WO2003054240A1 - Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell - Google Patents

Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell Download PDF

Info

Publication number
WO2003054240A1
WO2003054240A1 PCT/JP2002/013062 JP0213062W WO03054240A1 WO 2003054240 A1 WO2003054240 A1 WO 2003054240A1 JP 0213062 W JP0213062 W JP 0213062W WO 03054240 A1 WO03054240 A1 WO 03054240A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
alloy
storage alloy
phase
powder
Prior art date
Application number
PCT/JP2002/013062
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyofumi Takamaru
Hiroki Hayashi
Hideaki Ikeda
Original Assignee
Santoku Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corporation filed Critical Santoku Corporation
Priority to JP2003554939A priority Critical patent/JP4647910B2/en
Priority to AU2002354479A priority patent/AU2002354479A1/en
Publication of WO2003054240A1 publication Critical patent/WO2003054240A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • Hydrogen storage alloys Hydrogen storage alloys, hydrogen storage alloy powders, their production methods, and negative electrodes for nickel-metal hydride secondary batteries
  • the present invention is useful as an electrode material for nickel-metal hydride secondary batteries and the like.
  • the present invention relates to the powder, a method for producing the powder, and a negative electrode for a nickel-metal hydride secondary battery.
  • a metal oxide monohydrogen battery in which the hydrogen negative electrode is made of a hydrogen storage alloy.
  • Such batteries inherently have a high energy density, are excellent in volumetric efficiency, can operate safely, and are excellent in characteristics and reliability.
  • the AB 5 SET-containing storage alloy is mainly used as a negative electrode material of the battery, usually, in order to improve the characteristics of the battery, high hydrogen storage capacity, a variety of such low pressures, corrosion resistance, Blato one flatness Characteristics are required. Since some of these properties are contradictory, research has been conducted on improving the other property without sacrificing one property, and some of them have been put to practical use.
  • nickel-metal hydride secondary batteries have been used for batteries requiring high-rate discharge, such as power tool applications, and further improvement in the properties of the hydrogen storage alloy used for these batteries is required. Disclosure of the invention
  • An object of the present invention is to be useful as an electrode material of a nickel-metal hydride secondary battery.
  • An object of the present invention is to provide a hydrogen storage alloy having good life characteristics and good balance and excellent recyclability, a powder thereof, a method for producing the same, and a negative electrode for a nickel-metal hydride secondary battery using the hydrogen storage alloy powder. .
  • the present inventors have conducted intensive studies on the correlation between the composition and structure of the alloy and the corrosion resistance and activity in order to solve the above-mentioned problems.
  • the B-site component of the alloy is set to a specific range
  • the B-site Completed the present invention by finding that the above problems can be solved by using a hydrogen storage alloy in which the amount of A1 and Mn in the components is in a specific range and a fine second phase is uniformly deposited over the entire matrix. did.
  • an alloy having a composition represented by the formula (1), wherein the content of A1 and Mn in the crystal grain boundaries and in the crystal grains of the mother phase constituting the alloy is A hydrogen-absorbing alloy having a second phase that is larger than the contents of A1 and Mn and has a particle size of 10 m or less is obtained.
  • R represents a rare earth element containing yttrium or a mixed element thereof
  • M represents Mg, Fe, Cu, Zr, Ti, Mo, W, B or a mixture thereof.
  • A represents 3.50 ⁇ a ⁇ 4.95
  • B is 0.10 ⁇ b ⁇ 0.50
  • c is 0.35 ⁇ c ⁇ 0.55
  • d is 0.10 ⁇ d 0.45
  • e is 0 ⁇ e ⁇ 0.10
  • an alloy powder having a composition represented by the above formula (1), a particle size of 10 ⁇ or more, and a grain boundary and at least one second phase inside the alloy particle.
  • a hydrogen storage alloy powder comprising:
  • a hydrogen storage alloy powder which is an alloy powder having an average particle diameter of 5 to: L00 m and contains the alloy powder.
  • the molten alloy is cooled and solidified to obtain a piece having an average thickness of 0.05 to 0.5 mm, which is obtained.
  • 900 pieces The method for producing a hydrogen-absorbing alloy is characterized by performing a heat treatment at ⁇ 1100 ° C. for 30 minutes to 10 hours.
  • the alloy melt is cooled and solidified to obtain a piece having an average thickness of 0.05 to 0.5 mm. After the heat treatment of the pieces at 900 to 1100 ° C for 30 minutes to 10 hours, a method of producing the above-mentioned alloy powder which is pulverized is performed.
  • a negative electrode for a nickel-metal hydride secondary battery including the above alloy powder and a conductive material as a negative electrode material.
  • FIG. 1 is a copy of an electron micrograph showing a cross section and a view of the hydrogen-absorbing piece prepared in Example 1-1.
  • FIG. 2 is a copy of an electron micrograph showing a cross-sectional structure of the hydrogen storage alloy powder prepared in Example 2-1.
  • the hydrogen storage alloy of the present invention has a composition represented by the above formula (1).
  • R in the formula (1) represents a rare earth element containing yttrium or a mixed element of two or more thereof.
  • R in the formula (1) represents a rare earth element containing yttrium or a mixed element of two or more thereof.
  • La is 40 to; L00 wt%, Ce is 0 to 50 mass%, Pr is that 0 to 50 weight 0/0, Nd is 0 to 50 mass 0/0 preferable.
  • A which indicates the amount of Ni in the formula (1), is 3.50 ⁇ a ⁇ 4.95, preferably 3.90 ⁇ a ⁇ 4.75.
  • B indicating the amount of Co is 0.10 ⁇ b ⁇ 0.50, preferably 0.20 ⁇ b 0.50. If it exceeds 0.50, the alloy price will increase, and if it is less than 0.10, the corrosion resistance will inevitably decrease.
  • C indicating the amount of A1 is 0.35 ⁇ c ⁇ 0.55, preferably 0.35 ⁇ c ⁇ 0.50.
  • D indicating the amount of Mn is 0.10 ⁇ d ⁇ 0.45, preferably 0.15 ⁇ d ⁇ 0.30.
  • the amount of A1 and Mn is good within the above range, but in order to further improve the desired object of the present invention, the composition is set so that the c / d indicating the abundance ratio of A1 and Mn is 0.7 or more. It is particularly preferred to adjust
  • M in the formula (1) is an additive element for adjusting the hydrogen storage characteristics of the alloy, and includes Mg, Fe, Indicate Cu, Zr, Ti, Mo, W, B or a mixture of two or more thereof.
  • E indicating the amount of M is 0 ⁇ e ⁇ 0.10. If e exceeds 0.10, it is not possible to improve the properties corresponding to the added amount, and recycling may be difficult.
  • a + b + c + d + e ⁇ Z) f indicating the B-site element ratio is 510 to 5.50, preferably 5.20 to 5.40. If this value is less than 5.10, it becomes difficult to disperse the fine second phase in the alloy structure, and if it exceeds 5.50, a decrease in capacity when used as a battery material is inevitable.
  • the hydrogen storage alloy of the present invention has the above-described composition, and its structure is such that, in order to obtain desired characteristics, the amount of A1 and the amount of ⁇ are within the crystal grain boundaries and within the crystal grains of the parent phase constituting the alloy.
  • the form of this second phase is different from the second phase contained in the conventional hydrogen storage alloy, and often shows a spherical shape or an elliptical spherical shape.
  • the size of the second phase is preferably from 0.05 to 10 m, more preferably from 0.05 to 5 ⁇ m , and even more preferably from 0.05 to 2 ⁇ , so as to be uniformly distributed inside the alloy powder.
  • the narrowest interval between the second phases existing in the hydrogen storage alloy is preferably 10 111 or less, particularly 5 111 or less, and more preferably 2 111 or less, and there is no need for the interval.
  • the presence of the second phase can be determined using an electron microscope or ⁇ .
  • that the amount of A1 and Mn is larger than the amount of A1 and Mn of the parent phase means that the average of A1 and Mn contained in the parent phase is larger than the average value of A1 and Mn contained in the second phase. It means that the amount is significant and significant.
  • the amount of A1 and Mn in the second phase is preferably at least 2% higher than the average of that of the mother phase.
  • the range of X is desirably in the range of 6 to;
  • the method for producing the hydrogen storage alloy of the present invention is not particularly limited as long as the composition of the obtained alloy and the particle size, shape and dispersion state of the second phase can be controlled as described above.
  • the production method of the present invention is preferred.
  • an alloy raw material having a composition represented by the above formula (1) is melted, and then the alloy melt is cooled and solidified to obtain a piece having a specific average thickness. It is characterized in that the piece is heat-treated under specific conditions.
  • the alloy raw material having the composition represented by the formula (1) is not particularly limited as long as the obtained alloy composition is a mixture of metals and alloys satisfying the formula (1).
  • a mixture of each metal having the composition shown in (1) can be used.
  • the alloy melt of the alloy raw material is subjected to a known method such as high-frequency melting in an inert gas atmosphere using an alumina tube. You can get more.
  • the above-mentioned alloy melt is solidified by cooling to obtain a piece having an average thickness of 0.05 to 0.5 mm.
  • the cooling rate is high, the crystal grain size becomes finer, and if the cooling rate is slow, the crystal grain size becomes coarse. Since the crystal grain size is not uniform at the time of producing the piece and the shape and precipitation state of the second phase are not uniform, a heat treatment is performed under specific conditions in a subsequent step. Therefore, if the cooling rate at the time of producing the piece is too slow, the crystal diameter becomes large during the heat treatment described later, and it becomes difficult to make the dispersion state of the second phase uniform, which is not preferable.
  • the cooling rate is too high, the crystals become finer and the dispersed state becomes better. It is not preferable because it becomes difficult to control the heat treatment conditions and the productivity decreases. Further, when the cooling rate is further increased to become amorphous, it is difficult to precipitate the second phase in the crystal grains even if heat treatment is subsequently performed for crystallization, which is not preferable.
  • the above-mentioned strip be performed by a strip casting method using a single Rhono twin roll, a centrifugal method, a rotary disk manufacturing method, or the like that can obtain a suitable cooling rate.
  • the cooling conditions are usually about 10 to 3000 ° CZ seconds, preferably 10 to 500 ° CZ seconds, and more preferably 10 to 200 ° C / second.
  • the thickness of the obtained piece is controlled in the range of 0.05 to 0.5 mm in order to eliminate the variation of the crystal grain size in the cross-sectional direction of the piece and to make the crystal grain size after heat treatment described later uniform. There is a need. In this case, by exploring the above method, columnar crystals grow in the thickness direction of the obtained piece. In single-sided cooling such as single roll strip casting, the crystal grain size of the surface that is woven into the cooling medium is the smallest, and the crystal diameter increases toward the opposite surface.
  • the crystal grain size on the surface that is infested with the cooling medium is small, and the crystal grain size increases toward the center of the piece. ⁇ If the thickness of the piece exceeds 0.5 mm, the difference in grain size between the portion with a small crystal grain size and the portion with a large crystal grain size becomes too large, making it difficult to obtain the desired weave even by the heat treatment described below. Become.
  • the piece obtained above is subjected to a specific heat treatment to obtain the hydrogen storage alloy of the present invention.
  • the higher the heat treatment ⁇ and the longer the heat treatment time the smaller the grain size difference of each crystal in the piece, but the crystal grain size becomes too large and the desired characteristics may not be obtained. . Therefore, in the production method of the present invention, it is necessary to set the heat treatment conditions at 900 to 1100 ° C. for 30 minutes to 10 hours.
  • the hydrogen storage alloy powder of the present invention has a composition represented by the above formula (1), and has a particle size of 10 m or more. Alloy powder containing a grain boundary and at least a second phase inside the alloy (hereinafter, this alloy powder is referred to as a first powder), and an average particle size of 5 to 100 ⁇ m. m, and an alloy powder containing the first powder (hereinafter, this alloy powder is referred to as a second powder).
  • the composition and the second phase the same composition and the second phase as described in the hydrogen storage alloy of the present invention described above are preferably used.
  • the narrowest interval between the second phases is preferably 10 / m or less, particularly 5 ⁇ or less, and more preferably 2 m or less, and there may be no interval.
  • the composition of the second powder preferably has a composition represented by all of the formula (1), and powders other than the first powder in the second powder also have at least a second grain boundary with the grain boundary inside the alloy particles. It is preferable to include two phases.
  • the crystal grain size is preferably 5 ⁇ m or more, and more preferably 5 to 50 ⁇ m. It is preferable that the average particle size is 1/2 or less.
  • the surface may be covered with plating or a high-molecular polymer, or acid, Known treatments such as a surface treatment with a solution such as aluminum can be applied.
  • the first and second powders of the present invention can be obtained by, for example, the production method of the present invention in which the hydrogen storage alloy of the present invention is produced, and then the obtained heat-treated pieces are pulverized.
  • the step of pulverizing the piece after the heat treatment is not particularly limited as long as the alloy oxidation does not proceed during the pulverization of the piece and a specific particle size can be obtained.
  • a wet pulverization method using low oxygen water a dry pulverization method such as a pin mill / disk mill, and a hydrogen pulverization method using hydrogen gas are preferably exemplified.
  • the negative electrode for a nickel-metal hydride secondary battery of the present invention is not particularly limited as long as it contains the first or second powder and a conductive material as a negative electrode material. May contain other materials to achieve purpose! / ,.
  • the negative electrode for a nickel-metal hydride secondary battery of the present invention uses, for example, a first or second powder pulverized to a specific particle size and a conductive material, and mixes with a binder, a conductive auxiliary, and the like by a known method. It can be prepared by molding.
  • the conductive material, the binder, the conductive auxiliary agent, and the like are not particularly limited, and may be used.
  • the hydrogen storage alloy and the powder thereof of the present invention have a specific composition, a specific texture, and are therefore useful as an electrode material for a nickel hydrogen secondary battery. Excellent initial activity, high rate discharge characteristics, corrosion resistance and longevity characteristics, good balance, and with a small amount of Co, these characteristics can be obtained. . Further, according to the production method of the present invention, such a hydrogen storage alloy and its powder can be industrially easily obtained.
  • the negative electrode for a nickel-metal hydride secondary battery of the present invention uses the above-mentioned hydrogen-absorbing alloy powder of the present invention as an active material.
  • Example 1-1 ⁇ : L-6 and Comparative Example 1-:! ⁇ 1-2
  • Rare earth metals having the compositions shown in Table 1 (Examples 1-1 to 1-4; Mish Metal manufactured by Santoku Co., Ltd. were used) were used as A sites, and the A site was set to 1 for ⁇ Ni, Co, A raw material metal or an alloy was blended so that the atomic ratio of Mn and Al and the X of ABx became the values shown in Table 1, and were subjected to high frequency melting in an argon atmosphere using an alumina loop to prepare an alloy melt.
  • the obtained alloy melt was continuously supplied to a single roll via a tundish, and rapidly cooled at a cooling rate of 100 ° C / sec by a strip casting method to prepare a piece having a thickness of 0.2 mm. .
  • the obtained piece was ripened in an argon gas atmosphere under the conditions shown in Table 1 to prepare a hydrogen storage alloy.
  • the composition of the obtained hydrogen storage alloy was quantitatively analyzed by X-ray fluorescence spectroscopy (Nippon Kogyo Co., Ltd .: fc SMX-10), and it was confirmed that the composition was the same as the composition.
  • the alloy structure was observed with a scanning electron microscope, and the presence or absence of the second phase, the morphology of the second phase, the particle size of the second phase, and the narrowest interval between the second phases were measured.
  • the amounts of A1 and Mn in the parent phase and the second phase were measured by EPMA (JEOL JXL8800) quantitative analysis from the observed alloy structure, and the average total amount of A1 and Mn in the parent phase (b ), The increase in the total amount (s) of A1 and Mn in the second phase was calculated. Table 1 shows the results.
  • FIG. 1 shows a copy of an electron micrograph showing a cross-sectional structure of the hydrogen storage alloy ⁇ prepared in Example 1-1, taken along a cross section perpendicular to the thickness direction.
  • Example 2- ! ⁇ 2-6 and Comparative Examples 2-1 ⁇ 2-2
  • the hydrogen storage alloy prepared in Examples 1-1 to 1-6 or Comparative Example 1-1-1-2 was mechanically pulverized to prepare a hydrogen storage alloy powder having an average particle diameter of 60 m or less.
  • Example 1-1-1-6 and Comparative Example 1-1-1- It was confirmed that the composition was the same as the hydrogen storage alloy composition prepared in 2. Further, the alloy powder yarn was observed with a scanning electron microscope, and the presence or absence of the second phase and the grain boundary, and the crystal size of the crystal grains in the alloy powder in the minor axis direction were measured. In addition, the minimum particle size and the average particle size of the alloy powder were measured using a particle size meter. Table 2 shows the results.
  • FIG. 2 shows a copy of an electron micrograph showing the cross-sectional structure of the hydrogen storage alloy powder prepared in Example 2-1.
  • the capacity at the time of discharging at 1 C at the 11th cycle was measured, and the ratio of the value at this time to the discharge capacity at the 10th cycle was evaluated.
  • the corrosion resistance after the 12th cycle, the battery was discharged again with a discharge current of 0.2 C, and the capacity retention ratio at the 600th cycle with respect to the discharge at the 10th cycle was evaluated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A hydrogen storage alloy which has a composition represented by the formula (1): RNiaCobAlcMndMe ---- (1) wherein R represents a rare earth element including Y, or the like, M represents Mg, Fe or the like, and 3.50 ≤ a ≤ 4.95, 0.10 ≤ b ≤ 0.50, 0.35 ≤ c ≤ 0.55, 0.10 ≤ d ≤ 0.45 and 0 ≤ e ≤ 0.10, provided that 5.10 ≤ a+b+c+d+e ≤ 5.50, and has a particle diameter of 10 μm or less and, at a grain boundary and within a grain of the base phase constituting the alloy, a second phase having a Al content and a Mn content greater than those of the base phase. The hydrogen storage alloy is useful as an electrode material for a secondary cell has achieved the reduction of a cobalt content, and also offers a good balance of a level of activities such as initial activity and discharge characteristics, corrosion resistance, and life characteristics, and further is excellent in recyclability.

Description

明細書  Specification
水素吸蔵合金、 水素吸蔵合金粉末、 それらの製造法及びニッケル水素二次電池用負極 技術分野 Hydrogen storage alloys, hydrogen storage alloy powders, their production methods, and negative electrodes for nickel-metal hydride secondary batteries
本発明は、 ニッケル水素二次電池等の電極材料として有用であり、 特に、 二次電池 用負極材料に用いることにより、 良好な活性度、 耐食性並びに寿命特性をバランス良 く備えた水素吸蔵合金、 その粉末、 それらの製造法及びニッケル水素二次電池用負極 に関する。  INDUSTRIAL APPLICABILITY The present invention is useful as an electrode material for nickel-metal hydride secondary batteries and the like. The present invention relates to the powder, a method for producing the powder, and a negative electrode for a nickel-metal hydride secondary battery.
背景技術 Background art
現在、 金属酸化物一水素電池において、 水素負極を水素吸蔵合金で構成した形式の 電池が注目されている。 このような電池は、 元来高エネルギー密度を有し、 容積効率 に優れ、 しかも安全作動が可能であって、 特性的にも信頼度の点でも優れている。 該 電池の負極材料として主に使用される AB 5 SET素吸蔵合金には、通常、電池の特性を 向上させるために、 高水素吸蔵量、 低 圧、 耐食性、 ブラト一の平坦性等の様々な 特性が要求される。 これら特性のうちのいくつかは、 相反する性質であるため、 一方 の特性を犠牲にせずに他方の特性を向上させるという点についての研究が進められ、 一部実用化に至っている。 At present, attention has been focused on a metal oxide monohydrogen battery in which the hydrogen negative electrode is made of a hydrogen storage alloy. Such batteries inherently have a high energy density, are excellent in volumetric efficiency, can operate safely, and are excellent in characteristics and reliability. The AB 5 SET-containing storage alloy is mainly used as a negative electrode material of the battery, usually, in order to improve the characteristics of the battery, high hydrogen storage capacity, a variety of such low pressures, corrosion resistance, Blato one flatness Characteristics are required. Since some of these properties are contradictory, research has been conducted on improving the other property without sacrificing one property, and some of them have been put to practical use.
電池のサイクル特性を向上させる要因となる水素吸蔵合金の耐食性を向上させると いう面においては、 コバルトを添加する方法が効果を上げ、 実用化に至っている。 し かし、 コバルトは非常に高価な金属であるため、 合金の価格が高くなる。 そこで、 コ バルトの添加量を低減しながら合金の耐食性を維持する技術の開発が進められている。 例えば、 コバルトと共に他の添加元素を多数使用する方法が検討されている。 しか し、 該方法では、 合金を構成する元素数が増えるため、 電池のリサイクルが困難にな り、 リサイクルコストが増加するという問題が新たに浮上している。 また、 希土類元 素を主体とする Aサイト成分に対し、 Niを主体とする Bサイト成分の割合を多くす る方法が試みられている。該方法では、合金糸纖を均質化することが困難となり、 PCT 曲線におけるブラトー部の傾斜が大きくなりすぎたり、 多段ブラトーになる傾向が高 いため、 電池容量の低下や、 電池の内圧特性が低下する等の問題が生じる。  In terms of improving the corrosion resistance of the hydrogen storage alloy, which is a factor that improves the cycle characteristics of batteries, the method of adding cobalt is effective and has been put to practical use. However, cobalt is a very expensive metal, which increases the price of the alloy. Therefore, technology to maintain the corrosion resistance of the alloy while reducing the amount of cobalt added is being developed. For example, a method of using a large number of other additive elements together with cobalt is being studied. However, this method has a new problem that the number of elements constituting the alloy increases, making it difficult to recycle the battery and increasing the recycling cost. Attempts have been made to increase the ratio of B-site components mainly composed of Ni to A-site components mainly composed of rare-earth elements. In this method, it is difficult to homogenize the alloy fiber, and the slope of the blast plateau in the PCT curve becomes too large, and the tendency to form a multi-stage plateau is high. Problems occur.
電池の活性度を向上させる要因となる水素吸蔵合金の活性度を向上させるという面 においては、 合金に対して、 酸やアルカリによる表面処理を施す方法、 Aサイト成分 の割合を多くする方法が試みられている。 しカゝし、 活性度は前述の耐食性とは相反す る要因であるため、 活性度を向上させるこれらの方法は同時に耐食性を低下させると いう問題がある。 In terms of improving the activity of the hydrogen storage alloy, which is a factor that improves the activity of the battery, attempts have been made to apply a surface treatment to the alloy with an acid or alkali and to increase the proportion of the A-site component to the alloy. Have been. The activity is contradictory to the aforementioned corrosion resistance Therefore, these methods for improving the activity have a problem that the corrosion resistance is reduced at the same time.
特に最近ではパワーツール用途等、 高率放電を必要とする電池にもニッケル水素二 次電池が使用され、これに用いる水素吸蔵合金の特性の更なる向上が求められて 、る。 発明の開示  Particularly recently, nickel-metal hydride secondary batteries have been used for batteries requiring high-rate discharge, such as power tool applications, and further improvement in the properties of the hydrogen storage alloy used for these batteries is required. Disclosure of the invention
本発明の目的は、 ニッケル水素二次電池の電極材料として有用であり、 負極材料と して使用することにより、少ないコパルト量で、初期活十生、高率放電特性等の活性度、 耐食性並びに寿命特性を良好にパランス良く備え、 かつリサイクル性にも優れた水素 吸蔵合金、 その粉末、 それらの製造法、 並びに該水素吸蔵合金粉末を用いたニッケル 水素二次電池用負極を提供することにある。  An object of the present invention is to be useful as an electrode material of a nickel-metal hydride secondary battery. An object of the present invention is to provide a hydrogen storage alloy having good life characteristics and good balance and excellent recyclability, a powder thereof, a method for producing the same, and a negative electrode for a nickel-metal hydride secondary battery using the hydrogen storage alloy powder. .
本発明者らは、 上記課題を解決するため、 合金の組成や組織と、 耐食性及び活性度 との相関について鋭意検討を行った結果、合金の Bサイト成分を特定の範囲にすると 共に、 Bサイト成分のうち A1及び Mn量を特定の範囲とし、 力つ微細な第 2相を母 相全体に均一に析出させた水素吸蔵合金の使用により上記課題が解決できることを知 見し、 本発明を完成した。  The present inventors have conducted intensive studies on the correlation between the composition and structure of the alloy and the corrosion resistance and activity in order to solve the above-mentioned problems. As a result, the B-site component of the alloy is set to a specific range, and the B-site Completed the present invention by finding that the above problems can be solved by using a hydrogen storage alloy in which the amount of A1 and Mn in the components is in a specific range and a fine second phase is uniformly deposited over the entire matrix. did.
即ち本発明によれば、式 (1)で表される組成を有する合金であって、合金を構成する 母相の結晶粒界及ぴ結晶粒内に、 A1及び Mnの含有量が母相の A1及び Mnの含有量 よりも多く、 粒径 10 m以下の第 2相を有する水素吸蔵合金が される。  That is, according to the present invention, an alloy having a composition represented by the formula (1), wherein the content of A1 and Mn in the crystal grain boundaries and in the crystal grains of the mother phase constituting the alloy is A hydrogen-absorbing alloy having a second phase that is larger than the contents of A1 and Mn and has a particle size of 10 m or less is obtained.
RN i a C 0 bA 1 0Mn dMe · · · (1) RN i a C 0b A 1 0 Mn d M e (1)
(式中、 Rはイツトリウムを含む希土類元素又はこれらの混合元素を示し、 Mは Mg、 Fe、 Cu、 Zr、 Ti、 Mo、 W、 B又はこれらの混合物を示す。 aは 3.50≤a≤4.95、 bは 0.10≤b≤0.50, cは 0.35≤c≤0.55、 dは 0.10≤d 0.45、 eは 0≤e≤0.10であり、 5.10≤a+b+c+d+e≤5.50である。 ) (In the formula, R represents a rare earth element containing yttrium or a mixed element thereof, M represents Mg, Fe, Cu, Zr, Ti, Mo, W, B or a mixture thereof. A represents 3.50≤a≤4.95 B is 0.10≤b≤0.50, c is 0.35≤c≤0.55, d is 0.10≤d 0.45, e is 0≤e≤0.10, and 5.10≤a + b + c + d + e≤5.50. )
また本発明によれば、 上記式 (1)で表される組成を有し、 粒径 10 μ ηι以上の合金粉 末であり、 且つ合金粒子内部に、粒界と少なくとも 1つの第 2相とを含む水素吸蔵合 金粉末が提供される。  According to the present invention, there is provided an alloy powder having a composition represented by the above formula (1), a particle size of 10 μηι or more, and a grain boundary and at least one second phase inside the alloy particle. A hydrogen storage alloy powder comprising:
更に本発明によれば、 平均粒径が 5〜: L00 mの合金粉末であり、 且つ上記合金粉 末を含む水素吸蔵合金粉末が される。  Further, according to the present invention, there is provided a hydrogen storage alloy powder which is an alloy powder having an average particle diameter of 5 to: L00 m and contains the alloy powder.
更にまた本発明によれば、上記式 (1)で示される組成となる合金原料を溶融した後、 該合金溶融物を冷却凝固し、平均厚さ 0.05〜0.5mmの铸片を得、得られた铸片を 900 〜1100°Cで 30分間〜 10時間熱処理することを特徴とする上記水素吸蔵合金の製造法 が される。 Furthermore, according to the present invention, after melting the alloy raw material having the composition represented by the above formula (1), the molten alloy is cooled and solidified to obtain a piece having an average thickness of 0.05 to 0.5 mm, which is obtained. 900 pieces The method for producing a hydrogen-absorbing alloy is characterized by performing a heat treatment at 〜1100 ° C. for 30 minutes to 10 hours.
また本発明によれば、上記式 (1)で示される組成となる合金原料を溶融した後、該合 金溶融物を冷却凝固し、 平均厚さ 0.05〜0.5mmの铸片を得、 得られた铸片を 900〜 1100°Cで 30分間〜 10時間熱処理した後、粉砕する上記合金粉末の製造法が され る。  Further, according to the present invention, after melting the alloy raw material having the composition represented by the above formula (1), the alloy melt is cooled and solidified to obtain a piece having an average thickness of 0.05 to 0.5 mm. After the heat treatment of the pieces at 900 to 1100 ° C for 30 minutes to 10 hours, a method of producing the above-mentioned alloy powder which is pulverized is performed.
更に本発明によれば、 上記合金粉末と導電材とを負極材料として含むニッケル水素 二次電池用負極が提供される。  Further, according to the present invention, there is provided a negative electrode for a nickel-metal hydride secondary battery including the above alloy powder and a conductive material as a negative electrode material.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1-1で調製した水素吸蔵合 片の断面 ,観哉を示す電子顕微鏡写真 の写しである。  FIG. 1 is a copy of an electron micrograph showing a cross section and a view of the hydrogen-absorbing piece prepared in Example 1-1.
図 2は、 実施例 2-1で調製した水素吸蔵合金粉末の断面組織を示す電子顕微鏡写真 の写しである。  FIG. 2 is a copy of an electron micrograph showing a cross-sectional structure of the hydrogen storage alloy powder prepared in Example 2-1.
発明の好ましい実施の態様 Preferred embodiments of the invention
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の水素吸蔵合金は、 上記式 (1)で表される組成を有する。 式 (1)中の Rは、 ィ ットリウムを含む希土類元素又はこれらの 2種以上の混合元素を示す。 例えば、 ニッ ケル水素二次電池の負極活物質として使用した際に耐食性を向上させる点から、 主に La、 Ce、 Pr及び Ndからなる群より選択される 1種又は 2種以上を含むか、 若しく は La、 Ce、 Pr及ぴ Ndからなる群より選択される 1種又は 2種以上からなることが 望ましい。この際の各希土類元素の比率は、 Laが 40〜; L00質量%、 Ceが 0〜50質量%、 Prが 0〜50質量0 /0、 Ndが 0〜50質量0 /0であることが好ましい。 The hydrogen storage alloy of the present invention has a composition represented by the above formula (1). R in the formula (1) represents a rare earth element containing yttrium or a mixed element of two or more thereof. For example, from the viewpoint of improving corrosion resistance when used as a negative electrode active material of a nickel hydrogen secondary battery, one or more types mainly selected from the group consisting of La, Ce, Pr, and Nd are included, It is desirable to be composed of one or more selected from the group consisting of La, Ce, Pr and Nd. Ratio of each rare earth element in this case, La is 40 to; L00 wt%, Ce is 0 to 50 mass%, Pr is that 0 to 50 weight 0/0, Nd is 0 to 50 mass 0/0 preferable.
式 (1)中の Ni量を示す aは、 3.50≤a≤4.95、 好ましくは 3.90≤a≤4.75である。 Co量を示す bは 0.10≤b≤0.50、好ましくは 0.20≤b 0.50である。わが 0.50を超え ると合金価格が高くなり、 0.10未満では耐食性の低下が避けられない。 A1量を示す c は 0.35≤c≤0.55、好ましくは 0.35≤c≤0.50である。 Mn量を示す dは 0.10≤d≤0.45、 好ましくは 0.15≤d≤0.30である。 A1及ぴ Mn量は前記範囲であれば良レ、が、本発明 の所望の目的をより良好にするために、 A1及ぴ Mnの存在比を示す c/dを 0.7以上 となるように組成を調整することが特に好ましい。  A, which indicates the amount of Ni in the formula (1), is 3.50≤a≤4.95, preferably 3.90≤a≤4.75. B indicating the amount of Co is 0.10≤b≤0.50, preferably 0.20≤b 0.50. If it exceeds 0.50, the alloy price will increase, and if it is less than 0.10, the corrosion resistance will inevitably decrease. C indicating the amount of A1 is 0.35≤c≤0.55, preferably 0.35≤c≤0.50. D indicating the amount of Mn is 0.10≤d≤0.45, preferably 0.15≤d≤0.30. The amount of A1 and Mn is good within the above range, but in order to further improve the desired object of the present invention, the composition is set so that the c / d indicating the abundance ratio of A1 and Mn is 0.7 or more. It is particularly preferred to adjust
式 (1)中の Mは、合金の水素吸蔵特性を調整等するための添加元素であり、 Mg、 Fe、 Cu、 Zr、 Ti、 Mo、 W、 B又はこれらの 2種以上の混合物を示す。 M量を示す eは 0 ≤e≤0.10である。 eが 0.10を超える場合は、 添加量に見合う特性の向上が望めず、 リサイクルが困難になる恐れがある。 M in the formula (1) is an additive element for adjusting the hydrogen storage characteristics of the alloy, and includes Mg, Fe, Indicate Cu, Zr, Ti, Mo, W, B or a mixture of two or more thereof. E indicating the amount of M is 0 ≤ e ≤ 0.10. If e exceeds 0.10, it is not possible to improve the properties corresponding to the added amount, and recycling may be difficult.
本発明の合金において; Bサイト元素比を示す a+b + c+d+e <Z)f直は、 5·10〜5.50、 好ましくは 5.20〜5.40である。 この値が 5.10未満では合金組織内に微細な第 2相を 分散させることが困難になり、 5.50を超えると電池材料とした際の容量低下が避けら れない。  In the alloy of the present invention, a + b + c + d + e <Z) f indicating the B-site element ratio is 510 to 5.50, preferably 5.20 to 5.40. If this value is less than 5.10, it becomes difficult to disperse the fine second phase in the alloy structure, and if it exceeds 5.50, a decrease in capacity when used as a battery material is inevitable.
本発明の水素吸蔵合金は、 上述の組成を有し、 その組織は、 所望の特性を得るため に、合金を構成する母相の結晶粒界及ぴ結晶粒内に、 A1及び Μη量が母相よりも多く、 粒径 10 以下の第 2相を含む。 この第 2相の形態は、 従来の水素吸蔵合金に含ま れる第 2相とは異なり、 球形又は楕円球形を示すことが多い。 第 2相の大きさは、 均 —に合金粉末内部に分配されるように 0.05〜10 mが好ましく、 特に 0.05〜5μ m、 更には 0.05〜2μ πιの範囲が好ましい。 また、 水素吸蔵合金中に存在する第 2相同士 の最も狭い間隔は、 10 111以下、 特に 5 111以下、 更には 2 111以下が好ましく、 間 隔がなくても良い。 第 2相の存在は、 電子顕微鏡や ΕΡΜΑを用いて できる。 上記第 2相において、 A1及ぴ Mn量が母相の A1及ぴ Mn量よりも多いとは、 母相 に含まれる A1及び Mn量の平均値よりも第 2相に含まれる A1及ぴ Mn量が有意差を もって多いことを意味する。 例えば、 第 2相の A1及ぴ Mn量は、 母相のそれの平均 よりも 2%以上多レ、ことが好ましレ、。 また、第 2相の組成を ABx表示した際の Xの範 囲は 6〜; 10の範囲が望ましい。 The hydrogen storage alloy of the present invention has the above-described composition, and its structure is such that, in order to obtain desired characteristics, the amount of A1 and the amount of Μη are within the crystal grain boundaries and within the crystal grains of the parent phase constituting the alloy. Includes a second phase with a particle size of 10 or less. The form of this second phase is different from the second phase contained in the conventional hydrogen storage alloy, and often shows a spherical shape or an elliptical spherical shape. The size of the second phase is preferably from 0.05 to 10 m, more preferably from 0.05 to 5 μm , and even more preferably from 0.05 to 2 μππ, so as to be uniformly distributed inside the alloy powder. Further, the narrowest interval between the second phases existing in the hydrogen storage alloy is preferably 10 111 or less, particularly 5 111 or less, and more preferably 2 111 or less, and there is no need for the interval. The presence of the second phase can be determined using an electron microscope or ΕΡΜΑ. In the above-mentioned second phase, that the amount of A1 and Mn is larger than the amount of A1 and Mn of the parent phase means that the average of A1 and Mn contained in the parent phase is larger than the average value of A1 and Mn contained in the second phase. It means that the amount is significant and significant. For example, the amount of A1 and Mn in the second phase is preferably at least 2% higher than the average of that of the mother phase. When the composition of the second phase is indicated by ABx, the range of X is desirably in the range of 6 to;
本発明の水素吸蔵合金を製造するには、 得られる合金の組成、 並びに第 2相の粒径、 形状及び分散状態等を上述のとおり制御しうる方法であれば特に限定されないが、 以 下の本発明の製造法が好ましい。  The method for producing the hydrogen storage alloy of the present invention is not particularly limited as long as the composition of the obtained alloy and the particle size, shape and dispersion state of the second phase can be controlled as described above. The production method of the present invention is preferred.
本発明の水素吸蔵合金の製造法は、上記式 (1)で示される組成となる合金原料を溶融 した後、 該合金溶融物を冷却凝固し、 特定平均厚さの鎳片を得、 得られた鎳片を特定 条件で熱処理することを特徴とする。  In the method for producing a hydrogen storage alloy of the present invention, an alloy raw material having a composition represented by the above formula (1) is melted, and then the alloy melt is cooled and solidified to obtain a piece having a specific average thickness. It is characterized in that the piece is heat-treated under specific conditions.
本発明の製造法において、式 (1)で示される組成となる合金原料としては、得られる 合金組成が式 (1)を充足する金属や合金の混合物であれば特に限定されないが、通常、 式 (1)で示す組成となる各金属の混合物等が使用できる。該合金原料の合金溶融物は、 例えば、 アルミナルツポを用いて不活性ガス雰囲気中、 高周波溶融等の公知の方法に より得ることができる。 In the production method of the present invention, the alloy raw material having the composition represented by the formula (1) is not particularly limited as long as the obtained alloy composition is a mixture of metals and alloys satisfying the formula (1). A mixture of each metal having the composition shown in (1) can be used. The alloy melt of the alloy raw material is subjected to a known method such as high-frequency melting in an inert gas atmosphere using an alumina tube. You can get more.
本発明の製造法では、次に、上記合金溶融物を冷却凝固し、平均厚さ 0.05〜0.5mm の鎳片を得る。 この際、 冷却速度が速ければ結晶粒径は微細ィ匕し、 遅ければ粗大化す る。 該铸片作製時には結晶粒径が均一でなく、 上述の第 2相の形状及び析出状態も均 一でないため、 後工程において特定条件で熱処理を行う。 従って、 铸片作製時の冷却 速度が遅すぎると、後述する熱処理時に結晶立径が粗大化し、 第 2相の分散状態を均 一にすることが困難になるため好ましくない。 逆に冷却速度が速すぎると、 結晶が微 細化し分散状態は良くなる力 熱処理条件の制御が困難となったり、 生産性が低下す るので好ましくない。 また、 冷却速度が更に速くなり非晶質となった場合には、 その 後に熱処理を行つて結晶化しても結晶粒内に第 2相を析出させることが困難であるの で好ましくない。  Next, in the production method of the present invention, the above-mentioned alloy melt is solidified by cooling to obtain a piece having an average thickness of 0.05 to 0.5 mm. At this time, if the cooling rate is high, the crystal grain size becomes finer, and if the cooling rate is slow, the crystal grain size becomes coarse. Since the crystal grain size is not uniform at the time of producing the piece and the shape and precipitation state of the second phase are not uniform, a heat treatment is performed under specific conditions in a subsequent step. Therefore, if the cooling rate at the time of producing the piece is too slow, the crystal diameter becomes large during the heat treatment described later, and it becomes difficult to make the dispersion state of the second phase uniform, which is not preferable. Conversely, if the cooling rate is too high, the crystals become finer and the dispersed state becomes better. It is not preferable because it becomes difficult to control the heat treatment conditions and the productivity decreases. Further, when the cooling rate is further increased to become amorphous, it is difficult to precipitate the second phase in the crystal grains even if heat treatment is subsequently performed for crystallization, which is not preferable.
以上の点より、 上記铸片 ί«は、 好適な冷却速度が得られる単ローノ^双ロールに よるストリップキャスト法、 遠心^ 法、 回転円盤铸造法等により行うことが好まし い。 冷却条件は、 通常 10〜3000°CZ秒程度、 好ましくは 10〜500°CZ秒、 更に好ま しくは 10〜200°C/秒の冷却速度で行なうことができる。  In view of the above, it is preferable that the above-mentioned strip be performed by a strip casting method using a single Rhono twin roll, a centrifugal method, a rotary disk manufacturing method, or the like that can obtain a suitable cooling rate. The cooling conditions are usually about 10 to 3000 ° CZ seconds, preferably 10 to 500 ° CZ seconds, and more preferably 10 to 200 ° C / second.
得られる铸片の厚さは、 铸片の断面方向における結晶粒径のサイズのばらつきをな くし、後述する熱処理後の結晶粒径を均一にするために、 0.05〜0.5mmの範囲に制御 する必要がある。 この場合、 上記 方法を探用することにより、 得られる铸片の厚 さ方向に柱状晶が成長する。 単ロールストリップキャストをはじめとする片面冷却で は、 冷却媒体に纖する面の結晶粒径が 番小さく、 対面に向かって結晶ネ立径が大き くなる。 双ロールストリップキャストをはじめとする両面冷却では冷却媒体に翻虫す る表面の結晶粒径が小さく、 铸片の中心部に向かって結晶粒径が大きくなる。 鎵片の 厚さが 0.5mmを超えると、 結晶粒径の小さい部分と大きい部分とで粒径の差が大き くなりすぎ、 後述する熱処理によっても前述の所望の, 織にすることが困難になる。 本努明の製造法では、 次に、 上記で得られた铸片を特定の熱処理に供することによ り本発明の水素吸蔵合金が得られる。 一般に、 熱処理^^を高くして、熱処理時間を 長くするほど铸片内の各結晶の粒径差を小さくできるが、 結晶粒径が大きくなりすぎ て、 所望の特性が得られない恐れがある。 従って、 本発明の製造法においては、 熱処 理条件を、 900〜1100°Cで 30分間〜 10時間とする必要がある。  The thickness of the obtained piece is controlled in the range of 0.05 to 0.5 mm in order to eliminate the variation of the crystal grain size in the cross-sectional direction of the piece and to make the crystal grain size after heat treatment described later uniform. There is a need. In this case, by exploring the above method, columnar crystals grow in the thickness direction of the obtained piece. In single-sided cooling such as single roll strip casting, the crystal grain size of the surface that is woven into the cooling medium is the smallest, and the crystal diameter increases toward the opposite surface. In double-sided cooling, such as twin roll strip casting, the crystal grain size on the surface that is infested with the cooling medium is small, and the crystal grain size increases toward the center of the piece.と If the thickness of the piece exceeds 0.5 mm, the difference in grain size between the portion with a small crystal grain size and the portion with a large crystal grain size becomes too large, making it difficult to obtain the desired weave even by the heat treatment described below. Become. Next, in the production method of the present invention, the piece obtained above is subjected to a specific heat treatment to obtain the hydrogen storage alloy of the present invention. In general, the higher the heat treatment ^^ and the longer the heat treatment time, the smaller the grain size difference of each crystal in the piece, but the crystal grain size becomes too large and the desired characteristics may not be obtained. . Therefore, in the production method of the present invention, it is necessary to set the heat treatment conditions at 900 to 1100 ° C. for 30 minutes to 10 hours.
本発明の水素吸蔵合金粉末は、 上記式 (1)で表される組成を有し、 粒径 10 m以上 の合金粉末であり、 且つ合^:子内部に、粒界と少なくとも第 2相とを含む合金粉末 (以下、 この合金粉末を第 1の粉末という)、及ぴ平均粒径が 5〜 100 μ mの合金粉末で あり、 且つ上記第 1の粉末を含む合金粉末 (以下、 この合金粉末を第 2の粉末という) である。 The hydrogen storage alloy powder of the present invention has a composition represented by the above formula (1), and has a particle size of 10 m or more. Alloy powder containing a grain boundary and at least a second phase inside the alloy (hereinafter, this alloy powder is referred to as a first powder), and an average particle size of 5 to 100 μm. m, and an alloy powder containing the first powder (hereinafter, this alloy powder is referred to as a second powder).
第 1の粉末において、 組成及び第 2相としては、 上述の本発明の水素吸蔵合金にお いて説明した同様な組成及び第 2相が好ましく挙げられる。第 2相を複数含む場合に は、第 2相同士の最も狭い間隔が全て 10 / m以下、特に 5 μ πι以下、更には 2 m以 下が好ましく、 間隔がなくても良い。  In the first powder, as the composition and the second phase, the same composition and the second phase as described in the hydrogen storage alloy of the present invention described above are preferably used. When a plurality of second phases are contained, the narrowest interval between the second phases is preferably 10 / m or less, particularly 5 μπι or less, and more preferably 2 m or less, and there may be no interval.
第 2の粉末の組成は、全てが式 (1)で表される組成を有することが好ましく、第 2の 粉末中における第 1の粉末以外の粉末も、合金粒子内部に、粒界と少なくとも第 2相 とを含むことが好ましい。  The composition of the second powder preferably has a composition represented by all of the formula (1), and powders other than the first powder in the second powder also have at least a second grain boundary with the grain boundary inside the alloy particles. It is preferable to include two phases.
本発明の第 1及び第 2の粉末において、 結晶粒径は、 5 μ m以上、 更には 5〜50 μ mが好ましく、 特に、 電極として使用する際には、 結晶粒径が、 用いる合金粉末の平 均粒径の 1/2以下であることが好ましい。  In the first and second powders of the present invention, the crystal grain size is preferably 5 μm or more, and more preferably 5 to 50 μm. It is preferable that the average particle size is 1/2 or less.
本発明の第 1及び第 2の粉末においては、 例えば、 電極材料とする^^には、 電極 諸特性の更なる向上を目的として、メッキゃ高分子ポリマー等で表面ネ皮覆したり、酸、 アル力リ等の溶液による表面処理等、 公知の処理を施すことができる。  In the first and second powders of the present invention, for example, for the electrode material, for the purpose of further improving the various characteristics of the electrode, the surface may be covered with plating or a high-molecular polymer, or acid, Known treatments such as a surface treatment with a solution such as aluminum can be applied.
本発明の第 1及び第 2の粉末は、 例えば、 本発明の水素吸蔵合金を製造した後、得 られた熱処理後の錡片を粉砕する本発明の製造法等により得ることができる。  The first and second powders of the present invention can be obtained by, for example, the production method of the present invention in which the hydrogen storage alloy of the present invention is produced, and then the obtained heat-treated pieces are pulverized.
前記熱処理後の铸片を粉砕する工程は、 铸片の粉碎時に合金酸化が進まず、 特定の 粒度が得られる方法であれば特に限定されず^ Pの方法が採用できる。 例えば、 低酸 素水を用いた湿式粉砕法、 ピンミルゃディスクミル等の乾式粉碎法、 水素ガスを用い た水素粉碎法が好ましく挙げられる。  The step of pulverizing the piece after the heat treatment is not particularly limited as long as the alloy oxidation does not proceed during the pulverization of the piece and a specific particle size can be obtained. For example, a wet pulverization method using low oxygen water, a dry pulverization method such as a pin mill / disk mill, and a hydrogen pulverization method using hydrogen gas are preferably exemplified.
本発明のニッケル水素二次電池用負極は、 第 1又は第 2の粉末と、 導 とを負極 材料として含むものであれば特に限定されず、 所望の目的を更に向上させるために、 また他の目的を達成するために他の材料を含んでいても良!/、。  The negative electrode for a nickel-metal hydride secondary battery of the present invention is not particularly limited as long as it contains the first or second powder and a conductive material as a negative electrode material. May contain other materials to achieve purpose! / ,.
本発明のニッケル水素二次電池用負極は、 例えば、 特定粒度に粉砕した第 1又は第 2の粉末及ぴ導電材を使用し、 公知の方法により、 結着剤、 導電助剤等と共に混合、 成形することにより調製できる。 この際用いる導電材、 結着剤、 導電助剤等は特に限 定されず、 のものが使用できる。 本発明の水素吸蔵合金及ぴその粉末は、 特定の,袓成及び特定の ,袓織を有するので、 二ッケル水素二次電池の電極材料として有用であり、 該負極材料として使用すること により、 初期活性、 高率放電特性、 耐食¾ぴ寿命特性を良好にパランス良く備え、 更に、少ない Co量でこのような特性が得られ、 力つリサイクル性も考慮しうるので、 実用性に優れている。 また、 本発明の製造法では、 このような水素吸蔵合金及びその 粉末を工業的に容易に得ることができる。 The negative electrode for a nickel-metal hydride secondary battery of the present invention uses, for example, a first or second powder pulverized to a specific particle size and a conductive material, and mixes with a binder, a conductive auxiliary, and the like by a known method. It can be prepared by molding. In this case, the conductive material, the binder, the conductive auxiliary agent, and the like are not particularly limited, and may be used. The hydrogen storage alloy and the powder thereof of the present invention have a specific composition, a specific texture, and are therefore useful as an electrode material for a nickel hydrogen secondary battery. Excellent initial activity, high rate discharge characteristics, corrosion resistance and longevity characteristics, good balance, and with a small amount of Co, these characteristics can be obtained. . Further, according to the production method of the present invention, such a hydrogen storage alloy and its powder can be industrially easily obtained.
本発明のニッケル水素二次電池用負極は、 活物質として上記本発明の水素吸蔵合金 粉末を用いるので、 二次電池用負極とした際の効果が得られ、 実用性に富む。  The negative electrode for a nickel-metal hydride secondary battery of the present invention uses the above-mentioned hydrogen-absorbing alloy powder of the present invention as an active material.
実施例 Example
以下、 本発明を実施例及び比較例により更に詳細に説明するが、 本発明はこれらに 限定されない。  Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
実施例 1-1〜: L-6及び比較例 1-:!〜 1-2  Example 1-1 ~: L-6 and Comparative Example 1-:! ~ 1-2
表 1に示す組成の希土類金属 (実施例 1-1〜; 1-4は株式会社三徳製のミッシュメタル を用いた)を Aサイトとし、該 Aサイトを 1とした^^の Ni、 Co、 Mn、 Alの原子比 及ぴ ABxの Xが表 1に示す値となるように原料金属又は合金を配合し、 アルミナル ッポを用いてアルゴン雰囲気中、 高周波溶融して合金溶融物を調製した。 次いで、 得 られた合金溶融物を、 タンディッシュを介して、 単ロールに連続的に供給し、 ストリ ップキャスト法により冷却速度 100°C/秒で急冷して厚さ 0.2mmの铸片を調製した。 得られた鎳片をアルゴンガス雰囲気中で表 1に示す条件で熟処理を行い、水素吸蔵合 金を調製した。  Rare earth metals having the compositions shown in Table 1 (Examples 1-1 to 1-4; Mish Metal manufactured by Santoku Co., Ltd. were used) were used as A sites, and the A site was set to 1 for ^^ Ni, Co, A raw material metal or an alloy was blended so that the atomic ratio of Mn and Al and the X of ABx became the values shown in Table 1, and were subjected to high frequency melting in an argon atmosphere using an alumina loop to prepare an alloy melt. Next, the obtained alloy melt was continuously supplied to a single roll via a tundish, and rapidly cooled at a cooling rate of 100 ° C / sec by a strip casting method to prepare a piece having a thickness of 0.2 mm. . The obtained piece was ripened in an argon gas atmosphere under the conditions shown in Table 1 to prepare a hydrogen storage alloy.
得られた水素吸蔵合金について、 蛍光 X線分析 Ο学 工業ネ: fc SMX-10)によつ て組成を定量分析した結果、 配合組成と同一であることが確認できた。 また、 走査型 電子顕微鏡で合金組織を観察し、 第 2相の有無、 第 2相の形態、 第 2相の粒径、 並び に第 2相同士の最も狭い間隔をそれぞれ測定した。 更に、 上記観察した合金組織から EPMA(日本電子製 JXL8800)定量分析により母相中及ぴ第 2相中の A1及び Mn量を 測定し、母相中の A1及ぴ Mnの平均合計量 (b)に対する第 2相中の A1及び Mnの合計 量 (s)の増加分を計算により求めた。 結果を表 1に示す。  The composition of the obtained hydrogen storage alloy was quantitatively analyzed by X-ray fluorescence spectroscopy (Nippon Kogyo Co., Ltd .: fc SMX-10), and it was confirmed that the composition was the same as the composition. The alloy structure was observed with a scanning electron microscope, and the presence or absence of the second phase, the morphology of the second phase, the particle size of the second phase, and the narrowest interval between the second phases were measured. Furthermore, the amounts of A1 and Mn in the parent phase and the second phase were measured by EPMA (JEOL JXL8800) quantitative analysis from the observed alloy structure, and the average total amount of A1 and Mn in the parent phase (b ), The increase in the total amount (s) of A1 and Mn in the second phase was calculated. Table 1 shows the results.
また、 実施例 1-1で調製した水素吸蔵合金铸片の厚さ方向に対して垂直に断面を取 つた際の断面組織を示す電子顕微鏡写真の写しを図 1に示す。 FIG. 1 shows a copy of an electron micrograph showing a cross-sectional structure of the hydrogen storage alloy 铸 prepared in Example 1-1, taken along a cross section perpendicular to the thickness direction.
Figure imgf000010_0001
Figure imgf000010_0001
実施例 2-:!〜 2-6及び比較例 2-1〜2-2 Example 2- :! ~ 2-6 and Comparative Examples 2-1 ~ 2-2
実施例 1-1〜1-6又は比較例 1-1-1-2で調製した水素吸蔵合金を機械的に粉碎し、 平均粒径が 60 m以下の水素吸蔵合金粉末をそれぞれ調製した。  The hydrogen storage alloy prepared in Examples 1-1 to 1-6 or Comparative Example 1-1-1-2 was mechanically pulverized to prepare a hydrogen storage alloy powder having an average particle diameter of 60 m or less.
得られた水素吸蔵合金粉末について、 蛍光 X線分析 (理学《«ェ業 SMX-10)に よって組成を定量分析した結果、 実施例 1-1-1-6及び比較例 1-1-1-2で調製した水 素吸蔵合金組成と同一であることが確認できた。 また、 走査型電子顕微鏡で合金粉末 糸且織を観察し、 第 2相及び粒界の有無、 合金粉末内の結晶粒の短軸方向における結晶 サイズを測定した。 また粒度計により、 合金粉末の最低粒径及び平均粒径をそれぞれ 測定した。 結果を表 2に示す。  The composition of the obtained hydrogen-absorbing alloy powder was quantitatively analyzed by X-ray fluorescence analysis (Rigaku, Inc. SMX-10). As a result, Example 1-1-1-6 and Comparative Example 1-1-1- It was confirmed that the composition was the same as the hydrogen storage alloy composition prepared in 2. Further, the alloy powder yarn was observed with a scanning electron microscope, and the presence or absence of the second phase and the grain boundary, and the crystal size of the crystal grains in the alloy powder in the minor axis direction were measured. In addition, the minimum particle size and the average particle size of the alloy powder were measured using a particle size meter. Table 2 shows the results.
また、 実施例 2-1で調製した水素吸蔵合金粉末の断面組織を示す電子顕微鏡写真の 写しを図 2に示す。  FIG. 2 shows a copy of an electron micrograph showing the cross-sectional structure of the hydrogen storage alloy powder prepared in Example 2-1.
表 2  Table 2
Figure imgf000011_0001
Figure imgf000011_0001
実施例 3-+1〜3-6及び比較例 3-1-3-2  Example 3- + 1 to 3-6 and Comparative Example 3-1-3-2
実施例 2-1〜2-6又は比較例 2-1-2-2で調製した水素吸蔵合金粉末をそれぞれ 1.2g 計量し、 導電材としてのカルポニルニッケル lg及び結着材としてのフッ素樹脂粉末 0.2gと混合し、 繊锥状物をそれぞれ調製した。 得られた鏃锥状物を、 ニッケルメッシ ュで包み込み、 2.8ton/cm 2の圧力で加圧成形し、 ニッケル水素二次電池用負極を作 製した。 各電極について、 30%の KOH中、 5気圧の加圧容器中で充放電テストを行 い、 以下に示す初期活性、 高率放電特性及び耐食'性を評価した。 結果を表 3に示す。 初期活性は、 0.2Cの放電電流で 10サイクル行い、 10サイクル目の放電容量に対す る 3サイクル目の放電容量を評価することにより行なつた。 1.2 g of each of the hydrogen storage alloy powders prepared in Examples 2-1 to 2-6 or Comparative Example 2-1-2-2 were weighed out, and carbonyl nickel lg as a conductive material and a fluororesin powder as a binder 0.2 g) to prepare a fiber. The obtained arrowhead-shaped material was wrapped in a nickel mesh and pressed under a pressure of 2.8 ton / cm 2 to produce a negative electrode for a nickel-metal hydride secondary battery. Each electrode was subjected to a charge / discharge test in a pressurized container at 5 atm in 30% KOH, and the following initial activities, high rate discharge characteristics, and corrosion resistance were evaluated. Table 3 shows the results. The initial activity was performed by performing 10 cycles at a discharge current of 0.2 C and evaluating the discharge capacity at the third cycle with respect to the discharge capacity at the 10th cycle.
高率放電特性は、 11サイクル目に 1Cで放電したときの容量を測定し、 10サイクル 目の放電容量に対するこの時の値の割合を評価した。 耐食性は、 12サイクル目以降、再び 0.2Cの放電電流で放電し、 10サイクル目の放 tに対する 600サイクル目の容量維持率を評価した。For the high rate discharge characteristics, the capacity at the time of discharging at 1 C at the 11th cycle was measured, and the ratio of the value at this time to the discharge capacity at the 10th cycle was evaluated. As for the corrosion resistance, after the 12th cycle, the battery was discharged again with a discharge current of 0.2 C, and the capacity retention ratio at the 600th cycle with respect to the discharge at the 10th cycle was evaluated.
Figure imgf000012_0001
Figure imgf000012_0001

Claims

請求の範囲 The scope of the claims
1)式 (1)で表される組成を有する合金であって、 合金を構成する母相の結晶粒界及び 結晶粒内に、 A1及ぴ Mnの含有量が母相の A1及び Mnの含有量よりも多く、 粒径 10 m以下の第 2相を有する水素吸蔵合金。  1) An alloy having a composition represented by the formula (1), wherein the content of A1 and Mn in the crystal grain boundaries and in the crystal grains of the parent phase constituting the alloy includes the content of A1 and Mn in the parent phase. A hydrogen storage alloy with a second phase that is larger than the amount and has a particle size of 10 m or less.
RN i a C o b A 1 cMn dMe · · · (1) RN i a C o b A 1 c Mn d M e
(式中、 Rはィットリゥムを含む希土類元素又はこれらの混合元素を示し、 Mは Mg、 Fe、 Cu、 Zr、 Ti、 Mo、 W、 B又はこれらの混合物を示す。 aは 3.50≤a≤4.95、 b は 0.10≤b≤0.50、 cは 0.35≤c≤0.55、 d » 0.10≤d≤ 0.45, eは 0≤e≤0.10であ り、 5.10≤a+b+c+d+e≤5.50である。 )  (In the formula, R represents a rare earth element containing yttrium or a mixed element thereof, M represents Mg, Fe, Cu, Zr, Ti, Mo, W, B or a mixture thereof. A represents 3.50≤a≤4.95 Where b is 0.10≤b≤0.50, c is 0.35≤c≤0.55, d »0.10≤d≤ 0.45, e is 0≤e≤0.10 and 5.10≤a + b + c + d + e≤5.50 is there. )
2)第 2相同士の最も狭い間隔が全て 10 m以下である請求の範囲 1の水素吸蔵合金。 2) The hydrogen storage alloy according to claim 1, wherein all of the narrowest distances between the second phases are 10 m or less.
3)式 (1)で表される組成を有し、粒径 10 / m以上の合金粉末であり、 且つ合金粒子内 部に、 粒界と少なくとも 1つの第 2相とを含む水素吸蔵合金粉 3) A hydrogen storage alloy powder having a composition represented by the formula (1), a particle diameter of 10 / m or more, and including a grain boundary and at least one second phase inside the alloy particles.
4)平均粒径が 5〜100μ mの合金粉末であり、 且つ請求の範囲 3の水素吸蔵合金粉末 を含む水素吸蔵合金粉末。  4) A hydrogen storage alloy powder comprising an alloy powder having an average particle diameter of 5 to 100 μm, and including the hydrogen storage alloy powder according to claim 3.
5)式 (1)で示される組成となる合金原料を溶融した後、 該合金溶融物を冷却凝固し、 平均厚さ 0.05〜0.5mmの铸片を得、 得られた铸片を 900〜1100°Cで 30分間〜 10 時間熱処理する請求の範囲 1の水素吸蔵合金の製造法。  5) After melting the alloy raw material having the composition represented by the formula (1), the alloy melt is cooled and solidified to obtain a piece having an average thickness of 0.05 to 0.5 mm. The method for producing a hydrogen storage alloy according to claim 1, wherein the heat treatment is performed at 30 ° C for 30 minutes to 10 hours.
6)式 (1)で示される組成となる合金原料を溶融した後、 該合金溶融物を冷却凝固し、 平均厚さ 0.05〜0.5mmの铸片を得、 得られた铸片を 900〜: L100°Cで 30分間〜 10 時間熱処理した後、 粉碎する請求の範囲 4の水素吸蔵合金粉末の製造法。  6) After melting the alloy raw material having the composition represented by the formula (1), the alloy melt is solidified by cooling to obtain a piece having an average thickness of 0.05 to 0.5 mm. The method for producing a hydrogen storage alloy powder according to claim 4, wherein the powder is subjected to a heat treatment at 100 ° C for 30 minutes to 10 hours and then pulverized.
7)請求の範囲 4記載の水素吸蔵合金粉末と導電材とを負極材料として含むニッケル 水素二次電池用負極。  7) A negative electrode for a nickel-metal hydride secondary battery, comprising the hydrogen storage alloy powder according to claim 4 and a conductive material as a negative electrode material.
PCT/JP2002/013062 2001-12-13 2002-12-13 Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell WO2003054240A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003554939A JP4647910B2 (en) 2001-12-13 2002-12-13 Hydrogen storage alloy powder, production method thereof, and negative electrode for nickel metal hydride secondary battery
AU2002354479A AU2002354479A1 (en) 2001-12-13 2002-12-13 Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001380048 2001-12-13
JP2001-380048 2001-12-13

Publications (1)

Publication Number Publication Date
WO2003054240A1 true WO2003054240A1 (en) 2003-07-03

Family

ID=19187062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/013062 WO2003054240A1 (en) 2001-12-13 2002-12-13 Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell

Country Status (4)

Country Link
JP (1) JP4647910B2 (en)
CN (1) CN100400691C (en)
AU (1) AU2002354479A1 (en)
WO (1) WO2003054240A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1652947A1 (en) * 2003-08-08 2006-05-03 Mitsui Mining & Smelting Co., Ltd. LOW Co HYDROGEN OCCLUSION ALLOY
CN1297021C (en) * 2005-05-31 2007-01-24 钢铁研究总院 Cathode material in use for nickel-hydrogen battery in high capacity
WO2007040277A1 (en) * 2005-10-06 2007-04-12 Mitsui Mining & Smelting Co., Ltd. LOW-Co HYDROGEN ABSORBING ALLOY
JP2008053223A (en) * 2006-07-25 2008-03-06 Matsushita Electric Ind Co Ltd Negative active material for nickel hydrogen battery and nickel hydrogen battery, and treating method of negative active material for nickel hydrogen battery
WO2008093437A1 (en) 2007-01-30 2008-08-07 Chuo Denki Kogyo Co., Ltd. Hydrogen storage alloy, and electrode for nickel-hydrogen battery
JP2008258121A (en) * 2007-03-30 2008-10-23 Santoku Corp Hydrogen storage alloy, nickel hydrogen secondary battery, and negative electrode therefor
JP2010182684A (en) * 2006-07-25 2010-08-19 Panasonic Corp Processing method of anode active material for nickel hydrogen battery, anode active material for nickel hydrogen battery, and nickel hydrogen battery
JP2011127185A (en) * 2009-12-18 2011-06-30 Santoku Corp Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100467168C (en) * 2007-02-02 2009-03-11 厦门钨业股份有限公司 Method for preparing hydrogen storing alloy powder
CN102181751B (en) * 2011-01-28 2013-01-09 厦门钨业股份有限公司 Low-self-discharge hydrogen storage alloy and preparation method thereof
JP6935613B2 (en) * 2019-08-19 2021-09-15 株式会社三徳 Hydrogen storage material, hydrogen storage container and hydrogen supply device
EP4129535A1 (en) 2021-08-03 2023-02-08 GRZ Technologies SA Ab2 type-based hydrogen storage alloys, methods of preparation and uses thereof
EP4129534A1 (en) 2021-08-03 2023-02-08 GRZ Technologies SA Ab5-type based hydrogen storage alloys, methods of preparation and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261413A (en) * 1997-03-19 1998-09-29 Japan Metals & Chem Co Ltd Hydrogen storage alloy for secondary battery
JP2000219928A (en) * 1999-02-01 2000-08-08 Mitsui Mining & Smelting Co Ltd Hydrogen storage alloy and its production
JP2001040442A (en) * 1999-05-26 2001-02-13 Mitsui Mining & Smelting Co Ltd Hydrogen storage alloy
JP2001068101A (en) * 1999-08-24 2001-03-16 Sanyo Electric Co Ltd Hydrogen storage alloy and manufacturing method
US6372059B1 (en) * 1998-12-15 2002-04-16 Mitsui Mining & Smelting Co., Ltd. Hydrogen storage alloy and method for preparation thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261517B1 (en) * 1996-09-06 2001-07-17 Santoku Metal Industry Co., Ltd. Rare earth metal-nickel hydrogen storage alloy, a method for producing the same, and anode for nickel-hydrogen rechargeable battery
JPH11191412A (en) * 1997-06-27 1999-07-13 Hitachi Maxell Ltd Alkaline storage battery
JP2001126724A (en) * 1999-10-25 2001-05-11 Shin Etsu Chem Co Ltd Method for manufacturing hydrogen-occlusion alloy powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261413A (en) * 1997-03-19 1998-09-29 Japan Metals & Chem Co Ltd Hydrogen storage alloy for secondary battery
US6372059B1 (en) * 1998-12-15 2002-04-16 Mitsui Mining & Smelting Co., Ltd. Hydrogen storage alloy and method for preparation thereof
JP2000219928A (en) * 1999-02-01 2000-08-08 Mitsui Mining & Smelting Co Ltd Hydrogen storage alloy and its production
JP2001040442A (en) * 1999-05-26 2001-02-13 Mitsui Mining & Smelting Co Ltd Hydrogen storage alloy
JP2001068101A (en) * 1999-08-24 2001-03-16 Sanyo Electric Co Ltd Hydrogen storage alloy and manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1652947A1 (en) * 2003-08-08 2006-05-03 Mitsui Mining & Smelting Co., Ltd. LOW Co HYDROGEN OCCLUSION ALLOY
EP1652947A4 (en) * 2003-08-08 2008-06-25 Mitsui Mining & Smelting Co LOW Co HYDROGEN OCCLUSION ALLOY
CN1297021C (en) * 2005-05-31 2007-01-24 钢铁研究总院 Cathode material in use for nickel-hydrogen battery in high capacity
WO2007040277A1 (en) * 2005-10-06 2007-04-12 Mitsui Mining & Smelting Co., Ltd. LOW-Co HYDROGEN ABSORBING ALLOY
JP2008053223A (en) * 2006-07-25 2008-03-06 Matsushita Electric Ind Co Ltd Negative active material for nickel hydrogen battery and nickel hydrogen battery, and treating method of negative active material for nickel hydrogen battery
JP2010182684A (en) * 2006-07-25 2010-08-19 Panasonic Corp Processing method of anode active material for nickel hydrogen battery, anode active material for nickel hydrogen battery, and nickel hydrogen battery
WO2008093437A1 (en) 2007-01-30 2008-08-07 Chuo Denki Kogyo Co., Ltd. Hydrogen storage alloy, and electrode for nickel-hydrogen battery
KR101148806B1 (en) 2007-01-30 2012-05-24 쥬오 덴끼 고교 가부시키가이샤 Hydrogen storage alloy, electrode for nickel-hydrogen battery, a drive arrangement for a hybrid electric vehicle, and a hybrid electric vehicle
US8377374B2 (en) 2007-01-30 2013-02-19 Chuo Denki Kogyo Co., Ltd. Hydrogen-absorbing alloy and electrode for nickel-metal hydride secondary batteries
TWI395364B (en) * 2007-01-30 2013-05-01 Chuo Denki Kogyo Co Ltd Adsorption of hydrogen alloy and nickel - hydrogen battery electrode
JP2008258121A (en) * 2007-03-30 2008-10-23 Santoku Corp Hydrogen storage alloy, nickel hydrogen secondary battery, and negative electrode therefor
JP2011127185A (en) * 2009-12-18 2011-06-30 Santoku Corp Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery

Also Published As

Publication number Publication date
CN1602366A (en) 2005-03-30
JPWO2003054240A1 (en) 2005-04-28
CN100400691C (en) 2008-07-09
JP4647910B2 (en) 2011-03-09
AU2002354479A1 (en) 2003-07-09

Similar Documents

Publication Publication Date Title
US5840166A (en) Rare earth metal-nickel hydrogen storage alloy, process for producing the same, and anode for nickel-hydrogen rechargeable battery
US5964968A (en) Rare earth metal-nickel hydrogen storage alloy, method for producing the same, and anode for nickel-hydrogen rechargeable battery
US7935305B2 (en) Hydrogen storage alloy, production method therefor and nickel-hydrogen secondary battery-use cathode
US8277582B2 (en) Hydrogen absorbing alloy, hydrogen absorbing alloy electrode, secondary battery, and production method of hydrogen absorbing alloy
JP5466015B2 (en) Nickel metal hydride storage battery and method for producing hydrogen storage alloy
JP5092747B2 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
KR100216305B1 (en) Rare earth metal nickel hydrogen occlusion alloy process for producing the same and negative electrode of nickel hydrogen secondary battery
JP5119551B2 (en) Hydrogen storage alloy, method for producing the same, and secondary battery
WO2003054240A1 (en) Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell
JPH0925529A (en) Rare earth metal-nickel based hydrogen storage alloy and its production, and cathode for nickel-hydrogen secondary battery
EP2813588B1 (en) Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
JP4685353B2 (en) Hydrogen storage alloy, hydrogen storage alloy powder, production method thereof, and negative electrode for nickel metal hydride secondary battery
WO1998010107A1 (en) Rare earth metal-nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen rechargeable battery
JPH0673466A (en) Hydrogen occlusion alloy for ni-hydrogen battery having excellent electrode life and its production
JP5099870B2 (en) Hydrogen storage alloy and method for producing the same, hydrogen storage alloy electrode and secondary battery
JP2000087102A (en) Hydrogen storage alloy powder and electrode using same
JP2012214903A (en) Hydrogen storage alloy, method for producing the same, hydrogen storage alloy electrode, and secondary battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003554939

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002824754X

Country of ref document: CN

122 Ep: pct application non-entry in european phase