WO2003087262A1 - Active polycyclic aromatic hydrocarbon material and method for production thereof - Google Patents

Active polycyclic aromatic hydrocarbon material and method for production thereof Download PDF

Info

Publication number
WO2003087262A1
WO2003087262A1 PCT/JP2003/003294 JP0303294W WO03087262A1 WO 2003087262 A1 WO2003087262 A1 WO 2003087262A1 JP 0303294 W JP0303294 W JP 0303294W WO 03087262 A1 WO03087262 A1 WO 03087262A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycyclic aromatic
coal
aromatic hydrocarbon
hydrocarbon material
raw material
Prior art date
Application number
PCT/JP2003/003294
Other languages
French (fr)
Japanese (ja)
Inventor
Hisashi Satake
Shizukuni Yata
Hiroyuki Tajiri
Original Assignee
Osaka Gas Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Company Limited filed Critical Osaka Gas Company Limited
Priority to JP2003584206A priority Critical patent/JPWO2003087262A1/en
Publication of WO2003087262A1 publication Critical patent/WO2003087262A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein

Definitions

  • the present invention relates to an active polycyclic aromatic hydrocarbon material having electrical conductivity.
  • Polymer materials have excellent properties such as moldability, light weight, and mass productivity. In particular, in many industrial fields represented by the electronics industry, in addition to these characteristics, organic semiconductive or conductive organic polymer materials are required.
  • n-type or p-type semiconductors such as silicon and germanium
  • organic polymer semiconductors whose electrical conductivity is in the semiconductor or conductor region, and their pn junctions
  • organic polymer semiconductors that can be applied to diodes, solar cells, and the like that utilize GaN.
  • organic polymer materials having properties as n-type or p-type semiconductors boriaacetylene, polyphenylene, and the like are known.
  • “Synthetic Metals” Chemical Supplement 87, 1980, pp. 15-28 states that acetylene is polymerized directly to obtain polyacetylene in the form of a film, which is then doped with an electron-donating doping agent or an electron-accepting material. There is disclosed a method of obtaining a P-type or n-type semiconductor in which electric conductivity is greatly increased by doping a doping agent.
  • polyacetylene is very poor in practicality because it is easily oxidized by oxygen.
  • polyphenylene unlike polyacetylene, has relatively excellent oxidative stability.
  • the phenylene skeleton forms a single bond on the line, and the conjugate system between carbon atoms is small, so it is thought that there is a limit to the electron conductivity achieved by doping with a doping agent. . Also, it is considered that there is a limit in controlling impurities by the dopant.
  • an electrically conductive organic polymer material having the electrical conductivity of a semiconductor or conductor, excellent physical properties, and excellent oxidative stability has been developed (Japanese Patent Publication No. 6-43545). ).
  • This material is a polycyclic aromatic hydrocarbon material (commonly referred to as a low-temperature-treated carbon material or a polyacene organic semiconductor), and is currently manufactured and widely applied as a semiconductor material.
  • Polyacene-based organic semiconductors have excellent stability such as oxidation resistance, chemical resistance, and heat resistance.
  • a wide range of conductivity can be obtained by selecting reaction conditions, and many conductive polymers (polyaniline, polypyrrole, etc.) This method has many advantages, such as the ability to do both P-type (negative ion) and n-type (cation) doping, which was difficult in).
  • Polyacene-based organic semiconductors have a higher-order structure with molecular-level gaps formed by the one-dimensional graphite cut ends developed into a three-dimensional network. For this reason, the ion adsorption capacity is stronger than activated carbon, and a large amount of dopant can be stored quickly.
  • the material does not change much in volume when the dopant is put in and taken out and is very stable, it is attracting attention as an electric double layer capacitor material. In addition, this material does not contain any heavy metals, so it is an environmentally friendly, safe and reliable material.
  • the above-mentioned known polyacene-based organic semiconductors have insufficient ion adsorption capacity per unit weight, and when used as an electrode material for electric double layer capacity, the ion adsorption capacity per unit volume of the electrode is not sufficient. There is a problem that it is enough.
  • the use of phenolic resin as a raw material has the problem that the raw material costs are high.
  • the present invention relates to an active polycyclic aromatic carbon having high ion adsorption capacity per unit weight of electrode and high ion adsorption capacity per unit volume of electrode obtained by heat-treating a raw material mainly composed of inexpensive coal.
  • the purpose is to provide a hydrogen material and a method for producing the same.
  • the present invention provides an electrode coating using the active polycyclic aromatic hydrocarbon material. It is also intended to provide a festival.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, by treating a coal-based raw material containing coal as a main component under specific conditions, an active polycyclic aromatic having specific physical properties has been obtained.
  • the present inventors have found that a hydrocarbon-based material can be produced, and have conducted further research, thereby completing the present invention which can achieve the above object.
  • the present invention provides the following active polycyclic aromatic hydrocarbon materials and the like.
  • An activated polycyclic aromatic hydrocarbon material having the following properties, obtained by heat-treating a coal-based raw material having an oxygen concentration of 25 to 50% in an inert gas atmosphere:
  • the H / C ratio (content ratio of hydrogen atoms to carbon atoms) is 0.05 to 0.5
  • the specific surface area by the BET method is 1000 to 3000 mVg.
  • thermo reaction aid is at least one selected from the group consisting of zinc chloride, phosphoric acid, calcium chloride, sodium hydroxide, and K-oxidizing lime.
  • the H / C ratio (content ratio of hydrogen atoms to carbon atoms) is 0.05 to 0.5
  • coal-based raw material having an oxygen concentration of 25 to 50% is a coal-based raw material obtained by an oxygen crosslinking reaction of coal.
  • thermo reaction aid is at least one selected from the group consisting of zinc chloride, phosphoric acid, calcium chloride, sodium hydroxide, and water-soluble lime. Hydrocarbon materials.
  • a method for producing an active polycyclic aromatic hydrocarbon material comprising the following steps:
  • An electrode comprising the active polycyclic aromatic hydrocarbon material according to any one of Items 1 to 13.
  • the method is characterized in that after mixing the active polycyclic aromatic hydrocarbon material described in any one of the above items 1 to 13, the power pump rack, and the binder, the mixture is molded. Electrode manufacturing method. '
  • a capacitor comprising the electrode, the current collector, the separator, and the electrolytic solution according to 15 or 16 above.
  • the activated polycyclic aromatic hydrocarbon material of the present invention has the following properties. That is, the content ratio of hydrogen atoms to carbon atoms (hereinafter referred to as ⁇ / C ratio) in the active polycyclic aromatic hydrocarbon material of the present invention is about 0.05 to 0.5, and is preferably Is about 0.1 to 0.3, more preferably about 0.15 to 0.3. If the HZC ratio is too high, the polycyclic aromatic conjugated structure is not sufficiently developed, so that a predetermined electrical conductivity cannot be obtained, so that sufficient ion adsorption capacity per unit weight cannot be exhibited.
  • ⁇ / C ratio the content ratio of hydrogen atoms to carbon atoms
  • the carbonization proceeds too much to become a normal activated carbon, and a sufficient ion adsorption capacity per unit weight cannot be obtained.
  • the H / C ratio is measured by an elemental analyzer.
  • One embodiment of the active polycyclic aromatic hydrocarbon material of the present invention (hereinafter referred to as “material A”) has a specific surface area value by the BET method under the condition that the H / C ratio is in the above range. It is about 1000-3000 m 2 / g.
  • the specific surface area is preferably about 1500 to 3000 mVg, more preferably about 1700 to 2800 m 2 / g. If the specific surface area is too large, the bulk density tends to decrease and the amount of adsorbed ions per unit volume (specific capacity) tends to decrease, which is not preferable.
  • the material A of the present invention is characterized in that the above-mentioned HZC ratio and the specific surface area determined by the BET method simultaneously satisfy specific numerical values.
  • an aromatic hydrocarbon material is used as an electrode, a sufficient ion adsorption amount can be obtained per unit weight of the electrode.
  • the specific surface area by the BET method under the condition that the H / C ratio is in the above range is described. However, it is about 1000 to 2000 m 2 / g. Specific surface area by the BET method is preferably 1100 to 1800 m 2 / g, more preferably about 1200 ⁇ 1600m 2 / g approximately. If the specific surface area is too large, the bulk density tends to decrease and the amount of adsorbed ions per unit volume (specific capacity) tends to decrease, which is not preferable.
  • the material B of the present invention has a mesopore volume by the BJH method of about 0.02 to 0.2 ml / g, preferably about 0.02 to 0.1 ml / g. If the mesopore volume is too small, pores are not formed, and the ion adsorption capacity per unit weight is reduced. Although the ion adsorption capacity per weight is large, it is not preferable because the density decreases and the ion adsorption amount per unit volume decreases.
  • the BJH method is a method proposed by Barrett, Joyner, and Harenda et al. For determining the distribution of mesopores (EP Barretts LG Joyner and PP Halenda, J, Am. Chem. Soc., 73, 373, (1951)).
  • the material B of the present invention has a total pore volume by the MP method of about 0.3 to 1.0 ml / g, preferably about 0.4 to 0.8 ml / g. If the total pore volume is too low, the number of micropores serving as ion adsorption sites will decrease, and a sufficient ion adsorption capacity per unit volume will not be obtained.
  • the MP method is defined as “t-plot method J (BC Lippens, JH de Boer, J. Catalys is, 4, 319 (1965))” and the micropore volume, micropore area, and micropore area.
  • Mikhai M. Mikhai 1
  • RS Mikhai 1 S. Brunauer, EE Bodor, J Colloid Interface Sc i., 26, 45 (1968)
  • the above-mentioned H / C ratio, the specific surface area by the BET method, the mesopore volume by the BJH method, and the total pore volume by the MP method simultaneously satisfy the specific values.
  • the activated polycyclic aromatic hydrocarbon material having this feature is used as an electrode, a sufficient ion adsorption amount per unit weight of the electrode can be obtained, and a sufficient amount per unit volume of the electrode can be obtained. It is also possible to obtain a suitable ion adsorption amount.
  • the active polycyclic aromatic hydrocarbon material (including the above-mentioned materials A and B) of the present invention can be produced by heat-treating a coal-based raw material under an inert gas atmosphere.
  • coal-based raw materials include bituminous coal, lignite, lignite, peat coal, and the like. These may be used alone or as a mixture of two or more.
  • the material it is preferable that the material contain a large amount of oxygen atoms and hydrogen atoms.
  • a coal-based raw material having an oxygen concentration of about 25 to 50% is preferable.
  • the oxygen concentration refers to the weight percent (weight content) of oxygen atoms in the coal-based raw material measured by elemental analysis.
  • coal classification is based on coal dagger (eg, based on carbon content).
  • lignite and lignite have a carbon content of about 78% or less
  • bituminous coal has a carbon content of 78-90%
  • anthracite has a carbon content of about 90% or more.
  • the lower the degree of coalification the higher the ratio of hydrogen and oxygen, especially the ratio of oxygen.
  • Lignite and lignite have a high oxygen concentration of about 20% or more. ⁇ 20%, less than about 7% for anthracite. Therefore, lignite and lignite are preferred as coal-based raw materials.
  • the above-described coal can be used, but a coal-based raw material in which the oxygen concentration is about 25 to 50% by performing an oxygen crosslinking reaction on coal in advance is used. Is preferred.
  • lignite or lignite which is a coal having a high oxygen concentration and a low degree of coalification, is preferably used as the coal used in the oxygen crosslinking reaction.
  • the active polycyclic aromatic hydrocarbon material of the present invention is produced, for example, through the following process.
  • Examples of the method of the oxygen crosslinking reaction of coal include various methods such as a method of heating coal in air and a method of contacting coal with an acidic liquid such as nitric acid and sulfuric acid.
  • the coal used is preferably in the form of a powder having a large surface area that is easily crosslinked with oxygen.
  • the heating temperature may be, for example, about 100 to 350 ° C, and preferably about 150 to 300 ° C.
  • the pressure may be about normal pressure.
  • the heating time may be, for example, about 1 to 30 hours. More specifically, for example, the temperature of coal powder is raised from room temperature to about 150 to 300 ° C over about 0.5 to 10 hours, and is maintained at the same temperature for about 1 to 20 hours, and then cooled to room temperature. Good.
  • the method of bringing coal into contact with an acidic liquid such as nitric acid or sulfuric acid may be performed using a known method.
  • the oxygen concentration of the coal-based raw material after the oxygen crosslinking treatment is preferably 25 to 50%, and more preferably 30 to 48%. If the oxygen concentration is less than 25%, it is difficult to obtain desired performance in the activated polycyclic aromatic hydrocarbon material of the present invention.
  • the coal-based raw material after the above oxygen cross-linking reaction can be subjected to the heat treatment step (3) as it is, but it is difficult to obtain a large specific surface area. After that, it is preferable to perform the heat treatment step.
  • the thermal reaction aid has a function of increasing the specific surface area of the coal-based raw material by acting on the coal-based raw material after the oxygen crosslinking reaction to form pores on the surface of the coal-based raw material. Is what you have.
  • the thermal reaction aid include inorganic salts such as zinc chloride, phosphoric acid, calcium chloride, sodium hydroxide, potassium hydroxide, and the like, and at least one selected from these may be selected. it can. Among them, it is preferable to use zinc chloride.
  • the amount of the thermal reaction aid varies depending on the type of coal-based raw material, the type of inorganic salt, etc., but for both Material A and Material B, it is about 30 to 800 parts by weight based on the so-called oxygen-crosslinked coal. And preferably about 50 to 500 parts by weight. In particular, in the case of material B, the amount is about 50 to 200 parts by weight, preferably about 50 to 180 parts by weight, based on 100 parts by weight of the oxygen-crosslinked coal.
  • any method may be used as long as the two are uniformly mixed, and examples thereof include a method using a planetary mixer, a tandem and the like.
  • the raw material mixture is formed into a film form. It may be formed into a predetermined shape such as a plate shape or a chip shape.
  • a molding aid for improving moldability can be further mixed, if necessary.
  • any known molding aid can be used without particular limitation.
  • a molding aid having binding properties such as a cell opening, propyloxymethylcellulose (CMC), and methylcellulose (C) can be used.
  • CMC propyloxymethylcellulose
  • C methylcellulose
  • the amount of calorie added is usually about 5 to 50 parts by weight, more preferably 10 to 40 parts by weight, based on 100 parts by weight of coal which is the main component of the raw material mixture. It is about parts by weight.
  • thermosetting resin for example, resol, A thermosetting resin such as Nopolak
  • the amount added is usually about 5 to 50 parts by weight, more preferably 10 to 40 parts by weight, based on 100 parts by weight of coal, which is the main component of the raw material mixture. It is about parts by weight.
  • a thermosetting resin is used as a molding aid, a temperature of about 50 to 250 (more preferably about 100 to 200 ° C) is used for about 1 to 120 minutes (more preferably 5 to 60 minutes). By heating, curing molding is possible.
  • the active polycyclic aromatic hydrocarbon material of the present invention can be obtained by heat-treating the raw material mixture or the molded product obtained above.
  • the heat treatment of the raw material mixture or its molded product is performed in an inert gas atmosphere such as nitrogen or argon. Because heat treatment is performed at a high temperature, the molded product will burn if a combustible gas such as oxygen or a combustible gas is mixed.
  • the pressure for the heat treatment is not particularly limited, but usually may be about normal pressure.
  • the temperature of the heat treatment is appropriately determined according to the composition of the raw material mixture and other heat treatment conditions (heating rate, heat treatment time, etc.), but may be generally in the range of about 500 to 700 ° C, and 520 to 700 ° C. ° C is preferred. Particularly, in order to obtain an appropriate H / C ratio, it is more preferable that the peak temperature be 550 to 700 ° C.
  • the heating rate is, for example, usually about 10 to 250 ° C / hour, preferably about 20 to 200 ° CZ hour.
  • the thermal reaction product obtained above is washed with a detergent to remove inorganic salts contained in the thermal reaction product.
  • the cleaning agent is not particularly limited as long as the inorganic salt can be removed, and examples thereof include 7f and dilute hydrochloric acid. If dilute hydrochloric acid is used, it is preferable to finally wash it further with water to remove hydrochloric acid.
  • the washed material is dried to obtain the active polycyclic aromatic hydrocarbon material of the present invention.
  • the drying method is not particularly limited, and a known drying method may be used. Electrode using activated polycyclic aromatic carbon bicarbonate material of the present invention
  • the hydrogenated active polycyclic aromatic hydrocarbon material of the present invention obtained as described above has a higher ion-adsorbing capacity per unit weight of an electrode than a known polyacene-based organic semiconductor, and is used as an electrode material in a capacitor or the like. Can be.
  • An electrode can be produced by using the activated polycyclic aromatic hydrocarbon material of the present invention as an electrode material.
  • an electrode can be produced by pulverizing an active polycyclic aromatic hydrocarbon material, mixing the pulverized material, a carbon black and a binder, and then molding the mixture.
  • the method for pulverizing the active polycyclic aromatic hydrocarbon material is not particularly limited, and a known method may be used. For example, a pulverizing method using a pole mill, a jet mill, or the like can be used.
  • the average particle size of the carbon black used may be about 0.1 to 10 m.
  • the average particle size is measured by dispersing a force pump rack uniformly in water and using a laser-based particle size distribution measurement method.
  • the amount of the power pump rack used is, for example, about 0.5 to 30 parts by weight, preferably about 1 to 20 parts by weight, based on 100 parts by weight of the pulverized material of the activated polycyclic aromatic aromatic carbon material. .
  • binder examples include polytetrafluoroethylene resin, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF) and the like, and polytetrafluoroethylene resin is preferable.
  • SBR styrene butadiene rubber
  • PVDF polyvinylidene fluoride
  • the binder is preferably in the form of a powder to facilitate moldability.
  • the amount of the binder used may be, for example, about 1 to 30 parts by weight based on 100 parts by weight of the pulverized active polycyclic aromatic hydrocarbon material.
  • the method of mixing the pulverized active polycyclic aromatic hydrocarbon material, carbon black and the binder is not particularly limited, and a known mixing method may be used. For example, a method using a normal mixer, a kneader or the like may be used. No.
  • Examples of a method for molding the obtained mixture include press molding and extrusion molding.
  • press molding is preferable.
  • the thickness of the electrode can be appropriately selected according to the use of the electrode.
  • a capacitor can be manufactured using the electrode obtained in the above (1).
  • a capacitor can be manufactured by drying the electrode obtained in the above (1) to form a positive electrode and a negative electrode, then adding a separator and an electrolytic solution.
  • the shape of the electrode can be appropriately selected according to the purpose of use, but is preferably a sheet.
  • the electrode may be dried as long as it can sufficiently remove water, and is usually 70 to 28 (about TC and dried for about 10 hours.
  • the dried electrode is used as a positive electrode and a negative electrode.
  • Examples of the current collector include stainless steel mesh and aluminum, and among them, stainless steel mesh is preferable.
  • the thickness of the current collector may be, for example, about 0.02 to 0.5 mm.
  • the structure of the separator is not particularly limited, but a single-layer or multi-layer separator can be used.
  • the material of the separator is not particularly limited, but examples thereof include electrolytic capacitor paper, polyolefin such as polyethylene and polypropylene, polyamide, kraft paper, glass, and cellulosic materials. It is determined as appropriate according to the safety design. Among them, an electrolytic capacitor paper is preferable. Also, it is preferable that the separation is sufficiently dried.
  • the electrolyte for example, a known non-aqueous electrolyte containing an ammonium salt can be used.
  • ammonium salts such as triethylmethylammonium tetrafluoroporate (Et 3 MeNBF 4 ) and tetraethylammonium.tetrafluoroporate (Et 4 NBF 4 ) are mixed with propylene carbonate and ethylene carbonate.
  • the concentration of the electrolytic solution is not particularly limited, but generally 0.5 mol / l to 2 mol / l is practical. Of course, it is preferable to use an electrolyte having a water content of 100 ppm or less.
  • the ion adsorption amount per unit weight and the ion adsorption amount per unit volume (specific capacity) of the electrode using the material of the present invention are very good.
  • the ion adsorption amount per unit weight of the electrode is about 35 to 50 F / g, preferably about 40 to 50 F / g.
  • the ion adsorption amount per unit weight of the electrode is about 35 to 50 F / g, preferably about 40 to 50 F / g
  • the ion adsorption amount per unit volume of the electrode is , About 25 to 50 FZcc, preferably about 26 to 50 F / cc.
  • the ion adsorption amount per unit weight of the electrode and the ion adsorption amount per unit volume (specific capacity) were measured as described in Examples. Further, the active polycyclic aromatic hydrocarbon material of the present invention can be suitably used as an adsorbent for water treatment, an adsorbent for smoke exhaust, an adsorbent for deodorization, and the like.
  • Example 1 is shown below to further clarify features of the present invention.
  • oxygen crosslinking of lignite the main raw material. That is, lignite (oxygen concentration 21.0%) powder was placed in a porcelain dish and heat-treated in air using a small cylindrical furnace. In the heat treatment, the brown coal powder was heated from room temperature to 250 ° C over 2 hours, kept at the same temperature for 7 hours, cooled to room temperature, and taken out of the cylindrical furnace. Oxygen concentration was determined by performing elemental analysis of the oxygen-crosslinked lignite (measurement device: PE2400 Series II, CHNS / 0, elemental analyzer manufactured by PerkinElmer) o The oxygen concentration was 34.5%. Was.
  • the aqueous slurry was placed in a graphite dish and heat-treated using a small cylindrical furnace.
  • the temperature was raised to 600 ° C at a rate of 120 ° C / hour in a nitrogen atmosphere, held at the same temperature for 1 hour, allowed to cool naturally in the furnace, and then taken out of the furnace.
  • Elemental analysis was performed on the obtained activated polycyclic aromatic hydrocarbon-based hydrogen material, and the HZC ratio was determined (measuring device: PE2400 series element analyzer manufactured by PerkinElmer I, CHNS / 0). Further, the isotherm was measured using nitrogen as an adsorbate (measurement device: "N0VA1200" manufactured by urea ionics Co., Ltd.), and the specific surface area was determined from the obtained isotherm by the BET method. The results of the above measurements and calculations are shown in Table 1 below.
  • the active polycyclic aromatic hydrocarbon material was pulverized, and 10 parts by weight of carbon black and 8 parts by weight of polytetrafluoroethylene resin powder as a binder were mixed with 100 parts by weight of this powder. Then, an electrode having a thickness of 0.5 thigh was obtained by press molding.
  • the sheet electrode obtained above was pressed to 1.5 cm ⁇ 1.5 cm and dried at 150 for 1 hour.
  • the obtained electrodes were used as a positive electrode and a negative electrode.
  • a 0.2-thick stainless steel mesh was used as a current collector, a sufficiently dried electrolytic capacitor paper was used as a separator, and a concentration of 1.5 mol / l was used as an electrolytic solution.
  • a capacitor was assembled in a dry box using a solution of triethylmethylammonium'tetrafluoroporate (Et 3 MeNBF 4 ) / propylene carbonate (PC).
  • the amount of ion adsorption per unit weight was determined using the obtained capacitor.
  • the ion adsorption amount was measured as the electric capacity (F / g) of the capacity.
  • the maximum charging current of the capacitor was regulated to 50 mA, and the capacitor was charged at 2.5 V for 1 hour, and then discharged at a constant current of 1 mA until the capacitor voltage became 0 V.
  • the electric capacity (F) was obtained from the slope of the discharge curve, and the capacity per electrode weight (F / g) was obtained from the total weight of the positive electrode / negative electrode and the electric capacity, and this value was used as the ion adsorption amount.
  • Table 1 The results are shown in Table 1.
  • the lignite was subjected to oxygen crosslinking treatment. Processing conditions are brown in air
  • the charcoal powder was heated from room temperature to 28 CTC over 2 hours, kept at the same temperature for 7 hours, cooled to room temperature, and taken out of the cylindrical furnace. Elemental analysis of the obtained oxygen-crosslinked lignite was performed to determine the oxygen concentration. The oxygen concentration was 33.2%.
  • a thermal reaction aid was added to the oxygen-crosslinked lignite, and the active polycyclic aromatic hydrocarbon material of the present invention was obtained in the same manner as in Example 1 thereafter.
  • Example 3 Using the obtained active polycyclic aromatic hydrocarbon-based hydrogen material, an electrode was formed in the same manner as in Example 1, a capacitor was assembled, and charge and discharge were performed. Table 1 shows the obtained results together with various physical properties of the active polycyclic aromatic hydrocarbon material.
  • Example 3 Using the obtained active polycyclic aromatic hydrocarbon-based hydrogen material, an electrode was formed in the same manner as in Example 1, a capacitor was assembled, and charge and discharge were performed. Table 1 shows the obtained results together with various physical properties of the active polycyclic aromatic hydrocarbon material. Example 3
  • Example 2 In the same manner as in Example 1, the lignite was subjected to oxygen crosslinking treatment.
  • the processing conditions were as follows: the temperature was raised from room temperature to 230 ° C in air over 2 hours, kept at the same temperature for 10 hours, cooled to room temperature, and taken out of the cylindrical furnace. The oxygen concentration was 35.0%. Thereafter, in the same manner as in Example 1, an active polycyclic aromatic hydrocarbon material of the present invention was obtained.
  • Example 1 Using the obtained active polycyclic aromatic hydrocarbon-based hydrogen material, an electrode was formed, a capacitor was assembled, and charge / discharge was performed in the same manner as in Example 1. Table 1 shows the obtained results together with various physical properties of the active polycyclic aromatic hydrocarbon material. Comparative Example 1
  • Example 2 In the same manner as in Example 1, the lignite was subjected to oxygen crosslinking treatment.
  • the processing conditions were as follows: the temperature was raised from room temperature to 250 ° C in air over 2 hours, kept at the same temperature for 1 hour, cooled to room temperature, and taken out of the cylindrical furnace. The oxygen concentration was 24.3%. Thereafter, an active polycyclic aromatic hydrocarbon material was obtained in the same manner as in Example 1.
  • Example 2 Using the obtained active polycyclic aromatic hydrocarbon material, an electrode was formed, a capacitor was assembled, and charging and discharging were performed in the same manner as in Example 1. Table 1 shows the obtained results together with various physical properties of the active polycyclic aromatic hydrocarbon material. Comparative Example 2
  • Example 1 was carried out without subjecting lignite, the main raw material, to oxygen crosslinking treatment (oxygen concentration 20.1%). A thermal reaction treatment was performed in the same manner to obtain an active polycyclic aromatic hydrocarbon material. Using the obtained active polycyclic aromatic hydrocarbon material, an electrode was formed, a capacitor was assembled, and charging and discharging were performed in the same manner as in Example 1. Table 1 shows the obtained results together with various physical properties of the active polycyclic aromatic hydrocarbon material. Comparative Example 3
  • Example 2 Using the obtained active polycyclic aromatic hydrocarbon, an electrode was formed in the same manner as in Example 1, a capacitor was assembled, and charge and discharge were performed. Table 1 shows the obtained results together with various physical properties of the active polycyclic aromatic hydrocarbon material.
  • the active polycyclic aromatic hydrocarbon material of the present invention has a high ion adsorption capacity per unit weight, and when this is used as a capacitor electrode, high capacity and low cost can be achieved.
  • Example 4
  • Example 2 The mixing ratio of zinc chloride to be added to the oxygen-crosslinked lignite The same treatment as in Example 1 was performed except that 100 parts by weight of zinc chloride was used.
  • the mesopore volume was calculated by the BJH method.
  • the above active polycyclic aromatic hydrocarbon material is powder-framed, and 10 parts by weight of carbon black and 8 parts by weight of polytetrafluoroethylene resin powder as a binder are added to 100 parts by weight of the powder. After mixing, an electrode having a thickness of 0.51M was obtained by press molding.
  • the sheet electrode obtained above was cut into 1.5 cm ⁇ 1.5 cm, and dried at 150 ° C. for 2 hours.
  • the obtained electrodes were used as a positive electrode and a negative electrode, a 0.2 mm thick stainless steel mesh was used as a current collector, a well-dried electrolytic capacitor paper was used as a separator, and the concentration of the electrolyte was 1.5 mol / l.
  • the capillaries were assembled in a dry pox using a solution of 1 triethylmethylammonium * tetrafluoroporate (Et 3 MeNBF 4 ) / propylene monoponate (PC).
  • the specific capacity was measured as the electric capacity per unit volume of capacity (F / cc).
  • the maximum charging current of the capacitor was regulated to 50 mA
  • the battery was charged at 2.5 V for 1 hour, and then discharged at a constant current of 1 mA until the capacitor voltage reached 0 V.
  • the electric capacity (F) was obtained from the slope of the discharge curve, and the specific capacity per electrode volume (F / cc) was obtained from the total volume of the positive electrode / negative electrode and the electric capacity.
  • the results are shown in Table 2.
  • Example 4 the lignite was subjected to oxygen crosslinking treatment. Processing conditions are brown coal powder The temperature was raised from the temperature to 280 ° C over 2 hours, maintained at the same temperature for 5 hours, cooled to room temperature, and taken out of the cylindrical furnace. Elemental analysis of the obtained oxygen-crosslinked lignite was performed to determine the oxygen concentration. The oxygen concentration was 34.4%.
  • the activated polycyclic aromatic aromatic compound of the present invention was prepared in the same manner as in Example 4 except that a thermal reaction auxiliary was added to the oxygen-crosslinked lignite, and the mixing ratio was changed to 150 parts by weight of zinc chloride with respect to 100 parts by weight of the lignite. A series hydrocarbon material was obtained.
  • Example 4 Using the obtained active polycyclic aromatic hydrocarbon-based hydrogen material, an electrode was formed, a capacitor was assembled, and charging and discharging were performed in the same manner as in Example 4. The results obtained are shown in Table 2 together with various physical properties of the active polycyclic aromatic hydrocarbon material. Comparative Example 4
  • the lignite was subjected to oxygen crosslinking treatment.
  • the processing conditions were as follows: the temperature was raised from room temperature to 250 over 2 hours, maintained at the same temperature for 7 hours, cooled to room temperature, and taken out of the cylindrical furnace.
  • the oxygen concentration was 34.6%.
  • an active polycyclic aromatic compound was prepared in the same manner as in Example 4 except that a thermal reaction aid was added to the oxygen-crosslinked lignite, and the mixing ratio was changed to 230 parts by weight of zinc chloride with respect to 100 parts by weight of pitch. A series hydrocarbon material was obtained.
  • Lignite was used as it was without oxygen crosslinking treatment.
  • the oxygen concentration was 20.1%.
  • An activated polycyclic aromatic carbon-based hydrogenated material was prepared in the same manner as in Example 4 , except that a thermal reaction auxiliary was added to the brown coal and the mixing ratio was changed to 100 parts by weight of zinc chloride with respect to 100 parts by weight of pitch. Obtained.
  • Example 4 Using the obtained active polycyclic aromatic hydrocarbon, an electrode was formed in the same manner as in Example 4, a capacitor was assembled, and charge and discharge were performed. Table 2 shows the obtained results together with various physical properties of the active polycyclic aromatic hydrocarbon.
  • the active polycyclic aromatic hydrocarbon material of the present invention has a large specific capacity and a large amount of ion adsorption per unit weight, and when this is used as a capacity electrode, higher capacity and lower cost can be achieved. Can be achieved.
  • the active polycyclic aromatic hydrocarbon material of the present invention can be produced by heat treatment at a relatively low temperature using inexpensive coal as a raw material, thereby reducing raw material costs, running costs, etc. in the production. can do. For this reason, the industrial value of the activated polycyclic aromatic hydrocarbon material of the present invention is very large.
  • the active polycyclic aromatic hydrocarbon material of the present invention has a high ion adsorption capacity per unit weight and a high Z or ion adsorption capacity per unit volume. It can be suitably used as an electrode material such as a paster, and can increase the capacity of the capacitor and reduce the manufacturing cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

An active polycyclic aromatic hydrocarbon material, which is produced by subjecting a coal-based raw material having an oxygen concentration of 25 to 50 % to a heat treatment in an inert gas atmosphere and has the following characteristics: (a) a H/C ratio (a ratio the content of hydrogen atoms to that of carbon atoms) of 0.05 to 0.5, and (b) a specific surface area value according to the BET method of 1000 to 3000 m2/g; and a method for producing the hydrocarbon material. The hydrocarbon material can be produced by subjecting a raw material containing an inexpensive coal as a main component to a heat treatment, and also can provide an electrode exhibiting enhanced capability for ion adsorption per unit weight and/or unit volume.

Description

明 細 書 活性多環芳香族系炭化水素材料及びその製造方法 技術分野  Description Active polycyclic aromatic hydrocarbon material and method for producing the same
本発明は、 電気伝導性を有する活性多環芳香族系炭化水素材料に関する。 背景技術  The present invention relates to an active polycyclic aromatic hydrocarbon material having electrical conductivity. Background art
高分子材料は、 成形性、 軽量性および量産性等において優れた特性を有してい る。 特にエレクトロニクス産業を代表とする多くの産業分野においては、 これら の特性に加えて、 電気的に半導電性あるいは伝導性を有する有機高分子系材料が 求められている。  Polymer materials have excellent properties such as moldability, light weight, and mass productivity. In particular, in many industrial fields represented by the electronics industry, in addition to these characteristics, organic semiconductive or conductive organic polymer materials are required.
特に、 電気伝導度が半導体あるいは伝導体領域にある有機高分子系半導体だけ でなく、 シリコン、 ゲルマニウムなどのように、 n型あるいは p型半導体として の性質を有し、 それらの p— n接合などを利用したダイオードや太陽電池などへ の応用が可能である有機高分子系半導体が求められている。 n型あるいは p型半 導体としての性質を持つ有機高分子系材料としては、 ボリアセチレン、 ポリフエ 二レンなどが知られている。  In particular, it has properties as n-type or p-type semiconductors, such as silicon and germanium, as well as organic polymer semiconductors whose electrical conductivity is in the semiconductor or conductor region, and their pn junctions There is a need for organic polymer semiconductors that can be applied to diodes, solar cells, and the like that utilize GaN. As organic polymer materials having properties as n-type or p-type semiconductors, boriaacetylene, polyphenylene, and the like are known.
例えば、 「合成金属」化学増刊 87、 1980年発行、 15— 28頁には、 アセチレンを 重合して直接フィルム状のポリアセチレンを得た後、 これに電子供与性ドーピン グ剤ぁるいは電子受容性ドーピング剤をドーピングすることにより大幅に電気伝 導度を増加させた P型あるいは n型の半導体を得る手法が開示されている。 しか しながら、 ポリアセチレンは酸素によって酸ィ匕されやすいので実用性に極めて乏 しい。  For example, “Synthetic Metals” Chemical Supplement 87, 1980, pp. 15-28 states that acetylene is polymerized directly to obtain polyacetylene in the form of a film, which is then doped with an electron-donating doping agent or an electron-accepting material. There is disclosed a method of obtaining a P-type or n-type semiconductor in which electric conductivity is greatly increased by doping a doping agent. However, polyacetylene is very poor in practicality because it is easily oxidized by oxygen.
また、 ポリフエ二レンは、 ポリアセチレンとは異なり、 比較的酸化安定性には 優れている。 しかしながら、 ポリフエ二レンはフエ二レン骨格が線上に単結合を 形成しており炭素原子間の共役系が小さいため、 ドーピング剤をドーピングする ことによって達成される電子伝導度に限界があると考えられる。 また、 ド一ピン グ剤による不純物制御にも限界があると考えられている。 そこで、 半導体ないし伝導体の電気伝導性、 優れた物理的性質を有し、 力ゝっ優 れた酸化安定性を有する電気伝導性有機高分子材料が開発された (特公平 6-43545号公報)。 この材料は、 多環芳香族系炭化水素材料 (低温処理炭素材料、 あるいはポリアセン系有機半導体と一般に呼ばれている) であり、 現在、 半導体 材料として製造され広く応用されている。ポリァセン系有機半導体は、耐酸化性、 耐薬品性、 耐熱性等の安定性に優れ、 反応条件を選択することにより幅広い導電 率が得られ、 多くの導電性高分子 (ポリア二リン、 ポリピロール等) では困難で あった P型 (負イオン)、 n型(陽イオン) の両ドーピングが可能である、 などの 多くの利点を有している。 Also, polyphenylene, unlike polyacetylene, has relatively excellent oxidative stability. However, in polyphenylene, the phenylene skeleton forms a single bond on the line, and the conjugate system between carbon atoms is small, so it is thought that there is a limit to the electron conductivity achieved by doping with a doping agent. . Also, it is considered that there is a limit in controlling impurities by the dopant. Thus, an electrically conductive organic polymer material having the electrical conductivity of a semiconductor or conductor, excellent physical properties, and excellent oxidative stability has been developed (Japanese Patent Publication No. 6-43545). ). This material is a polycyclic aromatic hydrocarbon material (commonly referred to as a low-temperature-treated carbon material or a polyacene organic semiconductor), and is currently manufactured and widely applied as a semiconductor material. Polyacene-based organic semiconductors have excellent stability such as oxidation resistance, chemical resistance, and heat resistance. A wide range of conductivity can be obtained by selecting reaction conditions, and many conductive polymers (polyaniline, polypyrrole, etc.) This method has many advantages, such as the ability to do both P-type (negative ion) and n-type (cation) doping, which was difficult in).
ポリアセン系有機半導体は、 1次元グラフアイトの切端が 3次元網目状に発達 してできた分子レベルの隙間を有した高次構造を持つ。 このため、 活性炭に比べ てイオン吸着能が強く、 迅速に大量のドーパントを蓄えることができる。 また、 ドーパントの出し入れに際しても材料の体積変化が少なく非常に安定であるため、 電気二重層キャパシタ材料としても注目を集めている。 また、 この材料は、 重金 属を全く含まないので、 環境にやさしい安全な高信頼性材料である。  Polyacene-based organic semiconductors have a higher-order structure with molecular-level gaps formed by the one-dimensional graphite cut ends developed into a three-dimensional network. For this reason, the ion adsorption capacity is stronger than activated carbon, and a large amount of dopant can be stored quickly. In addition, since the material does not change much in volume when the dopant is put in and taken out and is very stable, it is attracting attention as an electric double layer capacitor material. In addition, this material does not contain any heavy metals, so it is an environmentally friendly, safe and reliable material.
しかし、 上記公知のポリアセン系有機半導体は、 単位重量当たりのイオン吸着 能が不十分であるとともに、 電気二重層キャパシ夕用電極材料とした場合には、 電極の単位体積当りのイオン吸着能が不十分であるという問題点がある。 さらに は、 原料にフエノール樹脂を使用しているために、 原料コストが高価になってし まうという問題点もある。  However, the above-mentioned known polyacene-based organic semiconductors have insufficient ion adsorption capacity per unit weight, and when used as an electrode material for electric double layer capacity, the ion adsorption capacity per unit volume of the electrode is not sufficient. There is a problem that it is enough. In addition, the use of phenolic resin as a raw material has the problem that the raw material costs are high.
そのため、 電極の単位重量当たりのイオン吸着能及び Z又は単位体積当りのィ オン吸着能が高く、 力つ安価な原料で製造が容易な活性多環芳香族系炭化水素材 料が希求されている。 発明の開示  Therefore, there is a need for an active polycyclic aromatic hydrocarbon material which has high ion adsorption capacity per unit weight of the electrode and ion adsorption capacity per Z or unit volume, and is easy to manufacture with a powerful and inexpensive raw material. . Disclosure of the invention
本発明は、 安価な石炭を主成分とした原料を熱処理することにより得られる、 電極の単位重量当たりのイオン吸着能及び Z又は電極単位体積当りのイオン吸着 能の高い活性多環芳香族系炭化水素材料、 及びその製法を提供することを目的と する。 さらに、 本発明は、 上記活性多環芳香族系炭化水素材料を用いた電極ゃキ ャパシ夕を提供することをも目的とする。 The present invention relates to an active polycyclic aromatic carbon having high ion adsorption capacity per unit weight of electrode and high ion adsorption capacity per unit volume of electrode obtained by heat-treating a raw material mainly composed of inexpensive coal. The purpose is to provide a hydrogen material and a method for producing the same. Furthermore, the present invention provides an electrode coating using the active polycyclic aromatic hydrocarbon material. It is also intended to provide a festival.
本発明者は、 上記課題を解決するために鋭意研究を行なった結果、 石炭を主成 分とする石炭系原料を特定条件下で処理することにより、 特定の物性を有する活 性多環芳香族系炭化水素材料を製造しうることを見出し、 さらに研究を行うこと により、 上記目的を達成しうる本発明を完成するに至った。  The present inventors have conducted intensive studies to solve the above problems, and as a result, by treating a coal-based raw material containing coal as a main component under specific conditions, an active polycyclic aromatic having specific physical properties has been obtained. The present inventors have found that a hydrocarbon-based material can be produced, and have conducted further research, thereby completing the present invention which can achieve the above object.
すなわち、 本発明は、 下記の活性多環芳香族系炭化水素材料等を提供する。 That is, the present invention provides the following active polycyclic aromatic hydrocarbon materials and the like.
1 . 酸素濃度が 25〜50%の石炭系原料を不活性ガス雰囲気下で熱処理すること により得られる、 下記の特性を有する活性多環芳香族系炭化水素材料:1. An activated polycyclic aromatic hydrocarbon material having the following properties, obtained by heat-treating a coal-based raw material having an oxygen concentration of 25 to 50% in an inert gas atmosphere:
(a) H/C比 (水素原子と炭素原子の含有比) が 0. 05〜0. 5、 (a) The H / C ratio (content ratio of hydrogen atoms to carbon atoms) is 0.05 to 0.5,
(b) BET法による比表面積値が 1000〜3000mVg。 (b) The specific surface area by the BET method is 1000 to 3000 mVg.
2. 前記(b) BET法による比表面積値が 1500〜3000m2/gである上記 1に記載の 活性多環芳香族系炭化水素材料。 2. The active polycyclic aromatic hydrocarbon material according to 1 above, wherein (b) the specific surface area by BET method is 1500 to 3000 m 2 / g.
3 . 酸素濃度が 25〜50%の石炭系原料が、石炭の酸素架橋反応により得られる 石炭系原料である上記 1又は 2に記載の活性多環芳香族系炭化水素材料。  3. The active polycyclic aromatic hydrocarbon material according to the above 1 or 2, wherein the coal-based raw material having an oxygen concentration of 25 to 50% is a coal-based raw material obtained by an oxygen crosslinking reaction of coal.
4. 石炭が、 褐炭又は亜炭である上記 3に記載の活性多環芳香族系炭ィ匕水素材 料。 4. The activated polycyclic aromatic coal-based danishu material according to the above item 3, wherein the coal is lignite or lignite.
5. 前記石炭系原料を熱反応助剤と共に熱処理することを特徴とする上記 1〜 4のいずれかに記載の活性多環芳香族系炭化水素材料。  5. The active polycyclic aromatic hydrocarbon material according to any one of the above items 1 to 4, wherein the coal-based raw material is heat-treated together with a thermal reaction aid.
6. 熱反応助剤が、 塩化亜鉛、 燐酸、 塩化カルシウム、 水酸化ナトリウム及び K酸化力リゥムからなる群から選ばれる少なくとも 1つである上記 5に記載の活 性多環芳香族系炭化水素材料。  6. The active polycyclic aromatic hydrocarbon material according to 5 above, wherein the thermal reaction aid is at least one selected from the group consisting of zinc chloride, phosphoric acid, calcium chloride, sodium hydroxide, and K-oxidizing lime. .
7. 熱反応助剤の配合量が、 石炭系原料の 100重量部に対して 30〜800重量部 である上記 5に記載の活性多環芳香族系炭化水素材料。  7. The active polycyclic aromatic hydrocarbon material according to the above item 5, wherein the amount of the thermal reaction aid is 30 to 800 parts by weight based on 100 parts by weight of the coal-based raw material.
8. 酸素濃度が 25〜50%の石炭系原料を不活性ガス雰囲気下で熱処理すること により得られる、 下記の特性を有する上記 1に記載の活性多環芳香族系炭化水素 材料:  8. The activated polycyclic aromatic hydrocarbon material according to 1 above, having the following characteristics, obtained by heat-treating a coal-based raw material having an oxygen concentration of 25 to 50% in an inert gas atmosphere:
(a) H/C比 (水素原子と炭素原子の含有比) が 0. 05〜0. 5、  (a) The H / C ratio (content ratio of hydrogen atoms to carbon atoms) is 0.05 to 0.5,
(b) BET法による比表面積値が 1000〜 200 OmVg,  (b) Specific surface area by BET method is 1000-200 OmVg,
(c) BJH法によるメソ孔容積が 0. 02〜0. 2ml/g、 (d) MP法による全細孔容積が 0. 3〜1. 0ml/g。 (c) Mesopore volume by the BJH method is 0.02 to 0.2 ml / g, (d) The total pore volume by the MP method is 0.3 to 1.0 ml / g.
9 . 酸素濃度が 25〜50%の石炭系原料が、石炭の酸素架橋反応により得られる 石炭系原料である請求の範囲第 8に記載の活性多環芳香族系炭化水素材料。 9. The active polycyclic aromatic hydrocarbon material according to claim 8, wherein the coal-based raw material having an oxygen concentration of 25 to 50% is a coal-based raw material obtained by an oxygen crosslinking reaction of coal.
1 0. 石炭が褐炭又は亜炭である上記 8又は 9に記載の活性多環芳香族系炭化 水素材料。 10. The active polycyclic aromatic hydrocarbon material according to the above item 8 or 9, wherein the coal is lignite or lignite.
1 1 . 前記石炭系原料を熱反応助剤と共に熱処理することを特徴とする上記 8 〜 1 0のいずれかに記載の活性多環芳香族系炭化水素材料  11. The active polycyclic aromatic hydrocarbon material according to any one of the above items 8 to 10, wherein the coal-based raw material is heat-treated together with a thermal reaction aid.
1 2. 熱反応助剤が、 塩化亜鉛、 燐酸、 塩化カルシウム、 水謝匕ナトリウム及 び水酸化力リゥムからなる群から選ばれる少なくとも 1つである上記 1 1に記載 の活性多環芳香族系炭化水素材料。  12. The active polycyclic aromatic system according to the above 11, wherein the thermal reaction aid is at least one selected from the group consisting of zinc chloride, phosphoric acid, calcium chloride, sodium hydroxide, and water-soluble lime. Hydrocarbon materials.
1 3. 熱反応助剤の配合量が、 石炭系原料の 100重量部に対して 50〜200重量 部である上記 1 1に記載の活性多環芳香族系炭ィヒ水素材料。  13. The active polycyclic aromatic carbon material according to the above item 11, wherein the amount of the thermal reaction aid is 50 to 200 parts by weight based on 100 parts by weight of the coal-based raw material.
1 4. 下記の工程からなる活性多環芳香族系炭ィ匕水素材料の製造方法: 1 4. A method for producing an active polycyclic aromatic hydrocarbon material comprising the following steps:
(i) 石炭を酸素架橋反応に付して酸素濃度が 25〜50%の石炭系原料を得る工程、 及び 、 (i) subjecting the coal to an oxygen crosslinking reaction to obtain a coal-based raw material having an oxygen concentration of 25 to 50%, and
(i i) 酸素濃度が 25〜50%の石炭系原料を、 熱反応助剤と共に不活性ガス雰囲気 下で熱処理する工程。  (ii) a step of heat-treating a coal-based raw material having an oxygen concentration of 25 to 50% together with a thermal reaction aid in an inert gas atmosphere.
1 5. 上記;!〜 1 3のいずれかに記載の活性多環芳香族系炭化水素材料を含有 する電極。  1 5. Above; An electrode comprising the active polycyclic aromatic hydrocarbon material according to any one of Items 1 to 13.
1 6. 上記 1〜 1 3のいずれかに記載の活性多環芳香族系炭化水素材料、 カー ボンブラック、 及びバインダーを含有する電極。  1 6. An electrode containing the active polycyclic aromatic hydrocarbon material according to any one of the above items 1 to 13, carbon black, and a binder.
1 7 . 上記 1〜: 1 3のいずれかに記載の活性多環芳香族系炭ィ匕水素材料、 力一 ポンプラック、 及びバインダ一を混合した後、 その混合物を成形することを特徴 とする電極の製法。 '  17. The method is characterized in that after mixing the active polycyclic aromatic hydrocarbon material described in any one of the above items 1 to 13, the power pump rack, and the binder, the mixture is molded. Electrode manufacturing method. '
1 8 . 上記 1 7に記載の製法により得られる電極。 18. An electrode obtained by the method described in 17 above.
1 9 . 上記 1 5又は 1 6に記載の電極を含有するキャパシ夕。  19. Capacitance containing the electrode described in 15 or 16 above.
2 0 . 上記 1 5又は 1 6に記載の電極、 集電体、 セパレ一夕、 及び電解液を含 有するキャパシタ。 本発明の活性多環芳香族系炭ィ匕水素材料 20. A capacitor comprising the electrode, the current collector, the separator, and the electrolytic solution according to 15 or 16 above. Activated polycyclic aromatic carbon-based hydrogenated material of the present invention
本発明の活性多環芳香族系炭ィ匕水素材料は下記の特性を備えている。 ' すなわち、 本発明の活性多環芳香族系炭化水素材料における水素原子と炭素原 子の含有比 (以下、 ΓΗ/C比」 と呼ぶ) は、 0. 05〜0. 5程度であり、 好ましくは 0. 1〜0. 3程度であり、より好ましくは 0. 15〜0. 3程度である。 HZC比が高すぎる 場合には、 充分に多環芳香族系共役構造が発達していないので、 所定の電気伝導 度が得られないため、 充分な単位重量当たりのイオン吸着能が発揮されない。 一 方、 H/C比が低すぎる場合には、 炭素化が進行しすぎて通常の活性炭となり、 や はり充分な単位重量当たりのイオン吸着能が得られない。 なお、 H/C比は、 元素 分析機により測定される。  The activated polycyclic aromatic hydrocarbon material of the present invention has the following properties. That is, the content ratio of hydrogen atoms to carbon atoms (hereinafter referred to as ΓΗ / C ratio) in the active polycyclic aromatic hydrocarbon material of the present invention is about 0.05 to 0.5, and is preferably Is about 0.1 to 0.3, more preferably about 0.15 to 0.3. If the HZC ratio is too high, the polycyclic aromatic conjugated structure is not sufficiently developed, so that a predetermined electrical conductivity cannot be obtained, so that sufficient ion adsorption capacity per unit weight cannot be exhibited. On the other hand, if the H / C ratio is too low, the carbonization proceeds too much to become a normal activated carbon, and a sufficient ion adsorption capacity per unit weight cannot be obtained. The H / C ratio is measured by an elemental analyzer.
本発明の活性多環芳香族系炭化水素材料の 1つの態様 (以下、 「材料 A」と呼ぶ) は、 H/C比が上記の範囲にある条件下において、 BET法による比表面積値が、 1000 〜3000m2/g程度である。 比表面積値は、 好ましくは 1500〜3000mVg程度であり、 より好ましくは 1700〜2800m2/g程度である。 比表面積値が大きすぎる場合には、 かさ密度が低下して単位体積当たりのイオン吸着量 (比容量) が低下する傾向に あるため好ましくない。 One embodiment of the active polycyclic aromatic hydrocarbon material of the present invention (hereinafter referred to as “material A”) has a specific surface area value by the BET method under the condition that the H / C ratio is in the above range. It is about 1000-3000 m 2 / g. The specific surface area is preferably about 1500 to 3000 mVg, more preferably about 1700 to 2800 m 2 / g. If the specific surface area is too large, the bulk density tends to decrease and the amount of adsorbed ions per unit volume (specific capacity) tends to decrease, which is not preferable.
すなゎぢ、本発明の材料 Aは、上述の HZC比と BET法による比表面積とが同時 に特定の数値を充足していることに特徴を有しており、 この特徴を有する活性多 環芳香族系炭化水素材料を電極として用いた場合、 電極単位重量当たり十分なィ オン吸着量を得ることができる。  That is, the material A of the present invention is characterized in that the above-mentioned HZC ratio and the specific surface area determined by the BET method simultaneously satisfy specific numerical values. When an aromatic hydrocarbon material is used as an electrode, a sufficient ion adsorption amount can be obtained per unit weight of the electrode.
また、本発明の活性多環芳香族系炭化水素材料の他の態様(以下、 「材料 B」 と 呼ぶ)は、 H/C比が上記の範囲にある条件下において、 BET法による比表面積値が、 1000〜2000m2/g程度である。 BET法による比表面積値は、 好ましくは 1100〜 1800m2/g程度、 より好ましくは 1200〜1600m2/g程度である。比表面積値が大きす ぎる場合には、 カゝさ密度が低下して単位体積当たりのイオン吸着量 (比容量) が 低下する傾向にあるため好ましくない。 In another embodiment of the active polycyclic aromatic hydrocarbon material of the present invention (hereinafter referred to as “material B”), the specific surface area by the BET method under the condition that the H / C ratio is in the above range is described. However, it is about 1000 to 2000 m 2 / g. Specific surface area by the BET method is preferably 1100 to 1800 m 2 / g, more preferably about 1200~1600m 2 / g approximately. If the specific surface area is too large, the bulk density tends to decrease and the amount of adsorbed ions per unit volume (specific capacity) tends to decrease, which is not preferable.
加えて、 本発明の材料 Bは、 BJH法によるメソ孔容積が、 0. 02〜0. 2ml/g程度、 好ましくは 0. 02〜0. 1ml/g程度である。 メソ孔容積が小さすぎる場合、 細孔がで きておらず、 単位重量当たりのイオン吸着能が低下し、 大きすぎる場合は、 単位 重量当たりのイオン吸着能は大きいものの、 密度が低下し、 単位体積当たりのィ オン吸着量が低下するために好ましくない。なお、 BJH法とは レット(Barret t)、 ジョイナ一 (Joyner)、 ハレンダ (Halenda) らによって提唱された、 メソ孔の分 布を求める方法である (E. P. Barre t t s L. G. Joyner and P. P. Halenda, J, Am. Chem. Soc. , 73, 373, (1951) )。 In addition, the material B of the present invention has a mesopore volume by the BJH method of about 0.02 to 0.2 ml / g, preferably about 0.02 to 0.1 ml / g. If the mesopore volume is too small, pores are not formed, and the ion adsorption capacity per unit weight is reduced. Although the ion adsorption capacity per weight is large, it is not preferable because the density decreases and the ion adsorption amount per unit volume decreases. The BJH method is a method proposed by Barrett, Joyner, and Harenda et al. For determining the distribution of mesopores (EP Barretts LG Joyner and PP Halenda, J, Am. Chem. Soc., 73, 373, (1951)).
さらに、 本発明の材料 Bは、 MP法による全細孔容積が、 0. 3〜1. 0ml/g程度、好 ましくは 0. 4〜0. 8ml/g程度である。全細孔容積が低すぎる場合には、ィオン吸着 サイトとなるマイクロ孔が少なくなるので、 充分な単位体積当たりのイオン吸着 · 量が得られない。なお、 MP法とは、 「t—プロット法 J (B. C. Lippens, J. H. de Boer, J. Catalys is, 4, 319 (1965) ) .を用いて、 マイクロ孔容積、 マイク ロ孔面積、及びマイクロ孔の分布を求める方法であり、ェム.ミカイル (M. Mikhai 1)、 ブルナウア一(Brunauer)、ポードー(Bodor)らにより考案された方法である(R. S. Mikhai 1, S. Brunauer, E. E. Bodor, J. Col loid Interface Sc i . , 26, 45 (1968) )。  Further, the material B of the present invention has a total pore volume by the MP method of about 0.3 to 1.0 ml / g, preferably about 0.4 to 0.8 ml / g. If the total pore volume is too low, the number of micropores serving as ion adsorption sites will decrease, and a sufficient ion adsorption capacity per unit volume will not be obtained. The MP method is defined as “t-plot method J (BC Lippens, JH de Boer, J. Catalys is, 4, 319 (1965))” and the micropore volume, micropore area, and micropore area. Mikhai (M. Mikhai 1), Brunauer, Bodor, and others (RS Mikhai 1, S. Brunauer, EE Bodor, J Colloid Interface Sc i., 26, 45 (1968)).
すなわち、 本発明の材料 Bは、 上述の H/C比、 BET法による比表面積、 BJH法 によるメソ孔容積、及び MP法による全細孔容積とが同時に特定の数値を充足して ることに特徴を有しており、 この特徴を有する活性多環芳香族系炭ィ匕水素材料 を電極として用いた場合、 電極単位重量当たり十分なィオン吸着量を得ることが できると共に、 電極単位体積当たり十分なィオン吸着量を得ることもできる。 本発明の活性多環芳香族系炭化水素材料の製法  That is, in the material B of the present invention, the above-mentioned H / C ratio, the specific surface area by the BET method, the mesopore volume by the BJH method, and the total pore volume by the MP method simultaneously satisfy the specific values. When the activated polycyclic aromatic hydrocarbon material having this feature is used as an electrode, a sufficient ion adsorption amount per unit weight of the electrode can be obtained, and a sufficient amount per unit volume of the electrode can be obtained. It is also possible to obtain a suitable ion adsorption amount. Method for producing active polycyclic aromatic hydrocarbon material of the present invention
本発明の活性多環芳香族系炭化水素材料 (上記の材料 A及び材料 Bを含む)は、 石炭系原料を不活性ガス雰囲気下で熱処理することにより製造することができる。 石炭系原料としては、 例えば、 瀝青炭、 褐炭、 亜炭、 草炭などが挙げられる。 これらは、 単独で使用してよく、 あるいは 2種以上の混合物を使用してもよい。 本発明の活性多環芳香族系炭ィ匕水素材料が所望の特性を有するためには、 酸素原 子及び水素原子を多く含有しているものが好ましい。特に、石炭系原料としては、 酸素濃度が 25〜50%程度の石炭系原料が好ましい。 ここで、 酸素濃度とは、 元素 分析により測定した、 石炭系原料中の酸素原子の重量% (重量含有率) をいう。 一般に、 石炭の分類には石炭ィ匕度 (例えば、 炭素含有量に基づいたもの) が用 いられる。例えば、 亜炭や褐炭では約 78%以下、瀝青炭では 78〜90%、無煙炭で は約 90%以上の炭素含有量を有している。石炭化度の低い石炭ほど水素及び酸素 の比率が高く、 特に酸素の比率が高くなる。亜炭や褐炭では酸素濃度は約 20%以 上と高く、瀝青炭で?〜 20%、無煙炭では約 7%以下である。従って、石炭系原料 としては、 褐炭、 亜炭が好ましい。 The active polycyclic aromatic hydrocarbon material (including the above-mentioned materials A and B) of the present invention can be produced by heat-treating a coal-based raw material under an inert gas atmosphere. Examples of coal-based raw materials include bituminous coal, lignite, lignite, peat coal, and the like. These may be used alone or as a mixture of two or more. In order for the active polycyclic aromatic hydrocarbon material of the present invention to have desired properties, it is preferable that the material contain a large amount of oxygen atoms and hydrogen atoms. In particular, as the coal-based raw material, a coal-based raw material having an oxygen concentration of about 25 to 50% is preferable. Here, the oxygen concentration refers to the weight percent (weight content) of oxygen atoms in the coal-based raw material measured by elemental analysis. In general, coal classification is based on coal dagger (eg, based on carbon content). For example, lignite and lignite have a carbon content of about 78% or less, bituminous coal has a carbon content of 78-90%, and anthracite has a carbon content of about 90% or more. The lower the degree of coalification, the higher the ratio of hydrogen and oxygen, especially the ratio of oxygen. Lignite and lignite have a high oxygen concentration of about 20% or more. ~ 20%, less than about 7% for anthracite. Therefore, lignite and lignite are preferred as coal-based raw materials.
本発明の製法で用いうる石炭系原料は、 上記のような石炭を用いることもでき るが、あらかじめ石炭に酸素架橋反応を行って酸素濃度を 25〜50%程度にした石 炭系原料を使用することが好ましい。特に、酸素架橋反応に用いる石炭としては、 酸素濃度を高くしゃすい石炭化度の低い石炭である褐炭や亜炭が好ましい。 本発明の活性多環芳香族系炭ィ匕水素材料は、 例えば、 以下のような過程を経て 製造される。  As the coal-based raw material that can be used in the production method of the present invention, the above-described coal can be used, but a coal-based raw material in which the oxygen concentration is about 25 to 50% by performing an oxygen crosslinking reaction on coal in advance is used. Is preferred. In particular, lignite or lignite, which is a coal having a high oxygen concentration and a low degree of coalification, is preferably used as the coal used in the oxygen crosslinking reaction. The active polycyclic aromatic hydrocarbon material of the present invention is produced, for example, through the following process.
(1) 石炭の酸素架橋反応工程 (1) Coal oxygen crosslinking reaction process
石炭の酸素架橋反応の方法としては、 例えば、 石炭を空気中で加熱する方法、 石炭と硝酸、 硫酸などの酸性液体とを接触させる方法等の各種の方法が挙げられ る。 用いる石炭は、 酸素架橋がされやすい大きい表面積をもつ粉末状のものが好 ましい。  Examples of the method of the oxygen crosslinking reaction of coal include various methods such as a method of heating coal in air and a method of contacting coal with an acidic liquid such as nitric acid and sulfuric acid. The coal used is preferably in the form of a powder having a large surface area that is easily crosslinked with oxygen.
石炭を空気中で加熱する方法の場合、 加熱温度は、 例えば、 100〜350°C程度で あればよく、 好ましくは 150〜300°C程度であればよい。 圧力は、 通常、 常圧程度 であればよい。 加熱時間は、 例えば、 1〜30時間程度でよい。 より具体的には、 例えば、石炭粉末を室温から 150〜300°C程度まで 0. 5〜10時間程度かけて昇温し、 同温度で 1〜20時間程度保持した後、 室温まで冷却すればよい。  In the case of heating coal in the air, the heating temperature may be, for example, about 100 to 350 ° C, and preferably about 150 to 300 ° C. Normally, the pressure may be about normal pressure. The heating time may be, for example, about 1 to 30 hours. More specifically, for example, the temperature of coal powder is raised from room temperature to about 150 to 300 ° C over about 0.5 to 10 hours, and is maintained at the same temperature for about 1 to 20 hours, and then cooled to room temperature. Good.
石炭と硝酸、 硫酸などの酸性液体とを接触させる方法は、 公知の方法を用いて 行えばよい。  The method of bringing coal into contact with an acidic liquid such as nitric acid or sulfuric acid may be performed using a known method.
酸素架橋処理後の石炭系原料の酸素濃度は、好ましくは 25〜50%であり、 より 好ましくは 30〜48%である。酸素濃度が 25%未満では、本発明の活性多環芳香族 系炭ィヒ水素材料において所望の性能が得られ難い。 (2) 石炭系原料の調整 The oxygen concentration of the coal-based raw material after the oxygen crosslinking treatment is preferably 25 to 50%, and more preferably 30 to 48%. If the oxygen concentration is less than 25%, it is difficult to obtain desired performance in the activated polycyclic aromatic hydrocarbon material of the present invention. (2) Adjustment of coal-based raw materials
上記の酸素架橋反応後の石炭系原料は、そのまま (3)の熱処理工程に供すること もできるが、 大きい比表面積が得られにくいため、 石炭系原料に熱反応助剤をカロ え均一に混合してから熱処理工程に供するのが好ましい。 ここで、 熱反応助剤と は、 酸素架橋反応後の石炭系原料に作用して該石炭系原料表面に孔を形成するこ とにより、 石炭系原料の比表面積を増大させる働きを有しているものをいう。 熱反応助剤としては、 例えば、 塩化亜鉛、 燐酸、 塩化カルシウム、 水酸化ナト リウム、 水酸ィ匕カリウム等の無機塩が挙げられ、 このうちから選ばれる少なくと も 1つを選択することができる。 中でも塩化亜鉛を用いることが好ましい。 熱反 応助剤の配合量は、 石炭系原料の種類、 無機塩の種類等によって異なるが、 材料 A及び材料 B共に、 酸素架橋処理石炭の謂重量部に対して、 30〜800重量部程 度であり、 好ましくは 50〜500重量部程度である。 特に、 材料 Bの場合は、 酸素 架橋処理石炭の 100重量部に対して、 50〜200重量部程度であり、 好ましくは 50 〜180重量部程度である。  The coal-based raw material after the above oxygen cross-linking reaction can be subjected to the heat treatment step (3) as it is, but it is difficult to obtain a large specific surface area. After that, it is preferable to perform the heat treatment step. Here, the thermal reaction aid has a function of increasing the specific surface area of the coal-based raw material by acting on the coal-based raw material after the oxygen crosslinking reaction to form pores on the surface of the coal-based raw material. Is what you have. Examples of the thermal reaction aid include inorganic salts such as zinc chloride, phosphoric acid, calcium chloride, sodium hydroxide, potassium hydroxide, and the like, and at least one selected from these may be selected. it can. Among them, it is preferable to use zinc chloride. The amount of the thermal reaction aid varies depending on the type of coal-based raw material, the type of inorganic salt, etc., but for both Material A and Material B, it is about 30 to 800 parts by weight based on the so-called oxygen-crosslinked coal. And preferably about 50 to 500 parts by weight. In particular, in the case of material B, the amount is about 50 to 200 parts by weight, preferably about 50 to 180 parts by weight, based on 100 parts by weight of the oxygen-crosslinked coal.
石炭系原料と熱反応助剤の混合の方法としては、 両者が均一に混合される方法 であればよく、 例えば、 プラネタリーミキサー、 二一ダ一等を用いる方法が挙げ られる。  As a method for mixing the coal-based raw material and the thermal reaction aid, any method may be used as long as the two are uniformly mixed, and examples thereof include a method using a planetary mixer, a tandem and the like.
なお、上記ので得られた石炭系原料と熱反応助剤との混合物からなる原材料(こ の混合物を 「原料混合物」 という。 以下同じ) の取り扱いを容易にするために、 原料混合物をフィルム状、 板状、 チップ状などの所定形状に成形しても良い。 成形を行なう場合には、 必要に応じ、 成形性を改善するための成形助剤をさら に混合することができる。 成形助剤としては、 特に限定はなぐ 公知の成形助剤 を用いることができる。  In addition, in order to facilitate the handling of the raw material composed of a mixture of the coal-based raw material and the thermal reaction aid obtained above (this mixture is referred to as a “raw material mixture”; the same applies hereinafter), the raw material mixture is formed into a film form. It may be formed into a predetermined shape such as a plate shape or a chip shape. When performing molding, a molding aid for improving moldability can be further mixed, if necessary. As the molding aid, any known molding aid can be used without particular limitation.
原料混合物をそのままプレス成形する場合には、 例えば、 セル口一ス、 力ルポ キシメチルセルロース (CMC)、 メチルセルロース ( C) 等の結着性を有する成形 助剤を使用することができる。 セル口一スを成形助剤として使用する場合の添カロ 量は、 原料混合物の主成分である石炭 100重量部に対して、 通常 5〜50重量部程 度であり、 より好ましくは 10〜40重量部程度である。  When the raw material mixture is press-formed as it is, for example, a molding aid having binding properties such as a cell opening, propyloxymethylcellulose (CMC), and methylcellulose (C) can be used. When the cell mouth is used as a molding aid, the amount of calorie added is usually about 5 to 50 parts by weight, more preferably 10 to 40 parts by weight, based on 100 parts by weight of coal which is the main component of the raw material mixture. It is about parts by weight.
また、加熱成形を行なう場合は、例えば、 フエノール樹脂(例えば、 レゾール、 ノポラック等) などの熱硬化性樹脂を成形助剤として使用することもできる。 上 記熱硬化性樹脂を成形助剤として使用する場合の添加量は、 原料混合物の主成分 である石炭 100重量部に対して、 通常 5〜50重量部程度であり、 より好ましくは 10〜40重量部程度である。 また、 熱硬化性樹脂を成形助剤に用いる場合には、 50 〜250で程度(より好ましくは 100〜200°C程度) の温度で 1〜120分程度(より好 ましくは 5〜60分程度) 加熱することにより、 硬化成形することも可能である。 When performing heat molding, for example, a phenolic resin (for example, resol, A thermosetting resin such as Nopolak) can also be used as a molding aid. When the thermosetting resin is used as a molding aid, the amount added is usually about 5 to 50 parts by weight, more preferably 10 to 40 parts by weight, based on 100 parts by weight of coal, which is the main component of the raw material mixture. It is about parts by weight. When a thermosetting resin is used as a molding aid, a temperature of about 50 to 250 (more preferably about 100 to 200 ° C) is used for about 1 to 120 minutes (more preferably 5 to 60 minutes). By heating, curing molding is possible.
(3) 熱処理工程 (3) Heat treatment process
上記で得られた原料混合物又はその成形物を熱処理することにより、 本発明の 活性多環芳香族系炭化水素材料を得ることができる。  The active polycyclic aromatic hydrocarbon material of the present invention can be obtained by heat-treating the raw material mixture or the molded product obtained above.
原料混合物又はその成形物の熱処理は、 窒素、 アルゴン等の不活性ガス雰囲気 中で行われる。 高温で熱処理するため、 酸素等の助燃性気体や可燃性気体が混入 していると成形物が燃焼してしまうからである。 熱処理の圧力は、 特に限定はな いが、 通常、 常圧程度であればよい。 熱処理の温度は、 原料混合物の組成、 他の 熱処理条件 (昇温速度、 熱処理時間等) に応じて適宜決定されるが、 通常 500〜 700°C程度の範囲内であればよく、 520〜700°C程度が好ましい。 特に、 適切な H/C 比を得るため、 ピーク温度を 550〜700°Cにすることがより好ましい。 また、 昇温 速度は、 例えば、 通常 10〜250°C //時間程度であり、 20〜200°CZ時間程度にする ことが好ましい。  The heat treatment of the raw material mixture or its molded product is performed in an inert gas atmosphere such as nitrogen or argon. Because heat treatment is performed at a high temperature, the molded product will burn if a combustible gas such as oxygen or a combustible gas is mixed. The pressure for the heat treatment is not particularly limited, but usually may be about normal pressure. The temperature of the heat treatment is appropriately determined according to the composition of the raw material mixture and other heat treatment conditions (heating rate, heat treatment time, etc.), but may be generally in the range of about 500 to 700 ° C, and 520 to 700 ° C. ° C is preferred. Particularly, in order to obtain an appropriate H / C ratio, it is more preferable that the peak temperature be 550 to 700 ° C. The heating rate is, for example, usually about 10 to 250 ° C / hour, preferably about 20 to 200 ° CZ hour.
(4) 洗浄,乾燥工程 (4) Cleaning and drying process
上記で得られた熱反応処理物を洗浄剤で洗浄して、 熱反応物中に含まれている 無機塩を除去する。 洗浄剤としては、 無機塩を除去しうる限り、 特に限定されな いが、 例えば、 7f 、 希塩酸等が挙げられる。 希塩酸を使用する場合には、 最終的 に水によりさらに洗浄して、 塩酸を除去することが好ましい.。  The thermal reaction product obtained above is washed with a detergent to remove inorganic salts contained in the thermal reaction product. The cleaning agent is not particularly limited as long as the inorganic salt can be removed, and examples thereof include 7f and dilute hydrochloric acid. If dilute hydrochloric acid is used, it is preferable to finally wash it further with water to remove hydrochloric acid.
次いで、 洗浄物を乾燥することにより、 本発明の活性多環芳香族系炭化水素材 料が得られる。 乾燥方法としては、 特に限定はなく、 公知の乾燥方法を用いれば よい。 本発明の活性多環芳香族系炭ィヒ水素材料を用いた電極 Then, the washed material is dried to obtain the active polycyclic aromatic hydrocarbon material of the present invention. The drying method is not particularly limited, and a known drying method may be used. Electrode using activated polycyclic aromatic carbon bicarbonate material of the present invention
上記で得られる本発明の活性多環芳香族系炭ィ匕水素材料は、 電極単位重量当た りのィオン吸着能が公知のポリァセン系有機半導体より大きく、 キャパシ夕など における電極用材料として用いることができる。  The hydrogenated active polycyclic aromatic hydrocarbon material of the present invention obtained as described above has a higher ion-adsorbing capacity per unit weight of an electrode than a known polyacene-based organic semiconductor, and is used as an electrode material in a capacitor or the like. Can be.
(1) 電極 (1) Electrode
本発明の活性多環芳香族系炭ィ匕水素材料を電極用材料として用いて電極を製造 することができる  An electrode can be produced by using the activated polycyclic aromatic hydrocarbon material of the present invention as an electrode material.
例えば、 活性多環芳香族系炭化水素材料を粉砕し、 その粉碎物、 力一ボンブラ ック及びパインダーを混合した後、 その混合物を成形することにより電極を製造 することができる。  For example, an electrode can be produced by pulverizing an active polycyclic aromatic hydrocarbon material, mixing the pulverized material, a carbon black and a binder, and then molding the mixture.
活性多環芳香族系炭化水素材料の粉砕方法は、 特に限定はなく、 公知の方法を 用いればよい。 例えば、 ポールミル、 ジェットミル等を用いた粉砕方法等が挙げ られる。  The method for pulverizing the active polycyclic aromatic hydrocarbon material is not particularly limited, and a known method may be used. For example, a pulverizing method using a pole mill, a jet mill, or the like can be used.
用いるカーボンブラックの平均粒子径は、 0. 1〜10 m程度であればよい。平均 粒子径の測定方法は、 水中に力一ポンプラックを均一分散させ、 レ一ザ一による 粒子径分布測定法を用いる。 力一ポンプラックの使用量は、 例えば、 活性多環芳 香族系炭ィ匕水素材料の粉砕物 100重量部に対し 0. 5〜30重量部程度、 好ましくは 1〜20重量部程度でよい。  The average particle size of the carbon black used may be about 0.1 to 10 m. The average particle size is measured by dispersing a force pump rack uniformly in water and using a laser-based particle size distribution measurement method. The amount of the power pump rack used is, for example, about 0.5 to 30 parts by weight, preferably about 1 to 20 parts by weight, based on 100 parts by weight of the pulverized material of the activated polycyclic aromatic aromatic carbon material. .
バインダーとしては、 例えば、 ポリテトラフルォロェチレン樹脂、 スチレンブ タジェンゴム (SBR)、 ポリ弗化ビニリデン (PVDF) 等が挙げられ、 ポリテトラフ ルォロエチレン樹脂が好ましい。 バインダーは、 成形性を容易にするため、 粉末 状のものが、好ましい。 バインダーの使用量は、 例えば、 活性多環芳香族系炭化水 素材料の粉砕物 100重量部に対し 1〜30重量部程度でよい。  Examples of the binder include polytetrafluoroethylene resin, styrene butadiene rubber (SBR), polyvinylidene fluoride (PVDF) and the like, and polytetrafluoroethylene resin is preferable. The binder is preferably in the form of a powder to facilitate moldability. The amount of the binder used may be, for example, about 1 to 30 parts by weight based on 100 parts by weight of the pulverized active polycyclic aromatic hydrocarbon material.
活性多環芳香族系炭化水素材料の粉砕物、 カーボンブラック及びバインダ一の 混合方法は、 特に限定はなく公知の混合方法を用いればよいが、 例えば、 通常の ミキサー、 ニーダ一等を用いる方法が挙げられる。  The method of mixing the pulverized active polycyclic aromatic hydrocarbon material, carbon black and the binder is not particularly limited, and a known mixing method may be used. For example, a method using a normal mixer, a kneader or the like may be used. No.
得られる混合物の成形方法は、 例えば、 プレス成形、 押し出し成形等が挙げら れる。 特に、 プレス成形が好ましい。 電極の厚さは、 その電極の用途に応じて適宜選択することができる。 Examples of a method for molding the obtained mixture include press molding and extrusion molding. In particular, press molding is preferable. The thickness of the electrode can be appropriately selected according to the use of the electrode.
(2) キャパシタ (2) Capacitor
上記(1)で得られる電極を用いてキャパシタを製造することができる。  A capacitor can be manufactured using the electrode obtained in the above (1).
例えば、上記 (1)で得られる電極を乾燥し、正極及び負極とした後、セパレー夕、 電解液を加えてキャパシタを製造することができる。  For example, a capacitor can be manufactured by drying the electrode obtained in the above (1) to form a positive electrode and a negative electrode, then adding a separator and an electrolytic solution.
電極の形状は、 使用目的に応じ適宜選択することができるが、 シート状のもの が好ましい。 電極の乾燥は、 十分に水分を除去できればよく、 通常 70〜28(TC程 度で、 10時間程度乾燥すればよい。 乾燥後の電極を正極及び負極とする。  The shape of the electrode can be appropriately selected according to the purpose of use, but is preferably a sheet. The electrode may be dried as long as it can sufficiently remove water, and is usually 70 to 28 (about TC and dried for about 10 hours. The dried electrode is used as a positive electrode and a negative electrode.
集電体としては、 例えば、 ステンレスメッシュ、 アルミニウム等が挙げられる が、中でもステンレスメッシュのものが好ましい。集電体の厚さは、例えば、 0. 02 〜0· 5mm程度であればよい。  Examples of the current collector include stainless steel mesh and aluminum, and among them, stainless steel mesh is preferable. The thickness of the current collector may be, for example, about 0.02 to 0.5 mm.
セパレー夕の構成は、 特に限定されるものではないが、 単層又は複層のセパレ —タを用いることができる。 また、 セパレー夕の材質も、 特に限定されるもので はないが、 例えば、 電解コンデンサー紙、 ポリエチレン、 ポリプロピレンなどの ポリオレフイン、 ポリアミド、 クラフト紙、 ガラス、 セルロース系材料等が挙げ られ、 電池の耐熱性、 安全性設計に応じ適宜決定される。 中でも、 電解コンデン サ一紙が好ましい。 また、 セパレー夕は十分に乾燥したものが好ましい。  The structure of the separator is not particularly limited, but a single-layer or multi-layer separator can be used. The material of the separator is not particularly limited, but examples thereof include electrolytic capacitor paper, polyolefin such as polyethylene and polypropylene, polyamide, kraft paper, glass, and cellulosic materials. It is determined as appropriate according to the safety design. Among them, an electrolytic capacitor paper is preferable. Also, it is preferable that the separation is sufficiently dried.
電解液としては、 例えば、 公知のアンモニゥム塩を含む非水系電解質を使用す ることができる。 具体的には、 トリェチルメチルアンモニゥム ·テトラフルォロ ポレート(Et 3MeNBF4)、テトラェチルアンモニゥム.テトラフルォロポレート(Et 4NBF4)等のアンモニゥム塩を、プロピレンカーボネート、エチレンカーボネート、 ジェチルカ一ポネート、 ジメチルカーポネート、 メチルェチルカーボネート、 ジ メトキシェタン、 τ一プチロラクトン、 酢酸メチル、 蟻酸メチル、 或いはこれら 2種以上の混合溶媒等の有機溶媒に溶解したもの等が例示される。 また、 電解液 の濃度は特に限定されるものではないが、 一般的に 0. 5mol/lから 2mol/lが実用 的である。該電解液は当然のことながら、水分が lOOppm以下のものを用いること が好ましい。 As the electrolyte, for example, a known non-aqueous electrolyte containing an ammonium salt can be used. Specifically, ammonium salts such as triethylmethylammonium tetrafluoroporate (Et 3 MeNBF 4 ) and tetraethylammonium.tetrafluoroporate (Et 4 NBF 4 ) are mixed with propylene carbonate and ethylene carbonate. And dimethyl ether carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, τ-butyrolactone, methyl acetate, methyl formate, or those dissolved in an organic solvent such as a mixed solvent of two or more thereof. Further, the concentration of the electrolytic solution is not particularly limited, but generally 0.5 mol / l to 2 mol / l is practical. Of course, it is preferable to use an electrolyte having a water content of 100 ppm or less.
上記の電極、 セパレー夕、 電解液を、 例えば、 ドライボックス中で組み立てる ことによりキャパシ夕を得ることができる。 Assemble the above electrodes, separator and electrolyte in a dry box, for example By doing so, you can get the capacity.
このようにして得られるキャパシタにおいて、 本発明の材料を用いた電極の単 位重量当たりのイオン吸着量及び単位体積当たりのイオン吸着量 (比容量) は、 非常に良好なものとなる。 例えば、 材料 Aを用いた電極では、 その電極の単位重 量当たりのイオン吸着量は、 35〜50F/g程度、好ましくは 40〜50F/g程度となる。 また、 材料 Bを用いた電極では、 その電極の単位重量当たりのイオン吸着量は、 35〜50F/g程度、 好ましくは 40〜50F/g程度となり、 その電極の単位体積当たり のイオン吸着量は、 25〜50FZcc程度、好ましくは 26〜50F/cc程度となる。なお、 電極の単位重量当たりのイオン吸着量及び単位体積当たりのイオン吸着量 (比容 量) は、 実施例の記載に従い測定した。 さらに本発明の活性多環芳香族系炭化水素材料は、 水処理用吸着材、 排煙用吸 着材、 脱臭用吸着剤などとしても好適に用いることができる。 発明を実施するための最良の形態  In the capacitor thus obtained, the ion adsorption amount per unit weight and the ion adsorption amount per unit volume (specific capacity) of the electrode using the material of the present invention are very good. For example, in the electrode using the material A, the ion adsorption amount per unit weight of the electrode is about 35 to 50 F / g, preferably about 40 to 50 F / g. In the electrode using material B, the ion adsorption amount per unit weight of the electrode is about 35 to 50 F / g, preferably about 40 to 50 F / g, and the ion adsorption amount per unit volume of the electrode is , About 25 to 50 FZcc, preferably about 26 to 50 F / cc. The ion adsorption amount per unit weight of the electrode and the ion adsorption amount per unit volume (specific capacity) were measured as described in Examples. Further, the active polycyclic aromatic hydrocarbon material of the present invention can be suitably used as an adsorbent for water treatment, an adsorbent for smoke exhaust, an adsorbent for deodorization, and the like. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 実施例を示し、 本発明の特徴とするところをさらに明確にする。 実施例 1  Examples are shown below to further clarify features of the present invention. Example 1
まず、 主原料である褐炭の酸素架橋処理を行なった。 すなわち、 褐炭 (酸素濃 度 21. 0%) の粉末を磁製の皿に入れ、 小型円筒炉を用いて空気中で熱処理した。 熱処理は、 褐炭粉末を室温から 250°Cまで 2時間かけて昇温し、 同温度に 7時間 保持した後、 室温まで冷却し、 円筒炉から取り出した。 酸素架橋処理した褐炭の 元素分析を行ない、 酸素濃度を求めた (測定装置:パーキンエルマ一社製元素分 析装置 "PE2400シリーズ Π、 CHNS/0") o 酸素濃度は、 34. 5 %であった。  First, oxygen crosslinking of lignite, the main raw material, was performed. That is, lignite (oxygen concentration 21.0%) powder was placed in a porcelain dish and heat-treated in air using a small cylindrical furnace. In the heat treatment, the brown coal powder was heated from room temperature to 250 ° C over 2 hours, kept at the same temperature for 7 hours, cooled to room temperature, and taken out of the cylindrical furnace. Oxygen concentration was determined by performing elemental analysis of the oxygen-crosslinked lignite (measurement device: PE2400 Series II, CHNS / 0, elemental analyzer manufactured by PerkinElmer) o The oxygen concentration was 34.5%. Was.
酸素架橋処理した褐炭に、熱反応助剤の塩化亜鉛を加え混合した。混合比率は、 酸素架橋処理した褐炭 100重量部に対し、 塩化亜鉛 400重量部とした。 これらに 適量の水を加え、 混合することにより、 水性スラリ一 (固形分 85重量% +水分 15重量%) を得た。  To the oxygen-crosslinked lignite, zinc chloride as a thermal reaction aid was added and mixed. The mixing ratio was 400 parts by weight of zinc chloride per 100 parts by weight of lignite subjected to oxygen crosslinking. An appropriate amount of water was added to these and mixed to obtain an aqueous slurry (solid content 85% by weight + moisture 15% by weight).
上記水性スラリーを黒鉛製の皿にいれ、小型円筒炉を用いて熱処理を行なった。 熱処理は窒素雰囲気下で、 120°C/時間の昇温速度で 600°Cまで昇温を行ない、 同 温度で 1時間保持し、 炉中で自然冷却した後、 炉から取り出した。 The aqueous slurry was placed in a graphite dish and heat-treated using a small cylindrical furnace. In the heat treatment, the temperature was raised to 600 ° C at a rate of 120 ° C / hour in a nitrogen atmosphere, held at the same temperature for 1 hour, allowed to cool naturally in the furnace, and then taken out of the furnace.
熱処理物を希塩酸で洗浄した後、 p H値が約 7となるまで蒸留水により洗浄し た。 この洗浄後の熱処理物を乾燥することにより、 本発明の活性多環芳香族系炭 化水素材料を得た。  After the heat-treated product was washed with dilute hydrochloric acid, it was washed with distilled water until the pH value was about 7. The heat-treated product after the washing was dried to obtain an active polycyclic aromatic hydrocarbon material of the present invention.
得られた活性多環芳香族系炭ィ匕水素材料の元素分析を行ない、 HZC比を求めた (測定装置:パーキンエルマ一社製元素分析装置 "PE2400シリーズ] I、 CHNS/0")。 また、 窒素を吸着質とし等温線の測定を行ない (測定装置:ュアサアイォニク ス社製 "N0VA1200")、 得られた等温線から BET法により比表面積値を求めた。 上記測定および計算による結果を後記表 1に示す。  Elemental analysis was performed on the obtained activated polycyclic aromatic hydrocarbon-based hydrogen material, and the HZC ratio was determined (measuring device: PE2400 series element analyzer manufactured by PerkinElmer I, CHNS / 0). Further, the isotherm was measured using nitrogen as an adsorbate (measurement device: "N0VA1200" manufactured by urea ionics Co., Ltd.), and the specific surface area was determined from the obtained isotherm by the BET method. The results of the above measurements and calculations are shown in Table 1 below.
次いで、 上記の活性多環芳香族系炭化水素材料を粉砕し、 この粉末 100重量部 に対し、カーボンブラック 10重量部と、バインダーとしてのポリテトラフルォロ エチレン樹脂粉末 8重量部を混合した後、プレス成形することにより、厚さ 0. 5腿 の電極を得た。  Next, the active polycyclic aromatic hydrocarbon material was pulverized, and 10 parts by weight of carbon black and 8 parts by weight of polytetrafluoroethylene resin powder as a binder were mixed with 100 parts by weight of this powder. Then, an electrode having a thickness of 0.5 thigh was obtained by press molding.
上記で得られたシート状電極を 1. 5cmX l . 5cmに力ットし、 150 で 1時間乾燥 した。 得られた電極を正極および負極とし、 集電体として厚さ 0. 2腿のステンレ スメッシュを用い、セパレー夕として充分に乾燥した電解コンデンサー紙を用い、 電解液として、濃度 1. 5mol/lのトリェチルメチルアンモニゥム'テトラフルォロ ポレー卜 (Et 3MeNBF4) /プロピレンカーボネート (PC) 溶液を用いて、 ドライボ ックス中でキャパシタを組み立てた。 The sheet electrode obtained above was pressed to 1.5 cm × 1.5 cm and dried at 150 for 1 hour. The obtained electrodes were used as a positive electrode and a negative electrode.A 0.2-thick stainless steel mesh was used as a current collector, a sufficiently dried electrolytic capacitor paper was used as a separator, and a concentration of 1.5 mol / l was used as an electrolytic solution. A capacitor was assembled in a dry box using a solution of triethylmethylammonium'tetrafluoroporate (Et 3 MeNBF 4 ) / propylene carbonate (PC).
得られたキャパシタを用いて単位重量当たりのイオン吸着量を求めた。 イオン 吸着量は、キャパシ夕の電気容量 (F/g)として測定した。すなわち、キャパシタの 最大充電電流を 50mAに規制し、 2. 5Vで 1時間充電した後、 1mAの定電流にてキヤ パシ夕電圧が 0Vになるまで放電した。 放電曲線の傾きから電気容量 (F)を求め、 正極/負極の全重量と電気容量とから、 電極の重量当たりの容量 (F/g) を求め、 この値をイオン吸着量とした。 結果を表 1に併せて示す。 実施例 2  The amount of ion adsorption per unit weight was determined using the obtained capacitor. The ion adsorption amount was measured as the electric capacity (F / g) of the capacity. In other words, the maximum charging current of the capacitor was regulated to 50 mA, and the capacitor was charged at 2.5 V for 1 hour, and then discharged at a constant current of 1 mA until the capacitor voltage became 0 V. The electric capacity (F) was obtained from the slope of the discharge curve, and the capacity per electrode weight (F / g) was obtained from the total weight of the positive electrode / negative electrode and the electric capacity, and this value was used as the ion adsorption amount. The results are shown in Table 1. Example 2
実施例 1と同様に、 褐炭の酸素架橋処理を行なった。 処理条件は、 空気中で褐 炭粉末を室温から 28CTCまで 2時間かけて昇温し、 同温度に 7時間保持した後、 室温まで冷却し、 円筒炉から取り出した。 得られた酸素架橋処理した褐炭の元素 分析を行ない、 酸素濃度を求めた。 酸素濃度は、 33. 2 %であった。 In the same manner as in Example 1, the lignite was subjected to oxygen crosslinking treatment. Processing conditions are brown in air The charcoal powder was heated from room temperature to 28 CTC over 2 hours, kept at the same temperature for 7 hours, cooled to room temperature, and taken out of the cylindrical furnace. Elemental analysis of the obtained oxygen-crosslinked lignite was performed to determine the oxygen concentration. The oxygen concentration was 33.2%.
酸素架橋処理した褐炭に熱反応助剤を加え、 以後実施例 1と同様にして、 本発 明の活性多環芳香族系炭化水素材料を得た。  A thermal reaction aid was added to the oxygen-crosslinked lignite, and the active polycyclic aromatic hydrocarbon material of the present invention was obtained in the same manner as in Example 1 thereafter.
得られた活性多環芳香族系炭ィ匕水素材料を用いて、 実施例 1と同様の手法によ り、 電極を作成し、 キャパシ夕を組み立て、 充放電を行なった。 得られた結果を 活性多環芳香族系炭化水素材料の諸物性と併せて表 1に示す。 実施例 3  Using the obtained active polycyclic aromatic hydrocarbon-based hydrogen material, an electrode was formed in the same manner as in Example 1, a capacitor was assembled, and charge and discharge were performed. Table 1 shows the obtained results together with various physical properties of the active polycyclic aromatic hydrocarbon material. Example 3
実施例 1と同様に、 褐炭の酸素架橋処理を行なった。 処理条件は、 空気中で室 温から 230°Cまで 2時間かけて昇温し、 同温度に 10時間保持した後、室温まで冷 却し、 円筒炉から取り出した。 酸素濃度は、 35. 0%であった。 以後実施例 1と同 様にして、 本発明の活性多環芳香族系炭化水素材料を得た。  In the same manner as in Example 1, the lignite was subjected to oxygen crosslinking treatment. The processing conditions were as follows: the temperature was raised from room temperature to 230 ° C in air over 2 hours, kept at the same temperature for 10 hours, cooled to room temperature, and taken out of the cylindrical furnace. The oxygen concentration was 35.0%. Thereafter, in the same manner as in Example 1, an active polycyclic aromatic hydrocarbon material of the present invention was obtained.
得られた活性多環芳香族系炭ィ匕水素材料を用いて、 実施例 1と同様の手法によ り、 電極を作成し、 キャパシタを組み立て、 充放電を行なった。 得られた結果を 活性多環芳香族系炭化水素材料の諸物性と併せて表 1に示す。 比較例 1  Using the obtained active polycyclic aromatic hydrocarbon-based hydrogen material, an electrode was formed, a capacitor was assembled, and charge / discharge was performed in the same manner as in Example 1. Table 1 shows the obtained results together with various physical properties of the active polycyclic aromatic hydrocarbon material. Comparative Example 1
実施例 1と同様に、 褐炭の酸素架橋処理を行なった。 処理条件は、 空気中で室 温から 250°Cまで 2時間かけて昇温し、 同温度に 1時間保持した後、 室温まで冷 却し、 円筒炉から取り出した。 酸素濃度は、 24. 3%であった。 以後実施例 1と同 様にして、 活性多環芳香族系炭化水素材料を得た。  In the same manner as in Example 1, the lignite was subjected to oxygen crosslinking treatment. The processing conditions were as follows: the temperature was raised from room temperature to 250 ° C in air over 2 hours, kept at the same temperature for 1 hour, cooled to room temperature, and taken out of the cylindrical furnace. The oxygen concentration was 24.3%. Thereafter, an active polycyclic aromatic hydrocarbon material was obtained in the same manner as in Example 1.
得られた活性多環芳香族系炭化水素材料を用いて、 実施例 1と同様の手法によ り、 電極を作成し、 キャパシタを組み立て、 充放電を行なった。 得られた結果を 活性多環芳香族系炭化水素材料の諸物性と併せて表 1に示す。 比較例 2  Using the obtained active polycyclic aromatic hydrocarbon material, an electrode was formed, a capacitor was assembled, and charging and discharging were performed in the same manner as in Example 1. Table 1 shows the obtained results together with various physical properties of the active polycyclic aromatic hydrocarbon material. Comparative Example 2
主原料である褐炭の酸素架橋処理を行わず(酸素濃度 20. 1 %) に、 実施例 1と 同様な方法にて熱反応処理を行い、 活性多環芳香族系炭化水素材料を得た。 得られた活性多環芳香族系炭化水素材料を用いて、 実施例 1と同様の手法によ り、 電極を作成し、 キャパシ夕を組み立て、 充放電を行なった。 得られた結果を 活性多環芳香族系炭化水素材料の諸物性と併せて表 1に示す。 比較例 3 Example 1 was carried out without subjecting lignite, the main raw material, to oxygen crosslinking treatment (oxygen concentration 20.1%). A thermal reaction treatment was performed in the same manner to obtain an active polycyclic aromatic hydrocarbon material. Using the obtained active polycyclic aromatic hydrocarbon material, an electrode was formed, a capacitor was assembled, and charging and discharging were performed in the same manner as in Example 1. Table 1 shows the obtained results together with various physical properties of the active polycyclic aromatic hydrocarbon material. Comparative Example 3
褐炭を使用することなく、 7K溶性フエノール樹脂 100重量部(固形分)に対し、 塩化亜鉛 00重量部を混合する以外は実施例 1と同様にして熱処理を行なって、 活性多環芳香族系炭化水素を得た。 その BET法による比表面積値は、 2060mVgで あった。  Without using lignite, heat treatment was carried out in the same manner as in Example 1 except that 100 parts by weight (solid content) of 7K-soluble phenol resin was mixed with 100 parts by weight of zinc chloride. Hydrogen was obtained. The specific surface area value by the BET method was 2060 mVg.
得られた活性多環芳香族系炭化水素を用いて、 実施例 1と同様の手法により、 電極を作成し、 キャパシタを組み立て、 充放電を行なった。 得られた結果を活性 多環芳香族系炭化水素材料の諸物性と併せて表 1に示す。  Using the obtained active polycyclic aromatic hydrocarbon, an electrode was formed in the same manner as in Example 1, a capacitor was assembled, and charge and discharge were performed. Table 1 shows the obtained results together with various physical properties of the active polycyclic aromatic hydrocarbon material.
表 1  table 1
Figure imgf000016_0001
表 1から、 本発明の活性多環芳香族系炭化水素材料は単位重量当たりのイオン 吸着能が大きく、 これをキャパシタ電極として用いた場合、 高容量化、 低コスト 化を図ることができる。 実施例 4
Figure imgf000016_0001
From Table 1, it can be seen that the active polycyclic aromatic hydrocarbon material of the present invention has a high ion adsorption capacity per unit weight, and when this is used as a capacitor electrode, high capacity and low cost can be achieved. Example 4
酸素架橋処理した褐炭に加える塩化亜鉛の混合比率を、 酸素架橋処理した褐炭 100重量部に対し塩化亜鉛 100重量部としたこと以外、 前記実施例 1と同様に処 理した。 The mixing ratio of zinc chloride to be added to the oxygen-crosslinked lignite The same treatment as in Example 1 was performed except that 100 parts by weight of zinc chloride was used.
得られた活性多環芳香族系炭化水素材料の元素分析を行ない、 H/C比を求めた Elemental analysis of the obtained active polycyclic aromatic hydrocarbon material was performed to determine the H / C ratio.
(測定装置:パ一キンエルマ一社製元素分析装置" PE2400シリーズ H、CHNS/0")。 また、 窒素を吸着質とし等温線の測定を行ない (測定装置:ュアサアイォニク ス社製 "N0VA1200")、 得られた等温線から BET法により比表面積値を求めた。 全細孔容積は、 相対圧力 P/PQ 1 (P : P及着平衡圧、 P„ :飽和蒸気圧 (77k, N2) ) 付近で吸着した窒素ガスの全量から MP法により求めた。 (Measurement device: Element analyzer "PE2400 series H, CHNS / 0" manufactured by Perkin Elmer). Further, the isotherm was measured using nitrogen as an adsorbate (measurement apparatus: "N0VA1200" manufactured by urea ionics Co., Ltd.), and the specific surface area was determined from the obtained isotherm by the BET method. The total pore volume was determined by the MP method from the total amount of nitrogen gas adsorbed near the relative pressure P / PQ 1 (P: P and equilibrium pressure, P „: saturated vapor pressure (77 k, N 2 )).
メソ孔容積は、 BJH法により計算した。  The mesopore volume was calculated by the BJH method.
上記測定および計算による結果を後記表 2に示す。  Table 2 below shows the results of the above measurements and calculations.
次いで、 上記の活性多環芳香族系炭化水素材料を粉枠し、 この粉末 100重量部 に対し、力一ボンブラック 10重量部と、バインダーとしてのポリテトラフルォロ エチレン樹脂粉末 8重量部を混合した後、プレス成形することにより、厚さ 0. 51M の電極を得た。  Then, the above active polycyclic aromatic hydrocarbon material is powder-framed, and 10 parts by weight of carbon black and 8 parts by weight of polytetrafluoroethylene resin powder as a binder are added to 100 parts by weight of the powder. After mixing, an electrode having a thickness of 0.51M was obtained by press molding.
上記で得られたシート状電極を 1. 5cmX 1. 5cmにカツトし、 150°Cで 2時間乾燥 した。 得られた電極を正極および負極とし、 集電体として厚さ 0. 2mmのステンレ スメッシュを用い、セパレー夕として充分に乾燥した電解コンデンサ一紙を用い、 電解液として、濃度 1. 5mo 1/1のトリェチルメチルアンモニゥム*テトラフルォロ ポレート (Et 3MeNBF4) /プロピレン力一ポネート (PC) 溶液を用いて、 ドライポ ックス中でキャパシ夕を組み立てた。 The sheet electrode obtained above was cut into 1.5 cm × 1.5 cm, and dried at 150 ° C. for 2 hours. The obtained electrodes were used as a positive electrode and a negative electrode, a 0.2 mm thick stainless steel mesh was used as a current collector, a well-dried electrolytic capacitor paper was used as a separator, and the concentration of the electrolyte was 1.5 mol / l. The capillaries were assembled in a dry pox using a solution of 1 triethylmethylammonium * tetrafluoroporate (Et 3 MeNBF 4 ) / propylene monoponate (PC).
次いで、得られたキャパシタを用いて単位体積当たりのイオン吸着量(比容量) を求めた。 比容量は、 キャパシ夕の単位体積当りの電気容量 (F/cc)として測定し た。 すなわち、 キャパシ夕の最大充電電流を 50mAに規制し、 2. 5Vで 1時間充電 した後、 1mAの定電流にてキャパシタ電圧が 0Vになるまで放電した。放電曲線の 傾きから電気容量 (F)を求め、 正極/負極の全体積と電気容量とから、 電極の体積 当たりの比容量 (F/cc) を求めた。 結果を表 2に併せて示す。 実施例 5  Next, the amount of ion adsorption per unit volume (specific capacity) was determined using the obtained capacitor. The specific capacity was measured as the electric capacity per unit volume of capacity (F / cc). In other words, the maximum charging current of the capacitor was regulated to 50 mA, the battery was charged at 2.5 V for 1 hour, and then discharged at a constant current of 1 mA until the capacitor voltage reached 0 V. The electric capacity (F) was obtained from the slope of the discharge curve, and the specific capacity per electrode volume (F / cc) was obtained from the total volume of the positive electrode / negative electrode and the electric capacity. The results are shown in Table 2. Example 5
実施例 4と同様に、 褐炭の酸素架橋処理を行った。 処理条件は、 褐炭粉末を室 温から 280°Cまで 2時間かけて昇温し、 同温度に 5時間保持した後、 室温まで冷 却し、 円筒炉から取り出した。 得られた酸素架橋処理した褐炭の元素分析を行な レ、 酸素濃度を求めた。 酸素濃度は、 34. 4 %であった。 In the same manner as in Example 4, the lignite was subjected to oxygen crosslinking treatment. Processing conditions are brown coal powder The temperature was raised from the temperature to 280 ° C over 2 hours, maintained at the same temperature for 5 hours, cooled to room temperature, and taken out of the cylindrical furnace. Elemental analysis of the obtained oxygen-crosslinked lignite was performed to determine the oxygen concentration. The oxygen concentration was 34.4%.
酸素架橋処理した褐炭に熱反応助剤を加え、混合比率を褐炭 100重量部に対し、 塩化亜鉛 150重量部とした以外は、 実施例 4と同様にして、 本発明の活性多環芳 香族系炭化水素材料を得た。  The activated polycyclic aromatic aromatic compound of the present invention was prepared in the same manner as in Example 4 except that a thermal reaction auxiliary was added to the oxygen-crosslinked lignite, and the mixing ratio was changed to 150 parts by weight of zinc chloride with respect to 100 parts by weight of the lignite. A series hydrocarbon material was obtained.
得られた活性多環芳香族系炭ィ匕水素材料を用いて、 実施例 4と同様の手法によ り、 電極を作成し、 キャパシ夕を組み立て、 充放電を行なった。 得られた結果を 活性多環芳香族系炭化水素材料の諸物性と併せて表 2に示す。 比較例 4  Using the obtained active polycyclic aromatic hydrocarbon-based hydrogen material, an electrode was formed, a capacitor was assembled, and charging and discharging were performed in the same manner as in Example 4. The results obtained are shown in Table 2 together with various physical properties of the active polycyclic aromatic hydrocarbon material. Comparative Example 4
実施例 4と同様に、褐炭の酸素架橋処理を行った。処理条件は、室温から 250で まで 2時間かけて昇温し、 同温度に 7時間保持した後、 室温まで冷却し、 円筒炉 から取り出した。 酸素濃度は、 34. 6 %であった。  As in Example 4, the lignite was subjected to oxygen crosslinking treatment. The processing conditions were as follows: the temperature was raised from room temperature to 250 over 2 hours, maintained at the same temperature for 7 hours, cooled to room temperature, and taken out of the cylindrical furnace. The oxygen concentration was 34.6%.
次いで、 酸素架橋処理した褐炭に熱反応助剤を加え、 混合比率をピッチ 100重 量部に対し、 塩化亜鉛 230重量部とした以外は、'実施例 4と同様にして、 活性多 環芳香族系炭化水素材料を得た。  Next, an active polycyclic aromatic compound was prepared in the same manner as in Example 4 except that a thermal reaction aid was added to the oxygen-crosslinked lignite, and the mixing ratio was changed to 230 parts by weight of zinc chloride with respect to 100 parts by weight of pitch. A series hydrocarbon material was obtained.
得られた活性多環芳香族系炭化水素材料を用いて、 実施例 4と同様の手法によ り、 電極を作成し、 キャパシ夕を組み立て、 充放電を行なった。 得られた結果を 活性多環芳香族系炭化水素材料の諸物性と併せて表 2に示す。 比較例 5  Using the obtained active polycyclic aromatic hydrocarbon material, an electrode was prepared, a capacitor was assembled, and charge and discharge were performed in the same manner as in Example 4. The results obtained are shown in Table 2 together with various physical properties of the active polycyclic aromatic hydrocarbon material. Comparative Example 5
酸素架橋処理を行わず褐炭をそのまま使用した。酸素濃度は、 20. 1 %であった。 褐炭に熱反応助剤を加え、 混合比率をピッチ 100重量部に対し、 塩化亜鉛 100重 量部とした以外は、 実施例4と同様にして、 活性多環芳香族系炭ィ匕水素材料を得 た。 Lignite was used as it was without oxygen crosslinking treatment. The oxygen concentration was 20.1%. An activated polycyclic aromatic carbon-based hydrogenated material was prepared in the same manner as in Example 4 , except that a thermal reaction auxiliary was added to the brown coal and the mixing ratio was changed to 100 parts by weight of zinc chloride with respect to 100 parts by weight of pitch. Obtained.
得られた活性多環芳香族系炭化水素材料を用いて、 実施例 4と同様の手法によ り、 電極を作成し、 キャパシ夕を組み立て、 充放電を行なった。 得られた結果を 活性多環芳香族系炭化水素材料の諸物性と併せて表 2に示す。 比較例 6 Using the obtained active polycyclic aromatic hydrocarbon material, an electrode was prepared, a capacitor was assembled, and charge and discharge were performed in the same manner as in Example 4. The results obtained are shown in Table 2 together with various physical properties of the active polycyclic aromatic hydrocarbon material. Comparative Example 6
石炭(褐炭) を使用することなく、 7K溶性フエノール樹脂 100重量部(固形分) に対し、 塩化亜鉛 230重量部を混合する以外は実施例 4と同様にして熱処理を行 なって、 活性多環芳香族系炭化水素を得た。 その BET法による比表面積値は、 1890m2/gであった。 Heat-treated in the same manner as in Example 4 except that 100 parts by weight (solid content) of 7K-soluble phenol resin was mixed without using coal (brown coal) and 230 parts by weight of zinc chloride. An aromatic hydrocarbon was obtained. The specific surface area value by the BET method was 1890 m 2 / g.
得られた活性多環芳香族系炭化水素を用いて、 実施例 4と同様の手法により、 電極を作成し、 キャパシ夕を組み立て、 充放電を行なった。 得られた結果を活性 多環芳香族系炭ィ匕水素材料の諸物性と併せて表 2に示す。  Using the obtained active polycyclic aromatic hydrocarbon, an electrode was formed in the same manner as in Example 4, a capacitor was assembled, and charge and discharge were performed. Table 2 shows the obtained results together with various physical properties of the active polycyclic aromatic hydrocarbon.
表 2  Table 2
Figure imgf000019_0001
表 2から、 本発明の活性多環芳香族系炭化水素材料は、 比容量及び単位重量当 たりのイオン吸着量がともに大きく、 これをキャパシ夕電極として用いた場合、 高容量化、 低コスト化を図ることができる。 本発明の活性多環芳香族系炭化水素材料は、 安価な石炭を原料に用いて、 比較 的低い温度での熱処理によって製造することができるため、 その製造にあたり原 料コスト、 ランニングコストなどを低減することができる。 そのため、 本発明の 活性多環芳香族系炭ィ匕水素材料の工業的価値は非常に大きい。
Figure imgf000019_0001
As can be seen from Table 2, the active polycyclic aromatic hydrocarbon material of the present invention has a large specific capacity and a large amount of ion adsorption per unit weight, and when this is used as a capacity electrode, higher capacity and lower cost can be achieved. Can be achieved. The active polycyclic aromatic hydrocarbon material of the present invention can be produced by heat treatment at a relatively low temperature using inexpensive coal as a raw material, thereby reducing raw material costs, running costs, etc. in the production. can do. For this reason, the industrial value of the activated polycyclic aromatic hydrocarbon material of the present invention is very large.
また、 本発明の活性多環芳香族系炭化水素材料は、 高い単位重量当たりのィォ ン吸着能及び Z又は高い単位体積当たりのイオン吸着能を有しているため、 キヤ パシタ等の電極用材料として好適に用いることができ、 また、 キャパシ夕の高容 量化、 製造コストの低減化を図ることができる。 In addition, the active polycyclic aromatic hydrocarbon material of the present invention has a high ion adsorption capacity per unit weight and a high Z or ion adsorption capacity per unit volume. It can be suitably used as an electrode material such as a paster, and can increase the capacity of the capacitor and reduce the manufacturing cost.

Claims

請求の範囲 The scope of the claims
1 . 酸素濃度が 25〜50%の石炭系原料を不活性ガス雰囲気下で熱処理すること により得られる、 下記の特性を有する活性多環芳香族系炭化水素材料: 1. An activated polycyclic aromatic hydrocarbon material having the following properties, obtained by heat-treating a coal-based raw material having an oxygen concentration of 25 to 50% in an inert gas atmosphere:
(a) H/C比 冰素原子と炭素原子の含有比) が 0. 05〜0. 5、 (a) H / C ratio (content ratio of chromium atoms to carbon atoms) is 0.05 to 0.5,
(b) BET法による比表面積値が 1000〜3000mVg。 (b) The specific surface area by the BET method is 1000 to 3000 mVg.
2 . 前記 (b) BET法による比表面積値が 1500〜3000m2/gである請求の範囲第 1 に記載の活性多環芳香族系炭化水素材料。 2. The active polycyclic aromatic hydrocarbon material according to claim 1, wherein (b) the specific surface area determined by the BET method is from 1500 to 3000 m 2 / g.
3 . 酸素濃度が 25〜50%の石炭系原料が、石炭の酸素架橋反応により得られる 石炭系原料である請求の範囲第 1又は 2に記載の活性多環芳香族系炭化水素材料。  3. The activated polycyclic aromatic hydrocarbon material according to claim 1 or 2, wherein the coal-based raw material having an oxygen concentration of 25 to 50% is a coal-based raw material obtained by an oxygen crosslinking reaction of coal.
4. 石炭が、 褐炭又は亜炭である請求の範囲第 3に記載の活性多環芳香族系炭 化水素材料。 4. The activated polycyclic aromatic hydrocarbon material according to claim 3, wherein the coal is lignite or lignite.
5 . 前記石炭系原料を熱反応助剤と共に熱処理することを特徴とする請求の範 囲第 1〜4のいずれかに記載の活性多環芳香族系炭化水素材料。  5. The active polycyclic aromatic hydrocarbon material according to any one of claims 1 to 4, wherein the coal-based raw material is heat-treated together with a thermal reaction aid.
6 . 熱反応助剤が、 塩化亜鉛、 燐酸、 塩化カルシウム、 水酸化ナトリウム及び 水酸ィ匕カリウムからなる群から選ばれる少なくとも 1つである請求の範囲第 5に 記載の活性多環芳香族系炭化水素材料。 6. The active polycyclic aromatic system according to claim 5, wherein the thermal reaction auxiliary is at least one selected from the group consisting of zinc chloride, phosphoric acid, calcium chloride, sodium hydroxide and potassium hydroxide. Hydrocarbon materials.
7 . 熱反応助剤の配合量が、 石炭系原料の 100重量部に対して 30〜800重量部 である請求の範囲第 5に記載の活性多環芳香族系炭化水素材料。  7. The active polycyclic aromatic hydrocarbon material according to claim 5, wherein the amount of the thermal reaction aid is 30 to 800 parts by weight based on 100 parts by weight of the coal-based raw material.
8 . 酸素濃度が 25〜50%の石炭系原料を不活性ガス雰囲気下で熱処理すること により得られる、 下記の特性を有する請求の範囲第 1に記載の活性多環芳香族系 炭化水素材料: 8. The active polycyclic aromatic hydrocarbon material according to claim 1, which is obtained by heat-treating a coal-based raw material having an oxygen concentration of 25 to 50% in an inert gas atmosphere, having the following characteristics:
(a) H/C比 (水素原子と炭素原子の含有比) が 0. 05〜0. 5、  (a) The H / C ratio (content ratio of hydrogen atoms to carbon atoms) is 0.05 to 0.5,
(b) BET法による比表面積値が 1000〜2000m2/g、 (b) The specific surface area value by the BET method is 1000 to 2000 m 2 / g,
(c) BJH法によるメソ孔容積が 0. 02〜0. 2ml/g、 (c) Mesopore volume by the BJH method is 0.02 to 0.2 ml / g,
(d) MP法による全細孔容積が 0. 3〜1 · Oml/g。  (d) The total pore volume by the MP method is 0.3 to 1 · Oml / g.
9 . 酸素濃度が 25〜50%の石炭系原料が、石炭の酸素架橋反応により得られる 石炭系原料である請求の範囲第 8に記載の活性多環芳香族系炭化水素材料。  9. The active polycyclic aromatic hydrocarbon material according to claim 8, wherein the coal-based raw material having an oxygen concentration of 25 to 50% is a coal-based raw material obtained by an oxygen crosslinking reaction of coal.
1 0. 石炭が褐炭又は亜炭である請求の範囲第 8又は 9に記載の活性多環芳香 族系炭化水素材料。 10. The activated polycyclic aromatic substance according to claim 8 or 9, wherein the coal is lignite or lignite. Group hydrocarbon materials.
1 1 . 前記石炭系原料を熱反応助剤と共に熱処理することを特徴とする請求の 範囲第 8〜: L 0のいずれかに記載の活性多環芳香族系炭化水素材料  11. The active polycyclic aromatic hydrocarbon material according to any one of claims 8 to L0, wherein the coal-based raw material is heat-treated together with a thermal reaction aid.
1 2 . 熱反応助剤が、 塩化亜鉛、 燐酸、 塩化カルシウム、 水酸ィ匕ナトリウム及 び水酸化力リゥムからなる群から選ばれる少なくとも 1つである請求の範囲第 1 12. The method according to claim 1, wherein the thermal reaction aid is at least one selected from the group consisting of zinc chloride, phosphoric acid, calcium chloride, sodium hydroxide, and water-soluble lime.
1に記載の活性多環芳香族系炭化水素材料。 2. The active polycyclic aromatic hydrocarbon material according to 1.
1 3. 熱反応助剤の配合量が、 石炭系原料の 100重量部に対して 50〜200重量 部である請求の範囲第 1 1に記載の活性多環芳香族系炭化水素材料。  13. The active polycyclic aromatic hydrocarbon material according to claim 11, wherein the amount of the thermal reaction aid is 50 to 200 parts by weight based on 100 parts by weight of the coal-based raw material.
1 4. 下記の工程からなる活性多環芳香族系炭化水素材料の製造方法: ' (i) 石炭を酸素架橋反応に付して酸素濃度が 25〜50%の石炭系原料を得る工程、 及び  1 4. A method for producing an active polycyclic aromatic hydrocarbon material comprising the following steps: '(i) subjecting coal to an oxygen crosslinking reaction to obtain a coal-based raw material having an oxygen concentration of 25 to 50%, and
(i i) 酸素濃度が 25〜50%の石炭系原料を、 熱反応助剤と共に不活性ガス雰囲気 下で熱処理する工程。  (ii) a step of heat-treating a coal-based raw material having an oxygen concentration of 25 to 50% together with a thermal reaction aid in an inert gas atmosphere.
1 5 . 請求の範囲第 1〜: L 3のいずれかに記載の活性多環芳香族系炭化水素材 料を含有する電極。  15. An electrode containing the active polycyclic aromatic hydrocarbon material according to any one of claims 1 to L3.
1 6 . 請求の範囲第 1〜 1 3のいずれかに記載の活性多環芳香族系炭化水素材 料、 カーボンブラック、 及びバインダーを含有する電極。  16. An electrode comprising the active polycyclic aromatic hydrocarbon material according to any one of claims 1 to 13, carbon black, and a binder.
1 7. 請求の範囲第 1〜 1 3のいずれかに記載の活性多環芳香族系炭化水素材 料、 カーボンブラック、 及びバインダーを混合した後、 その混合物を成形するこ とを特徴とする電極の製法。  1 7. An electrode characterized in that after mixing the active polycyclic aromatic hydrocarbon material according to any one of claims 1 to 13, carbon black, and a binder, the mixture is molded. Recipe.
1 8 . 請求の範囲第 1 7に記載の製法により得られる電極。  18. An electrode obtained by the production method according to claim 17.
1 9 . 請求の範囲第 1 5又は 1 6に記載の電極を含有するキャパシ夕。  19. A capacity containing the electrode according to claim 15 or 16.
2 0. 請求の範囲第 1 5又は 1 6に記載の電極、 集電体、 セパレ一夕、 及び電 解液を含有するキャパシ夕。  20. A capacitor containing the electrode, the current collector, the separator, and the electrolytic solution according to claim 15 or 16.
PCT/JP2003/003294 2002-04-17 2003-03-19 Active polycyclic aromatic hydrocarbon material and method for production thereof WO2003087262A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003584206A JPWO2003087262A1 (en) 2002-04-17 2003-03-19 Active polycyclic aromatic hydrocarbon material and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002114228 2002-04-17
JP2002-114228 2002-04-17
JP2002-114232 2002-04-17
JP2002114232 2002-04-17

Publications (1)

Publication Number Publication Date
WO2003087262A1 true WO2003087262A1 (en) 2003-10-23

Family

ID=29253568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003294 WO2003087262A1 (en) 2002-04-17 2003-03-19 Active polycyclic aromatic hydrocarbon material and method for production thereof

Country Status (2)

Country Link
JP (1) JPWO2003087262A1 (en)
WO (1) WO2003087262A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019105A1 (en) * 2003-08-26 2005-03-03 Osaka Gas Co., Ltd. Hydrocarbon material and method for preparation thereof
CN101250419B (en) * 2008-03-21 2011-05-25 西安建筑科技大学 Low-temperature dry distillation process with coal gas internal heat
JP2012211069A (en) * 2011-02-21 2012-11-01 Nissan Motor Co Ltd Carbon packing in zeolite nanochannel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281066A (en) * 1989-04-22 1990-11-16 Kanebo Ltd Electrically conductive organic polymer-based material
JPH07201359A (en) * 1993-12-28 1995-08-04 Sony Corp Nonaqueous electrolyte secondary battery
US5888673A (en) * 1996-07-09 1999-03-30 Asahi Glass Company Ltd. Organic electrolyte cell
JP2001266640A (en) * 2000-03-23 2001-09-28 Osaka Gas Co Ltd Active polycyclic aromatic hydrocarbon material and method of manufacturing the same
JP2001274044A (en) * 2000-03-23 2001-10-05 Osaka Gas Co Ltd Capacitor using nonaqueous electrolyte
JP2002173689A (en) * 2000-12-06 2002-06-21 Osaka Gas Co Ltd Active polycyclic aromatic hydrocarbon material and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02281066A (en) * 1989-04-22 1990-11-16 Kanebo Ltd Electrically conductive organic polymer-based material
JPH07201359A (en) * 1993-12-28 1995-08-04 Sony Corp Nonaqueous electrolyte secondary battery
US5888673A (en) * 1996-07-09 1999-03-30 Asahi Glass Company Ltd. Organic electrolyte cell
JP2001266640A (en) * 2000-03-23 2001-09-28 Osaka Gas Co Ltd Active polycyclic aromatic hydrocarbon material and method of manufacturing the same
JP2001274044A (en) * 2000-03-23 2001-10-05 Osaka Gas Co Ltd Capacitor using nonaqueous electrolyte
JP2002173689A (en) * 2000-12-06 2002-06-21 Osaka Gas Co Ltd Active polycyclic aromatic hydrocarbon material and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019105A1 (en) * 2003-08-26 2005-03-03 Osaka Gas Co., Ltd. Hydrocarbon material and method for preparation thereof
JPWO2005019105A1 (en) * 2003-08-26 2006-10-19 大阪瓦斯株式会社 Hydrocarbon material and method for producing the same
CN101250419B (en) * 2008-03-21 2011-05-25 西安建筑科技大学 Low-temperature dry distillation process with coal gas internal heat
JP2012211069A (en) * 2011-02-21 2012-11-01 Nissan Motor Co Ltd Carbon packing in zeolite nanochannel

Also Published As

Publication number Publication date
JPWO2003087262A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
Taberna et al. Activated carbon–carbon nanotube composite porous film for supercapacitor applications
JP4618929B2 (en) Activated carbon for electric double layer capacitors
KR100785158B1 (en) Method for Preparing Porous Carbon Material, Porous Carbon Material and Electrical Double Layer Capacitor Using the Same
JP5015146B2 (en) ELECTRODE FOR ENERGY STORAGE SYSTEM, MANUFACTURING METHOD THEREOF, AND ENERGY STORAGE SYSTEM INCLUDING THE ELECTRODE
JP2004514637A (en) Energy storage cell with high energy density and high power density electrochemical double layer
KR20200067149A (en) Hydrated carbon material powder and its use for the production of electrodes for electrical storage devices
KR101811970B1 (en) Lithium ion capacitor
WO2005019105A1 (en) Hydrocarbon material and method for preparation thereof
JP2001274044A (en) Capacitor using nonaqueous electrolyte
KR100434827B1 (en) Composite Electrode for Supercapacitor with Polypyrrole and Method of Fabrication the Same
KR100911891B1 (en) Manufacturing method of activated carbon for electric double layer capacitor and the electric double layer capacitor electrode and the capacitor
KR20140044965A (en) Carbon nanoplates using silk proteins and the manufacturing method
WO2003087262A1 (en) Active polycyclic aromatic hydrocarbon material and method for production thereof
JP2001266640A (en) Active polycyclic aromatic hydrocarbon material and method of manufacturing the same
JP4503134B2 (en) Activated carbon for electric double layer capacitors
JP2003183014A (en) Porous carbon material, its producing method and electric double layer capacitor
JP2007269518A (en) Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor
KR101660313B1 (en) Method of preparing activated carbon
JP4743952B2 (en) Active polycyclic aromatic hydrocarbon material and method for producing the same
JP5110147B2 (en) Conductive polymer / porous carbon material composite
JPH11121285A (en) Electric double-layer capacitor
KR100342069B1 (en) Preparing method of electrode made by Rice Hull Activated Carbon and Application for Electric Double Layer Capacitor
JP2005243933A (en) Electric double-layer capacitor
KR100451133B1 (en) Supercapacitor with Composite Electrode Comprising Polypyrrole
Gao et al. Rational synthesis of graphitic porous carbon with high content nitrogen doping via ultra-fast pyrolysis of ZIF-8 for electrochemical capacitor with enhanced performance

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003584206

Country of ref document: JP

122 Ep: pct application non-entry in european phase