturen 100 beim Aufbringen auf der zuvor abgeschiedenen Glasschicht 9 mit den Kontaktierungsbereichen in Kontakt gebracht, so werden die Leiterstrukturen dementsprechend dabei auch mit den Anschlußstellen 35 auf der ersten Seite der Substrate 1 elektrisch verbunden. Auf diese Weise können dann die aktive Halbleiter-Bereiche 33 über die Leiteranordnung versorgt und elektrische Signale von den aktiven Halbleiter-Bereichen auf die Leiterstrukturen 100 der Leiteranordnung 4 gegeben werden.
Zur Verkapselung und zum Schutz der später durch Abtrennen gewonnenen Bauelemente ist die in Fig. 5 gezeigte
Ausführungsform auf der Seite 3 noch mit einer zusätzlichen Aufdampfglas-Verkapselungsschicht 14 und einer Kunststoff- Abdeckung 31 versehen. Fig. 6 zeigt eine weitere Ausführungsform der Erfindung, wobei ebenfalls im Waferverbund verbundene Substrate mit einer Leiteranordnung 4 beschichtet wurden. Diese Ausführungsform der Erfindung ist ähnlich zu der in Fig. 5 gezeigten Ausführungsform. Auch bei der in Fig. 6 gezeigten Ausführungsform wird ein Halbleiter-Wafer 2 mit aktiven Halbleiter-Bereichen 33 verwendet, die einzelnen Substraten 1 zugeordnet sind. Ebenso wie bei der in Fig. 5 gezeigten Ausführungsform werden beim Aufbringen der Leiterstrukturen 100 auf der ersten Glasschicht 9 der Leiteranordnung 4 die Anschlußstellen 35 der aktive Halbleiter-Bereiche 33 mit Leiterstrukturen 100 in Verbindung gebracht.
Im Unterschied zu der in Fig. 5 gezeigten Ausführungsform werden die Glasschichten 9, 91, 92, 93 und 13 der
Leiteranordnung 4 jedoch auf der ersten Seite 3 der Substrate 1, auf welcher auch die aktive Halbleiter-Bereiche 33 angeordnet sind, aufgedampft. Die Durchkontaktierungen 15 in der untersten Glasschicht 9 der Leiteranordnung 4 werden direkt auf den Kontaktstellen 35 aufgebracht, wobei die
Kontaktstellen 35 dementsprechend die Kontaktierungsbereiche der Substrate 1 für die entsprechenden Leiterstrukturen 100 auf der ersten Glasschicht 9 bilden.
Die Bauelemente 10, die durch Abtrennen von den beschichteten Wafern 2 gewonnen werden, wie sie beispielhaft in den Fig. 5 und 6 dargestellt sind, können beispielsweise als Hochfrequenz- Sende-/Empfangsmodule für Frequenzen oberhalb von 10 GHz, insbesondere für Frequenzen im Bereich um 40GHz oder höher ausgebildet sein.
Fig. 7 zeigt noch eine weitere Ausführungsform von Substraten 1, die im Waferverbund erfindungsgemäß mit einer Hochfrequenz-Leiteranordnung 4 versehen wurden. Die Leiteranordnung 4 mit den Glasschichten 9, 91, 92, 93, 13 und den Leiterstrukturen 100 ist hier auf einem Wafer aufgebracht, dessen Substrate 1 ebenfalls
Durchkontaktierungen 37 aufweisen. Die Bauelemente 10 mit Substrate 1 und Leiteranordnungen 4 dienen nach dem Abtrennen vom Wafer als Hochfrequenz-Umverdrahtungssubstrat für weitere Bauelemente, die mit den außen liegenden Kontaktstellen der Bauelemente 10 verbunden werden können. Die außen liegenden Kontaktstellen sind dazu beispielhaft mit Lötperlen 17 versehen, so daß weitere Bauelemente in SMT-Technologie befestigt und angeschlossen werden können. Die Substrate 1 weisen hier keine aktiven Bauelemente auf. Dementsprechend kann der Substratwafer 2 auch aus isolierendem Material, wie beispielsweise Glas oder Kunststoff gefertigt werden. Ein besonders gut geeignetes Glas als Material für den Wafer, beziehungsweise die Substrate 1 der Bauelemente 10 ist
Borofloat®-Glas, welches einen nahezu mit dem bevorzugten Aufdampfglas übereinstimmenden Temperaturausdehnungskoeffizienten aufweist.
Fig. 8 zeigt den für die Charakterisierung der HF
Eigenschaften schematischen Layeraufbau mit den Schichtdicken der vermessenen Teststrukturen. In den Fig. 9 und 10 sind realisierte Strukturen von offenen und vergrabenen Coplanarleitungen dargestellt. Nachfolgende Messungen der Streuparameter S12, S21, Sll und S22 konnten anhand dieser
Strukturen realisiert werden. Die Probenbezeichnungen zu den ausgewählten Messungen, die in den Fig. 12 bis 23 gezeigt sind, sind aus der Tabelle in Fig.11 zu entnehmen.
Die Fig. 12 bis 14 zeigen den Betrag der Streuparameter Sll und S22 , S12 und S21 sowie den Phasenverlauf des Streuparameters S12 und S21 einer offenen Coplanarleitung unter Verwendung des Glases 8329 als Isolator zwischen den Aluminiumleiterbahnen. Die Streuparameter S12 und S21 werden auch als Durchgangsdämpfung und die Streuparameter Sll und S22 als Reflexionsdämpfung bezeichnet.
Deutlich zeigt sich in Fig. 12 eine extrem geringe Reflektion Sll und S22 der Signale an dieser Probe von -20dB bis -40dB bis zu einer Frequenz von 50GHz. Weiterhin sind geringe
Dämpfungswerte von kleiner <-2dB bei den Streuparametern S12 und S21 anhand der in Fig. 13 dargestellten Meßwerte bis zu einer Frequenz von 50GHz zu erkennen. Die Streuparameter S21 und S12, stellen das sind die Werte der Durchleitung des elektrischen Signals bei der jeweiligen Frequenz dar. , bis zu einer Frequenz von 50GHz zu erkennen. Der lineare Phasenverlauf des Streuparameters S21 weist auf eine sehr geringe Dispersion bis zu einer Frequenz von 50GHz hin.
Die anhand der Fig. 12 bis 14 gezeigten Meßwerte lassen sich auch bei Messungen an weiteren Proben verifizieren, wobei die
Figuren
Fig. 15 bis 17: Messwerte an einer vergrabenen
Coplanarleitung mit Glas 8329, Fig. 18 bis 20: Messwerte an einer offenen Coplanarleitung mit Glas 8329, und
Fig. 21 bis 23: Messwerte an einer vergrabenen
Coplanarleitung mit Glas G018-189 zeigen.
Bei diesen Messungen zeigt sich eine Tendenz der geringeren
Dämpfung der Streuparameter S12 und S21 bei Verwendung des HF Glases G018-189. Bezugszeichenliste
1 Substrat
2 Halbleiterwafer
3 erste Seite von 1 4, 41, 42 Leiteranordnung
5 zweite Seite von 1
6 Schicht mit Leiterstrukturen auf 1 61 - 64 Leiterstrukturen von 6
71 - 74 Kontaktierungsbereiche
8 Öffungen in 9 über Kontaktierungsbereichen 71 - 74
9, 91-93 Aufdampfglasschicht
10 Bauelement
11 Lage mit Leiterstrukturen 100, 111, Leiterstrukturen
112, 113
13 Abschließende Aufdampfglasschicht
14 Aufdampfglas-Verkapselungsschicht
15 Durchkontaktierung 17 Lötperlen
19 leitendes Material
21 Lackstrukturen einer Zwischenschicht
23 passives elektrisches Bauelement
25 leitende Schicht
27 photostrukturierbare Zwischenschicht
29 Trennachse
31 Kunststoff-Abdeckung
33 Aktiver Halbleiter-Bereich
35 Anschlußstelle von 33
37 Durchkontaktierung durch 1
39 Passivierungsschicht
43 leitende Füllung von 37 5, 76 Kontaktierungsbereiche
90 Bereich der Aufdampfglasschicht auf Lackstruktur

Claims

Patentansprüche
1. Glasmaterial zur Herstellung von Isolationsschichten für Hochfrequenz-Substrate oder Hochfrequenz- Leiteranordnungen, welches als aufgebrachte Schicht (9, 91, 92, 93, 13) insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm, bevorzugt im Bereich von 0,05 μm bis 1 mm in zumindest einem Frequenzbereich oberhalb von 1 GHz einen Verlustfaktor tanδ kleiner oder gleich 70*10~4 aufweist.
2. Glasmaterial gemäß Anspruch 2, dadurch gekennzeichnet, daß das Material als aufgebrachte Schicht (9, 91, 92, 93, 13) insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm bei Frequenzen im Bereich um
40 GHz einen Verlustfaktor tanδ kleiner oder gleich 50*10"4 aufweist.
3. Glasmaterial gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Material als aufgebrachte Schicht (9, 91, 92, 93, 13) insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm bei einer Frequenz von 40GHz einen Verlustfaktor tanδ kleiner oder gleich 30*10~4 aufweist.
Glasmaterial gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Glasmaterial zum Abscheiden einer Schicht (9, 91, 92, 93, 13) verdampft werden kann.
Glasmaterial gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Glasmaterial durch Elektronenstrahlverdampfung verdampft werden kann.
6. Glasmaterial gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Glasmaterial eine Verarbeitungstemperatur von kleiner als 1300 °C aufweist.
7. Glasmaterial gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Glasmaterial als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm in zumindest einem Frequenzbereich oberhalb von 1 GHz eine relative
Dielektrizitätskonstante εR kleiner oder gleich fünf aufweist .
8. Glasmaterial gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Glasmaterial als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm bei einer Frequenz von 40 GHz eine relative Dielektrizitätskonstante εR kleiner oder gleich 5, insbesondere eine relative Dielektrizitätskonstante εR von < 5 aufweist.
9. Glasmaterial gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Glasmaterial als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm in einem Temperaturbereich von 20 °C bis 300 °C einen Temperaturausdehnungskoeffizienten α2o-3oo aufweist, der im Bereich von 2, 9xl0"6 K"1 bis 3,5xl0"6 K"1 liegt.
10. Glasmaterial gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Glasmaterial als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm in einem Temperaturbereich von 20 °C bis 300 °C einen Temperaturausdehnungskoeffizienten α20-3θo = (3,2±0,2)xlO"6K_1 aufweist.
11. Glasmaterial gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Glasmaterial als aufgebrachte Schicht insbesondere mit einer Schichtdicke im Bereich zwischen 0,05 μm bis 5 mm in einem Temperaturbereich von 20 °C bis 300 °C einen ■ Temperaturausdehnungskoeffizienten aufweist, der vom Temperaturausdehnungskoeffizienten des Substratmaterials weniger als lxlO~6K"1 abweicht.
12. Glasmaterial gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Glasmaterial als aufgebrachte Schicht säurebeständig gemäß Säurebeständigkeitsklasse 2 ist.
13. Glasmaterial gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Glasmaterial als aufgebrachte Schicht laugenbeständig gemäß Laugenbeständigkeitsklasse 3 ist.
14. Glasmaterial gemäß einem der vorstehenden Ansprüche, welches folgende Zusammensetzung in Gewichtsprozent aufweist:
Si02 40 - 90 ,
B203 10 - 40 ,
A1203 0 - 5 ,
K20 0 - 5 ,
Li20 0 - 3 ,
Na20 0 - 3 .
15. Glasmaterial gemäß einem der vorstehenden Ansprüche, welches folgende Zusammensetzung in Gewichtsprozent aufweist :
Si02 60 - 90,
B203 105 - 305,
A1203 0 - 3, κ2o 0 - 3,
Li20 0 - 2,
Na20 0 - 2.
16. Glasmaterial gemäß einem der vorstehenden Ansprüche, welches folgende Zusammensetzung in Gewichtsprozent aufweist : Si02 71 ± 5,
B203 26 ± 5,
A1203 1 ± 0,2, K20 1 ± 0,2,
Li20 0,5 ± 0,2,
Na20 0,5 ± 0,2.
17. Glasmaterial gemäß einem der vorstehenden Ansprüche, welches folgende Zusammensetzung in Gewichtsprozent aufweist :
Si02 84 ± 5,
B203 11 ± 5,
A1203 0,5 ± 0,2, K20 0, 3 ± 0,2,
Li20 0,3 ± 0,2,
Na20 2 ± 0,2.
18. Verwendung eines Glasmaterials gemäß einem der vorstehenden Ansprüche zur Herstellung einer
Isolationsschicht (9, 91, 92, 93, 13) für eine Hochfrequenz-Leiterstruktur oder ein Hochfrequenz- Substrat.
19. Verfahren zur Herstellung eines Bauelements (10) mit Hochfrequenz-Leiteranordnung (4, 41, 42), mit den Schritten: -Abscheiden einer strukturierten Glasschicht (9, 91, 92, 93, 13) mit zumindest einer Öffnung (8) über einem Kontaktierungsbereich (71 - 74) auf einem Substrat (1) unter Verwendung eines Glasmaterials gemäß einem der vorstehenden Ansprüche, und -Aufbringen zumindest einer Leiterstruktur (100, 111, 112, 113) auf die Glasschicht (9, 91, 92, 93), welche einen elektrischen Kontakt mit dem Kontaktierungsbereich (71 - 74) aufweist.
20. Verfahren gemäß Anspruch 19, dadurch gekennzeichnet, daß die Glasschicht durch Verdampfen von Glasmaterial abgeschieden wird.
21. Verfahren gemäß Anspruch 19 oder 20, dadurch gekennzeichnet, daß zumindest ein passives elektrisches Bauelement auf der Glasschicht (9, 91, 92, 93) aufgebracht wird, welches in Kontakt mit der zumindest einen Leiterstruktur ist.
22. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Schritte des Abscheidens einer strukturierten Glasschicht und des Aufbringens zumindest einer Leiterstruktur (111, 112, 113) mehrfach durchgeführt werden, wobei eine nachfolgend aufgebrachte Leiterstruktur mit einem Kontaktierungsbereich einer vorhergehend aufgebrachten Leiterstruktur in Kontakt gebracht wird.
23. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Schritt des Abscheidens einer strukturierten Glasschicht (9, 91, 92, 93, 13) mit zumindest einer Öffnung (8) über einem Kontaktierungsbereich (71 - 74) durch Aufdampfen die Schritte umfaßt: -Aufbringen einer strukturierten Zwischenschicht (21), welche den Kontaktierungsbereich abdeckt, -Aufdampfen einer Glasschicht (9, 91, 92, 93, 13) auf das Substrat und die darauf befindliche strukturierte Zwischenschicht (21), wobei die Dicke der Glasschicht (9, 91, 92, 93, 13) vorzugsweise geringer ist als die der strukturierten Zwischenschicht (21) , und -Entfernen der strukturierten Zwischenschicht (21) , wobei die Bereiche (90) der Glasschicht (9, 91, 92, 93, 13) , die sich auf der strukturierten Zwischenschicht (21) befinden, mit abgehoben werden.
24. Verfahren gemäß Anspruch 23, dadurch gekennzeichnet, daß vor dem Aufdampfen der Glasschicht auf den zumindest einen Kontaktierungsbereich (71 - 74) ein leitendes, gegenüber den Kontaktierungsbereichen benachbarten
Bereichen hervorragendes Material (19) aufgebracht wird, welches von der strukturierten Zwischenschicht (21) bedeckt wird.
25. Verfahren gemäß Anspruch 23 oder 24, dadurch gekennzeichnet, daß die strukturierte Zwischenschicht (21) durch Bedrucken oder photolithographisches Strukturieren hergestellt wird.
26. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Aufbringen der Leiterstruktur die Schritte des Aufbringens einer negativ strukturierten Zwischenschicht und des Abscheidens von leitendem Material umfaßt.
27. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß vor dem Schritt des Abscheidens einer strukturierten Glasschicht (9, 91, 92, 93, 13) zumindest eine leitende Struktur, insbesondere eine Leiterbahn auf das Substrat aufgebracht wird.
28. Verfahren gemäß einem der vorstehenden Ansprüche, gekennzeichnet durch den Schritt des Abscheidens einer abschließenden Glasschicht (13) unter Verwendung eines
Glasmaterials gemäß einem der Ansprüche 1 bis 17 und das Herstellen zumindest einer Durchkontaktierung (15) in der abschließenden Glasschicht (13).
29. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Substrat (1) ein Halbleitersubstrat mit aktiven Halbleiter-Bereichen (33) umfaßt, dadurch gekennzeichnet, daß die zumindest eine Leiterstruktur (100, 111, 112, 113) beim Aufbringen mit einer Anschlußstelle (35) des aktiven Halbleiter- Bereichs (33) in Verbindung gebracht wird.
30. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die zumindest eine Leiterstruktur (100, 111, 112, 113) beim Aufbringen mit einer Durchkontaktierung (37) durch das Substrat (1) verbunden wird.
31. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Substrat (1) während des Aufdampfens der Glasschicht (9, 91, 92, 93, 13) auf einer Temperatur zwischen 50 °C und 200 °C, bevorzugt zwischen 80 °C und 120 °C gehalten wird.
32. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die Glasschicht (9, 91, 92, 93) mit einer Abscheiderate von zumindest 0,1 μm Schichtdicke pro Minute aufgedampft wird.
33. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die zumindest eine Öffnung
(8) in der Glasschicht (9, 91, 92, 93, 13) mit leitendem Material (19) aufgefüllt wird.
34. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Substrat (1) im Waferverbund beschichtet wird.
35. Verfahren gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Aufdampfen einer Glasschicht (9, 91, 92, 93, 13) durch Plasma-Ionen- unterstütztes Aufdampfen (PIAD) erfolgt.
36. Bauelement (10) mit Hochfrequenz-Leiteranordnung (4, 41, 42), insbesondere hergestellt mit einem Verfahren gemäß einem der vorstehenden Ansprüche, welches -ein Substrat (1) mit zumindest einem Kontaktierungsbereich (71 - 74), -auf zumindest einer Seite (3, 5) des Substrats (1) eine Glasschicht (9, 91, 92, 93, 13), die zumindest eine Öffnung (8) mit einer Durchkontaktierung aufweist, wobei die Glasschicht durch Verdampfen eines Glasmaterials insbesondere gemäß einem der Ansprüche 1 bis 17 abgeschieden ist, und wobei die Durchkontaktierung in elektrischem Kontakt mit dem Kontaktierungsbereich (71 - 74) steht, und
-zumindest eine Leiterstruktur (100, 111, 112, 113) auf der Glasschicht (9, 91, 92, 93), welche mit der Durchkontaktierung in Kontakt ist, umfaßt .
37. Bauelement gemäß Anspruch 36, gekennzeichnet durch zumindest ein passives elektrisches Bauelement (23) auf der Glasschicht (9, 91, 92, 93, 13), welches an die zumindest eine Leiterstruktur (100, 111, 112, 113) angeschlossen ist.
38. Bauelement gemäß einem der vorstehenden Ansprüche, gekennzeichnet durch eine mehrlagige Leiteranordnung (4, 41, 42) mit zumindest zwei aufgedampften Glasschichten (9, 91, 92 ,93) und jeweils darauf aufgebrachter Leiterstruktur (100, 111, 112, 113), wobei eine Leiterstruktur auf einer ersten Glasschicht mit einer Leiterstruktur auf einer zweiten Glasschicht über eine Durchkontaktierung (15) in elektrischem Kontakt sind.
39. Bauelement gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Substrat (1) ein Halbleitersubstrat mit zumindest einem aktiven
Halbleiter-Bereich (33) auf einer ersten Seite (3) des Substrats (1) umfaßt, welches an die Leiterstruktur angeschlossen ist.
PCT/EP2003/005414 2002-05-23 2003-05-23 Glasmaterial für hochfrequenzanwendungen WO2003100846A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/514,876 US8273671B2 (en) 2002-05-23 2003-05-23 Glass material for radio-frequency applications
JP2004508402A JP5027992B2 (ja) 2002-05-23 2003-05-23 高周波用途のためのガラス材料
AU2003247287A AU2003247287A1 (en) 2002-05-23 2003-05-23 Glass material for use at high frequencies
EP03755118A EP1506578A2 (de) 2002-05-23 2003-05-23 Glasmaterial für hochfrequenzanwendungen
CA002484794A CA2484794A1 (en) 2002-05-23 2003-05-23 Glass material for use at high frequencies

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10222609.1 2002-05-23
DE10222609A DE10222609B4 (de) 2002-04-15 2002-05-23 Verfahren zur Herstellung strukturierter Schichten auf Substraten und verfahrensgemäß beschichtetes Substrat
PCT/EP2003/003907 WO2003088347A2 (de) 2002-04-15 2003-04-15 Verfahren zum verbinden von substraten und verbundelement
EPPCT/EP03/03907 2003-04-15

Publications (2)

Publication Number Publication Date
WO2003100846A2 true WO2003100846A2 (de) 2003-12-04
WO2003100846A3 WO2003100846A3 (de) 2004-03-18

Family

ID=31983847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/005414 WO2003100846A2 (de) 2002-05-23 2003-05-23 Glasmaterial für hochfrequenzanwendungen

Country Status (6)

Country Link
US (1) US8273671B2 (de)
EP (1) EP1506578A2 (de)
JP (3) JP5027992B2 (de)
CN (1) CN1656612A (de)
AU (1) AU2003247287A1 (de)
WO (1) WO2003100846A2 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100859A2 (de) 2002-05-23 2003-12-04 Schott Ag Verfahren zur herstellung eines bauelements mit hochfrequenztauglicher leiteranordnung und entsprechendes bauelement
JP2006500783A (ja) * 2002-09-27 2006-01-05 メドトロニック ミニメド インコーポレイテッド 多層基板
DE102007016659A1 (de) * 2007-04-04 2008-10-09 Tricumed Medizintechnik Gmbh Infusionspumpe, Kanalplatte für eine Infusionspumpe und Verfahren zu ihrer Herstellung
WO2010022957A2 (de) 2008-08-29 2010-03-04 Schott Ag Verfahren zur terminierung von lichtleitenden faserbündeln
DE102009002662A1 (de) 2009-04-27 2010-10-28 Ifm Electronic Gmbh Kapazitiver Drucksensor als Kombinationssensor zur Erfassung weiterer Messgrößen
US8003513B2 (en) 2002-09-27 2011-08-23 Medtronic Minimed, Inc. Multilayer circuit devices and manufacturing methods using electroplated sacrificial structures
DE102008034372B4 (de) * 2008-07-23 2013-04-18 Msg Lithoglas Ag Verfahren zum Herstellen einer dielektrischen Schicht in einem elektroakustischen Bauelement sowie elektroakustisches Bauelement
WO2013144375A1 (de) 2012-03-30 2013-10-03 Msg Lithoglas Gmbh Halbleitervorrichtung und verfahren zur herstellung einer glasartigen schicht

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008037613A1 (de) * 2008-11-28 2010-06-02 Schott Solar Ag Verfahren zur Herstellung eines Metallkontakts
JP5744002B2 (ja) * 2009-03-26 2015-07-01 ノルウェージャン ユニバーシティ オブ サイエンス アンド テクノロジー(エヌティーエヌユー) Cmutアレイ
DE102009034532A1 (de) * 2009-07-23 2011-02-03 Msg Lithoglas Ag Verfahren zum Herstellen einer strukturierten Beschichtung auf einem Substrat, beschichtetes Substrat sowie Halbzeug mit einem beschichteten Substrat
US9673131B2 (en) 2013-04-09 2017-06-06 Intel Corporation Integrated circuit package assemblies including a glass solder mask layer
JP6447075B2 (ja) * 2014-12-10 2019-01-09 凸版印刷株式会社 配線基板、半導体装置及び半導体装置の製造方法
JP6832630B2 (ja) * 2016-03-28 2021-02-24 富士通インターコネクトテクノロジーズ株式会社 配線基板の製造方法
CN116282904A (zh) * 2016-09-13 2023-06-23 Agc株式会社 高频器件用玻璃基板和高频器件用电路基板
MX2018013441A (es) * 2017-11-07 2020-01-30 Ferro Corp Composiciones dielectricas con k baja para aplicaciones de alta frecuencia.
DE102018112069A1 (de) * 2018-05-18 2019-11-21 Schott Ag Verwendung eines Flachglases in elektronischen Bauteilen
CN109206015B (zh) * 2018-10-08 2022-03-11 浙江矽瓷科技有限公司 一种低温、低电压阳极键合基板材料及其制备方法
US11503704B2 (en) * 2019-12-30 2022-11-15 General Electric Company Systems and methods for hybrid glass and organic packaging for radio frequency electronics
DE102020133756A1 (de) 2020-12-16 2022-06-23 Infineon Technologies Ag Hochfrequenzvorrichtungen mit dämpfenden dielektrischen Materialien

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492717A (en) 1981-07-27 1985-01-08 International Business Machines Corporation Method for forming a planarized integrated circuit
US5710082A (en) 1995-09-22 1998-01-20 Murata Manufacturing Co., Ltd. Glass composition having a low dielectric constant for high-frequency circuits
US20010026864A1 (en) 2000-03-06 2001-10-04 Murata Manufacturing Co. ,Ltd. Insulating ceramic, multilayer ceramic substrate, ceramic electronic parts and laminated ceramic electronic parts

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2965519A (en) 1958-11-06 1960-12-20 Bell Telephone Labor Inc Method of making improved contacts to semiconductors
US3543394A (en) * 1967-05-24 1970-12-01 Sheldon L Matlow Method for depositing thin films in controlled patterns
US3417393A (en) 1967-10-18 1968-12-17 Texas Instruments Inc Integrated circuit modular radar antenna
DE1934217C3 (de) 1969-07-05 1974-05-22 Leybold-Heraeus Gmbh & Co Kg, 5000 Koeln Glas für die Herstellung dünner Schichten durch Aufdampfen im Hochvakuum
JPS5120699B2 (de) * 1971-08-27 1976-06-26
US4035276A (en) * 1976-04-29 1977-07-12 Ibm Corporation Making coplanar layers of thin films
JPS53106464A (en) * 1977-02-28 1978-09-16 Sharp Kk Multilayer circuit board
US4564997A (en) 1981-04-21 1986-01-21 Nippon-Telegraph And Telephone Public Corporation Semiconductor device and manufacturing process thereof
FR2525391B1 (fr) * 1982-04-16 1985-09-13 Thomson Csf Substrat pour circuit electronique fonctionnant dans la gamme des hyperfrequences, et procede de metallisation de ce substrat
US4439270A (en) * 1983-08-08 1984-03-27 International Business Machines Corporation Process for the controlled etching of tapered vias in borosilicate glass dielectrics
US4508815A (en) * 1983-11-03 1985-04-02 Mostek Corporation Recessed metallization
JPS613431A (ja) 1984-06-15 1986-01-09 Nec Corp 多層配線を有する半導体装置およびその製造方法
JPS61151038A (ja) 1984-12-24 1986-07-09 Toshiba Glass Co Ltd 半導体被覆用タ−ゲツトガラス
US4819039A (en) 1986-12-22 1989-04-04 American Telephone And Telegraph Co. At&T Laboratories Devices and device fabrication with borosilicate glass
JPH0238775A (ja) 1988-07-27 1990-02-08 Hitachi Metals Ltd 圧電体駆動回路
US5024975A (en) * 1989-10-19 1991-06-18 E. I. Du Pont De Nemours And Co., Inc. Crystallizable, low dielectric constant, low dielectric loss composition
JPH0636472B2 (ja) 1990-05-28 1994-05-11 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン 多層配線基板の製造方法
JPH04320356A (ja) * 1991-04-19 1992-11-11 Fujitsu Ltd 薄膜回路基板の製造方法
US5264399A (en) * 1992-04-28 1993-11-23 International Business Machines Corporation Ceramic composite body
JPH0637251A (ja) 1992-07-14 1994-02-10 Rohm Co Ltd 半導体装置
JPH0669653A (ja) * 1992-08-20 1994-03-11 Fujitsu Ltd 多層回路基板及びその製造方法
JPH06112710A (ja) 1992-09-25 1994-04-22 Sumitomo Metal Ind Ltd 高周波回路基板
DE4236264C1 (de) 1992-10-27 1993-09-02 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 80636 Muenchen, De
JP3381332B2 (ja) 1993-08-24 2003-02-24 日本電気硝子株式会社 高誘電率ガラスセラミック
US5597767A (en) 1995-01-06 1997-01-28 Texas Instruments Incorporated Separation of wafer into die with wafer-level processing
KR100320630B1 (ko) * 1995-01-27 2002-07-02 윌리암 제이. 버크 유전손실이낮은유리
US5639325A (en) * 1995-02-01 1997-06-17 The Whitaker Corporation Process for producing a glass-coated article
JP3236882B2 (ja) * 1995-02-13 2001-12-10 三菱マテリアル株式会社 窒化アルミニウム基板及びその製造方法
JPH09142876A (ja) * 1995-09-22 1997-06-03 Murata Mfg Co Ltd 高周波用低誘電率ガラス組成物
US5696466A (en) * 1995-12-08 1997-12-09 The Whitaker Corporation Heterolithic microwave integrated impedance matching circuitry and method of manufacture
US5822856A (en) 1996-06-28 1998-10-20 International Business Machines Corporation Manufacturing circuit board assemblies having filled vias
US5929510A (en) 1996-10-31 1999-07-27 Sarnoff Corporation Integrated electronic circuit
JP3935558B2 (ja) 1997-06-04 2007-06-27 大日本印刷株式会社 パターン形成方法
EP0915513A1 (de) * 1997-10-23 1999-05-12 STMicroelectronics S.r.l. Integrierte Spule mit hohem Gütefaktor und deren Herstellungsverfahren
JP3827846B2 (ja) 1997-12-11 2006-09-27 大日本印刷株式会社 配線基板の製造方法と配線基板
US6620731B1 (en) 1997-12-18 2003-09-16 Micron Technology, Inc. Method for fabricating semiconductor components and interconnects with contacts on opposing sides
DE19846691C1 (de) 1998-10-09 1999-11-25 Daimler Chrysler Ag Verfahren zur Mikrostrukturierung von Gläsern
KR100318684B1 (ko) * 1999-12-18 2001-12-28 윤종용 반도체 메모리 장치의 캐패시터 제조 방법
US6262464B1 (en) 2000-06-19 2001-07-17 International Business Machines Corporation Encapsulated MEMS brand-pass filter for integrated circuits
JP3457266B2 (ja) * 2000-06-21 2003-10-14 日本電信電話株式会社 素子実装基板および素子実装基板の製造方法
US6329702B1 (en) * 2000-07-06 2001-12-11 Tyco Electronics Corporation High frequency carrier
DE10042653A1 (de) 2000-08-31 2002-03-28 Bosch Gmbh Robert Keramische Mehrlagenschaltung
US6444517B1 (en) * 2002-01-23 2002-09-03 Taiwan Semiconductor Manufacturing Company High Q inductor with Cu damascene via/trench etching simultaneous module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492717A (en) 1981-07-27 1985-01-08 International Business Machines Corporation Method for forming a planarized integrated circuit
US5710082A (en) 1995-09-22 1998-01-20 Murata Manufacturing Co., Ltd. Glass composition having a low dielectric constant for high-frequency circuits
US20010026864A1 (en) 2000-03-06 2001-10-04 Murata Manufacturing Co. ,Ltd. Insulating ceramic, multilayer ceramic substrate, ceramic electronic parts and laminated ceramic electronic parts

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1506578A2
TUMMALA R. ET AL.: "Microelectronics Packaging Handbook", 1989

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100859A2 (de) 2002-05-23 2003-12-04 Schott Ag Verfahren zur herstellung eines bauelements mit hochfrequenztauglicher leiteranordnung und entsprechendes bauelement
JP2006500783A (ja) * 2002-09-27 2006-01-05 メドトロニック ミニメド インコーポレイテッド 多層基板
US7781328B2 (en) 2002-09-27 2010-08-24 Medtronic Minimed, Inc. Multilayer substrate
US8003513B2 (en) 2002-09-27 2011-08-23 Medtronic Minimed, Inc. Multilayer circuit devices and manufacturing methods using electroplated sacrificial structures
DE102007016659A1 (de) * 2007-04-04 2008-10-09 Tricumed Medizintechnik Gmbh Infusionspumpe, Kanalplatte für eine Infusionspumpe und Verfahren zu ihrer Herstellung
DE102007016659B4 (de) * 2007-04-04 2015-08-27 Tricumed Medizintechnik Gmbh Infusionspumpe, Kanalplatte für eine Infusionspumpe und Verfahren zu ihrer Herstellung
DE102007016659B8 (de) * 2007-04-04 2015-12-03 Tricumed Medizintechnik Gmbh Infusionspumpe, Kanalplatte für eine Infusionspumpe und Verfahren zu ihrer Herstellung
DE102008034372B4 (de) * 2008-07-23 2013-04-18 Msg Lithoglas Ag Verfahren zum Herstellen einer dielektrischen Schicht in einem elektroakustischen Bauelement sowie elektroakustisches Bauelement
US8659206B2 (en) 2008-07-23 2014-02-25 Msg Lithoglas Ag Method for producing a dielectric layer in an electroacoustic component, and electroacoustic component
WO2010022957A2 (de) 2008-08-29 2010-03-04 Schott Ag Verfahren zur terminierung von lichtleitenden faserbündeln
DE102009002662A1 (de) 2009-04-27 2010-10-28 Ifm Electronic Gmbh Kapazitiver Drucksensor als Kombinationssensor zur Erfassung weiterer Messgrößen
WO2013144375A1 (de) 2012-03-30 2013-10-03 Msg Lithoglas Gmbh Halbleitervorrichtung und verfahren zur herstellung einer glasartigen schicht

Also Published As

Publication number Publication date
CN1656612A (zh) 2005-08-17
JP5027992B2 (ja) 2012-09-19
WO2003100846A3 (de) 2004-03-18
AU2003247287A1 (en) 2003-12-12
JP2005535108A (ja) 2005-11-17
US8273671B2 (en) 2012-09-25
JP2006513558A (ja) 2006-04-20
EP1506578A2 (de) 2005-02-16
AU2003247287A8 (en) 2003-12-12
JP2010153927A (ja) 2010-07-08
US20070166520A1 (en) 2007-07-19

Similar Documents

Publication Publication Date Title
EP1506578A2 (de) Glasmaterial für hochfrequenzanwendungen
EP1502293B1 (de) Verfahren zur herstellung strukturierter schichten auf substraten
EP1518275B1 (de) Verfahren zur herstellung eines bauelements mit hochfrequenztauglicher leiteranorndnung und entsprechendes bauelement
EP0902954A1 (de) Dünnfilm mehrschichtkondensator
DE102007030284A1 (de) Verfahren zum Verpacken von Halbleiter-Bauelementen und verfahrensgemäß hergestellten Erzeugnis
DE112020001168T5 (de) Kompakter, oberflächenmontierbarer dünnschichtkoppler mit breitbandleistung
DE102018205670A1 (de) Hermetisch abgedichtete Moduleinheit mit integrierten Antennen
DE4300808C1 (de) Verfahren zur Herstellung eines Vielschichtkondensators
DE102004022178B4 (de) Verfahren zur Herstellung einer Leiterbahn auf einem Substrat und Bauelement mit einer derart hergestellten Leiterbahn
EP1744353A1 (de) Chip-Trägersubstrat aus Silizium mit durchgehenden Kontakten und Herstellungsverfahren dafür
DE102008034372B4 (de) Verfahren zum Herstellen einer dielektrischen Schicht in einem elektroakustischen Bauelement sowie elektroakustisches Bauelement
EP1495153B1 (de) Verfahren zur beschichtung von metalloberflächen
DE102008043352A1 (de) Keramisches Substratmaterial, Verfahren zur Herstellung und Verwendung desselben sowie Antenne oder Antennenarray
EP1020248A2 (de) Verfahren zur Feinabstimmung eines passiven, elektronischen Bauelementes
DE19915245A1 (de) Verfahren zur Herstellung von elektronischen Bauelementen mit Streifenleitungen
EP0474176A2 (de) Dünnfilm-Mehrlagenschaltung und Verfahren zur Herstellung von Dünnfilm-Mehrlagenschaltungen
DE102020124520A1 (de) Kondensator
DE102020103487B4 (de) Verfahren zur Herstellung eines Glas-Keramik-Verbundsubstrates
WO2000049648A1 (de) Keramischer mehrlagen-dünnschichtkondensator
DE112021006156T5 (de) Kompakter oberflächenmontierbarer Dünnschichtkoppler
KR20050019082A (ko) 고주파수에서 사용을 위한 유리물질
WO2022117708A1 (de) Trägeranordnung, verfahren für dessen herstellung und optoelektronisches halbleiterbauteil
DE68914059T2 (de) Zusammengesetzte Struktur zur Verwendung in elektronischen Packungen.
KR20050024283A (ko) 고주파수에서 사용하기에 적합한 도전체 구조를 포함하는부품 생산 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003755118

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2484794

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020047018973

Country of ref document: KR

Ref document number: 20038118211

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004508402

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003755118

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047018973

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007166520

Country of ref document: US

Ref document number: 10514876

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10514876

Country of ref document: US