WO2003097524A1 - Methode pour la production des gazs purs, en particulier d'hydrogene et d'oxygene - Google Patents

Methode pour la production des gazs purs, en particulier d'hydrogene et d'oxygene Download PDF

Info

Publication number
WO2003097524A1
WO2003097524A1 PCT/FR2003/001454 FR0301454W WO03097524A1 WO 2003097524 A1 WO2003097524 A1 WO 2003097524A1 FR 0301454 W FR0301454 W FR 0301454W WO 03097524 A1 WO03097524 A1 WO 03097524A1
Authority
WO
WIPO (PCT)
Prior art keywords
gases
hydrogen
oxygen
separation
water
Prior art date
Application number
PCT/FR2003/001454
Other languages
English (en)
Inventor
Nils Kongmark
Harald Wirth
Klaus RÖHRICH
Original Assignee
Creative Services Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Creative Services Sarl filed Critical Creative Services Sarl
Priority to EP03752799A priority Critical patent/EP1506131A1/fr
Priority to AU2003254531A priority patent/AU2003254531A1/en
Publication of WO2003097524A1 publication Critical patent/WO2003097524A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • C01B3/045Decomposition of water in gaseous phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • C01B2203/041In-situ membrane purification during hydrogen production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0053Hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a method for the production of separated gases, in particular in the production of hydrogen and oxygen by thermal dissociation of water.
  • the invention targets the manufacture of compact devices, possibly mobile, for the production of hydrogen.
  • the invention is based on the principle of a p reactor. ex with membranes as presented in several documents 1 . It claims to improve such devices (1) by accelerating the process of evaporation of water, (2) by heating to a very high temperature by combustion of a gas with pure oxygen, and (3) by supplying this oxygen as an outgoing gas associated with the production of hydrogen. These improvements are intended to provide the principle of a compact device which can optionally be installed p. eg in a fuel cell car replacing the hydrogen storage system.
  • Fossil energy sources are limited. World oil production will peak for a time between 2004 and 2008 and then decline and never increase again (K.S. Deffeys, 2001). Petroleum is a precious raw material, which should be used for lubricants and the manufacture of other products. Today and in the years to come 85% of all oil extracted is burned, either in engines of different types or for domestic and industrial heating. Even if this delay forecast is wrong for a few years, the disappearance of oil and other fossil energy sources is an established fact. The invention helps to replace petroleum as an energy source.
  • the object of the present invention is to allow the control of the production of a gas mixture and of the separation of the gases in a gas mixture, in particular if the gas mixture is water vapor.
  • the invention is based on several known facts.
  • the first is that the efficiency of heat transfer to a liquid object is linked to the relation of its surface 5 in contact with the heat source to its volume V.
  • the S / V relationship is ⁇ 1
  • a liquid in droplets in a warm environment eg. eg steam, can reach a relative ratio of more than 200.
  • Table 1 Comparison of combustion temperatures of gases in air and with oxygen.
  • the invention By burning a fuel, the invention employs thermodynamic phenomena that certain oxidation reactions give off high energies, making it possible to reach temperatures exceeding
  • the fuel is burned with pure oxygen leaving the device. We get more combustion efficient and clean, without production of nitrogen oxides and with a minimum of carbon oxides.
  • the degree of dissociation depends on the temperature of the water vapor reached.
  • Table 2 Example of the (approximate) degree of dissociation of water molecules in percent of the total mass at atmospheric pressure. Gas components are separated, p. ex hydrogen and oxygen created in the dissociation of water. The separation is carried out using ceramic or metallic membranes to separate the gas molecules by molecular sieving or by ion transport, separation arrangements by means of nozzles, or any other physical or chemical means.
  • the quantities of gas extracted are linked to their stoichiometric presence in the initial gas or liquid.
  • H 2 0 For the extraction of hydrogen and oxygen from water (H 2 0), two parts (in number of molecules) of hydrogen (H 2 ) and one part of oxygen (0 2 ) will be extracted - Because the energy vector (combustible gas) and the source of hydrogen (water) are physically separated, the gases leaving, in particular hydrogen, do not contain any contamination from small quantities of water. This fact is important, since it is no longer necessary to add a gas purification stage before its use p. eg in a fuel cell.
  • the extracted gases are directed either to external users or to use in the device itself.
  • the gases produced as well as the exhaust gas from the crucible pass through heat exchangers. Heat can be used to preheat water or for any other purpose.
  • Exhaust gas can also be used to achieve additional goals.
  • Inert materials recently developed and resistant to high temperatures are used. The evolution of such materials is promising for future improvements of the invention.
  • One embodiment of the invention may be the separation of hydrogen and oxygen from liquid water.
  • the container is made of heat resistant material.
  • One or more crucibles are mounted inside the reactor. Inside the crucible is burned acetylene- (C 2 H 2 ) with oxygen. To start the device, either oxygen from the air or oxygen from a storage container is used. When the machine is running, there will be enough oxygen production to support the combustion of acetylene.
  • the temperature can reach 3000 ° K and more.
  • Sprinklers mounted in the walls of the reactor inject small droplets of water. One or more nozzles are used to split the liquid into droplets one size in the order of one micrometer before exposure to heat for conversion. The water evaporates either through the hot gas in the reactor or in contact with the surface of the crucible.
  • the conversion of liquid into vapor is carried out by irradiation, convection and conduction.
  • the vapor is converted to a gas mixture by thermal dissociation by means of irradiation, convection and conduction.
  • the gas mixture is further heated by irradiation, convection and conduction, until a desired degree of dissociation is reached.
  • the thermal equilibrium is reached in very short times, below a millisecond depending on the power of the crucibles and the total amount of material in the reactor.
  • Some parts of the reactor walls are made of permeable materials for the gas components to be extracted.
  • the surface of the parts is chosen according to the permeability of the materials in order to ensure the relationship between the quantities extracted.
  • the jets inject the quantity of water corresponding exactly to the quantities of gas removed.
  • Two or more separation processes are carried out in parallel, resulting in the simultaneous extraction of two or more separate gases or mixtures of gases from the initial gas mixture.
  • Two or more separation processes are carried out in consecutive stages, such that two or more gases or distinct mixtures of gases are successively extracted from the initial mixture of gases.
  • the gases remain mechanically separated in caves above the permeable surfaces. They are directed to their next use by pipe systems and possibly pumps. Specifically, the oxygen will be compressed to be re-injected into the acetylene circuit.
  • the gas caves serve as the first thermal insulation.
  • thermos bottle system The complete system of the reactor with the gas collection caves is in a system of several layers of thermal insulation comprising vacuum insulation (thermos bottle system).
  • the inlets for the combustion gas and for the water pass through the various insulation stages and are thus preheated.
  • FIG. 1 shows the operating principle as described above, in particular the gas flows.
  • the volume of a reactor (1) comprises a crucible (2) and two caverns (3 and 4) for assembling the separate gases. They are extracted through permeable membranes almost exclusively for oxygen (5) and for hydrogen (6).
  • the water is led by a line (7) to the nozzle (8) inside the reactor.
  • the spout (9) of the crucible is supplied by a line of combustible gas (10), the exhaust gases exit through pipes (11).
  • the separated gases are routed through gas lines.
  • a line (12) is used for oxygen, which will be added to the fuel gas circuit.
  • the other line (13) will lead the hydrogen to its destination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne le contrôle de la production des gaz séparés, en particulier dans la production d'hydrogène et d'oxygène par dissociation thermique d'eau. Elle cible à la fabrication des appareils compacts, éventuellement mobiles, pour la production d'hydrogène. L'invention revendique comme innovations d'améliorer de tels appareils. Le volume d'un réacteur (1) contient l'eau évaporée. Il comporte un creuset (2) et deux cavernes (3 et 4) pour assembler les gaz séparés. Ils sont extraits à travers des membranes perméable pour oxygène (5) et pour hydrogène (6). L'eau est conduite par une ligne (7) vers un gicleur (8) à l'intérieur du réacteur. Le bec (9) du creuset est alimenté par une ligne de gaz combustible (10), les gaz d'échappement sortent par des conduites (11). Les gaz séparés sont acheminés dans des lignes de gaz. Une ligne (12) sert pour l'oxygène, qui sera ajouté au circuit de gaz combustible. L'autre ligne (13) conduira l'hydrogène vers sa destination. Le dispositif selon l'invention est particulièrement destiné à la production d'hydrogène mobile et sur une petite échelle.

Description

DISPOSITIF POUR LA PRODUCTION DES GAZ PURS, EN PARTICULIER D'HYDROGENE ET D'OXYGENE, A PARTIR DES MELANGES DE GAZ OU DES LIQUIDES, POUR L'APPROVISIONNEMENT MOBILE ET STATIONNAIRE D'ENERGIE
La présente invention concerne une méthode pour la production des gaz séparés, en particulier dans la production d'hydrogène et d'oxygène par dissociation thermique d'eau. L'invention cible à la fabrication des appareils compacts, éventuellement mobiles, pour la production d'hydrogène. L'invention est basée sur le principe d'un réacteur p. ex à membranes comme présenté dans plusieurs documents1. Elle revendique d'améliorer de tels appareils (1) par l'accélération du processus d' évaporation de l'eau, (2) par le chauffage à une très haute température par combustion d'un gaz avec de l'oxygène pur, et (3) par fournir cet oxygène comme gaz sortant associé à la production d'hydrogène. Ces améliorations ont comme but de fournir le principe d'un appareil compact qui peut éventuellement être installé p. ex dans une voiture à pile à combustible remplaçant le système de stockage d'hydrogène .
Les sources d'énergie fossiles sont limitées. La production mondiale de pétrole fera une pointe un moment entre 2004 et 2008 et elle diminuera ensuite pour n' encore augmenter jamais (K.S. Deffeys, 2001) . Le pétrole est une matière brute précieuse, qui devrait être employée pour des lubrifiants et la fabrication d'autres produits. Aujourd'hui et dans les années à venir 85% de tout pétrole extrait est brûlé, soit dans les moteurs de différents types soit pour le chauffage domestique et industriel. Même si cette prévision de délai est erronée de quelques années, la disparition du pétrole et d'autres sources fossiles d'énergie est un fait établi. L'invention aide à remplacer le pétrole comme source d'énergie.
Les émissions des gaz toxiques ou hasardeux à l'environnement seront des problèmes fortement croissants si on continue de brûler le pétrole. L'invention revendique de réduire rigoureusement de telles émissions ou même de les éliminer.
90% de la surface de notre planète est couvert par l'eau et est ainsi un énorme réservoir d'hydrogène. L'utilisation de l'énergie inhérente dans l'hydrogène n'a pas été exploitée économiquement. La présente invention revendique avoir trouvé une manière d'extraire l'hydrogène de l'eau en utilisant plusieurs sciences.
Actuellement il n' existe aucune solution praticable de la production d'hydrogène adaptée aux besoins de petits consommateurs, spécifiquement dans des véhicules de transports (voitures, camions ou bus actionnés par des piles à combustible) . Dans ce secteur la consommation d'hydrogène s'élève de 50 à 400 litres de gaz (à 20°C et 1 bar) par kilomètre parcouru. L'invention ouvre la porte à la construction des petites stations de production d'hydrogène fiable, compact et mobile.
L'objet de la présente invention est de permettre le contrôle de la production d'un mélange de gaz et de la séparation des gaz dans un mélange de gaz, en particulier si le mélange de gaz est du vapeur d' eau.
L'invention est basée sur plusieurs faits connus.
Le premier est que l'efficacité du transfert thermique vers un objet liquide est lié à la relation de sa surface 5 en contact avec la source de chaleur à son volume V. Quand le liquide est tenu dans un récipient et la chaleur est fournie par un chauffage dans l' intérieur du récipient, la relation S/V est < 1, tandis qu'un liquide en gouttelettes dans un environnement chaud, p. ex du vapeur, peut atteindre un rapport relatif de plus de 200.
Figure imgf000004_0001
Tableau 1 : Comparaison des températures de combustion de gaz dans l'air et avec de l'oxygène.
En brûlant un combustible l' invention emploie des phénomènes thermodynamique que certaines réactions d' oxydation dégagent des énergies élevées, permettant d'atteindre des températures excédant
3000 °K. Plus spécifiquement, le combustible est brûlé avec de l'oxygène pur sortant de l'appareil. On obtient la combustion plus efficace et propre, sans production d'oxydes d'azote et avec un minimum d'oxydes de carbone.
A de telles températures les molécules dans le gaz sont partiellement dissociées. Le degré de dissociation dépend de la température du vapeur d'eau atteinte.
Figure imgf000005_0001
Tableau 2 : Exemple du degré de dissociation (approximatif) des molécules d' eau en pour cent de la masse totale à pression atmosphérique . On sépare des composants du gaz, p. ex l'hydrogène et l'oxygène créés dans la dissociation de l'eau. La séparation est effectuée en utilisant des membranes céramiques ou métalliques pour séparer les molécules de gaz par tamisage moléculaire ou par transport ionique, des arrangements de séparation au moyen de tuyères, ou tous les autres moyens physiques ou chimiques.
Les quantités de gaz extraites sont liées à leur présence stœchiométrique dans le gaz ou le liquide initial. Pour l'extraction d'hydrogène et d'oxygène à partir d'eau (H20) , on extraira deux parts (en nombre de molécules) d'hydrogène (H2) et une part d'oxygène (02) - Parce-que le vecteur d'énergie (le gaz combustible) et la source d'hydrogène (l'eau) sont physiquement séparés, les gaz sortant, notamment l'hydrogène, ne contiennent aucune contamination à partir de faibles quantités d'eau. Ce fait est important, car il n'est plus nécessaire d'ajouter une étape d'épuration de gaz avant son utilisation p. ex dans une pile à combustible.
Les gaz extraits sont dirigés soit vers des utilisateurs externes soit vers une utilisation dans le dispositif lui-même.
Les gaz produits aussi bien que le gaz d' échappement du creuset passent par des echangeurs de chaleur. La chaleur peut être employée pour préchauffer l'eau ou pour n'importe quel autre but.
Le gaz d'échappement peut également servir à atteindre des objectifs supplémentaires. Des matériaux inertes récemment développés et résistants à hautes températures sont employés. L'évolution de tels matériaux est prometteuse pour de futures améliorations de l'invention.
Une mode de réalisation de l' invention peut être la séparation d'hydrogène et oxygène à partir d'eau liquide.
Le récipient (réacteur) est en matière résistant à la chaleur. A l'intérieur du réacteur sont montés un ou plusieurs creusets. A l'intérieur du creuset est brûlé de l'acétylène- (C2H2) avec de l'oxygène. Pour le démarrage de l'appareil on utilise soit l'oxygène de l'air soit l'oxygène d'un récipient de stockage. Quand la machine marche, la production d'oxygène sera suffisante pour soutenir la combustion d'acétylène. La température peut atteindre 3000°K et plus. Des gicleurs montés dans les parois du réacteur injectent des petites gouttelettes d'eau. Une ou plusieurs gicleurs sont utilisés pour fractionner le liquide en gouttelettes d'une taille dans l'ordre d'un micromètre avant exposition à la chaleur pour la conversion. L' eau évapore soit en traversant le gaz chaud dans le réacteur soit en contact avec la surface du creuset .
La conversion du liquide en vapeur est effectuée par irradiation, convection et conduction. La vapeur est convertie en mélange de gaz, par dissociation thermique au moyen d'irradiation, de convection et de conduction. Le mélange de gaz est encore chauffé par irradiation, convection et conduction, jusqu'à ce qu'un degré souhaité de dissociation est atteint.
Dans le réacteur l' équilibre thermique est atteint dans des temps très courts, en dessous d'une milliseconde selon puissance des creusets et quantité de matière totale dans le réacteur. Quelques parties des parois du réacteur sont faites des matériaux perméables pour les composants de gaz à extraire. La surface des parties est choisie selon perméabilité des matériaux afin d'assurer la relation entre les quantités extraites.
Aujourd'hui il y a des matériaux résistants aux températures élevées avec une perméabilité ou porosité pour des gaz. Par exemple des oxydes de certains métaux sont exploités pour le transfert d'oxygène, par le mécanisme chimique de transport d'ions. Des produits de zircon étaient déjà utilisés pour fabriquer des membranes poreuses aux molécules d'hydrogène.
Les gicleurs injectent la quantité d'eau correspondante exactement aux quantités de gaz enlevées.
Deux ou plusieurs procédés de séparation sont effectués en parallèle, ayant pour résultat l'extraction simultanée de deux ou plusieurs gaz ou mélanges distincts de gaz du mélange initial de gaz.
Deux ou plusieurs procédés de séparation sont effectués en étapes consécutives, telles que deux ou plusieurs gaz ou mélanges distincts de gaz sont extraits successivement du mélange initial de gaz .
A l'extérieur du réacteur les gaz restent mécaniquement séparés dans des cavernes dessus les surfaces perméables. Ils sont dirigés vers leur utilisation suivante par des systèmes de tuyaux et éventuellement de pompes. Spécifiquement l'oxygène sera comprimé pour être re-injecté dans le circuit d'acétylène.
Les cavernes de gaz servent comme première isolation thermique.
Le système complet du réacteur avec les cavernes de collection de gaz est dans un système de plusieurs couches d' isolation thermique comprenant d'isolation par vide (système bouteille thermos).
Les entrées pour le gaz de combustion et pour l' eau traversent les différents stages d'isolation et ils sont ainsi préchauffés.
La Figure 1 montre le principe de fonctionnement comme décrit ci-dessus, en particulière les flux des gaz. Le volume d'un réacteur (1) comporte un creuset (2) et deux cavernes (3 et 4) pour assembler les gaz séparés. Ils sont extraits à travers des membranes perméable quasi exclusivement pour oxygène (5) et pour hydrogène (6) . L'eau est conduite par une ligne (7) vers le gicleur (8) à l'intérieur du réacteur. Le bec (9) du creuset est alimenté par une ligne de gaz combustible (10), les gaz d'échappement sortent par des conduites (11) . Les gaz séparés sont acheminés dans des lignes de gaz. Une ligne (12) sert pour l'oxygène, qui sera ajouté au circuit de gaz combustible. L'autre ligne (13) conduira l'hydrogène vers sa destination. En employant les principes de la présente invention, il est possible de réaliser une unité mobile de production de gaz en petite taille, pour par exemple alimenter des piles à combustibles dans des voitures et des camions. Elle est également utile pour la production d'énergie électrique pour un usage domestique et industriel.
1 Documents particulièrement concernés avec la production d'hydrogène à partir de l'eau dissociée : GB 1 532 403 A (COMP GENERALE ELECTRICITE)
R. P. Omorjan et al. : " Applicability of a double-membrane reactor for thermal décomposition of water: a computer analysis" US 4 120 663 A (FALLY JACQUES) US 3 901 668 A (SEITZER WALTER H) US 3 901 669 A (SEITZER WALTER H) US 4 254 086 A (SANDERS ALFRED P) DE 43 02 089 A (RYDZEWSKI ROLAND DR ING)

Claims

REVENDICATIONS
1. Méthode pour contrôler la production et la séparation des gaz depuis de l'eau ou des solutions aqueuses, caractérisée en ce qu'un ou plusieurs creusets sont utilisés pour chauffer l'eau ou le liquide dans un volume réacteur, en brûlant des combustibles, en ce qu'un ou plusieurs des gaz séparés par la méthode et sortants du volume réacteur sont employés pour la combustion dans le ou les brûleurs afin d'atteindre des températures élevées, par le chauffage supplémentaire de cette vapeur jusqu'à ce qu'un degré de dissociation employable du vapeur en mélange de composants gazeux est atteint, et - par la séparation des gaz de ce mélange.
2. Méthode selon la revendication 1, caractérisée en ce qu'une ou plusieurs gicleurs sont utilisés pour fractionner le liquide en gouttelettes d'une taille dans l'ordre d'un micromètre avant l'exposition à la chaleur pour la conversion accélérée et contrôlée du liquide en vapeur.
3. Méthode selon la revendication 1, caractérisée en ce que la conversion du liquide en vapeur est effectuée par irradiation, convection et conduction.
4. Méthode selon la revendication 1, caractérisée en ce que la vapeur est convertie en mélange de gaz par dissociation thermique au moyen d'irradiation, de convection et de conduction.
5. Méthode selon les revendications 1, 2 et 4, caractérisée en ce que le mélange de gaz est encore chauffé par irradiation, convection et conduction, jusqu'à ce qu'un degré souhaité de dissociation est atteint.
6. Méthode selon les revendications 1, 2, 3, et 4, caractérisée en ce qu'un ou plusieurs gaz ou mélanges distincts de gaz sont séparées du mélange initial de gaz.
7. Méthode selon la revendication 6, caractérisée en ce que deux ou plusieurs procédés de séparation sont effectués en parallèle, ayant pour résultat l'extraction simultanée de deux ou plusieurs gaz ou mélanges distincts de gaz du mélangé initial de gaz.
8. Méthode selon la revendication 6, caractérisée en ce que deux ou plusieurs procédés de séparation sont effectués en étapes consécutives, telles que deux ou plusieurs gaz ou mélanges distincts de gaz sont extraits successivement du mélange initial de gaz .
9. Méthode selon les revendications 6, 7 et 8, caractérisée en ce que les quantités de gaz séparés du mélange de gaz sont en même proportions que dans le mélange initial de gaz, ainsi pour éviter un enrichissement de n'importe lequel des gaz à l'intérieur du réacteur.
10. Méthode selon l'une quelconque des revendications précédentes, caractérisée en ce qu'un ou plusieurs des gaz séparés sont utilisés pour préchauffer des composants dans le processus.
11. Méthode selon l'une quelconque des revendications précédentes, caractérisée par un flux contrôlé des gaz avant séparation et après séparation.
12. Méthode selon l'une quelconque des revendications précédentes, caractérisée en ce que les gaz d'échappement du creuset sont utilisés pour chauffer des composants dans le processus.
PCT/FR2003/001454 2002-05-17 2003-05-12 Methode pour la production des gazs purs, en particulier d'hydrogene et d'oxygene WO2003097524A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03752799A EP1506131A1 (fr) 2002-05-17 2003-05-12 Methode pour la production des gazs purs, en particulier d'hydrogene et d'oxygene
AU2003254531A AU2003254531A1 (en) 2002-05-17 2003-05-12 Method for producing pure gases, in particular hydrogen and oxygen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/06061 2002-05-17
FR0206061A FR2839713B1 (fr) 2002-05-17 2002-05-17 Dispositif pour la production des gaz purs, en particulier d'hydrogene et d'oxygene, a partir des melanges de gaz ou des liquides, pour l'approvisionnement mobile et stationnaire d'energie

Publications (1)

Publication Number Publication Date
WO2003097524A1 true WO2003097524A1 (fr) 2003-11-27

Family

ID=29286561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/001454 WO2003097524A1 (fr) 2002-05-17 2003-05-12 Methode pour la production des gazs purs, en particulier d'hydrogene et d'oxygene

Country Status (4)

Country Link
EP (1) EP1506131A1 (fr)
AU (1) AU2003254531A1 (fr)
FR (1) FR2839713B1 (fr)
WO (1) WO2003097524A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100872576B1 (ko) 2007-07-02 2008-12-08 삼성전기주식회사 수소 발생 장치 및 연료전지 발전 시스템
US7943045B2 (en) 2006-06-15 2011-05-17 H2 Power Systems Ltd. Reactor with a thermal gradient controlled for the production of pure hydrogen
DE102014212972A1 (de) 2013-07-04 2015-01-08 Technische Universität Dresden Verfahren und Anlage zur Wasserstoffherstellung
WO2015134971A1 (fr) * 2014-03-07 2015-09-11 Stellar Generation, Inc. Séparation d'hydrogène à partir d'eau dissociée
EP4039637A1 (fr) * 2021-02-04 2022-08-10 Ultra High Temperature Processes Ltd Dispositif et procédé de séparation de l'eau en hydrogène et en oxygène par thermolyse

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0419146A (pt) 2004-12-16 2008-03-11 Ipc Internac Power Consulting dispositivo para separação de água em hidrogênio e oxigênio

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901668A (en) * 1973-11-05 1975-08-26 Sun Ventures Inc Manufacture of oxygen from high temperature steam
US3901669A (en) * 1973-11-05 1975-08-26 Sun Ventures Inc Manufacture of hydrogen from high temperature steam
FR2293682A1 (fr) * 1974-12-05 1976-07-02 Hitz Henri Four a eau
US4120663A (en) * 1975-08-27 1978-10-17 Compagnie General d'Electricite S.A. Hydrogen generating device
GB1532403A (en) * 1976-10-04 1978-11-15 Comp Generale Electricite Hydrogen generating device
US4254086A (en) * 1978-12-27 1981-03-03 Sanders Alfred P Endothermal water decomposition unit for producing hydrogen and oxygen
DE4302089A1 (de) * 1993-01-21 1994-07-28 Roland Dr Ing Rydzewski Verfahren und Anlage zur Erzeugung von Wasserstoff und Sauerstoff

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901668A (en) * 1973-11-05 1975-08-26 Sun Ventures Inc Manufacture of oxygen from high temperature steam
US3901669A (en) * 1973-11-05 1975-08-26 Sun Ventures Inc Manufacture of hydrogen from high temperature steam
FR2293682A1 (fr) * 1974-12-05 1976-07-02 Hitz Henri Four a eau
US4120663A (en) * 1975-08-27 1978-10-17 Compagnie General d'Electricite S.A. Hydrogen generating device
GB1532403A (en) * 1976-10-04 1978-11-15 Comp Generale Electricite Hydrogen generating device
US4254086A (en) * 1978-12-27 1981-03-03 Sanders Alfred P Endothermal water decomposition unit for producing hydrogen and oxygen
DE4302089A1 (de) * 1993-01-21 1994-07-28 Roland Dr Ing Rydzewski Verfahren und Anlage zur Erzeugung von Wasserstoff und Sauerstoff

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R. P. OMORJAN ET AL.: "Applicability of a double-membrane reactor for thermal decomposition of water: a computer analysis", JOURNAL OF MEMBRANE SCIENCE., vol. 154, 1999, ELSEVIER SCIENTIFIC PUBL.COMPANY. AMSTERDAM., NL, pages 273 - 280, XP002227873, ISSN: 0376-7388 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943045B2 (en) 2006-06-15 2011-05-17 H2 Power Systems Ltd. Reactor with a thermal gradient controlled for the production of pure hydrogen
KR100872576B1 (ko) 2007-07-02 2008-12-08 삼성전기주식회사 수소 발생 장치 및 연료전지 발전 시스템
DE102014212972A1 (de) 2013-07-04 2015-01-08 Technische Universität Dresden Verfahren und Anlage zur Wasserstoffherstellung
WO2015134971A1 (fr) * 2014-03-07 2015-09-11 Stellar Generation, Inc. Séparation d'hydrogène à partir d'eau dissociée
US9321644B2 (en) 2014-03-07 2016-04-26 Stellar Generation, Inc. Separating hydrogen from disassociated water
US10259706B2 (en) 2014-03-07 2019-04-16 Stellar Generation, Inc. Separating hydrogen from disassociated water
EP4039637A1 (fr) * 2021-02-04 2022-08-10 Ultra High Temperature Processes Ltd Dispositif et procédé de séparation de l'eau en hydrogène et en oxygène par thermolyse
WO2022167481A1 (fr) * 2021-02-04 2022-08-11 Ultra High Temperature Processes Ltd Dispositif et procédé de fractionnement de l'eau en hydrogène et oxygène par thermolyse

Also Published As

Publication number Publication date
FR2839713B1 (fr) 2005-03-11
FR2839713A1 (fr) 2003-11-21
AU2003254531A1 (en) 2003-12-02
EP1506131A1 (fr) 2005-02-16

Similar Documents

Publication Publication Date Title
US7935254B2 (en) Reactor for simultaneous separation of hydrogen and oxygen from water
CN103618100B (zh) 即时制氢发电***及方法
WO2015070802A1 (fr) Système et procédé de production d&#39;électricité en utilisant de l&#39;hydrogène préparé instantanément
CA2783092C (fr) Procede et systeme pour produire de l&#39;hydrogene en utilisant des membranes de separation d&#39;ions de sodium
FR2902416A1 (fr) Un reacteur avec gradient thermique controle pour la production d&#39;hydrogene pur
CN103618098A (zh) 一种利用即时制得的氢气进行发电的***及方法
EP1109621A1 (fr) Catalyseur et procede de reformage de l&#39;ethanol ainsi que systeme de pile a combustible les utilisant
EP3303659B1 (fr) Système de production de dihydrogène, et procédé associé
AU2008228107B2 (en) Hydrogen production by water dissociation in the presence of SnO using the SnO2/SnO couple in a series of thermochemical reactions
WO2003097524A1 (fr) Methode pour la production des gazs purs, en particulier d&#39;hydrogene et d&#39;oxygene
WO2016029603A1 (fr) Système et procédé permettant une intégration de la production d&#39;électricité et de la réfrigération d&#39;automobile
WO2016029604A1 (fr) Système et procédé permettant une intégration de la production d&#39;électricité et de la réfrigération
CN204176957U (zh) 汽车发电及制冷一体化的***
CA2505700A1 (fr) Production d&#39;hydrogene a partir d&#39;hydrocarbures
CN110817798A (zh) 甲醇水蒸气与氢混合气一体式中压制氢***及其方法
CN110844883A (zh) 氢分离与水煤气重整一体式低压制氢***及其方法
CN110817795A (zh) 氢分离与水煤气重整一体式中压制氢***及其方法
Methanol steam reforming for fuel cell applications
FR2915986A1 (fr) Dispositif permettant de dissocier la molecule d&#39;ammoniac

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN ID IL IN JP KR MX NZ PH UA US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2003752799

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003752799

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003752799

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP