WO2003097265A1 - Method for inspecting/correcting component and system for inspecting/correcting component - Google Patents

Method for inspecting/correcting component and system for inspecting/correcting component Download PDF

Info

Publication number
WO2003097265A1
WO2003097265A1 PCT/JP2003/005929 JP0305929W WO03097265A1 WO 2003097265 A1 WO2003097265 A1 WO 2003097265A1 JP 0305929 W JP0305929 W JP 0305929W WO 03097265 A1 WO03097265 A1 WO 03097265A1
Authority
WO
WIPO (PCT)
Prior art keywords
correction
component
stage
inspection
shape
Prior art date
Application number
PCT/JP2003/005929
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Usami
Shuichi Kitamura
Original Assignee
Uk-Tech Ltd.
Kitamura Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uk-Tech Ltd., Kitamura Co., Ltd. filed Critical Uk-Tech Ltd.
Priority to AU2003234795A priority Critical patent/AU2003234795A1/en
Publication of WO2003097265A1 publication Critical patent/WO2003097265A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32237Repair and rework of defect, out of tolerance parts, reschedule
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37617Tolerance of form, shape or position

Definitions

  • the present invention relates to a method and an apparatus for inspecting and correcting the shape and dimensions of a component mounted on a precision instrument or the like, and correcting the shape and dimension as necessary.
  • Methods and devices for inspecting the shape and dimensions of components mounted on precision equipment such as hard disks and correcting them based on the inspection results include checking the inclination of the slider due to deformation of the panel of the hard disk head unit. (See, for example, Japanese Patent Application Laid-Open No. 10-204842). This device inspects the inclination of the slider using autocollimation while pressing the panel panel to give the slider the same displacement as the actual one. Then, based on the inspection results, a part of the panel is manually twisted and corrected using tools (tweezers).
  • a method and apparatus for inspecting the shape and position of a similar part there is a method and apparatus for detecting a bending angle of a part to be bent between upper and lower molds (for example, see Japanese Patent Application Laid-Open No. H4-178851). No. 1).
  • a contact / distance sensor is provided in a mold to detect a bending angle of a component. Then, additional bending is performed until the detected result falls within the allowable value.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method and apparatus for inspecting and correcting a molded part that can automatically inspect and correct a molded part. Disclosure of the invention
  • the method for inspecting and correcting a part comprises the steps of measuring the shape and / or dimensions of a part molded to a certain shape and dimensions, and determining whether the measured value is within an allowable range (tolerance). Determining whether the part is out of tolerance; and, if determined to be out of tolerance, correcting the shape and / or dimensions of the part by applying a quantitatively controlled plastic working to a part of the part. Re-measuring and re-determining the shape and Z or dimension of the part later; and, if the re-determining result is outside the tolerance again, repeating the correcting step and the re-measuring / re-determining step again.
  • a method for inspecting and correcting a part comprising: automatically performing all of the steps on a single device while fixing the part.
  • the straightening work is not performed manually by using tweezers in the present invention, but the straightening work is performed automatically, so that the work result is accurate. Further, it is not necessary in the present invention to set components for each operation as disclosed in Japanese Patent Laid-Open No. 4-178511.
  • the straightening result is accurate, and the dimension and shape of the part can be freely corrected.
  • the degree increases.
  • the inspection / correction of a plurality of parts of the component is automatically performed while the component is fixed on the single device, the component is fixed once. Inspections and corrections can be performed for a plurality of parts as they are, so that inspections and corrections can be performed accurately and in a short time.
  • the measurement result can be quantitatively reflected in the correction amount.
  • the amount of the second or subsequent correction operation can be changed according to the correction amount actually obtained as a result of the first correction or the previous correction (correction result amount).
  • the part size and shape can be kept within the tolerance with a small number of corrections.
  • the target value of the correction result amount per correction can be set to (2 ⁇ tolerance) or a slightly smaller value.
  • a component inspection and correction device is a component inspection and correction device that measures and corrects the shape and / or dimension of a component formed into a certain shape and size, a fixing unit that fixes a component to be inspected, and a component to be inspected.
  • Correction means for correcting the shape and / or dimensions of the part by performing the plastic working performed by the measuring means, and until the result measured by the measuring means falls within an allowable range (tolerance). It is characterized in that the measurement, the judgment by the judgment means and the correction by the correction means are automatically repeated.
  • inspection and correction of a plurality of parts of the component can be automatically performed while being fixed by the fixing means.
  • the correction means can automatically reflect the measurement result of the measuring means in the correction amount quantitatively.
  • the correction means can change the amount of the second or the next correction operation according to the correction amount (correction result amount) actually generated as a result of the first correction or the previous correction.
  • the correction means may set a target value of the correction result amount per correction to (2 ⁇ tolerance) or a slightly smaller value.
  • the correction unit includes a correction member that contacts a part (corrected part) of the part and applies force and displacement to the part. A first stage on which the correction member is mounted, a second stage on which the first stage is mounted, and a second stage driven in a direction of displacement of the correction member, and a first stage between the first stage and the second stage.
  • An interposed spring for keeping the first stage at a relative neutral point, and a synchronizing unit for synchronizing the movement of the first and second stages when the spring is biased to a certain extent A floating mechanism having both stage abutting portions) and an evening sensor for sensing that the abutting portions are touched, wherein the spring is provided after the correcting member comes into contact with the corrected portion of the component. Deflection, before then The evening sensor detects that the two stages are in contact with each other, and thereafter, the second stage can move by the correction operation amount.
  • a reference position measuring means for measuring a position of a reference portion of the component may be further provided. In this case, it is possible to measure the position of the reference part in the component and manage the relative positional relationship of the inspected part from that position.
  • the reference portion may be based on the center position of the hole or the like in addition to the flat surface in the component.
  • Another part inspection and correction device of the present invention includes a step of measuring a physical quantity related to the shape and Z or dimension of a part formed into a certain shape and dimension, and a step of measuring whether the value of the measured physical quantity is within an allowable range. And the step of determining whether A step of correcting the shape and the Z dimension of the part by applying a quantitatively controlled plastic working to a part of the part, and a step of re-measuring and re-determining the physical quantity of the part after the correction. And a step of repeating the correction step and the re-measurement / re-determination step again if the result of the re-determination is outside the allowable range again. It is characterized in that it is performed automatically while the parts are fixed on a single device.
  • Some mechanical components perform actions related to various physical quantities (eg, magnetic flux density, light reflection, etc.). And the physical quantity is the mechanical property of the part
  • the physical quantity can be adjusted to an appropriate value by inspecting the physical quantity and modifying a part of the part related to the physical quantity, it is preferable in terms of improving the performance and yield of the part. Also in this case, if the inspection and the correction are performed on the same device, it is possible to save the trouble of transferring components between the inspection device and the correction device and fixing the components to the device each time. In addition, since parts are inspected and corrected while they are fixed once, there is no variation in fixing work, and inspection and correction can be performed accurately.
  • a component inspection and correction apparatus comprising: fixing means for fixing a component to be inspected; measuring means for measuring a value of a physical quantity having a relationship with the shape and Z or dimension of the component to be inspected; Determining means for determining whether or not the value of the measured physical quantity is within an allowable range; and forming a shape and / or size of the part by subjecting a part of the part to be inspected to plastic working which is quantitatively controlled. And a correction unit for correcting the physical quantity measured by the measurement unit within the allowable range.
  • the measurement by the measurement unit, the determination by the determination unit, and the correction by the correction unit are automatically performed. It is characterized by repeating.
  • FIG. 1 (A) is a front view showing a structure of a component inspection and correction device according to an embodiment of the present invention
  • FIG. 1 (B) is a block diagram showing a configuration of a control system of the device. is there.
  • FIG. 2 is a side view of the component inspection / correction apparatus of FIG.
  • FIG. 3 is a plan view of the component inspection / correction apparatus of FIG.
  • Fig. 4 is an enlarged view of a part of the part inspection and correction device of Fig. 1, where Fig. 4 (A) is a front view, Fig. 4 (B) is a side view, and Fig. 4 (C) is a plan view. It is.
  • FIG. 5 is a side view showing an initial state (non-operating state) of the correcting means.
  • FIG. 6 is a front view showing an initial state of the correction means.
  • FIG. 7 is a side view showing a state where the straightening device has actually started bending the L piece M4 of the part.
  • FIG. 8 is a side view showing a correction operation state of the correction device.
  • FIG. 9 is a plan view showing a correction operation state of the correction device.
  • FIG. 10 is a view showing the shape of the part to be inspected
  • FIG. 10 (A) is a front view
  • FIG. 10 (B) is a side view
  • FIG. 10 (C) is a plan view.
  • FIG. 11 is a flowchart of a control unit of the component inspection and correction method according to the embodiment of the present invention.
  • FIG. 12 is a flowchart of a control unit of the component inspection and correction method according to the embodiment of the present invention.
  • FIG. 13 is a flowchart of a control unit of the component inspection and correction method according to the embodiment of the present invention.
  • FIG. 14 is a diagram showing a main structure of the component inspection and correction device, where FIG. 14 (A) is a front view and FIG. 14 (B) is a plan view.
  • FIG. 15 is a diagram for explaining a method of obtaining the position of the reference part of the component.
  • FIG. 16 is a diagram showing the shape of the part to be inspected, FIG. 16 (A) is an overall perspective view, and FIG. 16 (B) is a partial side sectional view.
  • FIG. 17 is a perspective view showing a structure of a main part of a component inspection and correction device according to another embodiment of the present invention.
  • FIG. 18 is a perspective view showing a state at the time of measurement of a main part of the apparatus in FIG.
  • FIG. 19 is a diagram showing the state of the main part of the apparatus of FIG. 17 at the time of correction
  • FIG. 19 (A) is a perspective view of the main part
  • FIG. 19 (B) is a partial side sectional view of the main part.
  • FIG. 20 is a perspective view showing a structure of a main part of a component inspection and correction device according to another embodiment of the present invention.
  • FIG. 21 is a partial side sectional view of a main part of the device in FIG. 20 at the time of correction.
  • FIG. 22 is a flowchart of a control unit of the component inspection and correction device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 10 is a diagram showing the shape of the component to be inspected
  • FIG. 10 (A) is a front view
  • FIG. 10 (B) is a side view
  • FIG. 10 (C) is a plan view.
  • the part M has three mutually perpendicular plane pieces Ml, M2, and M4 that extend in the XYZ directions.
  • the surface on the ZY plane in the figure is called base M1.
  • the surface extending from the upper side of the base Ml on the XY plane is called the upper surface M2.
  • S piece M3 a portion extending in the + X direction from the upper surface M2 and having a short axis A3 described later planted therein.
  • S piece M3 a portion extending in the + X direction from the upper surface M2 and having a short axis A3 described later planted therein.
  • a surface extending from the side of the upper surface M2 in the Z direction on the ZX plane is referred to as an L piece M4.
  • a long axis A4 described later is implanted in the L piece M4.
  • a short axis (short axis) A3 extending in the 1Z direction is implanted at the tip of the S piece M3.
  • a long axis (long axis) A4 extending in the Y direction is planted almost at the center of the L piece M4.
  • the positional dimensions of the major axis A4 and the minor axis A3 are inspected. Then, based on the result, the L piece M4 and the S piece M3 are bent and corrected so that the major axis A4 and the minor axis A3 have a predetermined positional dimensional relationship. That is, the L piece M 4 is bent in the soil Y direction with respect to the upper surface M 2 to correct the position dimension of the long axis A 4, and the S piece M 3 is bent in the soil Z direction with respect to the upper surface M 2 Correct the position of the short axis A3 (see below for details).
  • FIG. 1A shows the structure of a component inspection and correction device according to an embodiment of the present invention.
  • FIG. 1 () is a block diagram showing a configuration of a control system of the device.
  • FIG. 2 is a side view of the component inspection / correction apparatus of FIG.
  • FIG. 3 is a plan view of the component inspection / correction apparatus of FIG.
  • Fig. 4 is an enlarged view of a part of the part inspection and correction device of Fig. 1; Fig. 4 ( ⁇ ) is a front view, Fig. 4 ( ⁇ ) is a side view, and Fig. 4 (C) is a plan view. is there.
  • the parts inspection and correction device 1 includes a fixing means 10 for fixing the part to be inspected, a measuring means 50 for measuring the dimensions of the part, and a determination as to whether or not the result measured by the measuring means 50 is within an allowable range (tolerance). And a correction means 70 for applying a controlled plastic working to a part of the part to correct the shape of the part.
  • the fixing means 10, the measuring means 50, and the correcting means 70 are all arranged on the table 3.
  • the fixing unit 10, the measuring unit 50, and the correcting unit 70 are electrically connected to the control unit 200, and are controlled by the control unit.
  • the determination means 210 is included in the control unit 200.
  • the fixing means 10 uses the reference surface of the base Ml of the component ⁇ as the first reference surface as seen in FIG. 4 (A) and the lower surface of the upper surface M2 as seen in FIG. Secure to the device.
  • the fixing means 10 includes a pedestal 11 on which the component M is mounted, a horizontal clamper 13 for clamping the base M1 of the component M mounted on the pedestal 11, and a It has a vertical clamper 15 that clamps the upper surface M2, and.
  • the pedestal 11 has an L-shaped side surface, a horizontally long rectangular parallelepiped lower part 17, and a vertically elongated rectangular parallelepiped upper part 19 rising from the upper surface of the lower part 17.
  • Consists of The upper portion 19 is provided with a protruding portion 21 extending from the same portion to the right (Y direction) in FIG. 4 (A).
  • the cross-sectional shape of the protrusion 21 is triangular, and the tip is an acute angle.
  • the part M is placed on the upper surface of the upper portion 19 and the protrusion 21. Then, one side of the upper part 19 (the left side in FIG. 4B) is applied to the base M 1 of the part M.
  • the upper surface 19 and the upper surface of the protrusion 21 (upper side in FIG. 4B) become the second reference surface 19b on which the upper surface M2 of the component is placed.
  • the first reference plane 19a and the second reference plane 19b are orthogonal to each other.
  • the upper part 19 and the lower part 17 are provided with Z through holes 23 penetrating in the Z direction. Also, open the X through hole 25 extending in the X direction from the surface opposite to the first reference surface 19 a of the upper part 19 (the surface on the right side in FIG. 4B) until it communicates with the Z through hole 23. Have been. Further, a through hole 27 extending in the Y direction is formed on the upper surface and the end surface (the surface on the front side of the paper) of the upper portion 19 until it communicates with the Z through hole 23.
  • the base Ml of the part is set to the first reference plane 19 a side of the upper part 19 of the pedestal 19 (the left side of FIG. 4 (B)) in FIG.
  • the short axis A3 of the S piece M3 passes on the side of the upper part 19.
  • the base Ml of the component M is brought into contact with the first reference surface 19a of the upper portion 19 of the pedestal, the upper surface M2 is placed on the second reference surface 19, and the component M is placed on the pedestal 11 .
  • the part M is fixed to the first reference plane 19a by the horizontal clamper 13 (see FIG. 3), and is fixed to the second reference plane 19b by the vertical clamper 15 (see FIG. 2). Fix it.
  • the horizontal clamper 13 is, as shown in FIG. 3, a cylinder 31 provided with a telescopic piston rod 33.
  • the cylinder 31 is fixed on the table.
  • the piston rod 33 is extended and retracted from the cylinder 31 in the X-axis direction.
  • the horizontal clamper 13 is arranged such that when the piston rod 33 is extended, the rod tip surface faces the first reference surface 19 a of the pedestal upper portion 19.
  • the vertical clamper 15 is composed of a cylinder 35 having a telescopic piston rod 39 and an arm 37.
  • the end of the cylinder 35 is rotatably fixed to the table 3.
  • the arm 37 is L-shaped, and one end 37 a is rotatably connected to the piston rod 39, and the other end 37 b is rotatably connected to the pedestal 41 on the table.
  • a pressing member 43 is attached to a side surface of the arm 37.
  • the pressing member 43 does not contact the S piece M3 extending from the upper surface M2 of the component M, and the S piece M3 is deformable.
  • the base M1 and the upper surface M2 of the component M placed on the pedestal 11 are clamped and fixed so as not to move. Measurement and correction are performed while maintaining this state.
  • the measuring means 50 is composed of two parallel gauges 51 and 53 extending in the X direction and one gauge 55 extending in the Z direction.
  • the X gauge 51 measures the position of the long axis A 4 in the X direction
  • the X gauge 53 measures the position of the short axis A 3 in the X direction.
  • the Z gauge 55 measures the position of the major axis A 4 in the Z direction.
  • the two X gauges 51 and 53 are attached to the base 57.
  • the base 57 can be moved in the X direction on the table by a moving mechanism.
  • the moving mechanism includes a cylinder 59 having a telescopic piston rod 61 and a guide 63.
  • the cylinder 59 is fixed on the table.
  • the base 57 is connected to the piston rod 61 of the cylinder 59,
  • the ton rod 61 is driven in the X-axis direction along the guide 63 by expansion and contraction.
  • each of the X gauges 51 and 53 is provided with a surface 19 c (the opposite side to the first reference surface 19 a of the upper base 19 of the fixing means 10). (Right side of Fig.
  • the X-gauge for the short axis and the X-gauge for the long axis also have an expansion / contraction function, and the relative positions of the short axis and the long axis can be determined by the amount of expansion / contraction of each gauge.
  • Z gauge 55 is attached to base 65 fixed to the table, and extends vertically so as to pass through Z through hole 23 of pedestal 11.
  • the Z gauge 55 is elastic, and when extended, its tip passes through the Z through hole 23 and hits the lower surface of the long axis M 4 of the component placed on the pedestal 11. Then, the position of the major axis M4 in the Z direction is measured.
  • Figure 1 (B) shows the results measured by the gauges 51, 53, and 55 (the relative positions of the major axis A4 and the minor axis A3 in the X direction and the major axis A4 in the Z direction).
  • Is sent to the control unit 200 determination means 210.
  • the determination means 210 the orthogonality of the major axis A4 and the minor axis A3 and the relative positional relationship of each axis component with respect to the base M1 are calculated.
  • the S piece M 3 is bent in the soil Z direction to correct the position of the short axis A 3 by the correction means
  • the L piece M 4 is bent in the soil Y direction to correct the position of the long axis A 4. to correct.
  • FIG. 5 is a side view showing an initial state (non-operating state) of the correction means.
  • FIG. 6 is a front view showing an initial state of the correction means.
  • the straightening means 70 bends a controlled part of the part (L piece M4 and S piece M3) by applying a controlled amount of displacement. Then, the judgment means 210 judges whether or not the measurement result falls within an allowable range (tolerance), and repeats the correction work until the measurement result falls within the range (to be described later in detail). At this time, in order to feed back the measurement result of the part to be corrected by the previous correction to the next correction work, it is necessary to accurately know the Y direction correction operation amount of the L piece M4 and the Z direction correction operation amount of the S piece M3. is necessary.
  • the straightening is performed for each of the L piece M4 and the S piece M3 of the component, and each is provided with a straightening device having the same structure.
  • a device for correcting the L piece M 4 by moving it in the Y direction will be described.
  • the correction device 70 includes a correction nail (correction member) 71, a first stage 73 on which the correction nail 71 is mounted, and a first stage 73. And a second stage 75 to be mounted.
  • the first stage 73 and the second stage 75 are connected via a floating mechanism.
  • the correction nail 71 has a rectangular parallelepiped shape, and a groove 77 extending in the X direction is formed on the upper surface.
  • the tip of the L piece M 4 enters into the groove 77 and is hooked.
  • the width W 1 of the groove 77 (—l mm in the example).
  • the correction nail 71 is fixed to the upper surface of the first stage 73.
  • the first stage 73 is mounted on the second stage 75 via a linear guide 79 (floating mechanism) (see Fig. 6) so as to be movable in the soil correction direction Y in both soil directions.
  • the first stage 73 is provided with a contact block 81 extending in a direction (X direction) orthogonal to the direction of movement of the stage (Y direction). Both side surfaces of the contact block 81 are parallel, and each surface extends in the X direction.
  • the lower surface of the contact block 81 is provided with a pin 83 extending in the Z direction.
  • the contact block 81 protrudes from the second stage 75 as shown in FIG.
  • the second stage 75 is mounted on a base 85 so as to be movable in a Y direction, which is a correction direction, via a linear guide 87 (see FIG. 6).
  • the second stage 75 is driven in the Y direction by a pole screw 89 fixed to the base 85.
  • Blocks 91 and 93 are fixed to the upper surface of the second stage 75 so as to face each other.
  • Each block 91, 93 consists of a wide upper part 91a, 93a and a narrow lower part 91b, 93b, with an upper space 95 between the upper parts of the two blocks.
  • a lower space 97 is opened between the lower parts.
  • the contact block 81 of the first stage 73 is located in the upper space 95 between the blocks, and the pins 83 are located in the lower space 97.
  • a left-handed port (abutting portion) 990 extending in the + Y direction is passed through the upper part 91 a of the left block 91 in FIG. 5 and is fixed to the block 91 with a nut 101.
  • a right push port (abutting portion) 103 extending in one Y direction is passed through an upper portion 93 a of the right block 93, and is fixed to the block 93 with a nut 105.
  • the two push bolts 99, 103 are located coaxially, and the tip of each push bolt projects into the upper space 95.
  • the tip surface of each push port is flat, and oppose each other with a gap W2 at substantially equal intervals on both side surfaces of the contact block 81 in the same space 95.
  • the width of the gap W2 is 1 mm in one example.
  • Each block 91, 93 is provided with two proximity sensors 107 (see FIG. 6).
  • the output of the proximity sensor 107 is sent to the control unit.
  • the proximity sensor for example, an eddy current type proximity sensor can be used.
  • the proximity sensor 107 detects that the tip surfaces of the left and right pushing ports 99 and 103 are in contact with the respective side surfaces of the contact block 81. In this case, since the front end face of each push port and the side surface of the contact block abut on a part of a certain width, the contact between the two can be reliably detected. This is because, when trying to directly detect that the correction nail 71 is in contact with the portion to be corrected (L piece) M4, a plurality of sensors must be arranged in a small space, and the mechanical structure and applicable sensors There are difficulties in both aspects of choice.
  • a left guide pin 109 extending in the Y direction is slidably inserted through the lower part 91 b of the left block 91, and a right guide extending in the Y direction is inserted through the lower part 93b of the right block 93.
  • the pin 111 is slidably inserted. Both guides The pins 109 and 111 are located coaxially, and the tip of each guide pin projects into the lower space 97. E-rings 113 and 115 are attached to the outer end of each guide pin 109 and 111, and the inner end has a diameter larger than that of the pin. Discs 1 17 and 1 19 are provided.
  • Coil panels 121 and 123 are interposed between the disks 117 and 119 and the side walls of the block lower portions 91b and 93b along the guide bins 109 and 111.
  • the coil panels 1 2 1 and 1 2 3 are biased so that the discs 1 1 1 and 1 1 9 of each guide pin 1 09 and 1 1 1 abut on the pin 83, and are brought into contact with the end faces of the push ports 99 and 103.
  • the distance of the gap W2 from each side of the contact block 81 is to be kept equal. That is, the coil springs 121 and 123 act to keep the first stage 73 (the contact block 81) at a fixed position (neutral point) with respect to the second stage 75 (the pushing ports 99 and 103). It has. At this time, the neutral position in the Y direction is set as the initial position.
  • the second screw 75 is fed in the + Y direction by rotating the pole screw 89.
  • the first stage 73 mounted on the second stage 75 is also pushed by the contact block 81, the pin 83, and the spring 121, and is simultaneously sent in the + Y direction.
  • the correction nail 71 on the first stage 73 also moves in the + Y direction with respect to the L piece M4 of the part M.
  • FIG. 7 is a side view showing a state where the straightening device has actually started bending the L piece M4 of the part.
  • the side surface of the correction nail 71 has already hit the L piece M 4 of the part M.
  • the pole screw 89 is further rotated to move the second stage 75 further in the + Y direction
  • the side of the groove 77 of the correction claw 71 is fixed to the L piece M 4 of the fixed part M.
  • the first stage 73 stops.
  • the spring 1 2 1 is not strong enough to deform the part M.
  • the first stage 73 and the second stage 75 can be relatively moved in the Y direction by the amount of bending of the panel 121, so that even if the first stage 73 stops, the second stage 75 7 5 can move in + Y direction. During this time, the first stage 73 is moving in one Y direction on the linear guide 87 fixed to the second stage 75.
  • the gap W 2 ′ between the tip surface of the left pushing port 99 of the second stage 75 and the left side surface of the contact block 81 of the first stage 73 is formed. It becomes smaller gradually.
  • a coil spring 121 mounted on the left guide pin 109 is compressed between the left block 91 and the disk 117 of the left guide pin 109. Since the left guide pin 109 is slidably passed through the left block 91, the pin 109 is relatively pushed in one Y direction by the pin 83, and the left guide pin 109 is The E-ring 1 1 3 at the outer end is separated from the outer side of the block 9 1.
  • the first stage 73 maintains the position where the movement has stopped until the push port 99 and the contact block 81 contact the side surface after the movement of the first stage 73 stops.
  • the second stage 75 is moving. In this state, the first stage 73 attempts to move in the + Y direction, but the rigidity of the L piece M 4 of the part is greater than the force of the coil springs 12 1 and 12 3. The amount of fluctuation is absorbed by the contraction of the coil spring 122, and the portion to be corrected does not deform.
  • FIG. 8 is a side view showing a correction operation state of the correction device.
  • FIG. 9 is a plan view showing a correction operation state of the correction device.
  • the L piece M4 which is the part to be corrected of the component, is in a state where it has been securely locked to the side surface of the groove 77 of the correction claw 71 as described above. That is, after the side surface of the groove 7 7 of the correction claw 7 1 is retained for a certain time by the L piece M 4 of the part M, the left-handed port 9 9 is moved to the side surface of the contact block 8 1. Hit. Therefore, it is possible to mechanically know that the correction part (correction nail) has come into contact with the correction target part (L piece).
  • the second stage 75 is sent in the + Y direction by further rotating the pole screw 89. Then, the side surface (left surface) of the contact block 81 of the first stage 73 is pushed by the tip surface of the left pushing port 99 of the second stage 75, and the first stage 73 becomes the second stage. It moves on the linear guide 87 along with the stage 75 in the + Y direction.
  • the correction nail 71 on the same stage also moves in the + Y direction, and the tip of the L piece M 4 hooked in the groove of the nail 71 deviates in the + Y direction.
  • the amount, that is, the amount of movement after the first stage 73 and the second stage 75 start synchronous movement is the effective correction operation amount.
  • the effective correction operation amount indicates the amount of movement of the second stage 75. Since the second stage 75 is sent by the rotation of the pole screw 89, the pole screw 89 is rotated until a predetermined movement amount is reached.
  • the correction of the parts is performed for the S piece M3 and the L piece M4, and each of them is provided with a correction device 70 having the same structure.
  • the L piece M 4 which is the part to be corrected is bent in the Y direction by the Y direction correction apparatus 70 Y, and the S piece M 3 is bent in the soil Z direction by the Z direction correction device 70 Z.
  • the correction is performed after the part M is fixed at a predetermined position by the fixing means 10 and the initial position is measured by the measuring means 50.
  • the shape of the part M is a three-dimensional and complicated structure, and the fixing means 10 and the measuring means 50 are also fixed on the table 3. Further, the size of the correction means 70 is large. Due to these facts, each of the correction devices 70Y, 70 ⁇ is operated by the moving mechanism fixed on the table 3 so as not to interfere with each means, and the standby position (non-operation position). It is arranged to move between and.
  • the straightening device 70 ⁇ is configured such that the tip of the L piece ⁇ 4 of the part ⁇ fixed to the pedestal 11 of the fixing means 10 is It is in the groove.
  • the correction direction of the device 70 is the soil direction, and the correction claw 71 moves in the soil direction on the device 70.
  • the moving mechanism 13 1 is composed of a cylinder 13 5 having a piston rod 13 3 that can be expanded and contracted in the X direction, and a guide 13 7.
  • the tip of the piston rod 1 33 is connected to the base 85 of the ⁇ correction device 70 ⁇ .
  • the straightening device 70 when in the working position, The tip of the S piece M3 of the fixed part M is in the groove of the correction nail 71 of the device.
  • the correction direction of the device 70Z is the Z direction, and the correction claw 71 moves in the soil Z direction on the device 70Z.
  • the Z-correcting device 70 Z is moved by the moving mechanism 144 (see FIG. 3) from the same position to the standby position, away from the pedestal 11, in the depth direction of the groove 77 of the correcting claw 71. Move in the same X direction (see Figure 1).
  • the Z correction device 70 The base 85 of the Z is fixed to an upright base 141 (see FIG. 1) so that the correction direction is the Z direction.
  • the moving mechanism 144 includes a cylinder 147 having a piston rod 145 that can be expanded and contracted in the X direction, and a guide 149.
  • the tip of the piston rod 1 4 5 is connected to the upright base 1 4 1.
  • FIGS. 11 to 13 are flowcharts of the control unit of the component inspection and correction method according to the embodiment of the present invention.
  • the component M to be inspected is set on the pedestal 11 of the fixing means 10 of the apparatus by the above-described method.
  • the part M is fixed to the pedestal 11 by the fixing means 10.
  • the base M 1 of the component M is fixed to the first reference surface 19 a of the pedestal upper portion 19 with the horizontal clamper 13, and then the upper surface M of the component M is fixed with the vertical clamper 15. 2 is fixed to the second reference plane 19 b of the upper part 19 of the pedestal.
  • the Z position of the major axis A4 of the component M is measured by the measuring means 50. That is, the Z gauge 55 is extended in the Z through hole 23 of the pedestal 11 and is applied to the long axis A4, and the position is measured. Then, in S5, it is determined whether or not the measurement result is within a tolerance (in one example, ⁇ 25 urn). If the measurement result is within the tolerance, the position of the major axis A4 is determined to be a correct position, and the process proceeds to measure the X position of the major axis A4 and the minor axis A3 (described later in detail). But smells S5 If the measurement result is not within the tolerance, the correction work of AB is performed. In addition, each straightening device 70Y, 70mm is in a standby position in a normal state.
  • a tolerance in one example, ⁇ 25 urn
  • the ⁇ position of the long axis ⁇ 4 is corrected by moving the L piece ⁇ 4 in the ⁇ direction with the L piece straightening device ( ⁇ straightening device) 70 ⁇ .
  • the movement mechanism 131 of the correction device 70 is operated to move the correction device 70 from the standby position to the operating position. Then, in S52, it is determined whether or not the correction work is the first time. In the case of the first time, the flow proceeds to S53, and the correction operation amount is set to a specified amount (for example, 150 xm).
  • the correction operation amount is the effective movement amount of the second stage 75 of the correction device 70Y (the movement amount after the first stage 73 and the second stage 75 start synchronized movement, that is, the correction claw 77 Indicates the amount of stage movement after hitting L-piece M4).
  • the straightening device 70Y is operated to bend the L piece M4 in a predetermined direction (soil Y direction) by a specified amount (_150 ⁇ im).
  • the relationship between the Z position of the major axis A4 and the movement amount of the second stage 75 for bending the L piece M4 is determined in advance, and based on these relationships, the position of the major axis A4 is set to an appropriate position.
  • the correction operation amount is determined so that
  • the correction device 70Y is moved from the standby position to the operating position. Then, in S52, it is determined whether the correction is the first time. In this case, since the correction is the second time, the process proceeds to S56, and the difference between the second measurement result of the Z position of the major axis A4 and the first measurement result (actual deformation amount ⁇ ) Is determined to be within the target range (1 10 to 49 urn in one example).
  • the value of 49 m is a value obtained by subtracting 1 / m from a value obtained by multiplying 2 by 25 zm of the positional dimension of the major axis A4.
  • the process proceeds to S57, in which the second correction operation amount is set to the same correction operation amount (15 Om) as the first correction operation amount.
  • the correction device 70Y is operated to perform the correction work, and then in S55, the correction device 70Y is moved to the standby position.
  • the process proceeds to S58, and it is determined whether the difference ⁇ is less than the target range. If the difference ⁇ is smaller than the target range, the process proceeds to S59, and the correction operation amount is calculated by adding a predetermined amount (in one example, 30 m) to the first correction operation amount (-150 m) (-180 And In other words, since the springback of the material of the part is larger than the initially expected amount, the amount of correction operation per correction is increased.
  • a predetermined amount in one example, 30 m
  • the process proceeds to S60, and the correction operation amount is set to the first correction amount (one 150 m) by a predetermined amount (one 150 m). 30 n) is subtracted (one 120 urn). In other words, since the springback of the material of the part is smaller than the initially expected amount, the amount of correction operation per correction is reduced.
  • the X position of the long axis and the short axis is corrected by moving the S piece M 3 in the Z direction with the S piece correcting device (Z correcting device) 70 Z.
  • the position of the short axis A3 is changed by moving the S piece M3.
  • the position (dimensional relationship) of the short axis A3 with respect to the long axis A4 is set to a predetermined value. I do.
  • the S piece straightening device (Z straightening device) 70 Z The Z correction device 70 Z is moved from the standby position to the operating position by operating the moving mechanism 144 of the motor. Then, in S72, it is determined whether or not the correction work is the first time, and in the case of the first time, the flow proceeds to S73, and the correction operation amount is set to the specified amount (for example, 150 ⁇ m). .
  • the correction operation amount indicates an effective movement amount of the second stage 75 of the correction device 70Z.
  • the straightening device 70Z is operated to bend the S piece M3 in a predetermined direction (the soil Z direction) by a specified amount (1-1500m).
  • the moving mechanism 144 is operated in S75 to move the correcting device 70Z to the standby position. After that, returning to S7 again, the X position of the long axis and the short axis is measured. Then, in S8, it is determined whether the measurement result is within the tolerance.
  • the process proceeds to S78 and determines whether the difference ⁇ ⁇ ⁇ ⁇ is less than the target range. If the difference ⁇ is less than the target range, the process proceeds to S79, and the correction operation amount is calculated by adding a predetermined amount (in one example, ⁇ 30 ⁇ ) to the first correction operation amount (1-1550111) ( (180 nm). On the other hand, if the difference ⁇ X is not less than the target range in S78, the process proceeds to S80, and the correction operation amount is set to the first correction operation amount ( ⁇ 150 m) by a predetermined amount ( ⁇ 3 0 m) is subtracted (-120 m).
  • a predetermined amount in one example, ⁇ 30 ⁇
  • the correction operation amount is set to the first correction operation amount ( ⁇ 150 m) by a predetermined amount ( ⁇ 3 0 m) is subtracted (-120 m).
  • FIG. 14 is a diagram showing a main structure of the component inspection and correction device, where FIG. 14 (A) is a front view and FIG. 14 (B) is a plan view.
  • FIG. 15 is a diagram for explaining a method of obtaining the position of the reference part of the component.
  • the part M shown in FIG. 10 is inspected and corrected.
  • the positions of the major axis A4 and the minor axis A3 are substantially based on the fixing surface of the part M (actually, the base Ml and the upper surface M2, see FIG. 10).
  • the center position of the circular hole B formed in the base Ml of the part M in the Z direction was used as the reference position.
  • the positional relationship between the reference position and the major axis A4 is measured.
  • the shape of the hole B is a perfect circle.
  • the means for measuring the center position of the hole B in the base M in the Z direction is a measuring sensor composed of a light emitting element and a light receiving element, as shown in Fig. 14 (B). And a moving mechanism 303 for moving the sensor in the Z direction.
  • a photoelectric switch having a light-emitting element 305 and a light-receiving element 307 can be used.
  • the light emitting element 305 and the light receiving element 307 are attached to the tip of a holding member 309 having a U-shaped cross section in the XY plane.
  • the operation of the sensor 301 is controlled by the control unit, and the output is input to the control unit.
  • the holding member 309 is disposed so as to sandwich the base M1 of the component M, as shown in FIG. 14B, and the light emitting element 305 is provided on one surface (outer surface) of the base M1 and on the opposite side.
  • the light receiving element 307 is located on the surface (inner surface). Note that the arrangement of the light emitting element 305 and the light receiving element 307 may be reversed.
  • the moving mechanism 303 is provided with a pole screw 311 extending in the Z direction and a pole screw 311. It has a pole bearing 3 13 driven vertically. The lower end of the poll screw 311 is connected to the stepping motor 315. When the stepping motor 3 15 drives and the poll screw 3 11 rotates, the pole bearing 3 13 moves up and down (Z direction) along the pole screw 3 11.
  • the holding member 309 of the sensor 301 is fixed to the pole bearing 313, and moves in the vertical direction (Z direction in the soil) along with the pole bearing 313 along with the pole bearing 313.
  • the moving mechanism 301 is controlled by the control unit.
  • the moving mechanism 303 is actuated, and the sensor 301 is moved so that the optical axis extending between the light emitting element 305 and the light receiving element 307 is positioned below the hole B in the Z direction.
  • the light beam output from the light emitting element 305 is blocked by the base M1 and does not reach the light receiving element 307.
  • the stepping motor 315 is driven to rotate the pole screw 311 to raise the sensor 301 in the Z-axis direction.
  • the center position of the hole B in the Z direction can be obtained by dividing the length of the hole B in the Z direction by two.
  • the length of the hole B in the Z direction is represented by a value obtained by subtracting the position H1 of the lower edge of the hole B from the position H2 of the upper edge of the hole B. Therefore, the center position HC of the hole B in the Z direction can be obtained by (H2-H1) Z2.
  • the center HC in the Z direction can be obtained by the above-described method regardless of the position of the optical axis of the sensor 301 within the diameter of the hole B in the X direction. From the point of measurement accuracy, it is preferable to perform the measurement near the center of the hole B (a part with a radius of about 20% from the center).
  • the position of the major axis A4 in the Z direction is measured by the Z gauge 55 of the measuring means 50 (see FIG. 4).
  • These results show the relationship between the center position H C of the hole B, which is the reference position, in the Z direction and the position of the long axis A4 in the Z direction.
  • This positional relationship is determined, and if the positional relationship between the two is not the desired positional relationship, the L piece M4 on which the long axis A4 is planted is corrected by the correcting means 70, and the position of the long axis A4 in the Z direction is corrected. To correct.
  • the position of the long axis A4 in the Z direction after the correction is measured, and it is determined whether or not the relation between the Z direction position and the center position of the hole B in the Z direction is a desired positional relation. At this time, as described above, correction, measurement, and determination are repeated until the positional relationship falls within a predetermined tolerance.
  • FIG. 16 is a diagram showing the shape of the part to be inspected.
  • FIG. 16 (A) is an overall perspective view
  • FIG. 16 (B) is a partial side sectional view.
  • the part W is made of a steel plate for pressing, and a face plate that spreads in the X and Y directions.
  • Two side pieces W2 and W3 erected in the + Z direction from two sides opposing in the X direction and two sets erected in one Z direction from two opposing sides in the Y direction of the same plate It has a work-to-piece Yl, ⁇ 2.
  • the face plate on the top of the figure is called base W1.
  • the base W1 has two positioning holes ⁇ 1 and ⁇ 2 arranged in the X direction (the function of these holes will be described later).
  • Each yoke pair piece Yl, ⁇ 2 has an outer yoke piece 111, Y21, and opposing yoke pieces ⁇ 12, ⁇ ⁇ 22 facing the inside of the yoke piece.
  • Each yoke piece has a concave portion opened inside, as shown in FIG. 16 (I), and a magnet Ml (M2) is fitted into the concave portion and fixed.
  • the inner surface of the magnet Ml (M2) faces the inner surface of the opposing yoke pieces Y12 and Y22 with a space S having a width CL therebetween (see Fig. 16 (B)).
  • FIG. 17 is a perspective view showing a structure of a main part of a component inspection and correction device according to another embodiment of the present invention.
  • FIG. 18 is a perspective view showing a state of the main part of the apparatus shown in FIG. 17 at the time of measurement.
  • FIG. 19 is a view showing the state of the main part of the device in FIG. 17 at the time of correction
  • FIG. 19 (A) is a perspective view of the main part
  • FIG. 19 (B) is a partial side sectional view of the main part. .
  • the magnetic flux density in the space S between the two pieces Y1 and Y2 is inspected, and if necessary, the magnetic flux density is adjusted to fall within an appropriate range.
  • the bending and straightening of the opposed yoke pieces Y12 and Y22 are performed.
  • a case is shown in which one of the yokes and the piece # 1 is inspected and straightened. Each figure shows only the main components for simplicity.
  • the component inspection and correction device 400 includes fixing means 410 for fixing the component W to be inspected, measuring means 420 for measuring the magnetic flux density in the space S of the yoke pair 1, and measuring means A means for determining whether the result measured in 420 is within the allowable range, and a quantitatively controlled plastic working on the opposing yoke piece Y12 of the part W to shape the shape of the part W Correction means 430 for correction.
  • the determination means the same determination means 210 (see FIG. 1) as in the above-described component inspection and correction apparatus 1 can be used.
  • the fixing means 410 fixes the component W, and is driven in the ⁇ X direction between the measurement position and the correction position (the driving mechanism is not shown).
  • the magnetic flux density in the space S between the yoke and the piece Y1 is measured by the measuring means 420.
  • the opposed yoke piece Y12 is bent and corrected in the soil Y direction by the correction means 4330.
  • the fixing means 4 10 has a pedestal 4 11 on which the base W 1 of the component W is mounted, and a clamper 4 13 for clamping the base W 1.
  • the pedestal 4 1 1 extends in the XY plane, and is vertically elongated in the X direction.
  • the upper reference surface 4 1 a and the side reference extending in the -Z direction from the outer side (one Y direction side) of the upper reference surface 4 1 1 a. It has a face 4 11 b.
  • the base W1 is placed on the upper reference surface 411a, and at the same time, the inner surface of the yoke pair Y2 is brought into contact with the side reference surface 411b to position the component W in the Y direction.
  • the clamper 4 13 also extends in the XY plane, has a vertically long lower surface in the X direction, and is located such that the lower surface faces the upper reference surface 4 11 a of the pedestal 4 11.
  • the clamper 4 13 is driven in the soil Z direction (the drive mechanism is not shown).
  • the clamper 4 13 descends to the lowest position in the 1 Z direction (the direction indicated by the arrow in the figure), the lower surface contacts the upper reference surface 4 1 1 a of the pedestal 4 1 1.
  • a groove 4 15 into which the two side pieces W 2 and W 3 of the component W enter is formed on the lower surface of the clamper 4 13, a groove 4 15 into which the two side pieces W 2 and W 3 of the component W enter is formed.
  • the measuring means 420 includes a Gauss meter 421 fixed to the device 400.
  • the Gauss meter 421 has a probe 42 a that extends in the XZ plane and is elongated in the X direction. As shown in Fig. 18, when the part W is fixed to the fixing means (not shown) and driven in the + X direction to the measurement position, the probe of the Gauss meter 4 21 in the space S between the yoke and the piece Y 1 4 2 1a is fitted, and the magnetic flux density in the space S is measured.
  • the correcting means 430 has a pedestal 431 having a substantially rectangular parallelepiped shape, and a correcting claw 433 arranged on the pedestal 431.
  • the correcting means 430 can move in the ⁇ Y direction (the moving mechanism is not shown).
  • the width of the groove 435 is wider than the thickness of the opposing yoke piece ⁇ 1 2 of the part W of the part W.
  • the thickness of the side walls 433a and 433b on both sides of the groove 435 is equal and smaller than the width CL of the space S.
  • the side walls 433a and 433b of the groove 435 sandwich the opposite yoke piece Y12 from both sides at the correction position.
  • FIG. 20 is a perspective view showing a structure of a main part of a component inspection and correction device according to another embodiment of the present invention.
  • FIG. 21 is a partial side cross-sectional view of a main part of the device of FIG. 20 at the time of correction.
  • the component inspection and correction device 400 inspects the magnetic flux density in the space S between the one yoke and the piece Y 1 and corrects the bending of the opposing yoke piece Y 12 of the same piece Y 1.
  • the inspection and correction device 500 inspects the magnetic flux density in the space of both the pair Y1 and Y2 and the bending of the opposing yoke Y1 2 and Y2 2 of these pieces Y1 and Y2. Straightening can be performed with the part W fixed.
  • This component inspection and correction device 500 basically has the same structure as the component inspection and correction device 400, and includes fixing means 5100 for fixing the component W to be inspected, and each yoke pair piece Y1, Measuring means 520 for measuring the magnetic flux density in the space S of Y2; determining means 210 for determining whether or not the result measured by the measuring means 520 is within an allowable range (see FIG. 1); It comprises correction means 5330 for correcting the shape of the part W by subjecting the opposed yoke pieces # 12 and # 22 of the part W to quantitatively controlled plastic working.
  • the fixing means 5 like the fixing means 4 20, includes a pedestal 5 11 and a clamper 5 13.
  • the pedestal 5 11 and the clamper 5 13 project from a structure (not shown).
  • On the upper reference surface 511a of the pedestal 5111 two positioning pins 517 arranged in the X direction are erected.
  • the positioning pin 5 17 is passed through the positioning hole P 1 of the base W 1 of the component W, and the base W 1 is placed on the upper reference surface 5 11 a.
  • On the lower surface of the clamper 5 13, a groove 5 15 into which two side pieces W 2, W 3 of the component W and two positioning pins 5 17 are inserted is formed.
  • the fixing means 5100 fixes the component W and is driven in the ⁇ X direction between the measurement position and the correction position (the drive mechanism is not shown).
  • the magnetic flux density in the space S between the yoke pair pieces Y1 and Y2 is measured by the measurement means 520. So Then, at the straightening position, the opposing yoke pieces Y12, Y22 are bent in the soil Y direction by the straightening means 5330.
  • the correction position as shown in FIG. 21, between the inner surfaces of the opposed yoke pieces Y 12 and Y 22 and both side surfaces of the pedestal 5 11 1 of the fixing means 5 10.
  • the fixing means 510 and the correcting means 5330 are positioned so that a gap is formed.
  • the measuring means 5 220 includes two Gaussian lights 5 2 1 and 5 2 2. Each of the houses is arranged symmetrically with respect to the X axis. The distance in the Y direction between the probes 52 1 a and 52 2 a for each Gaussian is equal to the distance between the spaces S between the two yokes of the part W and the pieces Y 1 and Y 2.
  • the correction means 5330 has two correction claws 533, 534.
  • the structure of each of the correction nails 5 3 3 and 5 3 4 is the same as the structure of the correction nail 4 3 3 of the parts inspection and correction device 400. That is, grooves 535, 536 extending in the X direction are formed on the upper surfaces of the correction nails 533, 534. The side walls on both sides of the grooves 535, 536 sandwich the opposing yoke pieces Y12, Y22 from both sides.
  • Each correction nail is independently driven and can move in the soil Y direction (the moving mechanism is not shown).
  • the opposing yoke piece 12 is bent in the same direction. This narrows the width CL of the space S.
  • the opposing yoke piece Y 12 is bent in the same direction. This increases the width CL of the space S.
  • the correction claw 534 is driven in the + Y direction, the opposing yoke piece ⁇ 22 is bent in the same direction. This increases the width CL of the space S.
  • the correction claw 5 3 4 is driven in the vertical direction, the opposing yoke piece 12 is bent in the same direction. As a result, the width CL of the space S is narrow.
  • FIG. 22 is a flowchart of the control unit of the component inspection and correction device.
  • the component W is fixed to the fixing means 5110.
  • the magnetic flux in the space S of the two yoke pair pieces Y l and ⁇ 2 in S 103 Measure the density.
  • each measured magnetic flux density is within the allowable range, and if it is within the allowable range, no correction is required, and the fixing of the component W is released in S 105. I do. However, if the magnetic flux density in one or both yoke pair pieces is not within the allowable range, the following correction work is performed.
  • the correction claw 533 of the correction means 5330 is moved in the + ⁇ direction by a specified amount, and the opposing yoke piece ⁇ 12 is bent in the + ⁇ direction to reduce the width CL.
  • the width CL of the space between the yoke and the piece ⁇ 1 needs to be increased. Therefore, the correction claw 533 of the correction means 5330 is moved by a predetermined amount in one direction, and the opposing yoke piece 12 is bent in the negative direction to increase the width CL. If the magnetic flux density in the space S between the yoke pair piece Y2 is not within the predetermined range, the same correction is performed. If it is necessary to correct only one yoke pair, the other yoke pair remains fixed at the correction position.
  • the process returns to S102, moves the fixing means 510 in the X direction to the measurement position, and performs measurement again at S103.
  • the measurement result is determined in S104, and if the result is out of the allowable range, the process proceeds to S106 and S107 to perform the correction work again. This operation of correction, measurement, and judgment is repeated until the measurement result falls within the allowable range.
  • the fixing means 5110 is released, and the inspection and correction of one part is completed.
  • the straightening work may be performed so as to balance the magnetic flux density in the space S of the two yoke pair pieces Yl and ⁇ 2.
  • the component W acts on the physical quantity (in this example, the magnetic flux density)
  • the physical quantity is inspected, and a part of the component related to the physical quantity (the opposing yoke piece in this example) is corrected.
  • the physical quantity an appropriate value. This can be expected to improve the performance and yield of components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Straightening Metal Sheet-Like Bodies (AREA)

Abstract

A system for inspecting and correcting a molded component automatically comprising a securing means (10) consisting of a pedestal (11) and clampers (13, 15) for securing a component M being inspected, a means (50) for measuring the shape and/or the dimensions of the component M being inspected, a means for making a decision whether the measurements fall within an allowable range (tolerance) or not, and means (70Y, 70Z) for correcting the shape and/or the dimensions of the component M being inspected by applying quantitatively controlled plastic machining to a part of the component. Each means is secured onto a table (3). Measurement by the measuring means, decision making by the deciding means and correction by the correcting means are repeated automatically until measurements of the measuring means (50) fall within the allowable range (tolerance).

Description

明 細 書 部品検査矯正方法及び部品検査矯正装置 技術分野 '  Description Parts inspection and correction method and parts inspection and correction equipment Technical field ''
本発明は、 精密機器等に搭載される部品の形状や寸法を検査し、 必要に応 じてそれを矯正する部品検査矯正方法及び装置に関する。 背景技術  The present invention relates to a method and an apparatus for inspecting and correcting the shape and dimensions of a component mounted on a precision instrument or the like, and correcting the shape and dimension as necessary. Background art
ハードディスク等の精密機器に搭載される部品の形状や寸法を検査し、 検 査結果に基づいて矯正する方法及び装置には、 ハードディスク用へッドュ ニットの板パネの変形によるスライダの傾きを検査するためのものがある (例えば、 特開平 1 0— 2 0 8 4 2 2号公報参照。)。 この装置は、 スライダ の傾きを、 板パネを押圧してスライダに実際と同等の変位を与えた状態で、 ォ一トコリメ一夕を用いて検査する。そして、検査結果に基づいて、工具(ピ ンセット) を用いて、 板パネの一部を人手で捻って矯正する。  Methods and devices for inspecting the shape and dimensions of components mounted on precision equipment such as hard disks and correcting them based on the inspection results include checking the inclination of the slider due to deformation of the panel of the hard disk head unit. (See, for example, Japanese Patent Application Laid-Open No. 10-204842). This device inspects the inclination of the slider using autocollimation while pressing the panel panel to give the slider the same displacement as the actual one. Then, based on the inspection results, a part of the panel is manually twisted and corrected using tools (tweezers).
また、 同様の部品の形状や位置を検査する方法及び装置として、 上下の金 型間で折り曲げ加工される部品の折り曲げ角度を検出するものもある (例え ば、 特開平 4一 1 7 8 5 1 1号公報参照。)。 この装置は、 金型に接触子ゃ距 離センサを設けて部品の折り曲げ角度を検出する。 そして、 検出された結果 が許容値内に収まるまで、 追加の折り曲げ加工を行う。  Further, as a method and apparatus for inspecting the shape and position of a similar part, there is a method and apparatus for detecting a bending angle of a part to be bent between upper and lower molds (for example, see Japanese Patent Application Laid-Open No. H4-178851). No. 1). In this device, a contact / distance sensor is provided in a mold to detect a bending angle of a component. Then, additional bending is performed until the detected result falls within the allowable value.
前記特開平 1 0— 2 0 8 4 2 2号公報の部品検査矯正方法では、 検査結果 に基づいて、 工具を用いて手動で矯正を行っている。 このため、 作業者個人 のカンに頼る作業となり、 普遍的な結果が得られない。 また、 人手によるた め作業時間がかかる。  In the component inspection correction method disclosed in Japanese Patent Application Laid-Open No. H10-024842, correction is manually performed using a tool based on the inspection result. For this reason, the work depends on the worker's individual can, and universal results cannot be obtained. In addition, the work is time consuming due to manual work.
また、 特開平 4一 1 7 8 5 1 1号公報の部品検査矯正方法は、 金型による 成形時に行われるもので、 所定の結果が得られるまでプレスを繰り返してい る。 また、 ワークはプレス毎に固定及び解除をする必要があるため時間がか かる。 Further, the component inspection and correction method disclosed in Japanese Patent Application Laid-Open No. Hei 47-17851 is performed at the time of molding with a mold, and presses are repeated until a predetermined result is obtained. Also, since the work needs to be fixed and released for each press, Call
本発明は上記の問題点に鑑みてなされたものであって、 成形した部品の検 査及び矯正を自動的に行うことができる部品検査矯正方法及び装置を提供す ることを目的とする。 発明の開示  The present invention has been made in view of the above problems, and an object of the present invention is to provide a method and apparatus for inspecting and correcting a molded part that can automatically inspect and correct a molded part. Disclosure of the invention
上記課題を解決するため、 本発明の部品検査矯正方法は、 ある形状 *寸 法に成形された部品の形状及び/又は寸法を計測する工程と、 計測された 値が許容範囲 (公差) 内か否かを判定する工程と、 公差外と判定された場 合に、 前記部品の一部に定量的にコントロールされた塑性加工を加えて該部 品の形状及び/寸法を矯正する工程と、 矯正後の該部品の形状及び Z又は 寸法を再計測 ·再判定する工程と、 再判定の結果が再度公差外の場合に、 再度前記矯正工程及び前記再計測 ·再判定工程を繰り返す工程と、 を含む部 品検査矯正方法であって、 前記工程の全てを、 一台の装置上で前記部品を 固定したまま自動的に行うことを特徴とする。  In order to solve the above problems, the method for inspecting and correcting a part according to the present invention comprises the steps of measuring the shape and / or dimensions of a part molded to a certain shape and dimensions, and determining whether the measured value is within an allowable range (tolerance). Determining whether the part is out of tolerance; and, if determined to be out of tolerance, correcting the shape and / or dimensions of the part by applying a quantitatively controlled plastic working to a part of the part. Re-measuring and re-determining the shape and Z or dimension of the part later; and, if the re-determining result is outside the tolerance again, repeating the correcting step and the re-measuring / re-determining step again. A method for inspecting and correcting a part, the method comprising: automatically performing all of the steps on a single device while fixing the part.
検査と矯正を同一装置上で行うため、 検査装置と矯正装置との間で部品を 受け渡ししたり、 その度に部品を装置に固定したりする手間を省くことがで きる。 また、 部品は一度固定された状態で検査と矯正を行うため、 固定作業 での位置のバラツキがなく、 正確に検査や矯正を行うことができる。  Since the inspection and straightening are performed on the same device, it is not necessary to transfer components between the inspection device and the straightening device and to fix the component to the device each time. In addition, since parts are inspected and corrected once they are fixed, there is no variation in the position during fixing work, and inspection and correction can be performed accurately.
上述の特開平 1 0— 2 0 8 4 2 2号のように、 ピンセットを用いて人手で 矯正作業は本発明では行わず、 自動的に矯正作業を行うため作業結果が正確 である。さらに、特開平 4— 1 7 8 5 1 1号公報のように作業毎に部品をセッ 卜することは、 本発明では必要ない。  As in the above-mentioned Japanese Patent Application Laid-Open No. H10-024842, the straightening work is not performed manually by using tweezers in the present invention, but the straightening work is performed automatically, so that the work result is accurate. Further, it is not necessary in the present invention to set components for each operation as disclosed in Japanese Patent Laid-Open No. 4-178511.
このように、 本発明においては、 一台の検査 ·矯正装置で固定したまま部 品の一部に意図的に矯正加工を加えるため、 矯正結果が正確であり、 部品の 寸法 ·形状矯正の自由度が高くなる。  As described above, in the present invention, since a part of a part is intentionally subjected to straightening while being fixed by one inspection and straightening device, the straightening result is accurate, and the dimension and shape of the part can be freely corrected. The degree increases.
本発明においては、 前記部品の複数の部位の検査 ·矯正を、 前記一台の 装置上で前記部品を固定したまま自動的に行うこととすれば、 一回固定した ままで、 複数の部位の検査 '矯正を行うことができるため、 検査 '矯正を正 確に短時間で行うことができる。 In the present invention, if the inspection / correction of a plurality of parts of the component is automatically performed while the component is fixed on the single device, the component is fixed once. Inspections and corrections can be performed for a plurality of parts as they are, so that inspections and corrections can be performed accurately and in a short time.
本発明においては、 計測結果を定量的に矯正量に反映させることとでき る。 または、 最初の矯正又は前回の矯正の結果実際に生じた矯正量 (矯正 結果量)に応じて、 2回目又は次の回の矯正操作の量を変えることとできる。 これにより少数回の矯正で、部品寸法'形状を公差内に収めることができる。 本発明においては、 矯正 1回当りの前記矯正結果量の目標値を (2 x公 差) あるいはそれより微量少なく設定することとできる。 つまり、 例えば、 公差が土 2 5 mであった場合、 矯正結果量の目標値を 2 x 2 5 = 5 0 mあるいはそれ一 ο;とするのである。 こうすれば、 矯正結果は何回目かの矯 正において必ず公差内に入るとともに、 より少数回の矯正で、 部品寸法 ·形 状を公差内に収めることができる。  In the present invention, the measurement result can be quantitatively reflected in the correction amount. Alternatively, the amount of the second or subsequent correction operation can be changed according to the correction amount actually obtained as a result of the first correction or the previous correction (correction result amount). Thus, the part size and shape can be kept within the tolerance with a small number of corrections. In the present invention, the target value of the correction result amount per correction can be set to (2 × tolerance) or a slightly smaller value. That is, for example, when the tolerance is 25 m on the soil, the target value of the correction result amount is set to 2 x 25 = 50 m or 1 o; In this way, the result of the correction can always be within the tolerance in several corrections, and the part dimensions and shape can be kept within the tolerance with a smaller number of corrections.
本発明の部品検査矯正装置は、 ある形状 ·寸法に成形された部品の形状 及び/又は寸法を計測 ·矯正する部品検査矯正装置であって、 被検査部品 を固定する固定手段と、 被検査部品の形状及び Ζ又は寸法を計測する計測 手段と、 該計測手段で計測された結果が許容範囲 (公差) 内か否かを判定 する判定手段と、 前記被検査部品の一部に定量的にコントロールされた塑 性加工を加えて該部品の形状及び/又は寸法を矯正する矯正手段と、を備え、 前記計測手段で計測された結果が許容範囲 (公差) 内に収まるまで、 前記計 測手段による計測、 前記判定手段による判定及び前記矯正手段による矯正を 自動的に繰り返すことを特徴とする。  A component inspection and correction device according to the present invention is a component inspection and correction device that measures and corrects the shape and / or dimension of a component formed into a certain shape and size, a fixing unit that fixes a component to be inspected, and a component to be inspected. Measuring means for measuring the shape and size or dimension of the object, determining means for determining whether the result measured by the measuring means is within an allowable range (tolerance), and quantitatively controlling a part of the part to be inspected Correction means for correcting the shape and / or dimensions of the part by performing the plastic working performed by the measuring means, and until the result measured by the measuring means falls within an allowable range (tolerance). It is characterized in that the measurement, the judgment by the judgment means and the correction by the correction means are automatically repeated.
本発明においては、 前記部品の複数の部位の検査 ·矯正を前記固定手段 で固定したまま自動的に行うこととできる。  In the present invention, inspection and correction of a plurality of parts of the component can be automatically performed while being fixed by the fixing means.
本発明においては、 前記矯正手段が、 前記計測手段の計測結果を定量的 に矯正量に自動的に反映させることとできる。  In the present invention, the correction means can automatically reflect the measurement result of the measuring means in the correction amount quantitatively.
本発明においては、 前記矯正手段が、 最初の矯正又は前回の矯正の結果 実際に生じた矯正量 (矯正結果量) に応じて 2回目又は次の回の矯正操作の 量を変えることとできる。 9 本発明においては、 前記矯正手段が、 矯正 1回当りの前記矯正結果量の 目標値を (2 x公差) あるいはそれより微量少なく設定することとできる。 本発明の部品検査矯正装置の具体的構成としては、 前記矯正手段が、 前 記部品の一部の部位 (被矯正部) に当接して該部位に力及び変位を加える矯 正部材と、 該矯正部材を搭載する第 1のステージと、 該第 1のステージ を搭載し、 前記矯正部材の変位方向に駆動される第 2のステージと、 前記 第 1のステージと第 2のステージとの間に介装された、 該第 1のステージを 相対的な中立点に保つスプリング、 及び、 該スプリングが一定程度バイアス した場合に前記第 1のステージと第 2のステージとの動きを同期させる同期 部(両ステージ当接部)を有するフローティング機構と、 前記当接部がタツ チしたことを感知する夕ツチセンサと、 を有し、 前記矯正部材と前記部品 の被矯正部とが接した後に前記スプリングがたわみ、 その後前記両ステージ 当接部が接したことを前記夕ツチセンサが検知し、 その後に前記矯正操作量 だけ前記第 2のステージが移動することができる。 In the present invention, the correction means can change the amount of the second or the next correction operation according to the correction amount (correction result amount) actually generated as a result of the first correction or the previous correction. 9 In the present invention, the correction means may set a target value of the correction result amount per correction to (2 × tolerance) or a slightly smaller value. As a specific configuration of the component inspection and correction device of the present invention, the correction unit includes a correction member that contacts a part (corrected part) of the part and applies force and displacement to the part. A first stage on which the correction member is mounted, a second stage on which the first stage is mounted, and a second stage driven in a direction of displacement of the correction member, and a first stage between the first stage and the second stage. An interposed spring for keeping the first stage at a relative neutral point, and a synchronizing unit for synchronizing the movement of the first and second stages when the spring is biased to a certain extent ( A floating mechanism having both stage abutting portions) and an evening sensor for sensing that the abutting portions are touched, wherein the spring is provided after the correcting member comes into contact with the corrected portion of the component. Deflection, before then The evening sensor detects that the two stages are in contact with each other, and thereafter, the second stage can move by the correction operation amount.
部品が小さいと、 矯正部材も小さくなり、 両者の接触部に夕ツチセンサを 組み込みにくいため、 矯正部材と部品の矯正部位とのタツチを直接検知する ことは難しい。 そこで、 フローティング機構のスプリングが橈んだ後、 両ス テ一ジの当接部が当接したことを検知することが好ましい。 矯正部材と部品 の被矯正部位とが当接した状態をスプリングの撓みによってある時間持続し、 矯正部材と部品の矯正部位とが確実に当接した後に、ステージを移動できる。 本発明においては、 さらに、 前記部品の基準部の位置を測定する基準位置 測定手段を備えることもできる。この場合、部品内で基準部の位置を測定し、 その位置からの被検査部位の相対的な位置関係を管理することができる。 上 記基準部としては、 部品中のフラットな面以外に、 孔の中心位置などを基準 とすることもできる。  If the part is small, the straightening member is also small, and it is difficult to install a touch sensor in the contact portion between the two, so it is difficult to directly detect the touch between the straightening member and the straightened part of the part. Therefore, it is preferable to detect that the contact portions of both stages contact each other after the spring of the floating mechanism has bent. The state where the straightening member and the part to be corrected of the part are in contact with each other is maintained for a certain time due to the bending of the spring, and the stage can be moved after the straightening member and the corrected part of the part are securely in contact with each other. In the present invention, a reference position measuring means for measuring a position of a reference portion of the component may be further provided. In this case, it is possible to measure the position of the reference part in the component and manage the relative positional relationship of the inspected part from that position. The reference portion may be based on the center position of the hole or the like in addition to the flat surface in the component.
本発明の他の部品検査矯正装置は、 ある形状 ·寸法に成形された部品の 形状及び Z又は寸法に関連性を有する物理量を計測する工程と、 計測され た物理量の値が許容範囲内か否かを判定する工程と、 公差外と判定された 場合に、 前記部品の一部に定量的にコントロールされた塑性加工を加えて該 部品の形状及び Z寸法を矯正する工程と、 矯正後の該部品の前記物理量を 再計測'再判定する工程と、 再判定の結果が再度前記許容範囲外の場合に、 再度前記矯正工程及び前記再計測 ·再判定工程を繰り返す工程と、 を含む部 品検査矯正方法であって、 前記工程の全てを、 一台の装置上で前記部品を 固定したまま自動的に行うことを特徴とする。 Another part inspection and correction device of the present invention includes a step of measuring a physical quantity related to the shape and Z or dimension of a part formed into a certain shape and dimension, and a step of measuring whether the value of the measured physical quantity is within an allowable range. And the step of determining whether A step of correcting the shape and the Z dimension of the part by applying a quantitatively controlled plastic working to a part of the part, and a step of re-measuring and re-determining the physical quantity of the part after the correction. And a step of repeating the correction step and the re-measurement / re-determination step again if the result of the re-determination is outside the allowable range again. It is characterized in that it is performed automatically while the parts are fixed on a single device.
機械部品には、 様々な物理量 (例えば、 磁束密度、 光反射量など) に関連 する作用をするものがある。 そして、 その物理量が、 該部品の機械的な特性 Some mechanical components perform actions related to various physical quantities (eg, magnetic flux density, light reflection, etc.). And the physical quantity is the mechanical property of the part
(形状、 寸法など) によって影響を受ける場合がある。 その場合、 その物理 量を検査して、その物理量に関連する部品の一部を修正加工することにより、 物理量を適正な値にできれば、 部品の性能向上 ·歩留まり向上の上で好まし い。 この場合も、 検査と矯正を同一装置上で行えば、 検査装置と矯正装置と の間で部品を受け渡ししたり、 その度に部品を装置に固定したりする手間を 省くことができる。 また、 部品は一度固定された状態のままで検査と矯正を 行うため、 固定作業におけるバラツキがなく、 正確に検査や矯正を行うこと ができる。 (Shape, dimensions, etc.). In such a case, if the physical quantity can be adjusted to an appropriate value by inspecting the physical quantity and modifying a part of the part related to the physical quantity, it is preferable in terms of improving the performance and yield of the part. Also in this case, if the inspection and the correction are performed on the same device, it is possible to save the trouble of transferring components between the inspection device and the correction device and fixing the components to the device each time. In addition, since parts are inspected and corrected while they are fixed once, there is no variation in fixing work, and inspection and correction can be performed accurately.
本発明の他の部品検査矯正装置は、 被検査部品を固定する固定手段と、 被検査部品の形状及び Z又は寸法に関連性を有する物理量の値を計測する計 測手段と、 該計測手段で計測された物理量の値が許容範囲内か否かを判定 する判定手段と、 前記被検査部品の一部に定量的にコン'トロールされた塑 性加工を加えて該部品の形状及び/又は寸法を矯正する矯正手段と、を備え、 前記計測手段で計測された物理量の値が前記許容範囲内に収まるまで、 前記 計測手段による計測、 前記判定手段による判定及び前記矯正手段による矯正 を自動的に繰り返すことを特徴とする。 図面の簡単な説明  According to another aspect of the present invention, there is provided a component inspection and correction apparatus, comprising: fixing means for fixing a component to be inspected; measuring means for measuring a value of a physical quantity having a relationship with the shape and Z or dimension of the component to be inspected; Determining means for determining whether or not the value of the measured physical quantity is within an allowable range; and forming a shape and / or size of the part by subjecting a part of the part to be inspected to plastic working which is quantitatively controlled. And a correction unit for correcting the physical quantity measured by the measurement unit within the allowable range.The measurement by the measurement unit, the determination by the determination unit, and the correction by the correction unit are automatically performed. It is characterized by repeating. BRIEF DESCRIPTION OF THE FIGURES
第 1図 (A) は、 本発明の実施の形態に係る部品検査矯正装置の構造を示 す正面図であり、 図 1図 (B ) は同装置の制御系の構成を示すブロック図で ある。 FIG. 1 (A) is a front view showing a structure of a component inspection and correction device according to an embodiment of the present invention, and FIG. 1 (B) is a block diagram showing a configuration of a control system of the device. is there.
第 2図は、 図 1の部品検査矯正装置の側面図である。  FIG. 2 is a side view of the component inspection / correction apparatus of FIG.
第 3図は、 図 1の部品検査矯正装置の平面図である。  FIG. 3 is a plan view of the component inspection / correction apparatus of FIG.
第 4図は、 図 1の部品検査矯正装置の一部を拡大して示す図であり、 図 4 (A) は正面図、 図 4 (B) は側面図、 図 4 (C) は平面図である。  Fig. 4 is an enlarged view of a part of the part inspection and correction device of Fig. 1, where Fig. 4 (A) is a front view, Fig. 4 (B) is a side view, and Fig. 4 (C) is a plan view. It is.
第 5図は、 矯正手段の初期状態 (不作動状態) を示す側面図である。  FIG. 5 is a side view showing an initial state (non-operating state) of the correcting means.
第 6図は、 矯正手段の初期状態を示す正面図である。  FIG. 6 is a front view showing an initial state of the correction means.
第 7図は、 矯正装置が実際に部品の L片 M 4を曲げ始めた状態を示す側面 図である。  FIG. 7 is a side view showing a state where the straightening device has actually started bending the L piece M4 of the part.
第 8図は、 矯正装置の矯正動作状態を示す側面図である。  FIG. 8 is a side view showing a correction operation state of the correction device.
第 9図は、 矯正装置の矯正動作状態を示す平面図である。  FIG. 9 is a plan view showing a correction operation state of the correction device.
第 10図は、 被検査部品の形状を示す図であり、 図 10 (A) は正面図、 図 10 (B) は側面図、 図 10 (C) は平面図である。  FIG. 10 is a view showing the shape of the part to be inspected, FIG. 10 (A) is a front view, FIG. 10 (B) is a side view, and FIG. 10 (C) is a plan view.
第 1 1図は、 本発明の実施の形態に係る部品検査矯正方法の制御部のフ ローチャー卜である。  FIG. 11 is a flowchart of a control unit of the component inspection and correction method according to the embodiment of the present invention.
第 12図は、 本発明の実施の形態に係る部品検査矯正方法の制御部のフ ローチャートである。  FIG. 12 is a flowchart of a control unit of the component inspection and correction method according to the embodiment of the present invention.
第 1 3図は、 本発明の実施の形態に係る部品検査矯正方法の制御部のフ ローチャートである。  FIG. 13 is a flowchart of a control unit of the component inspection and correction method according to the embodiment of the present invention.
第 14図は、 部品検査矯正装置の主な構造を示す図であり、 図 14 (A) は正面図、 図 14 (B) は平面図である。  FIG. 14 is a diagram showing a main structure of the component inspection and correction device, where FIG. 14 (A) is a front view and FIG. 14 (B) is a plan view.
第 15図は、部品の基準部の位置を求める方法を説明するための図である。 第 16図は、 被検査部品の形状を示す図であり、 図 16 (A) は全体の斜 視図、 図 1 6 (B) は一部側面断面図である。  FIG. 15 is a diagram for explaining a method of obtaining the position of the reference part of the component. FIG. 16 is a diagram showing the shape of the part to be inspected, FIG. 16 (A) is an overall perspective view, and FIG. 16 (B) is a partial side sectional view.
第 17図は、 本発明の他の実施の形態に係る部品検査矯正装置の主要部の 構造を示す斜視図である。  FIG. 17 is a perspective view showing a structure of a main part of a component inspection and correction device according to another embodiment of the present invention.
第 18図は、 図 17の装置主要部の計測時の状態を示す斜視図である。 第 1 9図は、 図 1 7の装置主要部の矯正時の状態を示す図であり、 図 1 9 (A) は主要部の斜視図、 図 1 9 (B) は主要部の一部側面断面図であ る。 FIG. 18 is a perspective view showing a state at the time of measurement of a main part of the apparatus in FIG. FIG. 19 is a diagram showing the state of the main part of the apparatus of FIG. 17 at the time of correction, and FIG. 19 (A) is a perspective view of the main part, and FIG. 19 (B) is a partial side sectional view of the main part.
第 20図は、 本発明の他の実施の形態に係る部品検査矯正装置の主要部の 構造を示す斜視図である。  FIG. 20 is a perspective view showing a structure of a main part of a component inspection and correction device according to another embodiment of the present invention.
第 2 1図は、 矯正時の図 20の装置主要部の一部側面断面図である。  FIG. 21 is a partial side sectional view of a main part of the device in FIG. 20 at the time of correction.
第 22図は、 部品検査矯正装置の制御部のフローチャートである。 発明を実施するための形態  FIG. 22 is a flowchart of a control unit of the component inspection and correction device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しつつ説明する。  Hereinafter, description will be made with reference to the drawings.
まず、 本発明の部品検査矯正装置で検査 ·矯正される部品の形状を説明す る。  First, the shape of a component inspected and corrected by the component inspection and correction device of the present invention will be described.
図 10は、 被検査部品の形状を示す図であり、 図 10 (A) は正面図、 図 10 (B) は側面図、 図 10 (C) は平面図である。  FIG. 10 is a diagram showing the shape of the component to be inspected, FIG. 10 (A) is a front view, FIG. 10 (B) is a side view, and FIG. 10 (C) is a plan view.
部品 Mは、 XYZ方向に拡がる互いに直角な 3つの平面片 Ml、 M2、 M 4を有する。 図の Z Y面上の面をベース M 1という。 ベース Mlの上辺から XY面上に広がる面を上面 M 2という。 なお、 上面 M 2から + X方向に延び 後述する短軸 A 3が植設されている部分を S片 M 3という。 上面 M 2の側辺 から Z X面上で一 Z方向に延びる面を L片 M 4という。 この L片 M 4には後 述する長軸 A4が植設されている。 上述のように、 S片 M3の先端部には一 Z方向に延びる短い軸 (短軸) A 3が植設されている。 また、 L片 M4のほ ぼ中央には— Y方向に延びる長い軸 (長軸) A4が植設されている。  The part M has three mutually perpendicular plane pieces Ml, M2, and M4 that extend in the XYZ directions. The surface on the ZY plane in the figure is called base M1. The surface extending from the upper side of the base Ml on the XY plane is called the upper surface M2. Note that a portion extending in the + X direction from the upper surface M2 and having a short axis A3 described later planted therein is referred to as an S piece M3. A surface extending from the side of the upper surface M2 in the Z direction on the ZX plane is referred to as an L piece M4. A long axis A4 described later is implanted in the L piece M4. As described above, a short axis (short axis) A3 extending in the 1Z direction is implanted at the tip of the S piece M3. A long axis (long axis) A4 extending in the Y direction is planted almost at the center of the L piece M4.
この部品検查矯正装置においては、 長軸 A 4と短軸 A 3の位置寸法を検査 する。 そして、 その結果に基づいて、 長軸 A 4と短軸 A 3が所定の位置寸法 関係となるように、 L片 M4と S片 M3を曲げ矯正する。 すなわち、 L片 M 4を上面 M 2に対して土 Y方向に曲げて長軸 A 4の位置寸法を矯正し、また、 S片 M 3を上面 M 2に対して土 Z方向に曲げることにより短軸 A 3の位置寸 法を矯正する (詳細後述)。  In this component inspection and correction device, the positional dimensions of the major axis A4 and the minor axis A3 are inspected. Then, based on the result, the L piece M4 and the S piece M3 are bent and corrected so that the major axis A4 and the minor axis A3 have a predetermined positional dimensional relationship. That is, the L piece M 4 is bent in the soil Y direction with respect to the upper surface M 2 to correct the position dimension of the long axis A 4, and the S piece M 3 is bent in the soil Z direction with respect to the upper surface M 2 Correct the position of the short axis A3 (see below for details).
図 1 (A) は、 本発明の実施の形態に係る部品検査矯正装置の構造を示す 正面図であり、図 1 (Β)は同装置の制御系の構成を示すブロック図である。 図 2は、 図 1の部品検査矯正装置の側面図である。 FIG. 1A shows the structure of a component inspection and correction device according to an embodiment of the present invention. FIG. 1 () is a block diagram showing a configuration of a control system of the device. FIG. 2 is a side view of the component inspection / correction apparatus of FIG.
図 3は、 図 1の部品検査矯正装置の平面図である。  FIG. 3 is a plan view of the component inspection / correction apparatus of FIG.
図 4は、図 1の部品検査矯正装置の一部を拡大して示す図であり、図 4 ( Α) は正面図、 図 4 (Β) は側面図、 図 4 (C) は平面図である。  Fig. 4 is an enlarged view of a part of the part inspection and correction device of Fig. 1; Fig. 4 (Α) is a front view, Fig. 4 (Β) is a side view, and Fig. 4 (C) is a plan view. is there.
部品検査矯正装置 1は、 被検査部品を固定する固定手段 10と、 同部品の 寸法を計測する計測手段 50と、 計測手段 50で計測された結果が許容範囲 (公差) 内か否かを判定する判定手段 210と、 同部品の一部に定量的にコ ントロールされた塑性加工を加えて同部品の形状を矯正する矯正手段 70と から構成される。  The parts inspection and correction device 1 includes a fixing means 10 for fixing the part to be inspected, a measuring means 50 for measuring the dimensions of the part, and a determination as to whether or not the result measured by the measuring means 50 is within an allowable range (tolerance). And a correction means 70 for applying a controlled plastic working to a part of the part to correct the shape of the part.
固定手段 10、 計測手段 50、 矯正手段 70は、 全てテーブル 3上に配置 されている。固定手段 10、計測手段 50、矯正手段 70は、制御部 200に 電気的に接続しており、 同制御部で制御される。 判定手段 2 1 0は制御部 200に含まれる。  The fixing means 10, the measuring means 50, and the correcting means 70 are all arranged on the table 3. The fixing unit 10, the measuring unit 50, and the correcting unit 70 are electrically connected to the control unit 200, and are controlled by the control unit. The determination means 210 is included in the control unit 200.
まず、 固定手段 1 0の構造を説明する。  First, the structure of the fixing means 10 will be described.
固定手段 10は、 部品 Μのベース Mlの図 4 (A) で見た裏面を第 1基準 面とし、 上面 M2の図 4 (A) で見た下面を第 2基準面として、 両基準面を 装置に固定する。 固定手段 10は、 図 1に示すように、 部品 Mを載置する台 座 1 1と、 台座 1 1に載置された部品 Mのベース M 1をクランプする横クラ ンパ一 13と、 部品の上面 M2をクランプする縦クランパー 1 5と、 を有す る。  The fixing means 10 uses the reference surface of the base Ml of the component Μ as the first reference surface as seen in FIG. 4 (A) and the lower surface of the upper surface M2 as seen in FIG. Secure to the device. As shown in FIG. 1, the fixing means 10 includes a pedestal 11 on which the component M is mounted, a horizontal clamper 13 for clamping the base M1 of the component M mounted on the pedestal 11, and a It has a vertical clamper 15 that clamps the upper surface M2, and.
図 4を参照して台座 1 1の構造を説明する。  The structure of the base 11 will be described with reference to FIG.
台座 1 1は、 図 4 (A) に示すように、 側面形状が L字型で、 横長の直方 体状の下部 1 7と、 下部 1 7の上面から立ち上がる縦長の直方体状の上部 1 9とからなる。 上部 1 9には、 同部から図 4 (A) の右側 (Y方向) に延 びる突出部 2 1が設けられている。 突出部 21の断面形状は三角形で、 先端 は鋭角である。 この上部 1 9と突出部 2 1の上面に部品 Mが載る。 そして、 上部 19の一側面 (図 4 (B) の左側) が、 部品 Mのベース M 1が当てられ る第 1基準面 19 aとなり、 上部 1 9及び突出部 2 1の上面 (図 4 (B) の 上側) が部品の上面 M2が載せられる第 2基準面 1 9 bとなる。 第 1基準面 1 9 aと第 2基準面 1 9 bとは互いに直交する。 As shown in FIG. 4 (A), the pedestal 11 has an L-shaped side surface, a horizontally long rectangular parallelepiped lower part 17, and a vertically elongated rectangular parallelepiped upper part 19 rising from the upper surface of the lower part 17. Consists of The upper portion 19 is provided with a protruding portion 21 extending from the same portion to the right (Y direction) in FIG. 4 (A). The cross-sectional shape of the protrusion 21 is triangular, and the tip is an acute angle. The part M is placed on the upper surface of the upper portion 19 and the protrusion 21. Then, one side of the upper part 19 (the left side in FIG. 4B) is applied to the base M 1 of the part M. The upper surface 19 and the upper surface of the protrusion 21 (upper side in FIG. 4B) become the second reference surface 19b on which the upper surface M2 of the component is placed. The first reference plane 19a and the second reference plane 19b are orthogonal to each other.
上部 19と下部 17には、 Z方向に貫通する Z貫通孔 23が開けられてい る。 また、 上部 19の第 1基準面 1 9 aと反対側の面 (図 4 (B) の右側の 面) から、 X方向に延びる X貫通孔 25が、 Z貫通孔 23に連通するまで開 けられている。 さらに、 上部 19の上面と端面 (紙面手前側の面) には Y方 向に延びる Ύ貫通孔 27が、 Z貫通孔 23に連通するまで開けられている。 部品 Mを台座 1 1上に載置する際は、 図 4 (B) において、 部品のベース Mlを台座上部 19の第 1基準面 1 9 a側 (図 4 (B) の左側) とし、 上面 M2を第 2基準面 19 b側 (図 4 (B) の上側) とし、 L片 M4を紙面手前 側として持ち (図 4 (B) の状態)、 そのまま、 手前方向から台座 1 1に近づ ける。 そして、 L片 M4から Y方向に延びる長軸 A4を上部 1 9の Y貫通孔 27に入れつつ、 部品 Mのベース M 1を上部 1 9の第 1基準面 1 9 aに当て て上面 M2を第 2基準面 1 9 bに当てる。 そして、 L片 M4が上部 1 9の突 出部 21の先端に当接するまで紙面奥方向に入れる。 このとき、 S片 M3の 短軸 A 3は上部 1 9の横側を通る。 これにより、 部品 Mのベース Mlが台座 上部 1 9の第 1基準面 1 9 aに当てられ、 上面 M 2が第 2基準面 1 9 に 載って、 部品 Mが台座 1 1に載置される。  The upper part 19 and the lower part 17 are provided with Z through holes 23 penetrating in the Z direction. Also, open the X through hole 25 extending in the X direction from the surface opposite to the first reference surface 19 a of the upper part 19 (the surface on the right side in FIG. 4B) until it communicates with the Z through hole 23. Have been. Further, a through hole 27 extending in the Y direction is formed on the upper surface and the end surface (the surface on the front side of the paper) of the upper portion 19 until it communicates with the Z through hole 23. When mounting the part M on the pedestal 11, the base Ml of the part is set to the first reference plane 19 a side of the upper part 19 of the pedestal 19 (the left side of FIG. 4 (B)) in FIG. Hold M2 on the second reference plane 19b side (upper side in Fig. 4 (B)), hold L-piece M4 on the near side of the paper (as shown in Fig. 4 (B)), and approach the pedestal 11 from the near side as it is. I can. Then, while inserting the major axis A4 extending in the Y direction from the L piece M4 into the Y through hole 27 of the upper part 19, the base M1 of the part M is applied to the first reference plane 19a of the upper part 19, and the upper surface M2 is made. Hit the second reference plane 19b. Then, the L piece M4 is inserted in the depth direction of the paper until the L piece M4 comes into contact with the tip of the protrusion 21 of the upper part 19. At this time, the short axis A3 of the S piece M3 passes on the side of the upper part 19. As a result, the base Ml of the component M is brought into contact with the first reference surface 19a of the upper portion 19 of the pedestal, the upper surface M2 is placed on the second reference surface 19, and the component M is placed on the pedestal 11 .
そして、部品 Mを第 1基準面 1 9 aに対して横クランパ一 1 3 (図 3参照) で固定し、 第 2基準面 1 9 bに対して縦クランパ一 1 5 (図 2参照) で固定 する。  Then, the part M is fixed to the first reference plane 19a by the horizontal clamper 13 (see FIG. 3), and is fixed to the second reference plane 19b by the vertical clamper 15 (see FIG. 2). Fix it.
横クランパー 1 3は、図 3に示すように、伸縮可能なピストンロッド 33を 備えたシリンダ 3 1である。 シリンダ 3 1はテーブル上に固定されている。 ピストンロッド 33はシリンダ 3 1から X軸方向へ繰り出し ·引き込みされ る。 横クランパー 1 3は、 ピストンロッド 33が伸びたとき、 ロッド先端面 が台座上部 1 9の第 1基準面 1 9 aに向かうように配置されている。  The horizontal clamper 13 is, as shown in FIG. 3, a cylinder 31 provided with a telescopic piston rod 33. The cylinder 31 is fixed on the table. The piston rod 33 is extended and retracted from the cylinder 31 in the X-axis direction. The horizontal clamper 13 is arranged such that when the piston rod 33 is extended, the rod tip surface faces the first reference surface 19 a of the pedestal upper portion 19.
部品 Mが台座 1 1に載置された後、 ピストンロッド 33を伸ばし、 ピスト ンロッド 3 3の先端面で台座 1 1上に載置された部品 Mのベース M lを、 台 座上部 1 9の第 1基準面 1 9 aに押し付けて固定する (図 4 ( B ) も参照)。 図 2を参照して縦クランパー 1 5の構造を説明する。 · 縦クランパー 1 5は、 伸縮可能なピストンロッド 3 9を備えたシリンダ 3 5と、アーム 3 7とから構成される。シリンダ 3 5の端部は、テーブル 3に 回転可能に固定されている。 アーム 3 7は L字型で、 一端 3 7 aは、 ピスト ンロッド 3 9に回転可能に連結され、他端 3 7 bは、テーブル上の台座 4 1に 回転可能に連結されている。 アーム 3 7の側面には押圧部材 4 3が取り付け られている。シリンダ 3 5からピストンロッド 3 9が伸びると、アーム 3 7は 台座 4 1との連結部 3 7 bを中心として図の下右方向へ回動する。 そして、 アーム側面の押圧部材 4 3が、 台座上部 1 9の第 2基準面 1 9 bに向かい、 押圧部材 4 3で、 台座上に載置された部品 Mの上面 M 2を台座上部 1 9の第 2基準面 1 9 bに押し付けて固定する (図 4 ( B ) も参照)。 After the part M is placed on the base 11, extend the piston rod 33 and Press the base Ml of the part M placed on the pedestal 1 1 at the end surface of the connecting rod 3 3 against the first reference surface 19a of the upper pedestal 19 (see also Fig. 4 (B)). ). The structure of the vertical clamper 15 will be described with reference to FIG. · The vertical clamper 15 is composed of a cylinder 35 having a telescopic piston rod 39 and an arm 37. The end of the cylinder 35 is rotatably fixed to the table 3. The arm 37 is L-shaped, and one end 37 a is rotatably connected to the piston rod 39, and the other end 37 b is rotatably connected to the pedestal 41 on the table. A pressing member 43 is attached to a side surface of the arm 37. When the piston rod 39 extends from the cylinder 35, the arm 37 rotates in the lower right direction in the figure around the connecting portion 37b with the pedestal 41. Then, the pressing member 43 on the side surface of the arm faces the second reference surface 19b of the pedestal upper part 19, and the upper surface M2 of the component M placed on the pedestal is pressed by the pressing member 43. Press it against the second reference plane 19 b of the slab (see also FIG. 4 (B)).
なお、 部品 Mの上面 M 2から延びる S片 M 3には押圧部材 4 3が当らず、 S片 M 3は変形可能である。  The pressing member 43 does not contact the S piece M3 extending from the upper surface M2 of the component M, and the S piece M3 is deformable.
以上のように、 台座 1 1上に載置された部品 Mのベース M 1と上面 M 2は クランプされて動かないように固定される。 そしてこの状態を保ったまま、 計測及び矯正が行われる。  As described above, the base M1 and the upper surface M2 of the component M placed on the pedestal 11 are clamped and fixed so as not to move. Measurement and correction are performed while maintaining this state.
次に、 図 4を参照して、 計測手段 5 0を説明する。  Next, the measuring means 50 will be described with reference to FIG.
計測手段 5 0は、 X方向に延びる平行な 2つのゲージ 5 1、 5 3と、 Z方 向に延びる 1つのゲージ 5 5から構成される。 Xゲージ 5 1は長軸 A 4の X 方向位置を計測し、 Xゲージ 5 3は短軸 A 3の X方向の位置を計測する。 Z ゲージ 5 5は、 長軸 A 4の Z方向位置を計測する。  The measuring means 50 is composed of two parallel gauges 51 and 53 extending in the X direction and one gauge 55 extending in the Z direction. The X gauge 51 measures the position of the long axis A 4 in the X direction, and the X gauge 53 measures the position of the short axis A 3 in the X direction. The Z gauge 55 measures the position of the major axis A 4 in the Z direction.
2つの Xゲージ 5 1、 5 3はベース 5 7に取り付けられている。 ベース 5 7は移動機構により、テーブル上で X方向に移動可能である。移動機構は、 図 3に示すように、伸縮可能なピストンロッド 6 1を備えたシリンダ 5 9と、 ガイド 6 3とから構成される。シリンダ 5 9はテーブル上に固定されている。 ベース 5 7は、 シリンダ 5 9のピストンロッド 6 1に接続されており、 ピス トンロッド 6 1の伸縮によりガイド 6 3に沿って X軸方向に駆動される。 図 4 ( B )、 ( C ) に示すように、 各 Xゲージ 5 1、 5 3は、 固定手段 1 0の 台座上部 1 9の第 1基準面 1 9 aと反対側の面 1 9 c (図 4 ( B ) の右側) に対向する位置に配置されている。 そして、 シリンダ 5 9からピストンロッ ド 6 1が伸びてベース 5 7が X軸方向に移動すると、 短軸用 Xゲージ 5 3の 先端は、 台座 1 1に載置されている部品 Mの短軸 A 3の側面に当る。 一方、 長軸用 Xゲージ 5 1の先端は、 台座上部 1 9の X貫通孔 2 5を貫通し、 Y貫 通孔 2 7を貫通している長軸 A 4の側面に当る。 これにより、 短軸 A 3の X 方向距離、 長軸 A 4の X方向位置が計測される。 短軸用 Xゲージと長軸用 X ゲージ自身も伸縮機能をもっており、 各ゲージの伸縮量で短軸 ·長軸の相対 位置寸法がわかる。 The two X gauges 51 and 53 are attached to the base 57. The base 57 can be moved in the X direction on the table by a moving mechanism. As shown in FIG. 3, the moving mechanism includes a cylinder 59 having a telescopic piston rod 61 and a guide 63. The cylinder 59 is fixed on the table. The base 57 is connected to the piston rod 61 of the cylinder 59, The ton rod 61 is driven in the X-axis direction along the guide 63 by expansion and contraction. As shown in FIGS. 4 (B) and (C), each of the X gauges 51 and 53 is provided with a surface 19 c (the opposite side to the first reference surface 19 a of the upper base 19 of the fixing means 10). (Right side of Fig. 4 (B)). When the piston rod 61 extends from the cylinder 59 and the base 57 moves in the X-axis direction, the tip of the short-axis X gauge 53 is connected to the short axis A of the component M mounted on the base 11. Hit the side of 3. On the other hand, the tip of the long axis X gauge 51 penetrates the X axis through hole 25 of the pedestal upper part 19 and the side surface of the long axis A 4 penetrating the Y through hole 27. Thus, the distance in the X direction of the short axis A 3 and the position in the X direction of the long axis A 4 are measured. The X-gauge for the short axis and the X-gauge for the long axis also have an expansion / contraction function, and the relative positions of the short axis and the long axis can be determined by the amount of expansion / contraction of each gauge.
Zゲージ 5 5は、 テーブルに固定されたベース 6 5に取り付けられて、 台 座 1 1の Z貫通孔 2 3に揷通されるように垂直方向に延びている。 Zゲージ 5 5は伸縮性で、 伸びるとその先端は Z貫通孔 2 3を通り、 台座 1 1に載置 されている部品の長軸 M 4の下面に当る。 そして、 長軸 M 4の Z方向位置が 計測される。  Z gauge 55 is attached to base 65 fixed to the table, and extends vertically so as to pass through Z through hole 23 of pedestal 11. The Z gauge 55 is elastic, and when extended, its tip passes through the Z through hole 23 and hits the lower surface of the long axis M 4 of the component placed on the pedestal 11. Then, the position of the major axis M4 in the Z direction is measured.
各ゲージ 5 1、 5 3、 5 5で計測された結果 (長軸 A 4と短軸 A 3の X方 向相対位置、 及び、 長軸 A 4の Z方向位置) は、 図 1 ( B ) に示す制御部 2 0 0 (判定手段 2 1 0 ) に送られる。判定手段 2 1 0において、長軸 A 4及 び短軸 A 3の直交度や、 各軸の部品のベース M 1に対する相対的な位置関係 が算出される。 そしてこの結果に応じて、 矯正手段により、 S片 M 3を土 Z 方向に曲げて短軸 A 3の位置を矯正し、 L片 M 4の土 Y方向に曲げて長軸 A 4の位置を矯正する。  Figure 1 (B) shows the results measured by the gauges 51, 53, and 55 (the relative positions of the major axis A4 and the minor axis A3 in the X direction and the major axis A4 in the Z direction). Is sent to the control unit 200 (determination means 210). In the determination means 210, the orthogonality of the major axis A4 and the minor axis A3 and the relative positional relationship of each axis component with respect to the base M1 are calculated. Then, according to this result, the S piece M 3 is bent in the soil Z direction to correct the position of the short axis A 3 by the correction means, and the L piece M 4 is bent in the soil Y direction to correct the position of the long axis A 4. to correct.
次に、 矯正手段について説明する。 なお、 説明は L片 M 4矯正手段につい て行うが、 S片矯正手段も同様の構成を有する。  Next, the correcting means will be described. The description will be made on the L-piece M4 correcting means, but the S-piece correcting means has the same configuration.
図 5は、 矯正手段の初期状態 (不作動状態) を示す側面図である。  FIG. 5 is a side view showing an initial state (non-operating state) of the correction means.
図 6は、 矯正手段の初期状態を示す正面図である。  FIG. 6 is a front view showing an initial state of the correction means.
なお、 図においては、 簡略化のため、 部品 Mの固定手段 1 0の図示を省略 03 05929 してある。 In the drawings, the fixing means 10 of the component M is omitted for simplification. 03 05929
矯正手段 7 0は、 部品の被矯正部 (L片 M 4及び S片 M 3 ) にコントロー ルされた量の変位を加えて曲げる。 そして、 判定手段 2 1 0で計測結果が許 容範囲 (公差) に収まっているかどうかを判定し、 収まるまで矯正作業を繰 り返す(詳細後述)。 このとき、 前回の矯正による被矯正部の計測結果を次回 の矯正作業にフィードバックさせるため、 L片 M 4の Y方向矯正操作量、 S 片 M 3の Z方向矯正操作量を正確に知ることが必要である。  The straightening means 70 bends a controlled part of the part (L piece M4 and S piece M3) by applying a controlled amount of displacement. Then, the judgment means 210 judges whether or not the measurement result falls within an allowable range (tolerance), and repeats the correction work until the measurement result falls within the range (to be described later in detail). At this time, in order to feed back the measurement result of the part to be corrected by the previous correction to the next correction work, it is necessary to accurately know the Y direction correction operation amount of the L piece M4 and the Z direction correction operation amount of the S piece M3. is necessary.
矯正は、 上述のように、 部品の L片 M 4と S片 M 3についてそれぞれ行わ れ、 各々に同一の構造の矯正装置が設けられる。 この例においては、 L片 M 4を士 Y方向に移動させて矯正する装置について説明する。  As described above, the straightening is performed for each of the L piece M4 and the S piece M3 of the component, and each is provided with a straightening device having the same structure. In this example, a device for correcting the L piece M 4 by moving it in the Y direction will be described.
矯正装置 7 0は、 図 5、 図 6に示すように、 矯正爪 (矯正部材) 7 1と、 矯正爪 7 1が搭載されている第 1ステージ 7 3と、 該第 1ステージ 7 3が搭 載される第 2ステージ 7 5とを備える。 第 1ステージ 7 3と第 2ステージ 7 5は、 フローティング機構を介して接続している。  As shown in FIGS. 5 and 6, the correction device 70 includes a correction nail (correction member) 71, a first stage 73 on which the correction nail 71 is mounted, and a first stage 73. And a second stage 75 to be mounted. The first stage 73 and the second stage 75 are connected via a floating mechanism.
矯正爪 7 1は、 直方体状の形状で、 上面には、 X方向に延びる溝 7 7が形 成されている。この溝 7 7に、 L片 M 4の先端が入り込んで引っ掛けられる。 溝 7 7の幅 W 1 (—例で l mm)である。矯正爪 7 1は、第 1ステージ 7 3の 上面に固定されている。  The correction nail 71 has a rectangular parallelepiped shape, and a groove 77 extending in the X direction is formed on the upper surface. The tip of the L piece M 4 enters into the groove 77 and is hooked. The width W 1 of the groove 77 (—l mm in the example). The correction nail 71 is fixed to the upper surface of the first stage 73.
第 1ステージ 7 3は、 第 2ステージ 7 5上に、 リニアガイド 7 9 (フロー ティング機構) (図 6参照)を介して、矯正方向である Y方向の土両方向に移 動可能に搭載されている。第 1ステージ 7 3には、同ステージの移動方向(Y 方向) の直交方向 (X方向) に延びる当接ブロック 8 1が設けられている。 当接ブロック 8 1の両側面は平行で、各面は X方向に延びている。当接ブロッ ク 8 1の下面には、 Z方向に延びるピン 8 3が設けられている。 なお、 当接 ブロック 8 1は、図 6に示すように、第 2ステージ 7 5上に突設されている。 第 2ステージ 7 5は、 ベース 8 5上に、 リニアガイド 8 7 (図 6参照) を 介して、 矯正方向である Y方向に移動可能に搭載されている。 第 2ステージ 7 5は、 ベース 8 5に固定されたポールネジ 8 9によって Y方向に駆動され る。 The first stage 73 is mounted on the second stage 75 via a linear guide 79 (floating mechanism) (see Fig. 6) so as to be movable in the soil correction direction Y in both soil directions. I have. The first stage 73 is provided with a contact block 81 extending in a direction (X direction) orthogonal to the direction of movement of the stage (Y direction). Both side surfaces of the contact block 81 are parallel, and each surface extends in the X direction. The lower surface of the contact block 81 is provided with a pin 83 extending in the Z direction. The contact block 81 protrudes from the second stage 75 as shown in FIG. The second stage 75 is mounted on a base 85 so as to be movable in a Y direction, which is a correction direction, via a linear guide 87 (see FIG. 6). The second stage 75 is driven in the Y direction by a pole screw 89 fixed to the base 85. You.
第 2ステージ 7 5の上面には、 ブロック 9 1、 9 3が対向するように固定 されている。 各ブロック 9 1、 9 3は幅の広い上部 9 1 a、 9 3 aと幅の狭 い下部 9 1 b、 9 3 bからなり、 2つのブロックの上部間には上空間 9 5が 開けられ、 下部間には下空間 9 7が開けられる。 ブロック間の上空間 9 5内 には、 第 1ステージ 7 3の当接ブロック 8 1が位置し、 下空間 9 7内には、 ピン 8 3が位置している。  Blocks 91 and 93 are fixed to the upper surface of the second stage 75 so as to face each other. Each block 91, 93 consists of a wide upper part 91a, 93a and a narrow lower part 91b, 93b, with an upper space 95 between the upper parts of the two blocks. A lower space 97 is opened between the lower parts. The contact block 81 of the first stage 73 is located in the upper space 95 between the blocks, and the pins 83 are located in the lower space 97.
図 5の左側のブロック 9 1の上部 9 1 aには、 + Y方向に延びる左押しポ ルト (当接部) 9 9が揷通されてナット 1 0 1でブロック 9 1に固定されて おり、 右側のブロック 9 3の上部 9 3 aには、 一 Y方向に延びる右押しポル ト (当接部) 1 0 3が揷通されてナット 1 0 5でブロック 9 3に固定されて いる。 両押しボルト 9 9、 1 0 3は同軸上に位置し、 各押しボルトの先端は 上空間 9 5内に突き出ている。各押しポルトの先端面は平坦で、同空間 9 5内 の当接ブロック 8 1の両側面にほぼ同じ間隔のスキマ W 2を開けて対向して いる。  A left-handed port (abutting portion) 990 extending in the + Y direction is passed through the upper part 91 a of the left block 91 in FIG. 5 and is fixed to the block 91 with a nut 101. A right push port (abutting portion) 103 extending in one Y direction is passed through an upper portion 93 a of the right block 93, and is fixed to the block 93 with a nut 105. The two push bolts 99, 103 are located coaxially, and the tip of each push bolt projects into the upper space 95. The tip surface of each push port is flat, and oppose each other with a gap W2 at substantially equal intervals on both side surfaces of the contact block 81 in the same space 95.
このスキマ W 2の幅は一例で 1 mmである。  The width of the gap W2 is 1 mm in one example.
各ブロック 9 1、 9 3には 2つの近接センサ 1 0 7 (図 6参照) が取り付 けられている。 近接センサ 1 0 7の出力は制御部に送られる。 近接センサと しては、例えば渦電流型近接センサを使用できる。この近接センサ 1 0 7は、 左右押しポルト 9 9、 1 0 3の各先端面と、 当接ブロック 8 1の各側面とが 当接したことを検知する。 この場合、 各押しポルトの先端面と、 当接ブロッ クの側面は、 ある程度の広さの部分で当接するため、 両者の当接を確実に検 知できる。 というのは、 矯正爪 7 1が被矯正部 (L片) M 4と接するのを直 接検知しょうとすると、小さい空間に複数のセンサを配置しなければならず、 機械構造及び適用できるセンサの選択の両面で困難性があるのである。  Each block 91, 93 is provided with two proximity sensors 107 (see FIG. 6). The output of the proximity sensor 107 is sent to the control unit. As the proximity sensor, for example, an eddy current type proximity sensor can be used. The proximity sensor 107 detects that the tip surfaces of the left and right pushing ports 99 and 103 are in contact with the respective side surfaces of the contact block 81. In this case, since the front end face of each push port and the side surface of the contact block abut on a part of a certain width, the contact between the two can be reliably detected. This is because, when trying to directly detect that the correction nail 71 is in contact with the portion to be corrected (L piece) M4, a plurality of sensors must be arranged in a small space, and the mechanical structure and applicable sensors There are difficulties in both aspects of choice.
左ブロック 9 1の下部 9 1 bには、 Y方向に延びる左ガイドピン 1 0 9が スライド可能に揷通されており、 右プロック 9 3の下部 9 3 bには、 Y方向 に延びる右ガイドピン 1 1 1がスライド可能に挿通されている。 両ガイドピ ン 109、 1 1 1は同軸上に位置し、 各ガイドピンの先端は下空間 97内に 突き出ている。 各ガイドピン 1 09、 1 1 1の外側の端部には、 抜け止め用 の Eリング 1 13、 1 1 5が取り付けられており、 内側の端部には、 同ピン の径より大きい径のディスク 1 1 7、 1 1 9が設けられている。 A left guide pin 109 extending in the Y direction is slidably inserted through the lower part 91 b of the left block 91, and a right guide extending in the Y direction is inserted through the lower part 93b of the right block 93. The pin 111 is slidably inserted. Both guides The pins 109 and 111 are located coaxially, and the tip of each guide pin projects into the lower space 97. E-rings 113 and 115 are attached to the outer end of each guide pin 109 and 111, and the inner end has a diameter larger than that of the pin. Discs 1 17 and 1 19 are provided.
各ガイドビン 109、 1 1 1に沿つた、 ディスク 1 1 7、 1 19とブロッ ク下部 9 1 b、 93 bの側壁との間には、 コイルパネ 121、 123が介装 されている。 コイルパネ 1 2 1、 1 23は、 各ガイドピン 1 09、 1 1 1の ディスク 1 17、 1 19をピン 83に当接させるように付勢して、 各押しポ ルト 99、 103の先端面と、 当接ブロック 8 1の各側面とのスキマ W2の 距離を等しく保とうとしている。 すなわち、 コイルバネ 121、 123は、 第 1ステージ 73 (当接ブロック 8 1) を、 第 2ステージ 7 5 (押しポルト 99、 1 03) に対して、 一定の位置 (中立点) に保とうとする作用を有す る。 このときの中立点の Y方向位置を初期位置とする。  Coil panels 121 and 123 are interposed between the disks 117 and 119 and the side walls of the block lower portions 91b and 93b along the guide bins 109 and 111. The coil panels 1 2 1 and 1 2 3 are biased so that the discs 1 1 1 and 1 1 9 of each guide pin 1 09 and 1 1 1 abut on the pin 83, and are brought into contact with the end faces of the push ports 99 and 103. The distance of the gap W2 from each side of the contact block 81 is to be kept equal. That is, the coil springs 121 and 123 act to keep the first stage 73 (the contact block 81) at a fixed position (neutral point) with respect to the second stage 75 (the pushing ports 99 and 103). It has. At this time, the neutral position in the Y direction is set as the initial position.
次に、 この矯正装置の動きを説明する。 この例では、 部品の L片 M4を起 こす (+Y方向に移動させる) ように矯正する動きを説明する。  Next, the operation of the correction device will be described. In this example, a description will be given of a movement for correcting the L piece M4 of the part so as to raise (move in the + Y direction).
初期位置(図 5、 図 6参照)において、 部品は上述の固定手段 (図示されず) に固定されている。 この状態で、 部品 Mの L片 M4の先端は、 矯正爪 7 1の 溝 77内に入り込んでいる。 なお、 矯正手段 70全体を X方向に動かす機構 (図 3の符号 131) も設けられている。  In the initial position (see FIGS. 5 and 6), the part is fixed to the above-mentioned fixing means (not shown). In this state, the tip of the L piece M4 of the part M enters the groove 77 of the correction nail 71. A mechanism (reference numeral 131 in FIG. 3) for moving the entire correction means 70 in the X direction is also provided.
まず、ポールネジ 89を回転させて、第 2ステージ 75を + Y方向に送る。 このとき、 第 2ステージ 75に搭載されている第 1ステージ 73も、 当接ブ ロック 8 1、ピン 83、バネ 1 2 1に押されて、同時に + Y方向に送られる。 それに伴って、 第 1ステージ 73上の矯正爪 71も、 部品 Mの L片 M4に対 して + Y方向に移動する。  First, the second screw 75 is fed in the + Y direction by rotating the pole screw 89. At this time, the first stage 73 mounted on the second stage 75 is also pushed by the contact block 81, the pin 83, and the spring 121, and is simultaneously sent in the + Y direction. Along with this, the correction nail 71 on the first stage 73 also moves in the + Y direction with respect to the L piece M4 of the part M.
この間、 第 1ステージ 73と第 2ステージ 75との相対位置 (中立点) は 変化しない。  During this time, the relative position (neutral point) between the first stage 73 and the second stage 75 does not change.
図 7は、 矯正装置が実際に部品の L片 M 4を曲げ始めた状態を示す側面図 である。 このとき、 矯正爪 7 1の側面が、 部品 Mの L片 M 4にすでに当っている。 ここからさらに、 ポールネジ 8 9を回転させて、 第 2ステージ 7 5をさらに + Y方向に送っても、 矯正爪 7 1の溝 7 7の側面が、 固定されている部品 M の L片 M 4に係止されて第 1ステージ 7 3は停止する。なお、バネ 1 2 1は、 部品 Mを変形させるほどの強さはない。 第 1ステージ 7 3と第 2ステージ 7 5とは、パネ 1 2 1が撓んだ分だけ Y方向に相対的に移動可能であるため、 第 1ステージ 7 3が停止しても、第 2ステージ 7 5は + Y方向へ移動できる。 この間、 第 1ステージ 7 3は第 2ステージ 7 5に固定されているリニアガイ ド 8 7上を一Y方向に移動している。 FIG. 7 is a side view showing a state where the straightening device has actually started bending the L piece M4 of the part. At this time, the side surface of the correction nail 71 has already hit the L piece M 4 of the part M. From here, even if the pole screw 89 is further rotated to move the second stage 75 further in the + Y direction, the side of the groove 77 of the correction claw 71 is fixed to the L piece M 4 of the fixed part M. And the first stage 73 stops. The spring 1 2 1 is not strong enough to deform the part M. The first stage 73 and the second stage 75 can be relatively moved in the Y direction by the amount of bending of the panel 121, so that even if the first stage 73 stops, the second stage 75 7 5 can move in + Y direction. During this time, the first stage 73 is moving in one Y direction on the linear guide 87 fixed to the second stage 75.
このステージ間相対移動が生じる際に、 第 2ステージ 7 5の左押しポルト 9 9の先端面と、 第 1ステージ 7 3の当接ブロック 8 1の左側面との間のス キマ W 2 'が徐々に小さくなる。 また、 左ガイドピン 1 0 9に介装されている コイルバネ 1 2 1が、 左ブロック 9 1と左ガイドピン 1 0 9のディスク 1 1 7の間で圧縮される。 左ガイドピン 1 0 9は左ブロック 9 1にスライド 自在に揷通されているため、 同ピン 1 0 9はピン 8 3によって相対的に一 Y 方向に押されて、左ガイドピン 1 0 9の外側端部の Eリング 1 1 3は、ブロッ ク 9 1の外側側面から離れる。  When this relative movement between the stages occurs, the gap W 2 ′ between the tip surface of the left pushing port 99 of the second stage 75 and the left side surface of the contact block 81 of the first stage 73 is formed. It becomes smaller gradually. In addition, a coil spring 121 mounted on the left guide pin 109 is compressed between the left block 91 and the disk 117 of the left guide pin 109. Since the left guide pin 109 is slidably passed through the left block 91, the pin 109 is relatively pushed in one Y direction by the pin 83, and the left guide pin 109 is The E-ring 1 1 3 at the outer end is separated from the outer side of the block 9 1.
なお、 第 1ステージ 7 3の移動が停止してから、 押しポルト 9 9と当接ブ ロック 8 1の側面が当接するまでの間は、 第 1ステージ 7 3は移動が停止し た位置を維持しつつ、 第 2ステージ 7 5は移動している。 この状態で第 1ス テージ 7 3が + Y方向へ動こうとするが、 部品の L片 M 4の剛性の方がコィ ルバネ 1 2 1、 1 2 3の力よりも大きいので、 両ステージの変動量はコイル バネ 1 2 1の収縮に吸収され、 被矯正部は変形しない。  In addition, the first stage 73 maintains the position where the movement has stopped until the push port 99 and the contact block 81 contact the side surface after the movement of the first stage 73 stops. The second stage 75 is moving. In this state, the first stage 73 attempts to move in the + Y direction, but the rigidity of the L piece M 4 of the part is greater than the force of the coil springs 12 1 and 12 3. The amount of fluctuation is absorbed by the contraction of the coil spring 122, and the portion to be corrected does not deform.
図 8は、 矯正装置の矯正動作状態を示す側面図である。  FIG. 8 is a side view showing a correction operation state of the correction device.
図 9は、 矯正装置の矯正動作状態を示す平面図である。  FIG. 9 is a plan view showing a correction operation state of the correction device.
第 2ステージ 7 5がさらに + Y方向に移動すると、 左押しポルト 9 9の先 端面と、 第 1ステージ 7 3の当接ブロック 8 1の左側面との間のスキマがな くなり、 両者が当接する。 押しポルト 9 9の先端面と当接ブロック 8 1の側 面が当接した位置を矯正原点とする。 両者の当接は近接センサ 1 0 7で検知 され、 同センサ 1 0 7から制御部 (図 1 ( B ) の符号 2 0 0 ) に信号が出力 される。すると、制御部は、矯正開始の信号を発し、一体となった第 1ステー ジ 7 3及び第 2ステージ 7 5を送って L片 2 0 4を + Y方向へ曲げる矯正作 業が開始される。 When the second stage 75 moves further in the + Y direction, there is no gap between the leading end face of the left-hand pushing port 99 and the left side face of the contact block 81 of the first stage 73. Abut Push port 9 9 Tip face and contact block 8 1 The position where the surface abuts is defined as the correction origin. The contact between the two is detected by the proximity sensor 107, and a signal is output from the sensor 107 to the control unit (reference numeral 200 in FIG. 1 (B)). Then, the control unit issues a correction start signal, sends the integrated first stage 73 and second stage 75, and starts a correction operation of bending the L piece 204 in the + Y direction. .
ここで、 矯正開始時には、 部品の被矯正部である L片 M 4は、 上述のよう に、 既に矯正爪 7 1の溝 7 7の側面に確実に係止されている状態である。 す なわち、 矯正爪 7 1の溝 7 7の側面が部品 Mの L片 M 4に係止された状態が ある時間維持された後で、 左押しポルト 9 9が当接ブロック 8 1の側面に 当っている。 したがって、 矯正部 (矯正爪) が被矯正部 (L片) に接したこ とを機械的に確実に知ることができる。  Here, at the start of the correction, the L piece M4, which is the part to be corrected of the component, is in a state where it has been securely locked to the side surface of the groove 77 of the correction claw 71 as described above. That is, after the side surface of the groove 7 7 of the correction claw 7 1 is retained for a certain time by the L piece M 4 of the part M, the left-handed port 9 9 is moved to the side surface of the contact block 8 1. Hit. Therefore, it is possible to mechanically know that the correction part (correction nail) has come into contact with the correction target part (L piece).
左押しポルト 9 9の先端面が第 1ステージ 7 3の当接ブロック 8 1の左側 面に当接した後、 さらにポールネジ 8 9を回転させて、 第 2ステージ 7 5を + Y方向へ送る。 すると、 第 1ステージ 7 3の当接ブロック 8 1の側面 (左 面) が、 第 2ステージ 7 5の左押しポルト 9 9の先端面に押されて、 第 1ス テージ 7 3が、 第 2ステージ 7 5とともにリニアガイド 8 7上を + Y方向に 移動する。 第 1ステージ 7 3が移動すると、 同ステージ上の矯正爪 7 1も + Y方向に移動し、 同爪 7 1の溝に引っ掛けられている L片 M 4の先端が + Y 方向にそらされる。 この、 左押しポルト 9 9の先端面が第 1ステージ 7 3の 当接ブロック 8 1の左側面に当接した後 (矯正原点、 近接センサ 1 0 7出力 後)の第 2ステージ 7 5の移動量、すなわち、第 1ステージ 7 3と第 2ステー ジ 7 5が同期移動を開始してからの移動量が実効矯正操作量となる。  After the tip surface of the left pushing port 99 contacts the left side surface of the contact block 81 of the first stage 73, the second stage 75 is sent in the + Y direction by further rotating the pole screw 89. Then, the side surface (left surface) of the contact block 81 of the first stage 73 is pushed by the tip surface of the left pushing port 99 of the second stage 75, and the first stage 73 becomes the second stage. It moves on the linear guide 87 along with the stage 75 in the + Y direction. When the first stage 73 moves, the correction nail 71 on the same stage also moves in the + Y direction, and the tip of the L piece M 4 hooked in the groove of the nail 71 deviates in the + Y direction. The movement of the second stage 75 after the tip surface of the left-hand pushing port 99 contacts the left side surface of the contact block 81 of the first stage 73 (correction origin, after output of the proximity sensor 107) The amount, that is, the amount of movement after the first stage 73 and the second stage 75 start synchronous movement is the effective correction operation amount.
このように実効矯正操作量は第 2ステージ 7 5の移動量を示す。 第 2ス テージ 7 5はポールネジ 8 9の回転により送られているため、 所定の移動量 に達するまでポールネジ 8 9を回転させる。  Thus, the effective correction operation amount indicates the amount of movement of the second stage 75. Since the second stage 75 is sent by the rotation of the pole screw 89, the pole screw 89 is rotated until a predetermined movement amount is reached.
以上の説明では、 + Y方向への矯正方法を示したが、 —Y方向への矯正に おいても、 ポールネジ 8 9を反対方向に回転させることにより、 同様の方法 で行うことができる。 再び、 図 1、 2、 3を参照して、 部品検査矯正装置における 2つの矯正装 置の配置を説明する。 In the above description, the correction method in the + Y direction has been described. However, the correction in the −Y direction can be performed in the same manner by rotating the pole screw 89 in the opposite direction. Referring again to FIGS. 1, 2, and 3, the arrangement of the two correction devices in the component inspection and correction device will be described.
上述のように部品の矯正は、 S片 M 3と L片 M 4について行われ、 各々に 同一の構造の矯正装置 7 0が設けられる。 部品 Mが部品検査矯正装置 1の固 定手段 1 0に固定された状態において、 被矯正部である L片 M 4は Y方向矯 正装置 7 0 Yによって士 Y方向に曲げられ、 S片 M 3は Z方向矯正装置 7 0 Zによって土 Z方向に曲げられる。  As described above, the correction of the parts is performed for the S piece M3 and the L piece M4, and each of them is provided with a correction device 70 having the same structure. In a state where the part M is fixed to the fixing means 10 of the part inspection and correction apparatus 1, the L piece M 4 which is the part to be corrected is bent in the Y direction by the Y direction correction apparatus 70 Y, and the S piece M 3 is bent in the soil Z direction by the Z direction correction device 70 Z.
矯正は、 部品 Mが固定手段 1 0により所定の位置に固定されて、 計測手段 5 0で初期位置が計測された後に行われる。 部品 Mの形状が三次元的で複雑 な構造であり、 固定手段 1 0や計測手段 5 0もテーブル 3上に固定されてい る。 さらに、 矯正手段 7 0の大きさも大きい。 これらのことにより、 各矯正 装置 7 0 Y、 7 0 Ζは、 各手段と干渉しないように、 テ一ブル 3上に固定さ れた移動機構により、 作動位置と、 待機位置 (非作動位置) との間を移動す るように配置される。  The correction is performed after the part M is fixed at a predetermined position by the fixing means 10 and the initial position is measured by the measuring means 50. The shape of the part M is a three-dimensional and complicated structure, and the fixing means 10 and the measuring means 50 are also fixed on the table 3. Further, the size of the correction means 70 is large. Due to these facts, each of the correction devices 70Y, 70Ζ is operated by the moving mechanism fixed on the table 3 so as not to interfere with each means, and the standby position (non-operation position). It is arranged to move between and.
図 2に示すように、 Υ矯正装置 7 0 Υは、 作動位置において、 固定手段 1 0の台座 1 1に固定された部品 Μの L片 Μ 4の先端が、 同装置の矯正爪 7 1の溝内に入っている。 同装置 7 0 Υの矯正方向は土 Υ方向であり、 同装 置 7 0 Υ上で、 矯正爪 7 1は土 Υ方向に移動する。  As shown in FIG. 2, in the operating position, the straightening device 70 、 is configured such that the tip of the L piece Μ 4 of the part に fixed to the pedestal 11 of the fixing means 10 is It is in the groove. The correction direction of the device 70 is the soil direction, and the correction claw 71 moves in the soil direction on the device 70.
そして、 Υ矯正装置 7 0 Υは、 移動機構 1 3 1 (図 3参照) により、 同位 置から待機位置 (図 3参照) に、 台座 1 1から離れるように、 矯正爪 7 1の 溝 7 7の幅方向と同じ X方向に移動する。 移動機構 1 3 1は、 X方向に伸縮 されるピストンロッド 1 3 3を備えたシリンダ 1 3 5と、 ガイド 1 3 7から 構成される。 そしてピストンロッド 1 3 3の先端が Υ矯正装置 7 0 Υのべ一 ス 8 5に接続している。 ピストンロッド 1 3 3がシリンダ 1 3 5から伸ばさ れると、矯正装置 7 0 Υはガイド 1 3 7に沿って待機位置(図 3 )に移動し、 ピストンロッド 1 3 3がシリンダ 1 3 5に引き込まれると、作動位置(図 2 ) に移動する。  Then, the straightening device 70 is moved by the moving mechanism 13 1 (see FIG. 3) from the same position to the standby position (see FIG. 3) so as to separate from the pedestal 11 so that the groove 7 7 Move in the same X direction as the width direction of. The moving mechanism 13 1 is composed of a cylinder 13 5 having a piston rod 13 3 that can be expanded and contracted in the X direction, and a guide 13 7. The tip of the piston rod 1 33 is connected to the base 85 of the {correction device 70}. When the piston rod 1 3 3 is extended from the cylinder 1 3 5, the straightening device 70 Υ moves to the standby position (FIG. 3) along the guide 1 3 7, and the piston rod 1 3 3 is retracted into the cylinder 1 3 5 Move to the operating position (Fig. 2).
図 1に示すように、 Ζ矯正装置 7 0 Ζは、 作動位置において、 固定手段に 固定された部品 Mの S片 M 3の先端が、 同装置の矯正爪 7 1の溝内に入って いる。 同装置 7 0 Zの矯正方向は士 Z方向であり、 同装置 7 0 Z上で、 矯正 爪 7 1は土 Z方向に移動する。 As shown in FIG. 1, the straightening device 70, when in the working position, The tip of the S piece M3 of the fixed part M is in the groove of the correction nail 71 of the device. The correction direction of the device 70Z is the Z direction, and the correction claw 71 moves in the soil Z direction on the device 70Z.
そして、 Z矯正装置 7 0 Zは、 移動機構 1 4 3 (図 3参照) により、 同位 置から待機位置に、 台座 1 1から離れるように、 矯正爪 7 1の溝 7 7の深さ 方向と同じ X方向に移動する(図 1参照)。 Z矯正装置 7 0 Zのベース 8 5は、 直立べ一ス 1 4 1 (図 1参照) に、 矯正方向が Z方向となるように固定され ている。 移動機構 1 4 3は、 図 3に示すように、 X方向に伸縮されるピスト ンロッド 1 4 5を備えたシリンダ 1 4 7と、 ガイド 1 4 9から構成される。 そしてピストンロッド 1 4 5の先端が直立ベース 1 4 1に接続している。 ピ ストンロッド 1 4 5がシリンダ 1 4 7から伸ばされると、 矯正装置 7 0 Zは 作動位置に移動し、 ピストンロッド 1 4 5がシリンダ 1 4 7に引き込まれる と、 待機位置に移動する。  Then, the Z-correcting device 70 Z is moved by the moving mechanism 144 (see FIG. 3) from the same position to the standby position, away from the pedestal 11, in the depth direction of the groove 77 of the correcting claw 71. Move in the same X direction (see Figure 1). The Z correction device 70 The base 85 of the Z is fixed to an upright base 141 (see FIG. 1) so that the correction direction is the Z direction. As shown in FIG. 3, the moving mechanism 144 includes a cylinder 147 having a piston rod 145 that can be expanded and contracted in the X direction, and a guide 149. The tip of the piston rod 1 4 5 is connected to the upright base 1 4 1. When the piston rod 145 is extended from the cylinder 147, the straightening device 70Z moves to the operating position, and when the piston rod 145 is retracted into the cylinder 147, moves to the standby position.
次に、 この部品検査矯正装置を用いた部品検査矯正方法を説明する。  Next, a component inspection and correction method using the component inspection and correction device will be described.
図 1 1〜 1 3は、 本発明の実施の形態に係る部品検査矯正方法の制御部の フローチヤ一卜である。  FIGS. 11 to 13 are flowcharts of the control unit of the component inspection and correction method according to the embodiment of the present invention.
まず、 S 1において、検査される部品 Mを装置の固定手段 1 0の台座 1 1に 上述の方法によってセッ卜する。  First, in S1, the component M to be inspected is set on the pedestal 11 of the fixing means 10 of the apparatus by the above-described method.
次に、 S 2において、 部品 Mを、 固定手段 1 0によって台座 1 1に固定す る。 このとき、 最初に、 横クランパー 1 3で、 部品 Mのベース M 1を台座上 部 1 9の第 1基準面 1 9 aに固定し、 その後、 縦クランパ一 1 5で、 部品 M の上面 M 2を台座上部 1 9の第 2基準面 1 9 bに固定する。  Next, in S2, the part M is fixed to the pedestal 11 by the fixing means 10. At this time, first, the base M 1 of the component M is fixed to the first reference surface 19 a of the pedestal upper portion 19 with the horizontal clamper 13, and then the upper surface M of the component M is fixed with the vertical clamper 15. 2 is fixed to the second reference plane 19 b of the upper part 19 of the pedestal.
この状態で、 S 3において、 計測手段 5 0によって、 部品 Mの長軸 A 4の Z位置を計測する。 すなわち、 Zゲージ 5 5を台座 1 1の Z貫通孔 2 3内で 伸ばして長軸 A 4に当て、 その位置を計測する。 そして、 S 5において、 こ の計測結果が公差 (一例で ± 2 5 u rn) 内かどうかを判定する。 計測結果が 公差内であれば、 長軸 A 4の位置は正しい位置と判定され、 以下に進んで長 軸 A 4及び短軸 A 3の X位置が計測される (詳細後述)。 しかし、 S 5におい て、 計測結果が公差内でなければ、 A〜Bの矯正作業が行われる。 なお、 各 矯正装置 70 Y、 70 Ζは通常状態においては、 待機位置に位置している。 In this state, in S3, the Z position of the major axis A4 of the component M is measured by the measuring means 50. That is, the Z gauge 55 is extended in the Z through hole 23 of the pedestal 11 and is applied to the long axis A4, and the position is measured. Then, in S5, it is determined whether or not the measurement result is within a tolerance (in one example, ± 25 urn). If the measurement result is within the tolerance, the position of the major axis A4 is determined to be a correct position, and the process proceeds to measure the X position of the major axis A4 and the minor axis A3 (described later in detail). But smells S5 If the measurement result is not within the tolerance, the correction work of AB is performed. In addition, each straightening device 70Y, 70mm is in a standby position in a normal state.
S 5で長軸 Ζ位置の計測結果が公差内でなければ、 Α〜Βの矯正作業を行 ラ。  If the measurement result of the long axis Ζ position is not within the tolerance in S5, the correction work of Α to Β is performed.
長軸 Α4の Ζ位置は、 L片矯正装置 (Υ矯正装置) 70Υで、 L片 Μ4を Υ方向に移動させて矯正する。  The 軸 position of the long axis Ζ4 is corrected by moving the L piece Μ4 in the Υ direction with the L piece straightening device (Υ straightening device) 70Υ.
まず、図 12に示す S 51において、 Υ矯正装置 70 Υの移動機構 1 31を 作動させて、 Υ矯正装置 70 Υを、 待機位置から作動位置に移動する。 そし て、 S 52で矯正作業が 1回目かどうかを判定され、 1回目の場合は、 S 53に進んで、 矯正操作量が規定量 (一例で 1 50 xm) に設定される。 こ こで、矯正操作量とは、矯正装置 70Yの第 2ステージ 75の実効移動量(第 1ステージ 73と第 2ステージ 75が同期移動を開始してからの移動量、 す なわち矯正爪 77が L片 M4に当ってからのステージ移動量) を示す。 すな わち、 矯正操作量は、 実際の部品塑性変形量とは異なり、 両者の差がスプリ ングバックである。 そして、 S 54で、 矯正装置 70 Yを作動させて、 L片 M4を規定量 (_ 1 50 ^im) だけ所定の方向 (土 Y方向) に曲げる。  First, in S51 shown in FIG. 12, the movement mechanism 131 of the correction device 70 is operated to move the correction device 70 from the standby position to the operating position. Then, in S52, it is determined whether or not the correction work is the first time. In the case of the first time, the flow proceeds to S53, and the correction operation amount is set to a specified amount (for example, 150 xm). Here, the correction operation amount is the effective movement amount of the second stage 75 of the correction device 70Y (the movement amount after the first stage 73 and the second stage 75 start synchronized movement, that is, the correction claw 77 Indicates the amount of stage movement after hitting L-piece M4). That is, the amount of straightening operation differs from the actual amount of plastic deformation of the part, and the difference between the two is springback. Then, in S54, the straightening device 70Y is operated to bend the L piece M4 in a predetermined direction (soil Y direction) by a specified amount (_150 ^ im).
なお、 予め、 長軸 A4の Z位置と、 L片 M4を曲げるための第 2ステージ 75の移動量との関係を求めておき、 これらの関係に基づいて、 長軸 A4の 位置が適宜な位置となるように矯正操作量を決定している。  The relationship between the Z position of the major axis A4 and the movement amount of the second stage 75 for bending the L piece M4 is determined in advance, and based on these relationships, the position of the major axis A4 is set to an appropriate position. The correction operation amount is determined so that
S 54の矯正作業が終了すると、 S 55で、移動機構 1 3 1を作動させて、 矯正装置 70Yを待機位置に移動させる。 その後、 再度 S 4'に戻って、 長軸 の Z位置を計測する。 そして、 S 5で、 計測結果が公差内かどうかを判定す る。  When the correction work in S54 is completed, in S55, the moving mechanism 13 1 is operated to move the correction device 70Y to the standby position. After that, return to S4 'again and measure the Z position of the long axis. Then, in S5, it is determined whether the measurement result is within the tolerance.
S 5で、 1回の矯正後においても計測結果が公差内でないと判定されると、 再度矯正作業が必要であり、 S 51において、 矯正装置 70Yを待機位置か ら作動位置に移動させる。 そして、 S 52において、 矯正が 1回目かどうか を判定する。 この場合、 矯正は 2回目であるので、 S 56に進み、 2回目の 長軸 A 4の Z位置の計測結果と 1回目の計測結果との差(実際の変形量 ΔΖ) が目標範囲(一例で一 10〜一 49 urn)かどうかを判定する。なお、 49 mという数値は、 上記長軸 A 4の位置寸法の公差 25 zmに 2を掛けた値か ら 1 /mを引いた値である。差 ΔΖが目標範囲内であれば、 S 57に進んで、 2回目の矯正操作量を 1回目と同じ矯正操作量(一 1 5 O ^m)に設定する。 その後、 S 54で矯正装置 70Yを作動させて矯正作業を行った後、 S 55で 矯正装置 70Yを待機位置に移動させる。 If it is determined in S5 that the measurement result is not within the tolerance even after one correction, the correction work is required again. In S51, the correction device 70Y is moved from the standby position to the operating position. Then, in S52, it is determined whether the correction is the first time. In this case, since the correction is the second time, the process proceeds to S56, and the difference between the second measurement result of the Z position of the major axis A4 and the first measurement result (actual deformation amount ΔΖ) Is determined to be within the target range (1 10 to 49 urn in one example). The value of 49 m is a value obtained by subtracting 1 / m from a value obtained by multiplying 2 by 25 zm of the positional dimension of the major axis A4. If the difference ΔΖ is within the target range, the process proceeds to S57, in which the second correction operation amount is set to the same correction operation amount (15 Om) as the first correction operation amount. After that, in S54, the correction device 70Y is operated to perform the correction work, and then in S55, the correction device 70Y is moved to the standby position.
S 56で、 差 ΔΖが目標量内でなければ、 S 58に進んで、 差 ΔΖが目標 範囲未満かどうかを判定する。 差 ΔΖが目標範囲未満であれば S 59に進ん で、 矯正操作量を、 1回目の矯正操作量 (一 1 50 m) に所定量 (一例で 一 30 m) を加えた量 (— 180
Figure imgf000022_0001
をとする。 つまり、 部品の材料の スプリングバックが初めの予想量より大きいので、 矯正 1回当りの矯正操作 量を多くするのである。 一方、 S 58で、 差 ΔΖが目標範囲未満でなければ (ΔΖが目標範囲内)、 S 60に進んで、 矯正操作量を、 1回目の矯正量 (一 1 50 m) に所定量 (一 30 n ) を引いた量 (一 120 urn) とする。 つまり、 部品の材料のスプリングバックが初めの予想量より小さいので、 矯 正 1回当りの矯正操作量を少なくするのである。
If the difference ΔΖ is not within the target amount in S56, the process proceeds to S58, and it is determined whether the difference ΔΖ is less than the target range. If the difference ΔΖ is smaller than the target range, the process proceeds to S59, and the correction operation amount is calculated by adding a predetermined amount (in one example, 30 m) to the first correction operation amount (-150 m) (-180
Figure imgf000022_0001
And In other words, since the springback of the material of the part is larger than the initially expected amount, the amount of correction operation per correction is increased. On the other hand, if the difference ΔΖ is not less than the target range in S58 (Δ 目標 is within the target range), the process proceeds to S60, and the correction operation amount is set to the first correction amount (one 150 m) by a predetermined amount (one 150 m). 30 n) is subtracted (one 120 urn). In other words, since the springback of the material of the part is smaller than the initially expected amount, the amount of correction operation per correction is reduced.
その後、 S 54に進んで矯正作業を行い、 S 5 5で矯正装置を待機位置に 移動する。 .  Thereafter, the flow proceeds to S54 to perform the correction work, and the correction device is moved to the standby position in S55. .
これらの作業を、 S 5において、 長軸 A4の Z位置が公差内に収まるまで 繰り返し、 S 6で長軸 A4を位置決めする。  These operations are repeated until the Z position of the major axis A4 falls within the tolerance in S5, and the major axis A4 is positioned in S6.
その後、 S 7に進んで長軸 A4及び短軸 A3の X位置を計測する (計測方 法の説明は省略)。そして、 S 8で長軸及び短軸の X位置の計測結果が公差内 でなければ、 C〜Dの矯正作業を行う。  Then, proceed to S7 to measure the X position of the major axis A4 and the minor axis A3 (the description of the measuring method is omitted). If the measurement result of the X position of the long axis and the short axis is not within the tolerance in S8, the correction work of C to D is performed.
長軸及び短軸の X位置は、 S片矯正装置 (Z矯正装置) 70 Zで、 S片 M 3を Z方向に移動させて矯正する。 なお、 この矯正では、 S片 M3を移動さ せることで短軸 A 3の位置を変えるものであるが、 これにより短軸 A 3の長 軸 A 4に対する位置 (寸法関係) を所定の値にする。  The X position of the long axis and the short axis is corrected by moving the S piece M 3 in the Z direction with the S piece correcting device (Z correcting device) 70 Z. In this correction, the position of the short axis A3 is changed by moving the S piece M3. By this, the position (dimensional relationship) of the short axis A3 with respect to the long axis A4 is set to a predetermined value. I do.
まず、 図 13に示す S 7 1において、 S片矯正装置 (Z矯正装置) 70 Z の移動機構 1 4 3を作動させて、 Z矯正装置 7 0 Zを、 待機位置から作動位 置に移動する。そして、 S 7 2で矯正作業が 1回目かどうかを判定され、 1回 目の場合は、 S 7 3に進んで、 矯正操作量が規定量 (一例で 1 5 0 ^m) に 設定される。ここで、矯正操作量とは、矯正装置 7 0 Zの第 2ステージ 7 5の 実効移動量を示す。 そして、 S 7 4で、 矯正装置 7 0 Zを作動させて、 S片 M 3を規定量 (一 1 5 0 ^m) だけ所定の方向 (土 Z方向) に曲げる。 First, in S71 shown in FIG. 13, the S piece straightening device (Z straightening device) 70 Z The Z correction device 70 Z is moved from the standby position to the operating position by operating the moving mechanism 144 of the motor. Then, in S72, it is determined whether or not the correction work is the first time, and in the case of the first time, the flow proceeds to S73, and the correction operation amount is set to the specified amount (for example, 150 ^ m). . Here, the correction operation amount indicates an effective movement amount of the second stage 75 of the correction device 70Z. Then, in S74, the straightening device 70Z is operated to bend the S piece M3 in a predetermined direction (the soil Z direction) by a specified amount (1-1500m).
S 7 4の矯正作業が終了すると、 S 7 5で、移動機構 1 4 3を作動させて、 矯正装置 7 0 Zを待機位置に移動させる。 その後、 再度 S 7に戻って、 長軸 及び短軸の X位置を計測する。 そして、 S 8で、 計測結果が公差内かどうか を判定する。  When the correcting operation in S74 is completed, the moving mechanism 144 is operated in S75 to move the correcting device 70Z to the standby position. After that, returning to S7 again, the X position of the long axis and the short axis is measured. Then, in S8, it is determined whether the measurement result is within the tolerance.
S 8で、 1回の矯正後においても計測結果が公差内でないと判定されると、 再度矯正作業が必要であり、 S 7 1において、 矯正装置 7 0 Yを待機位置か ら作動位置に移動させる。 そして、 S 7 2において、 矯正が 1回目かどうか を判定する。 この場合、 矯正は 2回目であるので、 S 7 6に進み、 2回目の 計測結果と 1回目の計測結果との差 (ΔΧ) が目標範囲 (一例で— 1 0〜一 4 9 m) かどうかを判定する。 4 9 mという値は上述と同様に決定され る。 差 ΔΧが目標範囲内であれば、 S 7 7に進んで、 2回目の矯正操作量を 1回目と同じ矯正操作量 (― 1 5 0 wm) に設定する。 その後、 S 7 4で矯 正装置 7 0 Zを作動させて矯正作業を行った後、 S 7 5で矯正装置 7 0 Yを 待機位置に移動させる。  In S8, if it is determined that the measurement result is not within the tolerance even after one correction, the correction work needs to be performed again.In S71, the correction device 70Y is moved from the standby position to the operation position. Let it. Then, in S72, it is determined whether the correction is the first time. In this case, since the correction is the second time, the process proceeds to S76, and the difference (ΔΧ) between the second measurement result and the first measurement result is in the target range (for example, —10 to 149 m). Determine whether The value of 49 m is determined as described above. If the difference ΔΧ is within the target range, the process proceeds to S77, where the second correction operation amount is set to the same correction operation amount (−150 wm) as the first correction operation amount. After that, in S74, the correction device 70Z is operated to perform the correction work, and then in S75, the correction device 70Y is moved to the standby position.
S 7 6で、 差 ΔΧが目標量内でなければ、 S 7 8に進んで、 差 ΔΧが目標 範囲未満かどうかを判定する。 差 ΔΧが目標範囲未満であれば S 7 9に進ん で、 矯正操作量を、 1回目の矯正操作量 (一 1 5 0 111) に所定量 (一例で - 3 0 τη) を加えた量 (一 1 8 0 nm) をとする。 一方、 S 7 8で、 差 Δ Xが目標範囲未満でなければ、 S 8 0に進んで、 矯正操作量を、 1回目の矯 正操作量 (― 1 5 0 m) に所定量 (― 3 0 m) を引いた量 (― 1 2 0 m) とする。  If the difference ΔΧ is not within the target amount in S76, the process proceeds to S78 and determines whether the difference Δ ど う か is less than the target range. If the difference ΔΧ is less than the target range, the process proceeds to S79, and the correction operation amount is calculated by adding a predetermined amount (in one example, −30 τη) to the first correction operation amount (1-1550111) ( (180 nm). On the other hand, if the difference ΔX is not less than the target range in S78, the process proceeds to S80, and the correction operation amount is set to the first correction operation amount (−150 m) by a predetermined amount (−3 0 m) is subtracted (-120 m).
その後、 S 7 4に進んで矯正作業を行い、 S 7 5で矯正装置を待機位置に 移動する。 After that, proceed to S74 to perform the straightening work, and in S75, move the straightening device to the standby position. Moving.
これらの作業を S 8において、 長軸 A 4及び短軸 A 3の X位置が公差内に 収まるまで繰り返し、 S 9において、 長軸 A 4及び短軸 A 3を所定の X位置 に設定する。  These operations are repeated in S8 until the X positions of the long axis A4 and the short axis A3 fall within the tolerance, and in S9, the long axis A4 and the short axis A3 are set to predetermined X positions.
そして、 S 1 0に進んで、 縦クランパー 1 5を解除し、 S 1 1に進んで横 クランパー 1 3を解除する。 これにより、 一つの部品の検査、 矯正が終了す る。  Then, proceeding to S10, the vertical clamper 15 is released, and proceeding to S11, the horizontal clamper 13 is released. This completes inspection and straightening of one part.
次に、 ここまで説明してきた部品検査矯正装置 1の基準位置測定手段の変 形例を説明する。 この例では、 部品内で基準部の位置を測定し、 その位置か らの被検査部位の相対的な位置関係を管理する。  Next, a modified example of the reference position measuring means of the component inspection and correction apparatus 1 described above will be described. In this example, the position of the reference part in the component is measured, and the relative positional relationship of the inspected part from that position is managed.
図 1 4は、 部品検査矯正装置の主な構造を示す図であり、 図 1 4 (A) は 正面図、 図 1 4 ( B ) は平面図である。  FIG. 14 is a diagram showing a main structure of the component inspection and correction device, where FIG. 14 (A) is a front view and FIG. 14 (B) is a plan view.
図 1 5は、 部品の基準部の位置を求める方法を説明するための図である。 この例においても、 図 1 0に示す部品 Mを検査及び矯正する。 ただし、 上 述の説明では、 実質的には部品 Mの固定面 (実際には、 ベース M lと上面 M 2、 図 1 0参照) を基準として、 長軸 A 4と短軸 A 3の位置を検査する方法 について述べたが、 この例においては、 同装置 1で、 部品 Mのべ一ス M lに 形成された円形の孔 Bの Z方向中心位置(図 1 5の H C )を基準位置として、 同基準位置と長軸 A 4との位置関係を計測する。 ここで、 孔 Bの形状は真円 とする。  FIG. 15 is a diagram for explaining a method of obtaining the position of the reference part of the component. Also in this example, the part M shown in FIG. 10 is inspected and corrected. However, in the above description, the positions of the major axis A4 and the minor axis A3 are substantially based on the fixing surface of the part M (actually, the base Ml and the upper surface M2, see FIG. 10). In this example, the center position of the circular hole B formed in the base Ml of the part M in the Z direction (HC in Fig. 15) was used as the reference position. Then, the positional relationship between the reference position and the major axis A4 is measured. Here, the shape of the hole B is a perfect circle.
部品 Mの長軸 A 4と短軸 A 3との位置及び寸法を検査する場合は、 ベース M lの図 4 (A) で見た裏面を第 1基準面とし、 上面 M 2の図 4 (A) で見 た下面を第 2基準面として、 部品 Mを固定手段 1 0に固定しているが、 この 変形例においては、 ベース M 1の穴 Bの Z方向中心位置を計測するために、 ベース M lの表裏面に、 計測用センサ (詳細後述) を通過させるための空間 を設ける必要がある。 このため、 固定手段 1 0にこの空間を設けるように適 宜加工を施すか、 また、 別途に専用の固定手段を設ける。 ここでは、 固定手 段についての説明及び図示を省略する。 ベース M lの穴 Bの Z方向中心位置を計測する手段 (基準位置測定手段) 3 0 0は、 図 1 4 ( B ) に分かりやすく示すように、 発光素子と受光素子か らなる計測用センサ 3 0 1と、 同センサを Z方向に移動させる移動機構 3 0 3を有する。 センサ 3 0 1としては発光素子 3 0 5と受光素子 3 0 7と を有する光電スィッチを使用できる。 発光素子 3 0 5と受光素子 3 0 7は、 図 1 4 ( B ) に示すように、 X Y面断面がコの字状の保持部材 3 0 9の先端 に対向して取り付けられている。 センサ 3 0 1の作動は制御部で制御され、 出力は制御部に入力される。保持部材 3 0 9は、図 1 4 ( B ) に示すように、 部品 Mのベース M 1を挟むように配置され、 ベース M lの一面 (外側の面) に発光素子 3 0 5、 反対側の面 (内側の面) に受光素子 3 0 7が位置する。 なお、 発光素子 3 0 5と受光素子 3 0 7の配置は逆でもよい。 When inspecting the position and dimension of the long axis A4 and the short axis A3 of the part M, the back surface of the base Ml seen in FIG. The part M is fixed to the fixing means 10 with the lower surface seen in A) as the second reference plane.In this modification, however, in order to measure the center position of the hole B of the base M1 in the Z direction, It is necessary to provide a space on the front and back sides of the base Ml to allow the measurement sensor (described later in detail) to pass. For this reason, appropriate processing is performed so as to provide this space in the fixing means 10, or a dedicated fixing means is separately provided. Here, description and illustration of the fixing means are omitted. The means for measuring the center position of the hole B in the base M in the Z direction (reference position measuring means) is a measuring sensor composed of a light emitting element and a light receiving element, as shown in Fig. 14 (B). And a moving mechanism 303 for moving the sensor in the Z direction. As the sensor 301, a photoelectric switch having a light-emitting element 305 and a light-receiving element 307 can be used. As shown in FIG. 14 (B), the light emitting element 305 and the light receiving element 307 are attached to the tip of a holding member 309 having a U-shaped cross section in the XY plane. The operation of the sensor 301 is controlled by the control unit, and the output is input to the control unit. The holding member 309 is disposed so as to sandwich the base M1 of the component M, as shown in FIG. 14B, and the light emitting element 305 is provided on one surface (outer surface) of the base M1 and on the opposite side. The light receiving element 307 is located on the surface (inner surface). Note that the arrangement of the light emitting element 305 and the light receiving element 307 may be reversed.
移動機構 3 0 3は、.図 1 4 (A) に分かりやすく示すように、 Z方向に延 びるポ一ルネジ 3 1 1と、 このポールネジ 3 1 1に嚙み合って同ネジに沿つ て上下方向に駆動されるポールべァリング 3 1 3を有する。 ポ一ルネジ 3 1 1の下端はステッピングモ一夕 3 1 5に接続している。 ステッピング モ一夕 3 1 5が駆動してポ一ルネジ 3 1 1が回転すると、 ポールベアリング 3 1 3はポールネジ 3 1 1に沿って上下方向 (Z方向) に移動する。 センサ 3 0 1の保持部材 3 0 9はポールベアリング 3 1 3に固定されて、 ポールべ ァリング 3 1 3とともにポールネジ 3 1 1に沿って上下方向 (土 Z方向) に 移動する。 移動機構 3 0 1は制御部で制御される。  As shown in FIG. 14 (A), the moving mechanism 303 is provided with a pole screw 311 extending in the Z direction and a pole screw 311. It has a pole bearing 3 13 driven vertically. The lower end of the poll screw 311 is connected to the stepping motor 315. When the stepping motor 3 15 drives and the poll screw 3 11 rotates, the pole bearing 3 13 moves up and down (Z direction) along the pole screw 3 11. The holding member 309 of the sensor 301 is fixed to the pole bearing 313, and moves in the vertical direction (Z direction in the soil) along with the pole bearing 313 along with the pole bearing 313. The moving mechanism 301 is controlled by the control unit.
次に、 図 1 5を参照して、 基準位置である孔 Bの Z方向中心を求める方法 について説明する。  Next, a method of obtaining the center of the hole B as the reference position in the Z direction will be described with reference to FIG.
まず、 移動機構 3 0 3を作動して、 センサ 3 0 1を、 発光素子 3 0 5と受 光素子 3 0 7間を延びる光軸が、 Z方向において孔 Bより下方のス夕一卜位 置 H 0に位置させる。 このスタート位置 H 0では、 発光素子 3 0 5から出力 される光線はベース M 1で遮られて受光素子 3 0 7には達しない。 そして、 ステッピングモータ 3 1 5を駆動してポールネジ 3 1 1を回転させ、 センサ 3 0 1を Z軸方向に上昇させる。 TJP03/05929 センサ 30 1の光軸がベース M 1の孔 Bの下縁を通過すると、 光線は受光 素子 307に達して、 孔 Bの下縁の位置 (Z方向高さ) H Iが検出される。 センサ 30 1が孔 B内を上昇中は、 常に発光素子 305からの光線は受光素 子 307で受光され続けている。 そして、 センサ 30 1が孔 Bの上縁を通過 すると、 光線はべ一ス Mlで遮られて受光素子 307に達しなくなり、 孔 B の上縁の位置 (Z方向の高さ) H2が検出される。 First, the moving mechanism 303 is actuated, and the sensor 301 is moved so that the optical axis extending between the light emitting element 305 and the light receiving element 307 is positioned below the hole B in the Z direction. Position H 0. At the start position H0, the light beam output from the light emitting element 305 is blocked by the base M1 and does not reach the light receiving element 307. Then, the stepping motor 315 is driven to rotate the pole screw 311 to raise the sensor 301 in the Z-axis direction. TJP03 / 05929 When the optical axis of the sensor 30 1 passes through the lower edge of the hole B of the base M1, the light beam reaches the light receiving element 307, and the position (the height in the Z direction) HI of the lower edge of the hole B is detected. . While the sensor 301 is moving up in the hole B, the light beam from the light emitting element 305 is continuously received by the light receiving element 307. Then, when the sensor 301 passes through the upper edge of the hole B, the light beam is blocked by the base Ml and does not reach the light receiving element 307, and the position (height in the Z direction) H2 of the upper edge of the hole B is detected. You.
孔 Bの形状は真円と考えてよいため、 孔 Bの Z方向中心位置は、 孔 Bの Z 方向の長さを 2で割ることによって求められる。 ここで、 孔 Bの Z方向長さ は、孔 Bの上縁の位置 H 2から孔 Bの下縁の位置 H 1を引いた値で示される。 したがって、孔 Bの Z方向中心位置 HCは、 (H2—H1) Z2で求めること ができる。 このとき、 センサ 301の光軸が、 X方向において孔 Bの径内の どの位置にあっても、 上述の求め方によって Z方向中心 HCを求めることが できる。 なお、 計測精度の点から測定は、 孔 Bの中心近く (中心から半径土 20%程度の部分) で行うことが好ましい。  Since the shape of the hole B may be considered as a perfect circle, the center position of the hole B in the Z direction can be obtained by dividing the length of the hole B in the Z direction by two. Here, the length of the hole B in the Z direction is represented by a value obtained by subtracting the position H1 of the lower edge of the hole B from the position H2 of the upper edge of the hole B. Therefore, the center position HC of the hole B in the Z direction can be obtained by (H2-H1) Z2. At this time, the center HC in the Z direction can be obtained by the above-described method regardless of the position of the optical axis of the sensor 301 within the diameter of the hole B in the X direction. From the point of measurement accuracy, it is preferable to perform the measurement near the center of the hole B (a part with a radius of about 20% from the center).
一方、 長軸 A 4の Z方向位置は、 計測手段 50の Zゲージ 55で計測され る (図 4参照)。 これらの結果から、基準位置である孔 Bの Z方向中心位置 H Cと長軸 A4の Z方向位置との関係が示される。 この位置関係を判定して、 両者の位置関係が所望の位置関係でなければ、 長軸 A 4が植設されている L 片 M4を矯正手段 70で矯正して、 長軸 A4の Z方向位置を矯正する。 そし て、 矯正後の長軸 A4の Z方向位置を計測し、 その Z方向位置と孔 Bの Z方 向中心位置との関係が所望の位置関係かどうかを判定する。 この際、 上述し たように、 位置関係が所定の公差内に収まるまで矯正、 計測、 判定を繰り返 す。  On the other hand, the position of the major axis A4 in the Z direction is measured by the Z gauge 55 of the measuring means 50 (see FIG. 4). These results show the relationship between the center position H C of the hole B, which is the reference position, in the Z direction and the position of the long axis A4 in the Z direction. This positional relationship is determined, and if the positional relationship between the two is not the desired positional relationship, the L piece M4 on which the long axis A4 is planted is corrected by the correcting means 70, and the position of the long axis A4 in the Z direction is corrected. To correct. Then, the position of the long axis A4 in the Z direction after the correction is measured, and it is determined whether or not the relation between the Z direction position and the center position of the hole B in the Z direction is a desired positional relation. At this time, as described above, correction, measurement, and determination are repeated until the positional relationship falls within a predetermined tolerance.
次に、 本発明の他の実施の形態に係る部品検査矯正装置を説明する。  Next, a component inspection and correction device according to another embodiment of the present invention will be described.
まず、 この例の装置で検査 ·矯正される部品の形状を説明する。  First, the shape of the part inspected and corrected by the apparatus of this example will be described.
図 16は、 被検査部品の形状を示す図であり、 図 1 6 (A) は全体の斜視 図、 図 16 (B) は一部側面断面図である。  FIG. 16 is a diagram showing the shape of the part to be inspected. FIG. 16 (A) is an overall perspective view, and FIG. 16 (B) is a partial side sectional view.
部品 Wは、 プレス用鋼板で作製され、 XY方向に拡がる面板と、 同面板の P 漏菌 29 The part W is made of a steel plate for pressing, and a face plate that spreads in the X and Y directions. P Bacterial 29
X方向に対向する 2つの辺から + Z方向に立設された 2つの側片 W2、W3、 及び、 同面板の Y方向に対向する 2つの辺から一 Z方向に立設された 2組の ョ一ク対片 Y l、 Υ 2を有する。 図の ΧΥ面上の面板をべ一ス W1という。 ベ一ス W1の中央には、 ほぼ円形の孔 Βが開いている。 また、 ベ一ス W1に は、 X方向に並んだ 2つの位置決め孔 Ρ 1、 Ρ 2が開けられている (この孔 の作用については後述する)。 Two side pieces W2 and W3 erected in the + Z direction from two sides opposing in the X direction and two sets erected in one Z direction from two opposing sides in the Y direction of the same plate It has a work-to-piece Yl, Υ2. The face plate on the top of the figure is called base W1. At the center of the base W1, there is an almost circular hole 開 い. The base W1 has two positioning holes Ρ1 and Ρ2 arranged in the X direction (the function of these holes will be described later).
各ヨーク対片 Y l、 Υ 2は、 外側のヨーク片 Υ 1 1、 Y2 1と、 このョー ク片の内方に対向する対向ヨーク片 Υ 12、 Υ22とを有する。 各ヨーク片 は、 図 16 (Β) に分かりやすく示すように、 内側に開いた凹部を有し、 こ の凹部に磁石 Ml (M2) がはめ込まれて固定されている。 磁石 Ml (M2) の内側の面は、 幅 CLの空間 Sを隔てて対向ヨーク片 Y 12、 Y22の内側 の面に対向している (図 16 (B) 参照)。  Each yoke pair piece Yl, Υ2 has an outer yoke piece 111, Y21, and opposing yoke pieces Υ12, 対 向 22 facing the inside of the yoke piece. Each yoke piece has a concave portion opened inside, as shown in FIG. 16 (I), and a magnet Ml (M2) is fitted into the concave portion and fixed. The inner surface of the magnet Ml (M2) faces the inner surface of the opposing yoke pieces Y12 and Y22 with a space S having a width CL therebetween (see Fig. 16 (B)).
このような構成により、磁石 M 1、M 2の内側の面と対向ヨーク片 Y 12、 Y22の内側の面との間の空間 Sには磁場が発生する。 そして、 この磁場の 磁束密度は空間 Sの幅 CLによって変動する。  With such a configuration, a magnetic field is generated in the space S between the inner surfaces of the magnets M1 and M2 and the inner surfaces of the opposed yoke pieces Y12 and Y22. And the magnetic flux density of this magnetic field fluctuates according to the width CL of the space S.
.図 17は、 本発明の他の実施の形態に係る部品検査矯正装置の主要部の構 造を示す斜視図である。  FIG. 17 is a perspective view showing a structure of a main part of a component inspection and correction device according to another embodiment of the present invention.
図 18は、 図 1 7の装置主要部の計測時の状態を示す斜視図である。  FIG. 18 is a perspective view showing a state of the main part of the apparatus shown in FIG. 17 at the time of measurement.
図 19は、図 17の装置主要部の矯正時の状態を示す図であり、図 1 9 (A) は主要部の斜視図、 図 19 (B) は主要部の一部側面断面図である。  FIG. 19 is a view showing the state of the main part of the device in FIG. 17 at the time of correction, and FIG. 19 (A) is a perspective view of the main part, and FIG. 19 (B) is a partial side sectional view of the main part. .
なお、 この例の部品検査矯正装置 400においては、 2つのョ一ク対片 Y 1、 Y 2の空間 Sの磁束密度を検査し、 必要であれば磁束密度が適宜な範囲 に収まるように各対向ヨーク片 Y 12、Y22を曲げ矯正するものであるが、 同装置の基本的な作用を説明するために、 一方のヨーク対片 Υ 1の検査及び 矯正作業を行う場合を示している。 また、 各図は、 簡略化のために主要な部 品のみを描いている。  In the component inspection and correction device 400 of this example, the magnetic flux density in the space S between the two pieces Y1 and Y2 is inspected, and if necessary, the magnetic flux density is adjusted to fall within an appropriate range. The bending and straightening of the opposed yoke pieces Y12 and Y22 are performed. In order to explain the basic operation of the apparatus, a case is shown in which one of the yokes and the piece # 1 is inspected and straightened. Each figure shows only the main components for simplicity.
部品検査矯正装置 400は、 被検査部品 Wを固定する固定手段 410と、 ヨーク対片 Υ 1の空間 Sの磁束密度を計測する計測手段 420と、 計測手段 4 2 0で計測された結果が許容範囲内か否かを判定する判定手段と、 同部品 Wの対向ヨーク片 Y 1 2に定量的にコントロールされた塑性加工を加えて同 部品 Wの形状を矯正する矯正手段 4 3 0とから構成される。 判定手段につい ては、 上述の部品検査矯正装置 1と同様の判定手段 2 1 0 (図 1参照) を使 用できる。 The component inspection and correction device 400 includes fixing means 410 for fixing the component W to be inspected, measuring means 420 for measuring the magnetic flux density in the space S of the yoke pair 1, and measuring means A means for determining whether the result measured in 420 is within the allowable range, and a quantitatively controlled plastic working on the opposing yoke piece Y12 of the part W to shape the shape of the part W Correction means 430 for correction. As the determination means, the same determination means 210 (see FIG. 1) as in the above-described component inspection and correction apparatus 1 can be used.
固定手段 4 1 0は、 部品 Wを固定して、 計測位置と矯正位置との間を ± X 方向に駆動される (駆動機構は図示省略)。 計測位置においては、 計測手段 4 2 0によってヨーク対片 Y 1の空間 Sの磁束密度が計測される。 そして、 矯正位置においては、 矯正手段 4 3 0によって対向ヨーク片 Y 1 2を土 Y方 向に曲げ矯正する。  The fixing means 410 fixes the component W, and is driven in the ± X direction between the measurement position and the correction position (the driving mechanism is not shown). At the measurement position, the magnetic flux density in the space S between the yoke and the piece Y1 is measured by the measuring means 420. Then, at the correction position, the opposed yoke piece Y12 is bent and corrected in the soil Y direction by the correction means 4330.
固定手段 4 1 0は、 部品 Wのベース W 1を載置する台座 4 1 1と、 ベース W 1をクランプするクランパー 4 1 3とを有する。 台座 4 1 1は、 X Y面に 拡がり、 X方向に縦長の上基準面 4 1 1 aと、 上基準面 4 1 1 aの外側 (一 Y方向側) の辺から—Z方向に延びる側面基準面 4 1 1 bを有する。 ベース W 1を上基準面 4 1 1 a上に載置し、 同時に、 ヨーク対片 Y 2の内側面を側 面基準面 4 1 1 bに当てて部品 Wを Y方向に対して位置決めする。このとき、 ヨーク対片 Y 1の内側の面と上基準面 4 1 1 aの内側 (+ Y方向側) の側面 との間にはスキマが開いている。 このスキマには、 矯正位置において、 後述 する矯正手段 4 3 0の矯正爪が入り込む。  The fixing means 4 10 has a pedestal 4 11 on which the base W 1 of the component W is mounted, and a clamper 4 13 for clamping the base W 1. The pedestal 4 1 1 extends in the XY plane, and is vertically elongated in the X direction. The upper reference surface 4 1 a and the side reference extending in the -Z direction from the outer side (one Y direction side) of the upper reference surface 4 1 1 a. It has a face 4 11 b. The base W1 is placed on the upper reference surface 411a, and at the same time, the inner surface of the yoke pair Y2 is brought into contact with the side reference surface 411b to position the component W in the Y direction. At this time, there is a gap between the inner surface of the yoke pair piece Y1 and the inner surface (+ Y direction side) of the upper reference surface 411a. In the gap, the correction nail of the correction means 430 described below enters the correction position.
クランパ一 4 1 3も、 X Y面に拡がり、 X方向に縦長の下面を有し、 同下 面が台座 4 1 1の上基準面 4 1 1 aに対向するように位置する。 クランパー 4 1 3は土 Z方向に駆動される(駆動機構は図示省略)。クランパ一4 1 3が 一 Z方向 (図の矢印で示す方向) に最も下まで下降すると、 下面が台座 4 1 1の上基準面 4 1 1 aに当接する。 クランパー 4 1 3の下面には、 部品 Wの 2つの側片 W 2、 W 3が入り込む溝 4 1 5が形成されている。 これによ り、 クランパー 4 1 3が下降したときに、 ベース W 1が台座 4 1 1とクラン パー 4 1 3に挟まれて、 部品 Wが固定手段 4 1 0に固定される。 上述のよう に、 これらの固定手段 4 1 0は、 図の + X— X方向に移動可能であり、 図 1 8の計測状態と図 1 9の矯正状態を選択できる。 The clamper 4 13 also extends in the XY plane, has a vertically long lower surface in the X direction, and is located such that the lower surface faces the upper reference surface 4 11 a of the pedestal 4 11. The clamper 4 13 is driven in the soil Z direction (the drive mechanism is not shown). When the clamper 4 13 descends to the lowest position in the 1 Z direction (the direction indicated by the arrow in the figure), the lower surface contacts the upper reference surface 4 1 1 a of the pedestal 4 1 1. On the lower surface of the clamper 4 13, a groove 4 15 into which the two side pieces W 2 and W 3 of the component W enter is formed. Thus, when the clamper 4 13 descends, the base W 1 is sandwiched between the pedestal 4 11 and the clamper 4 13, and the component W is fixed to the fixing means 4 10. As described above, these fixing means 4 10 are movable in the + X—X directions in the figure, and You can select the measurement state of 18 and the correction state of Fig. 19.
計測手段 4 2 0は、 装置 4 0 0に対して固定されたガウスメータ 4 2 1を 備える。 ガウスメータ 4 2 1は、 X Z面内に拡がり、 X方向に縦長のプロ一 ブ 4 2 l aを有する。 図 1 8に示すように、 固定手段 (図示されず) に部品 Wが固定されて計測位置まで + X方向に駆動されると、 ヨーク対片 Y 1の空 間 Sにガウスメータ 4 2 1のプローブ 4 2 1 aがはまり込み、 空間 Sにおけ る磁束密度が計測される。  The measuring means 420 includes a Gauss meter 421 fixed to the device 400. The Gauss meter 421 has a probe 42 a that extends in the XZ plane and is elongated in the X direction. As shown in Fig. 18, when the part W is fixed to the fixing means (not shown) and driven in the + X direction to the measurement position, the probe of the Gauss meter 4 21 in the space S between the yoke and the piece Y 1 4 2 1a is fitted, and the magnetic flux density in the space S is measured.
図 1 7、 図 1 9に示すように、 矯正手段 4 3 0は、 ほぼ直方体状の形状の 台座 4 3 1と、 台座 4 3 1上に配置されている矯正爪 4 3 3を有する。 矯正 手段 4 3 0は ±Y方向に移動可能である (移動機構は図示省略)。 矯正爪 4 3 3の上面には、 X方向に延びる溝 4 3 5が形成されている。 溝 4 3 5の 幅は、部品 Wのヨーク対片 Υ 1の対向ヨーク片 Υ 1 2の厚さより広い。また、 溝 4 3 5の両側の側壁 4 3 3 a、 4 3 3 bの厚さは等しく、 空間 Sの幅 C L より狭い。 溝 4 3 5の両側壁 4 3 3 a、 4 3 3 bは、 矯正位置において、 対 向ヨーク片 Y 1 2を両側から挟んでいる。  As shown in FIGS. 17 and 19, the correcting means 430 has a pedestal 431 having a substantially rectangular parallelepiped shape, and a correcting claw 433 arranged on the pedestal 431. The correcting means 430 can move in the ± Y direction (the moving mechanism is not shown). On the upper surface of the correction nail 433, a groove 435 extending in the X direction is formed. The width of the groove 435 is wider than the thickness of the opposing yoke piece Υ1 2 of the part W of the part W. The thickness of the side walls 433a and 433b on both sides of the groove 435 is equal and smaller than the width CL of the space S. The side walls 433a and 433b of the groove 435 sandwich the opposite yoke piece Y12 from both sides at the correction position.
図 1 9に示すように、 固定手段 4 1 0が矯正位置に移動すると、 部品 Wの ヨーク対片 Y 1の対向ヨーク片 Y 1 2が、 矯正爪 4 3 3の溝 4 3 5に入り込 む。 この状態で、 矯正爪 4 3 3を土 Y方向に駆動させると、 対向ヨーク片 Y 1 2は溝 4 3 5に引っ掛けられて土 Y方向に曲げ矯正される。 すなわち、 矯 正爪 4 3 3が + Y方向に駆動されると、 対向ヨーク片 Y 1 2は矯正爪 4 3 3の側壁 4 3 3 aで + Y方向に押されて同方向に曲げられる。 これに よって空間 Sの幅 C Lは狭くなる。 また、 矯正爪 4 3 3がー Y方向に駆動さ れると、 対向ヨーク片 Y 1 2は矯正爪 4 3 3の側壁 4 3 3 Bで—Y方向に押 されて同方向に曲げられる。これによつて空間 Sの幅 C Lは広くなる。なお、 この矯正爪 4 3 3の駆動機構は、 前述の第 1の実施の形態のものと同様のも のを用いることができる。  As shown in Fig. 19, when the fixing means 4 10 moves to the correction position, the yoke pair Y 1 of the part W enters the groove 4 3 5 of the correction claw 4 3 3. No. In this state, when the correction claw 4 33 is driven in the soil Y direction, the opposing yoke piece Y 12 is hooked in the groove 4 35 and bent in the soil Y direction. That is, when the correction claw 433 is driven in the + Y direction, the opposing yoke piece Y12 is pushed in the + Y direction by the side wall 433a of the correction claw 433 and is bent in the same direction. As a result, the width CL of the space S is reduced. When the correction nail 4 33 is driven in the −Y direction, the opposing yoke piece Y 12 is pushed in the −Y direction by the side wall 4 33 B of the correction nail 4 33 and bent in the same direction. As a result, the width CL of the space S increases. Note that the same drive mechanism as that of the first embodiment described above can be used for the drive mechanism of the correction nail 4 33.
次に、 部品 Wを固定したままで、 2つのョ一ク対片 Y l、 Υ 2の検査と、 各対向ヨーク片 Υ 1 2、 Υ 2 2の曲げ矯正を、 1クランプで同時に行うこと 03 05929 のできる装置の構造の一例を説明する。 Next, while the part W is fixed, the inspection of the two yoke pairs Yl and Υ2 and the bending correction of the opposing yoke pieces 片 1 2 and Υ22 are simultaneously performed with one clamp. An example of the structure of a device capable of performing 03 05929 will be described.
図 2 0は、 本発明の他の実施の形態に係る部品検査矯正装置の主要部の構 造を示す斜視図である。  FIG. 20 is a perspective view showing a structure of a main part of a component inspection and correction device according to another embodiment of the present invention.
図 2 1は、 矯正時の図 2 0の装置主要部の一部側面断面図である。  FIG. 21 is a partial side cross-sectional view of a main part of the device of FIG. 20 at the time of correction.
部品検査矯正装置 4 0 0は、 一方のヨーク対片 Y 1の空間 Sの磁束密度の 検査と、 同片 Y 1の対向ヨーク片 Y 1 2の曲げ矯正を行ったが、 この例の部 品検査矯正装置 5 0 0は、 両方のョ一ク対片 Y 1、 Y 2の空間の磁束密度の 検査と、 これらの片 Y 1、 Y 2の対向ヨーク変 Y 1 2、 Y 2 2の曲げ矯正を、 部品 Wを固定したまま行うことができる。  The component inspection and correction device 400 inspects the magnetic flux density in the space S between the one yoke and the piece Y 1 and corrects the bending of the opposing yoke piece Y 12 of the same piece Y 1. The inspection and correction device 500 inspects the magnetic flux density in the space of both the pair Y1 and Y2 and the bending of the opposing yoke Y1 2 and Y2 2 of these pieces Y1 and Y2. Straightening can be performed with the part W fixed.
この部品検査矯正装置 5 0 0は、 基本的には部品検査矯正装置 4 0 0と同 じ構造を有し、 被検査部品 Wを固定する固定手段 5 1 0と、 各ヨーク対片 Y 1、Y 2の空間 Sの磁束密度を計測する計測手段 5 2 0と、計測手段 5 2 0で 計測された結果が許容範囲内か否かを判定する判定手段 2 1 0 (図 1参照) と、 同部品 Wの対向ヨーク片 Υ 1 2、 Υ 2 2に定量的にコントロールされた 塑性加工を加えて同部品 Wの形状を矯正する矯正手段 5 3 0とから構成され る。  This component inspection and correction device 500 basically has the same structure as the component inspection and correction device 400, and includes fixing means 5100 for fixing the component W to be inspected, and each yoke pair piece Y1, Measuring means 520 for measuring the magnetic flux density in the space S of Y2; determining means 210 for determining whether or not the result measured by the measuring means 520 is within an allowable range (see FIG. 1); It comprises correction means 5330 for correcting the shape of the part W by subjecting the opposed yoke pieces # 12 and # 22 of the part W to quantitatively controlled plastic working.
固定手段 5 1 0は、 固定手段 4 2 0と同じく、 台座 5 1 1とクランパー 5 1 3を備える。 台座 5 1 1とクランパー 5 1 3は、 図示せぬ構造体から張 り出している。 台座 5 1 1の上基準面 5 1 1 aには X方向に並んだ 2本の位 置決めピン 5 1 7が立設している。 位置決めピン 5 1 7を部品 Wのベース W 1の位置決め孔 P 1に通してベース W 1を上基準面 5 1 1 a上に載置する。 クランパー 5 1 3の下面には、 部品 Wの 2つの側片 W 2、 W 3及び 2本の位 置決めピン 5 1 7が入り込む溝 5 1 5が形成されている。 クランパ一 5 1 3を一 Z方向 (図の矢印で示す方向) に最も下まで下降させると、 部品 Wが固定手段 5 1 0に固定される。  The fixing means 5 10, like the fixing means 4 20, includes a pedestal 5 11 and a clamper 5 13. The pedestal 5 11 and the clamper 5 13 project from a structure (not shown). On the upper reference surface 511a of the pedestal 5111, two positioning pins 517 arranged in the X direction are erected. The positioning pin 5 17 is passed through the positioning hole P 1 of the base W 1 of the component W, and the base W 1 is placed on the upper reference surface 5 11 a. On the lower surface of the clamper 5 13, a groove 5 15 into which two side pieces W 2, W 3 of the component W and two positioning pins 5 17 are inserted is formed. When the clamper 5 13 is lowered to the lowest position in the 1 Z direction (the direction indicated by the arrow in the figure), the component W is fixed to the fixing means 5 10.
固定手段 5 1 0は、 部品 Wを固定して、 計測位置と矯正位置との間を ± X 方向に駆動される (駆動機構は図示省略)。 計測位置においては、 計測手段 5 2 0によってヨーク対片 Y 1、 Y 2の空間 Sの磁束密度が計測される。 そ して、 矯正位置においては、 矯正手段 5 3 0によって対向ヨーク片 Y 1 2、 Y 2 2を土 Y方向に曲げ矯正する。 なお、 矯正位置においては、 図 2 1に示 すように、 各対向ヨーク片 Y 1 2、 Y 2 2の内側の面と、 固定手段 5 1 0の 台座 5 1 1の両側面との間にスキマが形成されるように、 固定手段 5 1 0と 矯正手段 5 3 0が位置する。 The fixing means 5100 fixes the component W and is driven in the ± X direction between the measurement position and the correction position (the drive mechanism is not shown). At the measurement position, the magnetic flux density in the space S between the yoke pair pieces Y1 and Y2 is measured by the measurement means 520. So Then, at the straightening position, the opposing yoke pieces Y12, Y22 are bent in the soil Y direction by the straightening means 5330. At the correction position, as shown in FIG. 21, between the inner surfaces of the opposed yoke pieces Y 12 and Y 22 and both side surfaces of the pedestal 5 11 1 of the fixing means 5 10. The fixing means 510 and the correcting means 5330 are positioned so that a gap is formed.
計測手段 5 2 0は、 2つのガウスメ一夕 5 2 1、 5 2 2を備える。 各ガウ スメ一夕は X軸に対して対称に配置されている。 各ガウスメ一夕のプローブ 5 2 1 aと 5 2 2 a間の Y方向距離は、 部品 Wの両ヨーク対片 Y 1、 Y 2の 空間 S間の距離と等しい。 固定手段 5 1 0に部品 Wが固定されて計測位置ま で + X方向に駆動されると、 部品 Wのヨーク対片 Y l、 Υ 2の空間 Sにガウ スメ一夕 5 2 1 , 5 2 2のプローブ 5 2 1 a、 5 2 2 aがはまり込み、両ョー ク対片 Y 1、 Y 2の空間 Sにおける磁束密度が計測される。  The measuring means 5 220 includes two Gaussian lights 5 2 1 and 5 2 2. Each of the houses is arranged symmetrically with respect to the X axis. The distance in the Y direction between the probes 52 1 a and 52 2 a for each Gaussian is equal to the distance between the spaces S between the two yokes of the part W and the pieces Y 1 and Y 2. When the part W is fixed to the fixing means 5110 and driven in the + X direction up to the measurement position, the yoke-to-piece Yl of the part W, the space S of the Υ2, and the gap S in the space S 5 2 1, 5 2 The two probes 5 2 1 a and 5 2 2 a are fitted, and the magnetic flux density in the space S between the two yoke pairs Y 1 and Y 2 is measured.
図 2 1に示すように、 矯正手段 5 3 0は、 2つの矯正爪 5 3 3、 5 3 4を 有する。 各矯正爪 5 3 3 , 5 3 4の構造は、 部品検査矯正装置 4 0 0の矯正 手段 4 3 0の矯正爪 4 3 3の構造と同じである。 すなわち、 矯正爪 5 3 3、 5 3 4の上面には、 X方向に延びる溝 5 3 5、 5 3 6が形成されている。 そ して、 溝 5 3 5、 5 3 6の両側の側壁は、 各対向ヨーク片 Y 1 2、 Y 2 2を 両側から挟んでいる。 各矯正爪は独立に駆動され、 各々土 Y方向に移動可能 である (移動機構は図示省略)。  As shown in FIG. 21, the correction means 5330 has two correction claws 533, 534. The structure of each of the correction nails 5 3 3 and 5 3 4 is the same as the structure of the correction nail 4 3 3 of the parts inspection and correction device 400. That is, grooves 535, 536 extending in the X direction are formed on the upper surfaces of the correction nails 533, 534. The side walls on both sides of the grooves 535, 536 sandwich the opposing yoke pieces Y12, Y22 from both sides. Each correction nail is independently driven and can move in the soil Y direction (the moving mechanism is not shown).
固定手段 5 1 0が矯正位置に移動すると、部品 Wのヨーク対片 Y 1、Y 2の 対向ヨーク片 Υ 1 2、 Υ 2 2が、 各々矯正爪 5 3 3、 5 3 4の溝 5 3 5、 5 3 6に入り込む。 この状態で、 各矯正爪 5 3 3、 5 3 4を土 Υ方向に駆動 させると、 対向ョ一ク片 Y 1 2、 2 2は溝に引っ掛けられて土 Υ方向に曲げ 矯正される。  When the fixing means 5 10 moves to the correction position, the yoke-to-piece Y 1, Y 2 of the part W and the opposing yoke pieces 部品 1, Υ 2 2 of the part W become grooves 5 3 of the correction nails 5 3 3, 5 3 4, respectively. 5, 5 3 6 In this state, when each of the correction claws 5 3 3 and 5 3 4 is driven in the soil direction, the opposing contact pieces Y 12 and 22 are hooked in the grooves and straightened in the soil direction.
すなわち、矯正爪 5 3 3が + Υ方向に駆動されると、対向ヨーク片 Υ 1 2は 同方向に曲げられる。 これによつて空間 Sの幅 C Lは狭くなる。 また、 矯正 爪 5 3 3がー Υ方向に駆動されると、 対向ヨーク片 Y 1 2は同方向に曲げら れる。 これによつて空間 Sの幅 C Lは広くなる。 また、 矯正爪 5 3 4が + Y方向に駆動されると、 対向ヨーク片 Υ 2 2は同 方向に曲げられる。 これによつて空間 Sの幅 C Lは広くなる。 また、 矯正爪 5 3 4がー Υ方向に駆動されると、 対向ヨーク片 Υ 1 2は同方向に曲げられ る。 これによつて空間 Sの幅 C Lは狭く。 That is, when the correcting claw 5333 is driven in the + Υ direction, the opposing yoke piece 12 is bent in the same direction. This narrows the width CL of the space S. When the correction claw 5 33 is driven in the vertical direction, the opposing yoke piece Y 12 is bent in the same direction. This increases the width CL of the space S. Also, when the correction claw 534 is driven in the + Y direction, the opposing yoke piece Υ22 is bent in the same direction. This increases the width CL of the space S. Also, when the correction claw 5 3 4 is driven in the vertical direction, the opposing yoke piece 12 is bent in the same direction. As a result, the width CL of the space S is narrow.
次に、 この部品検査矯正装置を用いた部品検査矯正方法を説明する。  Next, a component inspection and correction method using the component inspection and correction device will be described.
図 2 2は、 部品検査矯正装置の制御部のフローチャートである。  FIG. 22 is a flowchart of the control unit of the component inspection and correction device.
このフロ一チヤ一トでは、 部品 Wを固定したままで、 ヨーク対片 Υ 1、 Υ 2の各空間 Sの磁束密度を検査し、 計測された磁束密度が所定の範囲内にな ければ、空間 Sの磁束密度を所定の範囲内に収める矯正する方法を説明する。 この方法は、 図 2 0に示す部品検査矯正装置 5 0 0を使用することで実現さ れる。  In this flowchart, while the part W is fixed, the magnetic flux density in each space S of the yoke pair 片 1 and Υ2 is inspected, and if the measured magnetic flux density is not within a predetermined range, A method for correcting the magnetic flux density in the space S to fall within a predetermined range will be described. This method is realized by using a component inspection and correction apparatus 500 shown in FIG.
まず、 S 1 0 1で、部品 Wを固定手段 5 1 0に固定する。次に、 S 1 0 2に おいて、 固定手段 5 1 0を計測位置まで X方向に移動させた後、 S 1 0 3に おいて、 両ヨーク対片 Y l、 Υ 2の空間 Sの磁束密度を計測する。  First, in S101, the component W is fixed to the fixing means 5110. Next, after moving the fixing means 5 10 in the X direction to the measurement position in S 102, the magnetic flux in the space S of the two yoke pair pieces Y l and 対 2 in S 103 Measure the density.
ここで、 S 1 0 4において、 計測された各磁束密度が許容範囲内かどうか を判定し、 許容範囲内であれば、 矯正の必要はなく、 S 1 0 5で部品 Wの固 定を解除する。 しかし、 一方又は両方のヨーク対片の空間の磁束密度が許容 範囲内でなければ、 以下の矯正作業を行う。  Here, in S 104, it is determined whether or not each measured magnetic flux density is within the allowable range, and if it is within the allowable range, no correction is required, and the fixing of the component W is released in S 105. I do. However, if the magnetic flux density in one or both yoke pair pieces is not within the allowable range, the following correction work is performed.
まず、 S 1 0 6において、 固定手段を矯正位置に移動する。 そして、 S 1 0 7において、 計測結果によって以下の矯正作業を行う。  First, in S106, the fixing means is moved to the correction position. Then, in S107, the following correction work is performed according to the measurement result.
ョ一ク対片 Υ 1の空間 Sの磁束密度が所定の磁束密度よりも小さければ、 ヨーク対片 Υ 1の空間 Sの幅 C Lを狭くする必要がある。 そこで、 矯正手段 5 3 0の矯正爪 5 3 3を + Υ方向に規定量だけ移動させて、 対向ヨーク片 Υ 1 2を + Υ方向に曲げて幅 C Lを狭くする。  If the magnetic flux density of the space S of the yoke pair Υ1 is smaller than a predetermined magnetic flux density, it is necessary to reduce the width CL of the space S of the yoke pair 狭 1. Therefore, the correction claw 533 of the correction means 5330 is moved in the + Υ direction by a specified amount, and the opposing yoke piece Υ12 is bent in the + Υ direction to reduce the width CL.
一方、 矯正ョ一ク対片 Υ 1の空間 Sの磁束密度が所定の磁束密度よりも大 きければ、 ヨーク対片 Υ 1の空間の幅 C Lを広くする必要がある。 そこで、 矯正手段 5 3 0の矯正爪 5 3 3を一 Υ方向に規定量だけ移動させて、 対向 ヨーク片 Υ 1 2を— Υ方向に曲げて幅 C Lを広くする。 なお、 ヨーク対片 Y 2の空間 Sの磁束密度が所定範囲内でなければ同様の 矯正を行う。 また、 一方のヨーク対片のみを矯正する必要がある場合は、 他 方のヨーク対片は矯正位置に固定されたままとする。 On the other hand, if the magnetic flux density in the space S between the correction section and the piece Υ1 is larger than the predetermined magnetic flux density, the width CL of the space between the yoke and the piece Υ1 needs to be increased. Therefore, the correction claw 533 of the correction means 5330 is moved by a predetermined amount in one direction, and the opposing yoke piece 12 is bent in the negative direction to increase the width CL. If the magnetic flux density in the space S between the yoke pair piece Y2 is not within the predetermined range, the same correction is performed. If it is necessary to correct only one yoke pair, the other yoke pair remains fixed at the correction position.
矯正作業が終了後、 S 1 0 2に戻り、 固定手段 5 1 0を計測位置まで X方 向に移動し、 S 1 0 3において、 再度計測を行う。 計測結果を S 1 0 4で判 定し、 結果が許容範囲外であれば、 S 1 0 6、 S 1 0 7に進んで再度矯正作 業を行う。 この矯正、 計測、 判定の作業を、 計測結果が許容範囲内に収まる まで繰り返す。 そして、 S 1 0 4にて許容範囲内に収まると、 S 1 0 5にお いて、 固定手段 5 1 0を解除して、 一つの部品の検査 ·矯正を終了する。 なお、 2つのヨーク対片 Y l、 Υ 2の空間 Sの磁束密度のバランスをとる ように矯正作業を行ってもよい。  After the correction work is completed, the process returns to S102, moves the fixing means 510 in the X direction to the measurement position, and performs measurement again at S103. The measurement result is determined in S104, and if the result is out of the allowable range, the process proceeds to S106 and S107 to perform the correction work again. This operation of correction, measurement, and judgment is repeated until the measurement result falls within the allowable range. Then, when the value falls within the allowable range in S104, in S105, the fixing means 5110 is released, and the inspection and correction of one part is completed. The straightening work may be performed so as to balance the magnetic flux density in the space S of the two yoke pair pieces Yl and Υ2.
このように、 部品 Wが物理量 (この例では磁束密度) に関連する作用をす る場合、 その物理量を検査して、 物理量に関連する部品の一部 (この例では 対向ヨーク片) を修正して、 物理量を適正な値にする。 これにより、 部品の 性能や歩留まりの向上を期待できる。 発明の効果  In this way, when the component W acts on the physical quantity (in this example, the magnetic flux density), the physical quantity is inspected, and a part of the component related to the physical quantity (the opposing yoke piece in this example) is corrected. To make the physical quantity an appropriate value. This can be expected to improve the performance and yield of components. The invention's effect
以上の説明から明らかなように、 本発明によれば、 完成した部品を最初に 固定した状態で、 検査及び矯正を自動的に行うことができる部品検査矯正方 法及び装置を提供できる。  As is apparent from the above description, according to the present invention, it is possible to provide a component inspection and correction method and apparatus capable of automatically performing inspection and correction while a completed component is first fixed.

Claims

請 求 の 範 囲 l . ある形状 ·寸法に成形された部品の形状及び z又は寸法を計 測する工程と、 The scope of the request l. The step of measuring the shape and z or dimension of the part formed to a certain shape and dimension;
計測された値が許容範囲 (公差) 内か否かを判定する工程と、  Determining whether the measured value is within an acceptable range (tolerance);
公差外と判定された場合に、 前記部品の一部に定量的にコントロールされ た塑性加工を加えて該部品の形状及び Z寸法を矯正する工程と、  A step of correcting the shape and Z dimension of the part by applying quantitatively controlled plastic working to a part of the part when it is determined that the part is out of tolerance;
矯正後の該部品の形状及び Z又は寸法を再計測 ·再判定する工程と、 再判定の結果が再度公差外の場合に、 再度前記矯正工程及び前記再計測 · 再判定工程を繰り返す工程と、  Re-measurement and re-determination of the shape and Z or dimension of the part after correction;
を含む部品検査矯正方法であつて、 A part inspection and correction method including:
前記工程の全てを、 一台の装置上で前記部品を固定したまま自動的に行う ことを特徴とする部品検査矯正方法。  A component inspection and correction method, wherein all of the steps are automatically performed while fixing the component on a single device.
2 . 前記部品の複数の部位の検査 ·矯正を、 前記一台の装置上で前記部品 を固定したまま自動的に行うことを特徴とする請求項 1記載の部品検査矯正 方法。  2. The component inspection and correction method according to claim 1, wherein the inspection and correction of a plurality of parts of the component are automatically performed while the component is fixed on the one device.
3 . 計測結果を定量的に矯正量に反映させることを特徴とする請求項 1又 は 2記載の部品検査矯正方法。  3. The method of claim 1 or 2, wherein the measurement result is quantitatively reflected in the correction amount.
4 . 最初の矯正又は前回の矯正の結果実際に生じた矯正量 (矯正結果量) に応じて、 2回目又は次の回の矯正操作の量を変えることを特徴とする請求 項 3記載の部品検査矯正方法。  4. The component according to claim 3, wherein the amount of the second or subsequent correction operation is changed according to the correction amount (correction result amount) actually generated as a result of the first correction or the previous correction. Inspection correction method.
5 . 矯正 1回当りの前記矯正結果量の目標値を (2 x公差) あるいはそれ より微量少なく設定することを特徴とする請求項 1、 2又は 3記載の部品検 查矯正方法。  5. The method of claim 1, 2 or 3, wherein a target value of the correction result amount per correction is set to (2 × tolerance) or a slightly smaller value.
6 . ある形状 ·寸法に成形された部品の形状及び 又は寸法を計測 ·矯正 する部品検査矯正装置であって、  6. A part inspection and correction device that measures and corrects the shape and / or dimension of a part formed into a certain shape and size,
被検査部品を固定する固定手段と、  Fixing means for fixing the component to be inspected,
被検査部品の形状及び /又は寸法を計測する計測手段と、 該計測手段で計測された結果が許容範囲 (公差) 内か否かを判定する判定 手段と、 Measuring means for measuring the shape and / or dimensions of the part to be inspected; Determining means for determining whether a result measured by the measuring means is within an allowable range (tolerance),
前記被検査部品の一部に定量的にコントロールされた塑性加工を加えて該 部品の形状及び Z又は寸法を矯正する矯正手段と、 を備え、  Correcting means for correcting the shape and Z or dimension of the part by subjecting a part of the part to be inspected to quantitatively controlled plastic working.
前記計測手段で計測された結果が許容範囲 (公差) 内に収まるまで、 前記 計測手段による計測、 前記判定手段による判定及び前記矯正手段による矯正 を自動的に繰り返すことを特徴とする部品検査矯正装置。  A component inspection and correction device, wherein the measurement by the measurement unit, the determination by the determination unit, and the correction by the correction unit are automatically repeated until the result measured by the measurement unit falls within an allowable range (tolerance). .
7 . 前記部品の複数の部位の検査 ·矯正を、 前記固定手段で固定したまま 自動的に行うことを特徴とする請求項 6記載の部品検査矯正装置。 7. The component inspection and correction device according to claim 6, wherein inspection and correction of a plurality of parts of the component are automatically performed while being fixed by the fixing means.
8 . 前記矯正手段が、 前記計測手段の計測結果を定量的に矯正量に自動的 に反映させることを特徴とする請求項 6又は 7記載の部品検査矯正装置。 8. The component inspection and correction device according to claim 6, wherein the correction unit automatically and quantitatively reflects a measurement result of the measurement unit on a correction amount.
9 . 前記矯正手段が、 最初の矯正又は前回の矯正の結果実際に生じた矯正 量 (矯正結果量) に応じて 2回目又は次の回の矯正操作の量を変えることを 特徴とする請求項 8記載の部品検査矯正装置。 9. The correction means changes the amount of the second or next correction operation according to the correction amount (correction result amount) actually generated as a result of the first correction or the previous correction. The parts inspection and correction device described in 8.
1 0 . 前記矯正手段が、 矯正 1回当りの前記矯正結果量の目標値を (2 x 公差)あるいはそれより微量少なく設定することを特徴とする請求項 6、 7又 は 8記載の部品検査矯正装置。  10. The component inspection according to claim 6, wherein the correction means sets a target value of the correction result amount per one correction to (2 × tolerance) or a slightly smaller value. 10. Straightening equipment.
1 1 . 前記矯正手段が、  1 1. The correction means,
前記部品の一部の部位 (被矯正部) に当接して該部位に力及び変位を加え る矯正部材と、  A correction member that abuts against a part (corrected part) of the component and applies force and displacement to the part;
該矯正部材を搭載する第 1のステージと、  A first stage for mounting the correction member,
該第 1のステージを搭載し、 前記矯正部材の変位方向に駆動される第 2の ステージと、  A second stage mounted with the first stage and driven in a displacement direction of the correction member;
前記第 1のステージと第 2のステージとの間に介装された、 該第 1のス テージを相対的な中立点に保つスプリング、 及び、 該スプリングが一定程度 バイァスした場合に前記第 1のステージと第 2のステージとの動きを同期さ せる同期部 (両ステージ当接部) を有するフローティング機構と、  A spring interposed between the first stage and the second stage, the spring maintaining the first stage at a relative neutral point, and the first stage when the spring is biased to a certain extent. A floating mechanism having a synchronizing portion (both stages abutting portion) for synchronizing the movement between the stage and the second stage;
前記当接部が夕ツチしたことを感知するタツチセンサと、 を有し、 A touch sensor for sensing that the contact portion has touched; Has,
前記矯正部材と前記部品の被矯正部とが接した後に前記スプリングがたわ み、その後前記両ステージ当接部が接したことを前記夕ツチセンサが検知し、 その後に前記矯正操作量だけ前記第 2のステージが移動することを特徴とす る請求項 6〜 1 0いずれか 1項記載の部品検査矯正装置。  The spring bends after the correction member and the part to be corrected of the component are in contact with each other, and then the evening sensor detects that the two stage contact parts are in contact with each other. The component inspection / correction apparatus according to any one of claims 6 to 10, wherein the second stage moves.
1 2 . さらに、 前記部品の基準部の位置を測定する基準位置測定手段を備 えることを特徴とする請求項 6〜 1 1いずれか 1項記載の部品検査矯正装置。  12. The component inspection and correction device according to any one of claims 6 to 11, further comprising a reference position measuring means for measuring a position of a reference portion of the component.
1 3 . ある形状 ·寸法に成形された部品の形状及び/又は寸法に関連性を 有する物理量を計測する工程と、 13. A process of measuring a physical quantity related to the shape and / or dimension of a part formed to a certain shape / dimension;
計測された物理量の値が許容範囲内か否かを判定する工程と、  A step of determining whether the value of the measured physical quantity is within an allowable range,
公差外と判定された場合に、 前記部品の一部に定量的にコントロールされ た塑性加工を加えて該部品の形状及び/寸法を矯正する工程と、  A step of correcting the shape and / or dimensions of the part by performing quantitatively controlled plastic working on a part of the part when it is determined that the part is out of tolerance;
矯正後の該部品の前記物理量を再計測 ·再判定する工程と、  Remeasurement and re-determination of the physical quantity of the part after the correction,
再判定の結果が再度前記許容範囲外の場合に、 再度前記矯正工程及び前記 再計測,再判定工程を繰り返す工程と、 を含む部品検査矯正方法であって、 前記工程の全てを、 一台の装置上で前記部品を固定したまま自動的に行う ことを特徴とする部品検査矯正方法。  A step of repeating the correction step and the re-measurement and re-determination step again when the result of the re-determination is out of the allowable range again. A part inspection correction method comprising: A method for automatically inspecting and correcting a part, wherein the method is automatically performed while the part is fixed on an apparatus.
1 4 . 被検査部品を固定する固定手段と、  1 4. A fixing means for fixing the component to be inspected,
被検査部品の形状及び Z又は寸法に関連性を有する物理量の値を計測する 計測手段と、  Measuring means for measuring a value of a physical quantity related to the shape and Z or dimension of the part to be inspected;
該計測手段で計測された物理量の値が許容範囲内か否かを判定する判定手 段と、  Determining means for determining whether the value of the physical quantity measured by the measuring means is within an allowable range,
前記被検査部品の一部に定量的にコントロールされた塑性加工を加えて該 部品の形状及び/又は寸法を矯正する矯正手段と、 を備え、  Correcting means for correcting the shape and / or size of the part by subjecting a part of the inspected part to quantitatively controlled plastic working.
前記計測手段で計測された物理量の値が前記許容範囲内に収まるまで、 前 記計測手段による計測、 前記判定手段による判定及び前記矯正手段による矯 正を自動的に繰り返すことを特徴とする部品検査矯正装置。  Component inspection wherein the measurement by the measurement means, the determination by the determination means, and the correction by the correction means are automatically repeated until the value of the physical quantity measured by the measurement means falls within the allowable range. Straightening equipment.
PCT/JP2003/005929 2002-05-20 2003-05-13 Method for inspecting/correcting component and system for inspecting/correcting component WO2003097265A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003234795A AU2003234795A1 (en) 2002-05-20 2003-05-13 Method for inspecting/correcting component and system for inspecting/correcting component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002/144013 2002-05-20
JP2002144013 2002-05-20
JP2002380651A JP4023795B2 (en) 2002-05-20 2002-12-27 Parts inspection and correction equipment
JP2002/380651 2002-12-27

Publications (1)

Publication Number Publication Date
WO2003097265A1 true WO2003097265A1 (en) 2003-11-27

Family

ID=29552306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005929 WO2003097265A1 (en) 2002-05-20 2003-05-13 Method for inspecting/correcting component and system for inspecting/correcting component

Country Status (3)

Country Link
JP (1) JP4023795B2 (en)
AU (1) AU2003234795A1 (en)
WO (1) WO2003097265A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021147A (en) * 2007-07-13 2009-01-29 Kanto Auto Works Ltd Assembly component inspection device
EP3181253B1 (en) 2015-12-18 2022-06-08 Magnesium Products of America, Inc. Straightening machine and method for magnesium components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172609U (en) * 1985-04-16 1986-10-27
JPS63248517A (en) * 1987-03-31 1988-10-14 Hashimoto Forming Co Ltd Method for straightening axial line bending of long-sized metal member
JPS6462220A (en) * 1987-08-31 1989-03-08 Hashimoto Forming Kogyo Co Method for straightening axial line bend of long-sized metal member
JPH03114613A (en) * 1990-05-31 1991-05-15 Hashimoto Forming Ind Co Ltd Correcting device for bending axial line of long sized metallic member
JPH05317969A (en) * 1992-05-18 1993-12-03 Toshiba Corp Panel plate straightening device
JP2002001433A (en) * 2000-06-20 2002-01-08 Toho Mechanic:Kk Deformation correcting apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172609U (en) * 1985-04-16 1986-10-27
JPS63248517A (en) * 1987-03-31 1988-10-14 Hashimoto Forming Co Ltd Method for straightening axial line bending of long-sized metal member
JPS6462220A (en) * 1987-08-31 1989-03-08 Hashimoto Forming Kogyo Co Method for straightening axial line bend of long-sized metal member
JPH03114613A (en) * 1990-05-31 1991-05-15 Hashimoto Forming Ind Co Ltd Correcting device for bending axial line of long sized metallic member
JPH05317969A (en) * 1992-05-18 1993-12-03 Toshiba Corp Panel plate straightening device
JP2002001433A (en) * 2000-06-20 2002-01-08 Toho Mechanic:Kk Deformation correcting apparatus

Also Published As

Publication number Publication date
JP4023795B2 (en) 2007-12-19
AU2003234795A8 (en) 2003-12-02
AU2003234795A1 (en) 2003-12-02
JP2004042136A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
EP3093611A2 (en) Measuring method and device to measure the straightness error of bars and pipes
US7428783B2 (en) Testing system for flatness and parallelism
CN1056552C (en) A method for positioning a work piece carrier member in a machining apparatus and a work piece carrier member adapted to be positioned in a machining apparatus
EP2090861B1 (en) Method of measuring front and back surfaces of target object
US7440089B2 (en) Method of measuring decentering of lens
WO2006070822A1 (en) Work bending angle detecting device and work bending machine
KR20190125973A (en) Glass Panel Detection Device and Detection Image Synthesis Method
JPH07506194A (en) Device for measuring angles within workpieces
EP2085739B1 (en) Probe straightness measuring method
WO2003097265A1 (en) Method for inspecting/correcting component and system for inspecting/correcting component
JPH0622509A (en) Press fitting method for press fit work and press fitting equipment with length measuring device
CN114713661B (en) Method for repairing stamping die by referring to workpiece rebound parameters
US20200141713A1 (en) Methods and apparatus for determining a height of an edge portion of a product
JP2008096114A (en) Measuring apparatus
JPH07116737A (en) Instrument for measuring bending angle
JP6978465B2 (en) Dimension measuring method, dimensional measuring device, automatic tensile test device and proof stress evaluation method
JP3013671B2 (en) 3D shape measuring device
KR20210095850A (en) Analysis method and analysis device for curl of optical film
CN113932716B (en) Large motor coil detection device and detection method
KR102418946B1 (en) Apparatus for measuring flatness of plate workpiece
CN114593697B (en) Device for detecting gap and flatness of product
CN214347971U (en) Size measuring and sorting device
CN115711581A (en) Injection molding product size detection method
JP2004247693A (en) Adjustment method and jig
CN117907123A (en) Quick centering and positioning method for impact standard sample

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase