WO2003063318A1 - Metodo de detección de atrapamientos causados por elevalunas motorizados y similares, mediante algoritmos de lósica borrosa - Google Patents

Metodo de detección de atrapamientos causados por elevalunas motorizados y similares, mediante algoritmos de lósica borrosa Download PDF

Info

Publication number
WO2003063318A1
WO2003063318A1 PCT/ES2001/000508 ES0100508W WO03063318A1 WO 2003063318 A1 WO2003063318 A1 WO 2003063318A1 ES 0100508 W ES0100508 W ES 0100508W WO 03063318 A1 WO03063318 A1 WO 03063318A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
mobile element
intensity
fuzzy logic
Prior art date
Application number
PCT/ES2001/000508
Other languages
English (en)
French (fr)
Inventor
Jordi Bigorra Vives
Antoni Ferre Fabregas
Josep Samitier Marti
Atila Herms Berenguer
Sebastiá BOTA FERRAGUT
Agustin Gutierrez Galvez
Jose Luis Merino Penedes
Francisco Javier Garcia Hernando
Rafael Jimenez Pino
Original Assignee
Lear Automotive (Eeds) Spain,S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lear Automotive (Eeds) Spain,S.L. filed Critical Lear Automotive (Eeds) Spain,S.L.
Priority to EP01989629A priority Critical patent/EP1467461A1/en
Priority to PCT/ES2001/000508 priority patent/WO2003063318A1/es
Publication of WO2003063318A1 publication Critical patent/WO2003063318A1/es
Priority to US10/710,208 priority patent/US7359783B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • H02H7/0851Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load for motors actuating a movable member between two end positions, e.g. detecting an end position or obstruction by overload signal
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • E05F15/41Detection by monitoring transmitted force or torque; Safety couplings with activation dependent upon torque or force, e.g. slip couplings
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2900/00Application of doors, windows, wings or fittings thereof
    • E05Y2900/50Application of doors, windows, wings or fittings thereof for vehicles
    • E05Y2900/53Type of wing
    • E05Y2900/55Windows
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0092Details of emergency protective circuit arrangements concerning the data processing means, e.g. expert systems, neural networks

Definitions

  • the present invention falls within the field of electromechanical assembly control methods and provides a method and means for a controlled management of a mobile element, driven by a motor.
  • the invention is applicable, in particular, to a window regulator device for a vehicle, driven by a DC, permanent magnet, multipolar electric motor, with certainty of not catching and / or exerting a crushing force on an object interposed in the path of said moon, such as a member or part of
  • the proposed method is also suitable for controlling an electromechanically governed seat, avoiding crashes against other parts of the vehicle or bumps against user parts eventually interposed in the path of the moving element.
  • the invention also provides loadable programs in the internal memory of a computer for performing several of the steps of the method according to the invention, especially the entrapment or shock detection algorithm, and an auxiliary algorithm for speed control. Background of the invention
  • US-A-6273492 concerns an operating mechanism for operating the hood of a convertible vehicle, where, in the case of using a DC motor, it is proposed that an electronic control perform the detection and calculation of the voltage and of the current peaks through, among several alternatives, motor switching (ripple counting technique).
  • the invention concerns a method for controlled management of a mobile element, driven by an electric motor, with anti-entrapment or anti-crash safety, said mobile element being, eg a moon or panel of a vehicle, movable seat or the like , which is conveniently guided and powered by a DC, permanent magnet, multipolar electric motor.
  • the method comprises three different parts: detection of the curling peaks of the current for the determination of the position and speed of the mobile element to be controlled, control of the speed and detection of a trapping or shock situation, being used for the last two parts a fuzzy or fuzzy logic algorithm.
  • a rule base has been built to implement a first fuzzy logic algorithm, or fuzzy for the detection of entrapment or crash situations.
  • the adjustment of the blurred terms used in the algorithm has been made from experimental adjustment.
  • the aforementioned DC electric motor consists of multiple poles, its bias current has a continuous curl.
  • This curling has been used first to determine the position of the window (counting the curling peaks, according to the ripple counting technique, itself known) and to calculate the relative increase in current intensity. To improve the information linked to this increase in current, this corresponds to measurements taken at one of the maximum curling (always measured at a maximum corresponding to the same motor pole).
  • the invention it is proposed to detect a situation of entrapment of an object or member interposed in the race of said mobile element or of an eventual collision of said mobile element by means of a first algorithm based on fuzzy logic whose inputs are the position of said mobile element and the increases that may occur in the current consumed by the motor.
  • the relative increase in the intensity of the current that occurs in one turn of the motor and the relative increase in said intensity caused after a subsequent turn of the motor, next, in particular the third, immediately subsequent, that is, the eventual ones, are considered. increases in intensity in one turn and three turns of the engine.
  • the information of the position of the moving element is known at all times through a detection of the curling of the polarization current of the motor by variation of the sampling frequency.
  • the invention also proposes an additional stage of control of the speed of the mobile element, in closed loop, using a second algorithm of fuzzy logic with information of a desired or reference speed and evaluation of the deviation from said speed reference.
  • the fuzzy logic system used has as inputs the speed in each moment of the mobile element and the desired speed for this moment and gives as Exit the duty cycle of the PWM.
  • the speed control through fuzzy logic allows a small response time to load variations applied to the motor, which has a fairly precise speed control with little use of resources from a microcontroller used for its implementation.
  • the method works so that detecting an increase in the intensity of the motor consumption current of a certain slope instantly decreases the power supplied to the motor.
  • the maximum curling currents of said motor measured in the same motor inductor are used, that is to say those current values that have the same phase within the current oscillation.
  • the duty cycle of the motor supply current is reduced by PWM (pulse width modulation) to 90 percent to discern, then again applying said first fuzzy logic algorithm, if said An increase in the intensity of the current, such as a sharp increase, is due to an external force applied to the mobile element or to an effort derived from the friction of said mobile element with guide parts thereof in its displacement.
  • Fig. 1 the forces acting in a window during a trapping or pinch situation are shown schematically.
  • the consumption current of the motor is illustrated in Fig. 3a and in Fig. 3b considering only the maximums as proposed by the invention.
  • Figs. 4 to 6 illustrate the descriptive membership functions of the fuzzy logic system used for pinch detection, of which the basis of its rules will be described.
  • the membership functions of the max 10 entry are shown in Fig. 4, the membership functions of the max 30 entry are shown in Fig. 5 and the membership functions of the position entry are shown in Fig. 6.
  • the proposed control method must perform the following actions: a) raise and lower the window in manual or automatic mode, when indicated by means of push buttons; b) stop the engine when the window reaches the upper or lower stops; c) check the speed of the window; and d) in automatic upload mode, it must detect if an object is caught between the window and the upper window frame.
  • the last function is that of the most difficult execution taking into account that the method must be able to detect a force of 60 N applied to the window in a time of 10 ms, according to the normative specifications of the sector.
  • the invention proposes to perform pinch detection by means of a first algorithm based on fuzzy-logic (input) using as input the information provided by the current intensity that reaches the window motor and position.
  • the value of the intensity of the current consumed by the motor depends on the force exerted on the window, therefore increasing the force increases the current.
  • the entrapment will cause a sudden increase in the current, which in principle would be easily detectable if the value reached by the motor current in normal operation is known.
  • there is a factor the friction suffered by the window, which makes the total force not constant during the entire climb process.
  • the electrical work supplied to the motor is expressed by:
  • V is the voltage applied to the motor
  • / is the intensity of the motor current
  • t is the time.
  • This electrical work is converted into mechanical work by the motor transforming it into the movement of the window.
  • the work performed by the window is:
  • F lolal is the force that transmits the engine to the window and s is the space traveled by the window.
  • is the efficiency of work transmission.
  • the force transmitted by the engine to the window can be considered equal in modulus to the frictional force and the force exerted by the object, that is:
  • T engine of the angular displacement of the engine with respect to the linear displacement of the window, can be related s (through the angular speed of the engine or its inverse, the period T.
  • the information provided by two parameters shall be taken into account: (i) the position of the window
  • the first parameter is useful since entrapment in the vast majority of cases occurs at the top of the window path, that is, when it is near the top frame. Therefore, the system is intended to be much more sensitive in the final area of the window travel.
  • the position of the window at any time can be known from the count of intensity pulses related to the multipolar nature of the motor (ripple counting technique, known per se).
  • the second factor the relative increase in intensity
  • the second factor will allow to detect sharp increases in the force exerted on the window.
  • the first solution analyzed by the inventors was to subtract the current value of the current intensity from the current value sampled at the previous instant. However, it was found that the result obtained is affected by current curling. Depending on the sampling frequency used, the intensity differences will be affected by higher frequency variations associated with the effect of the motor poles, which is reflected in Fig. 2 of the drawings.
  • entries of the blurry system are: the position of the window, the relative increase in the intensity of the current in one turn of the motor and the relative increase of the current intensity in three turns of the motor.
  • the membership functions of the entry corresponding to the position have been chosen by separating the total space traveled by the window into three zones. At the base of the rules it is reflected that the sector where the pinch is most likely is the area closest to the window frame.
  • the fuzzy logic system used has the characteristics that reflect the membership functions of Figs. 4, 5 and 6, which are self-explanatory, indicating in the case of the first two Figs., In ordinates, the probability and in abcises the difference between intensities detected and in the third Fig. On its axis of abscissa the number of curly peaks (ripples) counted.
  • the rule base of the fuzzy logic system used is:
  • the fuzzy detection system proposed in the described Implementation Example, will use the position of the window as inputs, the relative increase in current intensity with respect to one turn and three turns of the motor, and will use the reduction of duty cycle by 90 percent to discern between sharp increases in friction and external forces applied on the window.
  • a reduction in motor speed of 30 to 50 percent can be performed alternatively by PWM to discern, then applying said first fuzzy logic algorithm again, if said relative increase
  • the intensity of the current such as a sharp increase in intensity, is due to an external force applied to the mobile element or to an effort derived from the friction of said mobile element with guiding parts thereof in its displacement.

Landscapes

  • Window Of Vehicle (AREA)
  • Power-Operated Mechanisms For Wings (AREA)

Abstract

Método para gestión controlada de un elemento móvil, accionado por un motor eléctrico, con seguridad anti-atrapamiento o anti-choque, y programa para su ejecución. El elemento móvil es una luna, panel de vehículo, asiento desplazable o similar, convenientemente guiado y accionado por un motor eléctrico de CC, de imán permanente y el método comprende una etapa de detección de una situación de atrapamiento o choque del elemento móvil mediante un primer algoritmo de lógica borrosa cuyas entradas son la posición del elemento móvil y los incrementos que puedan producirse en la intensidad de la corriente consumida por dicho motor que es evaluada a partir del aumento relativo de la intensidad de la corriente en una vuelta del motor y tras una vuelta ulterior del motor, próxima. Un segundo algoritmo de lógica borrosa se utiliza para control de la velocidad, en lazo cerrado, del elemento móvil.

Description

MÉTODO DE DETECCIÓN DE ATRAPAMIENTOS CAUSADOS POR ELEVALUNAS MOTORIZADOS Y SIMILARES, MEDIANTE ALGORITMOS DE LÓGICA BORROSA.
5 Campo de la invención
La presente invención se inscribe dentro del campo de los métodos de control de conjuntos electromecánicos y proporciona un método y unos medios para una gestión controlada de un elemento móvil, accionado por un motor
10 eléctrico, con seguridad de poder evitar una acción lesiva de dicho elemento, ya sea contra una parte o miembro de un usuario, ocasionando un aplastamiento, o contra un objeto o parte estructural contra la que sea susceptible de chocar dicho elemento móvil, en su desplazamiento, adoptando ante tal circunstancia, de manera inmediata y automática, unas contramedidas oportunas, deteniendo e
15 invirtiendo la carrera de desplazamiento del citado elemento móvil.
La invención es aplicable, en particular, a un dispositivo elevalunas para un vehículo, accionado por un motor eléctrico de CC, de imán permanente, multipolar, con seguridad de no atrapar y/o ejercer una fuerza de aplastamiento sobre un objeto interpuesto en la trayectoria de dicha luna, tal como un miembro o parte de
20 una persona, aunque su campo de aplicación puede generalizarse a cualquier clase de panel o luna móvil accionado por un motor eléctrico de tales características, siendo sus objetivos principales la precisión en la detección y la velocidad de respuesta y, en consecuencia, la posibilidad que ofrece de una adopción prácticamente inmediata de las citadas contramedidas para evitar dicha
25 situación de atrapamiento o aplastamiento, no deseada y que la misma progrese. El método propuesto es también adecuado para controlar un asiento, gobernado electromecánicamente, evitando choques contra otras partes del vehículo o golpes contra partes del usuario interpuestas eventualmente en la trayectoria del elemento móvil.
30 La invención también aporta unos programas cargables en la memoria interna de una computadora para realizar varias de las etapas del método según la invención, en especial del algoritmo de detección de atrapamiento o choque, y de un algoritmo auxiliar para control de velocidad. Antecedentes de la invención
En relación con los dispositivos de control electrónico, con seguridad anti- aplastamiento, asociados un motor eléctrico destinados a accionar un panel, tal como una luna de un vehículo u otro elemento móvil similar se conocen numerosas ejecuciones de sistemas y métodos pudiendo citar las patentes EP-A- 267064, DE-A-4315637, EP-A-714052, US.-A-6002228, US-A-5994858, US-A- 5983567, US-A-5949207.US-A-5945796. En general en los métodos y sistemas descritos en las patentes citadas se propone el uso de detectores de posición y sensores de corriente para proporcionar información destinada a ejecutar un algoritmo de control. En alguna de las patentes también se hace mención al uso de detectores de la velocidad angular del motor y/o detectores del par de accionamiento de dicho motor. La patente US-A-6273492 concierne a un mecanismo operativo para accionar la capota de un vehículo descapotable, en donde, en el caso de utilizar un motor de CC, se propone que un control electrónico realice la detección y el cálculo de la tensión y de los picos de corriente mediante, entre varias alternativas, conmutación del motor (técnica del ripple counting).
Exposición de la invención
La invención concierne a un método para gestión controlada de un elemento móvil, accionado por un motor eléctrico, con seguridad anti-atrapamiento o anti-choque, siendo dicho elemento móvil, por Ej. una luna o panel de un vehículo, asiento desplazable o similar, el cual va convenientemente guiado y está accionado por un motor eléctrico de CC, de imán permanente, multipolar.
El método comprende tres partes diferenciadas: detección de los picos de rizado de la corriente para la determinación de la posición y velocidad del elemento móvil a controlar, control de la velocidad y detección de una situación de atrapamiento o de choque, utilizándose para las dos últimas partes un algoritmo de lógica borrosa o fuzzy.
Según la invención, a partir de la posición del citado elemento móvil y del incremento relativo de la intensidad de la corriente del motor de CC de accionamiento, correspondiente a intervalos consecutivos, se ha construido una base de reglas para implementar un primer algoritmo de lógica borrosa, o fuzzy para la detección de situaciones de atrapamiento o choque. El ajuste de los términos borrosos utilizados en el algoritmo se ha realizado a partir de ajuste experimental.
Debido a que el motor eléctrico de CC citado está formado por múltiples polos, su corriente de polarización presenta un rizado continuo. Este rizado se ha utilizado en primer lugar para determinar la posición de la ventana (contando los picos de rizado, según la técnica del ripple counting, en sí conocida) y para calcular el incremento relativo de la intensidad de la corriente. Para mejorar la información ligada a dicho incremento de corriente, éste corresponde a medidas tomadas en uno de los máximos de rizado (siempre se mide en un máximo correspondiente al mismo polo del motor).
Así, y con un mayor detalle, conforme a la invención se propone realizar una detección de una situación de atrapamiento de un objeto o miembro interpuesto en la carrera del citado elemento móvil o de un eventual choque de dicho elemento móvil mediante un primer algoritmo basado en lógica borrosa cuyas entradas son la posición del citado elemento móvil y los incrementos que puedan producirse en la corriente consumida por el motor. En concreto se consideran el aumento relativo de la intensidad de la corriente que se produce en una vuelta del motor y el aumento relativo de dicha intensidad originado tras una vuelta ulterior del motor, próxima, en particular la tercera, inmediatamente subsiguiente, es decir los eventuales incrementos de la intensidad en una vuelta y en tres vueltas del motor. La información de la posición del elemento móvil se conoce en cada momento a través de una detección del rizado de la corriente de polarización del motor mediante variación de la frecuencia de muestreo.
La invención también propone una etapa adicional de control de la velocidad del elemento móvil, en lazo cerrado, utilizando un segundo algoritmo de lógica borrosa con información al mismo de una velocidad deseada o de referencia y evaluación de la desviación respecto a dicha referencia de la velocidad real. El sistema de lógica borrosa empleado tiene como entradas la velocidad en cada momento del elemento móvil y la velocidad deseada para este instante y da como salida el duty cycle del PWM. El control de velocidad mediante lógica borrosa permite un tiempo de respuesta pequeño a variaciones de carga aplicadas al motor, con lo cual se tiene un control de la velocidad bastante preciso con poca utilización de recursos de un microcontrolador utilizado para su implementación. El método funciona de manera que al detectar un aumento de intensidad de la corriente de consumo del motor de una cierta pendiente disminuye instantáneamente la potencia suministrada al motor. Entonces se pueden producir dos evoluciones posibles de dicha intensidad, una reducción importante de la pendiente, en cuyo caso el motivo de aquel aumento de intensidad se debería a una fricción dependiente de la velocidad o una reducción ligera de la pendiente indicativa de la existencia de una carga independiente de la velocidad, detectándose un atrapamiento o choque.
Según la invención para evaluar los incrementos relativos de la corriente consumida por el motor que puedan producirse, se utilizan los máximos del rizado de la corriente de polarización de dicho motor medidos en un mismo inductor del motor, es decir aquellos valores de la intensidad que tienen la misma fase dentro de la oscilación de la corriente.
Alternativamente, para evaluar los incrementos relativos de la corriente consumida por el motor que puedan producirse, se utiliza una media de los valores anteriores de dicha corriente.
Conforme al método aquí propuesto, ante una situación, detectada por dicho primer algoritmo de lógica borrosa, en donde dichos incrementos de la corriente capturados, son susceptibles de estar ocasionados por un objeto atrapado en la trayectoria del elemento móvil, o por un choque de dicho elemento móvil en su desplazamiento, se reduce mediante PWM (modulación de la anchura de pulsos) el duty cicle de la corriente de alimentación al motor a un 90 por ciento para discernir, a continuación aplicando de nuevo dicho primer algoritmo de lógica borrosa, si dicho incremento de la intensidad de la corriente tal como un aumento brusco, es debido a una fuerza externa aplicada sobre el elemento móvil o a un esfuerzo derivado de la fricción de dicho elemento móvil con unas partes de guiado del mismo en su desplazamiento.
Alternativamente ante una situación como la descrita en el párrafo anterior y tras una primera ejecución del citado primer algoritmo de lógica borrosa, se reduce mediante PWM la velocidad del motor de un 30 a un 50 por ciento para discernir, aplicando a continuación otra vez dicho primer algoritmo de lógica borrosa, si dicho incremento de la intensidad de la corriente, tal como un aumento brusco es debido a una fuerza extema aplicada sobre el elemento móvil o a un esfuerzo derivado de la fricción de dicho elemento móvil con unas partes de guiado del mismo en su desplazamiento.
Para una mejor comprensión de las características de la invención se detallará la misma, a continuación, con referencia a unas hojas de dibujos en las que se ha representado un ejemplo de ejecución consistente en la aplicación del método al caso del control de una ventanilla de un vehículo, refiriendo en adelante la situación de atrapamiento o de aplastamiento mediante dichos términos o alternativa e indistintamente como "pinch", atrapamiento o aplastamiento, y las medidas a adoptar como "anti-pinch" o anti-atrapamiento, por ser dichos términos anglófonos muy generalizados en el sector.
Breve explicación de los dibujos
En la Fig. 1 se muestran esquemáticamente las fuerzas que actúan en una ventanilla durante una situación de atrapamiento o pinch.
En la Fig. 2 se ilustran las diferencias de la corriente entre dos muestras de intensidad consecutivas, mostrando que al aplicarse una fuerza la gráfica no presenta ningún cambio apreciable.
En la Fig. 3a se ilustra la corriente de consumo del motor y en la Fig. 3b considerando sólo los máximos conforme propone la invención.
Las Figs. 4 a 6 ilustran las funciones de pertenencia descriptivas del sistema de lógica borrosa utilizado para detección del pinch, del que se describirán la base de sus reglas. En la Fig. 4 se muestran las funciones de pertenencia de la entrada max 10, en la Fig. 5 las funciones de pertenencia de la entrada max 30 y en la Fig. 6 se han representado las funciones de pertenencia de la entrada posición.
Explicación en detalle de un ejemplo de ejecución de la invención
Tal como se ha indicado, en general se denominará pinch al atrapamiento y/o eventual aplastamiento de un objeto por la ventanilla de un vehículo al subir en modo automático. En el funcionamiento normal de la ventanilla de un vehículo, por Ej. un automóvil, este objeto puede ser una parte del cuerpo humano como una mano o un dedo o incluso el cuello. Por lo tanto, el objetivo de todo método anti-pinch o de gestión controlada de un elemento móvil, convenientemente guiado y accionado por un motor eléctrico de CC, tal como una ventanilla, en el Ej. que se está explicando, es evitar esta situación. Para ello, el sistema de control ha de ser capaz de detectar la presencia de cualquier objeto que se encuentre en la trayectoria de la ventanilla.
El método de control propuesto ha de realizar las siguientes acciones: a) subir y bajar la ventanilla en modo manual o automático, cuando se indique mediante unos pulsadores de mando; b) parar el motor cuando la ventanilla llegue a los topes superior o inferior; c) realizar un control de la velocidad de la ventanilla; y d) en modo de subida automático ha de detectar si un objeto queda atrapado entre la ventanilla y el marco superior de la ventana.
La última función es la de más difícil ejecución teniendo en cuenta que el método ha de ser capaz de detectar una fuerza de 60 N aplicada a la ventanilla en un tiempo de 10 ms, conforme a las especificaciones normativas del sector.
La invención propone realizar la detección de pinch mediante un primer algoritmo basado en lógica borrosa (Fuzzy-logic) utilizando como entrada la información que proporciona la intensidad de corriente que le llega al motor de la ventanilla y la posición. El valor de la intensidad de la corriente consumida por el motor depende de la fuerza que se ejerce sobre la ventanilla, por lo tanto al aumentar la fuerza aumenta la corriente. El atrapamiento originará un incremento repentino de la corriente, que en principio sería fácilmente detectable si se conoce el valor que alcanza la corriente del motor en régimen de funcionamiento normal. Sin embargo existe un factor, la fricción que sufre la ventanilla, que hace que la fuerza total no sea constante durante todo el proceso de subida. Esta fricción en condiciones reales puede variar por el estado del marco y guías de la ventanilla, por efecto de la temperatura ambiental, por otras condiciones climáticas y por razones adicionales. Por ello, el valor de la citada corriente puede variar de manera bastante impredecible en momentos diferentes de la vida del coche. Esto provoca que no se pueda usar un valor de referencia fijo con el que comparar el valor instantáneo de la intensidad del motor, para detectar una condición de atrapamiento.
Para desarrollar el algoritmo es necesario conocer cuales son las fuerzas que actúan sobre la ventanilla en cada momento. En la Fig. 1 se ilustra el esquema de las fuerzas que actúan en la ventanilla durante un atrapamiento.
El trabajo eléctrico suministrado al motor viene expresado por:
W vv eléctrico = V y 2 I - t l
donde V es la tensión aplicada al motor, / es la intensidad de la corriente del motor y t el tiempo. Este trabajo eléctrico es convertido en trabajo mecánico por el motor transformándolo en el movimiento de la ventanilla. El trabajo que realiza la ventanilla es:
W " ven tan illa = F total - J v
donde Flolal es la fuerza que trasmite el motor a la ventanilla y s es el espacio recorrido por la ventanilla.
No todo el trabajo eléctrico suministrado al motor se transmite a la ventanilla, tenemos una parte que se convierte en calor en el sistema electro- mecánico de la ventanilla, de manera que:
W ven tan illa - n I - W eléctrico
η es la eficiencia de la trasmisión de trabajo. En una situación de atrapamiento de un objeto o pinch, la fuerza trasmitida por el motor a la ventanilla se podrá considerar igual en módulo a la fuerza de fricción y a la fuerza ejercida por el objeto, es decir:
F total = F pinch + F fricción
Por lo tanto, la fuerza que ejerce el objeto atrapado se podrá expresar de la siguiente manera:
F pinch = F total - F fricción = -V - I -t _ F fricción
Para una cierta relación de trasmisión, Tmotor , del desplazamiento angular del motor respecto del desplazamiento lineal de la ventanilla, se puede relacionar s y ( a través de la velocidad angular del motor o su inversa, el periodo T.
S = T motor - rPm - t = T mo,otr - J
Con lo que la fuerza ejercida por un atrapamiento o pinch se expresará de la siguiente manera:
( , r?(v)- V(t)- l(t). T(t) ( ) pinch V / fricción V / motor
Al producirse un pinch Fpinch se incrementa en un corto espacio de tiempo. El único factor de la parte de la derecha de la igualdad que puede responder al rápido aumento de Fpjnch es la intensidad de la corriente l(t). En consecuencia, conforme a las propuestas de esta invención, se propone utilizar la diferencia entre el valor de la intensidad de la corriente actual y un valor anterior, cercano, para la detección del pinch. De esta manera se evita o contrarresta eficazmente el efecto originado por la fricción, ya que aunque ésta varíe de manera impredecible los cambios no son demasiado bruscos. Por lo tanto al hacer una resta del valor de la intensidad de la corriente respecto a un valor anterior cercano se puede considerar la fricción constante en este intervalo, asegurando que esta variación de las intensidades de la corriente es consecuencia solamente de la fuerza aplicada por efecto del pinch.
Se detallan a continuación los parámetros utilizados para la detección del pinch conforme al método propuesto.
Para la detección del atrapamiento de un objeto se tendrá en cuenta la información que proporcionan dos parámetros: (i) la posición de la ventanilla
(ii) el aumento relativo de la intensidad de corriente.
El primer parámetro es útil ya que el atrapamiento en la gran mayoría de casos se produce en la parte superior del recorrido de la ventanilla, es decir, cuando ésta se encuentra cerca del marco superior. Por lo tanto se pretende que el sistema sea mucho más sensible en la zona final del recorrido de la ventanilla. La posición de la ventanilla en cada momento se puede conocer a partir del conteo de los pulsos de intensidad relacionados con la naturaleza multipolar del motor (técnica del ripple counting, en sí conocida).
El segundo factor, el aumento relativo de la intensidad, permitirá detectar incrementos bruscos de la fuerza ejercida sobre la ventanilla. Aunque aparentemente el cálculo de este parámetro puede parecer sencillo, simplemente haciendo una resta entre dos valores de las intensidades de las corrientes, aparecen ciertos problemas si no se escogen adecuadamente los valores de la intensidad de la corriente a restar. Para aumentar el tiempo de reacción del sistema anti-pinch la primera solución analizada por los inventores fue la de restar el valor actual de la intensidad de la corriente al valor de la intensidad de la corriente muestreado en el instante anterior. Sin embargo, se constató que el resultado obtenido se ve afectado por el rizado de corriente. En función de la frecuencia de muestreo utilizada, las diferencias de intensidad se verán afectadas por variaciones de más alta frecuencia asociadas al efecto de los polos del motor, situación que se refleja en la Fig. 2 de los dibujos.
Para evitar este problema los inventores han previsto varias soluciones: (i) Utilizar una media de valores anteriores de la intensidad de la corriente, con lo cual se tiene una referencia estable sin oscilaciones, (ii) Encontrar valores de la intensidad de la corriente que sean representativos del aumento de la fuerza sobre la ventanilla, y así evitar el efecto del ripple o rizado. La primera solución, aunque aparentemente más sencilla, tiene sin embargo dos inconvenientes respecto a la segunda, que son: la menor precisión al detectar un pinch ,y por lo tanto un tiempo de respuesta mayor, y la necesidad de utilizar más memoria y más tiempo de un microcontrolador utilizado en el equipo de soporte para implementar dicha solución.
En la segunda solución, se utilizan aquellos valores de la intensidad que tengan la misma fase dentro de la oscilación de la corriente. Esta característica la cumplen los máximos del rizado. Sin embargo, se observa (ver Figs.3a y 3b) que los valores de los máximos todavía presentan una cierta oscilación. Ello se debe a que la corriente por cada uno de los diez bobinados del motor eléctrico de CC no es exactamente igual, sino que varia ligeramente. Para evitar dicho problema que introduce la oscilación de corriente se utilizará la diferencia de aquellos valores de corriente que correspondan a un mismo bobinado. Es decir, al valor de corriente del máximo actual se le resta el valor de corriente del máximo que corresponde al mismo bobinado en la vuelta anterior.
Utilizar tan solo los máximos para la detección del pinch comporta una limitación en la frecuencia a la que puede operar el método (gama de funcionamiento del algoritmo anti-pinch), ya que sólo comprobará si ocurre pinch cada vez que se produzca un máximo. Sin embargo, la precisión que se obtiene compensa.
Una vez definidos los parámetros utilizados por el algoritmo, se procede a continuación a exponer las etapas y estructura de dicho algoritmo basado en lógica borrosa para la detección del pinch.
Tal como se ha indicado las entradas del sistema borroso son: la posición de la ventanilla, el aumento relativo de la intensidad de la corriente en una vuelta del motor y el aumento relativo de la intensidad de corriente en tres vueltas del motor.
Se ha estimado conveniente introducir dos entradas referentes al aumento de intensidad de corriente por dos razones. En primer lugar para tener dos referencias cercanas que aunque parecidas nos dan información diferente.
En segundo para hacer el sistema más tolerante a errores, ya que no se detectará anti-pinch a no ser que las dos entradas den valores altos.
Para encontrar las funciones de pertenencia de las entradas que provienen de la intensidad se ha calculado cual es el valor de esta señal, bajo diferentes condiciones de fricción y considerando todo el recorrido de la ventanilla incluido un atrapamiento al final. Se ha calculado la media de los valores de la señal antes de llegar al pinch. Este valor medio se ha utilizado para situar el punto medio de la función de pertenencia Z (cero, es la central). El ancho de esta función de pertenencia, que corresponde a los puntos centrales de las otras dos funciones de pertenencia, se ha ajustado dependiendo de la respuesta del sistema en función de resultados experimentales.
Las funciones de pertenencia de la entrada correspondiente a la posición se han escogido separando el espacio total recorrido por la ventanilla en tres zonas. En la base de las reglas queda reflejado que el sector donde el pinch es más probable es la zona más cercana al marco de la ventanilla.
El sistema de lógica borrosa utilizado tiene las características que reflejan las funciones de pertenencia de las Figs. 4, 5 y 6, que son auto explicativas, indicándose en el caso de las dos primeras Figs., en ordenadas, la probabilidad y en abcisas la diferencia entre intensidades detectada y en la tercera Fig. en su eje de abcisas el n° de picos de rizado (ripples) contados.
La base de reglas del sistema de lógica borrosa utilizado es :
IF max10=N AND max30=N AND posición= baja THEN salida=0 IF max10=Z AND max30=N AND posición=baja THEN salida=0 IF max10=P AND max30=N AND posición=baja THEN salida=0
IF max10=N AND max30=Z AND posición=baja THEN salida=0 IF max10=Z AND max30=Z AND posición=baja THEN salida=0 IF max10=P AND max30=Z AND posición=baja THEN salida=0 IF max10=N AND max30=P AND posición=baja THEN salida=0 IF max10=Z AND max30=P AND pos¡ción=baja THEN salida=0 IF max10=P AND max30=P AND posición=baja THEN salida=0
IF max10=1 AND max30=1 AND posición=media THEN salida=0
IF max10=Z AND max30=1 AND posición=media THEN salida=0 IF max10=P AND max30=1 AND posición=media THEN salida=0 IF max10=1 AND max30=Z AND posición=media THEN salida=0 IF max10=Z AND max30=Z AND posición=media THEN salida=0 IF max10=P AND max30=Z AND posición=media THEN salida=0
IF max10=1 AND max30=P AND posición=media THEN salida=0 IF max10=Z AND max30=P AND posición=media THEN salida=0 IF max10=P AND max30=P AND posición=media THEN salida=0
IF max10=1 AND max30=1 AND posición=alta THEN salida=0
IF max10=Z AND max30=1 AND posición=alta THEN salida=0 IF max10=P AND max30=1 AND posición=alta THEN salida=0 IF max10=1 AND max30=Z AND posición=alta THEN salida=0 IF max10=Z AND max30=Z AND posición=alta THEN salida=0 IF max10=P AND max30=Z AND posición=alta THEN salida=1
IF max10=1 AND max30=P AND posición=alta THEN salida=0 IF max10=Z AND max30=P AND posición=alta THEN salida=1 IF max10=P AND max30=P AND posición=alta THEN salida=1
En esta base de reglas se reflejan bajo que situaciones un controlador experto decidiría si se produce un pinch. El ajuste de los términos borrosos (indicados en las figuras 5 y 6) se ha generado a partir de la respuesta del sistema a los valores de intensidad de corriente recogidos en múltiples subidas de la ventanilla bajo diferentes condiciones de fricción de la ventanilla. La salida del sistema de lógica borrosa indicará si se ha producido un pinch o no. La salida 1 indica pinch o atrapamiento.
En caso de detectarse pinch se realizará de inmediato y sucesivamente una nueva comprobación. Así, después de detectarse un pinch, se propone reducir el duty cycle un 90% y se comprueba si en el siguiente máximo de intensidad se produce de nuevo el pinch. Hay que remarcar que al hacer esto, el sistema sigue cumpliendo unos tiempos de detección adecuados para adoptar unas contramedidas eficaces. Esto permite ajusfar los parámetros del sistema fuzzy de detección para hacerlo más sensible, ya que aunque inicialmente detecte aumentos de fricción como pinch, al reducir la potencia del motor se descartarán como posibles atrapamientos.
En conclusión, el sistema de detección fuzzy propuesto, en el Ejemplo de implementación descrito, utilizará como entradas la posición de la ventanilla, el aumento relativo de la intensidad de la corriente respecto a una vuelta y respecto a tres vueltas del motor, y empleará la reducción del duty cycle en un 90 por ciento para discernir entre aumentos bruscos de la fricción y fuerzas externas aplicas sobre la ventanilla. Tal como se ha referido, tras detectar un pinch se puede realizar alternativamente una reducción mediante PWM de la velocidad del motor de un 30 a un 50 por ciento para discernir, aplicando a continuación de nuevo dicho primer algoritmo de lógica borrosa, si dicho incremento relativo de intensidad de la corriente, tal como un aumento brusco de intensidad, es debido a una fuerza externa aplicada sobre el elemento móvil o a un esfuerzo derivado de la fricción de dicho elemento móvil con unas partes de guiado del mismo en su desplazamiento.
Habiendo descrito en modo suficiente la invención para poder ser puesta en práctica por un técnico en la materia, se recaba hacer extensivo su objeto a aquellas variaciones de detalle que no alteren su esencialidad que se resume en las siguientes reivindicaciones.

Claims

REIVINDICACIONES
1.- Método para gestión controlada de un elemento móvil, accionado por un motor eléctrico, con seguridad anti-atrapamiento o anti-choque, estando dicho elemento móvil, tal como una luna o panel de un vehículo, asiento desplazable o similar, convenientemente guiado y accionado por un motor eléctrico de CC, de imán permanente, multipolar, caracterizado por realizar una detección de una situación de atrapamiento de un objeto o miembro interpuesto en la carrera del citado elemento móvil o de un eventual choque de dicho elemento móvil mediante un primer algoritmo basado en lógica borrosa cuyas entradas son la posición del citado elemento móvil y los incrementos relativos que puedan producirse en la intensidad de la corriente consumida por el motor en una vuelta del motor y tras una vuelta ulterior de dicho motor, próxima.
2.- Método, según la reivindicación 1 , caracterizado porque dicha vuelta ulterior, próxima, es la tercera, inmediatamente subsiguiente a la primera en que se detectó dicho incremento relativo en la intensidad de la corriente consumida por el motor.
3.- Método según la reivindicación 1 , caracterizado porque para evaluar los incrementos de la intensidad de la corriente consumida por el motor que puedan producirse, se utilizan los máximos del rizado de la corriente de polarización de dicho motor medidos en un mismo inductor del motor, o sea aquellos valores de la intensidad que tienen la misma fase dentro de la oscilación de la corriente.
4.- Método según la reivindicación 1 , caracterizado porque para evaluar los incrementos de la intensidad de la corriente consumida por el motor que puedan producirse, se utiliza una media de los valores anteriores de dicha corriente.
5.- Método, según la reivindicación 3, caracterizado porque tras una primera detección de atrapamiento o choque por aplicación de dicho primer algoritmo, se reduce mediante PWM el duty cicle de la corriente de alimentación al motor a un 90 por ciento, para discernir a continuación, aplicando nuevamente dicho primer algoritmo de lógica borrosa, si dicho incremento de la intensidad de la corriente, tal como un aumento brusco, es debido a una fuerza externa aplicada sobre el elemento móvil o a un esfuerzo derivado de la fricción de dicho elemento móvil respecto a unas partes de guiado del mismo en su desplazamiento.
6.- Método, según la reivindicación 1 , caracterizado porque tras una primera detección de atrapamiento o choque por aplicación de dicho primer algoritmo, se reduce mediante PWM la velocidad del motor de un 30 a un 50 por ciento para discernir, aplicando a continuación dicho primer algoritmo de lógica borrosa, si dicho incremento de la intensidad de la corriente, tal como un aumento brusco, es debido a una fuerza extema aplicada sobre el elemento móvil o a un esfuerzo derivado de la fricción de dicho elemento móvil con unas partes de guiado del mismo en su desplazamiento.
7.- Método según la reivindicación 1 , caracterizado porque la información acerca de la posición del elemento móvil se obtiene por medio de una detección del rizado de la corriente de polarización del motor mediante variación de la frecuencia de muestreo.
8.- Método, según la reivindicación 3, caracterizado por comprender una etapa de control de la velocidad del elemento móvil, en lazo cerrado, utilizando un segundo algoritmo de lógica borrosa con información al mismo de una velocidad deseada o de referencia y evaluación de la desviación respecto a dicha referencia de la velocidad real.
9.- Método, según la reivindicación 8, caracterizado porque dicha velocidad real es medida a partir de dicha detección del rizado de la corriente de polarización del motor.
10.- Un programa informático que es susceptible de ser cargado directamente en la memoria interna de un ordenador digital y comprende partes de código de dicho programa informático para llevar a cabo los pasos del método de la reivindicación 1 , ejecutando dicho primer algoritmo de lógica borrosa.
11.- Un programa informático que es susceptible de ser cargado directamente en la memoria interna de un ordenador digital y comprende partes de código de dicho programa informático para llevar a cabo los pasos de la reivindicación 8, ejecutando dicho segundo algoritmo de lógica borrosa.
PCT/ES2001/000508 2001-12-27 2001-12-27 Metodo de detección de atrapamientos causados por elevalunas motorizados y similares, mediante algoritmos de lósica borrosa WO2003063318A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01989629A EP1467461A1 (en) 2001-12-27 2001-12-27 Method of detecting obstructions caused by motor-driven power windows and similar devices using fuzzy logic algorithms
PCT/ES2001/000508 WO2003063318A1 (es) 2001-12-27 2001-12-27 Metodo de detección de atrapamientos causados por elevalunas motorizados y similares, mediante algoritmos de lósica borrosa
US10/710,208 US7359783B2 (en) 2001-12-27 2004-06-25 Method of detecting obstructions caused by motor-driven power windows and similar devices using fuzzy logic algorithms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2001/000508 WO2003063318A1 (es) 2001-12-27 2001-12-27 Metodo de detección de atrapamientos causados por elevalunas motorizados y similares, mediante algoritmos de lósica borrosa

Publications (1)

Publication Number Publication Date
WO2003063318A1 true WO2003063318A1 (es) 2003-07-31

Family

ID=27589247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2001/000508 WO2003063318A1 (es) 2001-12-27 2001-12-27 Metodo de detección de atrapamientos causados por elevalunas motorizados y similares, mediante algoritmos de lósica borrosa

Country Status (3)

Country Link
US (1) US7359783B2 (es)
EP (1) EP1467461A1 (es)
WO (1) WO2003063318A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019946A2 (en) * 2003-08-25 2005-03-03 Jcae Do Brasil Ltda. Control system for direct-current electrics motors
WO2005086312A1 (de) * 2004-03-02 2005-09-15 Brose Fahrzeugteile Gmbh & Co. Kg, Coburg Verfahren zum überwachen der verstellbewegung eines von einer antriebseinrichtung angetriebenen bauteils
US9234979B2 (en) 2009-12-08 2016-01-12 Magna Closures Inc. Wide activation angle pinch sensor section

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8060308B2 (en) * 1997-10-22 2011-11-15 Intelligent Technologies International, Inc. Weather monitoring techniques
WO2003063318A1 (es) * 2001-12-27 2003-07-31 Lear Automotive (Eeds) Spain,S.L. Metodo de detección de atrapamientos causados por elevalunas motorizados y similares, mediante algoritmos de lósica borrosa
DE10258476A1 (de) * 2002-12-10 2004-07-01 Brose Fahrzeugteile Gmbh & Co. Kg, Coburg Verfahren und Vorrichtung zur positionsabhängigen Steuerung eines Verstellelementes in einem Kraftfahrzeug
FR2895436B1 (fr) * 2005-12-23 2010-12-24 Renault Sas Procede de commande d'un ouvrant de vehicule avec fonction d'anti-pincement
DE102007019798A1 (de) * 2007-04-26 2008-10-30 Siemens Ag Verfahren zum Steuern eines elektrischen Türantriebes
US20100039057A1 (en) * 2008-04-30 2010-02-18 Tsai Kune-Muh Anti-pinch method and device for controlling an openable and closable body
WO2010054477A1 (en) * 2008-11-14 2010-05-20 Thinkeco Power Inc. System and method of democratizing power to create a meta-exchange
US8493081B2 (en) 2009-12-08 2013-07-23 Magna Closures Inc. Wide activation angle pinch sensor section and sensor hook-on attachment principle
US8615927B2 (en) * 2011-11-23 2013-12-31 GM Global Technology Operations LLC Noncontact obstacle detection system using RFID technology
DE102018206935B4 (de) * 2018-05-04 2022-02-24 Bayerische Motoren Werke Aktiengesellschaft Steuereinrichtung und Verfahren zur Steuerung eines Fensterhebers mit Einklemmschutz für ein Kraftfahrzeug sowie eine Software zur Durchführung des Verfahrens
CN111350437A (zh) * 2020-04-26 2020-06-30 南京天擎汽车电子有限公司 车窗位置判断方法、装置、车辆、设备和介质
EP4001568B1 (en) 2020-11-17 2024-05-01 Aptiv Technologies AG Pinch detection based on estimated pinch force
EP4001566B1 (en) 2020-11-17 2024-05-29 Aptiv Technologies AG Pinch detection during motor restart
EP4001565B1 (en) 2020-11-17 2023-12-27 Aptiv Technologies Limited Method and device for detecting potential pinches
EP4001569A1 (en) 2020-11-17 2022-05-25 Aptiv Technologies Limited Pinch detection based on motor current increase
EP4001567B1 (en) 2020-11-17 2024-05-29 Aptiv Technologies AG Method and device for detecting potential pinches
CN112761455B (zh) * 2020-12-17 2022-06-24 苏州琪埔维半导体有限公司 一种基于纹波防夹车窗的位置补偿***及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115190A (ja) * 1991-09-30 1993-05-07 Omron Corp 車両用開閉装置
JPH06106971A (ja) * 1992-09-24 1994-04-19 Nippondenso Co Ltd パワーウインドウの挟込防止装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404158B1 (en) * 1992-04-22 2002-06-11 Nartron Corporation Collision monitoring system
US6064165A (en) * 1992-04-22 2000-05-16 Nartron Corporation Power window or panel controller
IT1258712B (it) * 1992-11-13 1996-02-27 Roltra Morse Spa Dispositivo di comando degli alzacristalli elettrici con protezione al taglio
JP2986914B2 (ja) * 1993-03-12 1999-12-06 プロスペクツ コーポレーション 乗物用通気調整システム及び方法
JP2891869B2 (ja) * 1994-03-31 1999-05-17 株式会社大井製作所 開閉体の駆動制御装置
JP3467875B2 (ja) * 1994-12-13 2003-11-17 株式会社デンソー パワーウインド制御装置
JP3465735B2 (ja) * 1995-10-02 2003-11-10 株式会社大井製作所 車両用スライドドアの自動開閉制御装置
JP3459335B2 (ja) * 1997-05-28 2003-10-20 日産自動車株式会社 パワーウインドウ制御装置
US5949207A (en) * 1997-09-03 1999-09-07 Eaton Corporation Auto window switch and obstacle detect/protect with override
JP3730795B2 (ja) * 1998-12-28 2006-01-05 アルプス電気株式会社 パワーウインド装置の挟み込み検知方法
DE19902051C2 (de) * 1999-01-20 2001-07-19 Daimler Chrysler Ag Stromversorgungssystem für ein Fahrzeug
DE10015856A1 (de) * 2000-03-30 2001-10-11 Bosch Gmbh Robert Verfahren zur Bestimmung der Restlaufzeit eines Antriebes bis zum Erreichen einer Endposition
EP1306511B1 (en) * 2000-07-27 2004-12-29 Lear Automotive (EEDS) Spain, S.L. System and method for optimizing the control program of a window-lifting device with anti-jam protection
US20020039008A1 (en) * 2000-09-29 2002-04-04 Siemens Automotive Corporation Power closure sensor system and method
US6739212B2 (en) * 2000-12-22 2004-05-25 Dura Global Technologies, Inc. Adjustable pedal controller with obstruction detection
US6555982B2 (en) * 2001-05-29 2003-04-29 Meritor Light Vehicle Technology, L.L.C. Method and system for detecting an object in the path of an automotive window utilizing a system equation
US6499359B1 (en) * 2001-07-09 2002-12-31 Nartron Corporation Compressible capacitance sensor for determining the presence of an object
US7132642B2 (en) * 2001-07-09 2006-11-07 Nartron Corporation Anti-entrapment systems for preventing objects from being entrapped by translating devices
US6782759B2 (en) * 2001-07-09 2004-08-31 Nartron Corporation Anti-entrapment system
WO2003063318A1 (es) * 2001-12-27 2003-07-31 Lear Automotive (Eeds) Spain,S.L. Metodo de detección de atrapamientos causados por elevalunas motorizados y similares, mediante algoritmos de lósica borrosa
JP4768303B2 (ja) * 2005-04-08 2011-09-07 株式会社東海理化電機製作所 パワーウインドウ装置
US7549517B2 (en) * 2005-08-29 2009-06-23 Otis Elevator Company Elevator car dispatching including passenger destination information and a fuzzy logic algorithm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115190A (ja) * 1991-09-30 1993-05-07 Omron Corp 車両用開閉装置
JPH06106971A (ja) * 1992-09-24 1994-04-19 Nippondenso Co Ltd パワーウインドウの挟込防止装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019946A2 (en) * 2003-08-25 2005-03-03 Jcae Do Brasil Ltda. Control system for direct-current electrics motors
WO2005019946A3 (en) * 2003-08-25 2006-02-02 Jcae Do Brasil Ltda Control system for direct-current electrics motors
WO2005086312A1 (de) * 2004-03-02 2005-09-15 Brose Fahrzeugteile Gmbh & Co. Kg, Coburg Verfahren zum überwachen der verstellbewegung eines von einer antriebseinrichtung angetriebenen bauteils
US8068958B2 (en) 2004-03-02 2011-11-29 Brose Fahrzeugteile Gmbh & Co Kg, Coburg Method for monitoring the adjustment movement of a component driven by a drive device
US9234979B2 (en) 2009-12-08 2016-01-12 Magna Closures Inc. Wide activation angle pinch sensor section
US9417099B2 (en) 2009-12-08 2016-08-16 Magna Closures Inc. Wide activation angle pinch sensor section

Also Published As

Publication number Publication date
EP1467461A1 (en) 2004-10-13
US7359783B2 (en) 2008-04-15
US20050187688A1 (en) 2005-08-25

Similar Documents

Publication Publication Date Title
WO2003063318A1 (es) Metodo de detección de atrapamientos causados por elevalunas motorizados y similares, mediante algoritmos de lósica borrosa
US7309971B2 (en) Opening and closing body control device
JP4818847B2 (ja) モータ制御装置
CN110089023B (zh) 控制马达运动的马达控制器、马达组件、电子锁和方法
JP2005351042A (ja) 開閉体制御装置
JP3591510B2 (ja) 車両用開閉体制御装置
EP1979043A1 (en) System and apparatus for controlled activation of acute use medical devices
JP4679281B2 (ja) モータ制御装置およびモータ推定温度の算出方法
US20200248493A1 (en) Opening and closing body control device
JP2007053894A (ja) モータ制御装置
RU2687988C2 (ru) Ветробезопасная дверь
US20130274927A1 (en) Walking Device
ES2456818T3 (es) Accionamiento lineal para puertas correderas o similares
JP3578568B2 (ja) 車両用パワーウィンドゥ制御装置
JP2008150828A (ja) 車両用開閉体の制御装置
ES2318733T3 (es) Procedimiento para el cerramiento definido de una luna de vehiculo de motor.
JP6855256B2 (ja) 自動ドア装置、自動ドアセンサおよび自動ドア装置の制御方法
ES2269875T3 (es) Dispositivo para el control de una persiana enrollable.
JP2019178590A (ja) 自動ドアおよび自動ドアの制御方法
JP2019035231A (ja) 自動ドアセンサ、自動ドアシステムおよび自動ドアセンサの制御方法
US9647587B2 (en) System and method for determining the position of a moving part driven by an electric motor
JP2003336446A (ja) 車両用パワーウインド装置
JP4228519B2 (ja) リニアモータ式自動扉の衝突判定方法
ES2275641T3 (es) Procedimiento y dispositivo de control de la alimentacion de un motor electrico de arranque de un vehiculo automovil.
JP2003336444A (ja) 車両用パワーウインド装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001989629

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001989629

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001989629

Country of ref document: EP