WO2003097258A1 - Washing method and washing device - Google Patents

Washing method and washing device Download PDF

Info

Publication number
WO2003097258A1
WO2003097258A1 PCT/JP2003/005870 JP0305870W WO03097258A1 WO 2003097258 A1 WO2003097258 A1 WO 2003097258A1 JP 0305870 W JP0305870 W JP 0305870W WO 03097258 A1 WO03097258 A1 WO 03097258A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
fluid
state
cleaned
cleaning medium
Prior art date
Application number
PCT/JP2003/005870
Other languages
French (fr)
Japanese (ja)
Inventor
Yousuke Irie
Kiyoyuki Morita
Masaaki Suzuki
Akihisa Adachi
Masahiko Hashimoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/514,811 priority Critical patent/US7507297B2/en
Publication of WO2003097258A1 publication Critical patent/WO2003097258A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0021Cleaning by methods not provided for in a single other subclass or a single group in this subclass by liquid gases or supercritical fluids

Definitions

  • the present invention relates to a method and an apparatus for cleaning an object to be cleaned, such as a part having a concave structure, specifically, a part made by machining, pressing, and the like, particularly, a precision-worked part used in connection with an electronic part. . Background art
  • parts manufactured by machining or pressing especially precision parts used for electronic components, require three steps of washing, rinsing, and drying after machining and pressing. It is. This is because processing oil is used for machining in press working and machining, and it is necessary to remove unnecessary processing oil adhering to this processing object.
  • precision parts that require a high level of cleaning effect require high-performance cleaning, but the final drying step is extremely important.
  • lubricating oil which is a processing oil
  • chlorofluorocarbon 113, 1, 1, 1, 1-trichloroethane
  • chlorofluorocarbons 113, 1, 1, 1-trichloroethane
  • (1,1,1-trichloroethane) affects the human body in the central nervous system.
  • the substance has significant effects on the system, causing unconsciousness and respiratory arrest at high concentrations.
  • CFC regulations began in Japan in July 1989, and production was completely abolished in 1995.
  • MEX ethanol, isopropanol (IPA), or penfluoropropanol (5FP)
  • IPA isopropanol
  • 5FP penfluoropropanol
  • Examples of the semi-aqueous system include hydrocarbons (normal paraffins, isoparaffins, naphthenes, or aromatics), dalicol ethers (ethylene-based dimethyl alcohols, or isoprene-based gnore cones), N Methinole 2-Villolidone (NMP), terbenzenes (d-limonene), or siloxanes (volatile methylsiloxanes: VMS, dodecamethylcyclohexane, hexamethinoresisiloxane, or decamethi Noretetrasiloxane) is used.
  • hydrocarbons normal paraffins, isoparaffins, naphthenes, or aromatics
  • dalicol ethers ethylene-based dimethyl alcohols, or isoprene-based gnore cones
  • NMP N Methinole 2-Villolidone
  • d-limonene terbenzenes
  • siloxanes volatile methylsiloxanes: V
  • Water-free deoxygenated water, deionized water, or ultrapure water
  • water-modified with additives alkaline, acidic, ionic surfactants, nonionic surfactants, Higher alcohol surfactants or ozone-added ultrapure water.
  • JP-A-9-1263994 in the case for a battery, instead of an organic solvent, annealing is performed at a very high temperature, such as 700 to 900 ° C, and cleaning is performed to burn off a lubricating oil as a processing oil. ing.
  • a very high temperature such as 700 to 900 ° C
  • cleaning is performed to burn off a lubricating oil as a processing oil. ing.
  • dirt such as rolling oil and metal powder adhering to the surface of the rolled sheet is seized during annealing, which causes ⁇ II defects and adhesion.
  • Hei 6-272015 the surface of an aluminum plate is washed with a mineral acid or an organic acid, or a mixed acid thereof before annealing, and then subjected to an annealing treatment in Japanese Patent Application Laid-Open No. Hei 6-272015. .
  • the housing of a HDD (hard disk drive) described in Patent No. 3234541, an electric angle capacitor, precision electronic parts, etc. are formed by forming an organic resin film containing a lubricant on one or both sides of an aluminum alloy material and molding. The workability is improved, and a volatile lubricant is applied to the surface, and after processing, the lubricant is heated and volatilized and removed.
  • an organic or inorganic reducing agent acting as a cleaning component when cleaning a metal part or a mold with supercritical or subcritical water It has been proposed to clean and remove dirt by coexisting without changing the condition of the mold surface or damaging by contact objects.
  • Japanese Patent Publication No. 59-502137 proposes a cleaning method for removing organic substances using a supercritical gas.
  • Japanese Patent No. 2832190 discloses a method for improving the cleaning effect by rapidly changing the state of a fluid in a supercritical or subcritical state.
  • lubricating oil that improves moldability is indispensable in molding, and it is not an exaggeration to say that the development of lubricating oil is the development of more advanced molding.
  • the lubricating oil used in the molding process when processed precision parts are used as products, if not completely removed, may cause product defects such as deterioration of product performance and contamination. Therefore, it is essential to develop a cleaning method that completely removes the lubricating oil as well as the application of the lubricating oil in the molding process.
  • cleaning methods using solvents especially for degreasing, are often used as solvents that do not affect the ozone layer depletion, such as alternative fluorocarbons, with an awareness of the environment, but their impact on the environment is not widely understood. Not.
  • 2-bromopropane is an existing substance that has been used as an intermediate for pharmaceuticals, agricultural chemicals, and photosensitizers, and as an alkylating agent.
  • the time and cost required for cleaning are also very important.
  • the cleaning level after processing is determined by the product for which the molded part is used. Therefore, it is desirable to use a solvent with high detergency, but the effect of a high detergency on the environment is unknown as described above, and a solvent with a low detergency also has low detergency. Must also be increased.
  • those that are plated after processing such as battery cases and aluminum electrolytic capacitors, require precision cleaning, and require a long time to perform the cleaning process to perform degreasing, impurity removal, and activation. It costs. It is important to prevent degassing during use of housings used for HDDs, and degreasing is important.
  • solvent cleaning handling is very complicated in terms of solvent management (Fire Service Law), treatment of human body (Occupational Safety and Health Law), and waste liquid collection processing. Production efficiency was reduced.
  • the cleaning method using a solvent is simplified as much as possible, or as a method that does not require solvent cleaning, after processing with a combination of an organic resin film and a volatile lubricating oil, the volatile lubricating oil is distilled by annealing.
  • Methods have come to be used. However, this method also does not completely evaporate the lubricating oil, and any amount of oil or impurities remains on the machined surface at any micro level. Also, in the case of deep-drawn parts that are press-formed, especially those that have complex structures such as recesses, even if they are annealed to evaporate the lubricating oil, they cannot be completely evaporated due to their structure.
  • Lubricating oil is often imprinted on the grain boundaries of stainless steel etc., leaving impurities.If annealing is carried out in the presence of even a small amount of oil, impurities, etc., the oil will carbonize or seize impurities. In some cases, the performance of the applied product was reduced due to defects due to spots and unevenness and degassing.
  • surface-treated steel sheets that are used to simplify post-processing cleaning or to prevent performance degradation without the use of precision cleaning, use the same organic solvents used in the production of surface-treated steel sheets.
  • degreasing using an alkaline degreasing agent, acid cleaning, plating, and heat treatment are applied.Therefore, the effect on the environment and the human body only depends on the cleaning power before processing and whether cleaning is performed after processing. Little improvement.
  • a cleaning method using supercritical or subcritical carbon dioxide or water has been proposed.
  • an organic or inorganic reducing agent acting as a cleaning component is co-existed in supercritical or subcritical carbon dioxide or water, without causing a change in the surface state of the mold and damage due to a contact object. It was mainly applied to precision dies such as plastic molded lens prisms and other parts around the dies that emphasize cleaning, and the main purpose was to remove organic substances.
  • the impurities generated during processing are not only organic substances such as lubricating oil, but also organic substances such as cutting chips and powders and organic substances.
  • Inorganic substances are often mixed, and even if it is effective in removing organic substances, it is difficult to obtain the effect of removing organic substances in an environment where inorganic substances and organic substances are mixed.
  • an object of the present invention is to solve the above-mentioned problems, and to clean an object to be cleaned such as a component having a concave structure using a liquefied gas or a supercritical fluid cleaning medium.
  • An object of the present invention is to provide a method and an apparatus for cleaning an object to be cleaned, such as a component having a concave structure, which can improve a cleaning effect. Disclosure of the invention
  • the present invention is configured as described below to achieve the above object.
  • a cleaning medium is introduced into the cleaning tank so that the components are present in the cleaning medium atmosphere, and the temperature and pressure of the cleaning medium are changed to change the cleaning medium into a liquid state and a gas state. So that the cleaning medium spreads over the surface of the concave structure. And a cleaning method for performing cleaning.
  • a cleaning method for removing at least deposits adhering to a surface of the concave structure of a component having the concave structure is provided.
  • the first cleaning medium is introduced into the cleaning tank, the parts are present in the atmosphere of the first cleaning medium, and the temperature and pressure of the first cleaning medium are changed to exceed the first cleaning medium.
  • a cleaning method is provided in which, after changing to a critical state, the first cleaning medium is cleaned over the surface of the recess structure, and the liquid is further cleaned with a liquid as a second cleaning medium. I do.
  • a cleaning tank According to a ninth aspect of the present invention, there is provided a cleaning tank,
  • a cleaning medium supply unit for supplying a cleaning medium to the cleaning tank
  • a control unit for controlling the cleaning medium supply unit, the heating device, and the pressurizing device; and controlling at least one of the heating device and the force PI pressure device to form a liquid state and a gas with respect to the cleaning medium.
  • a cleaning apparatus for cleaning a surface of a concave structure of a component in the cleaning tank by changing a cleaning medium to a supercritical state or a subcritical state after performing a state change alternately with a state.
  • a cleaning tank having an inlet for introducing a cleaning medium and an outlet for discharging the cleaning medium, and containing an object to be cleaned
  • a cleaning medium supply unit that supplies the cleaning medium to the cleaning tank through the introduction port, and a heating device that changes the temperature of the cleaning medium,
  • a control unit that controls the cleaning medium supply unit, the heating device, and the pressurizing device; and a collection unit that collects the cleaning medium discharged from the discharge port and collects a removed substance after cleaning,
  • a cleaning medium spreads over the surface of the concave structure using a supercritical gas or a liquefied gas for the cleaning target having the concave structure housed in the cleaning tank. Cleaning as described above, and An inlet is provided below the outlet, and the outlet is provided above the object to be cleaned.
  • the density of the object to be cleaned is reduced.
  • the liquid density of the fluid is equal to or less than the density of the fluid, and at least one of the pressure and the temperature of the fluid is changed to change the density of the fluid repeatedly with respect to the density of the object to be cleaned.
  • the density of the object to be cleaned is reduced.
  • the liquid density of the fluid is less than or equal to the fluid pressure,?
  • the density of the object to be cleaned is substantially equal to the liquid density of the fluid, and the fluid is subjected to a fluctuation due to an external force to give the object to be cleaned.
  • the cleaning method for removing impurities adhering to the surface of the object to be cleaned by bringing the pressurized fluid into contact with the object to be cleaned by bringing the pressurized fluid into contact with the object to be cleaned.
  • the above-mentioned object to be washed which is immersed in the first fluid, is contacted with the second fluid, which has a different density and is pressed against the first fluid, to be washed.
  • the present invention provides a cleaning method for removing at least deposits adhering to the surface of the concave structure, using a supercritical gas or a liquid gas.
  • the cleaning is carried out such that the cleaning medium is evenly distributed on the surface of the concave structure.
  • the cleaning medium using a supercritical gas or a liquefied gas is evenly distributed on the surface of the concave structure, and the adhered substance that has adhered to the concave portion can be easily and quickly cleaned.
  • FIG. 1 is a state diagram of a cleaning medium according to the first embodiment of the present invention
  • FIG. 2A, FIG. 2B, FIG. 2C, and FIG. 2D are a cross-sectional view and a perspective view showing an example of a component having a concave structure according to the first embodiment of the present invention.
  • FIG. 3 is an explanatory diagram illustrating a cleaning system according to the first embodiment of the present invention.
  • FIGS. 4A and 4B are graphs illustrating cleaning steps according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a cleaning state in the first embodiment of the present invention
  • FIG. 6 is an explanatory diagram illustrating an object to be cleaned in Example 1 of the first embodiment of the present invention.
  • FIG. 7 is a perspective view showing an object to be cleaned in Example 3 of the first embodiment of the present invention.
  • FIG. 8 is an explanatory diagram illustrating a contact angle in Example 3 of the first embodiment of the present invention.
  • FIG. 9 is an explanatory diagram showing the temperature dependence of physical properties of water.
  • FIG. 10A and FIG. 10B are an explanatory diagram showing a portion where dirt is likely to remain on the mouth by arrows and an explanatory diagram showing a portion where dirt is likely to remain on the microscopic scale.
  • FIG. 11 is an explanatory view showing portions where dirt is likely to remain macroscopically by arrows
  • FIG. 12 is an ultrasonic wave which is another example of the object to be cleaned in the cleaning method of the first embodiment of the present invention. It is a schematic sectional view of a sensor case
  • FIG. 13 is a time chart at the time of pressure control in the cleaning method of the first embodiment of the present invention.
  • FIG. 14 is a time chart at the time of temperature control in the cleaning method of the first embodiment of the present invention.
  • FIG. 15 is an explanatory diagram when the pressure is increased using a two-layer type chamber in the cleaning device according to the modification of the first embodiment of the present invention.
  • FIG. 16 is an explanatory diagram of a state where a door divided into two layers is opened when the pressure is reduced by using a two-layer type chamber in the cleaning device according to the modification of the first embodiment of the present invention
  • FIG. 17 is an explanatory diagram of a state in which the heating medium is supplied in a liquid state in the cleaning device according to the modification of the first embodiment of the present invention.
  • FIG. 18 is an explanatory diagram of a state in which the heating medium is supplied in a gaseous state in the cleaning device according to the modification of the first embodiment of the present invention.
  • FIG. 19 is an explanatory diagram showing a relationship between the control device, the temperature control relay, and the pressure control relay of the cleaning device according to the first embodiment of the present invention.
  • FIG. 20 is an explanatory diagram of a state in which a propeller for turning is rotated to increase cleaning efficiency in a cleaning device according to a modified example of the first embodiment of the present invention.
  • FIG. FIG. 22 is an explanatory diagram of a state in which a propeller for turning is rotated in order to increase cleaning efficiency in the cleaning apparatus according to the modification of the first embodiment.
  • FIG. 22 shows a modification of the first embodiment of the present invention.
  • FIG. 23 is an explanatory view showing a state in which a propeller for turning is rotated in order to increase the cleaning efficiency in such a cleaning device.
  • FIG. 23 shows an example in which the cleaning device according to the modification of the first embodiment of the present invention improves the cleaning efficiency.
  • FIG. 4 is an explanatory view of a state in which a propeller for rotation is rotated to supply a cleaning medium from a nozzle.
  • FIG. 24 is an explanatory diagram of a state where a cleaning medium is supplied from a nozzle in order to increase cleaning efficiency in a cleaning device according to a modification of the first embodiment of the present invention.
  • FIG. 25 is an explanatory diagram showing a state in which a propeller for turning is rotated to increase cleaning efficiency and ultrasonic waves are supplied from an ultrasonic sensor in a cleaning apparatus according to a modification of the first embodiment of the present invention. Yes,
  • FIG. 26 is an explanatory diagram of a state in which ultrasonic waves are supplied from an ultrasonic sensor in order to increase cleaning efficiency in a cleaning device according to a modification of the first embodiment of the present invention.
  • B, FIG. 27C are schematic cross-sectional views showing various nozzle shapes in a cleaning device according to a modification of the first embodiment of the present invention.
  • FIG. 28 is an explanatory diagram of a state in which a cleaning medium is sequentially supplied from a plurality of nozzles to generate convection in order to increase cleaning efficiency in a cleaning device according to a modification of the first embodiment of the present invention.
  • Figure 29 is a phase diagram of a fluid such as carbon dioxide and water.
  • FIG. 30 is a schematic diagram of a cleaning device according to the second embodiment of the present invention
  • FIG. 31 is a schematic diagram of a cleaning device according to a third embodiment of the present invention
  • FIG. 32 is a schematic explanatory view showing the relationship between the object to be cleaned and the fluid when the density of the object to be cleaned is higher than the density of the fluid.
  • FIG. 33 is a schematic explanatory view showing the relationship between the object to be cleaned and the fluid when the density of the object to be cleaned is smaller than the density of the fluid.
  • FIG. 34 is a schematic explanatory view showing the relationship between the object to be cleaned and the fluid when the density of the object to be cleaned and the density of the fluid are substantially equal and the propeller is not rotated.
  • FIG. 35 is a schematic explanatory view showing the relationship between the object to be cleaned and the fluid when the propeller is rotated so that the density of the object to be cleaned and the density of the fluid are substantially equal
  • FIG. 36 is a schematic diagram in the case where an information database is provided in the cleaning apparatus of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a cleaning method for removing at least deposits adhering to the surface of the concave structure of a component having the concave structure is provided. This is a cleaning method in which cleaning is performed as described above.
  • a second invention of the present invention is the cleaning method according to the first invention, wherein the cleaning is performed such that the cleaning medium is evenly distributed over the entire surface of the component having the concave structure.
  • a cleaning method for removing at least a substance adhering to at least the surface of the concave structure of a part having a partial structure wherein the part having the substance adhering thereto is stored in a cleaning tank, and The cleaning medium is introduced, the parts are present in the cleaning medium atmosphere, and the temperature and pressure of the cleaning medium are changed to alternately change the cleaning medium between a liquid state and a gas state.
  • This is a cleaning method in which the cleaning medium is evenly distributed over the surface of the recess structure.
  • the cleaning medium is alternately changed between a liquid state and a gas state, the cleaning medium is changed to a supercritical state to clean the concave structure surface. Is a cleaning method.
  • the concave structure is formed by changing the cleaning medium into a sub-supercritical state after alternately changing the cleaning medium between a liquid state and a gas state. This is a cleaning method for cleaning the surface.
  • a sixth invention of the present invention is the cleaning method according to the third or fourth invention, wherein the state of the cleaning medium is changed from a liquid state to a constant temperature at a constant temperature to alternately repeatedly change a gas state and a liquid state. .
  • the seventh invention of the present invention is the cleaning method according to the third or fourth invention, wherein the pressure is changed at a constant temperature with respect to the cleaning medium, and the state is alternately and repeatedly changed between a gas state and a liquid state.
  • An eighth invention of the present invention is directed to a cleaning method for removing at least a substance adhering to at least the surface of the concave structure of a part having a concave structure, wherein the part having the substance adhering thereto is stored in a cleaning tank, and the part is cleaned in the cleaning tank.
  • a medium is introduced and the above-mentioned parts are present in the atmosphere of the cleaning medium, and the temperature and pressure of the cleaning medium are changed to change the cleaning medium to a supercritical state. This is a cleaning method in which cleaning is performed in a distributed manner.
  • a ninth invention of the present invention is directed to a cleaning method for removing at least a substance adhering to the surface of the concave structure of a part having a concave structure, wherein the part having the substance adhering thereto is stored in a cleaning tank, and the part is cleaned in the cleaning tank.
  • a medium is introduced and the above-mentioned parts are present in the atmosphere of the cleaning medium, and the temperature and pressure of the cleaning medium are changed to change the cleaning medium to a supercritical state. This is a cleaning method in which the liquid is washed after it has been spread all over, and then the liquid is further washed.
  • a tenth invention of the present invention is the cleaning method according to any one of the first to ninth inventions, wherein the cleaning medium is carbon dioxide gas and water.
  • An eleventh invention of the present invention provides a method for manufacturing a component having a concave structure, comprising: In the cleaning method for removing adhering substances adhered to the surface, the parts to which the adhering substances are adhered are stored in a cleaning tank, dioxin carbon is introduced as a cleaning medium into the cleaning tank, and the parts are placed in an atmosphere of the cleaning medium. The cleaning medium is changed to a supercritical state by changing the temperature and the pressure with respect to the cleaning medium, and the cleaning medium is evenly distributed on the surface of the concave structure.
  • This is a cleaning method in which water is newly introduced as a medium, and the water as the cleaning medium is changed to a supercritical state to clean the surface of the concave structure.
  • a twelfth invention of the present invention is directed to a cleaning tank, a cleaning medium supply unit for supplying a cleaning medium to the cleaning tank, a heating device for changing the temperature of the cleaning medium, and a heater for changing the pressure of the cleaning medium.
  • a pressure device, and control means for controlling the cleaning medium supply unit, the heating device, and the pressurizing device. By controlling at least one of the heating device and the pressurizing device, a recess accommodated in the cleaning tank.
  • This is a cleaning apparatus for performing cleaning by using a supercritical gas or liquid gas on a cleaning object having a structure so that a cleaning medium can be evenly distributed on the surface of the partial structure.
  • At least one of the heating device and the caropressure device is controlled to change the state of the cleaning medium between a liquid state and a gas state alternately. After cleaning, the cleaning medium is changed to a supercritical state or a subcritical state to clean the surface of the concave structure.
  • a fourteenth invention of the present invention is directed to a cleaning tank having an inlet for introducing a cleaning medium and an outlet for discharging the cleaning medium and storing an object to be cleaned, and the cleaning medium being supplied to the cleaning tank via the inlet.
  • a cleaning medium supply unit for supplying, a heating device for applying a temperature change to the cleaning medium, a caro pressure device for applying a pressure change to the cleaning medium, a cleaning medium supply unit, a heating device, and a caro pressure device.
  • a heating means, a pressurizing device comprising: a control means for controlling; and an extracting and collecting container as an example of a collecting part, which collects a cleaning medium discharged from the discharge port and collects a removed substance after cleaning.
  • cleaning is performed by using a supercritical gas or a liquefied gas so that the cleaning medium is evenly distributed over the surface of the concave structure, which is housed in the cleaning tank and having the concave structure.
  • the inlet is located below the outlet, and the outlet is located above the object to be cleaned.
  • the cleaning method is characterized in that the part having the structure is a structure formed by press molding or cutting.
  • a sixteenth invention according to the present invention is the component according to any one of the first to eleventh inventions, wherein the component having the circuit structure is a structure formed by a press molding method or a cutting method, A cleaning method characterized in that the body is mainly composed of a metal material.
  • the metal material forming the component having the concave structure has a main component of Fe, Al, Cu, or Ti. This is a characteristic cleaning method.
  • the eighteenth invention of the present invention is the invention according to any one of the first to eleventh inventions, wherein the component having the concave structure is a structure formed by a press molding method or a cutting method,
  • the cleaning method is characterized in that the structure is mainly composed of an organic material.
  • a nineteenth invention of the present invention is the cleaning method according to the eighteenth invention, wherein the organic material forming the component having the concave structure is mainly composed of polyimide or epoxy.
  • a twenty-second invention of the present invention is the component according to any one of the first to eleventh inventions, wherein the component having the concave structure is a structure formed by a press molding method or a cutting method, A cleaning method characterized in that the body is mainly composed of a ceramic material.
  • the ceramic material that form a part having the recess structure is composed mainly characterized by comprising the S i 0 2, PZT, A g, or C This is a cleaning method.
  • a twenty-second invention of the present invention is the component according to any one of the first to eleventh inventions, wherein the component having the concave structure is mainly a composite of a metal and an organic material, and mainly a composite of an organic material and a ceramic material.
  • This is a cleaning method mainly composed of a composite of metal, organic material and ceramic material.
  • the component having the concave structure is a matching layer for an ultrasonic sensor or an ultrasonic sensor.
  • This cleaning method is characterized by various cases for servers, batteries, HDDs (hard disk drives), and electrolytic capacitors.
  • a cleaning medium for example, a supercritical state or a liquid state (including a subcritical state) of a liquefied gas is used.
  • the type of liquid gas is mainly carbon dioxide (CO 2 ) or water (H 20 ) alone or a mixture of carbon dioxide and water. Select which cleaning media to use and which hard media to combine, depending on the main material and contaminant composition of the component.
  • the main components of the cleaning parts are metals and the contaminants are organic and inorganic oxides such as oils and fats
  • the contaminants are organic and inorganic oxides such as oils and fats
  • the present invention improves the cleaning efficiency by controlling physical properties such as density and viscosity in a liquid state, and utilizing physical energy that contributes to a change in state of a liquid, a gas, or a supercritical state.
  • the liquid state of carbon dioxide can be easily controlled by changing the temperature or pressure inside the container to control physical properties such as liquid density, viscosity, and raw material, and to control gaseous, liquid, and supercritical states. It is easy to handle because the control temperature and pressure difference are relatively close to normal temperature and atmospheric pressure.
  • a part processed by press molding or a part caroed by cutting has a concave structure.
  • contaminants such as processing oil and cutting waste
  • it is easily imprinted by applying pressure during processing, and cutting debris due to plastic deformation is apt to remain.
  • Parts that are to be cleaned are mainly made by press molding or cutting, and the main components of the parts are composed of metallic materials, organic materials, ceramic materials, or composites thereof.
  • the main component of the metallic material includes any of Fe, A, Cu, and Ti.
  • Polyimide as the main component of the organic material, or an epoxy, or a thermoplastic resin, characterized in that as the main component of the ceramic material S i 0 2, A g, PZT, or a C.
  • the cleaning medium is selected from carbon dioxide, water, etc. according to the object to be cleaned.
  • the cleaning compatible part of the present invention has a concave structure such as a matching layer or case of an ultrasonic sensor, a case ⁇ electrode for a battery, a case (housing) for an HDD, or a case of an electrolytic capacitor. It is an electronic component that requires precision cleaning as a cleaning level, has high added value, and has a small volume per unit.
  • a cleaning method and a cleaning apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4B.
  • Figure 1 shows the state diagram of the cleaning medium with the temperature T on the horizontal axis and the pressure P on the vertical axis.
  • the triple point in Fig. 1 (2) (black circle 21 in the figure) is a state in which the three phases of gas, liquid and solid coexist.
  • the solid and its vapor are in equilibrium, and the vapor pressure at that time is given by the sublimation curve (20 in Fig. 1).
  • the sublimation curve (20 in Fig. 1).
  • the solids sublime and become gas, and at higher pressures the gas solidifies and becomes solid.
  • the liquid and its vapor are in equilibrium, and the pressure at this time is represented by the vapor curve (22 in Fig. 1) as the saturated vapor pressure.
  • Liquid gas refers to a state where the temperature range shown in Fig. 1 is higher than the triple junction temperature and lower than the critical temperature, and the pressure is higher than the triple junction pressure and higher than the vapor curve.
  • the subcritical state refers to a state within a range of up to 0.6 times the critical temperature (Tc) and the critical pressure (Pc). Define the state.
  • the cleaning medium changes from a liquid gas through a subcritical state to a supercritical state.
  • the supercritical fluid or liquefied gas used here is carbon dioxide (co 2 ) or water.
  • Critical temperature of carbon dioxide (Tc) 31.1 ° C
  • Critical pressure (Pc) 7.38M Pa
  • water critical temperature (Tc) 374.1 ° C
  • Critical pressure (Pc) 22.
  • the cleaning device includes at least a high-pressure vessel 1 as an example of a cleaning tank, a liquefaction supply tank (or high-pressure cylinder) 2 holding a cleaning medium, and a liquefaction supply tank 2.
  • Liquid pump that supplies liquefied gas to the high-pressure vessel 1 (equivalent to an example of a cleaning medium supply unit) 3, a heater 5 for heating the inside of the high-pressure vessel 1, and a liquefied gas in the high-pressure vessel 1 by controlling the heater 5.
  • Heater controller 4 for controlling temperature of wastewater, Waste liquid collecting tank 6 for collecting waste liquid after washing in high-pressure vessel 1, Vaporizer 7 for vaporizing liquefied gas collected in waste liquid collecting tank 6, Collecting removed substances after washing An example of the collection department And an extraction / collection container 8.
  • the pressure in the high-pressure vessel 1 is changed by the supply of the liquefied gas by the liquid pump 3, and the temperature of the liquid gas is controlled by the heater 5 under the control of the heater controller 4.
  • the supercritical fluid supercritical gas in this embodiment
  • the subcritical fluid subcritical gas in the first embodiment
  • the liquid gas which are the cleaning medium
  • reference numeral 100 denotes a control device for controlling the cleaning operation of the cleaning device.
  • the control device is connected to the liquid pump 3, the heater controller 4, the vaporizer 7, and the extraction and collection container 8, and Each operation is controlled.
  • the liquefied gas is used as the cleaning medium, but a subcritical fluid or a supercritical fluid may be directly supplied into the high-pressure vessel 1, and the vaporizer 7 supplies the subcritical fluid or the supercritical fluid. It may be vaporized.
  • a press-formed part (27, 28, 29, 30) with a recess is formed by cutting.
  • Parts (27, 28, 29, 30) are particularly prone to deposit lubricating oil, which is a processing oil, which is a deposit 26, and impurities (such as cutting chips) in the recesses.
  • lubricating oil which is a processing oil, which is a deposit 26, and impurities (such as cutting chips) in the recesses.
  • the concave portion has a complicated structure and is a portion to which pressure is applied during processing, the adhesion of processing oil lubricating oil and impurities (such as cutting chips) is lower than that of other flat structure portions. High, washing cat lj etc. are difficult to penetrate, so uneven washing and washing residue are likely to occur.
  • a place where dust on the part to be cleaned or a part to be cleaned remains 40
  • a press-formed product in the case of a deep-drawing processed product, it can be macroscopically shown in FIG. As shown in Fig. 10B, it is near the local area bent by press molding, and microscopically, as shown in Fig. 10B, there are severe irregularities (in other words, rough parts of the material surface) and especially for cleaning. It is the part where the solvent does not easily enter.
  • the macroscopic portion is a portion 41 where the punching blade comes into contact at the time of punching, and the microscopic unevenness is Intense part
  • the material of the component to be cleaned or the object to be cleaned of the cleaning method and apparatus of the present invention is various kinds of stainless steel, anolemmium, titanium, iron, or the like. Since particularly easy iron does not need to be dried, it is suitable as a material of a part to be cleaned or a part to be cleaned by the cleaning method and apparatus of the present invention.
  • the composite material of metal and organic material there is a material in which a sheet of an organic material (PPT, PET, etc.) is adhered or coated on a metal surface.
  • the shape of another ultrasonic case is shown in FIG. Therefore, the liquefied state of carbon dioxide and water (including subcritical fluid) with high permeability and a certain degree of viscosity is first introduced as a cleaning medium into the high-pressure vessel 1 ⁇ .
  • carbon dioxide becomes liquid at relatively low temperatures and pressures. Therefore, by controlling the temperature and pressure by controlling the operation of the liquid pump 3 and the heater controller 4 by the control device 1000, the physical property change between the liquid state and the gas state (here, the physical property change is, for example, compared with the body and the liquid density 0 6;. 3 in L kg Zm 3 and 1 0 0 0 kg / m 3
  • carbon dioxide and water are harmless even on the side of the human body, so they are easy to handle. Furthermore, carbon dioxide and water have the action of decomposing and removing organic substances in critical conditions, and water has the effect of etching oxides and the like under specific pressure and temperature conditions. It is effective for cleaning.
  • the supercritical state of carbon dioxide has the effect of decomposing and removing organic substances and water has acid oxide.
  • the mechanism of this is not clearly understood, but the macroscopic average properties, which are the equilibrium physical properties such as dissolving power and ionic product, which can be expressed as a function of density, and the local level at the molecular level such as solvation (cluster). Is considered to have a typical structure.
  • the temperature dependence (25 Mpa—constant pressure) of the physical properties of water shown in Fig. 9 is shown.
  • the dielectric constant of water at room temperature is very large, about 80.
  • inorganic substances such as electrolytes are well dissolved, but organic substances are hardly dissolved.
  • the dielectric constant gradually decreases, and in supercritical water at 374 ° C or higher, the value is about 10 and is equivalent to that of an organic solvent having a small polarity.
  • organic matter is dissolved well, but inorganic matter is hardly dissolved.
  • FIGS. 4A and 4B are the same as the state diagram of the cleaning medium shown in FIG.
  • Washed parts that are press-formed parts are placed in the high-pressure vessel 1 with the processing oil and impurities attached. After the components are introduced into the high-pressure vessel 1, either the temperature or the pressure is changed to change the state from the liquid state to the gas state and from the gaseous state to the liquid state.
  • the processing oil and impurities are converted into physical energy (in terms of physical property change, for example, when compared with gas and liquid, the density is 0.6 ⁇ : L kg / m 3 and 1 0 0 0 kg / m. 3 to 4 digits vary 3, viscosity 2 digits 1 0 one 5 P s ⁇ s and 1 0- 3 P s ⁇ s, the diffusion coefficient 1 0 -..
  • the temperature and pressure are changed to the critical point or higher, and the state is shifted to the supercritical state to perform the main cleaning.
  • the liquefied gas is discharged out of the high-pressure container, and the liquefied gas is newly introduced, and the temperature or pressure is equal to or higher than the critical point temperature and the critical point pressure.
  • shift to the supercritical cleaning process In the supercritical state, it mainly decomposes and removes organic substances and etches inorganic oxides at a specific temperature and pressure (when using water).
  • the cleaning level of the parts used here is based on the “Sample 2” shown in “General cleaning evaluation method and classification of cleaning index” in the 1994 report of the Japan Industrial Cleaning Council. To explain, it refers to the “coarse cleaning” level or “general cleaning” level that is described as the degree of cleaning.
  • the cleaning apparatus includes a high-pressure vessel 1, a liquid pump 3 for introducing a supercritical gas and a liquefied gas into the high-pressure vessel 1, and a temperature of the supercritical gas and the liquefied gas in the high-pressure vessel 1.
  • the high-pressure container is provided with a heater controller 4 and a heater 5 for controlling, an extraction / collection container 8 for collecting substances to be removed after cleaning, and a control device 100.
  • the inlet 1a for introducing liquefied gas into 1 is always provided below the outlet 1b for discarding liquefied gas from inside the high-pressure vessel 1, and
  • the outlet 1b is provided above the object 31 to be cleaned.
  • the specific gravity of the cleaning material 31 is higher than the specific gravity of the cleaning gas in the liquid state or the supercritical state, whereas that of the organic dirt and the inorganic oxide is lower than the specific gravity of the cleaning gas. Therefore, organic and inorganic contaminants tend to float above the cleaning material in the liquid or supercritical state.
  • the reason why the inlet 1a is required to be lower than the outlet 1b is to allow the liquefied gas, which is the cleaning gas, to be distributed evenly to the part having the concave structure, which is the cleaning object 31.
  • Parts that can be expected to have a cleaning effect in the cleaning method and the cleaning apparatus according to the first embodiment of the present invention are mainly electronic parts used in electronics and related parts.
  • it is a precision machined part by press forming and cutting.
  • lubricating oil which is processing oil
  • this residual processing oil affects the performance characteristics of the next process, such as plating and bonding, and reduces the performance and reliability of devices and products. Therefore, it is effective for parts that require a high level of residue removal, that is, precision cleaning.
  • Applied products include matching layers for ultrasonic sensors and battery electrodes (especially secondary batteries). Others include battery cases, HDD cases (also referred to as housings), and electrolytic capacitor cases. There is.
  • the matching layer for the ultrasonic sensor and the like have countless fine holes and irregularities, and have a microscopic concave structure. Specifically, various materials such as a mixture of an inorganic glass balloon and an organic epoxy, an inorganic glass balloon only, and an organic epoxy only are used.
  • the material for the ultrasonic sensor case is stainless steel, aluminum, or epoxy resin. Processing is performed by deep drawing by press molding, resin molding, and cutting.
  • battery cases are made of aluminum or, more recently, multi-layered steel with plating on aluminum, and are manufactured by press molding. It is.
  • Aluminum is used as the material for the HDD case, and recently, a composite steel material made of aluminum and coated with an organic substance is used and press-molded.
  • the electrolytic capacitor case is press-formed using aluminum alone or a composite steel sheet coated with an organic film on an aluminum material.
  • the present invention can be applied to a composite material in which organic materials and inorganic materials of different materials are laminated, by selecting a process and a gas main which is a cleaning medium to be used. It goes without saying that the present invention is not limited to these product fields, and is also effective for parts having a concave structure processed by press molding and cutting.
  • the temperature and pressure of the cleaning medium are changed to alternately change the cleaning medium between a liquid state and a gas state.
  • the cleaning medium is distributed evenly. Further, if necessary, the cleaning medium is alternately changed between a liquid state and a gas state, and then the cleaning medium is changed to a supercritical state to clean the concave structure surface. To do. Alternatively, after the cleaning medium is alternately changed between a liquid state and a gas state, the cleaning medium is changed to a sub-supercritical state to clean the surface of the concave structure. .
  • the following seven methods are available to spread the cleaning medium evenly to the parts by changing the pressure or temperature to spread the cleaning medium by convection. These operations can be performed by controlling the operation of the liquid pump 3 and the heater controller 4 to control the temperature and the pressure by the control device 100.
  • the supercritical state is set at least once during one cycle of (1) to (6). Control pressure or temperature.
  • Thailand Muchato for pressure control of the control device 1 0 0 0 by the operation control of the liquid pump 3, as shown in FIG. 1 3, the vertical axis Chiyanba the pressure and CO 2 respectively with respect to the time axis of abscissa It is an introduction discharge.
  • ⁇ 2 is introduced, and co 2 is discharged when the pressure in the chamber is low, and the pressure is controlled by repeating this periodically.
  • the time chart for controlling the temperature of the control device 100 by controlling the operation of the heater controller 4 has a vertical axis with respect to the horizontal axis and a vertical axis with respect to the temperature inside the chamber. And the heater power is ON or OFF. The heater power is turned ON when the temperature inside the chamber is increased, and the heater power is turned OFF when the temperature inside the chamber is lowered. The temperature is controlled by repeating this periodically.
  • the cleaning liquid 49 in the main chamber 48 contains a cleaning medium having a temperature higher or lower than the temperature of the cleaning liquid 49. 4 9, by introducing in the liquid state by the liquid pump 3, it is also possible to control the cleaning medium in the main Chiyanba 4 in 8 to a predetermined temperature. Also, as shown in FIG. 18, the temperature inside the main chamber 48 is higher than the temperature of the cleaning liquid 49. Alternatively, the cleaning liquid 49 in the main chamber 48 can be controlled to a predetermined temperature by introducing the low-temperature cleaning medium 50 in a gaseous state by the pump 3A instead of the pump 3.
  • FIG. 19 shows a control device 100 0 having a control program for controlling the operation of the above-described cleaning method, a temperature control relay 53 in the heater controller 4 whose operation is controlled by the control device 100, FIG. 3 is an explanatory diagram showing a pressure control relay 54 in a liquid pump 3 whose operation is controlled by a device 100, and the cleaning device 60.
  • a rotor (a propeller for agitating) 62 disposed on the ceiling side of the main chamber 164 is provided as a control device. Under the control of 1000, it is rotated by the motor 63 to agitate the cleaning medium 65 in the main chamber 164, and the cleaning efficiency of the cleaning object 65 with respect to the cleaning object 47 is improved. You may make it increase.
  • a rotor (a propeller for stirring) disposed on the bottom side of the main chamber 164 is used. ) 62 is rotated by the motor 63 under the control of the control device 100 to agitate the cleaning medium 65 in the main chamber 64, and the cleaning medium 6 for the cleaning object 47 is cleaned.
  • the cleaning efficiency by 5 may be increased.
  • a rotor (a stirring machine) disposed on the side of the main chamber
  • the propeller 62 is rotated by the motor 63 under the control of the control device 100 to agitate the cleaning medium 65 in the main chamber 164, and the propeller 62 is rotated with respect to the cleaning object 47.
  • the cleaning efficiency with the cleaning medium 65 may be increased.
  • a rotor (a propeller for stirring) disposed on the ceiling side of the main chamber 164 is used.
  • ) 62 is rotated by a motor 63 under the control of the controller 100 to agitate the cleaning medium 65 in the main chamber 64, and Under the control, the liquid pump 3 is driven, and the cleaning medium is introduced into the main chamber 64 from a pair of nozzles 66 disposed on the opposite side of the main chamber 64, and the cleaning target 4 7 Cleaning efficiency with cleaning medium 65 You may make it increase.
  • the liquid pump 3 is driven under the control of the controller 100.
  • the cleaning medium is introduced into the main chamber 164 from a number of nozzles 166 radially arranged on the cylindrical side surface of the main chamber 164, and the cleaning medium 165 for the object 407 to be cleaned is introduced. You may make it improve precleaning efficiency.
  • the opposite side surface of the main chamber 164 is controlled under the control of the control device 100.
  • the pair of ultrasonic sensors 67 arranged at the same time or sequentially the ultrasonic waves are applied to the cleaning medium 65 from the side of the main chamber 64, and the cleaning medium 6 with respect to the cleaning target 47 is cleaned.
  • the cleaning efficiency by 5 may be increased.
  • the cylindrical shape of the main chamber 64 is controlled under the control of the control device 100.
  • a number of ultrasonic sensors 67 radially arranged on the side are driven simultaneously or sequentially, and ultrasonic waves are applied to the cleaning medium 65 from the side of the main chamber 64 so that the object to be cleaned 4
  • the cleaning efficiency of the cleaning medium 65 with respect to 7 may be increased.
  • a cylinder of a main chamber 164 is controlled under the control of the controller 100.
  • the cleaning medium may be sequentially introduced into the main chamber 164 from a large number of nozzles 66 radially arranged on the side of the shape to improve the cleaning efficiency of the cleaning target 65 with the cleaning medium 65. Good.
  • the cleaning medium is sequentially introduced from the nozzle 66 into the main chamber 64 in the order of the numbers of the nozzles from 1 to 8 or in the order of 8 forces, etc. Convection is generated in the chamber 164 to further increase the cleaning efficiency.
  • An opening / closing valve or shutter is provided for each nozzle, and the operation of the opening / closing valve or shutter is controlled by the control device 1000, so that the cleaning medium introduction sequence, opening / closing time, ejection pressure, and ejection amount can be arbitrarily controlled. .
  • the tip shape of each nozzle 66 of the first embodiment described above is shown in FIGS.
  • the shape shown in FIG. 27C is preferred.
  • the energy density of the fluid ejected from the nozzle is changed by changing the number of ejection ports, ejection pressure, and ejection time, as shown in Figs. It has a structure to increase the stirring efficiency according to.
  • the press molded and cut cases were cleaned.
  • the cleaning was performed using carbon dioxide as a liquefied gas.
  • the material is SUS 304, and the size is ( ⁇ >: 12 mm, height h: 5 mm. This case has a concave structure.
  • the cleaning processes were as follows: (1) solvent cleaning (1-bromopropane), (2) cleaning in a liquid state with constant pressure, and (3) constant pressure with changing pressure.
  • the press-formed and cut cases were cleaned.
  • the cleaning was performed using carbon dioxide as a liquefied gas.
  • the material is SUS 304
  • the size is ⁇ 12 ⁇
  • the case has a concave structure with a height of 5 mm.
  • the cleaning process includes (1) cleaning in which the temperature is changed at a constant pressure in the liquid state, (2) cleaning in which the temperature is changed while maintaining the pressure and the gas state and the liquid state are changed five times, and (3) only supercritical cleaning. Five processes were examined: cleaning, supercritical cleaning after the process (1), and supercritical cleaning after the process (2).
  • Material was changed using supercritical cleaning after changing the gas state and liquid state five times by changing the pressure at a constant temperature. Washed different cases.
  • the material of the case is (1) aluminum, (2) a composite plate coated with an organic film on aluminum, (3) stainless steel SUS304, (4) Cu, (4) Ti.
  • the case shape is 5 mm long ⁇ 3 O mm wide ⁇ 5 O mm high.
  • 10 cases were washed and analyzed.
  • the cleaning was performed using carbon dioxide as a liquefied gas.
  • the part shape is diameter ⁇ 10.8mm x height 1.15mm. ⁇ Inspection Using a scanning electron microscopy (SEM) and a notch nozzle, use a particle inspection machine (TOPc o ⁇ manufactured by Tohwa WM-1700 / 1500) after cleaning. Measured. Table 4 shows the results.
  • cleaning was performed while changing the structure of the high-pressure vessel and the position where the object to be cleaned was fixed, and the amount of residual oil and the amount of particles were measured.
  • the cleaning was performed using carbon dioxide as a liquefied gas.
  • the cleaning process was most effective with the cleaning method studied in Example 1. “The pressure was changed at a constant temperature, the gas state and the liquid state were repeatedly changed five times, and then the supercritical cleaning was performed. " And washed.
  • the part is a case made by press molding and has a shape of 5 mm long x 30 mm wide x 50 mm high.
  • the structure of the high-pressure vessel and the position where the object to be cleaned is fixed in the container are located at the liquefied gas inlet. I understand.
  • the cleaning effect was examined by changing the shape and depth of the concave structure in order to investigate whether it depends on the depth and shape of the concave structure.
  • the cleaning was performed using carbon dioxide as a liquefied gas.
  • the cleaning process that was the most effective with the cleaning method studied in Example 1 6 Using “supercritical cleaning after changing the pressure at a constant temperature and changing the gas state and liquid state five times,” And washed.
  • the part is a case made by press molding and has a shape of (5 mm in length ⁇ 3 O mm in width ⁇ 50 mm in height), (2) length o mm ⁇ 10 mm in width X 5mm, 3 length 3mmX width 5mmX height 2 Omm, 4 ⁇ 10.8mmX height 5mm m5 ⁇ 5mmX height 5mm.
  • the cleaning process of the press-formed and cut cases was studied. Carbon dioxide and water were used as liquefied gas for cleaning.
  • the material is SUS 304, the size is a case having a recess structure phi 12 mm N height 5 mm. Using this case, we investigated the amount of residue (oil) and the amount of particles, changes in oxides, and wettability by contact angle measurement due to differences in the cleaning process.
  • the cleaning process is as follows: (1) using carbon dioxide, changing the pressure at a constant temperature, changing the gas state and the liquid state five times, changing to the supercritical state, and then cleaning; Remove carbon, introduce water and wash at 200 ° C, 5Mpa, 3 After washing, introduce water into carbon dioxide and wash at 200 ° C, 5Mpa, 4 200 ° C, 5M of water pa only wash
  • the contact angle was measured using an automatic contact angle meter CA-Z manufactured by Kyowa Interface Chemical Co., Ltd.
  • the contact angle is generally used as an index indicating the degree of affinity (affinity or wettability) of a material surface with a liquid. As shown in Fig. 8, the contact angle refers to the angle between the tangent of the droplet and the solid surface at the three-phase interface between solid, liquid, and gas.The contact angle increases as the liquid becomes more compatible with the surface. Become smaller.
  • Table 7 shows the results.
  • the amount of oxides was standardized with cleaning step 1 as 1.
  • the contact angle was measured with pure water as a liquid.
  • oil and inorganic oxides can be removed by combining the carbon dioxide cleaning process with water cleaning at 200 ° C and 5 MPa, and the contact angle is reduced and wettability is improved. It turns out that it can be done.
  • the cleaning effect can be improved by cleaning an object to be cleaned such as a component having a concave structure using a cleaning medium of a liquefied gas or a supercritical fluid.
  • the second embodiment considers reusing the substance removed in the first embodiment. That is, conventionally, in the cleaning using a fluid in a supercritical or subcritical state, various measures have been taken to enhance the cleaning effect. For example, a method for rapidly changing a fluid in a supercritical or subcritical state is disclosed. However, a sudden change in the state of these fluids exerts a physical impact on the object to be cleaned, If it is distorted or severe, chipping may occur. In particular, low-density components and components with thin-walled concaves with complex structures are particularly susceptible to this effect. On the other hand, parts that are processed by press molding, especially electronic parts, use a large amount of lubricating oil to improve accuracy.
  • the cleaning fluid for processed parts contains a large amount of hydrocarbon organic substances, which are the main components of lubricating oil.
  • lubricating oils contain organic substances such as surfactants in addition to hydrocarbon-based organic substances for the purpose of improving processing accuracy.
  • hydrocarbon-based organic substances and organic substances such as surfactants could not be separated and could not be reused.
  • the second and third embodiments attempt to solve these problems.
  • the cleaning method using a pressurized fluid of the present invention is a method of removing impurities adhering to the surface of the object to be cleaned by bringing the pressurized fluid into contact with the object to be cleaned.
  • the cleaning method is characterized in that the density of the pressurized fluid is changed without changing the phase state of the fluid.
  • the density of the object to be cleaned is lower than the liquid density of the fluid, and the density of the fluid is higher or lower than the density of the object to be cleaned by changing at least one of the pressure and temperature of the fluid.
  • the cleaning method using the pressurized fluid of the present invention is a cleaning method for removing impurities attached to the surface of the object to be cleaned by bringing the pressurized fluid into contact with the object to be cleaned.
  • the object to be cleaned immersed in the first fluid is washed by bringing the first fluid into contact with a pressurized second fluid having a different density.
  • a cleaning method is characterized in that the second fluid is brought into contact with an object to be cleaned without changing the phase state of the first fluid.
  • the cleaning effect is achieved by contacting the second fluid having a density lower than the liquid density of the first fluid with the density of the fluid to be cleaned to be lower than the liquid density of the first fluid. Is higher. Also, the first fluid and the second fluid are the same, and the first fluid Is a liquid, and a particularly preferable effect is obtained when the second fluid is a supercritical fluid.
  • a preferable effect can be obtained when the fluid used contains at least one of carbon dioxide, water, ammonia, carbon suboxide, and alcohol.
  • the effect is enhanced when the impurities adhering to the surface of the object to be cleaned to which the present invention is applied are lubricating oils. Furthermore, the effect is enhanced when the object to be cleaned to which the present invention is applied is a component having a concave structure.
  • Figure 29 shows a phase diagram of a fluid such as carbon dioxide and water.
  • the horizontal axis represents temperature
  • the vertical axis represents pressure.
  • the point where the temperature is the critical temperature Tc102 and the pressure is the critical pressure Pc103 (Tc, Pc) is the critical point 101.
  • the supercritical state 104 is a range where the temperature is equal to or higher than the critical temperature Tc102 and the pressure is equal to or higher than the critical pressure Pc103.
  • the fluid In the supercritical state 104, the fluid is in a different phase from the gas 105, the liquid 106, and the solid 107. This supercritical state is different from gas, liquid, solid, etc., and is known to be fluid.
  • the density of a fluid in a supercritical state has a value intermediate between that of a gas and a liquid, and can be adjusted with temperature and pressure conditions.
  • the supercritical state can control not only the density but also the ionic product, dielectric constant, diffusion, etc., and can be used as a method to obtain a high cleaning effect.
  • the liquid state is an extremely effective fluid for cleaning due to its very high density, and in some cases, the liquid state is used.
  • a liquid state in which the pressure and temperature conditions are close to the supercritical state in a relatively high-temperature and high-pressure region is sometimes called a subcritical region state. May be used for
  • the critical temperature Tc102 of carbon dioxide as a fluid is about 31.1.
  • the critical pressure P c 103 of carbon dioxide is about 7.38 MPa.
  • the critical temperature Tc102 is about 374.3 ° C
  • the critical pressure Pc103 is about 22.IMPa.
  • the fluid As the fluid, a substance that is a gas at normal temperature and normal pressure is preferable. Yours, carbon suboxide, etc. are used, but other types of alcohol which can be scattered when the temperature is raised a little may be used. Above all, carbon dioxide and water are harmless even on the human body, so they are easy to handle. In addition, carbon dioxide has a function of decomposing and removing organic substances in a critical state, and water has an etching effect of oxides and the like, and is effective in cleaning parts having a concave structure by utilizing their respective characteristics. .
  • the washing method according to the second embodiment of the present invention is preferably applied to a component having a concave structure.
  • These parts are particularly susceptible to the attachment of lubricating oil, which is a processing oil, and impurities (such as cutting chips) to the recesses.
  • this recess has a complicated structure and is a part to which pressure is applied during processing.Therefore, compared to other flat structures, the adhesion of lubricating oil, which is processing oil, is high, and cleaning agents etc. penetrate Because it is difficult to wash, uneven washing is likely to occur. Therefore, it is highly effective to use a liquid medium (including a subcritical fluid), which has high permeability and a certain degree of viscosity and solubility, and a supercritical state as a cleaning medium.
  • the cleaning method according to the second embodiment of the present invention is a method for removing impurities attached to the surface of the object to be cleaned by bringing a pressurized fluid into contact with the object to be cleaned. Cleaning is performed by changing the density of a fluid under pressure without changing the phase state of the fluid. Particularly, when the density of the object to be cleaned is lower than the liquid density of the fluid, the buoyancy applied to the object to be cleaned is changed by controlling the density of the fluid. As a result, as the density of the fluid repeatedly changes with respect to the density of the object to be cleaned, the object to be cleaned is moved up and down in the fluid to generate a stirring effect. At this time, it is preferable that the fluid pressurized in the supercritical state is a fluid in a supercritical state, since the density can be largely changed. Also has the effect of changing.
  • the gas density at 0.1 MPa and 30 ° C is about 1 kg / m
  • the object to be cleaned preferably has these density ranges.
  • the density of the object to be cleaned is preferably in the range of about 200 kg Zm 3 to about 1500 kg Zm 3 .
  • the density has a preferable range of about 2 0 0 k gZm 3 to about 1 0 0 0 kg Zm 3.
  • a resin molded body or a part made of a lightweight material having a hollow structure therein can be suitably used.
  • a component obtained by solidifying hollow glass beads with epoxy resin or the like is used as an acoustic matching component of an ultrasonic sensor.However, when molding, the hollow glass beads are cut or come off by cutting or the like. Thus, a bead-sized concave structure is formed on the processed surface.
  • the size of the recessed structure is from several ⁇ to several hundreds / im in width and depth, and contains glass fragments broken during processing, making it difficult to remove by simple immersion cleaning. Also, residual oil components at the time of molding and processing may be present on the surface or inside. The effects of the present invention can be exerted for cleaning these stains. Applicable items are not limited to this.
  • FIG. 30, FIG. 32, and FIG. 33 are schematic views of a cleaning apparatus for performing the cleaning method according to the second embodiment of the present invention.
  • Figures 32 and 33 show that the density of the fluid 380 reduces the adherence when the object to be cleaned 2 14 becomes lighter and removes the impurities 3 81, which is repeated.
  • FIG. 7 is a diagram showing that cleaning is performed by the stirring effect.
  • the main components of this device are a pressure vessel 210 as an example of a washing tank, a separation vessel 220 for collecting impurities 381, and a cylinder (or tank) for supplying fluid 380. ) 210, liquid pump 202, fluid regulator 380 temperature controller 204, temperature control device 211, 221 for controlling the temperature of each container, pressure control valve 203, A pressure control device 230 for controlling 2 13 and 2 23.
  • carbon dioxide as the fluid 380
  • an epoxy resin cured molded article of a hollow glass bead (density of about 550 kg / m 3 ) as the object to be cleaned 214.
  • the fluid 380 is introduced into the pressure vessel 210 using the liquid pump 202.
  • the pressure vessel 210 controls the cleaning conditions by using a temperature control device 211 and a pressure control device 230 for the container.
  • the carbon dioxide is sent to the pressure vessel 210 as a supercritical fluid 380 at about 47 ° C and about 12 MPa. Since the density of carbon dioxide under this condition is about 600 kg / m 3 , the object to be washed 2 14 is floating in the fluid of carbon dioxide in the pressure vessel 210. It is in a state. From this initial state? By controlling the pressure in ⁇ constant, the density of the fluid 3 8 0 becomes about 1 O MP a about 5 0 0 kg / m 3, the cleaning object 2 1
  • the object to be cleaned 2 1 4 starts to sink because it is lighter than the density of 4. Further, by controlling the temperature at a constant pressure from the initial state, the density of the fluid 3 8 0 becomes about 5 5 ° C to about 5 0 0 kg / m 3, lighter than the density of the object to be cleaned 2 1 4 The object to be cleaned 2 1 4 starts to sink.
  • the cleaning effect can be improved by increasing the stirring effect.
  • impurities 381 which are components of lubricating oil and the like that are easily dissolved in supercritical carbon dioxide, up to the recesses and narrow parts of the object to be cleaned 214. become.
  • impurities 381, which are components that are difficult to dissolve in supercritical carbon dioxide, such as glass and resin cutting powder, are extruded from recesses and narrow portions of the object to be cleaned 2 14 to facilitate removal. .
  • the stirring blade 383 is operated under the control of a pressure control device 230 or the like.
  • the buoyancy applied to the object to be washed 2 14 can be changed in the same manner as the density change, so that the above-described cleaning effect can be obtained. Les ,.
  • FIG. 31 described later shows a cleaning apparatus according to a third embodiment of the present invention.
  • Fig. 36 shows an example in which a combination of a nozzle with a fluid is used.
  • reference numeral 400 denotes a component (subject to be cleaned) information database for changing cleaning conditions for each component. That is, Based on the information in the information database 400, when the density of the object to be cleaned 214 and the density of the fluid 380 are almost the same, the nozzles can easily close the objects to be cleaned 214 by nozzle injection. I try to solve it. This method simplifies the control of the conditions, since it is not necessary to repeatedly change the density (pressure, temperature) of the fluid.
  • the pressure or temperature condition is slightly changed by making the density of the object to be cleaned 2 14 and the pressurized fluid 380 almost equal in the initial state.
  • the object to be cleaned 2 14 can be moved up and down in the pressurized fluid, so that the cleaning effect can be easily exerted.
  • FIG. 30 shows an example in which the conditions of the entire pressure vessel 210 are controlled.
  • a heating mechanism is installed near the object to be cleaned 214, and the vicinity of the object to be cleaned 214 is controlled. It is also possible to lower the density only by raising the temperature of the substrate and settle the object to be cleaned 214. These conditions may be properly used depending on the type of impurities attached to the object to be cleaned 2 14.
  • a mechanism for assisting the stirring effect is provided outside or inside the pressure vessel 210, the effect will be further enhanced.
  • a rotating blade type stirring mechanism or a stirring mechanism using an ultrasonic vibrator can be used as appropriate.
  • the supercritical carbon dioxide containing impurities removed from the article to be cleaned 214 is sent to the separation vessel 220, where the pressure is controlled to reduce the pressure of the supercritical carbon dioxide, and the gas is turned into a gaseous state. return. At this time, the impurities dissolved in the carbon dioxide are collected as a washing residue 222 to separate as the solubility decreases. In addition, impurities 381 insoluble in carbon dioxide settle out and are collected as washing residues 222. By collecting the impurities 381 in a container different from the pressure container 210, re-adhesion to parts can be prevented.
  • the fluid is exhausted from a gaseous state.
  • the gaseous carbon dioxide can be reused by sending it to a liquid pump while cooling it and pressurizing it again. Therefore, a continuous cleaning device can be provided.
  • the third embodiment is also a method of removing impurities adhering to the surface of the object to be cleaned by bringing the fluid under pressure into contact with the object to be cleaned.
  • This is a method for improving the cleaning effect without changing the phase state of the fluid that has been performed.
  • a particularly excellent effect can be obtained by bringing the second fluid into contact with the object to be cleaned without changing the phase state of the first fluid.
  • the stirring effect by spraying, foaming, etc. on the part to be cleaned is improved.
  • the object to be cleaned such as a part having a concave portion or a narrow portion is cleaned by the high diffusivity of the supercritical fluid. Impurities can be effectively removed deep into hard parts.
  • the pressurized fluid is a fluid in a supercritical state, it is preferable because the density can be largely changed. It also has the effect of changing gender.
  • first fluid and the second fluid are the same, the first fluid is a liquid, and the second fluid is a supercritical fluid. If the two fluids are different, the difference in solubility between them can be used to enhance the cleaning effect.However, if the two fluids are the same, it is necessary to reuse the fluid after cleaning. There is an advantage that it is not necessary to separate the water and efficient cleaning becomes possible.
  • the density of the object to be cleaned is lower than that of the first fluid and higher than that of the second fluid, as in the second embodiment, the second fluid is brought into contact with the object to be cleaned and the buoyancy is increased. By controlling the temperature, a stirring effect can be provided, and the cleaning effect can be improved.
  • FIG. 31 is a schematic diagram of a cleaning apparatus that performs the cleaning method according to the third embodiment of the present invention.
  • the main components of this equipment are a washing tank consisting of a pressure vessel 310, a separation vessel 320 for collecting impurities, a cylinder (or tank) 310 for supplying the first fluid, and a liquid.
  • a pressure control device 330 for controlling 23 is provided.
  • a cylinder (or tank) 341 supplying the second fluid, a liquid pump 3442, a temperature regulator 3444 for the second fluid, and a pressure control valve 3443 are connected.
  • the second fluid is brought into contact with the object to be cleaned 3 14 using the pressure control device 3 30 to be controlled.
  • the pressure control device 3 30 to be controlled.
  • carbon dioxide as the fluid
  • a press-formed part or a part formed by a cutting method with a concave portion represented by a hat-type SUS (stainless steel) case as the object to be cleaned 3 14 explain.
  • the object to be cleaned 3 1 4 was placed in the cleaning jig 3 1 2, installed in the pressure vessel 3 10, and the temperature and pressure conditions were adjusted with the temperature controller 3 0 4 and the pressure control valve 3 0 3.
  • the fluid is introduced into the pressure vessel 310 using a liquid pump 302.
  • the pressure vessel 310 controls the cleaning conditions using the temperature control device 311 and the pressure control device 330 for the vessel.
  • Carbon dioxide is sent to the pressure vessel 310 in a liquid state, and the object to be cleaned 314 is immersed in the liquid and used for washing.
  • a cylinder (or tank) 341 for supplying the second fluid to the object to be cleaned 314 having a concave structure in the pressure vessel 310 is connected to a liquid pump 342 and a second pump.
  • the second flow through the ejection section 3 45 near the object 3 14 Contact carbon dioxide in supercritical state as a body.
  • the object to be cleaned 3 14 having the concave structure is disposed in the pressure vessel 310, and the cleaning effect is promoted by the second fluid while being cleaned in the first fluid.
  • the second fluid ejection part 345 is set to face the opening of the object to be cleaned 314, cleaning can be easily performed to the back which is difficult to clean.
  • the effects are agitation effect by diffusion due to contact of fluids with different densities and the effect of stripping and removing impurities, dissolution and removal effect for impurities with solubility similar to that of fluids with different solubilities, and pressure difference between both fluids. In some cases, the vibration effect due to the impact on the pressure equalization works, and the cleaning effect is expected to be accelerated.
  • the timing at which the second fluid is brought into contact may be continuous or intermittent, may be constant, may be subjected to speed modulation, and may be set according to the object to be cleaned.
  • the second fluid having a different density is brought into contact with the first fluid, thereby achieving the same effect as in the second embodiment.
  • the stirring effect and the like by the vertical movement of the object to be cleaned are obtained, and the cleaning effect is improved.
  • the fluid in which the first fluid and the second fluid containing the impurities removed from the object to be cleaned 3 14 are mixed is sent to the separation vessel 320 and the mixed fluid is controlled by controlling the pressure or the temperature. Separate and collect the moving object, and separate and collect the washing residue 32 2.
  • Each of the separated fluids can be circulated under pressure. Further, if the first and second fluids are the same, the cleaning device and the cleaning operation can be simplified.
  • Parts that can be expected to have a cleaning effect in the cleaning method and the cleaning apparatus according to the second and third embodiments of the present invention are mainly electronic components used in electronics and related components.
  • it is a precision processed part by press molding and cutting.
  • lubricating oil which is a processing oil
  • this residual processing oil affects the performance characteristics of the next process, such as plating and bonding, and lowers the performance and reliability of devices and products. Therefore, it is highly effective in removing parts with high levels of residue, that is, parts that require precision cleaning.
  • Applied products include matching layers for ultrasonic sensors and battery electrodes (especially secondary batteries).
  • Other examples include a battery case, an HDD case (also called a housing), and an electrolytic capacitor case.
  • Various materials are used for the matching layer for the ultrasonic sensor, such as a mixture of an inorganic glass burner and an organic epoxy, an inorganic glass balloon only, and an organic epoxy only.
  • the material for the ultrasonic sensor case is stainless steel, aluminum, or epoxy resin. Processing is performed by deep drawing by press molding, resin molding, and cutting.
  • a battery case is made of aluminum-made or, more recently, a multi-layered steel material in which aluminum is plated.
  • Aluminum is used as the material for the case for HDD, and recently, composite steel, in which aluminum is coated with an organic material, is used and press-formed.
  • the material for the electrolytic capacitor case is also press-formed using aluminum alone or a composite steel sheet coated with an organic film on aluminum-metal material.
  • the present invention can be applied to a composite material in which organic materials and inorganic materials of different materials are laminated by selecting a process or a gas type as a cleaning medium to be used. It goes without saying that the present invention is effective not only in these product fields but also in parts having a concave structure processed by press molding and cutting.
  • the effects of the second and third embodiments of the present invention will be described with reference to specific examples.
  • Hollow glass beads (approximately 30 ⁇ m) were impregnated with epoxy resin, and the heat-cured molded body was cut into a predetermined part shape and then washed.
  • Component shape has a diameter ⁇ 10. 8mmX height 1. 15 mm, a density of about 550 kg / m 3. In this part, there are many bead-sized concave structures due to the hollow glass beads being cut or pulled out on the processing surface.
  • the cleaning effect was evaluated by visual inspection and measuring the amount of insoluble particles adhering to the surface.
  • the appearance was checked visually for chipping, cracking, etc., and for particles, after washing, the presence of impurities on the component surface and inside the recess was observed by a stereoscopic optical microscope and a scanning electron microscope.
  • the cleaning was performed by putting 100 parts of the above-described parts into a basket-shaped cleaning jig and using carbon dioxide as a fluid. The following cleaning methods were compared.
  • the press-molding and the case that had been cut were cleaned.
  • the material is SUS304, the size is ⁇ 12 mm and the height is 5 mm.
  • the effect of the washing was evaluated by washing the case 100 pieces at a time and analyzing it. Inspection, residual oil content examination, and measurement of the amount of insoluble particles adhering to the surface were evaluated.
  • the fluid by the solvent effect of the pressurized fluid is controlled by making the density of the fluid pressurized and controlled contact with an object to be cleaned, such as a part which has a concave structure. Impurities such as lubricating oil dissolved in water can be efficiently removed. Furthermore, by controlling the density of the fluid to be brought into contact with the component to have a stirring effect, impurities insoluble in the fluid can be efficiently removed. Therefore, in the present invention, in the cleaning process, by optimizing the cleaning conditions suitable for the part, it is possible to simultaneously provide the stirring effect in addition to the solvent effect of the fluid under the pressurized pressure, and to efficiently perform the part. It is industrially valuable because it can be washed.
  • the surface of the object to be treated is homogenized by releasing the contact between the objects to be treated to improve the surface. It can also be applied to hydrophilization by forming a surface treatment agent, water repellency by a surface treatment agent, oil repellency, coating the surface with another material, and the like.
  • a treating agent is added to this fluid. By adding it, it is possible to obtain an effect that surface modification can be efficiently performed. Also, by releasing the close contact between the objects to be extracted for extraction, it is possible to efficiently extract components from inside the object to be processed, and to extract oils and fats such as lubricating oil. It can also be applied to the extraction of extracts from plants and the like, and the extraction of fragrances.
  • the properties of the fluid C ⁇ ⁇ ⁇ 2 become compatible with oils and fats such as lubricating oils by pressurizing the case, which is a cleaning treatment, the lubricating oil, which is an impurity, and CO 2 ( The solubility increases).
  • the micro solves the adhesion between molecules, as in the macroscopic dissolving, by changing the temperature and pressure of C_ ⁇ 2, changing the solubility in CO 2 of an object to be extracted (in other words, by utilizing the fact that changing the density of C_ ⁇ 2 is a solvent), after dissolved object extraction into a solvent, lowering the temperature and pressure, and extracted by precipitating an object to be extracted I have.

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning In General (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

A washing method and a washing device capable of increasing a washing effect by washing parts with recessed structures by using a liquefied gas or a supercritical fluid medium, the method comprising the step of removing at least deposit adhered to the surfaces of the recessed structures of the parts (31) with the recessed structures, wherein washing is performed by using the supercritical gas or liquefied gas so that the washing medium can be distributed to the surfaces of the recessed structures.

Description

明 細 書 洗浄方法及び洗浄装置 技術分野  Description Cleaning method and cleaning equipment
本発明は、 凹部構造を有する部品、 具体的には機械加工、 プレス加工などで作 成された部品、 特に電子部品関連に用いられる精密加工部品などの被洗浄物の洗 浄方法及び洗浄装置に関する。 背景技術  The present invention relates to a method and an apparatus for cleaning an object to be cleaned, such as a part having a concave structure, specifically, a part made by machining, pressing, and the like, particularly, a precision-worked part used in connection with an electronic part. . Background art
従来、 機械加工やプレス加工などで作製する部品、 特に電子部品に用いられる ような精密部品は機械加工やプレス加工などの加工後、 「洗浄」 、 「すすぎ」 、 「乾燥」 の 3工程が必須である。 これは機械加工やプレス加工においては加工油 を加工対象物に用いており、 この加工対象物に付着した不要な加工油を除去する 必要があるためである。 特に高度な洗浄効果を必要とする精密部品においては、 洗浄能力の高い洗^^が要求されるのはもちろんであるが、 最終工程である乾燥 工程がきわめて重要視される。  Conventionally, parts manufactured by machining or pressing, especially precision parts used for electronic components, require three steps of washing, rinsing, and drying after machining and pressing. It is. This is because processing oil is used for machining in press working and machining, and it is necessary to remove unnecessary processing oil adhering to this processing object. In particular, precision parts that require a high level of cleaning effect require high-performance cleaning, but the final drying step is extremely important.
このような背景から精密洗浄分野の最終工程では、 フロン 1 1 3や 1, 1 , 1 ―トリクロロェタンの蒸気洗浄を用いて加工油である潤滑油を除去していた。 し かし、 フロン 1 1 3や 1, 1, 1一トリクロロェタンは環境面においてオゾン層 破壌を引き起こしたり、 また、 1, 1, 1一トリクロロェタンに関しては、 人体 に対して中枢神経系に大きな影響を与え、 高濃度における意識不明と呼吸停止な どを引き起こす。 以上のような理由から、 日本では 1 9 8 9年 7月からフロン規 制が始まり、 1 9 9 5年には生産が全廃された。  Against this background, in the final process in the precision cleaning field, lubricating oil, which is a processing oil, was removed using steam cleaning of chlorofluorocarbon (113, 1, 1, 1, 1-trichloroethane). However, chlorofluorocarbons (113, 1, 1, 1-trichloroethane) cause environmental destruction of the ozone layer, and (1,1,1-trichloroethane) affects the human body in the central nervous system. The substance has significant effects on the system, causing unconsciousness and respiratory arrest at high concentrations. For the above reasons, CFC regulations began in Japan in July 1989, and production was completely abolished in 1995.
フロン 1 1 3、 1 , 1, 1 _トリクロロェタンの撤廃によって最近では、 ォゾ ン破壊物質代替え品の液体洗浄剤として非水系では臭素系溶剤 ( 1—プロモプロ パンやプロピルプロマイド) 、炭化水素系溶剤 (ノルマルパラフィン系、 イソパ ラフィン系、 ナフテン系、 芳香族系) 、 ヨウ素系溶剤 (パーフルォロ n—プロピ ルアイオダイド、 パーフルォロ n—プチルアイオダイド、 パーフルォロ n—へキ シルアイオダイド) 、 塩素系溶剤 (脂肪族であるトリクロロエチレン、 テトラク ロロエチレン、 塩ィ匕メチレン、 トランス一 1, 2—ジクロロエチレンと芳香族で あるモノクロ口トルエン、 ベンゾトリフルオライ ド、 パラクロロべンゾトリフル オライド (PCBTF) 、 3, 4ージクロロべンゾトリフルオラィド (3, 4 - DCBTF) ) 、 フッ素系溶剤 (HCFC系の HCFC— 255 c a, HCFCRecently, with the elimination of CFCs, 1,3,1,1,1-trichloroethane, brominated solvents (1-promopropane and propylpromide) and hydrocarbons in non-aqueous liquid cleaners as substitutes for ozone-depleting substances Solvents (Normal paraffin, Isoparaffin, Naphthene, Aromatic), Iodine solvents (Perfluoro n-propyl iodide, Perfluoro n-butyl iodide, Perfluoro n-hexyl) Siliodide), chlorinated solvents (aliphatic trichloroethylene, tetrachloroethylene, chloroidene methylene), trans-1,2-dichloroethylene and aromatic monochloro-toluene, benzotrifluoride, parachlorobenzotrifluoride (PCBTF), 3,4-dichlorobenzotrifluoride (3,4-DCBTF)), fluorinated solvent (HCFC-based HCFC— 255 ca, HCFC
— 141 b、 HCFC- 1 23、 HFC系の HFC— 431 Ome e、 HFC— 356mc f 、 HFC— 338 Pc c、 HF E系の HF E— 7100、 HFE— 7200、 環状 HFC系の OFCPA) 、 シロキサン系溶剤 (揮発性メチルシロ キサン系 (VMS) 、 ドデカメチルシクロへキサシロキサン、 へキサメチルジシ ロキサン、 デカメチルテトラシロキサン) 、 ケトン系溶剤 (メチルェチルケトン— 141 b, HCFC-123, HFC-based HFC—431 Ome e, HFC—356 mcf, HFC—338 Pc c, HFE-based HF E—7100, HFE—7200, cyclic HFC-based OFCPA), siloxane Solvent (volatile methylsiloxane-based (VMS), dodecamethylcyclohexasiloxane, hexamethyldisiloxane, decamethyltetrasiloxane), ketone-based solvent (methylethylketone)
(MEX) ) 、 アルコール系溶剤 (エタノール、 ィソプロパノール (I PA) 、 又は、 ペンクフルォロプロパノール (5FP) ) が用いられている。 (MEX)) and alcoholic solvents (ethanol, isopropanol (IPA), or penfluoropropanol (5FP)).
準水系としては、 炭化水素系 (ノルマルパラフィン系、 ィソパラフィン系、 ナ フテン系、 若しくは、 芳香族系) 、 ダリコールエーテル類 (エチレン系ダルコ一 ノレエーテノレ、 若しくは、 イソプレン系グノレコーノレエーテノレ) 、 N .メチノレ一 2— ビロリ ドン (NMP) 、 テルベンゼン類 (d—リモネン) 、 又は、 シロキサン系 (揮発性メチルシロキサン系: VMS、 ドデカメチルシク口へキサン、 へキサメ チノレジシロキサン、 若しくは、 デカメチノレテトラシロキサン) が用いられる。 水系としては無添加 (脱酸素水、 脱イオン水、 若しくは、 超純水) 、 添加物に よる洗 生改良されたもの (アルカリ系、 酸性、 イオン性界面活性剤、 非イオン 性界面活性剤、 高級アルコール系界面活性剤、 若しくは、 オゾン添加超純水) な どがある。  Examples of the semi-aqueous system include hydrocarbons (normal paraffins, isoparaffins, naphthenes, or aromatics), dalicol ethers (ethylene-based dimethyl alcohols, or isoprene-based gnore cones), N Methinole 2-Villolidone (NMP), terbenzenes (d-limonene), or siloxanes (volatile methylsiloxanes: VMS, dodecamethylcyclohexane, hexamethinoresisiloxane, or decamethi Noretetrasiloxane) is used. Water-free (deoxygenated water, deionized water, or ultrapure water), water-modified with additives (alkaline, acidic, ionic surfactants, nonionic surfactants, Higher alcohol surfactants or ozone-added ultrapure water).
このように、 数多くのフロン代替用液体洗浄剤が製造され、 それらを用いた洗 浄方法が精密部品に使用されている。  In this way, a number of CFC substitute liquid cleaners have been manufactured, and cleaning methods using them have been used for precision parts.
特開平 9一 263994号公報に示されるように電池用ケースでは有機溶剤の 代わりに 700〜900°Cといった非常に高い温度で焼鈍を行い加工油である潤 滑油を焼き飛ばしてしまう洗浄を用いている。 し力 し、 アルミニウム電解コンデ ンサ一に用いられるフィルム積層用アルミニウム板においては圧延板表面に付着 している圧延油、 金属粉などの汚れが焼鈍中に焼き付き、 それが^ II不良や密着 性不良などの不具合を生じるため特開平 6— 272015号公報では軟化処理の 焼鈍において、 焼鈍前にアルミニウム板の表面を鉱酸又は有機酸、 又はその混酸 で洗浄した後、 焼鈍処理を行っている。 As shown in JP-A-9-1263994, in the case for a battery, instead of an organic solvent, annealing is performed at a very high temperature, such as 700 to 900 ° C, and cleaning is performed to burn off a lubricating oil as a processing oil. ing. In the aluminum sheet for film lamination used in aluminum electrolytic capacitors, dirt such as rolling oil and metal powder adhering to the surface of the rolled sheet is seized during annealing, which causes ^ II defects and adhesion. In Japanese Unexamined Patent Publication No. Hei 6-272015, the surface of an aluminum plate is washed with a mineral acid or an organic acid, or a mixed acid thereof before annealing, and then subjected to an annealing treatment in Japanese Patent Application Laid-Open No. Hei 6-272015. .
また、 最近では電池用ケースとして国際公開番号 WO 97/42668, WO 97/42667N WO 98/10475では鋼板を有機溶剤又はアル力リ系脱 月皆剤を用いて脱脂し、 酸洗浄、 めっき後熱処理を施し、 塗布される石油ワックス 系潤滑剤の融点に加熱し、 その表面に溶融した潤滑剤を塗布した表面処理鋼板を 深絞り加工、 D I (Dr awn & I r o n e d) 加工又は D S (D r y S a n d i n g ) カロェ、 DTR (Dr aw i n g & Th i n Re d r aw ! n g ) 加工に用いている。 この潤滑油は加工成型後に 200〜 350°Cの温度で 加熱すると大部分が揮散除去できるため加工後の洗浄を簡略化できる。 In recent years, international publication numbers WO 97/42668 and WO 97/42667 N WO 98/10475 have degreased steel sheets using an organic solvent or an alkaline dewatering agent as a battery case, and after acid cleaning and plating. Heat-treated and heated to the melting point of the petroleum wax-based lubricant to be applied, and the surface-treated steel sheet coated with the molten lubricant on its surface is subjected to deep drawing, DI (Drawn & Ironed) processing or DS (Dry). S anding) It is used for Kaloe and DTR (Drawing & Thin Re draw! Ng) processing. Most of this lubricating oil can be volatilized and removed by heating it at a temperature of 200-350 ° C after working, so cleaning after working can be simplified.
さらに、 特許第 3234541号に記載の HDD (ハードディスクドライブ) の筐体ゃ電角 コンデンサ一、精密電子部品などにはアルミニウム合金素材の片面 又は両面に潤滑剤を含有する有機樹脂皮膜を形成し、 成型加工性を向上させ、 そ の表面に揮発性の潤滑剤を塗布して加工後潤滑剤を加熱し揮発除去している。 別の洗浄方法としては、 特開 2000— 225382号公報で示されるように 超臨界又は亜臨界状態の水で金属部品や金型を洗浄する際に、 洗浄成分として働 く有機又は無機の還元剤を共存させることで金型表面の状態を変えたり、 接触物 により損傷したりすることなく汚れを洗浄除去することが提案されている。 また、 特表昭 59— 502137号公報には超臨界ガスを用いて有機物を除去する洗浄 方法が提案されている。 また、 特許第 2832190号公報には、 超臨界又は亜 臨界状態の流体を急速に状態変化させることによって洗浄効果を高める方法が開 示されている。  In addition, the housing of a HDD (hard disk drive) described in Patent No. 3234541, an electric angle capacitor, precision electronic parts, etc. are formed by forming an organic resin film containing a lubricant on one or both sides of an aluminum alloy material and molding. The workability is improved, and a volatile lubricant is applied to the surface, and after processing, the lubricant is heated and volatilized and removed. As another cleaning method, as disclosed in JP-A-2000-225382, an organic or inorganic reducing agent acting as a cleaning component when cleaning a metal part or a mold with supercritical or subcritical water. It has been proposed to clean and remove dirt by coexisting without changing the condition of the mold surface or damaging by contact objects. Further, Japanese Patent Publication No. 59-502137 proposes a cleaning method for removing organic substances using a supercritical gas. Further, Japanese Patent No. 2832190 discloses a method for improving the cleaning effect by rapidly changing the state of a fluid in a supercritical or subcritical state.
このように、 成型加工においては成型加工性を向上させる潤滑油は必要不可欠 なものであり、 潤滑油の開発こそがより高度な成型加工の開発といっても過言で はない。 し力、し、 この成型加工に用いられる潤滑油は加工された精密部品を製品 として使用する場合、 完全に除去されていないと製品性能の劣化や汚染など製品 不良の原因を引き起こす。 従って、 成型加工においては潤滑油の塗布と同様に、 この潤滑油を完全除去する洗浄方法の開発も必要不可欠である。 しカゝし、 溶剤を用いた洗浄方法、 特に脱脂に関しては代替えフロン剤など環境 面を意識してオゾン層破壊に影響を与えない溶剤として多く用いられているが、 環境への影響はあまりわかっていない。 例えば、 2 _プロモプロパンは医薬■農 薬 ·感光剤の中間体やアルキル化剤などとして使われてきた既存物質である。 ま た、 洗浄にかかる時間、 コストも非常に問題になる。 成型加工された部品がどの ような製品に使用されるかで、 加工後の洗浄レベルが決まる。 そのため、 洗浄力 の高い溶剤を用いることが望ましいが、 洗浄力の高い溶剤は上述したように環境 に与える影響は未知であり、 そのため影響の低い溶剤は洗浄力も低いため時間と 工程 (洗浄回数) も増やさなければならない。 As described above, lubricating oil that improves moldability is indispensable in molding, and it is not an exaggeration to say that the development of lubricating oil is the development of more advanced molding. The lubricating oil used in the molding process, when processed precision parts are used as products, if not completely removed, may cause product defects such as deterioration of product performance and contamination. Therefore, it is essential to develop a cleaning method that completely removes the lubricating oil as well as the application of the lubricating oil in the molding process. However, cleaning methods using solvents, especially for degreasing, are often used as solvents that do not affect the ozone layer depletion, such as alternative fluorocarbons, with an awareness of the environment, but their impact on the environment is not widely understood. Not. For example, 2-bromopropane is an existing substance that has been used as an intermediate for pharmaceuticals, agricultural chemicals, and photosensitizers, and as an alkylating agent. In addition, the time and cost required for cleaning are also very important. The cleaning level after processing is determined by the product for which the molded part is used. Therefore, it is desirable to use a solvent with high detergency, but the effect of a high detergency on the environment is unknown as described above, and a solvent with a low detergency also has low detergency. Must also be increased.
例えば、 電池ケース、 アルミニウム電解コンデンサーのように加工後、 めっき が施されるものに関しては精密洗浄が必要であり、 脱脂、 不純物除去、 活性化を 行うため、 洗浄工程を実施するのに長時間を要する。 また、 HD Dに使われる筐 体などは、 使用時の脱ガス防止が重要であり、 脱脂処理が重要視される。 また、 溶剤洗浄の場合には、 溶剤の管理 (消防法) 、 人体面への処置 (労働安全衛生 法) や、 廃液回収処理など非常に管理面において取り扱いが複雑で、 それに対す る労力も多く生産効率を低下させていた。  For example, those that are plated after processing, such as battery cases and aluminum electrolytic capacitors, require precision cleaning, and require a long time to perform the cleaning process to perform degreasing, impurity removal, and activation. It costs. It is important to prevent degassing during use of housings used for HDDs, and degreasing is important. In the case of solvent cleaning, handling is very complicated in terms of solvent management (Fire Service Law), treatment of human body (Occupational Safety and Health Law), and waste liquid collection processing. Production efficiency was reduced.
そこで、 溶剤を用いた洗浄方法をできるだけ簡略化、 あるいは溶剤洗浄をしな くても良い方法として有機樹脂被膜と揮発性潤滑油などの組み合わせによる加工 後、 焼鈍で揮発性潤滑油を蒸究させる方法が用いられるようになつてきた。 しか し、 この方法も完全に潤滑油を蒸発させれるわけではなく、 ミクロレベルではど うしても加工表面に油分あるいは不純物などが僅かに残留してしまう。 また、 特 にプレス成形加工された深絞り部品において、 凹部などの複雑構造を有する部品 などは、 潤滑油を蒸発させるために焼鈍しても、 構造上、 完全に蒸発できない場 合や、 プレス用潤滑油がステンレスなどの結晶粒界などに刷り込まれて不純物が 残る場合が多く、 少しでも油分や不純物などの残留物が存在する状態で焼鈍を行 うと、 油分などが炭化したり、 不純物が焼き付いたりして、 しみやむらによる不 良や脱ガスによって応用される製品の性能を低下させていた。 しかも、 加工後の 洗浄を簡素化、 又は精密洗浄を用いなくとも製品の性能低下を防止するために用 いられる表面処理鋼板においても、 表面処理鋼板の製造時に従来通りの有機溶剤 又はアルカリ系脱脂剤を用いて脱脂し、 酸洗浄、 めっき後、 熱処理を施している ため、 加工前に洗浄を行う力、 加工後に洗浄を行うかだけの差で環境面や人体面 に対する影響は殆ど改善されていない。 Therefore, the cleaning method using a solvent is simplified as much as possible, or as a method that does not require solvent cleaning, after processing with a combination of an organic resin film and a volatile lubricating oil, the volatile lubricating oil is distilled by annealing. Methods have come to be used. However, this method also does not completely evaporate the lubricating oil, and any amount of oil or impurities remains on the machined surface at any micro level. Also, in the case of deep-drawn parts that are press-formed, especially those that have complex structures such as recesses, even if they are annealed to evaporate the lubricating oil, they cannot be completely evaporated due to their structure. Lubricating oil is often imprinted on the grain boundaries of stainless steel etc., leaving impurities.If annealing is carried out in the presence of even a small amount of oil, impurities, etc., the oil will carbonize or seize impurities. In some cases, the performance of the applied product was reduced due to defects due to spots and unevenness and degassing. In addition, surface-treated steel sheets that are used to simplify post-processing cleaning or to prevent performance degradation without the use of precision cleaning, use the same organic solvents used in the production of surface-treated steel sheets. Alternatively, degreasing using an alkaline degreasing agent, acid cleaning, plating, and heat treatment are applied.Therefore, the effect on the environment and the human body only depends on the cleaning power before processing and whether cleaning is performed after processing. Little improvement.
環境面を考慮した別の洗浄方法として、 超臨界や亜臨界状態の二酸化炭素や水 で洗浄する洗浄法が提案されている。 この方法は、 超臨界や亜臨界状態の二酸ィ匕 炭素や水に洗浄成分として働く有機又は無機の還元剤を共存させ、 金型の表面状 態変化、 接触物による損傷等を生じることなく洗浄することを重要視するプラス チック成型レンズプリズムなどの精密金型や金型周辺の部品などに応用されてい るだけで、 主に有機物の除去が主たる目的であった。  As another environmentally friendly cleaning method, a cleaning method using supercritical or subcritical carbon dioxide or water has been proposed. In this method, an organic or inorganic reducing agent acting as a cleaning component is co-existed in supercritical or subcritical carbon dioxide or water, without causing a change in the surface state of the mold and damage due to a contact object. It was mainly applied to precision dies such as plastic molded lens prisms and other parts around the dies that emphasize cleaning, and the main purpose was to remove organic substances.
し力、し、 プレス成型加工で加工される部品、 特に電子部品に関しては加工時に 発生する不純物は潤滑油に代表される有機物だけでなく、 切削くずや粉体等の無 機物単体や有機物と無機物が混在することが多く、 幾ら有機物の除去に効果があ つても無機物と有機物が混在するような環境では有機物除去の効果が得られ難か つ 7こ。  In the case of parts processed by press forming, especially electronic parts, the impurities generated during processing are not only organic substances such as lubricating oil, but also organic substances such as cutting chips and powders and organic substances. Inorganic substances are often mixed, and even if it is effective in removing organic substances, it is difficult to obtain the effect of removing organic substances in an environment where inorganic substances and organic substances are mixed.
また、 洗浄システムが非常に高価で洗浄時間がかかるため洗浄物としては金型 など非常に高価で繰り返し使用される部品が主たる応用であつた。  In addition, since the cleaning system is very expensive and requires a lot of cleaning time, the main application was the extremely expensive and repeatedly used parts such as dies.
従って、 本発明の目的は、 上記問題を解決することにあって、 凹部構造を有す る部品などのなどの被洗浄物を液化ガスや超臨界流体の洗浄媒体を用いて洗浄す ることで洗浄効果を向上させることができる、 凹部構造を有する部品などの被洗 浄物の洗浄方法及び洗浄装置を提供することにある。 発明の開示  Accordingly, an object of the present invention is to solve the above-mentioned problems, and to clean an object to be cleaned such as a component having a concave structure using a liquefied gas or a supercritical fluid cleaning medium. An object of the present invention is to provide a method and an apparatus for cleaning an object to be cleaned, such as a component having a concave structure, which can improve a cleaning effect. Disclosure of the invention
本発明は、 上記目的を達成するため、 以下のように構成している。  The present invention is configured as described below to achieve the above object.
本発明の第 1態様によれば、 回部構造を有する部品の少なくとも上記凹部構造 の表面に付着する付着物を除去する洗浄方法において、  According to a first aspect of the present invention, there is provided a cleaning method for removing at least a substance adhering to a surface of the concave structure of a component having a loop structure,
上記付着物が付着した上記部品を洗浄槽に収納し、  The above-mentioned parts with the above-mentioned deposits are stored in a washing tank,
上記洗浄槽内に洗浄媒体を導入して上記部品を上記洗浄媒体雰囲気中に存在さ せ、 上記洗浄媒体に対して温度や圧力を変ィ匕させて上記洗浄媒体を液体状態と気 体状態との交互の状態変化を行い、 上記凹部構造表面に洗浄媒体が行き渡るよう にして洗浄を行う洗浄方法を提供する。 A cleaning medium is introduced into the cleaning tank so that the components are present in the cleaning medium atmosphere, and the temperature and pressure of the cleaning medium are changed to change the cleaning medium into a liquid state and a gas state. So that the cleaning medium spreads over the surface of the concave structure. And a cleaning method for performing cleaning.
本究明の第 6態様によれば、 凹部構造を有する部品の少なくとも上記凹部構造 の表面に付着する付着物を除去する洗浄方法において、  According to a sixth aspect of the present invention, there is provided a cleaning method for removing at least deposits adhering to a surface of the concave structure of a component having the concave structure,
上記付着物が付着した上記部品を洗浄槽に収納し、  The above-mentioned parts with the above-mentioned deposits are stored in a washing tank,
上記洗浄槽内に第 1洗浄媒体を導入して上記部品を上記第 1洗浄媒体の雰囲気 中に存在させ、 上記第 1洗浄媒体に対して温度や圧力を変化させて上記第 1洗浄 媒体を超臨界状態に変化させて、 上記凹部構造の上記表面に上記第 1洗浄媒体が 行き渡るようにして洗浄を行った後、 更に第 2洗浄媒体としての液体による液体 洗浄を上記部品に行う洗浄方法を提供する。  The first cleaning medium is introduced into the cleaning tank, the parts are present in the atmosphere of the first cleaning medium, and the temperature and pressure of the first cleaning medium are changed to exceed the first cleaning medium. A cleaning method is provided in which, after changing to a critical state, the first cleaning medium is cleaned over the surface of the recess structure, and the liquid is further cleaned with a liquid as a second cleaning medium. I do.
本発明の第 9態様によれば、 洗浄槽と、  According to a ninth aspect of the present invention, there is provided a cleaning tank,
上記洗浄槽に洗浄媒体を供給する洗浄媒体供給部と、  A cleaning medium supply unit for supplying a cleaning medium to the cleaning tank;
上記洗浄媒体に温度変化を与える加熱装置と、  A heating device for changing the temperature of the cleaning medium,
上記洗浄媒体に圧力変化を与える加圧装置と、  A pressure device for applying a pressure change to the cleaning medium,
上記洗浄媒体供給部、 加熱装置、 加圧装置とを制御する制御手段とを備え、 上記加熱装置、 力 PI圧装置の少なくとも一方を制御することにより、 上記洗浄媒 体に対して液体状態と気体状態との交互の状態変化を行つた後、 洗浄媒体を超臨 界状態、 あるいは亜臨界状態に変ィヒさせて上記洗浄槽内の部品の凹部構造表面の 洗浄を行う洗浄装置を提供する。  A control unit for controlling the cleaning medium supply unit, the heating device, and the pressurizing device; and controlling at least one of the heating device and the force PI pressure device to form a liquid state and a gas with respect to the cleaning medium. Provided is a cleaning apparatus for cleaning a surface of a concave structure of a component in the cleaning tank by changing a cleaning medium to a supercritical state or a subcritical state after performing a state change alternately with a state.
本発明の第 1 0態様によれば、 洗浄媒体を導入する導入口と洗浄媒体を排出す る排出口とを有するとともに洗浄対象物を収納する洗浄槽と、  According to a tenth aspect of the present invention, there is provided a cleaning tank having an inlet for introducing a cleaning medium and an outlet for discharging the cleaning medium, and containing an object to be cleaned,
上記導入口を介して上記洗浄媒体を上記洗浄槽に供給する洗浄媒体供給部と、 上記洗浄媒体に温度変化を与える加熱装置と、  A cleaning medium supply unit that supplies the cleaning medium to the cleaning tank through the introduction port, and a heating device that changes the temperature of the cleaning medium,
上記洗浄媒体に圧力変化を与える加圧装置と、  A pressure device for applying a pressure change to the cleaning medium,
上記洗浄媒体供給部、 加熱装置、 加圧装置とを制御する制御手段と、 上記排出口から排出された洗浄媒体を回収し洗浄後の除去物質を収集する回収 部とを備え、  A control unit that controls the cleaning medium supply unit, the heating device, and the pressurizing device; and a collection unit that collects the cleaning medium discharged from the discharge port and collects a removed substance after cleaning,
上記加熱装置、 カロ圧装置の少なくとも一方を制御することにより、 上記洗浄槽 に収納された凹部構造を有する上記洗浄対象物に超臨界ガス又は液化ガスを用い て上記凹部構造表面に洗浄媒体が行き渡るようにして洗浄を行うと共に、 上記導 入口が上記排出口よりも下側に位置し、 上記排出口は洗浄対象物よりも上側に位 置している洗浄装置を提供する。 By controlling at least one of the heating device and the calo-pressure device, a cleaning medium spreads over the surface of the concave structure using a supercritical gas or a liquefied gas for the cleaning target having the concave structure housed in the cleaning tank. Cleaning as described above, and An inlet is provided below the outlet, and the outlet is provided above the object to be cleaned.
本発明の第 2 0態様によれば、 カロ圧された流動体を被洗浄物に接触させること によって上記被洗浄物の表面に付着する不純物を除去する洗浄方法において、 上記被洗浄物の密度が上記流動体の液体密度以下であって、 上記流動体の圧力、 温度の少なくとも一つの条件を変化することによって、 上記流動体の密度を上記 被洗浄物の密度に対して高低を繰り返して上記被洗浄物に上記流動体を接触させ る加圧流動体による洗浄方法を提供する。  According to a twenty-fifth aspect of the present invention, in the cleaning method for removing impurities adhering to the surface of the object to be cleaned by bringing the fluid under pressure into contact with the object to be cleaned, the density of the object to be cleaned is reduced. The liquid density of the fluid is equal to or less than the density of the fluid, and at least one of the pressure and the temperature of the fluid is changed to change the density of the fluid repeatedly with respect to the density of the object to be cleaned. Provided is a cleaning method using a pressurized fluid in which the fluid is brought into contact with a cleaning object.
本発明の第 2 1態様によれば、 カロ圧された流動体を被洗浄物に接触させること によって上記被洗浄物の表面に付着する不純物を除去する洗浄方法において、 上記被洗浄物の密度が上記流動体の液体密度以下であって、 上記流動体の圧力、 ?显度の少なくとも一つの条件を変化することによって、 上記被洗浄物の密度と上 記流動体の液体密度を略等しくした状態で、 上記流動体に外力による変動を与え て上記被洗浄物に上記流動体を接触させる加圧流動体による洗浄方法を提供する。 本発明の第 2 3態様によれば、 加圧された流動体を被洗浄物に接触させること によつて上記被洗浄物の表面に付着する不純物を除去する洗浄方法において、 加圧された第 1の流動体の中に浸漬してなる上記被洗浄物に対して、 上記第 1 の流動体に対して密度の異なる力 Π圧された第 2の流動体を接触させて洗浄する際 に上記第 1の流動体の相状態を変化させることなく、 上記第 2の流動体を上記被 洗浄物に接触してなる加圧流動体による洗浄方法を提供する。  According to a twenty-first aspect of the present invention, in a cleaning method for removing impurities adhering to the surface of the object to be cleaned by bringing the fluid under pressure into contact with the object to be cleaned, the density of the object to be cleaned is reduced. The liquid density of the fluid is less than or equal to the fluid pressure,? By changing at least one condition of the degree, the density of the object to be cleaned is substantially equal to the liquid density of the fluid, and the fluid is subjected to a fluctuation due to an external force to give the object to be cleaned the A method for cleaning with a pressurized fluid in contact with a fluid is provided. According to a twenty-third aspect of the present invention, in the cleaning method for removing impurities adhering to the surface of the object to be cleaned by bringing the pressurized fluid into contact with the object to be cleaned, The above-mentioned object to be washed, which is immersed in the first fluid, is contacted with the second fluid, which has a different density and is pressed against the first fluid, to be washed. Provided is a cleaning method using a pressurized fluid in which the second fluid is brought into contact with the object to be cleaned without changing the phase state of the first fluid.
すなわち、 本発明は上記課題を解決するために、 凹部構造を有する部品の少な くとも上記凹部構造表面に付着する付着物を除去する洗浄方法において、 超臨界 ガス又は液ィ匕ガスを用いて上記凹部構造表面に洗浄媒体が満遍なく行き渡るよう にして洗浄を行うものである。  That is, in order to solve the above-mentioned problems, the present invention provides a cleaning method for removing at least deposits adhering to the surface of the concave structure, using a supercritical gas or a liquid gas. The cleaning is carried out such that the cleaning medium is evenly distributed on the surface of the concave structure.
この構成により、 凹部構造表面に超臨界ガスや液化ガスを用いた洗浄媒体が満 遍なく行き渡り、 凹部に付着した付着物を容易に、 早く洗浄することができる。 図面の簡単な説明  With this configuration, the cleaning medium using a supercritical gas or a liquefied gas is evenly distributed on the surface of the concave structure, and the adhered substance that has adhered to the concave portion can be easily and quickly cleaned. BRIEF DESCRIPTION OF THE FIGURES
本発明のこれらと他の目的と特徴は、 添付された図面についての好ましい実施 形態に関連した次の記述から明らかになる。 この図面においては、 These and other objects and features of the invention are set forth in the preferred embodiments with reference to the accompanying drawings. It becomes clear from the following description relating to the form. In this drawing,
図 1は、 本発明の第 1実施形態における洗浄媒体の状態図であり、  FIG. 1 is a state diagram of a cleaning medium according to the first embodiment of the present invention,
図 2 A, 図 2 B , 図 2 C , 図 2 Dは、 本発明の第 1実施形態における凹部構造 を有する部品の例を示す断面図及び斜視図であり、  FIG. 2A, FIG. 2B, FIG. 2C, and FIG. 2D are a cross-sectional view and a perspective view showing an example of a component having a concave structure according to the first embodiment of the present invention.
図 3は、 本発明の第 1実施形態のおける洗浄システムを示す説明図であり、 図 4 A, 図 4 Bは、 本発明の第 1実施形態における洗浄工程を示すグラフであ り、  FIG. 3 is an explanatory diagram illustrating a cleaning system according to the first embodiment of the present invention. FIGS. 4A and 4B are graphs illustrating cleaning steps according to the first embodiment of the present invention.
図 5は、 本発明の第 1実施形態のおける洗浄状態を示す断面図であり、 図 6は、 本発明の第 1実施形態の実施例 1における洗浄対象物を示す説明図で あり、  FIG. 5 is a cross-sectional view illustrating a cleaning state in the first embodiment of the present invention, and FIG. 6 is an explanatory diagram illustrating an object to be cleaned in Example 1 of the first embodiment of the present invention.
図 7は、 本発明の第 1実施形態の実施例 3における洗浄対象物を示す斜視図で あり、  FIG. 7 is a perspective view showing an object to be cleaned in Example 3 of the first embodiment of the present invention,
図 8は、 本発明の第 1実施形態の実施例 3における接触角を説明する説明図で あり、  FIG. 8 is an explanatory diagram illustrating a contact angle in Example 3 of the first embodiment of the present invention,
図 9は、 水の物性の温度依存性を示す説明図であり、  FIG. 9 is an explanatory diagram showing the temperature dependence of physical properties of water.
図 1 0 A、 図 1 0 Bは、 マク口的に汚れが残りやすい部分を矢印で示す説明図 とミクロ的に汚れが残りやすい部分を矢印で示す説明図であり、  FIG. 10A and FIG. 10B are an explanatory diagram showing a portion where dirt is likely to remain on the mouth by arrows and an explanatory diagram showing a portion where dirt is likely to remain on the microscopic scale.
図 1 1は、 マクロ的に汚れが残りやすい部分を矢印で示す説明図であり、 図 1 2は、 本発明の第 1実施形態の洗浄方法における洗浄対象物の他の例であ る超音波センサーケースの概略断面図であり、  FIG. 11 is an explanatory view showing portions where dirt is likely to remain macroscopically by arrows, and FIG. 12 is an ultrasonic wave which is another example of the object to be cleaned in the cleaning method of the first embodiment of the present invention. It is a schematic sectional view of a sensor case,
図 1 3は、 本発明の第 1実施形態の洗浄方法における圧力制御時のタイムチヤ 一トであり、  FIG. 13 is a time chart at the time of pressure control in the cleaning method of the first embodiment of the present invention,
図 1 4は、 本発明の第 1実施形態の洗浄方法における温度制御時のタイムチヤ ートであり、  FIG. 14 is a time chart at the time of temperature control in the cleaning method of the first embodiment of the present invention,
図 1 5は、 本発明の第 1実施形態の変形例にかかる洗浄装置において 2層式の チヤンバーを用いて圧力を高めるときの説明図であり、  FIG. 15 is an explanatory diagram when the pressure is increased using a two-layer type chamber in the cleaning device according to the modification of the first embodiment of the present invention.
図 1 6は、 本発明の第 1実施形態の変形例にかかる洗浄装置において 2層式の チヤンバーを用いて圧力を下げるときに 2層に分けている扉を開いた状態の説明 図であり、 図 1 7は、 本発明の第 1実施形態の変形例にかかる洗浄装置において液体状態 で熱媒体を供給する状態の説明図であり、 FIG. 16 is an explanatory diagram of a state where a door divided into two layers is opened when the pressure is reduced by using a two-layer type chamber in the cleaning device according to the modification of the first embodiment of the present invention, FIG. 17 is an explanatory diagram of a state in which the heating medium is supplied in a liquid state in the cleaning device according to the modification of the first embodiment of the present invention.
図 1 8は、 本発明の第 1実施形態の変形例にかかる洗浄装置において気体状態 で熱媒体を供給する状態の説明図であり、  FIG. 18 is an explanatory diagram of a state in which the heating medium is supplied in a gaseous state in the cleaning device according to the modification of the first embodiment of the present invention.
図 1 9は、 本発明の第 1実施形態の洗浄装置の制御装置と温度制御用リレーと 圧力制御用リレーとの関係を示す説明図であり、  FIG. 19 is an explanatory diagram showing a relationship between the control device, the temperature control relay, and the pressure control relay of the cleaning device according to the first embodiment of the present invention.
図 2 0は、 本発明の第 1実施形態の変形例にかかる洗浄装置において洗浄効率 を高めるために搔き回し用のプロペラを回転させる状態の説明図であり、 図 2 1は、 本発明の第 1実施形態の変形例にかかる洗浄装置において洗浄効率 を高めるために搔き回し用のプロペラを回転させる状態の説明図であり、 図 2 2は、 本発明の第 1実施形態の変形例にかかる洗浄装置において洗浄効率 を高めるために搔き回し用のプロペラを回転させる状態の説明図であり、 図 2 3は、 本発明の第 1実施形態の変形例にかかる洗浄装置において洗浄効率 を高めるために搔き回し用のプロペラを回転させるとともにノズルからも洗浄媒 体を供給する状態の説明図であり、  FIG. 20 is an explanatory diagram of a state in which a propeller for turning is rotated to increase cleaning efficiency in a cleaning device according to a modified example of the first embodiment of the present invention. FIG. FIG. 22 is an explanatory diagram of a state in which a propeller for turning is rotated in order to increase cleaning efficiency in the cleaning apparatus according to the modification of the first embodiment. FIG. 22 shows a modification of the first embodiment of the present invention. FIG. 23 is an explanatory view showing a state in which a propeller for turning is rotated in order to increase the cleaning efficiency in such a cleaning device. FIG. 23 shows an example in which the cleaning device according to the modification of the first embodiment of the present invention improves the cleaning efficiency. FIG. 4 is an explanatory view of a state in which a propeller for rotation is rotated to supply a cleaning medium from a nozzle.
図 2 4は、 本発明の第 1実施形態の変形例にかかる洗浄装置において洗浄効率 を高めるためにノズルから洗净媒体を供給する状態の説明図であり、  FIG. 24 is an explanatory diagram of a state where a cleaning medium is supplied from a nozzle in order to increase cleaning efficiency in a cleaning device according to a modification of the first embodiment of the present invention.
図 2 5は、 本発明の第 1実施形態の変形例にかかる洗浄装置において洗浄効率 を高めるために搔き回し用のプロペラを回転させるとともに超音波センサーから 超音波を供給する状態の説明図であり、  FIG. 25 is an explanatory diagram showing a state in which a propeller for turning is rotated to increase cleaning efficiency and ultrasonic waves are supplied from an ultrasonic sensor in a cleaning apparatus according to a modification of the first embodiment of the present invention. Yes,
図 2 6は、 本発明の第 1実施形態の変形例にかかる洗浄装置において洗浄効率 を高めるために超音波センサーから超音波を供給する状態の説明図であり、 図 2 7 A、 図 2 7 B、 図 2 7 Cは、 本発明の第 1実施形態の変形例にかかる洗 浄装置での様々なノズル形状を示す概略断面図であり、  FIG. 26 is an explanatory diagram of a state in which ultrasonic waves are supplied from an ultrasonic sensor in order to increase cleaning efficiency in a cleaning device according to a modification of the first embodiment of the present invention. B, FIG. 27C are schematic cross-sectional views showing various nozzle shapes in a cleaning device according to a modification of the first embodiment of the present invention.
図 2 8は、 本発明の第 1実施形態の変形例にかかる洗浄装置において洗浄効率 を高めるために複数のノズルから洗浄媒体を順に供給して対流を生じさせる状態 の説明図であり、  FIG. 28 is an explanatory diagram of a state in which a cleaning medium is sequentially supplied from a plurality of nozzles to generate convection in order to increase cleaning efficiency in a cleaning device according to a modification of the first embodiment of the present invention.
図 2 9は、 二酸化炭素や水等の流動体 (流体) の状態図であり、  Figure 29 is a phase diagram of a fluid such as carbon dioxide and water.
図 3 0は、 本発明の第 2実施形態における洗浄装置の概略図であり、 図 3 1は、 本発明の第 3実施形態における洗浄装置の概略図であり、 FIG. 30 is a schematic diagram of a cleaning device according to the second embodiment of the present invention, FIG. 31 is a schematic diagram of a cleaning device according to a third embodiment of the present invention,
図 3 2は、 被洗浄物の密度が流動体の密度よりも大きい場合の被洗浄物と流動 体との関係を示す概略説明図であり、  FIG. 32 is a schematic explanatory view showing the relationship between the object to be cleaned and the fluid when the density of the object to be cleaned is higher than the density of the fluid.
図 3 3は、 被洗浄物の密度が流動体の密度よりも小さい場合の被洗浄物と流動 体との関係を示す概略説明図であり、  FIG. 33 is a schematic explanatory view showing the relationship between the object to be cleaned and the fluid when the density of the object to be cleaned is smaller than the density of the fluid.
図 3 4は、 被洗浄物の密度と流動体の密度とが大略等しくかつプロペラを回転 させない場合の被洗浄物と流動体との関係を示す概略説明図であり、  FIG. 34 is a schematic explanatory view showing the relationship between the object to be cleaned and the fluid when the density of the object to be cleaned and the density of the fluid are substantially equal and the propeller is not rotated.
図 3 5は、 被洗浄物の密度と流動体の密度とが大略等しく力つプロペラを回転 させる場合の被洗浄物と流動体との関係を示す概略説明図であり、  FIG. 35 is a schematic explanatory view showing the relationship between the object to be cleaned and the fluid when the propeller is rotated so that the density of the object to be cleaned and the density of the fluid are substantially equal,
図 3 6は、 図 3 0の洗浄装置に情報データベースを設けた場合の概略図である。 発明を実施するための最良の形態  FIG. 36 is a schematic diagram in the case where an information database is provided in the cleaning apparatus of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の記述を続ける前に、 添付図面において同じ部品については同じ参照符 号を付している。  Before continuing the description of the present invention, the same reference numerals are used for the same parts in the accompanying drawings.
以下、 図面を参照して本発明における実施形態を説明する前に、 本発明の概要 について説明する。  Hereinafter, an outline of the present invention will be described before describing embodiments of the present invention with reference to the drawings.
本発明における第 1発明は、 凹部構造を有する部品の少なくとも上記凹部構造 表面に付着する付着物を除去する洗浄方法において、 超臨界ガス又は液化ガスを 用いて上記凹部構造表面に洗浄媒体が満遍なく行き渡るようにして洗浄を行う洗 浄方法である。  According to a first aspect of the present invention, there is provided a cleaning method for removing at least deposits adhering to the surface of the concave structure of a component having the concave structure. This is a cleaning method in which cleaning is performed as described above.
本発明の第 2発明は、 第 1発明において、 凹部構造を有する部品の表面全体に 洗浄媒体が満遍なく行き渡るようにして洗浄を行う洗浄方法である。  A second invention of the present invention is the cleaning method according to the first invention, wherein the cleaning is performed such that the cleaning medium is evenly distributed over the entire surface of the component having the concave structure.
本発明の第 3発明は、 囬部構造を有する部品の少なくとも上記凹部構造表面に 付着する付着物を除去する洗浄方法において、 付着物が付着した部品を洗浄槽に 収納し、 上記洗浄槽内に洗浄媒体を導入し上記部品を上記洗浄媒体雰囲気中に存 在させ、 上記洗浄媒体に対して温度や圧力を変化させて上記洗浄媒体を液体状態 と気体状態との交互の状態変化を行い、 上記凹部構造表面に洗浄媒体が満遍なく 行き渡るようにして洗浄を行う洗浄方法である。  According to a third aspect of the present invention, there is provided a cleaning method for removing at least a substance adhering to at least the surface of the concave structure of a part having a partial structure, wherein the part having the substance adhering thereto is stored in a cleaning tank, and The cleaning medium is introduced, the parts are present in the cleaning medium atmosphere, and the temperature and pressure of the cleaning medium are changed to alternately change the cleaning medium between a liquid state and a gas state. This is a cleaning method in which the cleaning medium is evenly distributed over the surface of the recess structure.
この構成により液体状態の密度、 粘性などの物性制御、 液体、 気体、 超臨界状 態の状態変化に寄与する物理的なエネルギーを利用することで洗浄効率を向上さ せる。 With this configuration, control of physical properties such as density and viscosity in liquid state, liquid, gas, supercritical The cleaning efficiency is improved by utilizing physical energy that contributes to the state change of the state.
本発明の第 4発明は、 第 3発明において上記洗浄媒体に対して液体状態と気体 状態との交互の状態変化を行った後、 洗浄媒体を超臨界状態に変化させて凹部構 造表面の洗浄を行う洗浄方法である。  According to a fourth aspect of the present invention, in the third aspect, after the cleaning medium is alternately changed between a liquid state and a gas state, the cleaning medium is changed to a supercritical state to clean the concave structure surface. Is a cleaning method.
本発明の第 5発明は、 第 3発明において、 上記洗浄媒体に対して液体状態と気 体状態との交互の状態変化を行った後、 洗浄媒体を亜超臨界状態に変化させて凹 部構造表面の洗浄を行う洗浄方法である。  In a fifth aspect of the present invention, in the third aspect of the present invention, the concave structure is formed by changing the cleaning medium into a sub-supercritical state after alternately changing the cleaning medium between a liquid state and a gas state. This is a cleaning method for cleaning the surface.
本発明の第 6発明は、 第 3又は 4発明において、 洗浄媒体に対して液体状態か ら温度一定で圧力を変化させて気体状態と液体状態とを交互に繰り返し状態変化 をさせる洗浄方法である。  A sixth invention of the present invention is the cleaning method according to the third or fourth invention, wherein the state of the cleaning medium is changed from a liquid state to a constant temperature at a constant temperature to alternately repeatedly change a gas state and a liquid state. .
本発明の第 7発明は、 第 3又は 4発明において、 洗浄媒体に対して温度一定で 圧力を変化させて気体状態と液体状態とを交互に繰り返し状態変化をさせる洗浄 方法である。  The seventh invention of the present invention is the cleaning method according to the third or fourth invention, wherein the pressure is changed at a constant temperature with respect to the cleaning medium, and the state is alternately and repeatedly changed between a gas state and a liquid state.
本発明の第 8発明は、 凹部構造を有する部品の少なくとも上記凹部構造表面に 付着する付着物を除去する洗浄方法において、 付着物が付着した部品を洗浄槽に 収納し、 上記洗浄槽内に洗浄媒体を導入し上記部品を上記洗浄媒体雰囲気中に存 在させ、 上記洗浄媒体に対して温度や圧力を変化させて洗浄媒体を超臨界状態に 変化させて、 上記凹部構造表面に洗浄媒体が満遍なく行き渡るようにして洗浄を 行う洗浄方法である。  An eighth invention of the present invention is directed to a cleaning method for removing at least a substance adhering to at least the surface of the concave structure of a part having a concave structure, wherein the part having the substance adhering thereto is stored in a cleaning tank, and the part is cleaned in the cleaning tank. A medium is introduced and the above-mentioned parts are present in the atmosphere of the cleaning medium, and the temperature and pressure of the cleaning medium are changed to change the cleaning medium to a supercritical state. This is a cleaning method in which cleaning is performed in a distributed manner.
本発明の第 9発明は、 凹部構造を有する部品の少なくとも上記凹部構造表面に 付着する付着物を除去する洗浄方法において、 付着物が付着した部品を洗浄槽に 収納し、 上記洗浄槽内に洗浄媒体を導入し上記部品を上記洗浄媒体雰囲気中に存 在させ、 上記洗浄媒体に対して温度や圧力を変化させて洗浄媒体を超臨界状態に 変化させて、 上記凹部構造表面に洗浄媒体が満遍なく行き渡るようにして洗浄を 行つた後、 更に液体洗浄を行う洗浄方法である。  A ninth invention of the present invention is directed to a cleaning method for removing at least a substance adhering to the surface of the concave structure of a part having a concave structure, wherein the part having the substance adhering thereto is stored in a cleaning tank, and the part is cleaned in the cleaning tank. A medium is introduced and the above-mentioned parts are present in the atmosphere of the cleaning medium, and the temperature and pressure of the cleaning medium are changed to change the cleaning medium to a supercritical state. This is a cleaning method in which the liquid is washed after it has been spread all over, and then the liquid is further washed.
本発明の第 1 0発明は、 第 1 ~ 9発明のいずれか 1つにおいて、 洗浄媒体は二 酸化炭素ガス、 水である洗浄方法である。  A tenth invention of the present invention is the cleaning method according to any one of the first to ninth inventions, wherein the cleaning medium is carbon dioxide gas and water.
本発明の第 1 1発明は、 凹部構造を有する部品の少なくとも上記凹部構造表面 に付着する付着物を除去する洗浄方法において、 付着物が付着した部品を洗浄槽 に収納し、 上記洗浄槽内に洗浄媒体として二酸ィ匕炭素を導入し上記部品を上記洗 浄媒体雰囲気中に存在させ、 上記洗浄媒体に対して温度や圧力を変化させて洗浄 媒体を超臨界状態に変化させて、 上記凹部構造表面に洗浄媒体が満遍なく行き渡 るようにして洗浄を行った後、 更に洗浄媒体として新たに水を導入し当該洗浄媒 体である水を超臨界状態に変化させて凹部構造表面の洗浄を行う洗浄方法である。 本発明の第 1 2発明は、 洗浄槽と、 上記洗浄槽に洗浄媒体を供給する洗浄媒体 供給部と、 上記洗浄媒体に温度変化を与える加熱装置と、 上記洗浄媒体に圧力変 化を与えるカロ圧装置と、 上記洗浄媒体供給部、 加熱装置、 加圧装置とを制御する 制御手段とを備え、 上記加熱装置、 加圧装置の少なくとも一方を制御することに より、 洗浄槽に収納された凹部構造を有する洗浄対象物に超臨界ガス又は液ィ匕ガ スを用いて上記囬部構造表面に洗浄媒体が満遍なく行き渡るようにして洗浄を行 う洗浄装置である。 An eleventh invention of the present invention provides a method for manufacturing a component having a concave structure, comprising: In the cleaning method for removing adhering substances adhered to the surface, the parts to which the adhering substances are adhered are stored in a cleaning tank, dioxin carbon is introduced as a cleaning medium into the cleaning tank, and the parts are placed in an atmosphere of the cleaning medium. The cleaning medium is changed to a supercritical state by changing the temperature and the pressure with respect to the cleaning medium, and the cleaning medium is evenly distributed on the surface of the concave structure. This is a cleaning method in which water is newly introduced as a medium, and the water as the cleaning medium is changed to a supercritical state to clean the surface of the concave structure. A twelfth invention of the present invention is directed to a cleaning tank, a cleaning medium supply unit for supplying a cleaning medium to the cleaning tank, a heating device for changing the temperature of the cleaning medium, and a heater for changing the pressure of the cleaning medium. A pressure device, and control means for controlling the cleaning medium supply unit, the heating device, and the pressurizing device. By controlling at least one of the heating device and the pressurizing device, a recess accommodated in the cleaning tank. This is a cleaning apparatus for performing cleaning by using a supercritical gas or liquid gas on a cleaning object having a structure so that a cleaning medium can be evenly distributed on the surface of the partial structure.
本発明の第 1 3発明は、 第 1 2発明において、 加熱装置、 カロ圧装置の少なくと も一方を制御することにより、 上記洗浄媒体に対して液体状態と気体状態との交 互の状態変化を行った後、 洗浄媒体を超臨界状態、 あるいは亜臨界状態に変 さ せて凹部構造表面の洗浄を行う洗浄装置である。  According to a thirteenth aspect of the present invention, in the first aspect, at least one of the heating device and the caropressure device is controlled to change the state of the cleaning medium between a liquid state and a gas state alternately. After cleaning, the cleaning medium is changed to a supercritical state or a subcritical state to clean the surface of the concave structure.
本発明の第 1 4発明は、 洗浄媒体を導入する導入口と洗浄媒体を排出する排出 口とを有するとともに洗浄対象物を収納する洗浄槽と、 導入口を介して洗浄媒体 を上記洗浄槽に供給する洗浄媒体供給部と、 上記洗浄媒体に温度変ィ匕を与える加 熱装置と、 上記洗浄媒体に圧力変化を与えるカロ圧装置と、 上記洗浄媒体供給部、 加熱装置、 カロ圧装置とを制御する制御手段と、 上記排出口から排出された洗浄媒 体を回収し洗浄後の除去物質を収集する、 回収部の一例としての、 抽出捕集容器 とを備え、 上記加熱装置、 加圧装置の少なくとも一方を制御することにより、 洗 浄槽に収納された凹部構造を有する洗浄対象物に超臨界ガス又は液化ガスを用い て上記凹部構造表面に洗浄媒体が満遍なく行き渡るようにして洗浄を行うと共に、 上記導入口が上記排出口よりも下側に位置し、 上記排出口は洗浄対象物よりも上 側に位置している洗浄装置である。  A fourteenth invention of the present invention is directed to a cleaning tank having an inlet for introducing a cleaning medium and an outlet for discharging the cleaning medium and storing an object to be cleaned, and the cleaning medium being supplied to the cleaning tank via the inlet. A cleaning medium supply unit for supplying, a heating device for applying a temperature change to the cleaning medium, a caro pressure device for applying a pressure change to the cleaning medium, a cleaning medium supply unit, a heating device, and a caro pressure device. A heating means, a pressurizing device, comprising: a control means for controlling; and an extracting and collecting container as an example of a collecting part, which collects a cleaning medium discharged from the discharge port and collects a removed substance after cleaning. By controlling at least one of the above, cleaning is performed by using a supercritical gas or a liquefied gas so that the cleaning medium is evenly distributed over the surface of the concave structure, which is housed in the cleaning tank and having the concave structure. , The inlet is located below the outlet, and the outlet is located above the object to be cleaned.
本発明の第 1 5発明は、 第 1から 1 1発明のいずれか 1つにおいて、 凹部構造 を有する部品はプレス成型、 あるいは切削加工法によつて形成された構造体であ ることを特徴とする洗浄方法である。 According to a fifteenth invention of the present invention, in any one of the first to eleventh inventions, The cleaning method is characterized in that the part having the structure is a structure formed by press molding or cutting.
本宪明の第 1 6発明は、 第 1から 1 1発明のいずれか 1つにおいて、 上記回部 構造を有する部品はプレス成型加工法又は切削加工法によって形成された構造体 であり、 上記構造体は主に金属材料から構成されることを特徴とする洗浄方法で ある。  A sixteenth invention according to the present invention is the component according to any one of the first to eleventh inventions, wherein the component having the circuit structure is a structure formed by a press molding method or a cutting method, A cleaning method characterized in that the body is mainly composed of a metal material.
本発明の第 1 7発明は、 第 1 6発明において、 上記凹部構造を有する部品を形 成する金属材料は主成分が F e、 A l、 C u、 又は、 T iから構成されることを 特徴とする洗浄方法である。  According to a seventeenth aspect of the present invention, in the sixteenth aspect, the metal material forming the component having the concave structure has a main component of Fe, Al, Cu, or Ti. This is a characteristic cleaning method.
本発明の第 1 8発明は、 第 1から 1 1発明のいずれか 1つにおいて、 上記凹部 構造を有する部品はプレス成型加工法又は切削加工法によつて形成されたれた構 造体であり、 上記構造体は主に有機材料から構成されることを特徴とする洗浄方 法である。  The eighteenth invention of the present invention is the invention according to any one of the first to eleventh inventions, wherein the component having the concave structure is a structure formed by a press molding method or a cutting method, The cleaning method is characterized in that the structure is mainly composed of an organic material.
本発明の第 1 9発明は、 第 1 8発明において、 上記凹部構造を有する部品を形 成する有機材料は主成分がポリイミド、 又は、 エポキシからなることを特徴とす る洗浄方法である。  A nineteenth invention of the present invention is the cleaning method according to the eighteenth invention, wherein the organic material forming the component having the concave structure is mainly composed of polyimide or epoxy.
本発明の第 2 0発明は、 第 1から 1 1発明のいずれか 1つにおいて、 上記凹部 構造を有する部品はプレス成型加工法又は切削加工法によつて形成された構造体 であり、 上記構造体は主にセラミック材料から構成されることを特徴とする洗浄 方法である。  A twenty-second invention of the present invention is the component according to any one of the first to eleventh inventions, wherein the component having the concave structure is a structure formed by a press molding method or a cutting method, A cleaning method characterized in that the body is mainly composed of a ceramic material.
本発明の第 2 1発明は、 第 2 0発明において、 上記凹部構造を有する部品を形 成するセラミック材料は主成分が S i 0 2、 P Z T、 A g、 又は Cからなること を特徴とする洗浄方法である。 Second first invention of the present invention, in the second 0 invention, the ceramic material that form a part having the recess structure is composed mainly characterized by comprising the S i 0 2, PZT, A g, or C This is a cleaning method.
本発明の第 2 2発明は、 第 1から 1 1発明のいずれか 1つにおいて、 上記凹部 構造を有する部品は、 主に金属と有機材料の複合体、 主に有機材料とセラミック 材料の複合体、 あるいは主に金属、 有機材料とセラミック材料の複合体から構成 される洗浄方法である。  A twenty-second invention of the present invention is the component according to any one of the first to eleventh inventions, wherein the component having the concave structure is mainly a composite of a metal and an organic material, and mainly a composite of an organic material and a ceramic material. This is a cleaning method mainly composed of a composite of metal, organic material and ceramic material.
本発明の第 2 3発明は、 第 1から 1 1発明のいずれか 1つにおいて、 凹部構造 を有する部品は、 超音波センサー用の整合層、 あるいは電子部品用、 超音波セン サー用、 電池用、 HD D (ハードディスクドライブ) 用、 電解コンデンサー用の 各種ケースであることを特徴とする洗浄方法である。 According to a twenty-third invention of the present invention, in any one of the first to eleventh inventions, the component having the concave structure is a matching layer for an ultrasonic sensor or an ultrasonic sensor. This cleaning method is characterized by various cases for servers, batteries, HDDs (hard disk drives), and electrolytic capacitors.
ここで洗浄媒体としては一例として液化ガスの超臨界状態もしくは液体状態 (亜臨界状態を含む) を用いる。 液ィ匕ガスの種類としては主に二酸化炭素 (C O 2) 又は水 (H 20) 単体か、 二酸ィ匕炭素と水の混合を用いる。 部品を構成する 主たる材料や汚染物質の構成物に応じてどの洗浄媒体を使用する力、、 あるいハー ドの洗浄媒体を組み合わせるかを選択する。 Here, as a cleaning medium, for example, a supercritical state or a liquid state (including a subcritical state) of a liquefied gas is used. The type of liquid gas is mainly carbon dioxide (CO 2 ) or water (H 20 ) alone or a mixture of carbon dioxide and water. Select which cleaning media to use and which hard media to combine, depending on the main material and contaminant composition of the component.
例えば、 洗浄部品の主成分が金属で、 汚染物が油脂などの有機系と無機系の酸 化物である場合は、 まず二酸化炭素を用いて有機系の汚れを洗浄した後に、 水を 導入して無機系の酸化物などをエツチング除去する。  For example, if the main components of the cleaning parts are metals and the contaminants are organic and inorganic oxides such as oils and fats, first clean the organic dirt using carbon dioxide and then introduce water. Etching removal of inorganic oxides and the like.
また本発明は、 液体状態の密度、 粘性などの物性制御、 液体、 気体、 超臨界状 態の状態変化に寄与する物理的なエネルギーを利用することで洗浄効率を向上さ せる。 特に二酸ィヒ炭素の液体状態は容器内の温度又は圧力を変化させることで液 体の密度、 粘' I、生など物性の制御や気体状態、 液体状態、 超臨界状態の状態制御も 簡単で、 制御温度、 圧力差が比較的常温、 大気圧に近いため扱いやすい。  Further, the present invention improves the cleaning efficiency by controlling physical properties such as density and viscosity in a liquid state, and utilizing physical energy that contributes to a change in state of a liquid, a gas, or a supercritical state. In particular, the liquid state of carbon dioxide can be easily controlled by changing the temperature or pressure inside the container to control physical properties such as liquid density, viscosity, and raw material, and to control gaseous, liquid, and supercritical states. It is easy to handle because the control temperature and pressure difference are relatively close to normal temperature and atmospheric pressure.
また環境側面、 人体側面においても悪影響は少ない。 洗浄したい対象物に応じ て、 物性、 状態変化を適切に組み合わせることで、 物性、 状態変化に伴って生じ る物理的エネルギーを汚染物 (加工油や切削くずなど) に与えて除去したり、 洗 浄物に対する汚染物の付着力を低下させ洗浄効率を向上できる。 例えば、 まず高 圧容器内に二酸化炭素の液体状態を導入して、 温度又は圧力を変化させて、 液体 状態と気体状態を繰り返す。 この工程で状態変化に伴う二酸化炭素の物性も同時 に変化することで、 汚染物に物理的なエネルギーが作用して汚染物の付着強度を 低下させる。 その後、 超臨界状態に移行することで油脂などの有機成分を溶解、 分解する。 二酸化炭素の超臨界状態では有機物などの油脂成分を溶融、 分解可能 であることは公知であるが、 気体、 液体状態の状態変化と組み合わせることで有 機物や無機物、 有機物と無機物の混合物などの汚染物を効率的に洗浄できる。 本発明の洗浄物の一例としては、 プレス成型で加工された部品、 あるいは切削 でカロェされた部品であって、 凹部構造を有することを特徴とする。 特に凹部構造 を有する部品は、 凹部構造部分に汚染物 (加工油や切削くずなど) が構造面から あるいは加工時に圧力などが加わって刷り込まれたり、 塑性変形に伴う切削くず などが残り易く、 洗浄時においても最も洗浄し難い。 し力 し、 液化ガスの気体、 液体状態及び超臨界状態を適切に使うことで、 特に凹部構造を有する部品の洗浄 効率を向上でき、 二酸化炭素に関しては、 常温で気体になるため乾燥工程が必要 ないことを特徴とする。 洗浄物である部品は主にプレス成型加工や切削加工を用 いて作製された部品で、 その部品の主成分は金属材料、 有機材料、 セラミック材 料、 又はそれらの複合物から構成されることを特徴とする。 その金属材料の主成 分は F e、 Aし C u、 T iのどれかを含む。 有機材料の主成分としてはポリイ ミド、 又は、 エポキシ、 又は、 熱可塑性樹脂で、 セラミック材料の主成分として は S i 02、 A g、 P Z T、 又は、 Cであることを特徴とする。 洗浄媒体は二酸 化炭素、 水などを洗浄対象物に応じて選択する。 There are few adverse effects on the environment and human body. By appropriately combining physical properties and state changes according to the object to be cleaned, physical energy generated due to physical properties and state changes can be given to contaminants (processing oil, cutting waste, etc.) to remove or wash. It is possible to reduce the adhesion of contaminants to the purified material and improve the cleaning efficiency. For example, first, a liquid state of carbon dioxide is introduced into a high-pressure vessel, and the temperature or pressure is changed to repeat the liquid state and the gas state. In this process, the physical properties of carbon dioxide accompanying the state change also change at the same time, causing physical energy to act on the contaminants and lowering the adhesion strength of the contaminants. After that, it shifts to the supercritical state to dissolve and decompose organic components such as fats and oils. It is known that oil and fat components such as organic substances can be melted and decomposed in the supercritical state of carbon dioxide.However, organic and inorganic substances, and mixtures of organic and inorganic substances can be combined with changes in the state of gases and liquids. Contaminants can be efficiently cleaned. As an example of the cleaning object of the present invention, a part processed by press molding or a part caroed by cutting has a concave structure. In particular, in the case of parts with a concave structure, contaminants (such as processing oil and cutting waste) are not Or, it is easily imprinted by applying pressure during processing, and cutting debris due to plastic deformation is apt to remain. By properly using the gas, liquid state and supercritical state of the liquefied gas, it is possible to improve the cleaning efficiency, especially for parts with concave structures, and for carbon dioxide, it becomes a gas at room temperature, so a drying process is necessary. It is characterized by not having. Parts that are to be cleaned are mainly made by press molding or cutting, and the main components of the parts are composed of metallic materials, organic materials, ceramic materials, or composites thereof. Features. The main component of the metallic material includes any of Fe, A, Cu, and Ti. Polyimide as the main component of the organic material, or an epoxy, or a thermoplastic resin, characterized in that as the main component of the ceramic material S i 0 2, A g, PZT, or a C. The cleaning medium is selected from carbon dioxide, water, etc. according to the object to be cleaned.
本発明の洗浄適合部品は、 特に超音波センサーの整合層やケース、 電池用のケ ースゃ電極、 HD D用のケース (筐体) 、 又は、 電解コンデンサーのケースなど 凹部構造を有し、 洗浄レベルとして精密洗浄が必要でかつ付加価値が高く、 1つ あたりの容積が小さいという条件を兼ね備えた電子部品であることを特徴とする。 以下、 本発明の第 1実施形態の洗浄方法及びその装置について図 1〜図 4 Bを 用いて説明する。  The cleaning compatible part of the present invention has a concave structure such as a matching layer or case of an ultrasonic sensor, a case ゃ electrode for a battery, a case (housing) for an HDD, or a case of an electrolytic capacitor. It is an electronic component that requires precision cleaning as a cleaning level, has high added value, and has a small volume per unit. Hereinafter, a cleaning method and a cleaning apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4B.
まず、 洗浄方法で用いられる超臨界流体及び液ィ匕ガスについて説明する。  First, the supercritical fluid and liquid gas used in the cleaning method will be described.
図 1に横軸に温度 Tを、 縦軸に圧力 Pをとつた洗浄媒体の状態図を示す。 図 1 內の三重点 (図の黒丸 2 1 ) は気体、 液体、 固体の三相が共存する状態である。 三重点の温度よりも低い温度では固体とその蒸気が平衡を保ち、 その時の蒸気の 圧力は昇華曲線 (図 1の 2 0 ) で与えられる。 この曲線より低い圧力では固体が 昇華して気体となり、 高い圧力では気体は凝固して固体になる。 三重点よりも高 い温度では液体とその蒸気が平衡となり、 このときの圧力が飽和蒸気圧として蒸 気曲線 (図1の2 2 ) で表される。 この曲線よりも低い圧力では液体は全部気化 し、 また、 これよりも高い圧力では蒸気はすべて液化する (領域 Aとする) 。 圧 力を一定にして温度を変化させてもこの曲 f泉を超えると液体が蒸気に、 また蒸気 が液体になる。 この蒸気曲線の終点を臨界点 (図 1の白丸 2 3 ) といい、 液体と 気体の区別がつかなくなる状態が存在し、 気液の境界面も消失する。 この臨界点 より高温の状態では、 気液共存状態を生じることなく液体と気体の間を移り変わ ることができる。 この領域ではいくら密度を増大させても凝縮が起こらなくなる。 この臨界温度 (Tc) 以上でかつ臨界圧力 (P c) 以上の状態 (領域 Bとする) を超臨界流体という。 Figure 1 shows the state diagram of the cleaning medium with the temperature T on the horizontal axis and the pressure P on the vertical axis. The triple point in Fig. 1 (2) (black circle 21 in the figure) is a state in which the three phases of gas, liquid and solid coexist. At temperatures lower than the triple point temperature, the solid and its vapor are in equilibrium, and the vapor pressure at that time is given by the sublimation curve (20 in Fig. 1). At pressures lower than this curve, the solids sublime and become gas, and at higher pressures the gas solidifies and becomes solid. At temperatures higher than the triple point, the liquid and its vapor are in equilibrium, and the pressure at this time is represented by the vapor curve (22 in Fig. 1) as the saturated vapor pressure. At pressures lower than this curve, all liquids evaporate, and at pressures higher than this, all vapors liquefy (region A). Even if the pressure is kept constant and the temperature is changed, the liquid becomes steam and the vapor becomes liquid if the temperature exceeds this spring. The end point of this vapor curve is called the critical point (open circle 23 in Fig. 1), and there is a state where it is impossible to distinguish between liquid and gas, and the gas-liquid interface disappears. This critical point At higher temperatures, the transition between liquid and gas can occur without gas-liquid coexistence. No condensation occurs in this region, no matter how high the density. The state (region B) above the critical temperature (Tc) and above the critical pressure (Pc) is called supercritical fluid.
また、 液体ガスとは、 図 1に示すような温度範囲は三重点の温度以上で臨界温 度以下、 圧力は三重点の圧力以上でかつ蒸気曲線より圧力の高い領域の状態をい ラ。  Liquid gas refers to a state where the temperature range shown in Fig. 1 is higher than the triple junction temperature and lower than the critical temperature, and the pressure is higher than the triple junction pressure and higher than the vapor curve.
そして、 液化ガス状態から超臨界流体に至るまでの過程で、 図 1に示すような 臨界点よりも温度、 圧力が低い状態である亜臨界状態を経ることになる。 ここで 亜臨界状態とは、 上記臨界温度 (Tc) 及び臨界圧力 (P c) の 0. 6倍までの 範囲にある状態をいい、 従って、 次の亜臨界温度及び亜臨界圧力の範囲にある状 態を定義する。  Then, in the process from the liquefied gas state to the supercritical fluid, it goes through a subcritical state where the temperature and pressure are lower than the critical point as shown in Fig. 1. Here, the subcritical state refers to a state within a range of up to 0.6 times the critical temperature (Tc) and the critical pressure (Pc). Define the state.
臨界温度 (Tc) >亜臨界温度 0. 6 X臨界温度 (Tc)  Critical temperature (Tc)> subcritical temperature 0.6 X critical temperature (Tc)
臨界圧力 (P c) >亜臨界温度 0. 6 X臨界温度 (P c)  Critical pressure (Pc)> Subcritical temperature 0.6 X Critical temperature (Pc)
このように洗浄媒体は、 液体ガスから亜臨界状態を経て超臨界状態へと変化し てい  Thus, the cleaning medium changes from a liquid gas through a subcritical state to a supercritical state.
ここで使用される超臨界流体又は液化ガスは二酸化炭素 (co2) もしくは水The supercritical fluid or liquefied gas used here is carbon dioxide (co 2 ) or water.
(H20) である。 (H 2 0).
二酸化炭素の臨界温度 (Tc) =31. 1°C、 臨界圧力 (P c) =7. 38M P aであり、 水は臨界温度 (Tc) =374. 1 °C、 臨界圧力 (P c) =22. Critical temperature of carbon dioxide (Tc) = 31.1 ° C, Critical pressure (Pc) = 7.38M Pa, water critical temperature (Tc) = 374.1 ° C, Critical pressure (Pc) = 22.
04MP aである。 04MPa.
次に、 本発明の第 1実施形態の洗浄システムの概要について図 3を用いて説明 する。 本発明の第 1実施形態の洗浄装置は、 少なくとも、 洗浄槽の一例である高 圧容器 1、 洗浄媒体を保有している液化供給槽 (又は高圧ボンべ) 2、 液化供給 槽 2から洗浄媒体となる液化ガスを高圧容器 1に供給する液体ポンプ (洗浄媒体 供給部の一例に相当) 3、 高圧容器 1内を加熱するヒータ 5、 ヒータ 5を制御す ることにより高圧容器 1内の液化ガスの温度制御を行うヒータコントローラ 4、 高圧容器 1内の洗浄後の廃液を回収する廃液回収槽 6、 廃液回収槽 6に回収され た液化ガスを気化する気化器 7、 洗浄後の除去物質を収集する、 回収部の一例と しての、 抽出捕集容器 8を備えるように構成している。 高圧容器 1内は、 液体ポ ンプ 3による液化ガス供給により圧力が変化させられ、 ヒータコントローラ 4の 制御の下でヒータ 5により液ィヒガスの温度が制御される。 そして、 上記温度や上 記圧力を制御することにより、 洗浄媒体である超臨界流体 (本実施形態では超臨 界ガス) 、 亜臨界流体 (第 1実施形態では亜臨界ガス) 、 や液体ガスを発生させ て、 洗浄媒体により洗浄物を洗浄する。 また、 図 3において、 1 0 0 0は上記洗 浄装置の洗浄動作を制御する制御装置であり、 液体ポンプ 3とヒータコントロー ラ 4と気化器 7と抽出捕集容器 8とに接続されて、 それぞれの動作を制御するよ うにしている。 Next, an outline of the cleaning system according to the first embodiment of the present invention will be described with reference to FIG. The cleaning device according to the first embodiment of the present invention includes at least a high-pressure vessel 1 as an example of a cleaning tank, a liquefaction supply tank (or high-pressure cylinder) 2 holding a cleaning medium, and a liquefaction supply tank 2. Liquid pump that supplies liquefied gas to the high-pressure vessel 1 (equivalent to an example of a cleaning medium supply unit) 3, a heater 5 for heating the inside of the high-pressure vessel 1, and a liquefied gas in the high-pressure vessel 1 by controlling the heater 5. Heater controller 4 for controlling temperature of wastewater, Waste liquid collecting tank 6 for collecting waste liquid after washing in high-pressure vessel 1, Vaporizer 7 for vaporizing liquefied gas collected in waste liquid collecting tank 6, Collecting removed substances after washing An example of the collection department And an extraction / collection container 8. The pressure in the high-pressure vessel 1 is changed by the supply of the liquefied gas by the liquid pump 3, and the temperature of the liquid gas is controlled by the heater 5 under the control of the heater controller 4. By controlling the temperature and the pressure described above, the supercritical fluid (supercritical gas in this embodiment), the subcritical fluid (subcritical gas in the first embodiment), and the liquid gas, which are the cleaning medium, are removed. Generate and wash the cleaning object with the cleaning medium. In FIG. 3, reference numeral 100 denotes a control device for controlling the cleaning operation of the cleaning device. The control device is connected to the liquid pump 3, the heater controller 4, the vaporizer 7, and the extraction and collection container 8, and Each operation is controlled.
ここで、 液化ガスを洗浄媒体として用いたが、 高圧容器 1内に、 直接、 亜臨界 流体や超臨界流体を供給しても良く、 また気化器 7は亜臨界流体、 又は超臨界流 体を気化するものであってもよい。  Here, the liquefied gas is used as the cleaning medium, but a subcritical fluid or a supercritical fluid may be directly supplied into the high-pressure vessel 1, and the vaporizer 7 supplies the subcritical fluid or the supercritical fluid. It may be vaporized.
次に、 洗浄物について説明する。 図 2 A、 図 2 B、 図 2 C、 図 2 Dに示される ように、 凹部を有するプレス成型加工された部品 (2 7 , 2 8, 2 9, 3 0 ) 又 は切削加工によって形成された部品 (2 7 , 2 8, 2 9 , 3 0 ) は、 特に凹部に 付着物 2 6である加工油である潤滑油や不純物 (切削くずなど) を付着させやす い。 また、 この凹部部分は入り組んだ構造であること、 加工時に圧力が加わる部 分であることから他の平坦な構造部分と比較すると加工油である潤滑油や不純物 (切削くずなど) の付着性が高く、 洗猫 ljなどが浸透し難いため洗浄むら、 洗浄 残りが発生しやすい。  Next, the cleaning object will be described. As shown in Figure 2A, Figure 2B, Figure 2C and Figure 2D, a press-formed part (27, 28, 29, 30) with a recess is formed by cutting. Parts (27, 28, 29, 30) are particularly prone to deposit lubricating oil, which is a processing oil, which is a deposit 26, and impurities (such as cutting chips) in the recesses. In addition, since the concave portion has a complicated structure and is a portion to which pressure is applied during processing, the adhesion of processing oil lubricating oil and impurities (such as cutting chips) is lower than that of other flat structure portions. High, washing cat lj etc. are difficult to penetrate, so uneven washing and washing residue are likely to occur.
より具体的に、 洗浄対象物又は被洗浄物である部品のゴミが残る場所 4 0の具 体例としては、 プレス成型品のうちの深絞り加工品の場合には、 マクロ的には図 1 O Aに示すようにプレス成型によって曲げられた局部近辺であり、 ミクロ的に は図 1 0 Bに示すように凹凸が激しい部分 (言い換えれば、 素材面の荒れた部 分) や、 特に、 洗浄用の溶剤が入りにくい部分である。 また、 プレス成型品のう ちの打ち抜き加工品の場合には、 図 1 1に示すように、 マクロ的には打ち抜き時 に打ち抜き用の刃が接触する部分 4 1であり、 ミクロ的には凹凸が激しい部分 More specifically, a place where dust on the part to be cleaned or a part to be cleaned remains 40 As an example of a press-formed product, in the case of a deep-drawing processed product, it can be macroscopically shown in FIG. As shown in Fig. 10B, it is near the local area bent by press molding, and microscopically, as shown in Fig. 10B, there are severe irregularities (in other words, rough parts of the material surface) and especially for cleaning. It is the part where the solvent does not easily enter. Also, in the case of a stamped product of a press-formed product, as shown in Fig. 11, the macroscopic portion is a portion 41 where the punching blade comes into contact at the time of punching, and the microscopic unevenness is Intense part
(言い換えれば、 素材面の荒れた部分) や、 特に、 洗浄用の溶剤が入りにくい部 分である。 また、 特に汚れが落ちにくい付着物であって本発明の洗浄方法及び装置により 洗浄可能な付着物の例としては、 上記付着物がプレス成型油 (塗布型) の場合に は、 プレス成型時に使用される潤滑油で、 特に素材に刷り込まれた潤滑油や熱な どが加わって加工変質した潤滑油がある。 また、 上記付着物が素材前塗布型潤滑 油の場合には、 素材に予め潤滑油が塗布されている加工成型用の素材で、 プレス 成型時に塗布するのではなく、 素材メ一力で表面にコーティングした潤滑油であ る。 (In other words, the rough part of the material surface) and especially the part where the cleaning solvent is difficult to enter. Examples of the deposit which is particularly difficult to remove and which can be washed by the cleaning method and apparatus of the present invention include: when the deposit is a press molding oil (application type), the deposit is used during press molding. There are lubricating oils that are processed and deteriorated due to the addition of heat, etc., especially printed on the material. If the deposit is a pre-applied lubricating oil, the lubricating oil is applied to the surface of the material in advance, instead of being applied at the time of press molding. It is a coated lubricant.
本発明の洗浄方法及び装置の洗浄対象物又は被洗浄物である部品の材質として は、 金属の場合には、 ステンレス各種、 ァノレミユウム、 チタン、 又は、 鉄などで ある。 特にさぴやすい鉄などは、 乾燥する必要がないので、 本発明の洗浄方法及 ぴ装置の洗浄対象物又は被洗浄物である部品の材質として適している。 これ以外 には、 金属と有機物複合材料としては、 金属表面に有機物 (P P T、 P E Tな ど) のシートを貼り付けたものやコーティングしたものがある。  In the case of metal, the material of the component to be cleaned or the object to be cleaned of the cleaning method and apparatus of the present invention is various kinds of stainless steel, anolemmium, titanium, iron, or the like. Since particularly easy iron does not need to be dried, it is suitable as a material of a part to be cleaned or a part to be cleaned by the cleaning method and apparatus of the present invention. Other than these, as the composite material of metal and organic material, there is a material in which a sheet of an organic material (PPT, PET, etc.) is adhered or coated on a metal surface.
また、 洗浄対象物の他の例として、 他の超音波ケースの形状を図 1 2に示す。 そこで、 高圧容器 1內に洗浄媒体として、 まず浸透性が高く、 ある程度の粘度 性を備えた二酸化炭素や水の液化状態 (亜臨界流体を含む) を導入する。 特に二 酸化炭素は比較的低い温度と圧力で液体状態になる。 そのため、 制御装置 1 0 0 0により液体ポンプ 3とヒータコントローラ 4とを動作制御して温度と圧力を制 御することで液体状態と気体状態との物性変化 (ここで物性変化とは、 例えば気 体と液体で比較すると密度は 0 . 6〜; L k g Zm 3と 1 0 0 0 k g /m 3で 3〜As another example of the object to be cleaned, the shape of another ultrasonic case is shown in FIG. Therefore, the liquefied state of carbon dioxide and water (including subcritical fluid) with high permeability and a certain degree of viscosity is first introduced as a cleaning medium into the high-pressure vessel 1 內. In particular, carbon dioxide becomes liquid at relatively low temperatures and pressures. Therefore, by controlling the temperature and pressure by controlling the operation of the liquid pump 3 and the heater controller 4 by the control device 1000, the physical property change between the liquid state and the gas state (here, the physical property change is, for example, compared with the body and the liquid density 0 6;. 3 in L kg Zm 3 and 1 0 0 0 kg / m 3
4桁変化し、 粘度は 1 0— 5 P s - sと 1 0— 3 P s · sで 2桁、 拡散係数は 1 0一 5と 1 0— 9以下で 4桁以上。 熱伝導度は 1 0一3と 1 0—1で 2桁変化する) や液 体状態から気体状態、 気体状態から液体状態といった状態変化を簡単に作り出せ る。 4 digit changes, viscosity 1 0 5 P s - s and 1 0 3 2 digit P s · s, the diffusion coefficient is 1 0 one 5 1 0-9 The following four digits or more. Thermal conductivity 1 0 one 3 1 0 1 2 digit change) and liquids state from the gaseous state, that able to create a gaseous state easily state changes such as a liquid state.
また、 二酸化炭素や水は人体側面においても無害であるため取り扱い性も良い。 さらに、 二酸化炭素や水は臨界状態では有機物の分解、 除去作用を有し、 水は 特定圧力と温度状態では酸化物などのェツチング効果を有するため、 それぞれの 特徴を生かすことで凹部構造を有する部品の洗浄に有効である。  In addition, carbon dioxide and water are harmless even on the side of the human body, so they are easy to handle. Furthermore, carbon dioxide and water have the action of decomposing and removing organic substances in critical conditions, and water has the effect of etching oxides and the like under specific pressure and temperature conditions. It is effective for cleaning.
ここで、 二酸化炭素の超臨界状態が有機物の分解、 除去作用や水が酸ィ匕物を有 するメカニズムは、 はっきりとは分かっていないのが現状であるが、 密度の関数 として表せる溶解力、 イオン積等の平衡物性であるマクロな平均的性質と溶媒和 (クラスター) などの分子レベルの局所的な構造を有するところにあると考えら れている。 特に溶質分子周りに形成される溶媒和構造にあると考えられるように なってきたのは比較的最近で、 熱運動と分子間力が拮抗している超臨界流体柱に 溶質分子が存在すると、 溶質一溶媒相互作用が相対的に優位になり溶質分子周り 溶媒分子が引きつけられて溶媒和がおこり、 溶質分子の近傍はバルタに比べて高 密度状態になる。 これが超臨界流体の溶解力の高選択性や反応速度の促進などの 特徴的な現象に強く関連していると考えられる。 Here, the supercritical state of carbon dioxide has the effect of decomposing and removing organic substances and water has acid oxide. At present, the mechanism of this is not clearly understood, but the macroscopic average properties, which are the equilibrium physical properties such as dissolving power and ionic product, which can be expressed as a function of density, and the local level at the molecular level such as solvation (cluster). Is considered to have a typical structure. It is relatively recent that the solvation structure formed around the solute molecules is relatively recent, and when solute molecules are present in a supercritical fluid column where thermal motion and intermolecular force are opposed, The solute-solvent interaction becomes relatively dominant and the solvent molecules around the solute molecules are attracted, causing solvation, and the vicinity of the solute molecules is in a higher density state than in Balta. This is thought to be strongly related to characteristic phenomena such as high selectivity of the dissolving power of the supercritical fluid and acceleration of the reaction rate.
また、 水の酸化物エッチング効果については、 図 9に示す水の物性の温度依存 性 (2 5 M p a—定圧力化) を示す。 室温での水の誘電率は約 8 0と非常に大き い。  As for the oxide etching effect of water, the temperature dependence (25 Mpa—constant pressure) of the physical properties of water shown in Fig. 9 is shown. The dielectric constant of water at room temperature is very large, about 80.
そのため、 電解質などの無機物はよく溶けるが有機物は殆ど溶解しない。 しか しながら温度を上げると誘電率は徐々に低下し、 3 7 4 °C以上の超臨界水では 1 0程度と極性の小さな有機溶媒並の値となる。 その結果、 有機物はよく溶けるが 無機物は殆ど溶けない。 このような物性変化状態をうまく利用し、 酸化物などの 無機物に対するエッチングにおいては、 特に温度 2 0 0 °C前後で 5〜1 O M p a 程度の圧力下でも効果が得られる。  Therefore, inorganic substances such as electrolytes are well dissolved, but organic substances are hardly dissolved. However, when the temperature is increased, the dielectric constant gradually decreases, and in supercritical water at 374 ° C or higher, the value is about 10 and is equivalent to that of an organic solvent having a small polarity. As a result, organic matter is dissolved well, but inorganic matter is hardly dissolved. By making good use of such a property change state, in the etching of an inorganic substance such as an oxide, an effect can be obtained particularly at a temperature of about 200 ° C. under a pressure of about 5 to 1 OMPa.
このような洗浄物である凹部を有する部品を図 3に示す洗浄システムにて洗浄 する様子を説明する。 ここで図 4 A, 図 4 Bは図 1に示す洗浄媒体の状態図と同 様である。  A description will be given of how the cleaning system shown in FIG. 3 cleans a component having a concave portion as such a cleaning object. Here, FIGS. 4A and 4B are the same as the state diagram of the cleaning medium shown in FIG.
プレス成型加工された部品 (特に電子部品) である洗浄物は、 加工油や不純物 を付着したまま高圧容器 1に納められる。 高圧容器 1内に部品を導入後、 温度又 は圧力のどちらか一方を変化させて液体状態から気体状態へ、 気体状体から液体 状態の状態変化を行う。  Washed parts that are press-formed parts (particularly electronic parts) are placed in the high-pressure vessel 1 with the processing oil and impurities attached. After the components are introduced into the high-pressure vessel 1, either the temperature or the pressure is changed to change the state from the liquid state to the gas state and from the gaseous state to the liquid state.
例えば図 4 Aに示す経路 1は液体状態から圧力一定で温度を上げると気体状態 になり、 その状態から温度を戻すと (下げる) ί夜体状体になる。 一方、 図 4 Βに 示す経路 2では温度一定で圧力を下げると液体状態から気体状態へ変化し、 その 状態から圧力を上げると気体状態から液体状態に戻る。 この工程を何度力繰り返 すと、 特に液体状態から気体状態に変化するときに加工油や不純物 (切削くずな ど) に物理的なエネルギー (物性変化でいえば、 例えば気体と液体で比較すると 密度は 0 . 6〜: L k g /m 3と 1 0 0 0 k g /m 3で 3〜 4桁変化し、 粘度は 1 0一5 P s ■ sと 1 0— 3 P s · sで 2桁、 拡散係数は 1 0— 5と 1 0一9以下で 4桁 以上。 熱伝導度は 1 0 _ 3と 1 0一1で 2桁変化する。 この中で、 特に密度変化と 粘度変化に伴う、 表面張力の変化によってもたらされる物理的なエネルギーと考 えられる) が作用し、 部品に付着している加工油や不純物 (切削くずなど) の付 着力が低下して、 洗浄効果を向上させる。 For example, in path 1 shown in Fig. 4A, when the temperature is increased from the liquid state at a constant pressure, the state changes to the gas state, and when the temperature is returned (reduced) from that state, it becomes a night body. On the other hand, in route 2 shown in Fig. 4 (1), when the pressure is decreased at a constant temperature, the state changes from the liquid state to the gas state, and when the pressure is increased from that state, the state returns to the liquid state from the gas state. Repeat this process many times In particular, when changing from a liquid state to a gaseous state, the processing oil and impurities (such as cutting debris) are converted into physical energy (in terms of physical property change, for example, when compared with gas and liquid, the density is 0.6 ~: L kg / m 3 and 1 0 0 0 kg / m. 3 to 4 digits vary 3, viscosity 2 digits 1 0 one 5 P s ■ s and 1 0- 3 P s · s, the diffusion coefficient 1 0 -.. 5 1 0 one 9 or less 4 digits or more thermal conductivity varies two digits 1 0 _ 3 1 0 one 1 in this, due to the particular density change and viscosity change, a change in surface tension (Which is considered to be the physical energy provided) acts to reduce the adhesion of machining oil and impurities (such as cutting chips) adhering to the part, improving the cleaning effect.
また、 液体状態と気体状態を繰り返すことで、 図 5に示すように高圧容器内で 液化ガスの対流 (矢印 3 1 ) が生じ、 凹部を有する部品 3 2の隅々まで洗浄剤で ある液ィヒガスが浸透し洗浄効果を向上させる。  In addition, by repeating the liquid state and the gas state, convection of the liquefied gas (arrow 31) occurs in the high-pressure vessel as shown in Fig. 5, and the liquid gas, which is a cleaning agent, reaches every corner of the part 32 having the concave portion. Penetrates and improves the cleaning effect.
その後、 温度、 圧力を臨界点以上に変化させ、 超臨界状態に移行して本洗浄を 行うことを特徴とする。 このとき気体状態、 液体状態を繰り返す工程を何度か経 た後、 液ィ匕ガスを高圧容器外に排出し、 新たに液化ガスを導入後、 温度又は圧力 を臨界点温度及び臨界点圧力以上に変化させ超臨界状態での洗浄工程へ移る。 超 臨界状態では、 主に有機物の分解除去、 特定温度■圧力状態で無機系の酸化物の エッチング (水使用の場合) を行う。  After that, the temperature and pressure are changed to the critical point or higher, and the state is shifted to the supercritical state to perform the main cleaning. At this time, after passing through a process of repeating the gas state and the liquid state several times, the liquefied gas is discharged out of the high-pressure container, and the liquefied gas is newly introduced, and the temperature or pressure is equal to or higher than the critical point temperature and the critical point pressure. And shift to the supercritical cleaning process. In the supercritical state, it mainly decomposes and removes organic substances and etches inorganic oxides at a specific temperature and pressure (when using water).
また、 洗浄物である部品の汚染レベルにより、 超臨界状態まで用いなくとも上 記液体状体と気体状態を繰り返す洗浄工程のみでも洗浄可能である。  Also, depending on the contamination level of the parts to be cleaned, it is possible to perform the cleaning only by repeating the above-mentioned liquid state and gas state without using the supercritical state.
ここでの部品の洗浄レベルとは日本産業洗浄協議会の平成 6年度の報告書 「一 般的な洗浄度評価方法と洗浄度の指標の分類」 で示されている 「試料 2」 を用い て説明すると、 そこで洗浄度として記されている 「粗洗浄」 レベル又は 「一般洗 浄」 レベルを指す。  The cleaning level of the parts used here is based on the “Sample 2” shown in “General cleaning evaluation method and classification of cleaning index” in the 1994 report of the Japan Industrial Cleaning Council. To explain, it refers to the “coarse cleaning” level or “general cleaning” level that is described as the degree of cleaning.
本発明の第 1実施形態の洗浄装置としては、 高圧容器 1、 超臨界ガス及び液化 ガスを上記高圧容器 1に導入する液体ポンプ 3、 高圧容器 1内の超臨界ガス及ぴ 液化ガスの温度を制御するヒータコントローラ 4及びヒータ 5、 洗浄後の除去物 質を収集する抽出捕集容器 8と、 制御装置 1 0 0 0とを備え、 図 3及び図 5に示 されるように、 上記高圧容器 1に液化ガスを導入するための導入口 1 aは、 上記 高圧容器 1内から液化ガスを廃棄する排出口 1 bよりも必ず下側に設け、 更に排 出口 1 bは洗浄対象物 3 1に対して上側に設ける。 これは主に液体状態もしくは 超臨界状態において洗浄物 3 1の比重が洗浄ガスの比重よりも重く、 それに対し て有機物系の汚れや無機物系の酸化物は洗浄ガスの比重より小さい。 そのため、 汚染物である有機物や無機物は液体状態又は超臨界状態では洗浄物より上に浮く 傾向にある。 導入口 1 aが排出口 1 bより下側である必要性は、 洗浄物 3 1であ る凹部構造を有する部品に洗浄ガスである液化ガスが満遍なく行き渡らせるため である。 The cleaning apparatus according to the first embodiment of the present invention includes a high-pressure vessel 1, a liquid pump 3 for introducing a supercritical gas and a liquefied gas into the high-pressure vessel 1, and a temperature of the supercritical gas and the liquefied gas in the high-pressure vessel 1. As shown in FIGS. 3 and 5, the high-pressure container is provided with a heater controller 4 and a heater 5 for controlling, an extraction / collection container 8 for collecting substances to be removed after cleaning, and a control device 100. The inlet 1a for introducing liquefied gas into 1 is always provided below the outlet 1b for discarding liquefied gas from inside the high-pressure vessel 1, and The outlet 1b is provided above the object 31 to be cleaned. This is mainly because the specific gravity of the cleaning material 31 is higher than the specific gravity of the cleaning gas in the liquid state or the supercritical state, whereas that of the organic dirt and the inorganic oxide is lower than the specific gravity of the cleaning gas. Therefore, organic and inorganic contaminants tend to float above the cleaning material in the liquid or supercritical state. The reason why the inlet 1a is required to be lower than the outlet 1b is to allow the liquefied gas, which is the cleaning gas, to be distributed evenly to the part having the concave structure, which is the cleaning object 31.
—方、 排気口 1 bが導入口 1 aよりも上側に位置する必要性は、 洗浄部品 3 1 力、ら一度除去された付着物又は汚染物が部品 3 1に再付着するのを防止するため である。  The need for the exhaust port 1b to be higher than the inlet port 1a is necessary to prevent the debris or contaminants once removed from reattaching to the part 31. That's why.
本発明の第 1実施形態の洗浄方法及び洗浄装置で洗浄効果が期待できる部品は 主にエレクトロュクス関連に用いられる電子部品及びその関連部品である。 特に、 プレス成形加工及ぴ切削加工による精密加工部品である。 これらの部品は、 加工 精度を向上させるためには必ず加工油である潤滑油が必要不可欠である。 しかし、 この加工油の残留が次工程の処理、 例えばメッキ処理や接着などの性能特性に影 響を与え、 デバイス及び製品としての性能や信頼性の低下を引き起こす。 そのた め、 高レベルの残留物除去、 すなわち精密洗浄を必要とする部品に効果を発揮す る。  Parts that can be expected to have a cleaning effect in the cleaning method and the cleaning apparatus according to the first embodiment of the present invention are mainly electronic parts used in electronics and related parts. In particular, it is a precision machined part by press forming and cutting. For these parts, lubricating oil, which is processing oil, is indispensable to improve processing accuracy. However, this residual processing oil affects the performance characteristics of the next process, such as plating and bonding, and reduces the performance and reliability of devices and products. Therefore, it is effective for parts that require a high level of residue removal, that is, precision cleaning.
応用商品としては、 超音波センサーの整合層や電池の電極 (特に二次電池な ど) 、 その他としては電池用ケース、 HD D用ケース (筐体ともいう) 、 又は、 電解コンデンサー用のケースなどがある。 超音波センサー用の整合層などは無数 の微細な孔ゃ凹凸が形成されており微視的に凹部構造が形成されている。 そして、 具体的には、 無機系のガラスバルーンと有機系のエポキシを混合したり、 無機系 のガラスバル一ンだけのもの、 有機系のエポキシだけのものなど様々な素材が用 いられる。  Applied products include matching layers for ultrasonic sensors and battery electrodes (especially secondary batteries). Others include battery cases, HDD cases (also referred to as housings), and electrolytic capacitor cases. There is. The matching layer for the ultrasonic sensor and the like have countless fine holes and irregularities, and have a microscopic concave structure. Specifically, various materials such as a mixture of an inorganic glass balloon and an organic epoxy, an inorganic glass balloon only, and an organic epoxy only are used.
また、 超音波センサー用ケースなどは、 素材がステンレス、 アルミニウム、 又 は、 エポキシ樹脂である。 加工は、 プレス成型加工による深絞りや樹脂成形、 切 削加工で加工される。 電池用ケースについては、 一般に、 アルミニウム又は最近 ではアルミニウムにメツキを施した多層鋼材が用いられプレス成型加工で作製さ れる。 HD D用ケースとしては、 素材としてアルミニウムが使用され、 最近では 特にアルミニウムに有機物系のコートをした複合鋼材が用いられ、 プレス成型加 ェされる。 電解コンデンサー用ケースも同様に、 素材はアルミニウム単体のもの やアルミニウム素材の上に有機膜のコートを施した複合鋼板を用いてプレス成形 加工される。 The material for the ultrasonic sensor case is stainless steel, aluminum, or epoxy resin. Processing is performed by deep drawing by press molding, resin molding, and cutting. In general, battery cases are made of aluminum or, more recently, multi-layered steel with plating on aluminum, and are manufactured by press molding. It is. Aluminum is used as the material for the HDD case, and recently, a composite steel material made of aluminum and coated with an organic substance is used and press-molded. Similarly, the electrolytic capacitor case is press-formed using aluminum alone or a composite steel sheet coated with an organic film on an aluminum material.
このように、 素材の異なる有機物と無機物が積層された複合材料に対してもェ 程や使用洗浄媒体であるガス主を選択することで応用可能である。 なお、 これら の製品分野に限らず、 プレス成型加工及び切削加工に加工された凹部構造を有す る部品にも効果を有することは論じるまでもない。  As described above, the present invention can be applied to a composite material in which organic materials and inorganic materials of different materials are laminated, by selecting a process and a gas main which is a cleaning medium to be used. It goes without saying that the present invention is not limited to these product fields, and is also effective for parts having a concave structure processed by press molding and cutting.
すなわち、 上記第 1実施形態の洗浄方法においては、 上記洗浄媒体に対して温 度や圧力を変化させて上記洗浄媒体を液体状態と気体状態との交互の状態変化を 行い、 上記凹部構造表面に洗浄媒体が満遍なく行き渡らせるようにしている。 ま た、 さらに、 必要に応じて、 上記洗浄媒体に対して液体状態と気体状態との交互 の状態変化を行った後、 上記洗浄媒体を超臨界状態に変化させて上記凹部構造表 面の洗浄を行うようにしている。 又は、 上記洗浄媒体に対して液体状態と気体状 態との交互の状態変化を行った後、 上記洗浄媒体を亜超臨界状態に変化させて上 記凹部構造表面の洗浄を行うようにしている。  That is, in the cleaning method of the first embodiment, the temperature and pressure of the cleaning medium are changed to alternately change the cleaning medium between a liquid state and a gas state. The cleaning medium is distributed evenly. Further, if necessary, the cleaning medium is alternately changed between a liquid state and a gas state, and then the cleaning medium is changed to a supercritical state to clean the concave structure surface. To do. Alternatively, after the cleaning medium is alternately changed between a liquid state and a gas state, the cleaning medium is changed to a sub-supercritical state to clean the surface of the concave structure. .
これを整理すると、 洗浄媒体を部品に満遍なく行き渡らせる方法としては、 圧 力又は温度を変化させて対流によって行き渡らせるため、 以下の 7つの方法があ る。 これらは、 いずれも、 制御装置 1 0 0 0により、 液体ポンプ 3とヒータコン トローラ 4とを動作制御して温度と圧力を制御することで行うことができる。  To summarize, the following seven methods are available to spread the cleaning medium evenly to the parts by changing the pressure or temperature to spread the cleaning medium by convection. These operations can be performed by controlling the operation of the liquid pump 3 and the heater controller 4 to control the temperature and the pressure by the control device 100.
( 1 ) (液体一気体) を 1サイクルとして少なくとも 1サイクル以上行つ た後、 超臨界状態へ温度制御する。  (1) Perform at least one cycle of (liquid-gas) as one cycle, and then control the temperature to the supercritical state.
( 2 ) (気体一液体) を 1サイクルとして少なくとも 1サイクル以上行つ た後、 超臨界状態へ圧力制御する。  (2) Perform at least one cycle of (gas-liquid) as one cycle, and then control the pressure to the supercritical state.
( 3 ) (液体 ~¾体一液体) を 1サイクルとして少なくとも 1サイクル以 上行った後、 超臨界状態へ温度制御する。  (3) Perform at least one cycle of (liquid ~ one body liquid) as one cycle, and then control the temperature to the supercritical state.
( 4 ) (気体一液体一気体) を 1サイクルとして少な <とも 1サイクル以 上行った後、 超臨界状態へ圧力制御する。 ( 5 ) (液体一超臨界) を 1サイクルとして少なくとも 1サイクル以上行 つた後、 超臨界状態へ温度制御する。 (4) Perform at least one cycle of (gas-liquid-gas) as one cycle, and then control the pressure to the supercritical state. (5) After performing at least one cycle of (liquid-supercritical) as one cycle, control the temperature to the supercritical state.
( 6 ) (気体一超臨界) を 1サイクルとして少なくとも 1サイクル以上行 つた後、 超臨界状態へ圧力制御する。  (6) Perform at least one cycle of (gas-supercritical) as one cycle, and then control the pressure to the supercritical state.
( 7 ) ( 1 ) 〜 (6 ) の 1サイクル中に少なくとも 1回は超臨界状態にす る。 圧力又は温度制御する。  (7) The supercritical state is set at least once during one cycle of (1) to (6). Control pressure or temperature.
ここで、 液体ポンプ 3の動作制御による制御装置 1 0 0 0の圧力制御用のタイ ムチャートは、 図 1 3に示されるように、 横軸の時間軸に対する縦軸がそれぞれ チヤンバー内圧力と C O 2導入排出である。 チヤンバー内圧力が高いときには。 θ 2が導入され、 チャンバ一内圧力が低いときには c o 2が排出されており、 こ れを定期的に繰り返すことにより圧力制御するようにしている。 Here, Thailand Muchato for pressure control of the control device 1 0 0 0 by the operation control of the liquid pump 3, as shown in FIG. 1 3, the vertical axis Chiyanba the pressure and CO 2 respectively with respect to the time axis of abscissa It is an introduction discharge. When the pressure in the chamber is high. θ 2 is introduced, and co 2 is discharged when the pressure in the chamber is low, and the pressure is controlled by repeating this periodically.
また、 ヒータコントローラ 4の動作制御による制御装置 1 0 0 0の温度制御用 のタイムチャートは、 図 1 3に示されるように、 横軸の時間軸に対する縦軸がそ れぞれチャンバ一内温度とヒータ電源が O N又は O F Fである。 チャンバ一内温 度を高くするときにはヒータ電源が O Nされ、 チャンバ一内温度を低くするとき にはヒータ電源が O F Fされており、 これを定期的に繰り返すことにより温度制 御するようにしている。  As shown in FIG. 13, the time chart for controlling the temperature of the control device 100 by controlling the operation of the heater controller 4 has a vertical axis with respect to the horizontal axis and a vertical axis with respect to the temperature inside the chamber. And the heater power is ON or OFF. The heater power is turned ON when the temperature inside the chamber is increased, and the heater power is turned OFF when the temperature inside the chamber is lowered. The temperature is controlled by repeating this periodically.
上記圧力制御の他の方法としては、 メインチャンバ一 4 3とサブチャンバ一 4 Other methods of controlling the pressure include the main chamber 1 4 3 and the sub chamber 1 4
4とからなる 2層式のチャンバ一を用いて、 制御装置 1 0 0 0の動作制御の下で、 圧力を高くするときは図 1 5に示されるように層を分けている扉 4 5を閉じて圧 力を高くしゃすくする一方、 圧力を下げるときは図 1 6に示されるように層を分 けている扉 4 5を制御装置 1 0 0 0の動作制御により開放にすることが考えられ る。 なお、 図 1 5及び図 1 6において、 4 6は洗浄媒体、 4 7は洗净対象物であ る。 When the pressure is increased using the two-layer type chamber consisting of 4 and under the operation control of the controller 100, the doors 4 5 that divide the layers as shown in FIG. When closing and increasing the pressure, while reducing the pressure, it is conceivable to open the door 45 separating the layers by controlling the operation of the control device 100 as shown in Fig. 16. It is possible. In FIGS. 15 and 16, reference numeral 46 denotes a cleaning medium, and 47 denotes an object to be cleaned.
さらに、 温度制御の他の方法しては、 図 1 7に示されるように、 メインチャン バー 4 8内の洗浄液体 4 9内に、 洗浄液体 4 9の温度より高い温度又は低い温度 の洗浄媒体 4 9を、 液体ポンプ 3により液体状態で導入することにより、 メイン チヤンバー 4 8内の洗浄媒体を所定温度に制御することもできる。 また、 図 1 8 に示されるように、 メインチャンバ一 4 8内に洗浄液体 4 9の温度より高い温度 又は低い温度の洗浄媒体 5 0を、 ポンプ 3に代わるポンプ 3 Aにより気体状態で 導入することにより、 メインチヤンバー 4 8内の洗浄液体 4 9を所定温度に制御 することもできる。 Further, as another method of controlling the temperature, as shown in FIG. 17, the cleaning liquid 49 in the main chamber 48 contains a cleaning medium having a temperature higher or lower than the temperature of the cleaning liquid 49. 4 9, by introducing in the liquid state by the liquid pump 3, it is also possible to control the cleaning medium in the main Chiyanba 4 in 8 to a predetermined temperature. Also, as shown in FIG. 18, the temperature inside the main chamber 48 is higher than the temperature of the cleaning liquid 49. Alternatively, the cleaning liquid 49 in the main chamber 48 can be controlled to a predetermined temperature by introducing the low-temperature cleaning medium 50 in a gaseous state by the pump 3A instead of the pump 3.
図 1 9は、 上記洗浄方法の動作制御の制御プログラムを内蔵した制御装置 1 0 0 0と、 制御装置 1 0 0 0により動作制御されるヒータコントローラ 4内の温度 制御用リレー 5 3と、 制御装置 1 0 0 0により動作制御される液体ポンプ 3内の 圧力制御用リレー 5 4と、 上記洗浄装置 6 0とを示す説明図である。  FIG. 19 shows a control device 100 0 having a control program for controlling the operation of the above-described cleaning method, a temperature control relay 53 in the heater controller 4 whose operation is controlled by the control device 100, FIG. 3 is an explanatory diagram showing a pressure control relay 54 in a liquid pump 3 whose operation is controlled by a device 100, and the cleaning device 60.
図 2 0に示されるように、 上記第 1実施形態において、 洗浄効率を高める方法 の一例として、 メインチャンバ一 6 4の天井側に配置されたロータ (かき回し用 のプロペラ) 6 2を、 制御装置 1 0 0 0の制御の下に、 モータ 6 3により回転さ せて、 メインチャンバ一 6 4内の洗浄媒体 6 5を攪拌させて、 洗浄対象物 4 7に 対する洗浄媒体 6 5による洗浄効率を高めるようにしてもよい。  As shown in FIG. 20, in the first embodiment, as an example of a method for improving the cleaning efficiency, a rotor (a propeller for agitating) 62 disposed on the ceiling side of the main chamber 164 is provided as a control device. Under the control of 1000, it is rotated by the motor 63 to agitate the cleaning medium 65 in the main chamber 164, and the cleaning efficiency of the cleaning object 65 with respect to the cleaning object 47 is improved. You may make it increase.
また、 図 2 1に示されるように、 上記第 1実施形態において、 洗浄効率を高め る方法の別の例として、 メインチャンバ一 6 4の底面側に配置されたロータ (か き回し用のプロペラ) 6 2を、 制御装置 1 0 0 0の制御の下に、 モータ 6 3によ り回転させて、 メィンチヤンバー 6 4内の洗浄媒体 6 5を攪拌させて、 洗浄対象 物 4 7に対する洗浄媒体 6 5による洗浄効率を高めるようにしてもよい。  Further, as shown in FIG. 21, in the first embodiment, as another example of a method for increasing the cleaning efficiency, a rotor (a propeller for stirring) disposed on the bottom side of the main chamber 164 is used. ) 62 is rotated by the motor 63 under the control of the control device 100 to agitate the cleaning medium 65 in the main chamber 64, and the cleaning medium 6 for the cleaning object 47 is cleaned. The cleaning efficiency by 5 may be increased.
また、 図 2 2に示されるように、 上記第 1実施形態において、 洗净効率を高め る方法の別の例として、 メインチャンバ一 6 4の側面側に配置されたロータ (か き回し用のプロペラ) 6 2を、 制御装置 1 0 0 0の制御の下に、 モータ 6 3によ り回転させて、 メインチャンバ一 6 4内の洗浄媒体 6 5を攪拌させて、 洗浄対象 物 4 7に対する洗浄媒体 6 5による洗浄効率を高めるようにしてもよい。  Further, as shown in FIG. 22, in the first embodiment, as another example of a method for improving the washing efficiency, a rotor (a stirring machine) disposed on the side of the main chamber The propeller 62 is rotated by the motor 63 under the control of the control device 100 to agitate the cleaning medium 65 in the main chamber 164, and the propeller 62 is rotated with respect to the cleaning object 47. The cleaning efficiency with the cleaning medium 65 may be increased.
また、 図 2 3に示されるように、 上記第 1実施形態において、 洗浄効率を高め る方法の別の例として、 メインチャンバ一 6 4の天井側に配置されたロータ (か き回し用のプロペラ) 6 2を、 制御装置 1 0 0 0の制御の下に、 モータ 6 3によ り回転させて、 メインチャンバ一 6 4内の洗浄媒体 6 5を攪拌させるとともに、 制御装置 1 0 0 0の制御の下に、 液体ポンプ 3を駆動させて、 メィンチャンバ一 6 4の対向する側面に配置された一対のノズル 6 6から洗浄媒体をメィンチヤン バー 6 4内に導入して、 洗浄対象物 4 7に対する洗浄媒体 6 5による洗浄効率を 高めるようにしてもよい。 Further, as shown in FIG. 23, in the first embodiment, as another example of a method for improving the cleaning efficiency, a rotor (a propeller for stirring) disposed on the ceiling side of the main chamber 164 is used. ) 62 is rotated by a motor 63 under the control of the controller 100 to agitate the cleaning medium 65 in the main chamber 64, and Under the control, the liquid pump 3 is driven, and the cleaning medium is introduced into the main chamber 64 from a pair of nozzles 66 disposed on the opposite side of the main chamber 64, and the cleaning target 4 7 Cleaning efficiency with cleaning medium 65 You may make it increase.
また、 図 2 4に示されるように、 上記第 1実施形態において、 洗浄効率を高め る方法のさらに別の例として、 制御装置 1 0 0 0の制御の下に、 液体ポンプ 3を 駆動させて、 メインチャンバ一 6 4の円筒状側面に放射状に配置された多数のノ ズル 6 6から洗浄媒体をメィンチャンバ一 6 4内に導入して、 洗浄対象物 4 7に 対する洗浄媒体 6 5による?先浄効率を高めるようにしてもよい。  Further, as shown in FIG. 24, in the first embodiment, as still another example of a method for improving the cleaning efficiency, the liquid pump 3 is driven under the control of the controller 100. The cleaning medium is introduced into the main chamber 164 from a number of nozzles 166 radially arranged on the cylindrical side surface of the main chamber 164, and the cleaning medium 165 for the object 407 to be cleaned is introduced. You may make it improve precleaning efficiency.
また、 図 2 5に示されるように、 上記第 1実施形態において、 洗浄効率を高め る方法のさらに別の例として、 制御装置 1 0 0 0の制御の下に、 メィンチヤンバ 一 6 4の対向側面に配置された一対の超音波センサ 6 7を同時的に又は逐次駆動 させて、 メィンチヤンバー 6 4の側面から超音波を洗浄媒体 6 5に振動を付与し て、 洗浄対象物 4 7に対する洗浄媒体 6 5による洗浄効率を高めるようにしても よい。  Further, as shown in FIG. 25, in the first embodiment, as another example of a method for increasing the cleaning efficiency, the opposite side surface of the main chamber 164 is controlled under the control of the control device 100. By driving the pair of ultrasonic sensors 67 arranged at the same time or sequentially, the ultrasonic waves are applied to the cleaning medium 65 from the side of the main chamber 64, and the cleaning medium 6 with respect to the cleaning target 47 is cleaned. The cleaning efficiency by 5 may be increased.
また、 図 2 6に示されるように、 上記第 1実施形態において、 洗浄効率を高め る方法のさらに別の例として、 制御装置 1 0 0 0の制御の下に、 メィンチヤンバ — 6 4の円筒状側面に放射状に配置された多数の超音波センサ 6 7を同時的に又 は逐次駆動させて、 メィンチヤンバー 6 4の側面から超音波を洗浄媒体 6 5に振 動を付与して、 洗浄対象物 4 7に対する洗浄媒体 6 5による洗浄効率を高めるよ うにしてもよレ、。  Further, as shown in FIG. 26, in the first embodiment, as still another example of a method for improving the cleaning efficiency, the cylindrical shape of the main chamber 64 is controlled under the control of the control device 100. A number of ultrasonic sensors 67 radially arranged on the side are driven simultaneously or sequentially, and ultrasonic waves are applied to the cleaning medium 65 from the side of the main chamber 64 so that the object to be cleaned 4 The cleaning efficiency of the cleaning medium 65 with respect to 7 may be increased.
また、 図 2 8に示されるように、 図 2 4の洗浄装置において、 洗浄効率を高め る方法のさらに別の例として、 制御装置 1 0 0 0の制御の下に、 メィンチヤンバ 一 6 4の円筒状側面に放射状に配置された多数のノズル 6 6から洗浄媒体をメイ ンチャンバ一 6 4内に逐次導入して、 洗浄対象物 4 7に対する洗浄媒体 6 5によ る洗浄効率を高めるようにしてもよい。 この場合、 図 2 8に示す、 1から 8のノ ズルの番号の順番に、 又は、 8力、ら 1の順番にノズル 6 6から洗浄媒体をメィン チヤンバー 6 4内に逐次導入して、 メインチャンバ一 6 4内に対流を生じさせて 洗浄効率をさらに高めることができる。 各ノズルに開閉弁又はシャッターを設け て、 その開閉弁又はシャッターを制御装置 1 0 0 0により動作制御させて、 洗浄 媒体導入順序、 開閉時間、 噴出圧力、 噴出量を任意に制御させることができる。 なお、 上記した第 1実施形態の各ノズル 6 6の先端形状としては、 図 2 7 A〜 図 27 Cに示されるような形状が好ましい。 ノズル形状としては、 図 27 A〜図 27 Cに示すように、 吹き出し口のセパレート数、 噴出圧力、 噴出時間を変える ことによって、 ノズルから噴出される流動体のエネルギー密度を変化させ、 洗浄 対象物に応じて撹拌効率を高める構造を有する。 例えば、 洗浄対象物の大きさが 大きく、 構造が単純である場合には、 あまり撹拌しなくとも不純物を除去し易い ため、 図 27 Aに示すような単純なノズル形状でも問題ない。 一方、 洗浄対象物 の大きさが小さく構造が複雑である場合には、 その大きさ、 複雑度に応じてノズ ル形状も図 27 B、 図 27 Cなどのより撹拌効果の高いものを使用する。 また、 洗浄対象物が非常に精密な光学部品などや、 非常に脆い場合には、 ノズル形状、 噴出圧力、 噴出時間を洗浄対象物に応じて変えることが望ましい。 なお、 図面上 では 2次元的にしか示されていないが、 実際には 3次元的な構造を有している。 以下、 具体的な実施例により、 本発明の上記第 1実施形態の効果の説明を行う。 Further, as shown in FIG. 28, in the cleaning apparatus of FIG. 24, as still another example of a method of increasing the cleaning efficiency, a cylinder of a main chamber 164 is controlled under the control of the controller 100. The cleaning medium may be sequentially introduced into the main chamber 164 from a large number of nozzles 66 radially arranged on the side of the shape to improve the cleaning efficiency of the cleaning target 65 with the cleaning medium 65. Good. In this case, as shown in Fig. 28, the cleaning medium is sequentially introduced from the nozzle 66 into the main chamber 64 in the order of the numbers of the nozzles from 1 to 8 or in the order of 8 forces, etc. Convection is generated in the chamber 164 to further increase the cleaning efficiency. An opening / closing valve or shutter is provided for each nozzle, and the operation of the opening / closing valve or shutter is controlled by the control device 1000, so that the cleaning medium introduction sequence, opening / closing time, ejection pressure, and ejection amount can be arbitrarily controlled. . Note that the tip shape of each nozzle 66 of the first embodiment described above is shown in FIGS. The shape shown in FIG. 27C is preferred. As shown in Fig. 27A to Fig. 27C, the energy density of the fluid ejected from the nozzle is changed by changing the number of ejection ports, ejection pressure, and ejection time, as shown in Figs. It has a structure to increase the stirring efficiency according to. For example, when the size of the object to be cleaned is large and the structure is simple, impurities can be easily removed without much stirring, so that there is no problem with a simple nozzle shape as shown in FIG. 27A. On the other hand, if the size of the object to be cleaned is small and the structure is complicated, use a nozzle with a higher stirring effect according to the size and complexity, such as those shown in Figures 27B and 27C. . Also, if the object to be cleaned is a very precise optical component or is very brittle, it is desirable to change the nozzle shape, ejection pressure, and ejection time according to the object to be washed. Although it is shown only two-dimensionally in the drawings, it actually has a three-dimensional structure. Hereinafter, the effects of the first embodiment of the present invention will be described with reference to specific examples.
(実施例 1 )  (Example 1)
プレス成型加工及び切削加工されたケースの洗浄を行つた。 洗浄用の液化ガス としては二酸化炭素を用いて行った。 図 6に示すように材質は SUS 304、 大 きさは (ί> : 12mm、 高さ h : 5 mmの凹部構造を有するケースである。 このケ ースを用いて洗浄プロセスの違いによる残留物 (油分) の量とパーティクル量を 調べた。 洗浄プロセスとしては、 ①溶剤洗浄 (1一ブロモプロパン) 、 ②液体状 態で温度一定で圧力を変化させた洗浄、 ③温度一定で圧力を変化させ、 気体状態 と液体状態を 5回繰り返し状態変化をさせた洗浄、 ④超臨界洗浄のみの洗浄、 ⑤ ②の工程後超臨界洗浄、 ⑥③の洗浄後超臨界洗浄、 ⑦超臨界状態で洗浄後液体状 態で洗浄の 7通りの工程を検討した。 それぞれの洗浄工程でケースは 100個ず つ洗浄し分析を行った。 残留油分分析は溶剤 (四塩ィ匕炭素) で油分抽出したのち その抽出油分を FT— I R (フーリエ変換赤外分光法) で測定した。 またパーテ イクルについては洗浄後パーティクル検査機 ( T o P c o n製ゥエーハ表面検査 装置 WM— 1700/1500) を用いて測定した。 表 1にその結果を示す。 洗浄工程 残留油分量 パーティクル量  The press molded and cut cases were cleaned. The cleaning was performed using carbon dioxide as a liquefied gas. As shown in Fig. 6, the material is SUS 304, and the size is (ί>: 12 mm, height h: 5 mm. This case has a concave structure. The cleaning processes were as follows: (1) solvent cleaning (1-bromopropane), (2) cleaning in a liquid state with constant pressure, and (3) constant pressure with changing pressure. , Cleaning with gas state and liquid state repeated 5 times, ④ supercritical cleaning only, ⑤ ② supercritical cleaning after process, ⑥ ③ supercritical cleaning after cleaning, ⑦ liquid after cleaning in supercritical state In each washing process, 100 cases were washed and analyzed in each washing process, and the residual oil was analyzed by extracting the oil with a solvent (Shishioridani Carbon) and then extracting it. FT—IR (Fourier Transform Infrared Spectroscopy) After cleaning, the particles were measured using a particle inspection machine (Ea surface inspection system WM-1700 / 1500 manufactured by Topcon), and the results are shown in Table 1. Cleaning process Residual oil content Particle amount
① 0. 7mg/l 00個 500個 /cm2 ① 0.7mg / l 00 500 500 / cm 2
② 0. 4mg/l 00個 250個 Zcm2 ③ 0. 3mg/l 00個 150個/ cm2 ② 0.4mg / l 00 250 Zcm 2 ③ 0.3mg / l 00 pcs 150 pcs / cm 2
④ 0. 3mg/l 00個 100個 Zcm2 ④ 0.3 mg / l 00 100 Zcm 2
⑤ 0. 2mgZl 00個 70個/ cm2 ⑤ 0.2mgZl 00 70 / cm 2
⑥ 0. lmg/100個 30個/ cm2 ⑥ 0. lmg / 100 pieces 30 pieces / cm 2
⑦ 0. 3mg/l 00個 100個/ cm2 以上の結果から、 溶剤洗浄と比較すると残留油分量、 パーテイクル量ともに低 い値が得られている。 また、 圧力を変化させて二酸化炭素の気体状態、 液体状態、 超臨界状態を組み合わせることで無機物系のパーティクル除去にも更に洗浄効果 が向上することがわかった。 か ら 0.3 mg / l 00 pieces 100 pieces / cm 2 or more indicate that both the residual oil content and the particle quantity are lower than those of solvent cleaning. It was also found that by changing the pressure and combining the gaseous state, liquid state, and supercritical state of carbon dioxide, the cleaning effect was further improved for removing inorganic particles.
(実施例 2)  (Example 2)
実施例 1と同様に プレス成型加工及び切削加工されたケースの洗浄を行った。 洗浄用の液化ガスとしては二酸化炭素を用いて行った。 図 6に示すように材質は SUS 304、 大きさは φ 12πιιη、 高さ 5 mmの凹部構造を有するケースであ る。 このケースを用いて洗浄プロセスの違いによる残留物 (油分) の量とパーテ イタル量を調べた。 洗浄プロセスとしては、 ①液体状態で圧力一定で温度を変化 させた洗浄、 ②圧力一定で温度を変化させ、 気体状態と液体状態を 5回繰り返し 状態変化をさせた洗浄、 ③超臨界洗浄のみの洗浄、 ④①の工程後超臨界洗浄、 ⑤ ②の洗浄後超臨界洗浄の 5通りの工程を検討した。 それぞれの洗浄工程でケース は 1◦ 0個ずつ洗浄し分析を行った。 残留油分分析は溶剤 (四塩化炭素) で油分 抽出したのちその抽出油分を FT— I R (フーリエ変換赤外分光法) で測定した。 またパーティクルについては洗浄後パーティクル検査機 (ToP c o n製ゥエー ハ表面検査装置 WM— 1700/1500) を用いて測定した。 表 2にその結 果を示す。  In the same manner as in Example 1, the press-formed and cut cases were cleaned. The cleaning was performed using carbon dioxide as a liquefied gas. As shown in Fig. 6, the material is SUS 304, the size is φ12πιιη, and the case has a concave structure with a height of 5 mm. Using this case, the amount of residue (oil) and the amount of partal due to the difference in the cleaning process were examined. The cleaning process includes (1) cleaning in which the temperature is changed at a constant pressure in the liquid state, (2) cleaning in which the temperature is changed while maintaining the pressure and the gas state and the liquid state are changed five times, and (3) only supercritical cleaning. Five processes were examined: cleaning, supercritical cleaning after the process (1), and supercritical cleaning after the process (2). In each washing step, 1 × 0 cases were washed and analyzed. For residual oil analysis, oil was extracted with a solvent (carbon tetrachloride) and the extracted oil was measured by FT-IR (Fourier transform infrared spectroscopy). After cleaning, the particles were measured using a particle inspection machine (Awa Surface Inspection System WM-1700 / 1500 manufactured by ToPcon). Table 2 shows the results.
表 2  Table 2
Figure imgf000029_0001
以上の結果、 温度一定で圧力を変化させて物性変化、 状態変化した場合と同様 に圧力一定で温度を変化させて洗浄した場合も残留油分量、 パーティクル量とも に低い値が得れている。 よって、 温度を変化させて二酸化炭素の気体状態、 液体 状態、 超臨界状態を組み合わせることで無機物系のパーティクル除去にも洗浄効 果が向上することがわかつた。
Figure imgf000029_0001
As a result, it is the same as when the physical property changes and the state change by changing the pressure at a constant temperature When the temperature was changed and the temperature was changed at a constant pressure, both the residual oil content and the particle amount showed low values. Therefore, it was found that the cleaning effect was improved in removing inorganic particles by combining the gas state, liquid state, and supercritical state of carbon dioxide by changing the temperature.
(実施例 3 )  (Example 3)
実施例 1で検討した洗浄方法で最も効果のあった洗浄工程⑥ 「温度一定で圧力 を変化させ、 気体状態と液体状態を 5回繰り返し状態変化をさせた後超臨界洗 浄」 を用いて材質の異なるケースを洗浄した。 ケースの材質は、 ①アルミニウム、 ②アルミニウム上に有機膜をコートした複合板、 ③ステンレス S U S 3 0 4、 ④ C u、 ⑤ T iである。 図 7に示すように、 ケース形状は縦 5 mm X横 3 O mm X高さ 5 O mmである。 それぞれの洗浄工程でケースは 1 0◦個ずつ洗浄し分 析を行った。 洗浄用の液化ガスとしては二酸化炭素を用いて行った。 残留油分分 析は溶剤 (四塩化炭素) で油分抽出したのちその抽出油分を F T— I R (フーリ ェ変換赤外分光法) で測定した。 また、 パーティクルについては洗浄後パーティ クル検査機 (T o P c o n製ゥエーハ表面検査装置 WM— 1 7 0 0 / 1 5 0 0 ) を用いて測定した。 表 3にその結果を示す。  The cleaning process that was the most effective with the cleaning method studied in Example 1. Material was changed using supercritical cleaning after changing the gas state and liquid state five times by changing the pressure at a constant temperature. Washed different cases. The material of the case is (1) aluminum, (2) a composite plate coated with an organic film on aluminum, (3) stainless steel SUS304, (4) Cu, (4) Ti. As shown in FIG. 7, the case shape is 5 mm long × 3 O mm wide × 5 O mm high. In each of the washing steps, 10 cases were washed and analyzed. The cleaning was performed using carbon dioxide as a liquefied gas. For residual oil analysis, oil was extracted with a solvent (carbon tetrachloride), and the extracted oil was measured by FT-IR (Fourier transform infrared spectroscopy). The particles were measured using a particle inspection machine after cleaning (Eaware Surface Inspection System WM-170 / 150, manufactured by Topcon). Table 3 shows the results.
表 3  Table 3
Figure imgf000030_0001
以上の結果、 残留油分量とパーティクル量と^ #見検査で判断したが問題なく洗 浄効果が得られた。 また、 材質の異なるケースにおいても外傷を与えることなく 洗净できることが判明した。
Figure imgf000030_0001
As a result, the cleaning effect was obtained without any problem, as judged by the amount of residual oil, the amount of particles and ^ # inspection. In addition, it was found that it was possible to wash even cases made of different materials without causing any damage.
外見検査、 パーティクル量の判断基準は、 日本産業洗浄協議会の平成 6年度の 報告書 「一般的な洗浄度評価方法と洗浄度の指標の分類」 で示されている 「試料 2」 を用いて説明すると、 そこで洗浄度として記されている 「一般洗浄」 以上を 〇とした。 (実施例 4) Appearance inspection and particle quantity judgment criteria were determined using the “Sample 2” shown in the Japan Industrial Cleaning Council's FY 1994 report “General cleaning evaluation methods and classification of cleaning index”. To explain, “〇” is for “General cleaning” described above as the degree of cleaning. (Example 4)
実施例 1で検討した洗浄方法で最も効果のあった洗浄工程⑥ 「温度一定で圧力 を変化させ、 気体状態と液体状態を 5回繰り返し状態変化をさせた後超臨界洗 浄」 を用いて材質の異なる部品を洗浄した。 ただし、 有機物系の材質は金属系及 びセラミックス系と比べて弱いので時間を短くした。 洗净用の液化ガスとしては 二酸化炭素を用いて行った。 部品はプレス成型加工、 切削を行って形状を加工し たものである。 部品の材質は、 ①エポキシ樹脂、 ②ポリイミド樹脂、 ③プラスチ ック、 ④ェポキシとガラスバル一ンの混合、 ⑤ S i 02、 ⑥ C (カーボン) であ る。 部品形状は、 直径 Φ 10. 8mmX高さ 1. 15mmである。 舰検査に つ ヽて ίま SEM (Scanning Electron Microscopy) を用 ヽて、 ノ ーテイクノレ ίこつ いては洗浄後パーティクル検査機 (T o P c ο η製ゥエーハ表面検査装置 WM -1700/1500) を用いて測定した。 表 4にその結果を示す。 The cleaning process that was the most effective with the cleaning method studied in Example 1. Material was changed using supercritical cleaning after changing the gas state and liquid state five times by changing the pressure at a constant temperature. Washed different parts. However, the time was shortened because organic materials are weaker than metal and ceramic materials. Carbon dioxide was used as a liquefied gas for washing. The parts are press-formed and cut to shape. The material of the parts, ① epoxy resin, ② polyimide resin, ③ plastics, mixing of ④ Epokishi and Garasubaru Ichin, ⑤ S i 0 2, Ru ⑥ C (carbon) Der. The part shape is diameter Φ10.8mm x height 1.15mm.舰 Inspection Using a scanning electron microscopy (SEM) and a notch nozzle, use a particle inspection machine (TOPc o η manufactured by Tohwa WM-1700 / 1500) after cleaning. Measured. Table 4 shows the results.
表 4  Table 4
Figure imgf000031_0001
外見検査、 パーティクル量の判断基準は、 日本産業洗浄協議会の平成 6年度の 報告書 「一般的な洗浄度評価方法と洗浄度の指標の分類」 で示されている 「試料 2」 を用いて説明すると、 そこで洗浄度として記されている 「一般洗浄」 以上を 〇とした。
Figure imgf000031_0001
Appearance inspection and particle quantity judgment criteria were determined using the “Sample 2” shown in the Japan Industrial Cleaning Council's FY 1994 report “General cleaning evaluation methods and classification of cleaning index”. To explain, “〇” is for “General cleaning” described above as the degree of cleaning.
(実施例 5)  (Example 5)
更に、 洗浄効果、 特に汚染物の再付着の防止効果を調べるために高圧容器の構 造と洗浄対象物の容器固定位置を変えて洗浄を行 ヽ残留油分量とパーティクル量 測定した。 洗浄用の液化ガスとしては二酸化炭素を用いて行った。 洗浄工程は実 施例 1で検討した洗浄方法で最も効果のあった洗浄工程⑥ 「温度一定で圧力を変 ィ匕させ、 気体状態と液体状態を 5回繰り返し状態変化をさせた後超臨界洗浄」 を 用いて洗浄した。 部品はプレス成型加工を行って作成したケースで形状は縦 5 m m X横 3 0 mm X高さ 5 0 mmである。 高圧容器の構造及び洗浄対象物の容器 内固定位置を以下のように変えて洗浄を行った。 ①液化ガス導入口 <洗浄対象物 く液化ガス排出口、 ②液化ガス導入口〉洗浄対象物 >液ィ匕ガス排出口、 ③液化ガ ス導入口く液化ガス排出口く洗浄対象物、 ④洗浄対象物く液化ガス導入口く液化 ガス排出口、 ⑤洗浄対象物く液ィヒガス排出口く液ィ匕ガス導入口、 ⑥液化ガス排出 口く液化ガス導入口く洗浄対象物の 6通りの検討を行った。 それぞれの洗浄工程 でケースは 1 0 0個ずつ洗浄し分析を行った。 残留油分分析は溶剤 (四塩化炭 素) で油分抽出したのちその抽出油分を F T— I R (フーリエ変換赤外分光法) で測定した。 また、 パーティクルについては洗浄後パーティクル検査機 (T o P c o n製ゥエーハ表面検査装置 WM— 1 7 0 0 / 1 5 0 0 ) を用いて測定した。 表 5にその結果を示す。 Furthermore, in order to investigate the cleaning effect, especially the effect of preventing the re-adhesion of contaminants, cleaning was performed while changing the structure of the high-pressure vessel and the position where the object to be cleaned was fixed, and the amount of residual oil and the amount of particles were measured. The cleaning was performed using carbon dioxide as a liquefied gas. The cleaning process was most effective with the cleaning method studied in Example 1. “The pressure was changed at a constant temperature, the gas state and the liquid state were repeatedly changed five times, and then the supercritical cleaning was performed. " And washed. The part is a case made by press molding and has a shape of 5 mm long x 30 mm wide x 50 mm high. Cleaning was performed by changing the structure of the high-pressure vessel and the position of the object to be cleaned in the vessel as follows. (1) Liquefied gas inlet <Liquefied gas outlet for cleaning object, (2) Liquefied gas inlet> Cleaning object> Liquefied gas outlet, (3) Liquefied gas inlet, Liquefied gas outlet, cleaning object, (4) Cleaning Liquefied gas inlet for liquefied gas, liquefied gas outlet for cleaning, liquefied gas outlet for liquefied gas, liquefied gas outlet for liquefied gas, liquefied gas inlet for cleaning went. In each washing step, 100 cases were washed and analyzed. For residual oil analysis, oil was extracted with a solvent (carbon tetrachloride), and the extracted oil was measured by FT-IR (Fourier transform infrared spectroscopy). The particles were measured using a particle inspection machine (Ea surface inspection system WM-170 / 150, manufactured by Topcon) after cleaning. Table 5 shows the results.
表 5  Table 5
Figure imgf000032_0001
以上の結果、 高圧容器の構造と浄対象物の容器内固定位置は液化ガス導入口く 洗浄対象物 <液化ガス排出口にすることで汚染物の再付着防止効果で洗浄効果を 向上可能であることがわかった。
Figure imgf000032_0001
As a result of the above, the structure of the high-pressure vessel and the position where the object to be cleaned is fixed in the container are located at the liquefied gas inlet. I understand.
(実施例 6 )  (Example 6)
凹部構造の深さや形状に依存しないかを調べるために凹部構造の形状や深さを 変化させて洗浄効果を検討した。 洗浄用の液化ガスとしては二酸化炭素を用いて 行った。 実施例 1で検討した洗浄方法で最も効果のあった洗浄工程⑥ 「温度一定 で圧力を変ィ匕させ、 気体状態と液体状態を 5回繰り返し状態変化をさせた後超臨 界洗浄」 を用いて洗浄した。 部品はプレス成型加工を行って作成したケースで形 状は①縦 5 mm X横 3 O mm X高さ 5 0 mm、 ②縦 o mm X横 1 0 mm X局 5mm、 ③縦 3mmX横 5mmX高さ 2 Omm、 ④ φ 10. 8mmX高さ 5m m⑤ φ 5 mmX高さ 5 mmである。 それぞれのケース形状でケースは 100個 ずつ洗浄し分析を行った。 残留油分分析は溶剤 (四塩化炭素) で油分抽出したの ちその抽出油分を FT— I R (フーリエ変換赤外分光法) で測定した。 またパー ティクルについては洗浄後パーティクル検査機 (T o P c o n製ゥエーハ表面検 査装置 WM— 1700/1500) を用いて測定した。 表 6にその結果を示す。 表 6 The cleaning effect was examined by changing the shape and depth of the concave structure in order to investigate whether it depends on the depth and shape of the concave structure. The cleaning was performed using carbon dioxide as a liquefied gas. The cleaning process that was the most effective with the cleaning method studied in Example 1 ⑥ Using “supercritical cleaning after changing the pressure at a constant temperature and changing the gas state and liquid state five times,” And washed. The part is a case made by press molding and has a shape of (5 mm in length × 3 O mm in width × 50 mm in height), (2) length o mm × 10 mm in width X 5mm, ③ length 3mmX width 5mmX height 2 Omm, ④ φ10.8mmX height 5mm m⑤φ5mmX height 5mm. In each case shape, 100 cases were washed and analyzed. For residual oil analysis, oil was extracted with a solvent (carbon tetrachloride), and the extracted oil was measured by FT-IR (Fourier transform infrared spectroscopy). After cleaning, the particles were measured using a particle inspection machine (Ea surface inspection system WM-1700 / 1500 manufactured by Topcon). Table 6 shows the results. Table 6
Figure imgf000033_0001
以上の結果からケース形状にかかわらず洗浄効果が見られた。 よって、 ケース の形状によらず洗浄できることがわかった。
Figure imgf000033_0001
From the above results, a cleaning effect was observed regardless of the case shape. Therefore, it was found that cleaning was possible regardless of the shape of the case.
(実施例 7)  (Example 7)
プレス成型加工及び切削加工されたケースの洗浄工程の検討を行つた。 洗浄用 の液化ガスとしては二酸化炭素と水を用いて行った。 材質は SUS 304、 大き さは φ 12mmN 高さ 5 mmの凹部構造を有するケースである。 このケースを用 いて洗浄プロセスの違いによる残留物 (油分) の量とパーティクル量、 酸化物の 変化、 接触角測定による濡れ性を調べた。 洗浄プロセスとしては、 ①二酸化炭素 を用いて、 温度一定で圧力を変化させ、 気体状態と液体状態を 5回繰り返し状態 変化をさせた洗浄後超臨界状態へ移行して洗浄、 ②①の洗浄後二酸化炭素を追い 出して水を導入して 200°C、 5Mp aで洗浄、 ③①の洗浄後二酸化炭素中に水 を導入して 200°C、 5Mp aで洗浄、 ④水の 200°C、 5 M p aのみの洗浄のThe cleaning process of the press-formed and cut cases was studied. Carbon dioxide and water were used as liquefied gas for cleaning. The material is SUS 304, the size is a case having a recess structure phi 12 mm N height 5 mm. Using this case, we investigated the amount of residue (oil) and the amount of particles, changes in oxides, and wettability by contact angle measurement due to differences in the cleaning process. The cleaning process is as follows: (1) using carbon dioxide, changing the pressure at a constant temperature, changing the gas state and the liquid state five times, changing to the supercritical state, and then cleaning; Remove carbon, introduce water and wash at 200 ° C, 5Mpa, ③ After washing, introduce water into carbon dioxide and wash at 200 ° C, 5Mpa, ④ 200 ° C, 5M of water pa only wash
4通りの工程を検討した。 それぞれの洗浄工程でケースは 100個ずつ洗浄し分 析を行った。 残留油分分析は溶剤 (四塩化炭素) で油分抽出したのちその抽出油 分を FT— I R (フーリエ変換赤外分光法) で測定した。 またパーテイク こつ いては洗浄後パーティクル検査機 (T o P c o n製ゥエーハ表面検査装置 WM 一 1 700ノ1500) を用いて測定した。 また、 酸化物の変化については E S C A (X線光電子分光法) を用いて測定し た (酸ィ匕物の判断基準としては、 初期値 (脱脂処理後) の酸化物ピーク強度を 1 として、 各洗浄後の酸化物ピーク強度を比で示した) 。 Four processes were considered. In each washing step, 100 cases were washed and analyzed. For residual oil analysis, oil was extracted with a solvent (carbon tetrachloride), and the extracted oil was measured by FT-IR (Fourier transform infrared spectroscopy). In addition, after the cleaning, the particle was measured using a particle inspection machine (Ea surface inspection apparatus WM-1700-1500 manufactured by Topcon) after cleaning. The change in oxides was measured using ESCA (X-ray photoelectron spectroscopy). The oxide peak intensity after washing was shown as a ratio).
また、 接触角については協和界面化学 (株) 製の自動接触角計 C A— Z型を用 いて測定した。 接触角とは、 物質表面の液体に対するなじみやすさ (親和性、 又 はぬれ性) を表す指標として、 一般に用いられる。 図 8に示すように接触角とは、 固体、 液体、 気体の三相の界面で液滴の接線と固体面とのなす角のことをいい、 液体が表面になじみやすくなるにつれて、 接触角は小さくなる。  The contact angle was measured using an automatic contact angle meter CA-Z manufactured by Kyowa Interface Chemical Co., Ltd. The contact angle is generally used as an index indicating the degree of affinity (affinity or wettability) of a material surface with a liquid. As shown in Fig. 8, the contact angle refers to the angle between the tangent of the droplet and the solid surface at the three-phase interface between solid, liquid, and gas.The contact angle increases as the liquid becomes more compatible with the surface. Become smaller.
表 7にその結果を示す。 酸化物量は洗浄工程①を 1として規格化した。 また、 接触角は液体として純水で測定した。  Table 7 shows the results. The amount of oxides was standardized with cleaning step 1 as 1. The contact angle was measured with pure water as a liquid.
表 7  Table 7
Figure imgf000034_0001
以上の結果、 二酸化炭素の洗浄工程と水の 2 0 0 °C、 5 M p a洗浄を組み合わ せることで油分及び無機物系の酸化物を除去可能であり、 さらに接触角も小さく なり濡れ性も改善できることが判明した。
Figure imgf000034_0001
As a result, oil and inorganic oxides can be removed by combining the carbon dioxide cleaning process with water cleaning at 200 ° C and 5 MPa, and the contact angle is reduced and wettability is improved. It turns out that it can be done.
本発明の第 1実施形態によれば、 凹部構造を有する部品などの被洗浄物を液化 ガスや超臨界流体の洗浄媒体を用いて洗浄することで、 洗浄効果を向上させるこ とができる。  According to the first embodiment of the present invention, the cleaning effect can be improved by cleaning an object to be cleaned such as a component having a concave structure using a cleaning medium of a liquefied gas or a supercritical fluid.
(第 2実施形態)  (Second embodiment)
次に、 本究明の第 2実施形態で用いられる加圧された流動体、 特に超臨界状態 の意味について、 図 2 9を参照しながら、 説明する。  Next, the meaning of the pressurized fluid used in the second embodiment of the present invention, particularly the supercritical state, will be described with reference to FIG.
この第 2実施形態は、 第 1実施形態で除去した物質を再利用することを考慮し たものである。 すなわち、 従来では、 超臨界や亜臨界状態の流体を用いる洗浄に おいて、 洗浄効果を高めるためにいろいろな工夫が行われている。 例えば、 超臨 界又は亜臨界状態の流体を急速に状態変ィヒさせる方法が開示されている。 しかし、 これら流体の急激な状態変化は物理的な衝撃を洗浄の対象物に与えるため、 部品 のゆがみやひどい場合には欠けなどを生じる場合がある。 特に、 密度の低い部品 や、 薄板で複雑な構造の凹部を形成した部品などは、 その影響を強く受けやすい。 一方、 プレス成型加工で加工される部品、 特に電子部品に関しては、 精度を高 めるため多くの潤滑油を使用する。 このため、 加工後部品の洗浄液には潤滑油主 成分である炭化水素系有機物が大量に含まれる。 さらに潤滑油には、 加工精度向 上を目的として、 炭化水素系有機物以外にも界面活性剤等の有機物が含有されて いる。 ところ力 通常の洗浄では炭化水素系有機物と界面活性剤等の有機物を分 離することが出来ず、 再利用はできなかった。 The second embodiment considers reusing the substance removed in the first embodiment. That is, conventionally, in the cleaning using a fluid in a supercritical or subcritical state, various measures have been taken to enhance the cleaning effect. For example, a method for rapidly changing a fluid in a supercritical or subcritical state is disclosed. However, a sudden change in the state of these fluids exerts a physical impact on the object to be cleaned, If it is distorted or severe, chipping may occur. In particular, low-density components and components with thin-walled concaves with complex structures are particularly susceptible to this effect. On the other hand, parts that are processed by press molding, especially electronic parts, use a large amount of lubricating oil to improve accuracy. For this reason, the cleaning fluid for processed parts contains a large amount of hydrocarbon organic substances, which are the main components of lubricating oil. In addition, lubricating oils contain organic substances such as surfactants in addition to hydrocarbon-based organic substances for the purpose of improving processing accuracy. However, with ordinary cleaning, hydrocarbon-based organic substances and organic substances such as surfactants could not be separated and could not be reused.
また、 洗浄システムが非常に高価で洗浄時間がかかるため、 洗浄物としては金 型など非常に高価で繰り返し使用される部品が主たる応用であった。  In addition, since the cleaning system is very expensive and requires a lot of cleaning time, the main application was to use extremely expensive and repeatedly used parts such as dies.
これらの問題を解消しようとするものが第 2及び第 3実施形態である。  The second and third embodiments attempt to solve these problems.
本発明の加圧流動体による洗浄方法は、 加圧された流動体を被洗浄物に接触さ せることによって被洗浄物の表面に付着する不純物を除去する方法であり、 被洗 浄物に接触している加圧された流動体の相状態を変化させることなく、 その流動 体の密度を変化させることを特徴とする洗浄方法である。  The cleaning method using a pressurized fluid of the present invention is a method of removing impurities adhering to the surface of the object to be cleaned by bringing the pressurized fluid into contact with the object to be cleaned. The cleaning method is characterized in that the density of the pressurized fluid is changed without changing the phase state of the fluid.
特に、 被洗浄物の密度が流動体の液体密度以下であって、 その流動体の圧力、 温度の少なくとも一つの条件を変化することによって、 流動体の密度を被洗浄物 の密度に対して高低を繰り返すことによって洗浄の効果が得る。 この際に、 加圧 された流動体が超臨界流体であるときに、 効果が高くなる。  In particular, the density of the object to be cleaned is lower than the liquid density of the fluid, and the density of the fluid is higher or lower than the density of the object to be cleaned by changing at least one of the pressure and temperature of the fluid. By repeating the above, the effect of washing is obtained. At this time, the effect is enhanced when the pressurized fluid is a supercritical fluid.
また、 本発明の加圧流動体による洗浄方法は、 加圧された流動体を被洗浄物に 接触させることによって被洗浄物の表面に付着する不純物を除去する洗浄方法で あり、 加圧された第 1の流動体の中に浸漬してなる被洗浄物に対して、 その第 1 の流動体に対して密度の異なる加圧された第 2の流動体を接触させて洗浄する。 その際に、 第 1の流動体の相状態を変化させることなく、 第 2の流動体を被洗浄 物に接触してなることを特徴とする洗浄方法である。  Further, the cleaning method using the pressurized fluid of the present invention is a cleaning method for removing impurities attached to the surface of the object to be cleaned by bringing the pressurized fluid into contact with the object to be cleaned. The object to be cleaned immersed in the first fluid is washed by bringing the first fluid into contact with a pressurized second fluid having a different density. At this time, a cleaning method is characterized in that the second fluid is brought into contact with an object to be cleaned without changing the phase state of the first fluid.
この際に、 第 2の流動体が超臨界流体であるときに好ましい効果が得られる。 特に、 被洗浄物の密度が第 1の流動体の液体密度以下であって、 その被洗浄物の 密度よりも密度が低い第 2の流動体を被洗浄物に接触してなることで洗浄効果が 高くなる。 また、 第 1の流動体と第 2の流動体とが同一であって、 第 1の流動体 が液体であり、 第 2の流動体が超臨界流体である場合に特に好ましい効果が得ら れる。 At this time, a favorable effect is obtained when the second fluid is a supercritical fluid. In particular, the cleaning effect is achieved by contacting the second fluid having a density lower than the liquid density of the first fluid with the density of the fluid to be cleaned to be lower than the liquid density of the first fluid. Is higher. Also, the first fluid and the second fluid are the same, and the first fluid Is a liquid, and a particularly preferable effect is obtained when the second fluid is a supercritical fluid.
本発明の加圧流体による洗浄方法では、 用いる流動体が二酸化炭素、 水、 アン モニァ、 亜酸化炭素、 アルコールの少なくとも 1つを含むことによって好ましい 効果が得られる。  In the cleaning method using a pressurized fluid of the present invention, a preferable effect can be obtained when the fluid used contains at least one of carbon dioxide, water, ammonia, carbon suboxide, and alcohol.
また、 本発明を適用する被洗浄物の表面に付着する不純物が潤滑油である場合 に効果が高くなる。 さらに、 本発明を適用する被洗浄物が凹部構造を有する部品 である場合に効果が高くなる。  Further, the effect is enhanced when the impurities adhering to the surface of the object to be cleaned to which the present invention is applied are lubricating oils. Furthermore, the effect is enhanced when the object to be cleaned to which the present invention is applied is a component having a concave structure.
まず、 第 2実施形態について説明する。  First, a second embodiment will be described.
図 2 9は、 二酸化炭素や水等の流動体 (流体) の状態図を示す。 図 2 9におい て、 横軸は温度を表し、 縦軸は圧力を表している。 温度が臨界温度 T c 1 0 2で 圧力が臨界圧力 P c 1 0 3の点 (T c、 P c ) が臨界点 1 0 1である。 温度が臨 界温度 T c 1 0 2以上で圧力が臨界圧力 P c 1 0 3以上の範囲が超臨界状態 1 0 4である。 この超臨界状態 1 0 4においては、 流動体が気体 1 0 5、 液体 1 0 6、 固体 1 0 7とは異なる相である。 この超臨界状態は、 気体、 液体、 固体などとは 異なる性質を示し流体であることが知られている。 例えば、 超臨界状態の流体の 密度は、 気体と液体の中間の値を有し、 温度と圧力の条件で調整することも可能 である。 また、 超臨界状態は密度だけでなく、 洗浄に関して、 イオン積、 誘電率、 拡散なども制御できるため高い洗浄効果を得る方法として用いることができる。 さらに、 洗浄に関しては、 液体状態は密度が非常の大きいため、 洗浄には効果 的な流動体であり、 場合によっては液体状態を用いることもある。 また、 超臨界 状態だけでなく比較的高温、 高圧の領域で、 圧力、 温度条件が超臨界状態に近い 液体状態を亜臨界領域状態と呼ぶことがあり、 この力 D圧された液体状態も洗浄に 用いることがある。  Figure 29 shows a phase diagram of a fluid such as carbon dioxide and water. In Fig. 29, the horizontal axis represents temperature, and the vertical axis represents pressure. The point where the temperature is the critical temperature Tc102 and the pressure is the critical pressure Pc103 (Tc, Pc) is the critical point 101. The supercritical state 104 is a range where the temperature is equal to or higher than the critical temperature Tc102 and the pressure is equal to or higher than the critical pressure Pc103. In the supercritical state 104, the fluid is in a different phase from the gas 105, the liquid 106, and the solid 107. This supercritical state is different from gas, liquid, solid, etc., and is known to be fluid. For example, the density of a fluid in a supercritical state has a value intermediate between that of a gas and a liquid, and can be adjusted with temperature and pressure conditions. In addition, the supercritical state can control not only the density but also the ionic product, dielectric constant, diffusion, etc., and can be used as a method to obtain a high cleaning effect. Furthermore, with regard to cleaning, the liquid state is an extremely effective fluid for cleaning due to its very high density, and in some cases, the liquid state is used. In addition to the supercritical state, a liquid state in which the pressure and temperature conditions are close to the supercritical state in a relatively high-temperature and high-pressure region is sometimes called a subcritical region state. May be used for
ここで、 例えば、 流動体として二酸化炭素の臨界温度 T c 1 0 2は約 3 1 . Here, for example, the critical temperature Tc102 of carbon dioxide as a fluid is about 31.1.
1 °Cであり、 二酸化炭素の臨界圧力 P c 1 0 3は約 7 . 3 8 M P aである。 水の 場合は、 臨界温度 T c 1 0 2は約 3 7 4 . 3 °Cであり、 臨界圧力 P c 1 0 3は約 2 2 . I MP aである。 It is 1 ° C, and the critical pressure P c 103 of carbon dioxide is about 7.38 MPa. In the case of water, the critical temperature Tc102 is about 374.3 ° C, and the critical pressure Pc103 is about 22.IMPa.
流動体としては、 常温常圧で気体の物質が好ましく、 二酸化炭素、 水、 アンモ ユア、 亜酸化炭素等が用いられるが、 その他に少し温度を上げると飛散するアル コーノレを用いても良い。 中でも、 二酸化炭素や水は人体側面においても無害であ るため取り扱い性も良い。 さらに二酸ィヒ炭素は臨界状態では有機物の分解、 除去 作用を有し、 水は酸化物などのエッチング効果を有するため、 それぞれの特徴を 生かすことで凹部構造を有する部品の洗浄に有効である。 As the fluid, a substance that is a gas at normal temperature and normal pressure is preferable. Yours, carbon suboxide, etc. are used, but other types of alcohol which can be scattered when the temperature is raised a little may be used. Above all, carbon dioxide and water are harmless even on the human body, so they are easy to handle. In addition, carbon dioxide has a function of decomposing and removing organic substances in a critical state, and water has an etching effect of oxides and the like, and is effective in cleaning parts having a concave structure by utilizing their respective characteristics. .
本発明の第 2実施形態にかかる洗净方法については、 凹部構造を有している部 品に適用するのが好ましい。 これらの部品は、 特に凹部に加工油である潤滑油や 不純物 (切削くずなど) を付着させやすい。 また、 この凹部部分は入り組んだ構 造であること、 加工時に圧力が加わる部分であることから他の平坦な構造部分と 比較すると加工油である潤滑油の付着性が高く、 洗浄剤などが浸透し難いため洗 浄むら、 洗浄残りが発生しやすい。 そこで、 洗浄媒体として浸透性が高く、 ある 程度の粘性、 溶解性を有している液体状態 (亜臨界流体を含む) や超臨界状態の カロ圧された流動体を用いるのが効果が高い。  The washing method according to the second embodiment of the present invention is preferably applied to a component having a concave structure. These parts are particularly susceptible to the attachment of lubricating oil, which is a processing oil, and impurities (such as cutting chips) to the recesses. In addition, this recess has a complicated structure and is a part to which pressure is applied during processing.Therefore, compared to other flat structures, the adhesion of lubricating oil, which is processing oil, is high, and cleaning agents etc. penetrate Because it is difficult to wash, uneven washing is likely to occur. Therefore, it is highly effective to use a liquid medium (including a subcritical fluid), which has high permeability and a certain degree of viscosity and solubility, and a supercritical state as a cleaning medium.
次に、 本発明の第 2実施形態のカロ圧流体を用いた洗浄方法について説明する。 本発明の第 2実施形態である洗浄方法は、 加圧された流動体を被洗浄物に接触 させることによって被洗浄物の表面に付着する不純物を除去する方法であり、 被 洗浄物に接触している加圧された流動体の相状態を変化させることなく、 その流 動体の密度を変化させて洗浄するものである。 特に、 被洗浄物の密度が流動体の 液体密度以下である場合に、 その流動体の密度を制御することによつて被洗浄物 に加わる浮力を変える。 それによつて流動体の密度が被洗浄物の密度に対して高 低を繰り返すのに伴って、 流動体中で被洗浄物を上下に運動させ、 攪拌効果を生 じさせる方法である。 この際に、 カロ圧された流動体が超臨界状態の流体である場 合には、 密度を大きく変化させることができるので好ましい上に、 密度変化に伴 つて誘電率等が変化して溶解性が変ィヒする効果も有している。  Next, a cleaning method using a calo-pressure fluid according to a second embodiment of the present invention will be described. The cleaning method according to the second embodiment of the present invention is a method for removing impurities attached to the surface of the object to be cleaned by bringing a pressurized fluid into contact with the object to be cleaned. Cleaning is performed by changing the density of a fluid under pressure without changing the phase state of the fluid. Particularly, when the density of the object to be cleaned is lower than the liquid density of the fluid, the buoyancy applied to the object to be cleaned is changed by controlling the density of the fluid. As a result, as the density of the fluid repeatedly changes with respect to the density of the object to be cleaned, the object to be cleaned is moved up and down in the fluid to generate a stirring effect. At this time, it is preferable that the fluid pressurized in the supercritical state is a fluid in a supercritical state, since the density can be largely changed. Also has the effect of changing.
例えば、 二酸化炭素では 0 . 1 M P a、 3 0 °Cでの気体の密度が約 1 k g /m For example, for carbon dioxide, the gas density at 0.1 MPa and 30 ° C is about 1 kg / m
3であるのに対して、 液体では 3 0 °C〜1 5 °Cで約 6 0 0〜1 6 0 0 k g /m 超臨界状態では温度、 圧力条件で変わるが臨界圧力以上で約 2 0 0 k g Zm 3か ら 1 0 0 0 k g Zm 3以上まで制御することができる。 したがって、 被洗浄物は これらの密度範囲を有するものが好ましい。 被洗浄物の密度は、 密度が約 2 0 0 k g Zm3から約 1 5 0 0 k g Zm3の範 囲であるものが好ましく、 超臨界状態の流動体を用いる場合には、 被洗浄物の密 度は約 2 0 0 k gZm3から約 1 0 0 0 k g Zm3の範囲が好適である。 被洗浄 物としては、 樹脂の成型体や内部に中空構造を有する軽量材からなる部品などが 適して用いることができる。 被洗浄物としては、 例えば、 中空ガラスビーズをェ ポキシ樹脂等で固めた部品は超音波センサの音響整合部品として用いられるが、 成型する際に切削加工などによって中空ガラスビーズが切断されたり抜けたりし てビーズサイズの凹部構造が加工表面に形成されている。 凹部構造の大きさは、 幅、 深さが数 μ πιから数百 /i mであり、 その内部に加工時に割れたガラス片が入 つていて、 単なる浸漬洗浄では除去することが困難である。 また、 成型時、 加工 時の残留油成分も表面や内部に存在することがある。 これらの汚れを洗浄するの に本発明の効果を発揮できる。 なお、 適用できるものとしては、 これに限定され るものではない。 In contrast to liquid, it is about 600 to 160 kg / m at 30 ° C to 15 ° C for liquids. it can be controlled to 0 kg Zm 3 or al 1 0 0 0 kg Zm 3 or more. Therefore, the object to be cleaned preferably has these density ranges. The density of the object to be cleaned is preferably in the range of about 200 kg Zm 3 to about 1500 kg Zm 3 .When a supercritical fluid is used, the density has a preferable range of about 2 0 0 k gZm 3 to about 1 0 0 0 kg Zm 3. As the object to be cleaned, a resin molded body or a part made of a lightweight material having a hollow structure therein can be suitably used. As an object to be cleaned, for example, a component obtained by solidifying hollow glass beads with epoxy resin or the like is used as an acoustic matching component of an ultrasonic sensor.However, when molding, the hollow glass beads are cut or come off by cutting or the like. Thus, a bead-sized concave structure is formed on the processed surface. The size of the recessed structure is from several μπι to several hundreds / im in width and depth, and contains glass fragments broken during processing, making it difficult to remove by simple immersion cleaning. Also, residual oil components at the time of molding and processing may be present on the surface or inside. The effects of the present invention can be exerted for cleaning these stains. Applicable items are not limited to this.
図 3 0, 図 3 2 , 図 3 3は、 本発明の第 2実施形態にかかる洗浄方法を行う洗 浄装置の概略図である。 特に、 図 3 2と図 3 3は、 流動体 3 8 0の密度によって、 被洗浄物 2 1 4が軽くなつたときに密着状態が解けて不純物 3 8 1を除去しゃす くなり、 それを繰り返すことによつて攪拌効果によつて洗浄が行われることを示 す図である。  FIG. 30, FIG. 32, and FIG. 33 are schematic views of a cleaning apparatus for performing the cleaning method according to the second embodiment of the present invention. In particular, Figures 32 and 33 show that the density of the fluid 380 reduces the adherence when the object to be cleaned 2 14 becomes lighter and removes the impurities 3 81, which is repeated. FIG. 7 is a diagram showing that cleaning is performed by the stirring effect.
この装置は主な構成要素として、 洗浄槽の一例は圧力容器 2 1 0であり、 不純 物 3 8 1を回収する分離容器 2 2 0、 流動体 3 8 0を供給するボンべ (又はタン ク) 2 0 1と液体ポンプ 2 0 2と、 流動体 3 8 0の温度調整器 2 0 4と各容器を 温度制御する温度制御装置 2 1 1、 2 2 1と、 圧力制御バルブ 2 0 3、 2 1 3、 2 2 3を制御する圧力制御装置 2 3 0である。  The main components of this device are a pressure vessel 210 as an example of a washing tank, a separation vessel 220 for collecting impurities 381, and a cylinder (or tank) for supplying fluid 380. ) 210, liquid pump 202, fluid regulator 380 temperature controller 204, temperature control device 211, 221 for controlling the temperature of each container, pressure control valve 203, A pressure control device 230 for controlling 2 13 and 2 23.
流動体 3 8 0として二酸化炭素を用い、 被洗浄物 2 1 4として中空ガラスビー ズのエポキシ樹脂硬化成型体 (密度約 5 5 0 k g /m 3) を用いて説明する。 被 洗浄物 2 1 4を洗浄用治具 2 1 2内に入れて圧力容器 2 1 0内に設置し、 温度調 整器2 0 4、 圧力制御バルブ 2 0 3で温度、 圧力条件を調整して流動体 3 8 0を 圧力容器 2 1 0内に液体ポンプ 2 0 2を用いて導入する。 圧力容器 2 1 0は、 容 器用の温度制御装置 2 1 1と圧力制御装置 2 3 0を用いて洗浄条件を制御する。 二酸化炭素は、 約 4 7 °C、 約 1 2 MP aの超臨界状態の流動体 3 8 0として、 圧 力容器 2 1 0に送られる。 この条件での二酸ィ匕炭素の密度は約 6 0 0 k g /m3 であるために、 被洗净物 2 1 4は、 圧力容器 2 1 0中では二酸化炭素の流動体に 浮いている状態になっている。 この初期状態から?显度一定で圧力を制御すると、 流動体 3 8 0の密度は約 1 O MP aで約 5 0 0 k g /m 3になり、 被洗浄物 2 1A description will be given by using carbon dioxide as the fluid 380 and an epoxy resin cured molded article of a hollow glass bead (density of about 550 kg / m 3 ) as the object to be cleaned 214. Was placed in the pressure vessel 2 1 within 0 to put the cleaning object 2 1 4 to the cleaning jig 2 1 2, to adjust the temperature, the pressure conditions at a temperature regulating Seiki 2 0 4, the pressure control valve 2 0 3 The fluid 380 is introduced into the pressure vessel 210 using the liquid pump 202. The pressure vessel 210 controls the cleaning conditions by using a temperature control device 211 and a pressure control device 230 for the container. The carbon dioxide is sent to the pressure vessel 210 as a supercritical fluid 380 at about 47 ° C and about 12 MPa. Since the density of carbon dioxide under this condition is about 600 kg / m 3 , the object to be washed 2 14 is floating in the fluid of carbon dioxide in the pressure vessel 210. It is in a state. From this initial state? By controlling the pressure in显度constant, the density of the fluid 3 8 0 becomes about 1 O MP a about 5 0 0 kg / m 3, the cleaning object 2 1
4の密度よりも軽くなるために被洗浄物 2 1 4は沈みはじめる。 また、 初期状態 から圧力一定で温度を制御すると、 流動体 3 8 0の密度は約 5 5 °Cで約 5 0 0 k g /m3になり、 被洗浄物 2 1 4の密度よりも軽くなるために被洗浄物 2 1 4は 沈みはじめる。 圧力又は温度、 あるいは両者を制御して流動体 3 8 0の密度を高 くしたり低くしたりすることで、 被洗浄物 2 1 4を流動体 3 8 0中で上がつたり 下がったりさせることができ (図 3 3参照) 、 攪拌効果を高めることで洗浄効果 を向上させることができる。 これによつて、 超臨界状態の二酸化炭素に溶解しや すい潤滑油などの成分である不純物 3 8 1は、 被洗浄物 2 1 4の凹部や狭部まで 効果的に溶出除去することが容易になる。 また、 超臨界状態の二酸化炭素に溶解 しにくいガラスや樹脂の切削粉などの成分である不純物 3 8 1は被洗浄物 2 1 4 の凹部や狭部から押し出されて除去することが容易になる。 The object to be cleaned 2 1 4 starts to sink because it is lighter than the density of 4. Further, by controlling the temperature at a constant pressure from the initial state, the density of the fluid 3 8 0 becomes about 5 5 ° C to about 5 0 0 kg / m 3, lighter than the density of the object to be cleaned 2 1 4 The object to be cleaned 2 1 4 starts to sink. By increasing or decreasing the density of the fluid 380 by controlling the pressure or temperature, or both, to cause the object to be cleaned 214 to rise and fall in the fluid 380 (See Fig. 33), the cleaning effect can be improved by increasing the stirring effect. This facilitates effective elution and removal of impurities 381, which are components of lubricating oil and the like that are easily dissolved in supercritical carbon dioxide, up to the recesses and narrow parts of the object to be cleaned 214. become. In addition, impurities 381, which are components that are difficult to dissolve in supercritical carbon dioxide, such as glass and resin cutting powder, are extruded from recesses and narrow portions of the object to be cleaned 2 14 to facilitate removal. .
なお、 被洗浄物 2 1 4の密度と流動体 3 8 0の密度とが大略同一のときは、 圧 力制御装置 2 3 0などの制御装置の動作制御の下に、 攪拌羽根 3 8 3を回転させ て流動体 3 8 0を攪拌させることにより、 密度変化と同様に、 被洗诤物 2 1 4に 加わえる浮力を変えるようにして、 上記したような洗浄効果を奏するようにして もよレ、。 これは、 上記した密度の高低ではなく、 両者の密度を限りなく近くする ことによって、 他のメカェカルな作用で被洗浄物 2 1 4同士の密着を容易に解く 例である。 この方法によって流動体の密度 (圧力、 温度) の高低を繰り返す必要 が無くなるために、 条件の制御は簡便になる。  When the density of the object to be cleaned 214 and the density of the fluid 380 are substantially the same, the stirring blade 383 is operated under the control of a pressure control device 230 or the like. By rotating and agitating the fluid 380, the buoyancy applied to the object to be washed 2 14 can be changed in the same manner as the density change, so that the above-described cleaning effect can be obtained. Les ,. This is an example in which the close contact between the objects to be cleaned 214 is easily released by another mechanical action by setting the densities of the two as close as possible, instead of the above-mentioned high and low densities. This method simplifies the control of the conditions, since it is not necessary to repeatedly increase and decrease the density (pressure and temperature) of the fluid.
また、 さらに外力による機械的な変動としては、 メカニカルな攪拌だけでなく 流動体のノズル噴射によっても実施することができるため、 後述する図 3 1は、 本発明の第 3実施形態における洗浄装置に適用した例として図 3 6に流動体のノ ズル嘖射とを組み合わせた例を示す。 なお、 図 3 6において、 4 0 0は部品毎に 洗浄条件を換えるための部品 (被洗浄物) 情報データベースである。 すなわち、 情報データベース 4 0 0内の情報に基づき、 被洗浄物 2 1 4の密度と流動体 3 8 0の密度とが大略同一のときは、 ノズル噴射により、 被洗浄物 2 1 4同士の密着 を容易に解くようにしている。 この方法によって流動体の密度 (圧力、 温度) の 高低を繰り返す必要が無くなるために、 条件の制御は簡便になる。 Further, since the mechanical fluctuation due to external force can be performed not only by mechanical stirring but also by spraying a nozzle of a fluid, FIG. 31 described later shows a cleaning apparatus according to a third embodiment of the present invention. As an example of application, Fig. 36 shows an example in which a combination of a nozzle with a fluid is used. In FIG. 36, reference numeral 400 denotes a component (subject to be cleaned) information database for changing cleaning conditions for each component. That is, Based on the information in the information database 400, when the density of the object to be cleaned 214 and the density of the fluid 380 are almost the same, the nozzles can easily close the objects to be cleaned 214 by nozzle injection. I try to solve it. This method simplifies the control of the conditions, since it is not necessary to repeatedly change the density (pressure, temperature) of the fluid.
また、 本方法では、 初期状態で被洗浄物 2 1 4と加圧された流動体 3 8 0の密 度をほぼ一致させておくことで、 圧力、 又は温度の条件をわずかに変化させるこ とで、 被洗浄物 2 1 4を加圧された流動体中で上下させることができるため、 洗 浄効果を発揮させやすくなる。 また、 図 3 0では、 圧力容器 2 1 0全体の条件を 制御する例を示しているが、 被洗浄物 2 1 4の近傍に加熱機構を設置して、 被洗 浄物 2 1 4の近傍の温度を上げることでそこのみの密度を低下させて被洗浄物 2 1 4を沈降させることも可能である。 これらの条件は、 被洗浄物 2 1 4に付着し ている不純物の種類等によって使い分ければ良い。 本方法の効果に加えて、 圧力 容器 2 1 0の外部又は内部において攪拌効果を補助する機構を設けておけばさら に効果は高まる。 これらの機構としては、 回転羽根式の攪拌機構や超音波振動子 による攪拌機構などを適宜用いることができる。  Also, in the present method, the pressure or temperature condition is slightly changed by making the density of the object to be cleaned 2 14 and the pressurized fluid 380 almost equal in the initial state. Thus, the object to be cleaned 2 14 can be moved up and down in the pressurized fluid, so that the cleaning effect can be easily exerted. FIG. 30 shows an example in which the conditions of the entire pressure vessel 210 are controlled. However, a heating mechanism is installed near the object to be cleaned 214, and the vicinity of the object to be cleaned 214 is controlled. It is also possible to lower the density only by raising the temperature of the substrate and settle the object to be cleaned 214. These conditions may be properly used depending on the type of impurities attached to the object to be cleaned 2 14. In addition to the effect of this method, if a mechanism for assisting the stirring effect is provided outside or inside the pressure vessel 210, the effect will be further enhanced. As these mechanisms, a rotating blade type stirring mechanism or a stirring mechanism using an ultrasonic vibrator can be used as appropriate.
被洗浄物 2 1 4から除去した不純物を含む超臨界状態の二酸化炭素は、 分離容 器 2 2 0へ送られ、 圧力を制御して超臨界状態の二酸化炭素の圧力を低下させ、 気体状態に戻す。 この時、 二酸化炭素に溶解している不純物は溶解度の低下に伴 つて分離するために洗浄残留物 2 2 2として回収される。 また、 二酸化炭素に不 溶の不純物 3 8 1は沈降して洗浄残留物 2 2 2として回収される。 圧力容器 2 1 0と別の容器で不純物 3 8 1を回収することによって、 部品への再付着を防ぐこ とができる。  The supercritical carbon dioxide containing impurities removed from the article to be cleaned 214 is sent to the separation vessel 220, where the pressure is controlled to reduce the pressure of the supercritical carbon dioxide, and the gas is turned into a gaseous state. return. At this time, the impurities dissolved in the carbon dioxide are collected as a washing residue 222 to separate as the solubility decreases. In addition, impurities 381 insoluble in carbon dioxide settle out and are collected as washing residues 222. By collecting the impurities 381 in a container different from the pressure container 210, re-adhesion to parts can be prevented.
図 3 0において流動体は、 気体状態から排気する形になっているが、 この気体 状態の二酸化炭素を冷却しながら液体ポンプに送り再度加圧して、 再使用するこ ともできる。 そのため、 連続的な洗浄装置を提供することができる。  In FIG. 30, the fluid is exhausted from a gaseous state. However, the gaseous carbon dioxide can be reused by sending it to a liquid pump while cooling it and pressurizing it again. Therefore, a continuous cleaning device can be provided.
(第 3実施形態)  (Third embodiment)
次に、 本発明の第 3実施形態である洗浄方法について説明する。  Next, a cleaning method according to a third embodiment of the present invention will be described.
第 3実施形態もカロ圧された流動体を被洗浄物に接触させることによって被洗浄 物の表面に付着する不純物を除去する方法であり、 被洗浄物に接触している加圧 された流動体の相状態を変化させることなく洗浄効果を高める方法である。 本方 法では、 第 1の流動体の相状態を変ィ匕させることなく、 第 2の流動体を被洗浄物 に接触させることによつて特に優れた効果が得られる。 加圧された第 1の流動体 の中に浸漬してなる被洗浄物に対して、 その第 1の流動体に対して密度の異なる 力 U圧された第 2の流動体を接触させることによって、 被洗浄部に噴射や泡沫等に よる攪拌効果を向上させる。 The third embodiment is also a method of removing impurities adhering to the surface of the object to be cleaned by bringing the fluid under pressure into contact with the object to be cleaned. This is a method for improving the cleaning effect without changing the phase state of the fluid that has been performed. In this method, a particularly excellent effect can be obtained by bringing the second fluid into contact with the object to be cleaned without changing the phase state of the first fluid. By contacting the object to be cleaned immersed in the pressurized first fluid with a second fluid that has a different density U and is pressed against the first fluid. In addition, the stirring effect by spraying, foaming, etc. on the part to be cleaned is improved.
さらに、 第 2の流動体が超臨界状態の流体である場合には、 凹部や狭部を有す る部品などの被洗浄物に対しては、 超臨界流体の拡散性の高さによって洗浄しに くい部品の奥まで効果的に不純物を除去できる。 この際に、 加圧された流動体が 超臨界状態の流体である場合には、 密度を大きく変化させることができるので好 ましい上に、 密度変化に伴って誘電率等が変化して溶解性が変化する効果も有し ている。  Further, when the second fluid is a fluid in a supercritical state, the object to be cleaned such as a part having a concave portion or a narrow portion is cleaned by the high diffusivity of the supercritical fluid. Impurities can be effectively removed deep into hard parts. At this time, when the pressurized fluid is a fluid in a supercritical state, it is preferable because the density can be largely changed. It also has the effect of changing gender.
また、 第 1の流動体と第 2の流動体とが同一であって、 第 1の流動体が液体で あり、 第 2の流動体が超臨界流体である場合に特に好ましい効果が得られる。 2 つの流動体が異なる場合には両者の溶解性の相違を用いて洗浄効果を高めること ができるが、 二つの流動体が同じ場合には洗浄後の流動体の再利用をするのに流 動体を分離する必要が無く効率的な洗浄が可能になるという利点がある。 また、 被洗浄物の密度が第 1の流動体よりも低く第 2の流動体よりも高い場合には、 第 2実施形態と同様に、 第 2の流動体が被洗浄物に接触させて浮力を制御すること による攪拌効果を与えることができ、 洗浄効果が向上できる。  Further, particularly preferable effects are obtained when the first fluid and the second fluid are the same, the first fluid is a liquid, and the second fluid is a supercritical fluid. If the two fluids are different, the difference in solubility between them can be used to enhance the cleaning effect.However, if the two fluids are the same, it is necessary to reuse the fluid after cleaning. There is an advantage that it is not necessary to separate the water and efficient cleaning becomes possible. When the density of the object to be cleaned is lower than that of the first fluid and higher than that of the second fluid, as in the second embodiment, the second fluid is brought into contact with the object to be cleaned and the buoyancy is increased. By controlling the temperature, a stirring effect can be provided, and the cleaning effect can be improved.
図 3 1は、 本発明の第 3実施形態の洗浄方法を行う洗浄装置の概略図である。 この装置は主な構成要素として、 洗浄槽は圧力容器 3 1 0であり、 不純物を回収 する分離容器 3 2 0、 第 1の流動体を供給するボンべ (又はタンク) 3 0 1と液 体ポンプ 3 0 2と、 第 1の流動体の温度調整器 3 0 4と各容器を温度制御する温 度制御装置 3 1 1、 3 2 1と、 圧力制御バルブ 3 0 3、 3 1 3、 3 2 3を制御す る圧力制御装置 3 3 0である。 これに、 第 2の流動体を供給するボンべ (又はタ ンク) 3 4 1を液体ポンプ 3 4 2と、 第 2の流動体の温度調整器 3 4 4と圧力制 御バルブ 3 4 3を制御する圧力制御装置 3 3 0を用いて被洗浄物 3 1 4近傍に第 2の流動体を接触させる。 流動体として二酸化炭素を用い、 被洗浄物 3 1 4としてハット型の S U S (ス テンレススチール) ケースに代表される凹部を有するプレス成型加工された部品 又は切削加工法によって形成された部品を用いて説明する。 被洗浄物 3 1 4を洗 浄用治具 3 1 2内に入れて圧力容器 3 1 0内に設置し、 温度調整器 3 0 4、 圧力 制御バルブ 3 0 3で温度、 圧力条件を調整した流動体を圧力容器 3 1 0内に液体 ポンプ 3 0 2を用いて導入する。 圧力容器 3 1 0は、 容器用の温度制御装置 3 1 1と圧力制御装置 3 3 0を用いて洗浄条件を制御する。 二酸化炭素は、 液体状態 で圧力容器 3 1 0に送り被洗浄物 3 1 4を浸漬して洗诤に用いる。 さらに、 圧力 容器 3 1 0中の凹部構造を有する被洗浄物 3 1 4に対して、 第 2の流動体を供給 するボンべ (又はタンク) 3 4 1を液体ポンプ 3 4 2と、 第 2の流動体の温度調 整器 3 4 4と圧力制御バルブ 3 4 3を制御する圧力制御装置 3 3 0を用いて被洗 浄物 3 1 4近傍に噴出し部 3 4 5を通して第 2の流動体としての超臨界状態の二 酸化炭素を接触させる。 FIG. 31 is a schematic diagram of a cleaning apparatus that performs the cleaning method according to the third embodiment of the present invention. The main components of this equipment are a washing tank consisting of a pressure vessel 310, a separation vessel 320 for collecting impurities, a cylinder (or tank) 310 for supplying the first fluid, and a liquid. Pump 302, first fluid temperature regulator 304, temperature control devices 311, 321 for controlling the temperature of each vessel, and pressure control valves 303, 313, 3 A pressure control device 330 for controlling 23 is provided. In addition, a cylinder (or tank) 341 supplying the second fluid, a liquid pump 3442, a temperature regulator 3444 for the second fluid, and a pressure control valve 3443 are connected. The second fluid is brought into contact with the object to be cleaned 3 14 using the pressure control device 3 30 to be controlled. Using carbon dioxide as the fluid, and using a press-formed part or a part formed by a cutting method with a concave portion represented by a hat-type SUS (stainless steel) case as the object to be cleaned 3 14 explain. The object to be cleaned 3 1 4 was placed in the cleaning jig 3 1 2, installed in the pressure vessel 3 10, and the temperature and pressure conditions were adjusted with the temperature controller 3 0 4 and the pressure control valve 3 0 3. The fluid is introduced into the pressure vessel 310 using a liquid pump 302. The pressure vessel 310 controls the cleaning conditions using the temperature control device 311 and the pressure control device 330 for the vessel. Carbon dioxide is sent to the pressure vessel 310 in a liquid state, and the object to be cleaned 314 is immersed in the liquid and used for washing. Further, a cylinder (or tank) 341 for supplying the second fluid to the object to be cleaned 314 having a concave structure in the pressure vessel 310 is connected to a liquid pump 342 and a second pump. Using the temperature controller 3 4 4 and the pressure control device 3 4 3 that controls the pressure control valve 3 4 3, the second flow through the ejection section 3 45 near the object 3 14 Contact carbon dioxide in supercritical state as a body.
凹部構造を有する被洗浄物 3 1 4は圧力容器 3 1 0中に配置しており、 第 1の 流動体中で洗浄されながら、 第 2の流動体によって洗浄効果を促進することにな る。 第 2の流動体の噴出し部 3 4 5が、 被洗浄物 3 1 4の開口部に向けて設置し ている場合は洗浄しにくい奥まで洗浄を行いやすくできる。 効果としては、 密度 の異なる流体の接触による拡散等による攪拌効果とそれに伴う不純物のはく離除 去効果、 溶解度の異なる流体による様様な溶解度を有する不純物に対する溶解除 去効果、 両流動体に圧力差がある場合には圧力の均等化への衝撃による振動効果 などが働き、 洗浄効果が加速されるものと考えられる。 これによつて、 流動体に 溶解しやすい潤滑油などの成分は、 被洗浄物の凹部や狭部まで効果的に溶出除去 することが容易になる。 また、 流動体に溶解しにくいガラスや樹脂の切削粉など の成分は被洗浄物の凹部や狭部からはく離や押し出されて除去することが容易に なる。 このときに第 2の流動体を接触させるタイミングは連続でも間欠でもよく、 一定速度でも、 速度変調を行ってもよく、 被洗浄物等に応じて設定すればよい。 また、 被洗浄物 3 1 4の密度が第 1の流動体の液体状態での密度よりも低い場 合には、 密度の異なる第 2の流動体を接触させることによって、 第 2実施形態と 同じ被洗浄物の上下運動による攪拌効果等が得られ、 洗浄効果が向上される。 また、 被洗浄物 3 1 4から除去した不純物を含む第 1の流動体と第 2の流動体 が混合した流動体は、 分離容器 3 2 0へ送られ、 圧力又は温度を制御して混合流 動体を分離して回収すると共に、 洗浄残留物 3 2 2を分離回収する。 分離した各 流動体はそれぞれ加圧して循環利用することができる。 また、 第 1と第 2の流動 体が同一であれば、 洗浄装置及び洗浄操作は簡略化できる。 The object to be cleaned 3 14 having the concave structure is disposed in the pressure vessel 310, and the cleaning effect is promoted by the second fluid while being cleaned in the first fluid. When the second fluid ejection part 345 is set to face the opening of the object to be cleaned 314, cleaning can be easily performed to the back which is difficult to clean. The effects are agitation effect by diffusion due to contact of fluids with different densities and the effect of stripping and removing impurities, dissolution and removal effect for impurities with solubility similar to that of fluids with different solubilities, and pressure difference between both fluids. In some cases, the vibration effect due to the impact on the pressure equalization works, and the cleaning effect is expected to be accelerated. This makes it easy to effectively elute and remove components such as lubricating oil that are easily dissolved in the fluid to the concave or narrow portion of the object to be cleaned. In addition, components such as glass and resin cutting powder that are difficult to dissolve in the fluid can be easily removed by being peeled or extruded from the concave or narrow portion of the object to be cleaned. At this time, the timing at which the second fluid is brought into contact may be continuous or intermittent, may be constant, may be subjected to speed modulation, and may be set according to the object to be cleaned. In the case where the density of the object to be cleaned 3 14 is lower than the density of the first fluid in the liquid state, the second fluid having a different density is brought into contact with the first fluid, thereby achieving the same effect as in the second embodiment. The stirring effect and the like by the vertical movement of the object to be cleaned are obtained, and the cleaning effect is improved. Further, the fluid in which the first fluid and the second fluid containing the impurities removed from the object to be cleaned 3 14 are mixed is sent to the separation vessel 320 and the mixed fluid is controlled by controlling the pressure or the temperature. Separate and collect the moving object, and separate and collect the washing residue 32 2. Each of the separated fluids can be circulated under pressure. Further, if the first and second fluids are the same, the cleaning device and the cleaning operation can be simplified.
本発明の第 2及び第 3実施形態にかかる洗浄方法及び洗浄装置で洗浄効果が期 待できる部品は主にエレクトロニクス関連に用いられる電子部品及びその関連部 品である。 特に、 プレス成形カ卩ェ及び切削加工による精密加工部品である。 これ らの部品は、 加工精度を向上させるためには必ず加工油である潤滑油が必要不可 欠である。 しかし、 この加工油の残留が次工程の処理、 例えばメツキ処理や接着 などの性能特性に影響を与え、 デバイス及び製品としての性能や信頼性の低下を 引き起こす。 そのため、 高レべノレの残留物除去、 すなわち精密洗浄を必要とする 部品に効果を発揮する。 応用商品としては、 超音波センサの整合層や電池の電極 (特に二次電池など) 。 その他としては電池用ケース、 HD D用ケース (筐体と もいう) 、 電解コンデンサ用のケースなどがある。 超音波センサ用の整合層など は無機系のガラスバ —ンと有機系のエポキシを混合したもの、 無機系のガラス バルーンだけのもの、 有機系のエポキシだけのものなど様々な素材が用いられる。 また、 超音波センサ用ケースなどは素材がステンレス、 アルミニウム、 エポキシ 樹脂である。 加工はプレス成型加工による深絞りや樹脂成形、 切削加工で加工さ れる。 電池用ケースについては一般にアルミ-ゥム又は最近ではアルミニウムに メツキを施した多層鋼材が用いられプレレス成型加工で作製される。 HD D用ケ ースとしては素材としてアルミニウムが使用され、 最近では特にアルミニウムに 有機物系のコートをした複合鋼材が用いられプレス成型加工される。 電解コンデ ンサ用ケースも同様に素材はアルミ二ゥム単体のものやアルミ-ゥム素材の上に 有機膜のコートを施した複合鋼板を用いてプレス成形加工される。 このように、 素材の異なる有機物と無機物が積層された複合材料に対しても工程や使用洗浄媒 体であるガス種を選択することで応用可能である。 なお、 これらの製品分野に限 らず、 プレス成型加工及び切削加工に加工された凹部構造を有する部品にも効果 を有することは論じるまでもない。 以下具体的な実施例により、 この発明の第 2及び第 3実施形態の効果の説明を 行う。 Parts that can be expected to have a cleaning effect in the cleaning method and the cleaning apparatus according to the second and third embodiments of the present invention are mainly electronic components used in electronics and related components. In particular, it is a precision processed part by press molding and cutting. For these parts, lubricating oil, which is a processing oil, is indispensable to improve processing accuracy. However, this residual processing oil affects the performance characteristics of the next process, such as plating and bonding, and lowers the performance and reliability of devices and products. Therefore, it is highly effective in removing parts with high levels of residue, that is, parts that require precision cleaning. Applied products include matching layers for ultrasonic sensors and battery electrodes (especially secondary batteries). Other examples include a battery case, an HDD case (also called a housing), and an electrolytic capacitor case. Various materials are used for the matching layer for the ultrasonic sensor, such as a mixture of an inorganic glass burner and an organic epoxy, an inorganic glass balloon only, and an organic epoxy only. The material for the ultrasonic sensor case is stainless steel, aluminum, or epoxy resin. Processing is performed by deep drawing by press molding, resin molding, and cutting. In general, a battery case is made of aluminum-made or, more recently, a multi-layered steel material in which aluminum is plated. Aluminum is used as the material for the case for HDD, and recently, composite steel, in which aluminum is coated with an organic material, is used and press-formed. The material for the electrolytic capacitor case is also press-formed using aluminum alone or a composite steel sheet coated with an organic film on aluminum-metal material. As described above, the present invention can be applied to a composite material in which organic materials and inorganic materials of different materials are laminated by selecting a process or a gas type as a cleaning medium to be used. It goes without saying that the present invention is effective not only in these product fields but also in parts having a concave structure processed by press molding and cutting. Hereinafter, the effects of the second and third embodiments of the present invention will be described with reference to specific examples.
(実施例 8)  (Example 8)
中空ガラスビーズ (約 30 μ m) をエポキシ樹脂で含浸して加熱硬化した成型 体を所定の部品形状に切削加工した後に洗浄を行つた。 部品形状は直径 φ 10. 8mmX高さ 1. 15 mmであり、 密度は約 550 k g/m3であった。 この部 品は、 加工面で中空ガラスビーズが切断されたり、 抜けたりしてビーズサイズの 凹部構造が多数存在している。 Hollow glass beads (approximately 30 μm) were impregnated with epoxy resin, and the heat-cured molded body was cut into a predetermined part shape and then washed. Component shape has a diameter φ 10. 8mmX height 1. 15 mm, a density of about 550 kg / m 3. In this part, there are many bead-sized concave structures due to the hollow glass beads being cut or pulled out on the processing surface.
なお、 洗浄の効果は、 外観検査と、 表面付着した非溶解性のパーティクル量を 測定して評価した。 外観検査については目視で欠け、 割れ等が無いかを確認し、 パーティクルについては洗浄後に実体光学顕微鏡及び走查型電子顕微鏡によって 部品表面及び凹部内部の不純物の存在を観察した。  The cleaning effect was evaluated by visual inspection and measuring the amount of insoluble particles adhering to the surface. The appearance was checked visually for chipping, cracking, etc., and for particles, after washing, the presence of impurities on the component surface and inside the recess was observed by a stereoscopic optical microscope and a scanning electron microscope.
洗浄は、 上記の部品 100個ずつをカゴ状の洗浄用治具に入れて、 流動体とし て二酸化炭素を用いて行った。 以下の洗浄方法について比較した。  The cleaning was performed by putting 100 parts of the above-described parts into a basket-shaped cleaning jig and using carbon dioxide as a fluid. The following cleaning methods were compared.
(1) 洗浄なし (2) 超臨界状態の二酸化炭素 (約 57°C、 13MP a、 密度約 (1) No cleaning (2) Supercritical carbon dioxide (about 57 ° C, 13MPa, density about
550 k g/m3) 中に浸漬後、 10分間隔で 12MP aと 14MP aの間の昇 降圧を繰返して 3時間洗浄 (3) 超臨界状態の二酸化炭素 (約 47°C、 12MP a、 密度約 600 k gZm3) 中に 3時間浸漬洗浄 (4) 液体状態の二酸化炭素 (約 20°C、 密度約 750 k g/m3) に 1時間浸漬後、 上記 (2) の条件で洗 浄 (5) 超臨界状態の二酸化炭素 (約 47°C、 12 MP a、 密度約 6 O Ok g/ m3) 中に 1時間浸漬後、 温度一定で急激に圧力開放をして容器内を気体状態に することを 3回繰返して洗浄した結果を表 8に示す。 After immersion in 550 kg / m 3 ), it is washed for 3 hours by repeatedly increasing and decreasing the pressure between 12 MPa and 14 MPa at 10-minute intervals. (3) Supercritical carbon dioxide (approx. 47 ° C, 12 MPa, density 3 hours immersion and washing in about 600 kgZm 3 ) (4) After immersing in liquid carbon dioxide (about 20 ° C, density about 750 kg / m 3 ) for 1 hour, washing under the condition of (2) above ( 5) After immersing in supercritical carbon dioxide (approximately 47 ° C, 12 MPa, density approx. 6 O Ok g / m 3 ) for 1 hour, release the pressure rapidly at a constant temperature and gaseous state inside the container Table 8 shows the results of washing three times.
表 8  Table 8
Figure imgf000044_0001
Figure imgf000044_0001
-の部品の場合には、 洗浄を行っても、 (3) 、 (4) のように単に部品を加 圧した二酸化炭素に浸漬しておくだけでは、 不純物、 特に二酸化炭素に不溶性の ものについては洗浄効果が低いことがわかった。 これは、 部品が流体に浮いてし まっており、 部品同士が重なってしまい、 その重なりの部分が離れずに洗浄され ないためである。 また、 流体に接触しておくだけでは、 部品の微小な凹部の奥ま で不純物除去が難しいことがわかった。 また、 (5 ) のように、 流体の急激な相 変化を生じさせることは、 その衝撃で不純物の除去は促進されるが、 密度の低い 本部品では、 部品同士の衝突による欠けや割れが見られるものがあった。 -In the case of parts, even after cleaning, simply add parts as in (3) and (4). It was found that simply immersing in pressurized carbon dioxide had a poor cleaning effect on impurities, especially those insoluble in carbon dioxide. This is because the parts are floating in the fluid, the parts overlap, and the overlapping parts are not cleaned without leaving. In addition, it was found that it was difficult to remove impurities to the depth of the minute concave part of the component only by keeping it in contact with the fluid. In addition, as shown in (5), the rapid phase change of the fluid causes the removal of impurities to be accelerated by the impact. However, in this low-density part, chipping or cracking due to collision between parts is observed. There was something that could be done.
これらに対して、 本発明の洗浄方法である (2 ) では、 凹部まで良好に洗浄が 行われていることがわかった。 この効果は、 圧力容器の内部を観察した結果、 加 圧された二酸化炭素の密度が変化することによって部品が上下して接触面が離れ るとともに、 それに伴う攪拌効果が作用するために生じるものであることがわか つた。  On the other hand, it was found that in the cleaning method (2) of the present invention, the recess was well cleaned. This effect is caused by observing the inside of the pressure vessel, and as the density of the pressurized carbon dioxide changes, the parts move up and down to separate the contact surface, and the accompanying stirring effect acts. I found something.
(実施例 9 )  (Example 9)
プレス成型カ卩工及び切削加工されたケースの洗浄を行った。 材質は S U S 3 0 4、 大きさは φ 1 2 mm, 高さ 5 mmの凹部構造を有するケースである。  The press-molding and the case that had been cut were cleaned. The material is SUS304, the size is φ12 mm and the height is 5 mm.
なお、 洗浄の効果は、 ケースは 1 0 0個ずつ洗浄し分析を行レヽ、 «検査と、 残留油分検査と、 表面付着した非溶解性のパーティクル量を測定して評価した。  The effect of the washing was evaluated by washing the case 100 pieces at a time and analyzing it. Inspection, residual oil content examination, and measurement of the amount of insoluble particles adhering to the surface were evaluated.
検査については目視で欠け、 割れ等が無いかを確認した。 残留油分分析は溶 剤 (四塩化炭素) で油分抽出したのちその抽出油分を F T— I R (フーリエ変換 赤外分光法) で測定した。 また、 パーティクルについては洗浄後パーティクル検 査機 (T o p c o n製ゥエーハ表面検査装置 WM- 1 7 0 0 / 1 5 0 0 ) を用い て測定した。  Inspections were visually inspected for chips, cracks, etc. For residual oil analysis, oil was extracted with a solvent (carbon tetrachloride) and the extracted oil was measured by FT-IR (Fourier transform infrared spectroscopy). The particles were measured using a particle inspector after washing (Eaware Surface Inspection System WM-170 / 150, manufactured by Topcon).
洗浄は、 上記の部品 1 0 0個ずつをカゴ状の洗浄用治具に入れて、 1つの流動 体だけを用いる場合には二酸化炭素を用いた。 また、 2つの流動体を用いる場合 には、 第 1の流動体として液体状態の二酸化炭素、 第 2の流動体として超臨界状 態の二酸化炭素を用いて行った。 以下の洗浄方法について比較した。  For cleaning, 100 pieces of the above components were put into a basket-shaped cleaning jig, and carbon dioxide was used when only one fluid was used. When two fluids were used, carbon dioxide in a liquid state was used as the first fluid, and carbon dioxide in a supercritical state was used as the second fluid. The following cleaning methods were compared.
( 1 ) 液体状態の二酸化炭素 (約 2 0 °C) に浸漬した状態で、 超臨界状態の二酸 化炭素 (約 4 7 °C、 1 2 M P a ) を噴出して部品にあてながら、 3時間洗浄 (1) While immersed in liquid carbon dioxide (approximately 20 ° C), supercritical carbon dioxide (approximately 47 ° C, 12MPa) is blown out and applied to the parts. 3 hours cleaning
( 2 ) 超臨界状態の二酸化炭素 (約 4 7 °C、 1 2 M P a ) 中に 3時間浸漬洗浄 ( 3 ) 液体状態の二酸化炭素 (約 2 0 °C) に 1時間浸漬後、 上記 (2 ) の条件で 洗浄 (4 ) 超臨界状態の二酸化炭素 (約 4 7 °C、 1 2 MP a ) 中に 1時間浸漬後、 温度一定で急激に圧力開放をして容器内を気体状態にすることを 3回繰返して洗 浄した結果を表 9に示す。 (2) Immersion cleaning in supercritical carbon dioxide (approximately 47 ° C, 12 MPa) for 3 hours (3) Immerse in liquid carbon dioxide (about 20 ° C) for 1 hour and wash under the conditions of ( 2 ) above. (4) Carbon dioxide in supercritical state (about 47 ° C, 12 MPa) After immersion for 1 hour in the container, the pressure was rapidly released at a constant temperature to bring the inside of the container into a gaseous state, and the cleaning was repeated three times.
表 9  Table 9
Figure imgf000046_0001
いずれの方法も外観は油分の付着による変色は見られず、 加圧した二酸化炭素 を用いることで残留油分量は少なくすることができていた。 し力 し、 二酸化炭素 に不溶性のパーティクルについては浸漬のみの洗浄では、 効果が小さいことがわ かった。 特に、 凹部構造の内部に存在していることが観察された。 これらに対し て、 本発明の洗浄方法である (1 ) では不純物の除去に対して良好に洗浄が行わ れていることがわかった。
Figure imgf000046_0001
In any of the methods, no discoloration was observed in the appearance due to adhesion of oil, and the amount of residual oil could be reduced by using pressurized carbon dioxide. However, it was found that cleaning only by immersion was less effective for particles insoluble in carbon dioxide. In particular, it was observed that they existed inside the concave structure. On the other hand, it was found that the cleaning method (1) of the present invention was excellent in removing impurities.
本発明によれば、 凹部構造を有する部品などの被洗浄物に対して力 Π圧された流 動体の密度を制御して接触させることによって、 加圧された流動体の溶媒効果に よる流動体に溶解する潤滑油などの不純物を効率的に除去することができる。 さ らに、 部品に接触させる流動体の密度を制御して攪拌効果を持たせることによつ て、 流動体に不溶の不純物を効率的に除去することができる。 したがって、 本発 明では洗浄処理において、 その部品に適した洗浄条件の最適化によって、 カロ圧さ れた流動体の溶媒効果に加えて、 攪拌効果を同時に与えることでき、 効率的な部 品の洗浄を行わせることができため、 工業的に価値の大なるものである。  ADVANTAGE OF THE INVENTION According to this invention, the fluid by the solvent effect of the pressurized fluid is controlled by making the density of the fluid pressurized and controlled contact with an object to be cleaned, such as a part which has a concave structure. Impurities such as lubricating oil dissolved in water can be efficiently removed. Furthermore, by controlling the density of the fluid to be brought into contact with the component to have a stirring effect, impurities insoluble in the fluid can be efficiently removed. Therefore, in the present invention, in the cleaning process, by optimizing the cleaning conditions suitable for the part, it is possible to simultaneously provide the stirring effect in addition to the solvent effect of the fluid under the pressurized pressure, and to efficiently perform the part. It is industrially valuable because it can be washed.
また、 上記した密着を解くための技術を応用することにより、 表面改質するた めに被処理物と被処理物の接している密着を解くことによって、 被処理物の表面 を均質に、 水酸基などの形成による親水化、 表面処理剤などによる撥水化、 撥油 ィ匕、 表面への他材料のコートすることなどに応用することも可能である。 なお、 表面改質については、 第 2流動体を噴射するケースでは、 この流動体に処理剤を 添加しておくことで、 効率的に表面改質が可能になるという効果を得ることもで きる。 また、 抽出するために被処理物と被処理物の接している密着を解くことに よって、 被処理物の内部からの成分抽出を効率的に行うことが可能になり、 潤滑 油などの油脂抽出、 植物等からのエキス抽出、 香料抽出などにも適用することが できる。 In addition, by applying the above-mentioned technique for releasing adhesion, the surface of the object to be treated is homogenized by releasing the contact between the objects to be treated to improve the surface. It can also be applied to hydrophilization by forming a surface treatment agent, water repellency by a surface treatment agent, oil repellency, coating the surface with another material, and the like. Regarding surface modification, in the case of injecting the second fluid, a treating agent is added to this fluid. By adding it, it is possible to obtain an effect that surface modification can be efficiently performed. Also, by releasing the close contact between the objects to be extracted for extraction, it is possible to efficiently extract components from inside the object to be processed, and to extract oils and fats such as lubricating oil. It can also be applied to the extraction of extracts from plants and the like, and the extraction of fragrances.
上記表面改質では、 洗浄処理物であるケースと不純物である潤滑油と C O 2と を加圧することで、 流動体である C〇 2の特性が潤滑油など油脂分と親和性にな る (溶解度が高くなる) ことを利用している。 In the above surface modification, the properties of the fluid C ケ ー ス2 become compatible with oils and fats such as lubricating oils by pressurizing the case, which is a cleaning treatment, the lubricating oil, which is an impurity, and CO 2 ( The solubility increases).
上記抽出では、 ミクロ的には分子同士の密着を解き、 マクロ的には溶解させる ように、 C〇2の温度と圧力を変化させることで、 抽出する対象物の C O 2への 溶解度を変える (言い換えれば、 溶媒である C〇2の密度を変える) ことを利用 して、 溶媒中に抽出する対象物を溶かしたのち、 温度と圧力を下げて、 抽出する 対象物を析出させて抽出している。 In the extraction, the micro solves the adhesion between molecules, as in the macroscopic dissolving, by changing the temperature and pressure of C_〇 2, changing the solubility in CO 2 of an object to be extracted ( in other words, by utilizing the fact that changing the density of C_〇 2 is a solvent), after dissolved object extraction into a solvent, lowering the temperature and pressure, and extracted by precipitating an object to be extracted I have.
なお、 上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることに より、 それぞれの有する効果を奏するようにすることができる。  Note that by appropriately combining any of the above-described various embodiments, the effects of the respective embodiments can be achieved.
本発明は、 添付図面を参照しながら好ましい実施形態に関連して充分に記載さ れているが、 この技術の熟練した人々にとっては種々の変形や修正は明白である。 そのような変形や修正は、 添付した請求の範囲による本発明の範囲から外れない 限りにおいて、 その中に含まれると理解されるべきである。  While the present invention has been fully described in connection with the preferred embodiments with reference to the accompanying drawings, various changes and modifications will be apparent to those skilled in the art. It is to be understood that such changes and modifications are included therein unless they depart from the scope of the invention as set forth in the appended claims.

Claims

請 求 の 範 囲 The scope of the claims
1 . 凹部構造を有する部品 (2 7, 2 8, 2 9 , 3 0 , 3 2 ) の少なくとも 上記凹部構造の表面に付着する付着物 (2 6 ) を除去する洗浄方法において、 上記付着物が付着した上記部品を洗浄槽 ( 1 ) に収納し、 1. In the cleaning method for removing at least the adhering substance (26) adhering to at least the surface of the concave structure of the part (27, 28, 29, 30 and 32) having the concave structure, Store the attached parts in the cleaning tank (1),
上記洗浄槽内に洗浄媒体を導入して上記部品を上記洗浄媒体雰囲気中に存在さ せ、 上記洗浄媒体に対して温度や圧力を変化させて上記洗浄媒体を液体状態と気 体状態との交互の状態変化を行い、 上記凹部構造表面に洗浄媒体が行き渡るよう にして洗浄を行う洗浄方法。  A cleaning medium is introduced into the cleaning tank, the components are present in the cleaning medium atmosphere, and the temperature and pressure of the cleaning medium are changed to alternately change the cleaning medium between a liquid state and a gas state. A cleaning method in which cleaning is performed by changing the state of the above, so that the cleaning medium spreads over the surface of the concave structure.
2 . 上記洗浄媒体に対して液体状態と気体状態との交互の状態変化を行った 後、 上記洗浄媒体を超臨界状態に変化させて上記凹部構造表面の洗浄を行う請求 項 1に記載の洗浄方法。  2. The cleaning according to claim 1, wherein after the cleaning medium is alternately changed between a liquid state and a gas state, the cleaning medium is changed to a supercritical state to clean the concave structure surface. Method.
3 . 上記洗浄媒体に対して液体状態と気体状態との交互の状態変化を行った 後、 上記洗浄媒体を亜超臨界状態に変化させて上記凹部構造表面の洗浄を行う請 求項 1に記載の洗浄方法。  3. The cleaning method according to claim 1, wherein after the cleaning medium is alternately changed between a liquid state and a gas state, the cleaning medium is changed to a sub-supercritical state to clean the concave structure surface. Cleaning method.
4 . 上記洗浄媒体に対して液体状態から?显度一定で圧力を変化させて気体状 態と液体状態とを交互に繰り返して状態変化をさせる請求項 1、 又は 2に記載の 洗浄方法。  4. From the liquid state for the above cleaning medium? 3. The cleaning method according to claim 1, wherein the pressure is changed at a constant temperature, and the gas state and the liquid state are alternately repeated to change the state.
5 . 上記洗浄媒体に対して温度一定で圧力を変化させて気体状態と液体状態 とを交互に繰り返して状態変化をさせる請求項 1、 又は 2に記載の洗浄方法。  5. The cleaning method according to claim 1 or 2, wherein the pressure is changed at a constant temperature with respect to the cleaning medium, and the state is changed by alternately repeating a gas state and a liquid state.
6 . 囬部構造を有する部品 (2 7 , 2 8, 2 9, 3 0, 3 2 ) の少なくとも 上記凹部構造の表面に付着する付着物 (2 6 ) を除去する洗浄方法において、 上記付着物が付着した上記部品を洗浄槽 ( 1 ) に収納し、  6. The cleaning method for removing at least the attached matter (26) attached to the surface of the concave structure of the part (27, 28, 29, 30, 30) having the partial structure, The above-mentioned parts are attached to the cleaning tank (1),
上記洗浄槽内に第 1洗浄媒体を導入して上記部品を上記第 1洗浄媒体の雰囲気 中に存在させ、 上記第 1洗浄媒体に対して温度や圧力を変化させて上記第 1洗浄 媒体を超臨界状態に変化させて、 上記凹部構造の上記表面に上記第 1洗浄媒体が 行き渡るようにして洗浄を行った後、 更に第 2洗浄媒体としての液体による液体 洗浄を上記部品に行う洗浄方法。  The first cleaning medium is introduced into the cleaning tank, the parts are present in the atmosphere of the first cleaning medium, and the temperature and pressure of the first cleaning medium are changed to exceed the first cleaning medium. A cleaning method in which the first cleaning medium is washed over the surface of the concave structure by changing the state to a critical state, and then the component is further subjected to liquid cleaning using a liquid as a second cleaning medium.
7 . 上記洗浄媒体は二酸化炭素ガス、 又は、 水である請求項 1〜3のいずれ か 1項に記載の洗浄方法。 7. The cleaning medium according to any one of claims 1 to 3, wherein the cleaning medium is carbon dioxide gas or water. Or the cleaning method according to item 1.
8. 上記第 1洗浄媒体は二酸化炭素であり、 上記第 2洗浄媒体は水であり、 当該第 2洗浄媒体である水を超臨界状態に変化させて上記凹部構造の上記表面の 洗浄を行う請求項 6に記載の洗浄方法。  8. The first cleaning medium is carbon dioxide, the second cleaning medium is water, and water as the second cleaning medium is changed to a supercritical state to clean the surface of the concave structure. Item 7. The cleaning method according to Item 6.
9. 洗浄槽 (1) と、  9. Cleaning tank (1),
上記洗浄槽に洗浄媒体を供給する洗浄媒体供給部 (3) と、  A cleaning medium supply unit (3) for supplying a cleaning medium to the cleaning tank;
上記洗浄媒体に温度変化を与える加熱装置 (5) と、  A heating device (5) for changing the temperature of the cleaning medium,
上記洗浄媒体に圧力変化を与える加圧装置 (3) と、  A pressure device (3) for applying a pressure change to the cleaning medium,
上記洗浄媒体供給部、 加熱装置、 加圧装置とを制御する制御手段 (1000) とを備え、  Control means (1000) for controlling the cleaning medium supply unit, the heating device, and the pressurizing device;
上記加熱装置、 加圧装置の少なくとも一方を制御することにより、 上記洗浄媒 体に対して液体状態と気体状態との交互の状態変化を行つた後、 洗浄媒体を超臨 界状態、 あるいは亜臨界状態に変化させて上記洗浄槽内の部品の囬部構造表面の 洗浄を行う洗浄装置。  By controlling at least one of the heating device and the pressurizing device to alternately change the cleaning medium between a liquid state and a gas state, the cleaning medium is brought into a supercritical state or a subcritical state. A cleaning device that changes the state and cleans the surface of the partial structure of the components in the cleaning tank.
10. 洗浄媒体を導入する導入口 (l a) と洗浄媒体を排出する排出口 (1 b) とを有するとともに洗浄対象物 (31) を収納する洗浄槽 (1) と、 上記導入口を介して上記洗浄媒体を上記洗浄槽に供給する洗浄媒体供給部 (3) と、  10. A cleaning tank (1) having an inlet (la) for introducing the cleaning medium and an outlet (1b) for discharging the cleaning medium and containing the object to be cleaned (31), and A cleaning medium supply unit (3) for supplying the cleaning medium to the cleaning tank;
上記洗浄媒体に温度変化を与える加熱装置 (5) と、  A heating device (5) for changing the temperature of the cleaning medium,
上記洗浄媒体に圧力変化を与える加圧装置 (3) と、  A pressure device (3) for applying a pressure change to the cleaning medium,
上記洗浄媒体供給部、 加熱装置、 加圧装置とを制御する制御手段 (1000) と、  Control means (1000) for controlling the cleaning medium supply unit, the heating device, and the pressurizing device;
上記排出口から排出された洗浄媒体を回収し洗浄後の除去物質を収集する回収 部 (8) とを備え、  A collection unit (8) for collecting the cleaning medium discharged from the discharge port and collecting removed substances after cleaning,
上記加熱装置、 加圧装置の少なくとも一方を制御することにより、 上記洗浄槽 に収納された凹部構造を有する上記洗浄対象物に超臨界ガス又は液化ガスを用レヽ て上記 部構造表面に洗浄媒体が行き渡るようにして洗浄を行うと共に、 上記導 入口が上記排出口よりも下側に位置し、 上記排出口は洗浄対象物よりも上側に位 置している洗浄装置。 By controlling at least one of the heating device and the pressurizing device, a supercritical gas or a liquefied gas is applied to the object to be cleaned having a concave structure accommodated in the cleaning tank, and a cleaning medium is formed on the surface of the partial structure. A cleaning device for performing cleaning while being distributed, wherein the inlet is located below the outlet, and the outlet is located above an object to be washed.
1 1 . 凹部構造を有する部品はプレス成型、 あるいは切削加工法によって形 成された構造体である請求項 1〜 3のいずれか 1項に記載の洗浄方法。 11. The cleaning method according to any one of claims 1 to 3, wherein the component having the concave structure is a structure formed by press molding or cutting.
1 2 . 上記凹部構造を有する部品はプレス成型加工法又は切削加工法によつ て形成された構造体であり、 上記構造体は主に金属材料から構成される請求項 1 〜 3のいずれか 1項に記載の洗浄方法。  12. The part having the concave structure is a structure formed by a press forming method or a cutting method, and the structure is mainly composed of a metal material. The cleaning method according to item 1.
1 3 . 上記凹部構造を有する部品を形成する金属材料は、 主成分が、 F e、 A 1、 C u、 又は、 T iから構成される請求項 1 2に記載の洗浄方法。  13. The cleaning method according to claim 12, wherein a main component of the metal material forming the component having the concave structure is Fe, A1, Cu, or Ti.
1 4 . 上記凹部構造を有する部品はプレス成型加工法又は切削加工法によつ て形成されたれた構造体であり、 上記構造体は主に有機材料から構成される請求 項 1〜 3のいずれか 1項に記載の洗浄方法。  14. The component having the concave structure is a structure formed by a press molding method or a cutting method, and the structure is mainly composed of an organic material. Or the cleaning method according to item 1.
1 5 . 上記凹部構造を有する部品を形成する有機材料は、 主成分が、 ポリイ ミド、 又は、 エポキシからなる請求項 1 4に記載の洗浄方法。  15. The cleaning method according to claim 14, wherein a main component of the organic material forming the component having the concave portion structure is polyimide or epoxy.
1 6 . 上記凹部構造を有する部品はプレス成型加工法又は切削加工法によつ て形成された構造体であり、 上記構造体は主にセラミック材料から構成される請 求項 1〜 3のいずれか 1項に記載の洗浄方法。  16. The component having the recessed structure is a structure formed by press molding or cutting, and the structure is mainly composed of a ceramic material. Or the cleaning method according to item 1.
1 7 . 上記凹部構造を有する部品を形成するセラミック材料は、 主成分が、 S i 02、 P Z T、 A g、 又は、 Cからなる請求項 1 6に記載の洗浄方法。 1 7. The ceramic material forming the part having a recess structure, main component, S i 0 2, PZT, A g, or cleaning method according to claim 1 6 consisting of C.
1 8 . 上記凹部構造を有する部品は、 主に金属と有機材料の複合体、 主に有 機材料とセラミック材料の複合体、 あるいは主に金属、 有機材料とセラミック材 料の複合体から構成される請求項 1 ~ 3のいずれか 1項に記載の洗浄方法。  18. The parts having the above concave structure are mainly composed of composites of metal and organic materials, mainly composites of organic and ceramic materials, or mainly composed of composites of metals, organic materials and ceramic materials. The cleaning method according to any one of claims 1 to 3, wherein
1 9 . 凹部構造を有する部品は、 超音波センサー用の整合層、 あるいは電子 部品用、 超音波センサー用、 電池用、 ハードディスクドライブ用、 電角军コンデン サー用の各種ケースである請求項 1〜 3のいずれか 1項に記載の洗浄方法。  19. The component having the concave structure is a matching layer for an ultrasonic sensor, or various cases for an electronic component, an ultrasonic sensor, a battery, a hard disk drive, and an electric capacitor. 3. The cleaning method according to any one of 3.
2 0 . 加圧された流動体 (3 8 0 ) を被洗浄物 (2 1 4 ) に接触させること によって上記被洗浄物の表面に付着する不純物 (3 8 1 ) を除去する洗浄方法に おいて、  20. The cleaning method for removing impurities (3801) adhering to the surface of the object to be cleaned by bringing the pressurized fluid (380) into contact with the object to be cleaned (214). And
上記被洗浄物の密度が上記流動体の液体密度以下であって、 上記流動体の圧力、 温度の少なくとも一つの条件を変化することによって、 上記流動体の密度を上記 被洗浄物の密度に対して高低を繰り返して上記被洗浄物に上記流動体を接触させ る加圧流動体による洗浄方法。 The density of the object to be cleaned is equal to or less than the liquid density of the fluid, and the density of the fluid is changed with respect to the density of the object by changing at least one condition of the pressure and the temperature of the fluid. Contact the fluid to the object to be cleaned Washing method using a pressurized fluid.
2 1 . 加圧された流動体 (3 8 0 ) を被洗浄物 (2 1 4 ) に接触させること によって上記被洗浄物の表面に付着する不純物 (3 8 1 ) を除去する洗浄方法に おいて、  21. The cleaning method for removing impurities (381) adhering to the surface of the object to be cleaned by bringing the pressurized fluid (380) into contact with the object to be cleaned (214). And
上記被洗浄物の密度が上記流動体の液体密度以下であって、 上記流動体の圧力、 温度の少なくとも一つの条件を変化することによって、 上記被洗浄物の密度と上 記流動体の液体密度を略等しくした状態で、 上記流動体に外力による変動を与え て上記被洗诤物に上記流動体を接触させる加圧流動体による洗浄方法。  The density of the object to be cleaned is lower than the liquid density of the fluid, and the density of the object to be cleaned and the liquid density of the fluid are changed by changing at least one of pressure and temperature of the fluid. A cleaning method using a pressurized fluid in which the fluid is brought into contact with the object to be washed by applying a variation due to an external force in a state where the pressure is substantially equal.
2 2. 上記流動体が超臨界流体である請求項 2 0又は 2 1いずれかに記載の カロ圧流動体による洗浄方法。  22. The method according to claim 20, wherein the fluid is a supercritical fluid.
2 3 . 加圧された流動体を被洗浄物に接触させることによって上記被洗浄物 の表面に付着する不純物を除去する洗浄方法において、  23. In the cleaning method for removing impurities adhered to the surface of the object to be cleaned by bringing the pressurized fluid into contact with the object to be cleaned,
加圧された第 1の流動体の中に浸漬してなる上記被洗浄物に対して、 上記第 1 の流動体に対して密度の異なる加圧された第 2の流動体を接触させて洗浄する際 に上記第 1の流動体の相状態を変化させることなく、 上記第 2の流動体を上記被 洗浄物に接触してなる加圧流動体による洗浄方法。  The object to be cleaned, which is immersed in the pressurized first fluid, is contacted with the second fluid having a different density from the first fluid to perform cleaning. A cleaning method using a pressurized fluid in which the second fluid is brought into contact with the object to be cleaned without changing the phase state of the first fluid.
2 4. 上記第 2の流動体が超臨界流体である請求項 2 3に記載の加圧流動体 による洗浄方法。  24. The cleaning method using a pressurized fluid according to claim 23, wherein the second fluid is a supercritical fluid.
2 5 . 上記被洗浄物の密度が上記第 1の流動体の液体密度以下であつて、 上 記被洗浄物の密度よりも密度が低い上記第 2の流動体を上記被洗浄物に接触して なる請求項 2 3又は 2 4いずれかに記載の加圧流動体による洗浄方法。  25. When the density of the object to be cleaned is equal to or lower than the liquid density of the first fluid, the second fluid having a density lower than the density of the object to be cleaned is brought into contact with the object to be cleaned. A cleaning method using a pressurized fluid according to any one of claims 23 and 24.
2 6 . 上記第 1の流動体と上記第 2の流動体とが同一であって、 上記第 1の 流動体が液体であり、 上記第 2の流動体が超臨界流体である請求項 2 3又は 2 4 に記載の加圧流動体による洗浄方法。  26. The first fluid and the second fluid are the same, the first fluid is a liquid, and the second fluid is a supercritical fluid. Or a washing method using a pressurized fluid according to 24.
2 7 . 上記流動体が二酸ィ匕炭素、 水、 アンモエア、 亜酸化炭素、 ァノレコーノレ の少なくとも 1つを含む請求項 2 0, 2 1 , 2 3 , 2 4のいずれかに記載のカロ圧 流動体による洗浄方法。  27. The caropressure flow according to any one of claims 20, 21, 23, 24, wherein the fluid contains at least one of carbon dioxide, water, ammo air, carbon suboxide, and anore konore. Body washing method.
2 8 . 上記被洗浄物の表面に付着する不純物が潤滑油である請求項 2 0 , 2 1, 2 3 , 2 4のいずれかに記載の加圧流動体による洗浄方法。 28. The cleaning method using a pressurized fluid according to any one of claims 20, 21, 23, and 24, wherein the impurities adhering to the surface of the object to be cleaned are lubricating oils.
29. 上記被洗净物が凹部構造を有する部品である請求項 20, 21, 23 4のいずれかに記載の加圧流動体による洗浄方法。 29. The cleaning method using a pressurized fluid according to any one of claims 20, 21, and 234, wherein the object to be washed is a part having a concave structure.
PCT/JP2003/005870 2002-05-20 2003-05-12 Washing method and washing device WO2003097258A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/514,811 US7507297B2 (en) 2002-05-20 2003-05-12 Cleaning method and cleaning apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-144246 2002-05-20
JP2002144246 2002-05-20
JP2002-213403 2002-07-23
JP2002213403 2002-07-23

Publications (1)

Publication Number Publication Date
WO2003097258A1 true WO2003097258A1 (en) 2003-11-27

Family

ID=29552308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005870 WO2003097258A1 (en) 2002-05-20 2003-05-12 Washing method and washing device

Country Status (2)

Country Link
CN (1) CN1320966C (en)
WO (1) WO2003097258A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10431232B2 (en) 2013-01-29 2019-10-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for synthesizing an audio signal, decoder, encoder, system and computer program
CN115505935A (en) * 2022-10-27 2022-12-23 祁阳宏泰铝业有限公司 Cleaning process before surface treatment of aluminum alloy section
US11996110B2 (en) 2022-05-27 2024-05-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for synthesizing an audio signal, decoder, encoder, system and computer program

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9815082B2 (en) * 2013-03-15 2017-11-14 President And Fellows Of Harvard College Surface wetting method
CN104585847B (en) * 2015-01-26 2016-09-28 新疆农业大学 A kind of dried Fructus Vitis viniferae is without water cleaning method
CN105463572B (en) * 2015-12-10 2018-01-09 上海爱我珠宝有限公司 A kind of manufacture craft of gemstones formed of silicon carbide
CN106087379B (en) * 2016-06-06 2017-12-29 盐城工学院 A kind of non-aqueous dyeing method of polyimides fabric
CN106623275B (en) * 2016-12-20 2018-10-26 武汉大学 A kind of supercritical carbon dioxide pulsing jet oil pipe sewage disposal apparatus and method
CN111883860B (en) * 2020-06-08 2022-08-30 四川鑫奋科技有限公司 Method for recovering appearance of waste lead-acid battery
CN112921326B (en) * 2021-01-22 2022-11-08 广东威圳兴技术有限公司 Surface treatment process for automobile part die-casting aluminum alloy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05143981A (en) * 1991-11-25 1993-06-11 Kao Corp Method for cleaning substrate
JPH07302776A (en) * 1994-04-08 1995-11-14 Texas Instr Inc <Ti> Surface washing method and system for semiconductor substrate
JPH1024270A (en) * 1996-07-10 1998-01-27 Mitsubishi Kakoki Kaisha Ltd Cleaning method using supercritical fluid as cleaning fluid
JPH11207276A (en) * 1998-01-27 1999-08-03 Ishikawajima Harima Heavy Ind Co Ltd Supercritical degreasing apparatus
JP2000280262A (en) * 1999-04-01 2000-10-10 Bridgestone Corp Mold cleaning method and device, and method for cleaning vulcanizing mold
JP2000308862A (en) * 1999-04-27 2000-11-07 Itec Co Ltd Rinsing method using supercritical or subcritical fluid and its apparatus
JP2001203180A (en) * 2000-01-18 2001-07-27 S R Kaihatsu:Kk Supercritical fluid stirring mechanism and supercritical fluid cleaning, extracting and reacting equipment in which the stirring mechanism is built-in

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05143981A (en) * 1991-11-25 1993-06-11 Kao Corp Method for cleaning substrate
JPH07302776A (en) * 1994-04-08 1995-11-14 Texas Instr Inc <Ti> Surface washing method and system for semiconductor substrate
JPH1024270A (en) * 1996-07-10 1998-01-27 Mitsubishi Kakoki Kaisha Ltd Cleaning method using supercritical fluid as cleaning fluid
JPH11207276A (en) * 1998-01-27 1999-08-03 Ishikawajima Harima Heavy Ind Co Ltd Supercritical degreasing apparatus
JP2000280262A (en) * 1999-04-01 2000-10-10 Bridgestone Corp Mold cleaning method and device, and method for cleaning vulcanizing mold
JP2000308862A (en) * 1999-04-27 2000-11-07 Itec Co Ltd Rinsing method using supercritical or subcritical fluid and its apparatus
JP2001203180A (en) * 2000-01-18 2001-07-27 S R Kaihatsu:Kk Supercritical fluid stirring mechanism and supercritical fluid cleaning, extracting and reacting equipment in which the stirring mechanism is built-in

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10431232B2 (en) 2013-01-29 2019-10-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for synthesizing an audio signal, decoder, encoder, system and computer program
US11373664B2 (en) 2013-01-29 2022-06-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for synthesizing an audio signal, decoder, encoder, system and computer program
US11996110B2 (en) 2022-05-27 2024-05-28 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for synthesizing an audio signal, decoder, encoder, system and computer program
CN115505935A (en) * 2022-10-27 2022-12-23 祁阳宏泰铝业有限公司 Cleaning process before surface treatment of aluminum alloy section
CN115505935B (en) * 2022-10-27 2023-11-24 祁阳宏泰铝业有限公司 Cleaning process before surface treatment of aluminum alloy profile

Also Published As

Publication number Publication date
CN1655883A (en) 2005-08-17
CN1320966C (en) 2007-06-13

Similar Documents

Publication Publication Date Title
US7507297B2 (en) Cleaning method and cleaning apparatus
WO2003097258A1 (en) Washing method and washing device
US6743300B2 (en) Multistep single chamber parts proceeding method
JP2002018372A (en) Cleaning method and cleaning equipment
JP2008163400A (en) Cleaning system and cleaning method
US7270717B2 (en) Compositions and methods for cleaning contaminated articles
JP3784464B2 (en) Cleaning method using supercritical fluid as cleaning fluid
CN1551296A (en) Cleaning apparatus
JP3699962B2 (en) Cleaning method with pressurized fluid
JP3697448B2 (en) Cleaning method and cleaning device for parts having recess structure
JP2004050109A (en) Washing method and washing device for parts
CN113667966B (en) Method for constructing super-hydrophobic modified layer on 2024 type aluminum alloy surface
WO2006095371A1 (en) Process for cleaning engraved cylinders used in printing and packaging industry from adhesive and/or ink residues
Williams Guide to cleaner technologies: cleaning and degreasing process changes
JP7125810B1 (en) Cleaning method of the object to be cleaned
TWI302169B (en) Method for activating surface of base material and apparatus thereof
JP3646788B2 (en) Method and apparatus for activation treatment of base material surface
Awad Aqueous Displacement of Water-Immiscible Cleaning Solvents: Cleaning Enhancement Using Ultrasonics
Haase et al. Industrial Surface C Leaning Using Halogen Free Cleaning Agents: Surfactant Solutions and Hydrocarbon Solvents
US20110126856A1 (en) Method of removing contaminants from hard surfaces
JP6136902B2 (en) Washing and drying apparatus and washing and drying method
TW496789B (en) Cleaning processes using hydrofluorocarbons and/or hydrochlorofluorocarbon compounds
JP2002066498A (en) Cleaning method for container and member containing organic chlorine compound pcb oil
Paciej et al. EVALUATION OF PLASMA CLEANING, PROCESS, FOR REMOVING
Reinhardt et al. AN ADVANCED BEOL CLEANING METHOD

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10514811

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038116057

Country of ref document: CN

122 Ep: pct application non-entry in european phase