WO2003059834A1 - Glass-ceramic composite containing nanoparticles - Google Patents

Glass-ceramic composite containing nanoparticles Download PDF

Info

Publication number
WO2003059834A1
WO2003059834A1 PCT/EP2002/014043 EP0214043W WO03059834A1 WO 2003059834 A1 WO2003059834 A1 WO 2003059834A1 EP 0214043 W EP0214043 W EP 0214043W WO 03059834 A1 WO03059834 A1 WO 03059834A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
weight
composite material
nanoparticles
glass ceramic
Prior art date
Application number
PCT/EP2002/014043
Other languages
German (de)
French (fr)
Inventor
José ZIMMER
Jörg Hinrich FECHNER
Original Assignee
Schott Glas
Carl-Zeiss-Stiftung Trading As Schott Glas
Carl-Zeiss-Stiftung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Glas, Carl-Zeiss-Stiftung Trading As Schott Glas, Carl-Zeiss-Stiftung filed Critical Schott Glas
Priority to AU2002352237A priority Critical patent/AU2002352237A1/en
Priority to JP2003559943A priority patent/JP2005532972A/en
Publication of WO2003059834A1 publication Critical patent/WO2003059834A1/en
Priority to US10/890,682 priority patent/US20050119105A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/005Antimicrobial preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/16Emollients or protectives, e.g. against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0078Pigments consisting of flaky, non-metallic substrates, characterised by a surface-region containing free metal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/61Surface treated
    • A61K2800/62Coated
    • A61K2800/621Coated by inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/02Antibacterial glass, glaze or enamel
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • C03C2214/05Particles; Flakes surface treated, e.g. coated
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/20Glass-ceramics matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • C03C2217/452Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials

Definitions

  • the invention relates to an inorganic glass-ceramic composite material comprising a glass or glass ceramic phase and nanoparticles.
  • the composite material is characterized in particular by its antimicrobial, anti-inflammatory, wound-healing and light-absorbing and light-scattering properties.
  • DE 19647 368 A1 shows composite materials containing a substrate and a nanocomposite that is in functional contact therewith.
  • the substrate can consist of glass material and be in the form of powders.
  • the nanocomposite can completely or partially cover the substrate as a coating.
  • a glass powder has become known from US Pat. No. 5,676,720 which comprises 40-60% by weight of SiO 2 , 5-30% by weight of Na 2 0, 10-35% by weight of CaO, 0-12% by weight of P 2 0 5 , a glass ceramic made from a glass of such a composition has also become known.
  • No. 5,981,412 describes a bioactive bioceramic for medical applications with the crystalline phase Na 2 O 2 CaO 3 SiO 2 .
  • the crystallite size is 13 ⁇ m.
  • the ceramization takes place with tempering steps for nucleation and crystallization.
  • the focus is on the mechanical properties such as K 1c .
  • the proportion of crystal phases is between 34 and 60% by volume.
  • Nanoparticles such as Ti0 2 or ZnO are used with particle sizes of approx. 20 - 100 nm for UV blocking in cosmetic and other products. UV blocking is based on absorption, reflection and scattering of the radiation by these nanoparticles.
  • UVA (320 - 400 nm) radiation is scattered more than the radiation in the visible range.
  • the skin in sun protection products can be protected from sunburn.
  • TiO 2 in particular in the crystalline form anatase, is also photocatalytically active.
  • the absorption of photons creates electron-hole pairs that can react with molecules on the TiO 2 particle surface or environment.
  • radicals can develop here, which can have damaging effects on living organisms.
  • TiO 2 nanoparticles are currently coated with SiO 2 or Al 2 O 3 , especially for cosmetic applications.
  • TiO 2 nanoparticles if they get into human cells, can lead to DNA damage.
  • the skin is not a barrier for nanoparticles, since they can also penetrate through the skin.
  • Nanoparticles are provided with capture ions which prevent the formation of radicals on the nanoparticle surface by electron hole interception.
  • the object of the invention is to avoid the disadvantages of the prior art and to provide an inorganic material which, in addition to antimicrobial, anti-inflammatory and skin-regenerating properties, also absorbs, reflects and scatters light, in particular UV radiation, but also radiation in the visible range , radical formation under UV radiation should be avoided and migration of the nanoparticles in the body tissue can be prevented.
  • the object is achieved by using the ceramic-glass composite according to claim 1.
  • the ceramic-glass composite consists of different phases. These are a glass or glass ceramic phase as well as nanocrystals.
  • the nanocrystals are located on or in the surface of the larger glass or glass ceramic particles.
  • the nanopowders have particle sizes with d50 values ⁇ 500 nm, preferably ⁇ 200 nm, more preferably ⁇ 100 nm, most preferably ⁇ 50 nm.
  • the primary particle size can be significantly lower.
  • the glass or glass ceramic phases which contain these nanoparticles on or in the surface are preferably in powder form with particle sizes with d50 ⁇ 100 ⁇ m, preferably ⁇ 50 ⁇ m, more preferably ⁇ 10 ⁇ m.
  • the particle sizes of the glass powders are even more preferably ⁇ 5 ⁇ m, preferably ⁇ 2 ⁇ m, in special cases ⁇ 1 ⁇ m.
  • the crystals of the glass ceramic have crystallite sizes (d50) ⁇ 10 ⁇ m, preferably ⁇ 1 ⁇ m, particularly preferably ⁇ 500 nm, preferably ⁇ 100 nm, in special cases ⁇ 50 nm.
  • the ceramic-glass composite material of the invention is characterized in that the nanoparticles firmly on the surface of larger glass particles.
  • the nanoparticles can be coated with a glassy layer that prevents or suppresses a slight reaction of the nanoparticles with the environment.
  • the chemical resistance of the glass or of the glass ceramic is preferably so high that the glass does not completely dissolve in cosmetic formulations and the nanoparticles coated with glass thus remain coated.
  • the chemical composition of the glass has antimicrobial, anti-inflammatory and skin-care properties.
  • the material can have a biocidal, in any case a biostatic effect against bacteria, fungi and viruses, but can be skin-friendly and toxicologically harmless in contact with humans.
  • Desirable maximum concentrations in the area of cosmetic products are, for example, Pb ⁇ 20 ppm, Cd ⁇ 5 ppm, As ⁇ 5 ppm, Sb ⁇ 10 ppm, Hg ⁇ 1 ppm, Ni ⁇ 10 ppm.
  • the glass or the starting glass of the glass ceramic preferably have the following components:
  • SiO 2 as a network builder between 30-70% by weight. At low concentrations, the spontaneous tendency to crystallize increases sharply and the chemical resistance strongly decreases. At higher SiO 2 values, the crystallization stability can decrease and the processing temperature is increased significantly, so that the hot forming properties deteriorate. Si0 2 is also a component of the crystalline phases formed during a ceramization.
  • Na 2 O is used as a flux when melting the glass. At concentrations ⁇ 5%, the melting behavior is negatively affected. Sodium is part of the phases that form during ceramization. Sodium is released from the powder, inter alia, by ion exchange in aqueous media. K 2 O acts as a flux when melting the glass. In addition, potassium is released in aqueous systems inter alia by ion exchange.
  • the chemical resistance of the glass and thus the release of ions in aqueous media is adjusted via the P 2 0 5 content.
  • the P 2 0 5 content is between 0 and 10% by weight. At higher P 2 O 5 values, the hydrolytic resistance of the glass ceramic becomes too low.
  • the glass can contain up to 5% by weight of B 2 O 3 .
  • Al 2 O 3 should be ⁇ 15% by weight in order to ensure sufficient crystallization stability of the glass for production.
  • Al 2 O 3 should be ⁇ 5% by weight, preferably ⁇ 2% by weight, particularly preferably ⁇ 1% by weight. -% his.
  • antibacterial ions such as e.g. Ag, Au, 1, Ce, Cu, Zn can be contained in concentrations of ⁇ 5% by weight.
  • concentration of these ions is ⁇ 5% by weight, in particular ⁇ 2% by weight in total.
  • Ions such as Ag, Cu, Au, Li can also be included as additives to adjust the high-temperature conductivity of the melt and thus to improve the meltability with HF melting processes.
  • Coloring ions such as Fe, Co, V, Cu, Cr can be added individually or in combination in a total concentration of ⁇ 1% by weight.
  • oxides such as TiO 2 and CeO, which also have an absorbing effect in the UV range, into the base glass, effective blocking of the UV radiation can be achieved, the UV edge being able to be set in a defined manner by adding different contents.
  • the total concentration of these oxides is ⁇ 5% by weight, preferably ⁇ 2% by weight, more preferably ⁇ 1% by weight.
  • the glass can contain ions such as Ce, Mn, Ag, Au, Cu, Zn, Fe, which can act as electron scavengers. In this way, radical formation can be suppressed by the electron-hole pairs generated by Ti0 2 under UV radiation.
  • Certain ions can therefore have a dual function. On the one hand, they reinforce the antimicrobial effect synergistically and can also trap free electrons through redox reactions, which could lead to radical formation.
  • the concentration of the elements is ⁇ 2% by weight, in particular ⁇ 1% by weight, particularly preferably ⁇ 0.1% by weight
  • the glass is melted using conventional melting technologies or high-frequency processes and shaped into block glass or so-called “ribbons”.
  • the glass or the starting glass of the glass ceramic can be ground to powder.
  • the particle size of these powders is preferably ⁇ 100 ⁇ m, particularly preferred ⁇ 50 ⁇ m, in particular ⁇ 10 ⁇ m, in particular ⁇ 5 ⁇ m, in particular ⁇ 1 ⁇ m. Both dry and “wet” grinding technology can be used for this. In the case of "wet” grinding, the powders can then be dried.
  • the glass powders can be mixed with the nanopowders. This can be done dry or the nanopowders are added as a dispersion to the dry or "wet" glass powders.
  • An alternative production route is to add the nanoparticles to the glass during the first grinding process. After the mixing process, the nanoparticles are on the surface of the glass powder. If the nanopowders have been added in dispersion form, drying may be necessary. The mixture is sintered in the oven. The nanopowders combine with the glass powders. Surface diffusion processes coat the nanoparticles with glass during sintering. As a result, the nanoparticles are encapsulated from the environment. The chemical resistance of this glass encapsulation is so high that a surface reaction of the Ti0 2 with the environment is suppressed in cosmetic formulations.
  • the sintering temperatures for viscous sintering are above T g of the starting glass, preferably
  • the sintering can also take place below T g , this is referred to as so-called diffusion-controlled solid-state sintering.
  • the temperatures are preferably 200 ° C. to 0 ° C. below T g , in particular 100 ° C. to 10 ° C. below T g . With this low-temperature sintering, the meal and energy consumption can be reduced by reduced sintering together.
  • the main phases here include Alkali-alkaline earth silicates such as sodium calcium silicates, alkaline earth silicates such as calcium silicate are formed.
  • the sintering can also be carried out in a multi-stage temperature-time program, for example in order to specifically fuse the Nanoparticles with the glass and, if possible, controlled to carry out a ceramicization of the glass.
  • the powders are ground again to adjust the final particle size.
  • the sintering process can be carried out in such a way that the glass phase can be ceramized.
  • the additional scattering or reflection effects can be set by ceramizing the base glass with a defined crystallite size.
  • the effects can be controlled by process parameters such as the temperature-time profile of the process, but also by the amount of crystal former added.
  • the composite material is usually used as a powder, particle sizes of ⁇ 100 ⁇ m being obtained by a final grinding process.
  • Particle sizes of ⁇ 50 ⁇ m or ⁇ 20 ⁇ m have proven to be expedient.
  • Particle sizes ⁇ 10 ⁇ m and smaller than 5 ⁇ m are particularly suitable.
  • Particle sizes ⁇ 1 ⁇ m have been found to be particularly suitable.
  • the grinding process can be carried out dry as well as with aqueous and non-aqueous grinding media.
  • the total amount of nanoparticles in the composite material is ⁇ 20% by weight, preferably ⁇ 10% by weight, more preferably ⁇ 5% by weight.
  • the light-influencing effects are achieved on the one hand by the nanoparticles, which lead intrinsically to the absorption and scattering of the light, on the other hand by the surface morphology of the glass or glass-ceramic particles, which lead to scattering of the light, and by bulk characteristics of the glass or glass-ceramic particles ,
  • the sintered nanoparticles can simultaneously act as heterogeneous nuclei for the crystallization of the glass phase. The crystallization with the nanoparticles can thus be influenced.
  • nanoparticles with biologically active glass leads to a UV blocker with positive skin properties.
  • the disadvantages of nanoparticles cannot be compensated for, but overcompensated.
  • the coating of the glass particles with nanopowders leads to additional light-scattering effects which are not observed in the pure glass or glass ceramic powders and which can be attributed to the changed surface morphology.
  • the powders are ideally suited to be used in the field of cosmetic products. This can include Products in the field of color cosmetics or UV protection products.
  • Fig. 1 wide-angle X-ray diagram of a sample with a base glass according to
  • Fig. 2 SEM image of a base glass according to embodiment 1 without sintered TiO 2 nanoparticles 3 - 5 SEM images of a basic glass according to embodiment 1 with 5% by weight of TiO 2 nanoparticles sintered at 560 ° C. for one
  • Table 1 Compositions in% by weight of the base glasses
  • the 4 ⁇ m glass powder of type 1 was dry-mixed in a drum mill with 5% by weight of TiO 2 nanopowder with a secondary particle size of approximately 100 nm.
  • the powder mixture was then sintered in a chamber furnace at 580 ° C. for 2 hours.
  • the sintered powder was then briefly ground again in a drum mill, so that a particle size of approximately 5 ⁇ m was set.
  • the nanopowders are firmly sintered into the surface of the glass powder and largely completely coated with a glassy phase. This could be demonstrated using SEM and TEM.
  • FIG. 1 shows an X-ray diagram of a base glass according to embodiment 1 with sintered TiO 2 on (rutile) nanoparticles. Sintering took place at 560 ° C for one hour.
  • the x-ray diagram clearly shows the amorphous structure of the base glass and the crystalline structure of the sintered Ti0 2 particles.
  • the X-ray reflections of the sintered TiO 2 particles are given the reference number 1.
  • FIG. 2 shows an SEM image of a base glass according to embodiment 1 without sintered nanoparticles.
  • the glass powder was sintered at 560 ° C for one hour. A smooth surface without sintered nanoparticles can be seen.
  • FIGS. 3-5 show a base glass according to embodiment 1 with 5% by weight of TiO 2 nanoparticles (rutile).
  • This composition like the comparative sample whose surface is shown in FIG. 2, was sintered at 560 ° C. for one hour. In contrast to the comparison sample shown in FIG. 2, the surface is no longer smooth.
  • the solid bond between the individual nanoparticles, in this case the rutile and the base glass powder, can be clearly seen in FIG. 3.
  • the solid bond between the nanoparticles and the base glass powder can also be clearly seen in FIGS. 4 and 5.
  • the sample composition is the same sample as in the SEM image according to FIG. 3.
  • FIG. 6 shows a transmission electron microscopy TEM image of a base glass according to embodiment 1 with 5% by weight of TiO 2 nanoparticles sintered at 560 ° C. for one hour. It can be seen on this TEM image that the Ti0 2 (rutile) nanoparticles designated by the reference number 10 is surrounded by a glassy phase which is given the reference number 20.
  • the antimicrobial anti-inflammatory UV-radiation-reducing glass-ceramic composite materials can preferably be used in powder form as an additive in the cosmetic industry, for example in sun protection creams and day creams and creams against skin aging.
  • the invention provides a material in which different properties are combined in one material. Protection of the radical formation is achieved by coating the TiO 2 with an antimicrobial, anti-inflammatory and skin-regenerating layer. This happens in particular because the nanoparticles are bound to glass and thus no skin penetration can occur.
  • the material In powder form, the material has special light-scattering, absorbing, reflective properties due to surface modification.

Abstract

The invention relates to a composite material which comprises a glass phase or glass-ceramic phase. The invention is characterized in that the inorganic composite material comprises nanoparticles and that the glass phase or glass-ceramic phase is charged with nanoparticles on or in the surface.

Description

GLAS-KERAMIK-KOMPOSIT ENTHALTEND NANOPARTIKEL GLASS-CERAMIC COMPOSITE CONTAINING NANOPARTICLES
Die Erfindung betrifft ein anorganisches Glas-Keramik-Kompositmaterial, umfassend eine Glas- oder Glaskeramikphase sowie Nanopartikel. Das Kompositmaterial zeichnet sich insbesondere durch seine antimikrobiellen, entzündungshemmenden, wundheilenden und lichtabsorbierenden sowie lichtstreuenden Eigenschaften aus.The invention relates to an inorganic glass-ceramic composite material comprising a glass or glass ceramic phase and nanoparticles. The composite material is characterized in particular by its antimicrobial, anti-inflammatory, wound-healing and light-absorbing and light-scattering properties.
Gläser mit bioaktiver und teilweise auch antimikrobieller Wirkung werden bei L.L. Hensch, J. Wilson, An Introduction to Bioceramics, World Scientific Publ., 1993, als Bioglas beschrieben. Derartiges Bioglas zeichnet sich durch Bildung von Hydroxylappatitschichten in wäßrigen Medien aus. Schwermetallfreie Alkali- Erdalkali-Silicat-Gläser mit antimikrobiellen Eigenschaften werden in den Anmeldungen WO 01/04252 und WO 01/03650 beschrieben.Glasses with bioactive and sometimes also antimicrobial effects are available from L.L. Hensch, J. Wilson, An Introduction to Bioceramics, World Scientific Publ., 1993, as Bioglas. Such bioglass is characterized by the formation of hydroxylappatite layers in aqueous media. Heavy metal-free alkali-alkaline earth silicate glasses with antimicrobial properties are described in the applications WO 01/04252 and WO 01/03650.
Die DE 19647 368 A1 zeigt Verbundwerkstoffe enthaltend ein Substrat und ein damit in funktionellem Kontakt stehendes Nanokomposit. Das Substrat kann aus Glasmaterial bestehen und in Form von Pulvern vorliegen. Das Nanokomposit kann das Substrat als Beschichtung ganz oder teilweise bedecken.DE 19647 368 A1 shows composite materials containing a substrate and a nanocomposite that is in functional contact therewith. The substrate can consist of glass material and be in the form of powders. The nanocomposite can completely or partially cover the substrate as a coating.
Aus der US 5,676,720 ist ein Glaspulver bekannt geworden, das 40 - 60 Gew.% Si02, 5 - 30 Gew.% Na20, 10 - 35 Gew.% CaO, 0 - 12 Gew.% P205 umfaßt, wobei auch eine Glaskeramik, hergestellt aus einem Glas einer derartigen Zusammensetzung, bekannt geworden ist.A glass powder has become known from US Pat. No. 5,676,720 which comprises 40-60% by weight of SiO 2 , 5-30% by weight of Na 2 0, 10-35% by weight of CaO, 0-12% by weight of P 2 0 5 , a glass ceramic made from a glass of such a composition has also become known.
US 5,981 ,412 beschreibt eine bioaktive Biokeramik für medizinische Anwendungen mit der kristallinen Phase Na2O • 2 CaO • 3 SiO2. Die Kristallitgröße liegt bei 13 μm. Die Keramisierung erfolgt mit Temperschritten für Keimbildung und Kristallisation. Schwerpunkt liegt auf den mechanischen Eigenschaften wie z.B. K1c . Der Kristallphasenanteil liegt zwischen 34 und 60 Vol.-%. Nanopartikel wie beispielsweise Ti02 oder ZnO werden mit Partikelgrößen von ca. 20 - 100 nm zur UV-Blockung in kosmetischen und anderen Produkten eingesetzt. Die UV-Blockung basiert auf Absorption, Reflexion und Streuung der Strahlung durch diese Nanopartikel. UVB (290 - 320 nm) UVA (320 - 400 nm)- Strahlung wird hierbei stärker gestreut als die Strahlung im sichtbaren Bereich. Somit kann in Sonnenschutzprodukten die Haut vor Sonnenbrand geschützt werden.No. 5,981,412 describes a bioactive bioceramic for medical applications with the crystalline phase Na 2 O 2 CaO 3 SiO 2 . The crystallite size is 13 μm. The ceramization takes place with tempering steps for nucleation and crystallization. The focus is on the mechanical properties such as K 1c . The proportion of crystal phases is between 34 and 60% by volume. Nanoparticles such as Ti0 2 or ZnO are used with particle sizes of approx. 20 - 100 nm for UV blocking in cosmetic and other products. UV blocking is based on absorption, reflection and scattering of the radiation by these nanoparticles. UVB (290 - 320 nm) UVA (320 - 400 nm) radiation is scattered more than the radiation in the visible range. Thus, the skin in sun protection products can be protected from sunburn.
TiO2 , insbesondere in der kristallinen Form Anatase ist allerdings auch photokatalytisch wirksam. Durch die Absorption von Photonen werden Elektron-- Loch-Paare erzeugt, die mit Molekülen der TiO2 -Partikel-Oberfläche oder- Umgebung reagieren können. Hierbei können unter anderem Radikale entstehen, die schädigende Wirkungen auf lebende Organismen haben können. Um solche negativen Effekte zu vermeiden, werden insbesondere für kosmetische Anwendungen TiO2 -Nanopartikel derzeit mit SiO2 oder AI2O3 beschichtet.However, TiO 2 , in particular in the crystalline form anatase, is also photocatalytically active. The absorption of photons creates electron-hole pairs that can react with molecules on the TiO 2 particle surface or environment. Among other things, radicals can develop here, which can have damaging effects on living organisms. In order to avoid such negative effects, TiO 2 nanoparticles are currently coated with SiO 2 or Al 2 O 3 , especially for cosmetic applications.
Insbesondere können TiO2 -Nanopartikel, falls sie in menschliche Zellen gelangen, zu DNA-Schäden führen. Die Haut stellt für Nanopartikel keine Barriere dar, da sie auch durch die Haut penetrieren können. Um die schädigende Wirkung der Nanopartikel zu minimieren, können gemäß der WO 99/60994 Ti02-In particular, TiO 2 nanoparticles, if they get into human cells, can lead to DNA damage. The skin is not a barrier for nanoparticles, since they can also penetrate through the skin. To minimize the damaging effect of the nanoparticles, according to WO 99/60994 Ti0 2 -
Nanopartikel mit Fängerionen, die eine Bildung von Radikalen an der Nanopartikeloberfläche durch Elektron-Loch-Abfang verhindern, versehen werden.Nanoparticles are provided with capture ions which prevent the formation of radicals on the nanoparticle surface by electron hole interception.
Aufgabe der Erfindung ist es, die Nachteile des Standes der Technik zu vermeiden und ein anorganisches Material zur Verfügung zu stellen, das neben antimikrobiellen, entzündungshemmenden und hautregenerienden Eigenschaften auch Licht, insbesondere UV-Strahlung, aber auch Strahlung im sichtbaren Bereich absorbiert, reflektiert und streut, wobei Radikalbildung unter UV- Bestrahlung vermieden werden soll und eine Migration der Nanopartikel im Körpergewebe verhindert werden kann. Die Aufgabe wird durch Verwendung des Keramik-Glas-Komposit gemäß Anspruch 1 gelöst.The object of the invention is to avoid the disadvantages of the prior art and to provide an inorganic material which, in addition to antimicrobial, anti-inflammatory and skin-regenerating properties, also absorbs, reflects and scatters light, in particular UV radiation, but also radiation in the visible range , radical formation under UV radiation should be avoided and migration of the nanoparticles in the body tissue can be prevented. The object is achieved by using the ceramic-glass composite according to claim 1.
Der Keramik-Glas-Komposit besteht aus unterschiedlichen Phasen. Diese sind eine Glas- oder Glaskeramikphase sowie Nanokristalle. Die Nanokristalle befinden sich hierbei auf bzw. in der Oberfläche der größeren Glas- bzw. Glaskeramikpartikel.The ceramic-glass composite consists of different phases. These are a glass or glass ceramic phase as well as nanocrystals. The nanocrystals are located on or in the surface of the larger glass or glass ceramic particles.
Die Nanopulver haben Partikelgrößen mit d50-Werten < 500 nm, bevorzugt < 200 nm, noch bevorzugter < 100 nm, am bevorzugsten < 50 nm. Hierbei kann allerdings die Primärpartikelgröße bei deutlich niedrigeren Werten liegen.The nanopowders have particle sizes with d50 values <500 nm, preferably <200 nm, more preferably <100 nm, most preferably <50 nm. However, the primary particle size can be significantly lower.
Die Glas- bzw. Glaskeramikphasen, die an bzw. in der Oberfläche diese Nanopartikel enthalten, liegen bevorzugt in Pulverform mit Partikelgrößen mit d50 < 100 μm, bevorzugt < 50 μm, noch bevorzugter < 10 μm vor.The glass or glass ceramic phases which contain these nanoparticles on or in the surface are preferably in powder form with particle sizes with d50 <100 μm, preferably <50 μm, more preferably <10 μm.
Noch bevorzugter sind die Partikelgrößen der Glaspulver < 5 μm, bevorzugt < 2 μm, in besonderen Fällen < 1 μm.The particle sizes of the glass powders are even more preferably <5 μm, preferably <2 μm, in special cases <1 μm.
Liegt ein Glaskeramikpulver vor, so weisen die Kristalle der Glaskeramik Kristallitgrößen (d50) < 10 μm, bevorzugt < 1 μm, insbesondere bevorzugt < 500 nm, bevorzugt < 100 nm, in besonderen Fällen < 50 nm auf.If a glass ceramic powder is present, the crystals of the glass ceramic have crystallite sizes (d50) <10 μm, preferably <1 μm, particularly preferably <500 nm, preferably <100 nm, in special cases <50 nm.
Das Keramik-Glas-Kompositmaterial der Erfindung zeichnet sich dadurch aus, daß die Nanopartikel fest an die Oberfläche von größeren Glaspartikeln. Hierbei können die Nanopartikel von einer glasigen Schicht überzogen sein, die eine leichte Reaktion der Nanopartikel mit der Umgebung verhindert bzw. unterdrückt.The ceramic-glass composite material of the invention is characterized in that the nanoparticles firmly on the surface of larger glass particles. The nanoparticles can be coated with a glassy layer that prevents or suppresses a slight reaction of the nanoparticles with the environment.
Die chemische Beständigkeit des Glases bzw. der Glaskeramik ist bevorzugt so hoch, daß in kosmetischen Formulierungen das Glas sich nicht komplett auflöst und somit die mit Glas überzogenen Nanopartikel beschichtet bleiben. Die chemische Zusammensetzung des Glases bewirkt antimikrobielle, entzündungshemmende und hautpflegende Eigenschaften.The chemical resistance of the glass or of the glass ceramic is preferably so high that the glass does not completely dissolve in cosmetic formulations and the nanoparticles coated with glass thus remain coated. The chemical composition of the glass has antimicrobial, anti-inflammatory and skin-care properties.
Weiterhin kann das Material gegenüber Bakterien, Pilzen sowie Viren eine biozide, auf jeden Fall eine biostatische Wirkung zeigen, im Kontakt mit dem Menschen jedoch hautverträglich und toxikologisch unbedenklich sein.Furthermore, the material can have a biocidal, in any case a biostatic effect against bacteria, fungi and viruses, but can be skin-friendly and toxicologically harmless in contact with humans.
Für bestimmte Anwendungen werden besondere Anforderungen an die Reinheit des Pulvers gestellt, damit die toxikologische Unbedenklichkeit des Glaspulvers gewährleistet ist.For certain applications, special requirements are placed on the purity of the powder, so that the toxicological harmlessness of the glass powder is guaranteed.
Die Belastung durch Schwermetalle sollte hierfür möglichst gering sein. Erstrebenswerte Maximalkonzentrationen im Bereich kosmetischer Produkte sind zum Beispiel Pb < 20 ppm, Cd < 5 ppm, As < 5 ppm, Sb < 10 ppm, Hg < 1 ppm, Ni < 10 ppm.The exposure to heavy metals should be as low as possible. Desirable maximum concentrations in the area of cosmetic products are, for example, Pb <20 ppm, Cd <5 ppm, As <5 ppm, Sb <10 ppm, Hg <1 ppm, Ni <10 ppm.
Bevorzugt weisen das Glas bzw. das Ausgangsglas der Glaskeramik die nachfolgenden Komponenten auf:The glass or the starting glass of the glass ceramic preferably have the following components:
SiO2 als Netzwerkbildner zwischen 30 - 70 Gew.%. Bei niedrigen Konzentrationen nimmt die spontane Kristallisationsneigung stark zu und die chemische Beständigkeit stark ab. Bei höheren SiO2-Werten kann die Kristallisationsstabilität abnehmen und die Verarbeitungstemperatur wird deutlich erhöht, so daß sich die Heißformgebungseigenschaften verschlechtern. Si02 ist außerdem Bestandteil der bei einer Keramisierung entstehenden kristallinen Phasen.SiO 2 as a network builder between 30-70% by weight. At low concentrations, the spontaneous tendency to crystallize increases sharply and the chemical resistance strongly decreases. At higher SiO 2 values, the crystallization stability can decrease and the processing temperature is increased significantly, so that the hot forming properties deteriorate. Si0 2 is also a component of the crystalline phases formed during a ceramization.
Na2O wird als Flußmittel beim Schmelzen des Glases eingesetzt. Bei Konzentrationen < 5 % wird das Schmelzverhalten negativ beeinflußt. Natrium ist Bestandteil der sich bei der Keramisierung bildenden Phasen. Natrium wird u. a. über lonenaustausch in wäßrigen Medien vom Pulver abgegeben. K2O wirkt als Flußmittel beim Schmelzen des Glases. Außerdem wird Kalium in wäßrigen Systemen u.a. durch lonenaustausch abgegeben.Na 2 O is used as a flux when melting the glass. At concentrations <5%, the melting behavior is negatively affected. Sodium is part of the phases that form during ceramization. Sodium is released from the powder, inter alia, by ion exchange in aqueous media. K 2 O acts as a flux when melting the glass. In addition, potassium is released in aqueous systems inter alia by ion exchange.
Über den P205-Gehalt wird die chemische Beständigkeit des Glases und damit die lonenabgabe in wäßrigen Medien eingestellt. Der P205-Gehalt liegt zwischen 0 und 10 Gew.%. Bei höheren P2O5-Werten wird die hydrolytische Beständigkeit der Glaskeramik zu gering.The chemical resistance of the glass and thus the release of ions in aqueous media is adjusted via the P 2 0 5 content. The P 2 0 5 content is between 0 and 10% by weight. At higher P 2 O 5 values, the hydrolytic resistance of the glass ceramic becomes too low.
Um die Schmelzbarkeit zu verbessern, kann das Glas bis zu 5 Gew.% B2O3 enthalten.To improve the meltability, the glass can contain up to 5% by weight of B 2 O 3 .
Die Menge an AI2O3 sollte < 15 Gew.% sein, um eine für die Produktion hinreichende Kristallisationsstabilität des Glases zu gewährleisten. Für Gläser von Glaskeramiken mit verstärkenden antimikrobiellen und entzündungshemmenden hautpflegenden Eigenschaften sollte AI2O3 < 5, Gew.-% bevorzugt < 2 Gew. -%, besonders bevorzugt < 1Gew. -% sein.The amount of Al 2 O 3 should be <15% by weight in order to ensure sufficient crystallization stability of the glass for production. For glasses of glass ceramics with reinforcing antimicrobial and anti-inflammatory skin-care properties, Al 2 O 3 should be <5% by weight, preferably <2% by weight, particularly preferably <1% by weight. -% his.
Zur Verstärkung der antibakteriellen Eigenschaften der Glaskeramik können antibakteriell wirkende Ionen wie z.B. Ag, Au, l, Ce, Cu, Zn in Konzentrationen < 5 Gew.% enthalten sein. Die Konzentration dieser Ionen Hegt < 5 Gew., insbesondere < 2 Gew. - % in Summe.To increase the antibacterial properties of the glass ceramic, antibacterial ions such as e.g. Ag, Au, 1, Ce, Cu, Zn can be contained in concentrations of <5% by weight. The concentration of these ions is <5% by weight, in particular <2% by weight in total.
Weiterhin können Ionen wie Ag, Cu, Au, Li zur Einstellung der Hochtemperaturleitfähigkeit der Schmelze und damit zur verbesserten Schmelzbarkeit mit HF-Schmelzverfahren als Zusätze enthalten sein.Ions such as Ag, Cu, Au, Li can also be included as additives to adjust the high-temperature conductivity of the melt and thus to improve the meltability with HF melting processes.
Farbgebende Ionen wie z.B. Fe, Co, V, Cu, Cr können einzeln oder kombiniert in einer Gesamtkonzentration < 1 Gew.% gezielt zudotiert werden. Durch Einbringen von Oxiden wie zum Beispiel TiO2 und CeO, die auch im UV- Bereich absorbierend wirken, in das Grundglas, kann eine effektive Blockung der UV-Strahlung erreicht werden, wobei durch Zugabe unterschiedlicher Gehalte die UV-Kante definiert eingestellt werden kann. Die Konzentration dieser Oxide liegt in Summe < 5 Gew.%, bevorzugt < 2 Gew.%, noch bevorzugter < 1 Gew.%.Coloring ions such as Fe, Co, V, Cu, Cr can be added individually or in combination in a total concentration of <1% by weight. By introducing oxides such as TiO 2 and CeO, which also have an absorbing effect in the UV range, into the base glass, effective blocking of the UV radiation can be achieved, the UV edge being able to be set in a defined manner by adding different contents. The total concentration of these oxides is <5% by weight, preferably <2% by weight, more preferably <1% by weight.
Das Glas kann Ionen wie Ce, Mn, Ag, Au, Cu, Zn, Fe enthalten, die als Elektronfänger agieren können. Hierdurch kann eine Radikalbildung durch die von Ti02 bei UV-Bestrahlung generierten Elektron-Loch-Paare unterdrückt werden.The glass can contain ions such as Ce, Mn, Ag, Au, Cu, Zn, Fe, which can act as electron scavengers. In this way, radical formation can be suppressed by the electron-hole pairs generated by Ti0 2 under UV radiation.
Bestimmte Ionen können somit eine Doppelfunktion ausüben. Sie verstärken zum einen die antimikrobielle Wirkung synergistisch und können außerdem durch Redoxreaktionen freie Elektronen, die zu Radikalbildung führen könnten, abfangen. Die Konzentration der Elemente liegt < 2 Gew. - %, insbesondere < 1 Gew. - %, besonders bevorzugt < 0,1 Gew. - %Certain ions can therefore have a dual function. On the one hand, they reinforce the antimicrobial effect synergistically and can also trap free electrons through redox reactions, which could lead to radical formation. The concentration of the elements is <2% by weight, in particular <1% by weight, particularly preferably <0.1% by weight
Das Glas wird mit herkömmlichen Schmelztechnologien oder mit Hochfrequenzverfahren erschmolzen und zu Blockglas oder sogenannten „Ribbons" geformt. Das Glas bzw. das Ausgangsglas der Glaskeramik kann in einer bevorzugten Ausführungsform zu Pulver gemahlen werden. Die Partikelgröße dieser Pulver ist bevorzugt < 100 μm, besonders bevorzugt < 50 μm, insbesondere < 10 μm, insbesondere < 5 μm, besonders < 1 μm. Hierzu können sowohl trockene als auch „nasse" Mahltechnologie eingesetzt werden. Im Falle von „nassen" Mahlungen können die Pulver anschließend getrocknet werden.The glass is melted using conventional melting technologies or high-frequency processes and shaped into block glass or so-called “ribbons”. In a preferred embodiment, the glass or the starting glass of the glass ceramic can be ground to powder. The particle size of these powders is preferably <100 μm, particularly preferred <50 μm, in particular <10 μm, in particular <5 μm, in particular <1 μm. Both dry and “wet” grinding technology can be used for this. In the case of "wet" grinding, the powders can then be dried.
In einem zweiten Schritt können die Glaspulver mit den Nanopulvern vermischt werden. Dies kann trocken geschehen oder die Nanopulver werden als Dispersion den trockenen oder „nassen" Glaspulvern zugegeben. Eine alternative Produktionsroute besteht darin, die Nanopartikel bereits beim ersten Mahlvorgang dem Glas zuzusetzen. Nach dem Mischvorgang befinden sich die Nanopartikel auf der Oberfläche der Glaspulver. Wurden die Nanopulver in Dispersionsform zugegeben, kann eine Trocknung notwendig sein. Die Mischung wird im Ofen versintert. Hierbei verbinden sich die Nanopulver mit den Glaspulvern. Durch Oberflächendiffusionsvorgänge werden die Nanopartikel während der Sinterung mit Glas überzogen. Hierdurch erfolgt eine Kapselung der Nanopartikel gegenüber der Umgebung. Die chemische Beständigkeit dieser Glaskapselung ist so hoch, daß in kosmetischen Formulierungen eine Oberflächen reaktion des Ti02 mit der Umgebung unterdrückt wird.In a second step, the glass powders can be mixed with the nanopowders. This can be done dry or the nanopowders are added as a dispersion to the dry or "wet" glass powders. An alternative production route is to add the nanoparticles to the glass during the first grinding process. After the mixing process, the nanoparticles are on the surface of the glass powder. If the nanopowders have been added in dispersion form, drying may be necessary. The mixture is sintered in the oven. The nanopowders combine with the glass powders. Surface diffusion processes coat the nanoparticles with glass during sintering. As a result, the nanoparticles are encapsulated from the environment. The chemical resistance of this glass encapsulation is so high that a surface reaction of the Ti0 2 with the environment is suppressed in cosmetic formulations.
Die Sintertemperaturen für viskoses Sintern liegen oberhalb Tg des Ausgangsglases, und zwar bevorzugtThe sintering temperatures for viscous sintering are above T g of the starting glass, preferably
mehr als 0° C bis 500° C oberhalb Tg, besonders bevorzugt mehr als 20° C bis 200° C oberhalb Tg, insbesondere bevorzugt mehr als 50° C bis 100° C.oberhalb Tg.more than 0 ° C to 500 ° C above T g , particularly preferably more than 20 ° C to 200 ° C above T g , particularly preferably more than 50 ° C to 100 ° C above T g .
Außerdem kann die Sinterung auch unterhalb Tg erfolgen, dies wird als sogenanntes diffusionsgesteuertes Festkörpersintern bezeichnet. Die Temperaturen liegen hierbei bevorzugt 200° C bis 0° C unterhalb Tg, insbesondere 100° C bis 10° C unterhalb Tg. Bei dieser Niedertemperatursinterung können durch vermindertes Zusammensintern die Mahlzeit sowie der Energieeinsatz vermindert werden.In addition, the sintering can also take place below T g , this is referred to as so-called diffusion-controlled solid-state sintering. The temperatures here are preferably 200 ° C. to 0 ° C. below T g , in particular 100 ° C. to 10 ° C. below T g . With this low-temperature sintering, the meal and energy consumption can be reduced by reduced sintering together.
Je nach Glastyp setzt bei genügend hohen Temperaturen eine Keramisierung des Glases ein. Hierbei können als Hauptphasen u.a. Alkali-Erdalkali-Silicate wie zum Beispiel Natrium-Calcium-Silicate, Erdalkali-Silicate wie zum Beispiel Calcium- Silikat gebildet werden.Depending on the type of glass, the glass is ceramized at sufficiently high temperatures. The main phases here include Alkali-alkaline earth silicates such as sodium calcium silicates, alkaline earth silicates such as calcium silicate are formed.
Die Sinterung kann auch in einem mehrstufigen Temperatur-Zeit-Programm durchgeführt werden, um beispielsweise gezielt eine Verschmelzung der Nanopartikel mit dem Glas und möglichst gesteuert davon eine Keramisierung des Glases durchzuführen.The sintering can also be carried out in a multi-stage temperature-time program, for example in order to specifically fuse the Nanoparticles with the glass and, if possible, controlled to carry out a ceramicization of the glass.
Je nach Temperaturführung kann ein unterschiedlicher Verschmelzungsgrad und Kapselungsgrad der Nanopartikel mit der Glasoberfläche erreicht werden.Depending on the temperature control, a different degree of fusion and degree of encapsulation of the nanoparticles with the glass surface can be achieved.
Nach dem Sintervorgang werden die Pulver nochmals zur Einstellung der endgültigen Partikelgröße aufgemahlen.After the sintering process, the powders are ground again to adjust the final particle size.
Der Sintervorgang kann so geführt werden, daß es zu einer Keramisierung der Glasphase kommen kann. Durch Keramisierung des Grundglases mit definierter Kristallitgröße können die zusätzlichen Streu- bzw. Reflexionseffekte eingestellt werden. Hierbei können die Effekte durch Prozeßparameter wie beispielsweise durch das Temperatur-Zeit-Profil des Prozesses, aber auch durch die zugegebene Menge an Kristallbildner gesteuert werden.The sintering process can be carried out in such a way that the glass phase can be ceramized. The additional scattering or reflection effects can be set by ceramizing the base glass with a defined crystallite size. The effects can be controlled by process parameters such as the temperature-time profile of the process, but also by the amount of crystal former added.
Das Kompositmaterial wird üblicherweise als Pulver eingesetzt, wobei durch einen letzten Mahlprozeß Partikelgrößen < 100 μm erhalten werden. Als zweckmäßig haben sich Partikelgrößen < 50 μm bzw. < 20 μm erwiesen. Besonders geeignet sind Partikelgrößen < 10 μm sowie kleiner 5 μm. Als ganz besonders geeignet haben sich Partikelgrößen < 1 μm herausgestellt. Der Mahlprozeß kann sowohl trocken als auch mit wäßrigen und nichtwäßrigen Mahlmedien durchgeführt werden.The composite material is usually used as a powder, particle sizes of <100 μm being obtained by a final grinding process. Particle sizes of <50 μm or <20 μm have proven to be expedient. Particle sizes <10 μm and smaller than 5 μm are particularly suitable. Particle sizes <1 μm have been found to be particularly suitable. The grinding process can be carried out dry as well as with aqueous and non-aqueous grinding media.
Die Gesamtmenge an Nanopartikeln im Kompositmaterial liegt < 20 Gew.%, bevorzugt < 10 Gew.%, noch bevorzugter < 5 Gew.%.The total amount of nanoparticles in the composite material is <20% by weight, preferably <10% by weight, more preferably <5% by weight.
Die lichtbeeinflussenden Effekte werden zum einen durch die Nanopartikel, die intrinisch zur Absorption und Streuung des Lichtes führen, zum anderen durch die Oberflächenmorphologie der Glas- bzw. Glaskeramikpartikel, die zu einer Streuung des Lichtes führen sowie durch Bulkcharakteristik der Glas- bzw. Glaskeramikpartikel, erreicht. Die eingesinterten Nanopartikel können gleichzeitig als heterogene Keime für die Kristallisation der Glasphase wirken. Somit kann die Kristallisation mit den Nanopartikeln beeinflußt werden.The light-influencing effects are achieved on the one hand by the nanoparticles, which lead intrinsically to the absorption and scattering of the light, on the other hand by the surface morphology of the glass or glass-ceramic particles, which lead to scattering of the light, and by bulk characteristics of the glass or glass-ceramic particles , The sintered nanoparticles can simultaneously act as heterogeneous nuclei for the crystallization of the glass phase. The crystallization with the nanoparticles can thus be influenced.
Die Kombination der Nanopartikel mit biologisch aktivem Glas führt zu einem UV- Blocker mit positiven Hauteigenschaften. Die Nachteile der Nanopartikel können nicht kompensiert, sondern überkompensiert werden.The combination of the nanoparticles with biologically active glass leads to a UV blocker with positive skin properties. The disadvantages of nanoparticles cannot be compensated for, but overcompensated.
Weiterhin führt die Belegung der Glaspartikel mit Nanopulvern zu zusätzlichen lichtstreuenden Effekten, die bei den reinen Glas- bzw. Glaskeramikpulvern nicht beobachtet werden und auf die veränderte Oberflächenmorphologie zurückzuführen sind.Furthermore, the coating of the glass particles with nanopowders leads to additional light-scattering effects which are not observed in the pure glass or glass ceramic powders and which can be attributed to the changed surface morphology.
Die Pulver sind hervorragend geeignet, um im Bereich der kosmetischen Produkte eingesetzt zu werden. Dies können u.a. Produkte im Bereich Farbkosmetik oder UV-Schutzprodukte sein.The powders are ideally suited to be used in the field of cosmetic products. This can include Products in the field of color cosmetics or UV protection products.
Weitere Anwendungsfelder liegen zum Beispiel im Bereich Lichtschutz, auf dem Gebiet Farben und Lacke sowie bei medizinischen Produkten und im Bereich der Polymere.Further fields of application are, for example, in the area of light protection, in the field of paints and varnishes, as well as in medical products and in the field of polymers.
Die Erfindung soll nachfolgend anhand der Ausführungsbeispiele und der Figuren beispielhaft beschrieben werden.The invention will be described below by way of example using the exemplary embodiments and the figures.
Es zeigen:Show it:
Fig. 1 Weitwinkelröntgendiagramm einer Probe mit einem Basisglas gemäßFig. 1 wide-angle X-ray diagram of a sample with a base glass according to
Ausführungsbeispiel 1 sowie darauf aufgesinterten TiO2 (Rutil) NanopartikelnEmbodiment 1 and TiO 2 (rutile) nanoparticles sintered thereon
Fig. 2 REM-Aufnahme eines Basisglases gemäß Ausführungsbeispiel 1 ohne aufgesinterte TiO2 - Nanopartikeln Fig. 3 - 5 REM-Aufnahmen eines Basisglases gemäß Ausführungsbeispiel 1 mit 5 Gew. - % Ti02 - Nanopartikeln aufgesintert bei 560°C für eineFig. 2 SEM image of a base glass according to embodiment 1 without sintered TiO 2 nanoparticles 3 - 5 SEM images of a basic glass according to embodiment 1 with 5% by weight of TiO 2 nanoparticles sintered at 560 ° C. for one
Stunde Fig. 6 TEM-Aufnahme eines Basisglases gemäß Ausführungsbeispiel 1 mitHour Fig. 6 TEM image of a base glass according to embodiment 1 with
5 Gew. - % TiO2 Nanopartikeln aufgesintert bei 560°C für eine5% by weight of TiO 2 nanoparticles sintered at 560 ° C for one
Stundehour
Zunächst wird aus dem in Tabelle 1 angegebenen Rohstoffen ein Basisglas erschmolzen, das anschließend zu Glasbändern, die auch als Ribbon bezeichnet werden, geformt wurde. Diese Ribbons wurden mittels Trockenmahlung zu Pulver mit einer Partikelgröße d50 = 4 μm weiterverarbeitet.First, a base glass is melted from the raw materials specified in Table 1, which was then formed into glass ribbons, which are also referred to as ribbons. These ribbons were further processed into powder with a particle size d50 = 4 μm by means of dry grinding.
Tabelle 1 : Zusammensetzungen in Gew.% der BasisgläserTable 1: Compositions in% by weight of the base glasses
Figure imgf000012_0001
Das 4 μm-Glaspulver vom Typ 1 wurde in einer Trommelmühle mit 5 Gew.-% TiO2 -Nanopulver mit einer Sekundär-Partikelgröße von ungefähr 100 nm trocken gemischt.
Figure imgf000012_0001
The 4 μm glass powder of type 1 was dry-mixed in a drum mill with 5% by weight of TiO 2 nanopowder with a secondary particle size of approximately 100 nm.
Die Pulvermischung wurde anschließend in einem Kammerofen bei 580° C 2 Stunden gesintert. Das gesinterte Pulver wurde danach in einer Trommelmühle erneut kurz aufgemahlen, so daß eine Partikelgröße von ca. 5 μm eingestellt wurde.The powder mixture was then sintered in a chamber furnace at 580 ° C. for 2 hours. The sintered powder was then briefly ground again in a drum mill, so that a particle size of approximately 5 μm was set.
Unter diesen Sinterbedingungen sind noch keine kristallinen Sekundärphasen mit wesentlichem Phasenanteil mittels Röntgenbeugungs-Diagramm nachzuweisen.Under these sintering conditions, no crystalline secondary phases with a significant phase fraction can be detected using an X-ray diffraction diagram.
Die Nanopulver sind fest in die Oberfläche der Glaspulver eingesintert und mit einer glasigen Phase weitgehend vollständig überzogen. Dies konnte anhand von REM und TEM nachgewiesen werden.The nanopowders are firmly sintered into the surface of the glass powder and largely completely coated with a glassy phase. This could be demonstrated using SEM and TEM.
Die antimikrobielle Wirkung des Pulvers wurde nach Europ. Pharamkopoe (3. Auflage) getestet und ist in Tabelle 2 wiedergegeben.The antimicrobial effect of the powder was according to Europ. Pharamkopoe (3rd edition) tested and is shown in Table 2.
Tabelle 2: Antimikrobielle WirkungTable 2: Antimicrobial effect
Figure imgf000013_0001
Es wurden Hautverträglichkeitstests einer DAC-Creme-Formulierung mit 5 Gew.% und 10 Gew.% durchgeführt. Es konnten keinerlei Hautirritationen beobachtet werden.
Figure imgf000013_0001
Skin tolerance tests of a DAC cream formulation with 5% by weight and 10% by weight were carried out. No skin irritation was observed.
Fig. 1 zeigt ein Röntgendiagramm eines Basisglases gemäß Ausführungsbeispiel 1 mit aufgesinterten TiO2 auf (Rutil) - Nanopartikeln. Die Sinterung erfolgte bei 560°C für eine Stunde. Deutlich zu erkennen aus dem Röntgendiagramm ist die amorphe Struktur des Basisglases sowie die kristalline Struktur der aufgesinterten Ti02 - Partikel. Die Röntgenreflexe der aufgesinterteten TiO2 - Partikel sind mit der Bezugsziffer 1 belegt.1 shows an X-ray diagram of a base glass according to embodiment 1 with sintered TiO 2 on (rutile) nanoparticles. Sintering took place at 560 ° C for one hour. The x-ray diagram clearly shows the amorphous structure of the base glass and the crystalline structure of the sintered Ti0 2 particles. The X-ray reflections of the sintered TiO 2 particles are given the reference number 1.
Fig. 2 zeigt eine REM-Aufnahme eines Basisglases gemäß Ausführungsbeispieles 1 ohne aufgesinterte Nanopartikel. Das Glaspulver wurde bei 560°C für eine Stunde gesintert. Erkennbar ist eine glatte Oberfläche ohne aufgesinterte Nanopartikel.2 shows an SEM image of a base glass according to embodiment 1 without sintered nanoparticles. The glass powder was sintered at 560 ° C for one hour. A smooth surface without sintered nanoparticles can be seen.
Die Figuren 3 - 5 zeigen ein Basisglas gemäß Ausführungsbeispiel 1 mit 5 Gew. - % Ti02 - Nanopartikeln (Rutil). Diese Zusammensetzung wurde, ebenso wie die Vergleichsprobe, deren Oberfläche in Fig. 2 gezeigt ist, bei 560°C für eine Stunde gesintert. Im Gegensatz zu der in Fig. 2 gezeigten Vergleichsprobe ist die Oberfläche nicht mehr glatt . In Fig. 3 deutlich zu erkennen der feste Verbund zwischen den einzelnen Nanopartikeln, vorliegend dem Rutil und dem Basisglaspulver. Auf den Figuren 4 und 5 ist der feste Verbund zwischen den Nanopartikeln und dem Basisglaspulver ebenfalls gut zu erkennen. Bei der Probenzusammensetzung handelt es sich um dieselbe Probe wie bei REM- Aufnahme gemäß Fig. 3.FIGS. 3-5 show a base glass according to embodiment 1 with 5% by weight of TiO 2 nanoparticles (rutile). This composition, like the comparative sample whose surface is shown in FIG. 2, was sintered at 560 ° C. for one hour. In contrast to the comparison sample shown in FIG. 2, the surface is no longer smooth. The solid bond between the individual nanoparticles, in this case the rutile and the base glass powder, can be clearly seen in FIG. 3. The solid bond between the nanoparticles and the base glass powder can also be clearly seen in FIGS. 4 and 5. The sample composition is the same sample as in the SEM image according to FIG. 3.
Fig. 6 zeigt eine Transmissionselektronenmikroskopie TEM-Aufnahme eines Basisglases gemäß Ausführungsbeispiel 1 mit 5 Gew. - % Ti02 Nanopartikeln gesintert bei 560°C für eine Stunde. Erkennbar auf dieser TEM-Aufnahme ist, dass, die mit der Bezugsziffer 10 bezeichneten Ti02 (Rutil) Nanopartikel von einer glasigen Phase, die mit der Bezugsziffer 20 belegt ist, umgeben ist.6 shows a transmission electron microscopy TEM image of a base glass according to embodiment 1 with 5% by weight of TiO 2 nanoparticles sintered at 560 ° C. for one hour. It can be seen on this TEM image that the Ti0 2 (rutile) nanoparticles designated by the reference number 10 is surrounded by a glassy phase which is given the reference number 20.
Die antimikrobiell entzündungshemmenden UV-Strahlung reduzierenden Glas- Keramik-Kompositmaterialien können in Pulverform bevorzugt als Zusatz in der kosmetischen Industrie, zum Beispiel in Sonnenschutzcremes und Tagescremes sowie Cremes gegen Hautalterung, eingesetzt werden.The antimicrobial anti-inflammatory UV-radiation-reducing glass-ceramic composite materials can preferably be used in powder form as an additive in the cosmetic industry, for example in sun protection creams and day creams and creams against skin aging.
Die Erfindung stellt erstmals ein Material zur Verfügung, in dem unterschiedliche Eigenschaften in einem Material kombiniert sind. Durch die Belegung des TiO2 mit einer antimikrobiellen, entzündungshemmenden und hautregenerienden Schicht wird ein Schutz vor Radikalbildung erreicht. Dies geschieht insbesondere dadurch, daß die Nanopartikel an Glas gebunden werden und somit keinerlei Hautpenetration auftreten kann. Das Material weist in Pulverform besondere lichtstreuende absorbierende reflektierende Eigenschaften aufgrund von Oberflächenmodifikation auf. For the first time, the invention provides a material in which different properties are combined in one material. Protection of the radical formation is achieved by coating the TiO 2 with an antimicrobial, anti-inflammatory and skin-regenerating layer. This happens in particular because the nanoparticles are bound to glass and thus no skin penetration can occur. In powder form, the material has special light-scattering, absorbing, reflective properties due to surface modification.

Claims

Patentansprüche claims
1. Kompositmaterial, umfassend eine Glas- oder Glaskeramikphase, dadurch gekennzeichnet, daß das anorganische Kompositmaterial Nanopartikel umfaßt und die Glas- oder Glaskeramikphase an oder in der Oberfläche mit Nanopartikeln belegt ist.1. Composite material comprising a glass or glass ceramic phase, characterized in that the inorganic composite material comprises nanoparticles and the glass or glass ceramic phase is coated on or in the surface with nanoparticles.
2. Kompositmaterial, umfassend eine Glas- oder Glaskeramikphase, wobei das2. Composite material comprising a glass or glass ceramic phase, the
Glas oder das Ausgangsgias der GlaskeramikGlass or the starting gias of glass ceramics
Si02 30 - 80 Gew. %Si0 2 30 - 80% by weight
Na2O 5 -40 Gew.% κ2o 0-40 Gew.%Na 2 O 5 -40% by weight κ 2 o 0-40% by weight
Li20 0-40 Gew.%Li 2 0 0-40 wt%
CaO 5 -40 Gew.%CaO 5 -40% by weight
MgO 0-40 Gew.%MgO 0-40% by weight
AI2O3 0-15 Gew.% 2O5 0-20 Gew.%AI 2 O 3 0-15% by weight 2 O 5 0-20% by weight
B203 0-20 Gew.%B 2 0 3 0-20% by weight
Ti02 0-5 Gew.%Ti0 2 0-5% by weight
ZnO 0-5 Gew.% umfaßt, dadurch gekennzeichnet, daß das anorganische KompositmaterialZnO 0-5% by weight, characterized in that the inorganic composite material
Nanopartikel umfaßt und die Glas- oder Glaskeramikphase an und/oder in der Oberfläche mit Nanopartikeln belegt ist.Includes nanoparticles and the glass or glass ceramic phase is covered on and / or in the surface with nanoparticles.
3. Kompositmaterial gemäß Anspruch 2, dadurch gekennzeichnet, dass das Glas- oder Ausgangsglas der Glaskeramik umfasst: TiO20,1-5Gew-%3. Composite material according to claim 2, characterized in that the glass or initial glass of the glass ceramic comprises: TiO 2 0.1-5% by weight
4. Kompositmaterial, umfassend eine Glas- oder Glaskeramikphase, wobei das Glas oder das Ausgangsglas der Glaskeramik Si02 30 - 80 Gew. %4. Composite material comprising a glass or glass ceramic phase, the glass or the starting glass of the glass ceramic Si0 2 30 - 80% by weight
Na2O 5 -40 Gew.%Na 2 O 5 -40% by weight
K20 0-40 Gew.%K 2 0 0-40% by weight
Li20 0-40 Gew.%Li 2 0 0-40 wt%
CaO 5 -40 Gew.%CaO 5 -40% by weight
MgO 0-40 Gew.% .MgO 0-40 wt%.
AI2O3 0-15 Gew.%AI 2 O 3 0-15% by weight
P205 2 -20 Gew.%P 2 0 5 2 -20% by weight
B203 0-20 Gew.%B 2 0 3 0-20% by weight
Ti02 0-5 Gew.% umfaßt, dadurch gekennzeichnet, daß das anorganische KompositmaterialTi0 2 0-5 wt.%, Characterized in that the inorganic composite material
Nanopartikel umfaßt und die Glas- oder Glaskeramikphase an und/oder in der Oberfläche mit Nanopartikeln belegt ist.Includes nanoparticles and the glass or glass ceramic phase is covered on and / or in the surface with nanoparticles.
5. Kompositmaterial, umfassend eine Glas- oder Glaskeramikphase gemäß Anspruch 4, wobei das Glas oder das Ausgangsglas der Glaskeramikphase Si02 35 -60 Gew. %5. Composite material comprising a glass or glass ceramic phase according to claim 4, wherein the glass or the starting glass of the glass ceramic phase Si0 2 35 -60 wt.%
Na2O 5-30 Gew.%Na 2 O 5-30% by weight
K20 0-20 Gew.%K 2 0 0-20% by weight
CaO 5-30 Gew.%CaO 5-30% by weight
MgO 0-10 Gew.%MgO 0-10% by weight
AI2O3 0-5 Gew.%AI 2 O 3 0-5% by weight
P205 2 -10 Gew.%P 2 0 5 2 -10% by weight
B203 0-5 Gew.% umfaßt, dadurch gekennzeichnet, daß das anorganische Kompositmaterial Nanopartikel umfaßt und die Glas- oder Glaskeramikphase an und/oder in der Oberfläche mit Nanopartikeln belegt ist.B 2 0 3 0-5% by weight, characterized in that the inorganic composite material comprises nanoparticles and the glass or glass ceramic phase is coated on and / or in the surface with nanoparticles.
6. Kompositmaterial nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Nanopartikel Titanoxid-Nanopartikel sind. 6. Composite material according to one of claims 1 to 5, characterized in that the nanoparticles are titanium oxide nanoparticles.
7. Kompositmaterial nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Nanopartikel Zinkoxid-Nanopartikel sind.7. Composite material according to one of claims 1 to 5, characterized in that the nanoparticles are zinc oxide nanoparticles.
8. Kompositmaterial nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Anteil an Nanopartikeln < 20 Gew.%, bevorzugt < 10 Gew.%, insbesondere bevorzugt < 5 Gew.% ist.8. Composite material according to one of claims 1 to 7, characterized in that the proportion of nanoparticles is <20% by weight, preferably <10% by weight, particularly preferably <5% by weight.
9. Kompositmaterial nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Nanopartikel mit einer Glas- oder Glaskeramikphase überzogen sind.9. Composite material according to one of claims 1 to 8, characterized in that the nanoparticles are coated with a glass or glass ceramic phase.
10. Kompositmaterial nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Glas- bzw. Glaskeramikphasen Elektron-Loch- Fänger-Ionen, insbesondere Ce, Fe, Mn, Ag, Au mit einer Konzentration < 5 Gew.%, insbesondere, 1 Gew. -%, besonders bevorzugt < 0,1 Gew. - % enthalten.10. Composite material according to one of claims 1 to 9, characterized in that the glass or glass ceramic phases electron-hole scavenger ions, in particular Ce, Fe, Mn, Ag, Au with a concentration <5 wt.%, In particular, 1% by weight, particularly preferably <0.1% by weight.
11. Kompositmaterial nach einem der Ansprüche 1 - 10, dadurch gekennzeichnet, dass das Kompositmaterial antibakterielle Ionen wie Ag, Au, I, Ce, Cu, Zn in Masseanteilen < 5 Gew. - %, insbesondere < 2 Gew. - %, besonders bevorzugt < 1 Gew. - % enthält.11. Composite material according to one of claims 1-10, characterized in that the composite material antibacterial ions such as Ag, Au, I, Ce, Cu, Zn in mass fractions <5% by weight, in particular <2% by weight, are particularly preferred Contains <1% by weight.
12. Kompositmaterial nach einem der Ansprüche 1 bis 11 , wobei das Glas oder das Ausgangsglas der Glaskeramik in Pulverform vorliegt und die Partikelgröße des Pulvers < 100 μm ist.12. Composite material according to one of claims 1 to 11, wherein the glass or the starting glass of the glass ceramic is in powder form and the particle size of the powder is <100 microns.
13. Kompositmaterial nach einem der Ansprüche 1 bis 11 wobei das Glas oder das Ausgangsglas der Glaskeramik in Pulverform vorliegt und die Partikelgröße des Pulvers < 10 μm ist. 13. Composite material according to one of claims 1 to 11, wherein the glass or the starting glass of the glass ceramic is in powder form and the particle size of the powder is <10 microns.
14. Kompositmaterial nach einem der Ansprüche 1 bis 11 , wobei das Glas oder das Ausgangsglas der Glaskeramik in Pulverform vorliegt und die Partikelgröße des Pulvers < 1 μm ist.14. Composite material according to one of claims 1 to 11, wherein the glass or the starting glass of the glass ceramic is in powder form and the particle size of the powder is <1 μm.
5 15. Verfahren zur Herstellung eines Kompositmaterials nach den Ansprüchen 1 bis 14 mit folgenden Schritten:5 15. A method for producing a composite material according to claims 1 to 14 with the following steps:
15.1 das Glas- oder das Ausgangsglas der Glaskeramik wird zu einem Pulver gemahlen15.1 the glass or the starting glass of the glass ceramic is ground to a powder
15.2 das gemäß Schritt 15.1 gewonnene Pulver wird mit den Nanopartikeln I gemischt15.2 the powder obtained according to step 15.1 is mixed with the nanoparticles I.
15.3 die gemäß Schritt 15.1 gewonnene Mischung wird zu einem anorganischen Kompositmaterial gemäß einem der Ansprüche 1 bis 14 versintert.15.3 the mixture obtained according to step 15.1 is sintered into an inorganic composite material according to one of claims 1 to 14.
16. Verfahren zur Herstellung eines Kompositmaterials nach den Ansprüchen 1 i bis 14 mit folgenden Schritten:16. A method for producing a composite material according to claims 1 i to 14 with the following steps:
16.1 das Glas- oder das Ausgangsglas der Glaskeramik wird zu einem Pulver gemahlen und in den selben Prozeßschritt das Pulver mit Nanopartikeln gemischt16.1 the glass or the starting glass of the glass ceramic is ground to a powder and the powder is mixed with nanoparticles in the same process step
16.2 die gemäß Schritt 16.1 gewonnene Mischung wird zu einem anorganischen ι Kompositmaterial gemäß einem der Ansprüche 1 bis 14 versintert.16.2 the mixture obtained according to step 16.1 is sintered into an inorganic composite material according to one of claims 1 to 14.
17. Verfahren gemäß einem der Ansprüche 15 bis 16, dadurch gekennzeichnet, daß die Sintertemperatur 20° C bis 500° C, bevorzugt 50° C bis 200° C, insbesondere bevorzugt 50° C bis 100° C oberhalb der Glastemperatur des Ausgangsglases liegt.17. The method according to any one of claims 15 to 16, characterized in that the sintering temperature is 20 ° C to 500 ° C, preferably 50 ° C to 200 ° C, particularly preferably 50 ° C to 100 ° C above the glass transition temperature of the starting glass.
18. Verwendung eines Kompositmaterials nach einem der Ansprüche 1 bis 14 zum Schutz der Haut vor schädlicher UV-Strahlung in kosmetischen Produkten. 18. Use of a composite material according to one of claims 1 to 14 to protect the skin from harmful UV radiation in cosmetic products.
19. Verwendung eines Kompositmaterials mit antimikrobieller, entzündungshemmender und wundheilender, hautpflegender Wirkung nach einem der Ansprüche 1 bis 14 zur Verwendung in Kosmetikprodukten.19. Use of a composite material with antimicrobial, anti-inflammatory and wound-healing, skin-care effect according to one of claims 1 to 14 for use in cosmetic products.
20. Verwendung eines Kompositmaterials mit antimikrobieller und UV- schützender Wirkung nach einem der Ansprüche 1 bis 14 zur Verwendung in Farben und Lacken.20. Use of a composite material with antimicrobial and UV-protective effect according to one of claims 1 to 14 for use in paints and varnishes.
21. Verwendung eines Kompositmaterials mit antimikrobieller, entzündungshemmender, wundheilender, hautpflegender und UV- blockender Wirkung nach einem der Ansprüche 1 bis 14 zur Verwendung in medizinischen Produkten und Präparaten.21. Use of a composite material with antimicrobial, anti-inflammatory, wound-healing, skin-care and UV-blocking effect according to one of claims 1 to 14 for use in medical products and preparations.
22. Verwendung eines Kompositmaterials mit antimikrobieller, entzündungshemmender, wundheilender und UV-blockender Wirkung nach einem der Ansprüche 1 bis 14 zur Verwendung in Kunststoffen und Polymeren. 22. Use of a composite material with antimicrobial, anti-inflammatory, wound-healing and UV-blocking action according to one of claims 1 to 14 for use in plastics and polymers.
PCT/EP2002/014043 2002-01-18 2002-12-11 Glass-ceramic composite containing nanoparticles WO2003059834A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2002352237A AU2002352237A1 (en) 2002-01-18 2002-12-11 Glass-ceramic composite containing nanoparticles
JP2003559943A JP2005532972A (en) 2002-01-18 2002-12-11 Glass ceramic composites containing nanoparticles
US10/890,682 US20050119105A1 (en) 2002-01-18 2004-07-14 Glass-ceramic composite containing nanoparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10201747.6 2002-01-18
DE10201747A DE10201747C1 (en) 2002-01-18 2002-01-18 Glass-ceramic composite, process for its production and uses

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/890,682 Continuation US20050119105A1 (en) 2002-01-18 2004-07-14 Glass-ceramic composite containing nanoparticles

Publications (1)

Publication Number Publication Date
WO2003059834A1 true WO2003059834A1 (en) 2003-07-24

Family

ID=7712443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/014043 WO2003059834A1 (en) 2002-01-18 2002-12-11 Glass-ceramic composite containing nanoparticles

Country Status (4)

Country Link
JP (1) JP2005532972A (en)
AU (1) AU2002352237A1 (en)
DE (1) DE10201747C1 (en)
WO (1) WO2003059834A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10332011A1 (en) * 2003-07-14 2005-02-17 Schott Ag Use of glass compositions to achieve an antioxidant effect
WO2005115936A2 (en) * 2004-05-29 2005-12-08 Schott Ag NANO GLASS POWER AND USE THEREOF, PARTICULARLY MULTICOMPONENT GLASS POWDER WITH A MEAN PARTICLE SIZE OF LESS THAN 1 µM
WO2006089738A1 (en) * 2005-02-23 2006-08-31 Carl Zeiss Smt Ag Optical composite material and method for its production
JP2007507426A (en) * 2003-09-29 2007-03-29 ショット アクチエンゲゼルシャフト Tissue abrasive
EP1779855A1 (en) * 2005-10-28 2007-05-02 Abdula Kurkayev Nanoparticles of a heterocrystal mineral for use as a medicament and method of producing the same
US8784845B2 (en) 2006-09-12 2014-07-22 Prophy Med Ab Selective chemokine modulation
EP4234503A1 (en) * 2022-02-24 2023-08-30 Corning Incorporated Transparent combeite glass-ceramics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004008931B4 (en) * 2003-02-25 2008-01-17 Schott Ag Use of porous glasses, glass ceramics, glass powders or glass ceramic powders in kosimetric, medical, biocidal formulations
EA024442B1 (en) * 2010-07-27 2016-09-30 Агк Гласс Юроп Glass item having anti-microbial properties

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230647A (en) * 1988-07-20 1990-02-01 Sekisui Plastics Co Ltd Ultraviolet ray shielding composite cellular grain
JPH05271029A (en) * 1992-01-30 1993-10-19 Koa Glass Kk Antimicrobial and cariostatic composite glass
US5676720A (en) * 1992-08-13 1997-10-14 The Trustees Of The University Of Pennsylvania Method of forming a porous glass substrate
DE19647368A1 (en) * 1996-11-15 1998-05-20 Inst Neue Mat Gemein Gmbh Composites
WO1999060994A1 (en) * 1998-05-27 1999-12-02 Isis Innovation Limited Ultraviolet light screening compositions
WO2000071084A1 (en) * 1999-05-25 2000-11-30 Sol-Gel Technologies Ltd A method for obtaining photostable sunscreen compositions

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3069997A (en) * 1996-05-01 1997-11-19 Us Biomaterials Corporation Bioactive ceramics and method of preparing bioactive ceramics

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230647A (en) * 1988-07-20 1990-02-01 Sekisui Plastics Co Ltd Ultraviolet ray shielding composite cellular grain
JPH05271029A (en) * 1992-01-30 1993-10-19 Koa Glass Kk Antimicrobial and cariostatic composite glass
US5676720A (en) * 1992-08-13 1997-10-14 The Trustees Of The University Of Pennsylvania Method of forming a porous glass substrate
DE19647368A1 (en) * 1996-11-15 1998-05-20 Inst Neue Mat Gemein Gmbh Composites
WO1999060994A1 (en) * 1998-05-27 1999-12-02 Isis Innovation Limited Ultraviolet light screening compositions
WO2000071084A1 (en) * 1999-05-25 2000-11-30 Sol-Gel Technologies Ltd A method for obtaining photostable sunscreen compositions

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
CENTRAL EUROPEAN JOURNAL OF PUBLIC HEALTH. CZECH REPUBLIC JUL 2000, vol. 8 Suppl, July 2000 (2000-07-01), pages 37 - 38, ISSN: 1210-7778 *
DATABASE COMPENDEX [online] ENGINEERING INFORMATION, INC., NEW YORK, NY, US; IKEYAMA MASAMI ET AL: "Synthesis of oxide fine particles induced by ion implantation into glass and sapphire", XP002242658, Database accession no. EIX99234607254 *
DATABASE INSPEC [online] INSTITUTE OF ELECTRICAL ENGINEERS, STEVENAGE, GB; ROSENBERG I ET AL: "Collection optics of TiO/sub 2/ photocatalyst on hollow glass microbeads floating on oil slicks", XP002242659, Database accession no. 4180762 *
DATABASE MEDLINE [online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; 6 June 2001 (2001-06-06), GALLAGHER L A ET AL: "Surface control of oxidation by an adsorbed Ru(IV)-oxo complex.", XP002242657, Database accession no. NLM11457393 *
DATABASE MEDLINE [online] US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US; July 2000 (2000-07-01), DABROWSKI B ET AL: "Chloride ions formation during degradation of organochloride compounds using TiO2 deposited on glass microspheres.", XP002242660, Database accession no. NLM10943452 *
FUNTAI OYOBI FUMMATSU YAKIN;FUNTAI OYOBI FUMMATSU YAKIN/JOURNAL OF THE JAPAN SOCIETY OF POWDER AND POWDER METALLURGY DEC 1998 FUNTAI FUNMATSU YAKIN KYOKAI, KYOTO, JAPAN, vol. 45, no. 12, December 1998 (1998-12-01), pages 1216 - 1219 *
JOURNAL OF PHYSICAL CHEMISTRY, 16 APRIL 1992, USA, vol. 96, no. 8, pages 3423 - 3428, ISSN: 0022-3654 *
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. UNITED STATES 6 JUN 2001, vol. 123, no. 22, 6 June 2001 (2001-06-06), pages 5308 - 5312, ISSN: 0002-7863 *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 184 (C - 0709) 13 April 1990 (1990-04-13) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 046 (C - 1157) 25 January 1994 (1994-01-25) *
SHIBATA S ET AL: "PREPARATION OF SILICA MICROSPHERES CONTAINING AG NANOPARTICLES", JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, KLUWER ACADEMIC PUBLISHERS, DORDRECHT, NL, vol. 11, no. 3, 1 August 1998 (1998-08-01), pages 279 - 287, XP000784796, ISSN: 0928-0707 *
WANPENG C ET AL: "Bioactive Materials", CERAMICS INTERNATIONAL, ELSEVIER APPLIED SCIENCE PUBL, BARKING, ESSEX, GB, vol. 22, no. 6, 1996, pages 493 - 507, XP004040625, ISSN: 0272-8842 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9173822B2 (en) 2003-07-14 2015-11-03 Schott Ag Use of glass compositions for achieving an antioxidative effect
DE10332011A1 (en) * 2003-07-14 2005-02-17 Schott Ag Use of glass compositions to achieve an antioxidant effect
JP2007507426A (en) * 2003-09-29 2007-03-29 ショット アクチエンゲゼルシャフト Tissue abrasive
US7816292B2 (en) 2004-05-29 2010-10-19 Schott Ag Nano glass powder and use thereof, in particular multicomponent glass powder with a mean particle size of less than 1 μm
WO2005115936A2 (en) * 2004-05-29 2005-12-08 Schott Ag NANO GLASS POWER AND USE THEREOF, PARTICULARLY MULTICOMPONENT GLASS POWDER WITH A MEAN PARTICLE SIZE OF LESS THAN 1 µM
WO2005115936A3 (en) * 2004-05-29 2006-02-16 Schott Ag NANO GLASS POWER AND USE THEREOF, PARTICULARLY MULTICOMPONENT GLASS POWDER WITH A MEAN PARTICLE SIZE OF LESS THAN 1 µM
US7907347B2 (en) 2005-02-23 2011-03-15 Carl Zeiss Smt Ag Optical composite material and method for its production
WO2006089738A1 (en) * 2005-02-23 2006-08-31 Carl Zeiss Smt Ag Optical composite material and method for its production
WO2007048634A3 (en) * 2005-10-28 2007-12-06 Abdula Kurkayev Nanoparticles of a heterocrystal mineral for use as a medicament and method of producing the same
WO2007048634A2 (en) 2005-10-28 2007-05-03 Abdula Kurkayev Nanoparticles of a heterocrystal mineral for use as a medicament and method of producing the same
EP1779855A1 (en) * 2005-10-28 2007-05-02 Abdula Kurkayev Nanoparticles of a heterocrystal mineral for use as a medicament and method of producing the same
US8784845B2 (en) 2006-09-12 2014-07-22 Prophy Med Ab Selective chemokine modulation
US9649426B2 (en) 2006-09-12 2017-05-16 Prophy Med Ab Selective chemokine modulation
US9656015B2 (en) 2006-09-12 2017-05-23 Prophy Med Ab Selective chemokine modulation
EP4234503A1 (en) * 2022-02-24 2023-08-30 Corning Incorporated Transparent combeite glass-ceramics

Also Published As

Publication number Publication date
JP2005532972A (en) 2005-11-04
AU2002352237A1 (en) 2003-07-30
DE10201747C1 (en) 2003-08-14

Similar Documents

Publication Publication Date Title
US20050119105A1 (en) Glass-ceramic composite containing nanoparticles
WO2005115936A2 (en) NANO GLASS POWER AND USE THEREOF, PARTICULARLY MULTICOMPONENT GLASS POWDER WITH A MEAN PARTICLE SIZE OF LESS THAN 1 µM
WO2003050051A1 (en) Antimicrobial alkali-silicate glass ceramic and the use thereof
DE60010469T2 (en) TRANSPARENT MICROBALLS
EP0622342B1 (en) Opalescent glass
EP1419118B1 (en) Antimicrobial, anti-inflammatory, wound-healing glass powder and use thereof
EP1580172B1 (en) Anti-microbial, refractive index- adapted phosphate glass
DE10063939B4 (en) Dental cement containing a reaction-resistant dental glass and method for its production
WO2003050053A2 (en) Use of an antimicrobial glass ceramic for dental care and oral hygiene
WO2004076371A2 (en) Antimicrobial phosphate glass
WO2004076370A1 (en) Antimicrobial sulfophosphate glass
DE1796362B1 (en) LEAD-FREE, HIGHLY REFURBISHING (RESERVATION INDEX AT LEAST 2.1) AND FIRE-RESISTANT, LIGHT TRANSMISSION, MADE OF TITANIUM DIOXIDE AND AT LEAST ONE OTHER METAL OXIDE IN THE FORM OF BALLS, PLATES OR FIBERS
DE10201747C1 (en) Glass-ceramic composite, process for its production and uses
WO2017005752A1 (en) Ceramics and glass ceramics exhibiting low or negative thermal expansion
DE10308186A1 (en) Antimicrobial phosphate glass, e.g. useful in cosmetics, medicines, plastics, polymers, foods, detergents, paints, plaster, cement, comprises phosphorus oxide, aluminum oxide, sodium oxide and zinc oxide
WO2003031356A1 (en) Highly pure bioactive glass and method for the production thereof
DE10161075C1 (en) UV radiation absorbing, antimicrobial, anti-inflammatory glass ceramics, process for their production and their uses
DE19833252C2 (en) Composite solder glass with a low melting temperature, a filler therefor, a process for its production and its use
DE10293768B4 (en) Antimicrobial glass powder, its use and process for its preparation
DE10241495B4 (en) Antimicrobial alkali silicate glass-ceramic, glass-ceramic powder, process for its preparation and use
EP1452500B1 (en) Glass-ceramic, and its production and use
DE102017127579B3 (en) Substrate for an optical filter and optical filter
DE10213630A1 (en) Antimicrobial glass and its use
DE10351885B4 (en) Opal glass ceramic as well as its production and use
DE10322444A1 (en) Cosmetic compositions with decorative and antimicrobial effects contain bioactive glass, colored glass, glass-ceramic, glass powder, glass-ceramic powder and/or a glass/nanoparticle composite

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10890682

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003559943

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase