WO2003068184A1 - Verwendung von niedermolekularen proteinhydrolysaten als anti-entzundliche wirkstoffe - Google Patents

Verwendung von niedermolekularen proteinhydrolysaten als anti-entzundliche wirkstoffe Download PDF

Info

Publication number
WO2003068184A1
WO2003068184A1 PCT/EP2003/001097 EP0301097W WO03068184A1 WO 2003068184 A1 WO2003068184 A1 WO 2003068184A1 EP 0301097 W EP0301097 W EP 0301097W WO 03068184 A1 WO03068184 A1 WO 03068184A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
molecular weight
low molecular
oil
fatty
Prior art date
Application number
PCT/EP2003/001097
Other languages
English (en)
French (fr)
Inventor
Iris HÜTTER
Gisbert SCHÄFER
Rolf Wachter
Louis Danoux
Original Assignee
Cognis Deutschland Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh & Co. Kg filed Critical Cognis Deutschland Gmbh & Co. Kg
Publication of WO2003068184A1 publication Critical patent/WO2003068184A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/004Aftersun preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/01Hydrolysed proteins; Derivatives thereof
    • A61K38/011Hydrolysed proteins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • A61K8/645Proteins of vegetable origin; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/74Biological properties of particular ingredients
    • A61K2800/75Anti-irritant

Definitions

  • the invention is in the field of cosmetic and pharmaceutical preparations and relates to the use of low molecular weight protein hydrolyzates as anti-inflammatory agents.
  • Proteins and their derivatives have been used successfully for more than 50 years as care components in cosmetic products, made from a variety of natural sources of animal or vegetable origin. However, they can not only be differentiated according to origin, amino acid composition or derivatization, but in particular the molecular weight plays a decisive role in the cosmetic properties of the protein products.
  • the object of the present patent application was to find new effects of already known active substances and to enable their use in cosmetic and / or dermopharmaceutical agents which are also well tolerated by sensitive skin and which also have good physico-chemical stability ,
  • the present invention relates to the use of low molecular weight protein hydrolyzates as anti-inflammatory active substances, in particular for the inhibition of inflammatory processes induced by UV radiation. This also results in the use of low molecular weight protein hydrolyzates for the manufacture of sunscreens and / or after-sun preparations and for the manufacture of scalp soothing agents. It has surprisingly been found that low molecular weight protein hydrolyzates, in particular of vegetable origin and especially low molecular weight wheat protein hydrolyzates, have a pronounced anti-inflammatory effect.
  • the protein hydrolyzates When used in hair care products, the protein hydrolyzates could e.g. contribute to the stabilization and relaxation of sensitive scalp. A positive influence on the usual symptoms of tense scalp can also be expected, e.g. the widespread itching, so that it has a calming effect on (scalp) skin and hair.
  • Low molecular weight protein active ingredients in the sense of the present invention essentially consist of oligopeptides which are formed from up to 10 amino acids, predominantly up to 6 and preferably predominantly 2 to 4 amino acids. They have an average molecular weight of 50 to 3,000 daltons, preferably 100 to 1,000 daltons and particularly preferably 200 to 600 daltons.
  • the high content of glutamic acid and proline is particularly noteworthy.
  • Glutamic acid is generally widespread in nature and therefore in almost all To find proteins.
  • Wheat protein however, has the highest content, usually with more than 30% glutamic acid.
  • the name of this protein component is therefore derived from gluten, the protein of wheat gluten from which glutamic acid was first obtained. Although this is not an essential amino acid, glutamic acid plays an important role in various metabolic processes. It also forms the preliminary stage for proline.
  • the second dominant amino acid proline is also referred to as a "helix breaker" due to its extensive structure (with pyrrole ring), since its frequent occurrence prevents the formation of a superordinate secondary structure, eg ⁇ -helix or ⁇ -sheet structures.
  • This proline position also acts like a swivel around which the rest of the protein chain can move almost freely. This gives the wheat protein molecule an extremely flexible structure and is able to intercept kinetic energy, for example in the form of heat, very effectively. In this way, denaturation of the wheat protein can be counteracted for a long time.
  • the amount of the low molecular weight protein hydrolyzates can be 0.1 to 10, preferably 0.2 to 5 and in particular 0.5 to 2% by weight of active substance, based on the final formulation.
  • the protein hydrolyzates according to the invention can be used to produce cosmetic and / or pharmaceutical preparations, such as, for example, hair shampoos, hair lotions, hair balms, hair rinses, sunscreen and after-sun creams, gels, lotions or emulsions.
  • agents can also be used as further auxiliaries and additives, mild surfactants, oil bodies, emulsifiers, pearlescent waxes, consistency agents, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic active ingredients, UV light protection factors, antioxidants Contain dantien, anti-dandruff agents, film formers, swelling agents, insect repellents, hydrotropes, solubilizers, preservatives, perfume oils, dyes and the like.
  • surfactants mild surfactants, oil bodies, emulsifiers, pearlescent waxes, consistency agents, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic active ingredients, UV light protection factors, antioxidants Contain dantien, anti-dandruff agents, film formers, swelling agents, insect repellents, hydrotropes, solubil
  • Anionic, nonionic, cationic and / or amphoteric or amphoteric surfactants may be present as surface-active substances, the proportion of which in the compositions is usually about 1 to 70, preferably 5 to 50 and in particular 10 to 30% by weight.
  • anionic surfactants are soaps, alkylbenzenesulfonates, alkanesulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerin ether sulfates, fatty acid ether sulfates, hydroxymate ether ether sulfates, sulfymate ether sulfates, hydroxymate ether ether sulfates, monomers , Mono- and dialkylsulfosuccinates, mono- and dialkylsulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and their salts, fatty acid isethionates, fatty acid s
  • anionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosides or especially glucoronic acid protein derivatives, and glucoronic acid protein derivatives Wheat base), polyol fatty acid esters, sugar esters, sorbitan esters, polysorbates and amine oxides.
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • cationic surfactants are quaternary ammonium compounds, such as, for example, dimethyldistearylammonium chloride, and esterquats, in particular quaternized fatty acid trialkanolamine ester salts.
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amidobetaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. The surfactants mentioned are exclusively known compounds.
  • Typical examples of particularly suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid dew ride, fatty acid glutamates, ⁇ -olefin sulfonates, ether carboxylic acids, alkyl oligoglucosides, fatty acid glucamides, alkyl amido betaines, amphoacetals and / or protein fatty acid condensates, the latter preferably based on wheat proteins.
  • Suitable oil bodies are, for example, Guerbet alcohols preferably containing 8 to 10 carbon atoms, esters of linear C 6 -C come based on fatty alcohols having 6 to 18, 22 fatty acids with linear or branched C 6 -C 22 -fatty alcohols or esters of branched Cs-C ⁇ 3 - Carboxylic acids with linear or branched Cs-C 22 fatty alcohols, such as myristyl myristate, myristyl palmitate, myristyl stearate, myristyl isostearate, myristyl oleate, myristyl behenate, myristyl erucate, cetyl myristate, cetyl palmitate, cetyl stearate, cetyl stearate, cetyl stearate, cetyl stearate, cetyl stearate, Stearyli- sostearat, stearyl oleate, stearyl behenate
  • esters of linear C ⁇ -C ⁇ ⁇ fatty acids with branched alcohols in particular 2-ethylhexanol
  • esters of Ci 8 -C 38 alkylhydroxycarboxylic acids with linear or branched C ⁇ -C 22 fatty alcohols cf.
  • dioctyl malates esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimer diol or trimer triol) and / or Guerbet alcohols, triglycerides based on Ce-Cio fatty acids, liquid mono- / di- / triglyceride mixtures
  • polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
  • Guerbet alcohols triglycerides based on Ce-Cio fatty acids, liquid mono- / di- / triglyceride mixtures
  • Base of Ce-Cis fatty acids, esters of and / or Guerbet alcohols with aromatic carboxylic acids in particular benzoic acid, esters of C 2 -C 2 -dicarboxylic acids with linear or branched alcohols with 1 to 22 carbon atoms or polyols with 2 to 10 carbon atoms and 2 to 6 hydroxyl groups
  • Suitable emulsifiers are nonionic surfactants from at least one of the following groups:
  • Polymer emulsifiers e.g. Pemulen types (TR-1, TR-2) from Goodrich;
  • the adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols or with castor oil are known, commercially available products. These are mixtures of homologs whose average degree of alkoxylation is the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate, with which the addition reaction is carried out.
  • C ⁇ 2 / i 8 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE 2024051 PS as refatting agents for cosmetic preparations.
  • Alkyl and / or alkenyl oligoglycosides their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • the glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
  • Suitable partial glycerides are cicrediglycerid Hydroxystearin Textremonogly- cerid, hydroxystearic acid diglyceride, isostearic acid, Isostearinklare- diglyceride, oleic acid monoglyceride, oleic acid diglyceride, Ricinolklaremoglycerid, ricinoleic, Linolklaremonoglycerid, Linolklarediglycerid, LinolenTalkremonogly- cerid, inolenLiterediglycerid, Erucaklaremonoglycerid, Erucaklarediglycerid, tartaric Acid monoglyceride, tartaric acid diglyceride, citric acid monoglyceride, citric diglyceride, malic acid monoglyceride, malic acid diglyceride and their technical mixtures, which may still contain small amounts of triglyceride from the manufacturing process. Addition products of 1 to 30, preferably 5
  • sorbitan sorbitan As sorbitan sorbitan, sorbitan sesquiisostearate, sorbitan diisostearate, sorbitan triisostearate, sorbitan monooleate, sorbitan dioleate, trioleate, Sorbitanmonoerucat, Sorbitansesquierucat, sorbitan come dierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, sorbitan tandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, sorbitan - sesquihydroxystearate, sorbitan dihydroxystearate, sorbitan trihydroxystearate, sorbitan monotartrate, sorbitan sesqui-tartrate, sorbitan ditartrate, sorbitan tritanartrate, sorbitan monocitrate, sorbitan squit
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearate (Dehymuls® PGPH), polyglycerol-3-diisostearate (Lameform® TGI), polyglycerol-4 isostearate (Isolan® GI 34), polyglyceryl-3 oleate, diisostearoyl po- lyglyceryl-3 diisostearate (Isolan® PDI), polyglyceryl-3 methylglucose distearate (Tego Care® 450), polyglyceryl-3 beeswax (Cera Bellina®), polyglyceryl-4 caprate (polyglycerol caprate T2010 / 90), polyglyceryl-3 cetyl ether ( Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) and Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimer
  • polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol which are optionally reacted with 1 to 30 mol of ethylene oxide with lauric acid, coconut fatty acid, tallow fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like.
  • Anionic emulsifiers are the mono-, di- and triesters of trimethylolpropane or pentaerythritol which are optionally reacted with 1 to 30 mol of ethylene oxide with lauric acid, coconut fatty acid, tallow fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like.
  • Typical anionic emulsifiers are aliphatic fatty acids with 12 to 22 carbon atoms, such as, for example, palmitic acid, stearic acid or behenic acid, and dicarboxylic acids with 12 to 22 carbon atoms, such as, for example, azelaic acid or sebacic acid.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example coconutacylaminopropyldimethylammoniumglycinate, and 2 -Alkyl-3-carboxylmethyl-3-hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for
  • fatty acid amide derivative known under the CTFA name Cocamidopropyl Betaine is particularly preferred.
  • Suitable emulsifiers are ampholytic surfactants.
  • Under ämpholytician Tensiden- such surface active compounds aside to a C8 / ⁇ 8 alkyl or acyl group, contain at least one free amino group and at least one -COOH or -SO3H group and are capable of forming inner salts are.
  • ampholytic surfactants are N-alkylglycine, N-alkylpropionic acid, N-alkylaminobutyric acid, N- alkyliminodipropionic acid, N-hydroxyethyl-N-alkylamidopropylglycine, N-
  • Alkyl taurines N-alkyl sarcosines, 2-alkyl aminopropionic acids and alkyl amino acetic acids, each with about 8 to 18 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are the N-coconut alkyl aminopropionate, the coconut acylaminoethyl aminopropionate and the C 2 2 acyl sarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the esterquat type, preferably methylquaternized difatty acid triethanolamine ester salts, being particularly preferred. Fats and waxes
  • Typical examples of fats are glycerides, i.e. Solid or liquid vegetable or animal products, which consist essentially of mixed glycerol esters of higher fatty acids, come as waxes, among others.
  • natural waxes e.g. Candelilla wax, Carnauba wax, Japanese wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walnut, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum, paraffin wax microcrystalline waxes; chemically modified waxes (hard waxes), e.g.
  • Montanester waxes Montanester waxes, Sasol waxes, hydrogenated jojoba waxes and synthetic waxes, such as Polyalkylene waxes and polyethylene glycol waxes in question.
  • fat-like substances such as lecithins and phospholipids can also be used as additives.
  • lecithins to mean those glycerophospholipids which are formed from fatty acids, glycerol, phosphoric acid and choline by esterification. Lecithins are therefore often used in the professional world as phosphatidylcholines (PC).
  • Examples of natural lecithins are the cephalins, which are also referred to as phosphatidic acids and are derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats.
  • glycerol phosphates glycerol phosphates
  • sphingosines or sphingolipids are also suitable.
  • Pearlescent waxes that can be used are, for example: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15
  • Suitable consistency agents are primarily fatty alcohols or hydroxy fatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and, in addition, partial glycerides, fatty acids or hydroxy fatty acids.
  • a combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl and hydroxypropyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, Polyacrylates, (eg Carbopole® and Pemulen types from Goodrich; Synthalene® from Sigma; Keltrol types from Kelco; Sepigel types from Seppic; Salcare types from Allied Colloids), polyacrylamides, polymers, polyvinyl alcohol and polyvinylpyrrolidone. Bentonites, such as e.g.
  • Bentone® Gel VS-5PC (Rheox) has been proven, which is a mixture of cyclopentasiloxane, disteardimonium hectorite and propylene carbonate.
  • Surfactants such as, for example, ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as, for example, pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides and electrolytes such as sodium chloride and ammonium chloride are also suitable.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Metal salts of fatty acids such as magnesium, aluminum and / or zinc stearate or ricinoleate can be used as stabilizers.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, e.g. a quaternized hydroxyethyl cellulose available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers such as e.g.
  • Luviquat® condensation products of polyglycols and amines, quaternized collagen polypeptides, such as, for example, lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, such as e.g. Amodimethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat® 550 / Chemviron), polyamino polyamides, e.g.
  • cationic chitin derivatives such as quaternized chitosan, optionally microcrystalline, condensation products of dihaloalkylene, such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1,3-propane, cationic guar gum, e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanes, quaternized ammonium salt polymers, such as e.g. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 from Mira ⁇ ol.
  • dihaloalkylene such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1,3-propane
  • cationic guar gum e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanes
  • quaternized ammonium salt polymers such as e.g.
  • Suitable anionic, zwitterionic, amphoteric and nonionic polymers are, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and esters thereof, uncrosslinked and polyol-crosslinked polyacrylic acids, acrylamidopropyl / Acrylate copolymers, octylacrylamide / methyl methacrylate / tert.butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers, polyvinyl pyrrolidone, vinyl pyrrolidone / vinyl acetate copolymers, vinyl pyrrolidone / dimethylaminoethyl methacrylate / vinyl caprolactam and also derivatized
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cydic silicones and amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine-, glycoside- and / or alkyl-modified silicone compounds which are used at room temperature can be both liquid and resinous.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • a detailed overview of suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. £ 1.27 (1976).
  • UV light protection factors are understood to mean, for example, organic substances (light protection filters) which are liquid or crystalline at room temperature and which are able to absorb ultraviolet rays and absorb the energy absorbed in the form of longer-wave radiation, e.g. To give off heat again.
  • UVB filters can be oil-soluble or water-soluble. As oil-soluble substances e.g. to call:
  • 3-benzylidene camphor or 3-benzylidene norcampher and its derivatives e.g. 3- (4-methylbenzylidene) camphor as described in EP 0693471 B1;
  • 4-aminobenzoic acid derivatives preferably 2-ethyl-hexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • esters of cinnamic acid preferably 2-ethylhexyl 4-methoxycinnamate, propyl 4-methoxycinnamate, isoamyl 4-methoxycinnamate, 2-ethylhexyl 2-cyano-3,3-phenylcinnamate (octocrylene);
  • esters of salicylic acid preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-iso-propylbenzyl ester, salicylic acid homomethyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4 , methylbenzophenone, 2.2 ⁇ - dihydroxy-4-methoxybenzophenone;
  • esters of benzalmalonic acid preferably 4-methoxybenzmalonic acid di-2-ethylhexyl ester;
  • Triazine derivatives such as 2,4,6-trianilino- (p-carbo-2 , -ethyl-r-hexyloxy) -l, 3,5-triazine and octyl triazone, as described in EP 0818450 AI or dioctyl butamido triazone (Uvasorb® HEB);
  • Propane-1,3-diones such as 1- (4-tert-butylphenyl) -3- (4 , methoxyphenyl) propane-1,3-dione;
  • Typical UV-A filters are, in particular, derivatives of benzoyl methane such as l- (4, -tert.Butylphenyl) -3- (4-methoxyphenyl) propan-l, 3-dione, 4-tert-butyl -4 x -methoxydibenzoylmethan (Parsol® 1789), l-phenyl-3- (4 ⁇ -isopropylphenyl) propane-l, 3-dione and enamine compounds, as described in DE 19712033 AI (BASF).
  • the UV-A and UV-B filters can of course also be used in mixtures.
  • Particularly favorable combinations consist of the derivatives of benzoylmethane, for example 4-tert-butyl-4 , methoxydibenzoylmethane (Parsol® 1789) and 2-cyano-3,3-phenylcinnamic acid 2-ethyl-hexyl ester (octocrylene) in combination with Esters of cinnamic acid, preferably 4-methoxycinnamic acid-2-ethyl! Hexyl ester and / or 4-methoxycinnamic acid propyl ester and / or 4-methoxycinnamic acid isoamyl ester.
  • benzoylmethane for example 4-tert-butyl-4 , methoxydibenzoylmethane (Parsol® 1789) and 2-cyano-3,3-phenylcinnamic acid 2-ethyl-hexyl ester (octocrylene) in combination with Esters of cinna
  • water-soluble filters such as, for example, 2-phenylbenzimidazole-5-sulfonic acid and its alkali metal, alkaline earth metal, ammonium, alkylammonium, alkanolammonium and glucammonium salts.
  • insoluble light protection pigments namely finely dispersed metal oxides or salts
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • Silicates (talc), barium sulfate or zinc stearate can be used as salts.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobicized. Typical examples are coated titanium dioxide, such as titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or simethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used. Other suitable UV light protection filters can be found in the overview by P.Finkel in S ⁇ FW-Journal 122, 543 (1996) and Parf.Kosm. 3, 11 (1999).
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • Typical examples are amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-carnosine, D-carnosine, L-carnosine and their derivatives (e.g. anse- rin), carotenoids, carotenes (e.g.
  • ⁇ -carotene, ß-carotene, lycopene) and their derivatives chlorogenic acid and their derivatives, lipoic acid and their derivatives (e.g. dihydroliponic acid), aurothioglucose, propylthiouracil and other thiols (e.g.
  • thioredoxin glutathione, Cysteine, cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters) and their salts, dilauryl thiodipropio ⁇ at, distearyl thiodipropionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) as well as sulfoximine compounds (eg buthioninsulfoximines, homocysteine sulfoximine, Butioninsulfone, penta-, hexa-, Himinathion in very) compatible doses (e.g.
  • (metal) chelators e.g. ⁇ -hydroxy fatty acids, palmitic acid, phytic acid, lactoferrin), ⁇ -hydroxy acids (e.g. citric acid, lactic acid, malic acid), humic acid, bile acid, bile extracts, bilirubin , Biliverdin, EDTA, EGTA and their derivatives, unsaturated fatty acids and their derivatives (e.g. ⁇ -linolenic acid, linoleic acid, oleic acid), folic acid and their derivatives, ubiquinone and ubiquinol and their derivatives, vitamin C and derivatives (e.g.
  • ZnO, ZnSO 4 selenium and its derivatives (e.g. selenium-methionine), stilbenes and their derivatives (e.g. stilbene oxide, trans-stilbene oxide) and the derivatives suitable according to the invention (salts, esters, ethers, sugars, nucleotides, Nucleosides, peptides and lipids) of these active ingredients.
  • Biogenic agents e.g. selenium-methionine
  • stilbenes and their derivatives e.g. stilbene oxide, trans-stilbene oxide
  • the derivatives suitable according to the invention salts, esters, ethers, sugars, nucleotides, Nucleosides, peptides and lipids
  • biogenic active ingredients include tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, (deoxy) ribonucleic acid and its fragmentation products, ⁇ -glucans, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, essentil oils, pseudoceramides To understand plant extracts and vitamin complexes.
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Piroctone olamine (l-hydroxy-4-methyl-6- (2,4,4-trimythylpentyl) -2- (lH) -pyridinone monoethanolamine salt), Baypival® (Climbazole), Keto-conazol®, (4-AcetyM - ⁇ - 4- [2- (2.4-dichlorophenyl) r-2- (lH-imidazol-l-ylmethyl) -l, 3-dioxylan-c-4-ylmethoxyphenyl ⁇ piperazine, ketoconazole, elubiol, selenium disulfide, sulfur colloidal, Schwefelpolyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwfel tar distillate, salicylic acid (or in combination with hexachlorophene), Undexy- lensäure monoethanolamide sulfosuccinate Na salt, Lamepon® UD (protein unde
  • Montmorillonites, clay minerals, pemulene and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993). hydrotropes
  • Hydrotropes such as, for example, ethanol, isopropyl alcohol or polyols, can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Lower alkyl glucosides especially those with 1 to 8 carbons in the alkyl radical, such as methyl and butyl glucoside;
  • Dialcohol amines such as diethanolamine or 2-amino-l, 3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid, and the silver complexes known under the name Surfacine® and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Ordinance.
  • Perfume oils and flavors are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid, and the silver complexes known under the name Surfacine® and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Ordinance.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allylcyclohexyl benzylatepylpropylate, stylate propionate, stylate propionate.
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the joonons, ⁇ -isomethylionone and methylcedr ⁇ l ketone the alcohols anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol
  • the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, for example sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • Suitable flavors are, for example, peppermint oil, spearmint oil, anise oil, star anise oil, caraway oil, eucalyptus oil, fennel oil, lemon oil, wintergreen oil, clove oil, menthol and the like.
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. Examples are culinary red A (CI 16255), patent blue V (CI42051), indigotine (CI73015), chlorophyllin (CI75810), quinoline yellow (CI47005), titanium dioxide (CI77891), indanthrene blue RS (CI 69800) and madder varnish (CI58000). Luminol may also be present as the luminescent dye. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the test design is based on epidermal inflammation induction using UV-B radiation (280 to 320 nm). This is essentially due to the activation of the enzyme phospholipase A2 or PLA2, which releases arachidonic acid from the cell membrane. Then other specific enzymes, so-called cyclooxygenases, convert the arachidonic acid into prostaglandins (PG), which are excreted by the cell. The attachment of certain prostaglandins such as PGE2 to specific receptors is then associated with reddening and swelling as after sunburn on the skin. In cell cultures, these UV-B effects on the cell membrane are associated with the release of a cytoplasmic enzyme, lactate dehydrogenase (LDH). Ultimately, UV-damaged cells can be eliminated by apoptosis, the biological process by which living organisms get rid of defective cells. In apoptotic cells, cytoplasmic DNA fragments are separated from nuclear DNA by the endonuclease.
  • the enzymes and parameters described above can be determined quantitatively after application of low molecular weight protein hydrolyzates (0.1 and 0.3% original product Gluadin® WLM) to the cell cultures and thus allow conclusions to be drawn about its excellent anti-inflammatory effect in this test system.
  • the keratinocytes were then irradiated with a UVB dose (50 mJ / cm 2 - tubes: DUKE GL40E).
  • LDH and PGE2 content in the supernatant were determined.
  • the content of LDH- (lactate dehydrogenase) was determined by means of an enzyme reaction (kit used to investigate the LDH content from the company Röche).
  • the content of PGE2 was determined using an EUSA test (ELISA kit from the company Röche).
  • bromodeoxyuridine (BrDU) was added to the growth medium. After the trypsin treatment, the cells were centrifuged and counted. The BrdU content in DNA fragments from the cytoplasm was then determined using the ELISA test. The number of adherent keratinocytes is determined (after trypsin treatment) with a particle counter.
  • low-molecular-weight protein hydrolyzates are clearly able to build up effective protection against the consequences of UV-B radiation on keratinocytes in cell cultures.
  • the low-molecular-weight protein hydrolyzates thus showed such a good anti-inflammatory effect that they were even better than acetylsaiicylic acid in these studies.
  • leukocytes are attracted, e.g. PMN (polymorphonuclear neutrophil granulocytes) and stimulated by cytokines and other messenger substances such as leukotrienes, which are released by activated or necrotic epidermal cells.
  • PMN polymorphonuclear neutrophil granulocytes
  • cytokines and other messenger substances such as leukotrienes
  • ROS reactive oxygen species
  • PMN activity during inflammation is known as a "respiratory burst" and can mediate tissue damage through the release of ROS and lysosomal enzymes.

Abstract

Vorgeschlagen wird die Verwendung von niedermolekularen Proteinhydrolysaten als antientzündliche Wirkstoffe zur Herstellung von Sonnenschutzmitteln, After-Sun-Präparaten und/oder Kopfhautberuhigenden Zubereitungen.

Description

VERWENDUNG VON NIEDERMOLEKULAREN PROTEINHYDROLYSATEN ALS ANTI-ENTZÜNDLICHE WIRKSTOFFE
Gebiet der Erfindung
Die Erfindung befindet sich auf dem Gebiet der kosmetischen und pharmazeutischen Zubereitungen und betrifft die Verwendung von niedermolekularen Proteinhydrolysaten als anti-entzündliche Wirkstoffe.
Stand der Technik
Proteine und ihre Derivate werden bereits seit mehr als 50 Jahren erfolgreich als Pflegekomponenten in Kosmetikprodukten eingesetzt, hergestellt aus einer Vielzahl natürlicher Quellen tierischer oder pflanzlicher Herkunft. Sie lassen sich aber nicht nur nach Herkunft, Aminosäurezusammensetzung oder Derivatisierung unterscheiden, sondern insbesondere das Molekulargewicht spielt bei den kosmetischen Eigenschaften der Proteinprodukte eine entscheidende Rolle.
Die Aufgabe der vorliegenden Patentanmeldung hat darin bestanden, neue Wirkungen von bereits bekannten Wirkstoffen zu finden und die Verwendung in kosmetischen und/oder dermopharmazeutischen Mitteln zu ermöglichen, die sich durch eine hohe Verträglichkeit auch für empfindliche Haut auszeichnen und zusätzlich eine gute physiko- chemische Stabilität aufweisen.
Beschreibung der Erfindung
Gegenstand der vorliegenden Erfindung ist die Verwendung von niedermolekularen Proteinhydrolysaten als anti-entzündliche Wirkstoffe, insbesondere zur Hemmung durch UV- Bestrahlung induzierter entzündlicher Prozesse. Daraus ergibt sich ebenfalls die Verwendung von niedermolekularen Proteinhydrolysaten zur Herstellung von Sonnenschutzmitteln und/oder After-Sun-Zubereitungen und zur Herstellung von Kopfhautberuhigenden Mitteln. Überraschenderweise wurde gefunden, dass niedermolekulare Proteinhydrolysate, insbesondere pflanzlicher Herkunft und speziell niedermolekulare Weizenproteinhydrolysate eine ausgeprägte entzündungshemmende Wirkung aufweisen.
Immer mehr Konsumenten klagen über empfindliche, sensible oder sogar gereizte Haut. Für Proteinhydrolysate stellt die entzündungshemmende Wirkung daher eine weitere interessante Eigenschaft dar. Dieser Effekt wirkt sich üblicherweise nicht nur wohltuend und beruhigend auf Haut und Haar aus, sondern ist in der Lage, Reizzustände auf der Haut effektiv zu beheben. Niedermolekulare Weizenproteinhydrolysate zeigen bei in-vitro Tests sogar eine bessere Wirksamkeit als Acetylsaiicylsäure. Auf diese Weise können sie der Haut helfen, wieder in Balance zu kommen. Daher bietet sich der Einsatz der niedermolekularen Weizenpeptide z.B. in Formulierungen für gereizte, strapazierte Haut oder After-Sun-Rezepturen an.
Bei Verwendung in Haarpflegemitteln könnten die Proteinhydrolysate so z.B. zur Stabilisierung und Entspannung sensibler Kopfhaut beitragen. Hierbei ist auch ein positiver Einfluss auf die üblichen Symptome angespannter Kopfhaut zu erwarten, wie z.B. den weit verbreiteten Juckreiz, so dass sie eine Beruhigung für (Kopf-)Haut und Haar bewirken.
Niedermolekulare Proteinhydrolysate
Niedermolekulare Protein-Wirkstoffe im Sinne der vorliegenden Erfindung bestehen im wesentlichen aus Oligopeptiden, die aus bis zu 10 Aminosäuren, vorwiegend bis zu 6 und vorzugsweise überwiegend 2 bis 4 Aminosäuren gebildet werden. Sie weisen ein mittleres Molekulargewicht von 50 bis 3.000 Dalton, vorzugsweise 100 bis 1.000 Dalton und besonders bevorzugt 200 bis 600 Dalton auf.
Zu den handelsüblichen Produkten zählt das Gluadin® WLM (Cognis, Düsseldorf). Damit weisen niedermolekulare Proteinhydrolysate eine solch geringe Molekülgröße auf, dass diese "Microproteinwirkstoffe" sogar in der Lage sind, tief in die Haarfaser einzudringen und sie von innen heraus zu reparieren, stärken und schützen.
In der Aminosäurezusammensetzung der erfindungsgemäßen niedermolekularen Proteinhydrolysate ist insbesondere der hohe Gehalt an Glutaminsäure und Prolin hervorzuheben. Glutaminsäure ist in der Natur allgemein weit verbreitet und daher in fast allen Proteinen zu finden. Den höchsten Gehalt weist allerdings Weizenprotein auf mit in der Regel mehr als 30 % Glutaminsäure. Von Gluten, dem Protein des Weizenklebers, aus dem Glutaminsäure zuerst gewonnen wurde, leitet sich daher auch der Name dieses Proteinbausteins ab. Obwohl es sich hierbei nicht um eine essentielle Aminosäure handelt, spielt Glutaminsäure eine wichtige Rolle in verschiedenen Stoffwechselprozessen. Dabei bildet sie u.a. auch die Vorstufe für Prolin. Die zweite dominierende Aminosäure Prolin wird aufgrund ihrer raumgreifenden Struktur (mit Pyrrolring) auch als "Helixbre- cher" bezeichnet, da ihr häufiges Vorkommen die Ausbildung einer übergeordneten Sekundärstruktur, z.B. α-Helix- oder ß-Faltblattstrukturen, verhindert. Dabei fungiert diese Prolin-Position zudem wie ein Drehgelenk, um das sich die restliche Proteinkette beinahe frei bewegen kann. Dadurch erhält das Weizenproteinmolekül eine äußerst flexible Struktur und ist so in der Lage, kinetische Energie, z.B. in Form von Wärme, sehr effektiv abzufangen. Auf diese Weise kann einer Denaturierung des Weizenproteins für eine lange Zeit entgegengewirkt werden.
Die Einsatzmenge der niedermolekularen Proteinhydrolysate kann bezogen auf die Endformulierung 0,1 bis 10, vorzugsweise 0,2 bis 5 und insbesondere 0,5 bis 2 Gew.-% Aktivsubstanz betragen.
Gewerbliche Anwendbarkeit
Auf Grund der nachgewiesenen Wirkungen bieten sich niedermolekulare für die Haar- und Hautpflege an. - - - -
Die erfindungsgemäßen Proteinhydrolysate können zur Herstellung von kosmetischen und/oder pharmazeutischen Zubereitungen, wie beispielsweise Haarshampoos, Haarlotionen, Haarbalsam, Haarspülungen, Sonnenschutz- und After-Sun-Cremes, Gele, Lotionen oder Emulsionen dienen. Diese Mittel können ferner als weitere Hilfs- und Zusatzstoffe milde Tenside, Ölkörper, Emulgatoren, Perlglanzwachse, Konsistenzgeber, Verdic- kungsmittel, Überfettungsmittel, Stabilisatoren, Polymere, Siliconverbindungen, Fette, Wachse, Lecithine, Phospholipide, biogene Wirkstoffe, UV-Lichtschutzfaktoren, Antioxi- dantien, Antischuppenmittel, Filmbildner, Quellmittel, Insektenrepellentien, Hydrotrope, Solubilisatoren, Konservierungsmittel, Parfümöle, Farbstoffe und dergleichen enthalten. Tenside
Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder amphotere bzw. amphotere Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Al- kansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α- Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glyce- rinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid- (ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Al- kyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglyco- letherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Misch- ether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkyl- amidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetai- ne. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.)/ "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen. Typische Beispiele für besonders geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretau- ride, Fettsäureglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine, Amphoacetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Ölkörper
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten Cs-Cι3- Carbonsäuren mit linearen oder verzweigten Cs-C22-Fettalkoholen, wie z.B. Myristylmy- ristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearγlmyristat, Stearylpalmitat, Stearylstearat, Stearyli- sostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpal- mitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostea- ryloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbe- henat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstea- rat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen Cδ-C∑-Fettsäuren mit verzweigten Alkoholen, insbesondere 2- Ethylhexanol, Ester von Ci8-C38-Alkylhydroxycarbonsäuren mit linearen oder verzweigten Cδ-C22-Fettalkoholen (vgl. DE 19756377 AI), insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Pro- pylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis Ce-Cio-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von Ce-Cis- Fettsäuren, Ester von
Figure imgf000006_0001
und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Cι2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, wie z.B. Dicaprylyl Carbonate (Cetiol® CC), Guerbetcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z.B. Dicaprylyl Ether (Cetiol® OE), Ringöffnungsprodukte von epoxi- dierten Fettsäureestern mit Polyolen, Siliconöle (Cydomethicone, Siliciummethicontypen u.a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.
Emulgatoren
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
> Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propyleno- xid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C- Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest;
> Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga;
> Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes
Ricinusöl;
> Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxy- carbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
->~ Partialester von Polyglycerin (durchschnittlicher Eigen kondensationsgrad 2 bis 8), Polyethylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglu- cosid, Laurylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE
1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
> Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
> Wollwachsalkohole;
> Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate; > Block-Copolymere z.B. Polyethylenglycol-30 Dipolyhydroxystearate;
> Polymeremulgatoren, z.B. Pemulen-Typen (TR-l,TR-2) von Goodrich;
> Polyalkylenglycole sowie
> Glycerincarbonat.
> Ethylenoxidanlaqerunqsprodukte
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Cι2/i8-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
Alkyl- und/oder Alkenyloliqoglykoside
Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
Partialqlyceride
Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonogly- cerid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäure- diglycerid, Ölsäuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinol- säurediglycerid, Linolsäuremonoglycerid, Linolsäurediglycerid, Linolensäuremonogly- cerid, inolensäurediglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Wein- säuremonoglycerid, Weinsäurediglycerid, Citronensäuremonoglycerid, Citronendigly- cerid, Äpfelsäuremonoglycerid, Äpfelsäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
Sorbitanester
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbi- tan-diisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sor- bitan-dioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitan- dierucat, Sorbitantrierucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbi- tandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydroxystearat, Sorbitan- sesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbi- tanmonotartrat, Sorbitansesqui-tartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbi- tanmonocitrat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmo- nomaleat, Sorbitansesquimaleat, Sorbitan-dimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
Polyglycerinester
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydro- xystearate (Dehymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Po- lyglycerγl-4 Isostearate (Isolan® GI 34), Polyglyceryl-3 Oleate, Diisostearoyl Po- lyglyceryl-3 Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Po- lyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Ad- mul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol E- thylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Taigfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensäure und dergleichen. Anionische Emulgatoren
Typische anionische Emulgatoren sind aliphatische Fettsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Palmitinsäure, Stearinsäure oder Behensäure, sowie Dicarbonsäuren mit 12 bis 22 Kohlenstoffatomen, wie beispielsweise Azelainsäure o- der Sebacinsäure.
Amphothere und kationische Emulgatoren
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylam- moniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acyl- aminopropyl-N,N-dimethylammonium-glycinate, beispielsweise das Kokosacyl- aminopropyldimethyl-ammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3- hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fett- säureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ämpholytischen Tensiden- werden- solche oberflächenaktiven Verbindungen verstanden, die außer einer C8/ι8-Alkyl- oder Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropion-säuren, N-Alkylaminobuttersäuren, N- Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-
Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäu- ren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe.. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylami- noethylaminopropionat und das Cι2 18-Acylsarcosin. Schließlich kommen auch Kati- ontenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind. Fette und Wachse
Typische Beispiele für Fette sind Glyceride, d.h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestern höherer Fettsäuren bestehen, als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Car- naubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimöl- wachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Pa- raffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine versteht der Fachmann diejenigen Glycero- Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidyl- choline (PC). Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der l,2-Diacyl-sn-glycerin-3- phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphospha- te), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphingolipide in Frage.
Perlglanzwachse
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethy- lenglycoldistearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Parti- alglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxy-substituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen. Konsistenzoeber und Verdickungsmittel
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethyl- und Hydroxypropylcellulose, ferner höhermolekulare Polyethylenglycolmo- no- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® und Pemulen-Typen von Goodrich; Synthalene® von Sigma; Keltrol-Typen von Kelco; Sepigel-Typen von Seppic; Salcare-Typen von Allied Colloids), Polyacrylamide, Polymere, Polyvinylalkohol und Poly- vinylpyrrolidon. Als besonders wirkungsvoll haben sich auch Bentonite, wie z.B. Bentone® Gel VS-5PC (Rheox) erwiesen, bei dem es sich um eine Mischung aus Cyclopenta- siloxan, Disteardimonium Hectorit und Propylencarbonat handelt. Weiter in Frage kommen Tenside, wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkohol- ethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektro- lyte wie Kochsalz und Ammoniumchlorid.
Überfettunosmittel
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Mo- noglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Stabilisatoren
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden. Polymere
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammonium- salzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium Hydroxypropyl Hydrolyzed Collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Di- methylaminohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Ac- rylsäure mit Dimethyl-diallylammoniumchlorid (Merquat® 550/Chemviron), Polyamino- polyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-l,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Cela- nese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miraπol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat- Copolymere, Vinylacetat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvinyl- ether/Maleinsäureanhydrid-Copolymere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copoly- mere, Octylacrylamid/Methylmeth-acrylat/tert.Butylaminoethylmethacrylat/2-Hydroxypro- pylmethacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage. Weitere geeignete Polymere und Verdickungsmittel sind in Cosm.Toil. 108, 95 (1993) aufgeführt.
Siliconverbindungen
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenyl- polysiloxane, cydische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethico- ne, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. £1, 27 (1976).
UV-Lichtschutzfilter und Antioxidantien
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich o- der wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4- Methylbenzyliden)campher wie in der EP 0693471 Bl beschrieben;
> 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethyl- hexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4- (Dimethylamino)benzoe-säureamylester;
> Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4- Methoxy-zimtsäurepropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3- phenylzimtsäure-2-ethylhexylester (Octocrylene);
> Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4- iso-propylbenzylester, Salicylsäurehomomenthylester;
> Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2- Hydroxy-4-methoxy-4,-methylbenzophenon, 2,2λ-Dihydroxy-4-methoxybenzophenon;
> Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2- ethylhexyl-ester;
> Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2,-ethyl-r-hexyloxy)-l,3,5-triazin und Octyl Triazon, wie in der EP 0818450 AI beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB);
> Propan-l,3-dione, wie z.B. l-(4-tert.Butylphenyi)-3-(4,methoxyphenyl)propan-l,3- dion;
> Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 Bl beschrieben. Als wasserlösliche Substanzen kommen in Frage:
> 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alky- lammonium-, Alkanolammonium- und Glucammoniumsalze;
> Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo- phenon-5-sulfonsäure und ihre Salze;
> Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenme- thyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise l-(4,-tert.Butylphenyl)-3-(4,-methoxyphenyl)propan-l,3-dion, 4-tert.- Butyl-4x-methoxydibenzoylmethan (Parsol® 1789), l-Phenyl-3-(4Λ-isopropylphenyl)- propan-l,3-dion sowie Enaminverbindungen, wie beschrieben in der DE 19712033 AI (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Besonders günstige Kombinationen bestehen aus den Derivate des Benzoylmethans,, z.B. 4-tert.-Butyl-4,-methoxydibenzoylmethan (Parsol® 1789) und 2- Cyano-3,3-phenylzimtsäure-2-ethyl-hexylester (Octocrylene) in Kombination mit Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethy!hexylester und/oder 4- Methoxyzimtsäurepropylester und/oder 4-Methoxyzimtsäureisoamylester. Vorteilhaft werden deartige Kombinationen mit wasserlöslichen Filtern wie z.B. 2- Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammo- nium-, Alkanolammonium- und Glucammoniumsalze kombiniert.
Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV- Lichtschutzfilter sind der Übersicht von P.Finkel in SÖFW- Journal 122, 543 (1996) sowie Parf.Kosm. 3, 11 (1999) zu entnehmen.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anse- rin), Carotinoide, Carotine (z.B. α-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlo- rogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropioπat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butionin- sulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorby- lacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vi- tamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxy- butyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid- Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnSO4) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemaß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe. Biogene Wirkstoffe
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocophe- rolpalmitat, Ascorbinsäure, (Desoxy)Ribonucleinsäure und deren Fragmentierungsprodukte, ß-Glucane, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
Filmbildner
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, qua- terniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Antischuppenwirkstoffe
Als Antischuppenwirkstoffe kommen Pirocton Olamin (l-Hydroxy-4-methyl-6-(2,4,4- trimythylpentyl)-2-(lH)-pyridinonmonoethanolaminsalz), Baypival® (Climbazole), Keto- conazol®, (4-AcetyM-{-4-[2-(2.4-dichlorphenyl) r-2-(lH-imidazol-l-ylmethyl)-l,3- dioxylan-c-4-ylmethoxyphenyl}piperazin, Ketoconazol, Elubiol, Selendisulfid, Schwefel kolloidal, Schwefelpolyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwfel-teer Destillate, Salicylsäure (bzw. in Kombination mit Hexachlorophen), Undexy- lensäure Monoethanolamid Sulfosuccinat Na-Salz, Lamepon® UD (Protein- Undecylensäurekondensat), Zinkpyrithion, Aluminiumpyrithion und Magnesiumpyrithion / Dipyrithion-Magnesiumsulfat in Frage.
Ouellmittel
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkylmodifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden. Hydrotrope
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise E- thanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Ami- nogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
> Glycerin;
> Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Bu- tylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
> technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%; Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Tri- methylolbutan, Pentaerythrit und Dipentaerythrit; Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
> Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Man- nit,
> Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
> Aminozucker, wie beispielsweise Glucamin;
> Dialkoholamine, wie Diethanolamin oder 2-Amino-l,3-propandiol.
Konservierungsmittel
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formal- dehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die unter der Bezeichnung Surfacine® bekannten Silberkomplexe und die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen. Parfümöle und Aromen
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Di- methylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethyl- methylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jo- none, α-Isomethylionon und Methylcedrγlketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamil- lenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α- Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Ally- lamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt. Als Aromen kommen beispielsweise Pfefferminzöl, Krauseminzöl, Anisöl, Sternanisöl, Kümmelöl, Eukalyptusöl, Fenchelöl, Citronenöl, Wintergrünöl, Nelkenöl, Menthol und dergleichen in Frage.
Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Beispiele sind Kochenillerot A (C.I. 16255), Patentblau V (C.I.42051), Indigotin (C.I.73015), Chlorophyllin (C.I.75810), Chinolingelb (C.I.47005), Titandioxid (C.I.77891), Indanthrenblau RS (C.I. 69800) und Krapplack (C.I.58000). Als Lumineszenzfarbstoff kann auch Luminol enthalten sein. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Nachweis der Wirksamkeit
Die entzündungshemmende Wirkung von niedermolekularer Proteinhydrolysate konnte gleich durch mehrere
Studien belegt werden. Beim ersten Wirksamkeitsnachweis wurde die Aktivität von niedermolekularer Proteinhydrolysate gegenüber entzündlichen Prozessen nach UV-B- Bestrahlung an Hautkulturen in-vitro nachgewiesen. Als Referenzsubstanz wurde hierzu bei den letzten beiden Untersuchungen Acetylsaiicylsäure ausgewählt, der die Cyclooxigenase inhibiert.
Das Testdesign basiert auf epidermaler Entzündungsinduktion mittels UV-B-Bestrahlung (280 bis 320 nm). Diese ist im wesentlichen auf die Aktivierung des Enzyms Phospholi- pase A2 oder PLA2 zurückzuführen, das Arachidonsäure aus der Zellmembran herauslöst. Anschließend überführen andere spezifische Enzyme, sogenannte Cyclooxigenasen, die Arachidonsäure in Prostaglandine (PG), die von der Zelle ausgeschieden werden. Die Anlagerung bestimmter Prostaglandine wie PGE2 an spezifische Rezeptoren ist dann verbunden mit Rötungen und Schwellungen wie nach einem Sonnenbrand auf der Haut. In Zellkulturen sind diese UV-B-Wirkungen auf die Zellmembran mit der Freisetzung eines cytoplasmatischen Enzyms, der Lactat-Dehydrogenase (LDH), verbunden. Letztlich können UV-geschädigte Zellen durch Apoptose, den biologischen Prozess, durch den sich lebende Organismen von defekten Zellen befreien, eliminiert werden. In apoptotischen Zellen werden hierbei cytoplasmatische DNA-Fragmente von nuklearer DNA durch die Endonuclease getrennt.
Die oben beschriebenen Enzyme und Parameter können nach Anwendung von niedermolekularen Proteinhydrolysaten (0,1 und 0,3 % Originalprodukt Gluadin® WLM) auf die Zellkulturen quantitativ bestimmt werden und lassen auf diese Weise einen Rückschluss auf seine ausgezeichnete entzündungshemmende Wirkung in diesem Testsystem zu.
Methode: Der Effekt von UVB-Strahlung wurde an Keratinocyten in vitro untersucht indem die Freisetzung des Cytoplasaenzyms LDH (Lactat Dehydrogenase) bestimmt wurde. Dieses Enzym dient als Marker für eine Zellschädigung. Zur Durchführung der Tests wurde ein definiertes Medium, das fötales Kälberserum enthält, mit den Keratinozyten beimpft und niedermolekulares Weizenproteinhydrolysat 72 Stunden nach dem Beimpfen zugegeben.
Die Keratinozyten wurden sodann mit einer UVB-Dosis bestrahlt (50 mJ/cm2 - Röhren: DUKE GL40E).
Nach weiterer 1 tägiger Inkubation bei 37 °C und bei 5 % CO2 wurde der LDH- und der PGE2-Gehalt im Überstand bestimmt. Der Gehalt von LDH- (Lactatdehydrogenase) wurde mittels einer Enzymreaktion bestimmt (verwendetes kit zur Untersuchung des LDH Gehaltes von der Firma Röche) Der Gehalt an PGE2 wurde mit einem EUSA-Test (ELISA Kit der Firma Röche) bestimmt. Zur Bestimmung des DNA Anteils im Cytoplasma der Keratinocyten wurde dem Wachstumsmedium Bromodesoxyuridine (BrDU) zugegeben. Nach der Trypsin-Behandlung wurden die Zellen zentrifugiert und ausgezählt. Anschließend wurde der Gehalt an BrdU in DNA-Fragmenten aus dem Cytoplasma mit Hilfe des ELISA Tests ermittelt. Die Anzahl adhärenter Keratinozyten wird (nach Trypsinbehand- lung) mit einem Partikelzählgerät bestimmt.
Tabelle 1: Nachweis entzündungshemmender Wirksamkeit [% versus Kontrolle]
Figure imgf000022_0001
So wurden durch die UV-B-Bestrahlung ca. 57 % der vorhandenen Keratinocyten zerstört. Durch die Anwendung von niedermolekularen Proteinhydrolysaten konnte diese toxische Wirkung jedoch um mehr als 50 % reduziert werden. Der Gehalt an freigesetzter Lactat-Dehydrogenase dagegen wurde durch UV-B- Bestrahlung stark gesteigert. Auch hier führten unsere niedermolekularen Weizenpeptide zu einem Rückgang dieser charakteristischen UV-B-Wirkung um mehr als 50 %. UV-B-Bestrahlung bewirkte ebenfalls einen starken Anstieg des Gehaltes an freigesetzten Prostaglandinen (hier PGE2), sogar bei der Zellkultur, die mit Aspirin® als Referenzsubstanz behandelt wurde (Control; 0,002 % AS). Durch den Einsatz von niedermolekularen Proteinhydrolysaten konnte jedoch im Vergleich hierzu eine um ca. 66 % verringerte Freisetzung von PGE2 erzielt werden.
In ähnlichem Maße stieg der Gehalt an DNA-Fragmenten im Cytoplasma der Keratinocyten infolge der UV-B-Bestrahlung an. Im Gegensatz zum Aspirin® (Control; 0,002 %) konnte mit niedermolekularen Proteinhydrolysaten allerdings eine deutliche Reduzierung dieser Fragmente um ca. 46 % erreicht werden.
Aufgrund dieser Studien ist nachgewiesen, dass niedermolekulare Proteinhydrolysate damit eindeutig in der Lage sind, einen wirksamen Schutz vor den Folgen von UV-B- Bestrahlung an Keratinocyten in Zellkulturen aufzubauen. Damit zeigten die niedermolekularen Proteinhydrolysate eine so gute entzündungshemmende Wirkung, dass sie in diesen Untersuchungen sogar besser war als Acetylsaiicylsäure.
Ein weiterer Wirksamkeitsnachweis, der die positive Wirkung von niedermolekulare Proteinhydrolysate auf entzündliche Prozesse belegt, ist sein Einfluss auf die Inhibierung des "respiratory burst" in Zellkulturen in-vitro.
Während des epidermalen Entzündungsprozesses werden Leukocyten angezogen wie z.B. PMN (polymorphonucleare neutrophile Granulocyten) und durch Cytokine und andere Botenstoffe wie Leukotriene stimuliert, die von aktivierten oder nekrotischen epidermalen Zellen freigesetzt werden. Diese aktivierten PMN setzen nicht nur proentzündliche Cytokine, Leukotriene und Proteasen frei, sondern auch ROS (reactive oxy- gen species) wie beispielsweise Superoxid und Hypochlorit-Anionen, um pathogene Bakterien oder Pilze abzutöten. Die Aktivität der PMN während der Entzündung ist als "respiratory burst" bekannt und kann Gewebeschäden durch die Freisetzung von ROS und lysosomalen Enzymen vermitteln'.
Aus diesem Grunde wurde die entzündungshemmende Wirksamkeit von niedermolekularen Proteinhydrolysate" dahingehend überprüft, ob es den "respiratory burst" der PMN reduzieren kann, der durch einen Hefeextrakt ("Zymosan") ausgelöst wird. Hierzu wurde an Zellkulturen der Gehalt an freigesetzten aktiven Sauerstoff- Verbindungen (ROS) ohne und mit Zymosan sowie die Anzahl der vorhandenen Zellen quantitativ bestimmt [G.M. Pieper, G.J. Gross: EMD 52692 (bimakalim), a new potassium Channel opener, attenuates luminol-enhanced chemimuminescence and Superoxide anion radical formation by zymosan-activated polymorphonuclear leucocytes. Immuno- pharmacology, 23, 191-197 (1992)], in gleicher Weise der Einfluss von 0,03 %, 0,1% und 0,3 % niedermolekularer Proteinhydrolysate auf diese Parameter.
Tabelle 2:
Nachweis entzündungshemmender Wirksamkeit - Zymosan-Test [% versus Kontrolle]
Figure imgf000024_0001
Die Resultate zeigen deutlich den induzierenden Einfluss des Hefeextrakts auf den "respiratory burst" der Granulocyten (gemessen in RLU - relative luminiscence units): Durch den Zusatz des Zymosans steigt der Gehalt an aktiven Sauerstoffverbindungen (ROS) um ungefähr das Zehnfache an. Dieser Anstieg kann allerdings durch die Anwendung von niedermolekularen Proteinhydrolysaten beachtlich gesenkt werden, bei einer Einsatzkonzentration von 0,3 % sogar um ca. 75 %. Demnach zeichnen sich niedermolekulare Proteinhydrolysate durch eine wirksame Hemmung des "respiratory burst" an Granulocyten aus bei gleichbleibender Zellzahl und folglich einer hervorragenden Anti-Inflammatory-Wirkung. Dieser Nachweisansatz bestätigt die Ergebnisse der ersten Untersuchungsreihe und stellt damit die entzündungshemmende Wirkung von niedermolekularen Proteinhydrolysaten in-vitro effektiv unter Beweis.

Claims

Patentansprüche
1. Verwendung von niedermolekularen Proteinhydrolysaten als anti-entzündliche Wirkstoffe.
2. Verwendung von niedermolekularen Proteinhydrolysaten zur Hemmung durch UV- Bestrahlung induzierter entzündlicher Prozesse.
3. Verwendung von niedermolekularen Proteinhydrolysaten zur Herstellung von Sonnenschutzmitteln und/oder After-Sun-Zubereitungen.
4. Verwendung von niedermolekularen Proteinhydrolysaten zur Herstellung von Kopfhautberuhigenden Mitteln.
5. Verwendung nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man Pflanzenproteinhydrolysate einsetzt.
6. Verwendung nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man niedermolekulare Weizenproteinhydrolysate einsetzt.
7. Verwendung nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man niedermolekulare Proteinhydrolysate einsetzt, welche - bezogen auf den Proteinanteil - ein mittleres Molekulargewicht von 50 bis 3.000 Dalton aufweisen.
8. Verwendung nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man niedermolekulare Proteinhydrolysate einsetzt, welche - bezogen auf den Proteinanteil - ein mittleres Molekulargewicht von 100 bis 1.000 Dalton aufweisen.
9. Verwendung nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man niedermolekulare Proteinhydrolysate einsetzt, welche - bezogen auf den Proteinanteil - ein mittleres Molekulargewicht von 200 bis 600 Dalton aufweisen.
0. Verwendung nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man die niedermolekularen Proteinhydrolysate in Mengen von 0,1 bis 10 Gew.-% - bezogen auf die Endformulierung - einsetzt.
PCT/EP2003/001097 2002-02-14 2003-02-05 Verwendung von niedermolekularen proteinhydrolysaten als anti-entzundliche wirkstoffe WO2003068184A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10206353.2 2002-02-14
DE2002106353 DE10206353A1 (de) 2002-02-14 2002-02-14 Verwendung von niedermolekularen Proteinhydralysaten

Publications (1)

Publication Number Publication Date
WO2003068184A1 true WO2003068184A1 (de) 2003-08-21

Family

ID=27634995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/001097 WO2003068184A1 (de) 2002-02-14 2003-02-05 Verwendung von niedermolekularen proteinhydrolysaten als anti-entzundliche wirkstoffe

Country Status (2)

Country Link
DE (1) DE10206353A1 (de)
WO (1) WO2003068184A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1534314A1 (de) * 2002-09-04 2005-06-01 DSM IP Assets B.V. Nutritionelle und therapeutische zusammensetzung mit einem insulin-sensibilisator und einer peptidfraktion
WO2008029064A3 (fr) * 2006-09-06 2008-04-24 Jean-Noel Thorel Utilisation topique d'un extrait peptidique de soja et/ou de ble comme agent photoprotecteur
WO2010119192A1 (fr) * 2009-04-15 2010-10-21 Isp Investments Inc. Composition cosmétique et/ou pharmaceutique comprenant un hydrolysat peptidique apaisant
FR2944446A1 (fr) * 2009-04-15 2010-10-22 Isp Investments Inc Composition cosmetique et/ou pharmaceutique comprenant un hydrolysat peptidique apaisant
US8530406B2 (en) 2008-12-23 2013-09-10 Isp Investments Inc. HMG-CoA reductase derived peptide and cosmetic or pharmaceutical composition containing same
US8546340B2 (en) 2008-12-23 2013-10-01 Isp Investments Inc. Soothing pharmaceutical or cosmetic composition comprising a peptide that activates HMG-CoA reductase
US8674072B2 (en) 2009-04-15 2014-03-18 Isp Investments Inc. Cosmetic and/or pharmaceutical composition comprising a peptidic hydrolyzate that can reinforce the barrier function
US8933036B2 (en) 2009-04-15 2015-01-13 Isp Investments Inc. Cosmetic and/or pharmaceutical composition comprising a yeast peptide hydrolysate and use of the yeast peptide hydrolysate as an active agent for strengthening hair

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2673374A1 (fr) * 1991-03-01 1992-09-04 Oreal Composition cosmetique contenant comme ingredient actif un peptide a activite opiouide.
US5571503A (en) * 1995-08-01 1996-11-05 Mausner; Jack Anti-pollution cosmetic composition
FR2760746A1 (fr) * 1997-03-14 1998-09-18 Phytocos Lab Nouveaux acylaminoacides
DE19857546A1 (de) * 1998-12-14 2000-06-15 Cognis Deutschland Gmbh N-substituierte Biopolymere
FR2796839A1 (fr) * 1999-07-26 2001-02-02 Serobiologiques Lab Sa Utilisation d'une fraction proteique de la graine de la plante vigna trilobata dans une composition cosmetique ou dermopharmaceutique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2673374A1 (fr) * 1991-03-01 1992-09-04 Oreal Composition cosmetique contenant comme ingredient actif un peptide a activite opiouide.
US5571503A (en) * 1995-08-01 1996-11-05 Mausner; Jack Anti-pollution cosmetic composition
FR2760746A1 (fr) * 1997-03-14 1998-09-18 Phytocos Lab Nouveaux acylaminoacides
DE19857546A1 (de) * 1998-12-14 2000-06-15 Cognis Deutschland Gmbh N-substituierte Biopolymere
FR2796839A1 (fr) * 1999-07-26 2001-02-02 Serobiologiques Lab Sa Utilisation d'une fraction proteique de la graine de la plante vigna trilobata dans une composition cosmetique ou dermopharmaceutique

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1534314A1 (de) * 2002-09-04 2005-06-01 DSM IP Assets B.V. Nutritionelle und therapeutische zusammensetzung mit einem insulin-sensibilisator und einer peptidfraktion
EP1534314B1 (de) * 2002-09-04 2014-10-22 DSM IP Assets B.V. Nutritionelle und therapeutische Zusammensetzung mit einem Insulin-Sensibilisator und einer Peptidfraktion
WO2008029064A3 (fr) * 2006-09-06 2008-04-24 Jean-Noel Thorel Utilisation topique d'un extrait peptidique de soja et/ou de ble comme agent photoprotecteur
US8530406B2 (en) 2008-12-23 2013-09-10 Isp Investments Inc. HMG-CoA reductase derived peptide and cosmetic or pharmaceutical composition containing same
US8546340B2 (en) 2008-12-23 2013-10-01 Isp Investments Inc. Soothing pharmaceutical or cosmetic composition comprising a peptide that activates HMG-CoA reductase
WO2010119192A1 (fr) * 2009-04-15 2010-10-21 Isp Investments Inc. Composition cosmétique et/ou pharmaceutique comprenant un hydrolysat peptidique apaisant
FR2944446A1 (fr) * 2009-04-15 2010-10-22 Isp Investments Inc Composition cosmetique et/ou pharmaceutique comprenant un hydrolysat peptidique apaisant
FR2944445A1 (fr) * 2009-04-15 2010-10-22 Isp Investments Inc Composition cosmetique et/ou pharmaceutique comprenant un hydrolysat peptidique apaisant
US8674072B2 (en) 2009-04-15 2014-03-18 Isp Investments Inc. Cosmetic and/or pharmaceutical composition comprising a peptidic hydrolyzate that can reinforce the barrier function
US8685927B2 (en) 2009-04-15 2014-04-01 Isp Investments Inc. Cosmetic and/or pharmaceutical composition comprising a relieving peptidic hydrolyzate
US8933036B2 (en) 2009-04-15 2015-01-13 Isp Investments Inc. Cosmetic and/or pharmaceutical composition comprising a yeast peptide hydrolysate and use of the yeast peptide hydrolysate as an active agent for strengthening hair

Also Published As

Publication number Publication date
DE10206353A1 (de) 2003-08-28

Similar Documents

Publication Publication Date Title
EP1340486A1 (de) Verwendung von Zuckerestern
EP1260212A1 (de) Kosmetische Mittel
EP1341518A2 (de) Kosmetische und/oder pharmazeutische emulsionen
WO2001072264A2 (de) Pro-liposomal verkapselte zubereitungen (iv)
WO2002087536A1 (de) Verwendung von kationischen zubereitungen
WO2001074302A1 (de) Pro-liposomal verkapselte zubereitungen
WO2003096998A1 (de) Antischuppenshampoos
EP1511706A1 (de) Zubereitungen mit konjugiertem linolalkohol
EP2958546B1 (de) Medikament zut behandlung der durch uv-strahlen hervorgerufenen hautalterung
WO2003068184A1 (de) Verwendung von niedermolekularen proteinhydrolysaten als anti-entzundliche wirkstoffe
WO2001074303A1 (de) Pro-liposomal verkapselte zubereitung
EP1254655A1 (de) Verwendung von Esterquats
WO2002100522A1 (de) Verwendung von alkyl(ether)phosphaten (i)
EP1254654A1 (de) Verwendung von kationischen Zubereitungen
EP1264634B1 (de) Verwendung von Alkyl(ether)phosphaten
EP1369411A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen mit Retinolestern
WO2002017862A1 (de) Verwendung von quaternierten proteinhydrolysaten
EP1264632A1 (de) Verwendung von Alkyl(ether)phosphaten(III)
EP1309311A2 (de) Kosmetische zubereitungen, die dicarbonsäuren enthalten
WO2002032380A2 (de) Kosmetische emulsionen
WO2002088150A1 (de) Phosphorsäureester
WO2004000258A1 (de) Hochviskose ölhaltige zubereitungen
EP1252880A1 (de) Verwendung von Milchproteinhydrolysaten
WO2002043674A1 (de) Kosmetische mikroemulsionen
EP1138312A1 (de) Pro-liposomen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP