WO2003046026A1 - Epoxy group containing vinylidene fluoride copolymer, and resin composition, electrode structure and non-aqueous electrochemical element comprising the same - Google Patents

Epoxy group containing vinylidene fluoride copolymer, and resin composition, electrode structure and non-aqueous electrochemical element comprising the same Download PDF

Info

Publication number
WO2003046026A1
WO2003046026A1 PCT/JP2002/012266 JP0212266W WO03046026A1 WO 2003046026 A1 WO2003046026 A1 WO 2003046026A1 JP 0212266 W JP0212266 W JP 0212266W WO 03046026 A1 WO03046026 A1 WO 03046026A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinylidene fluoride
electrode
epoxy group
copolymer
monomer
Prior art date
Application number
PCT/JP2002/012266
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoaki Kawakami
Toshio Hosokawa
Takumi Katsurao
Original Assignee
Kureha Chemical Industry Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Chemical Industry Company, Limited filed Critical Kureha Chemical Industry Company, Limited
Priority to AU2002349709A priority Critical patent/AU2002349709A1/en
Publication of WO2003046026A1 publication Critical patent/WO2003046026A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • C08F214/225Vinylidene fluoride with non-fluorinated comonomers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a polyvinylidene fluoride copolymer and a resin composition which provides a cured product having good adhesion to a base material such as a metal containing the same and having excellent heat resistance and chemical resistance.
  • a resin composition is useful in the fields of binders, paints and the like.
  • the present invention provides an electrode structure for a non-aqueous electrochemical element containing such a vinylidene fluoride copolymer as a binder, and a non-aqueous system such as a secondary battery or an electric double layer capacitor including the electrode structure.
  • the present invention relates to an electrochemical device. .
  • Polyvinylidene fluoride resins have excellent chemical resistance, weather resistance, and stain resistance, and are used not only as various films or molding materials, but also as paints and binders. However, since polyvinylidene fluoride resin has low adhesive strength to a substrate such as a metal, improvement of the adhesive strength is desired.
  • Japanese Patent Application Laid-Open No. HEI 3-171909 discloses that (a) 50 to 98 mol of vinylidene fluoride, (b) 2 to 50 mol of tetrafluoroethylene, A fluorinated monomer selected from hexafluoropropylene or a mixture of at least two of these three monomers, and (c) a total of 100 moles per 100 moles of the fluorinated monomer.
  • Lil Dali glycidyl consists of units derived from an epoxidised Arirueteru like ether substantially as a solution in dimethylformamide of 2 5 D C at a concentration 1 g of Roh d 1 Disclosed is that a curable copolymer having an intrinsic viscosity of 0.03 to 0.4 d1 Zg is obtained by solution polymerization. These copolymers are soluble in solvents such as butyl acetate, isobutyl acetate, and ethyl acetate, and are crosslinked by mixing and heating with known curing agents such as melamine formaldehyde, polyamide, organic acids and their anhydrides. 'Discloses that it cures and can be used as a paint or varnish to form a coating that adheres well to metals, glass, wood, cement, plastics, etc.
  • copolymers are soluble in common solvents as described above, Those which do not perform the above are not applicable to the field where chemical resistance and heat resistance are required. In addition, even those that have been subjected to a curing treatment are required to be used in fields where high chemical resistance is required, such as when they are used as binders for manufacturing non-aqueous solvent-based lithium secondary batteries or electrodes for electric double layer capacities. It is still not enough in application.
  • the present applicant has conducted a study to obtain a vinylidene fluoride-based copolymer having improved adhesiveness to a base material such as a metal while utilizing the excellent properties of vinylidene fluoride resin.
  • polar monomers such as monoesters of unsaturated dibasic acids or copolymers with epoxidized aryl ethers such as Z and aryl glycidyl ether have improved adhesion and solvent resistance (Japanese Unexamined Patent Publications Nos. 6-172452 and 9-12639).
  • the thus obtained vinylidene fluoride-based copolymer was also used as a binder for producing electrodes of non-aqueous electrochemical elements which generate heat during use.
  • this thermal decomposition occurs more remarkably when an electrode is formed by blending a powdered carbon material or the like than a resin alone. It is also desired to further improve the adhesion to a current collecting base such as a metal.
  • Ru Rushito 3 ⁇ 4 to provide a process for producing vinylidene fluoride copolymer as described above 0
  • Another object of the present invention is to provide a resin composition containing the above vinylidene fluoride copolymer, an electrode structure for a non-aqueous electrochemical element, further a non-aqueous electrochemical element, particularly a secondary battery and An electric double layer capacitor is provided.
  • the copolymer of vinylidene fluoride and a relatively small amount of an acrylic vinyl monomer having an epoxy group is surprisingly obtained from the above-described pinylidene fluoride and unsaturated divinylidene.
  • Polar monomers such as monoesters of basic acids, or di- and arylidaricydyl esters
  • epoxidized aryl ethers such as ter, not only exhibit significantly better copolymerization properties during suspension polymerization, but also exhibit improved heat stability and adhesion to substrates such as metals. It was also found that the properties were good.
  • the present invention firstly provides a copolymer of 100 mol of vinylidene fluoride monomer and 0.1 to 5.0 mol of an acrylic vinyl monomer containing at least an epoxy group. It is intended to provide a vinylide-based copolymer.
  • the method for producing a vinylidene fluoride copolymer of the present invention is characterized by producing the above-mentioned vinylidene fluoride copolymer by suspension polymerization using water as a dispersion medium.
  • the present invention relates to a resin composition obtained by dissolving the above vinylidene fluoride copolymer in an organic solvent, an electrode mixture composition obtained by adding a powdered electrode material to the resin composition, and further comprising the electrode mixture composition. It is intended to provide an electrode structure for a non-aqueous electrochemical element formed by coating a substance on a current collecting substrate and removing an organic solvent to form a porous electrode layer.
  • the present invention provides a non-aqueous solvent-based secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte disposed between the positive electrode and the negative electrode, wherein at least one of the positive electrode and the negative electrode comprises the above electrode structure
  • the present invention also provides an electric double layer capacity in which a non-aqueous electrolyte is disposed between a pair of the electrode structures.
  • FIG. 1 is a partially exploded perspective view of a non-aqueous solvent secondary battery that can be configured according to the present invention.
  • FIG. 2 is a partial cross-sectional view of an electrode structure used in the secondary battery.
  • FIG. 3 is a sectional view of an example of a non-aqueous solvent-based electric double layer capacity constructed according to the present invention. [Best Mode for Carrying Out the Invention]
  • the vinylidene fluoride copolymer of the present invention comprises at least 100 mol of vinylidene fluoride monomer and 0.1 to 5.0 mol, preferably 0.2 to 3.0 mol of epoxy group-containing acrylic vinyl monomer. 0 mol, consisting of a copolymer of If the amount of the epoxy group-containing acrylic vinyl monomer is less than 0.1 mol, the desired effect of improving the adhesiveness to a substrate such as a metal cannot be obtained. An improvement effect cannot be obtained, and the polymerization time for obtaining a vinylidene fluoride-based copolymer tends to be long.
  • the epoxy group-containing acrylic vinyl monomer used in the present invention is generally substituted or unsubstituted.
  • Glycidyl (meth) acrylate in this specification, the term “(meth) acrylate” is used as a term encompassing acrylate and methacrylate), and is a preferred specific example. Examples thereof include glycidyl (meth) acrylate, 2-methyldaricidyl (meth) acrylate, 2-ethyltilididyl (meth) acrylate, and 1-methylglycidyl (meth) acrylate.
  • Methacrylates are preferable to acrylates in view of providing a good thermal decomposition stability pinylidene fluoride copolymer, and among them, substituted, especially alkyl-substituted glycidyl methacrylate is preferable.
  • the vinylidene fluoride copolymer should have a melting point (DSC) of 150 to 180 ° C, more preferably 160 to 180 ° C.
  • DSC melting point
  • the melting point of a vinylidene fluoride-based copolymer decreases as the amount of the comonomer increases when the amount of the monomer (co-monomer) copolymerized with the vinylidene fluoride monomer is relatively small.
  • the higher the inherent viscosity of the vinylidene fluoride copolymer the better the solvent resistance and mechanical strength.
  • a copolymer having a large intrinsic viscosity has a low solubility in a solvent, so that the intrinsic viscosity in the above range is preferable.
  • the vinylidene fluoride copolymer of the present invention is characterized by having excellent heat resistance, and has a thermal decomposition onset temperature of at least 350 ° C in a nitrogen atmosphere, preferably at 380 ° C. Above, more preferably at least 400 ° C.
  • a third monomer can be added to obtain a pinylidene fluoride-based copolymer within a range not inconsistent with the object of the present invention. it can.
  • a third monomer include a vinylidene fluoride obtained by copolymerizing a fluorine-based monomer copolymerizable with vinylidene fluoride or a hydrocarbon-based monomer such as ethylene or propylene. The solubility of the copolymer in a solvent can be controlled.
  • Fluorinated monomers copolymerizable with vinylidene fluoride include vinyl fluoride, trifluoroethylene, chlorofluoroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoropropylene. And low alkyl vinyl ethers. Two or more third monomers can be used in combination. However, the amount of the third monomer used is preferably kept within a range in which the melting point and the inherent viscosity described above are satisfied in the obtained vinylidene fluoride-based copolymer, and more specifically, It is preferable to keep the amount to 5 mol or less, more preferably 4 mol or less, per 100 mol of the vinylidene fluoride monomer.
  • the above-mentioned pinylidene fluoride copolymer of the present invention can be produced by a method such as suspension polymerization, emulsion polymerization, and solution polymerization.
  • aqueous suspension polymerization and emulsion polymerization are preferable, and aqueous suspension polymerization is particularly preferable, in view of the solvent resistance of the obtained copolymer and ease of post-treatment.
  • a suspending agent such as methylcellulose, methoxylated methylcellulose, propoxylated methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, polyvinyl alcohol, polyethylene oxide, or gelatin is added to water. And added in the range of 0.05 to 1.0% by weight, preferably 0.010. 4% by weight.
  • polymerization initiator examples include diisopropylperoxydicarbonate, dinormal propylpropoxydicarbonate, dinormal heptafluoropropylperoxydica monocarbonate, isobutyryl peroxide, di ( Fluoroacyl peroxide and di (perfluoroacyl) peroxide can be used.
  • the amount is 0.1 to 5% by weight, preferably 0.5 to 2% by weight, based on the total amount of monomers.
  • a chain transfer agent such as ethyl acetate, methyl acetate, acetone, ethanol, n-propanol, acetoaldehyde, propyl aldehyde, ethyl propionate, carbon tetrachloride, etc.
  • the amount used is usually from 0.1 to 5% by weight, preferably from 0.5 to 3% by weight, based on the total amount of the monomers.
  • the total charged amount of the monomers is 1: 1 to 1:10, preferably 1: 2 to 1: 5, by weight ratio of the total amount of monomers to water, and the polymerization is carried out at a temperature of 10 to 50. For 100 to 100 hours.
  • the vinylidene fluoride copolymer of the present invention can be easily produced.
  • the vinylidene fluoride-based copolymer of the present invention By dissolving, for example, 100 parts by weight of the vinylidene fluoride-based copolymer of the present invention in 500 to 200 parts by weight of an organic solvent, it can be suitably used as a paint, a lining material, a binder, or the like.
  • the resin composition of the present invention to be used is obtained.
  • the solvent N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide and the like, which dissolve the vinylidene fluoride polymer well, are suitable.
  • the epoxy group-containing vinylidene fluoride copolymer of the present invention is coexistent with (meth) Due to the presence of the acrylate group, the epoxy group itself has the curability of the epoxy group, but if necessary, for example, 0.3 to 3.0 mol of a curing agent is further mixed with respect to 1 mol of the epoxy group to paint, It can also be used as a binder or the like.
  • amines eg, ethylenetriamine, triethylenetetramine, ethylenediamine, tetraethyleneamine
  • acid anhydrides phthalic anhydride, succinic acid
  • Acid anhydrides and low molecular weight curing agents such as glycidyl ether amine adducts.
  • the vinylidene fluoride copolymer of the present invention has a small average particle diameter of 100,000 or less, particularly 50 to 350 im, in order to enable rapid dissolution in the solvent. It is also desirable to use it.
  • the resin composition of the present invention thus obtained is applied to a substrate such as a metal, and then evaporated and, if necessary, cross-linked and cured, to thereby improve the adhesiveness to the substrate, the chemical resistance, and the electrolyte resistance. Produces excellent coatings.
  • the resin composition of the present invention is suitably used as a binder, paint, or lining agent which is required to have adhesion to a substrate such as a metal and solvent resistance and chemical resistance. It has extremely good suitability as a binder for electrode production of non-aqueous electrochemical elements with strong odor. Therefore, this application will be described in more detail.
  • FIG. 1 is a partially exploded perspective view of a lithium secondary battery as an example of a secondary battery that is a nonaqueous electrochemical device of the present invention.
  • this secondary battery is basically a battery in which a separator 3 composed of a microporous film of a polymer substance such as polypropylene or polyethylene impregnated with an electrolyte is arranged and stacked between the positive electrode 1 and the negative electrode 2.
  • the power generating element has a structure in which it is housed in a bottomed metal casing 5 forming a negative electrode terminal 5a.
  • the negative electrode is electrically connected to the negative electrode terminal, and after the gasket 6 and the safety valve 7 are arranged on the top, the positive electrode 8a is electrically connected to the positive electrode 1 at the convex portion.
  • the top plate 8 is arranged, and the top rim 5b of the casing 5 is caulked to form a structure in which the whole is sealed.
  • the electrode structure 10 constituting the positive electrode 1 or the negative electrode 2 is made of metal foil such as iron, stainless steel, steel, aluminum, nickel, titanium, copper, or the like. It is composed of a metal net or the like, and has a thickness of 5 to 100 / xm, and in the case of a small scale, for example, has a thickness of 5 to 20 m.
  • the electrode mixture layers 12a and 12b having a thickness of 10 to 100111 are formed on both surfaces.
  • the electrode mixture layers 12a and 12b are made of an electrode mixture forming composition comprising an active material as a powdered electrode material, a binder, and a conductive material such as carbon added as necessary. It was formed by applying and bonding to 11.
  • a carbonaceous substance such as graphite, activated carbon, or a phenol resin or pitch obtained by firing and carbonizing is preferable as the active material.
  • active material such as, force first pump rack, graphite powder or fiber
  • carbonaceous materials such as, fine powder of metal such as nickel and aluminum, or fibers.
  • the binder does not contribute to the charge / discharge capacity of the battery at all, it is necessary to minimize the amount of the binder used, and it is required that the binder retains the active material even in a small amount and has excellent adhesion to the current collector. Is done. Also, since binders are usually electrically insulating, increasing their use increases the internal resistance of the battery. From this point of view, it is required that the pinda perform its function with as little usage as possible.
  • the amount of the binder is very small and is not more than 30% by weight based on the whole electrode mixture. With such a small amount of the binder, the binder cannot completely fill the gap between the fine components such as the active material and / or the conductive material or the gap between the fine component and the current collector in the electrode mixture. In the case of paints and lining materials that contain fillers such as pigments, there are almost no problems with retaining the fillers because the binder uses a large amount of binder that is sufficient to completely fill the gaps between the fillers. Does not occur. However, in the case of a binder for an electrode, as described above, the amount of the binder used is extremely small, and a binder that retains the active material well even in a small amount and has excellent adhesiveness to the current collector is required.
  • the nonaqueous electrolyte is impregnated in the separator 3, ethylene carbonate, propylene carbonate, dimethoxyethane E Tan, tetrahydrofuran, ⁇ over butyrolactone L i C 1_Rei strong solvent having dissolve force for polymers such as 4, L i PF for 6, L i BF 4 solution of electrolytes or the like is used, the binder, a long period of time be immersed in these solvents, and a binder Solvent resistance that does not significantly reduce the function of the solvent is required.
  • the resin composition of the present invention is used as a binder for producing a thin-film electrode structure 10 for a battery, the following is preferred.
  • the epoxy group-containing vinylidene fluoride copolymer of the present invention and a curing agent added as necessary are dissolved in an organic solvent to obtain the above-described resin composition of the present invention.
  • an active material and a conductive agent are further added to this resin composition, and the mixture is slurried to form an electrode forming composition, for example, a metal foil or metal net having a thickness of about 5 to 20 m.
  • the electrode is uniformly coated on the current collector, dried, and heated and pressed to form an electrode mixture layer as thin as, for example, about 10 Oim on the current collector to form a thin-film electrode.
  • the solvent is evaporated, and the resin is cross-linked and hardened as necessary to ensure strong adhesion to the current collector and the fine filler.
  • the fine components in the electrode forming composition (active material and The ratio of the conductive agent) to the vinylidene fluoride-based copolymer is usually about 80:20 to 98: 2 by weight, and retains fine components, adheres to the current collector, and conducts the electrode. Determined in consideration of gender.
  • FIG. 3 is a cross-section of a single-cell electric double layer capacity as an example.
  • a separator 23 is sandwiched between a pair of polarizable electrodes 20a and 20b, each of which corresponds to an example of the electrode structure of the present invention.
  • a stainless steel can 5 filled with a non-aqueous electrolyte solution 26 through a packing 27.
  • the non-aqueous electrolyte 26 is impregnated in the separator 23, and is disposed between the pair of polarizable electrodes 20a and 20b.
  • the pair of polarizable electrodes 20a and 20b are respectively provided on one surface of current collecting substrates 21a and 21b similar to the current collecting substrate 11 shown in FIG.
  • Each of the electrode mixture layers 22a and 22b is formed by using the pinylidene fluoride-based copolymer of the present invention as a binder, for example, about 0.5 to 15% by weight. And more preferably 2 to 10% by weight, the remainder being powdered electrode material, preferably a palm-spray system having a specific surface area of about 500 to 300 m 2 / g, phenol.
  • a quaternary phosphonium salt or a quaternary ammonium salt such as (C 2 H 5 ) 4 NBF 4 is used as an electrolyte.
  • a solution dissolved in a solvent similar to the secondary battery solvent described above is used.
  • the binder forming the electrode mixture layer is required to have good adhesiveness with the current collecting base, electrolyte resistance and heat resistance, which is required in non-aqueous secondary batteries. This is exactly the same as the case described above, and the epoxy group-containing vinylidene fluoride copolymer of the present invention is suitably used.
  • the polymer slurry After completion of the polymerization, the polymer slurry is dehydrated, washed with water and dehydrated, and then dried at 80 ° C for 20 hours to obtain a powdery resin A corresponding to the epoxy group-containing vinylidene fluoride copolymer of the present invention.
  • the yield was about 80% by weight.
  • Resin A had an inherent viscosity (logarithmic viscosity at 30 ° C. of a solution in N, N-dimethylformamide with a resin concentration of 4 g / l) of 1.50 dlZg.
  • thermogravimetric analysis (using METTLER “TC10A”), which was heated at a temperature of 30 ° C. to 10 ° C./min in a nitrogen atmosphere and a weight change was observed.
  • Thermal decomposition onset temperature (weight loss onset temperature) was 425 ° C.
  • the above-mentioned electrode mixture composition A is uniformly applied on a 10-thick copper foil (area 10 OmmX 20 Omm) so that a dry film thickness becomes about 100, and dried at 130 ° C for 25 minutes to obtain The electrode structure A of the invention was obtained.
  • the electrode structure A was subjected to a thermogravimetric analysis in the same manner as the resin composition A. As a result, a pyrolysis onset temperature of 400 ° C was shown.
  • the above-mentioned electrode structure A separately formed in the same manner was immersed in propylene-based monoponate at 60 ° C. for 5 days.
  • the adhesive strength between the electrode layer and the copper foil before and after immersion was measured by a 180 ° peel test according to JIS K6845. As a result, the peel strength before and after immersion was 6 ⁇ O g / mm and 3.0 g / mm, respectively.
  • Comparative Resin D composed of a VDF / MMM copolymer, which was evaluated in the same manner as Resin A of Example 1.
  • the polymer slurry was dehydrated, washed with water, dehydrated, and dried at 80 ° C for 20 hours to obtain a comparative resin E composed of a VDF / AGE copolymer. evaluated.
  • Comparative Resin F composed of the VDF / AGEZMM M copolymer, which was evaluated in the same manner as in Resin A of Example 1.
  • the binder for non-aqueous electrochemical elements shows good adhesiveness to a substrate such as a metal, and shows improved heat stability.
  • Group-containing vinylidene fluoride copolymer having excellent suitability for use as well as a method for efficiently producing the same, a resin composition containing the pinylidene fluoride copolymer as a binder, an electrode structure and a non-aqueous resin An electrochemical device is provided.

Abstract

An epoxy group containing vinylidene fluoride copolymer, characterized in that it is a copolymer of vinylidene fluoride as a primary component and a small amount of an epoxy group containing acrylic monomer; a method for producing the vinylidene fluoride copolymer which comprises carrying out a suspension polymerization in an aqueous dispersing medium; a composition comprising the vinylidene fluoride copolymer; and a non-aqueous electrochemical element comprising the copolymer. The epoxy group containing vinylidene fluoride copolymer exhibits good adhesiveness to a substrate such as a metal and also excellent thermal resistance, and thus has excellent suitability as a binder for use in an electrode of non-aqueous electrochemical elements such as a secondary cell, an electric double layer capacitor and the like.

Description

明 細 書 エポキシ基含有フッ化ビニリデン系共重合体、 これを含有する榭脂組成物、  Description Epoxy-containing vinylidene fluoride copolymer, resin composition containing the same,
電極構造体および非水系電気化学素子  Electrode structure and non-aqueous electrochemical device
[技術分野] [Technical field]
本発明は、 ポリフッ化ビニリデン系共重合体、 及びそれを含有する金属等の基材と の接着性が良好で耐熱性および耐薬品性に優れた硬化生成物を与える樹脂組成物に関 する。 かかる樹脂組成物はバインダー、 塗料等の分野で有用である。 また、 本発明は このようなフッ化ビニリデン系共重合体をバインダ一として含む非水系電気化学素子 用電極構造体、 更には該電極構造体を含む二次電池あるいは電気二重層キャパシタ等 の非水系電気化学素子に関する。 .  The present invention relates to a polyvinylidene fluoride copolymer and a resin composition which provides a cured product having good adhesion to a base material such as a metal containing the same and having excellent heat resistance and chemical resistance. Such a resin composition is useful in the fields of binders, paints and the like. Further, the present invention provides an electrode structure for a non-aqueous electrochemical element containing such a vinylidene fluoride copolymer as a binder, and a non-aqueous system such as a secondary battery or an electric double layer capacitor including the electrode structure. The present invention relates to an electrochemical device. .
[背景技術] [Background technology]
ポリフッ化ビニリデン系樹脂は、 耐薬品性、 耐候性、 耐汚染性等に優れ、 各種フィ ルムあるいは成形材料としてだけでなく、 塗料やバインダ一としても利用されている 。 しかし、 ポリフッ化ビニリデン系樹脂は金属等の基材との接着強度が小さいため、 接着強度の改良が望まれている。  Polyvinylidene fluoride resins have excellent chemical resistance, weather resistance, and stain resistance, and are used not only as various films or molding materials, but also as paints and binders. However, since polyvinylidene fluoride resin has low adhesive strength to a substrate such as a metal, improvement of the adhesive strength is desired.
特開平 3— 1 7 1 0 9号公報は、 (a ) 5 0〜 9 8モルのフッ化ビニリデンと、 ( b ) 2〜 5 0モルのテトラフルォロエチレン、 クロ口トリフルォロエチレン、 へキサ フルォロプロピレンまたはこれら 3種の単量体のうち少なくとも 2種の混合物から選 択されたフッ素化単量体と、 (c ) 全部で 1 0 0モルの上記フッ素化単量体当たり 2 〜2 0モルのァリルダリシジルエーテルのようなエポキシド化されたァリルエーテル とから誘導される単位より実質的になり、 1 gノ d 1の濃度にて 2 5 DCのジメチルホ ルムアミド中の溶液としての固有粘度が 0 . 0 3〜0 . 4 d 1 Z gの範囲である硬化 性共重合体が、 溶液重合によって得られることを開示する。 これらの共重合体は酢酸 プチル、 酢酸イソプチル、 酢酸ェチル等の溶剤に可溶であり、 メラミンホルムアルデ ヒド、 ポリアミド、 有機酸及びその無水物等の周知硬化剤と混合加熱することによつ て架橋 '硬化するので、 金属、 ガラス、 木材、 セメント、 プラスチックなどに良好に 付着するような被覆を形成する塗料もしくはワニスとして使用することができること を開示する。 Japanese Patent Application Laid-Open No. HEI 3-171909 discloses that (a) 50 to 98 mol of vinylidene fluoride, (b) 2 to 50 mol of tetrafluoroethylene, A fluorinated monomer selected from hexafluoropropylene or a mixture of at least two of these three monomers, and (c) a total of 100 moles per 100 moles of the fluorinated monomer. 2-2 0 mol § Lil Dali glycidyl consists of units derived from an epoxidised Arirueteru like ether substantially as a solution in dimethylformamide of 2 5 D C at a concentration 1 g of Roh d 1 Disclosed is that a curable copolymer having an intrinsic viscosity of 0.03 to 0.4 d1 Zg is obtained by solution polymerization. These copolymers are soluble in solvents such as butyl acetate, isobutyl acetate, and ethyl acetate, and are crosslinked by mixing and heating with known curing agents such as melamine formaldehyde, polyamide, organic acids and their anhydrides. 'Discloses that it cures and can be used as a paint or varnish to form a coating that adheres well to metals, glass, wood, cement, plastics, etc.
しかし、 これらの共重合体は、 上述のような一般的な溶剤に可溶であり、 硬化処理 を行わないものは耐薬品性や耐熱性を要求される分野には適用できない。 また硬化処 理を行ったものでも、 非水溶媒系リチウムニ次電池あるいは電気二重層キャパシ夕の 電極製造用のバインダ一等として用いる場合のように高度の耐薬品性が要求される分 野への適用においてはなお十分とはいえない。 However, these copolymers are soluble in common solvents as described above, Those which do not perform the above are not applicable to the field where chemical resistance and heat resistance are required. In addition, even those that have been subjected to a curing treatment are required to be used in fields where high chemical resistance is required, such as when they are used as binders for manufacturing non-aqueous solvent-based lithium secondary batteries or electrodes for electric double layer capacities. It is still not enough in application.
本出願人は、 フッ化ビニリデン榭脂の優れた特性を生かしつつ金属等の基材との接 着性を改善したフッ化ビニリデン系共重合体を得るべく研究した結果、 既に、 フッ化 ビニリデンと、 不飽和二塩基酸のモノエステル等の極性モノマーまたは Zおよびァリ ルグリシジルエーテルのようなェポシシ化ァリルエーテルとの共重合体が、 改善され た接着性ならびに耐溶剤性を有することを見出している (特開平 6— 1 7 2 4 5 2号 および同 9— 1 2 6 3 9号各公報) 。  The present applicant has conducted a study to obtain a vinylidene fluoride-based copolymer having improved adhesiveness to a base material such as a metal while utilizing the excellent properties of vinylidene fluoride resin. Found that polar monomers such as monoesters of unsaturated dibasic acids or copolymers with epoxidized aryl ethers such as Z and aryl glycidyl ether have improved adhesion and solvent resistance (Japanese Unexamined Patent Publications Nos. 6-172452 and 9-12639).
しかしながら、 本発明者らの研究によれば、 かくして得られたフッ化ビニリデン系 共重合体も、 使用下での発熱を伴う非水系電気化学素子の電極製造用のバインダ一と しての使用に際しては、 脱フッ酸を伴う熱分解反応を起すおそれがあり、 耐熱性に関 レ、 改善の余地があることが見出された。 特にこの熱分解は、 榭脂単独より、 粉末炭 素材料等を配合して電極に形成したときに、 より顕著に発生することが認められてい る。 また金属等の集電基体との一層の接着性の改善も望まれる。 また、 耐溶剤性の優 れたフッ化ビニリデン系共重合体を得るためには、 懸濁重合法によることが望ましい が、 上記フッ化ビニリデン系共重合体は、 必ずしも良好な重合特性を有さないという 問題点もある。  However, according to the study of the present inventors, the thus obtained vinylidene fluoride-based copolymer was also used as a binder for producing electrodes of non-aqueous electrochemical elements which generate heat during use. Has a possibility of causing a thermal decomposition reaction accompanied by hydrofluoric acid removal, and it has been found that there is room for improvement in heat resistance. In particular, it has been recognized that this thermal decomposition occurs more remarkably when an electrode is formed by blending a powdered carbon material or the like than a resin alone. It is also desired to further improve the adhesion to a current collecting base such as a metal. In order to obtain a vinylidene fluoride copolymer having excellent solvent resistance, it is preferable to use a suspension polymerization method. However, the above vinylidene fluoride copolymer does not necessarily have good polymerization characteristics. There is another problem.
[発明の開示] . [Disclosure of the Invention].
従って、 本発明は、 金属等の基体に対して良好な接着性を示すとともに、 改善され 耐熱安定性を有するフッ化ビ二リデン系共重合体を提供することを主要な目的とす る。  Accordingly, it is a main object of the present invention to provide a vinylidene fluoride-based copolymer which exhibits good adhesion to a substrate such as a metal and has improved heat stability.
本発明の別の目的は、 上記のようなフッ化ビニリデン系共重合体の製造法を提供す るしと ¾る 0 Another object of the present invention, Ru Rushito ¾ to provide a process for producing vinylidene fluoride copolymer as described above 0
本発明の別の目的は、 上記のようなフッ化ビニリデン系共重合体を含む樹脂組成物 、 非水系電気化学素子用電極構造体、 更には非水系電気化学素子、 特に二次電池およ び電気二重層キャパシタを提供することにある。  Another object of the present invention is to provide a resin composition containing the above vinylidene fluoride copolymer, an electrode structure for a non-aqueous electrochemical element, further a non-aqueous electrochemical element, particularly a secondary battery and An electric double layer capacitor is provided.
本発明者等の研究によれば、 フッ化ビニリデンと、 比較的少量のエポキシ基を有す るアクリルビニル単量体との共重合体は、 意外にも上記したフッ化ピニリデンと、 不 飽和二塩基酸のモノエステル等の極性モノマーまたはノおよびァリルダリシジルエー テルのようなェポシ化ァリルエーテルとの共重合体に比べて、 懸濁重合に際してかな り良好な共重合特性を示すだけでなく、 改善された耐熱安定性を示し、 また金属等の 基体との接着性も良好であることが見出された。 According to the study of the present inventors, the copolymer of vinylidene fluoride and a relatively small amount of an acrylic vinyl monomer having an epoxy group is surprisingly obtained from the above-described pinylidene fluoride and unsaturated divinylidene. Polar monomers such as monoesters of basic acids, or di- and arylidaricydyl esters Compared to copolymers with epoxidized aryl ethers such as ter, not only exhibit significantly better copolymerization properties during suspension polymerization, but also exhibit improved heat stability and adhesion to substrates such as metals. It was also found that the properties were good.
すなわち、 本発明は、 第一に、 フッ化ビニリデン単量体 1 0 0モルと、 少なくとも エポキシ基を含有するアクリルビニル単量体 0 . 1〜5 . 0モルとの共重合体である フッ化ビニリデ 系共重合体を提供するものである。  That is, the present invention firstly provides a copolymer of 100 mol of vinylidene fluoride monomer and 0.1 to 5.0 mol of an acrylic vinyl monomer containing at least an epoxy group. It is intended to provide a vinylide-based copolymer.
また、 本発明のフッ化ビニリデン系共重合体の製造法は、 上記のフッ化ピニリデン 系共重合体を水を分散媒とする懸濁重合により製造することを特徴とするものである 更に、 本発明は、 上記フッ化ビニリデン系共重合体を有機溶媒に溶解してなる樹脂 組成物、 更に該樹脂組成物に粉末電極材料を加えてなる電極合剤組成物、 更には該電 極合剤組成物を集電基体上に塗布し有機溶媒を除去して多孔質電極層を形成してなる 非水系電気化学素子用電極構造体を提供するものである。  The method for producing a vinylidene fluoride copolymer of the present invention is characterized by producing the above-mentioned vinylidene fluoride copolymer by suspension polymerization using water as a dispersion medium. The present invention relates to a resin composition obtained by dissolving the above vinylidene fluoride copolymer in an organic solvent, an electrode mixture composition obtained by adding a powdered electrode material to the resin composition, and further comprising the electrode mixture composition. It is intended to provide an electrode structure for a non-aqueous electrochemical element formed by coating a substance on a current collecting substrate and removing an organic solvent to form a porous electrode layer.
また、 本発明は、 正極と、 負極と、 該正極および負極間に配置された非水電解液と からなり、 該正極と負極の少なくとも一方が上記電極構造体からなる非水溶媒系二次 電池、 ならびに一対の上記電極構造体間に非水電解液を配置してなる電気二重層キャ パシ夕を提供するものである。  Also, the present invention provides a non-aqueous solvent-based secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte disposed between the positive electrode and the negative electrode, wherein at least one of the positive electrode and the negative electrode comprises the above electrode structure The present invention also provides an electric double layer capacity in which a non-aqueous electrolyte is disposed between a pair of the electrode structures.
[図面の簡単な説明] [Brief description of drawings]
第 1図は、 本発明に従い構成可能な非水溶媒系二次電池の一部分解斜視図である。 第 2図は、 同二次電池に採用される電極構造体の部分断面図である。  FIG. 1 is a partially exploded perspective view of a non-aqueous solvent secondary battery that can be configured according to the present invention. FIG. 2 is a partial cross-sectional view of an electrode structure used in the secondary battery.
第 3図は、 本発明に従い構成される非水溶媒系電気二重層キャパシ夕の一例の断面 図である。 [発明を実施するための最良の形態]  FIG. 3 is a sectional view of an example of a non-aqueous solvent-based electric double layer capacity constructed according to the present invention. [Best Mode for Carrying Out the Invention]
本発明のフッ化ビニリデン系共重合体は、 少なくともフッ化ビニリデン単量体 1 0 0モルと、 エポキシ基含有アクリルビニル単量体 0 . 1〜5 . 0モル、 好ましくは 0 . 2〜3 . 0モル、 との共重合体からなる。 エポキシ基含有アクリルビニル単量体が 0 . 1モル未満では、 金属等の基体に対する所定の接着性改善効果が得られず、 また 5 . 0モルを超えて添加しても、 より以上の接着性改善効果が得られず、 フッ化ビニ リデン系共重合体を得るための重合時間が長くなる傾向になるので好ましくない。 本発明で使用するエポキシ基含有アクリルビニル単量体は、 一般に置換または非置 換のグリシジル (メタ) ァクリレート (なお、 本明細書で 「 (メタ) ァクリレート」 の語は、 ァクリレートとメタクリレートを包括する用語として用いている) の形態を 採るものであり、 その好ましい具体的例としては、 グリシジル (メタ) ァクリレート 、 2—メチルダリシジル (メタ) ァクリレート、 2—ェチルダリシジル (メタ) ァク リレ一トおよび、 1ーメチルグリシジル (メタ) ァクリレートが挙げられる。 良好な 耐熱分解安定性のフッ化ピニリデン系共重合体を与えるという観点でァクリレートに 比べてメタクリレートが好ましく、 なかでも置換、 特にアルキル置換グリシジルメタ クリレートが好ましい。 The vinylidene fluoride copolymer of the present invention comprises at least 100 mol of vinylidene fluoride monomer and 0.1 to 5.0 mol, preferably 0.2 to 3.0 mol of epoxy group-containing acrylic vinyl monomer. 0 mol, consisting of a copolymer of If the amount of the epoxy group-containing acrylic vinyl monomer is less than 0.1 mol, the desired effect of improving the adhesiveness to a substrate such as a metal cannot be obtained. An improvement effect cannot be obtained, and the polymerization time for obtaining a vinylidene fluoride-based copolymer tends to be long. The epoxy group-containing acrylic vinyl monomer used in the present invention is generally substituted or unsubstituted. Glycidyl (meth) acrylate (in this specification, the term “(meth) acrylate” is used as a term encompassing acrylate and methacrylate), and is a preferred specific example. Examples thereof include glycidyl (meth) acrylate, 2-methyldaricidyl (meth) acrylate, 2-ethyltilididyl (meth) acrylate, and 1-methylglycidyl (meth) acrylate. Methacrylates are preferable to acrylates in view of providing a good thermal decomposition stability pinylidene fluoride copolymer, and among them, substituted, especially alkyl-substituted glycidyl methacrylate is preferable.
良好な耐熱性と耐溶剤性を確保するために、 フッ化ビニリデン系共重合体は、 1 5 0〜1 8 0 °C、 より好ましくは 1 6 0〜1 8 0 °C、 の融点 (D S Cによる窒素雰囲気 中での 1 0 °C/分の昇温における結晶融解における最大吸熱ピーク温度を指すものと する) 、 および 0 . 5〜5 d l Z g、 より好ましくは 0 . 7〜4 d l / gのインヘレ ント粘度 (榭脂 4 gを 1リットルの N, N—ジメチルアミドに溶解させた溶液の 3 0 °Cにおける対数粘度) 、 を有することが好ましい。  In order to ensure good heat resistance and solvent resistance, the vinylidene fluoride copolymer should have a melting point (DSC) of 150 to 180 ° C, more preferably 160 to 180 ° C. The maximum endothermic peak temperature in crystal melting at a temperature rise of 10 ° C./min in a nitrogen atmosphere according to the formula (1), and 0.5 to 5 dl / g, more preferably 0.7 to 4 dl / g. g of an inherent viscosity (logarithmic viscosity at 30 ° C. of a solution of 4 g of resin in 1 liter of N, N-dimethylamide).
一般にフッ化ピニリデン系共重合体の融点は、 フッ化ビニリデン単量体と共重合す る単量体 (コモノマ一) の量が比較的少量の場合は、 コモノマ一の量の増加に従って 低下する。 またフッ化ビニリデン系共重合体は、 そのインへレント粘度が大きければ 大きいほど、 その耐溶剤性、 機械的強度は優れている。 しかし固有粘度の大きい共重 合体は溶剤に対する溶解性が小さくなるので上記範囲のィンへレント粘度が好ましい 。  In general, the melting point of a vinylidene fluoride-based copolymer decreases as the amount of the comonomer increases when the amount of the monomer (co-monomer) copolymerized with the vinylidene fluoride monomer is relatively small. Also, the higher the inherent viscosity of the vinylidene fluoride copolymer, the better the solvent resistance and mechanical strength. However, a copolymer having a large intrinsic viscosity has a low solubility in a solvent, so that the intrinsic viscosity in the above range is preferable.
また、 本発明のフッ化ビニリデン系共重合体は、 優れた耐熱性を有することが特徴 であり、 窒素雰囲気中での熱分解開始温度が 3 5 0 °C以上、 好ましくは 3 8 0 °C以上 、 更に好ましくは 4 0 0 °C以上のものが得られる。  Further, the vinylidene fluoride copolymer of the present invention is characterized by having excellent heat resistance, and has a thermal decomposition onset temperature of at least 350 ° C in a nitrogen atmosphere, preferably at 380 ° C. Above, more preferably at least 400 ° C.
上記フッ化ピニリデン単量体およびエポキシ基含有アクリルビニル単量体に加えて 、 本発明の目的に反しない範囲で、 第 3の単量体を加えてフッ化ピニリデン系共重合 体を得ることができる。 このような第 3の単量体の例としては、 フッ化ビニリデンと 共重合可能なフッ素系単量体あるいはェチレン、 プロピレン等の炭化水素系単量体を 共重合し、 得られるフッ化ビニリデン系共重合体の溶剤に対する溶解性等を制御する こともできる。 フッ化ビニリデンと共重合可能なフッ素系単量体としては、 フッ化ビ ニル、 トリフルォロエチレン、 クロ口トリフルォロエチレン、 テトラフルォロェチレ ン'、 へキサフルォロプロピレン、 フルォロアルキルビニルエーテル等を挙げることが できる。 第 3の単量体は 2種以上、 併用することもできる。 但し、 このような第 3の単量体の使用量は、 得られるフッ化ビニリデン系共重合体 において上述した融点ならびにインへレント粘度が満たされる範囲内に止めることが 好ましく、 より具体的にはフッ化ビニリデン単量体 1 0 0モル当り、 5モル以下、 よ り好ましくは 4モル以下に抑えることが好ましい。 In addition to the above-mentioned pinylidene fluoride monomer and epoxy group-containing acrylic vinyl monomer, a third monomer can be added to obtain a pinylidene fluoride-based copolymer within a range not inconsistent with the object of the present invention. it can. Examples of such a third monomer include a vinylidene fluoride obtained by copolymerizing a fluorine-based monomer copolymerizable with vinylidene fluoride or a hydrocarbon-based monomer such as ethylene or propylene. The solubility of the copolymer in a solvent can be controlled. Fluorinated monomers copolymerizable with vinylidene fluoride include vinyl fluoride, trifluoroethylene, chlorofluoroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoropropylene. And low alkyl vinyl ethers. Two or more third monomers can be used in combination. However, the amount of the third monomer used is preferably kept within a range in which the melting point and the inherent viscosity described above are satisfied in the obtained vinylidene fluoride-based copolymer, and more specifically, It is preferable to keep the amount to 5 mol or less, more preferably 4 mol or less, per 100 mol of the vinylidene fluoride monomer.
上述の本発明のフッ化ピニリデン系共重合体は、 懸濁重合、 乳化重合、 溶液重合等 の方法により製造することができる。 重合方法としては、 得られる共重合体の耐溶剤 性、 後処理の容易さ等の点から水系の懸濁重合、 乳化重合が好ましく、 水系懸濁重合 が特に好ましい。  The above-mentioned pinylidene fluoride copolymer of the present invention can be produced by a method such as suspension polymerization, emulsion polymerization, and solution polymerization. As the polymerization method, aqueous suspension polymerization and emulsion polymerization are preferable, and aqueous suspension polymerization is particularly preferable, in view of the solvent resistance of the obtained copolymer and ease of post-treatment.
水を分散媒とした懸濁重合においては、 メチルセルロース、 メトキシ化メチルセル ロース、 プロポキシ化メチルセルロース、 ヒドロキシェチルセルロース、 ヒドロキシ プロピルセルロース、 ポリビニルアルコール、 ポリエチレンォキシド、 ゼラチン等の 懸濁剤を、 水に対して 0 . 0 0 5〜 1 . 0重量%、 好ましくは 0 . 0 1 0 . 4重量 %の範囲で添加して使用する。  In suspension polymerization using water as a dispersion medium, a suspending agent such as methylcellulose, methoxylated methylcellulose, propoxylated methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, polyvinyl alcohol, polyethylene oxide, or gelatin is added to water. And added in the range of 0.05 to 1.0% by weight, preferably 0.010. 4% by weight.
重合開始剤としては、 ジイソプロピルパーォキシジ力一ポネ一ト、 ジノルマルプロ ピルパ一ォキシジカーボネート、 ジノルマルヘプタフルォロプロピルパーォキシジカ 一ポネ一ト、 イソプチリルパーオキサイド、 ジ (クロ口フルォロアシル) パーォキサ イド、 ジ (パーフルォロアシル) パーオキサイド等が使用できる。 その使用量は、 単 量体合計量に対して 0 . 1〜5重量%、 好ましくは 0 . 5〜2重量%でぁる。  Examples of the polymerization initiator include diisopropylperoxydicarbonate, dinormal propylpropoxydicarbonate, dinormal heptafluoropropylperoxydica monocarbonate, isobutyryl peroxide, di ( Fluoroacyl peroxide and di (perfluoroacyl) peroxide can be used. The amount is 0.1 to 5% by weight, preferably 0.5 to 2% by weight, based on the total amount of monomers.
酢酸ェチル、 酢酸メチル、 アセトン、 エタノール、 n—プロパノ一ル、 ァセトアル デヒド、 プロピルアルデヒド、 プロピオン酸ェチル、 四塩化炭素等の連鎖移動剤を添 加して、 得られる重合体の重合度を調節することも可能である。 その使用量は、 通常 は、 単量体合計量に対して 0 . 1〜5重量%、 好ましくは 0 . 5 ~ 3重量%である。 単量体の合計仕込量は、 単量体合計量:水の重量比で 1 : 1〜 1 : 1 0、 好ましく は 1 : 2〜 1 : 5であり、 重合は温度 1 0〜5 0でで1 0〜 1 0 0時間行う。  Add a chain transfer agent such as ethyl acetate, methyl acetate, acetone, ethanol, n-propanol, acetoaldehyde, propyl aldehyde, ethyl propionate, carbon tetrachloride, etc. to adjust the degree of polymerization of the resulting polymer. It is also possible. The amount used is usually from 0.1 to 5% by weight, preferably from 0.5 to 3% by weight, based on the total amount of the monomers. The total charged amount of the monomers is 1: 1 to 1:10, preferably 1: 2 to 1: 5, by weight ratio of the total amount of monomers to water, and the polymerization is carried out at a temperature of 10 to 50. For 100 to 100 hours.
上記の懸濁重合により、 容易に本発明のフッ化ビニリデン系共重合体を製造するこ とができる。  By the above suspension polymerization, the vinylidene fluoride copolymer of the present invention can be easily produced.
本発明のフッ化ビニリデン系共重合体の、 例えば 1 0 0重量部を、 5 0 0〜2 0 0 0重量部の有機溶媒に溶解することにより、 塗料、 ライニング材、 バインダー等とし て好適に使用される本発明の樹脂組成物が得られる。 溶媒としては、 フッ化ビニリデ ン系重合体をよく溶解する、 N—メチルー 2—ピロリドン、 N , N—ジメチルホルム アミド、 N, N—ジメチルァセトアミド、 ジメチルスルホキシド等が好適である。 また、 本発明のエポキシ基含有フッ化ビニリデン系共重合体は、 共存する (メタ) ァクリレート基の存在のために、 それ自体でエポキシ基の硬化性を有するが、 必要に 応じて例えばエポキシ基 1モルに対して 0 . 3〜3 . 0モルの硬化剤を更に混合して 塗料、 バインダー等として使用することもできる。 By dissolving, for example, 100 parts by weight of the vinylidene fluoride-based copolymer of the present invention in 500 to 200 parts by weight of an organic solvent, it can be suitably used as a paint, a lining material, a binder, or the like. The resin composition of the present invention to be used is obtained. As the solvent, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide and the like, which dissolve the vinylidene fluoride polymer well, are suitable. In addition, the epoxy group-containing vinylidene fluoride copolymer of the present invention is coexistent with (meth) Due to the presence of the acrylate group, the epoxy group itself has the curability of the epoxy group, but if necessary, for example, 0.3 to 3.0 mol of a curing agent is further mixed with respect to 1 mol of the epoxy group to paint, It can also be used as a binder or the like.
硬化剤としては、 一般のエポキシ樹脂の硬化剤として使用される、 アミン類 (ジェ チレントリアミン、 トリエチレンテトラミン、 エチレンジァミン、 テトラエチレンぺ ン夕ミン等) 、 酸無水物類 (無水フタル酸、 コハク酸無水物、 ピロメリ  As the curing agent, amines (eg, ethylenetriamine, triethylenetetramine, ethylenediamine, tetraethyleneamine), acid anhydrides (phthalic anhydride, succinic acid) which are used as curing agents for general epoxy resins. Anhydride, Piromeri
ット酸無水物等) 、 グリシジルェ一テルのァミン付加物等の低分子量の硬化剤も 使用可能である。 Acid anhydrides) and low molecular weight curing agents such as glycidyl ether amine adducts.
また、 本発明のフッ化ビニリデン系共重合体は、 上記溶媒に対する速やかな溶解を 可能とするために、 平均粒径 1 0 0 0 以下、 特に 5 0〜 3 5 0 i mの、 小粒径で 使用に供することも望ましい。  Further, the vinylidene fluoride copolymer of the present invention has a small average particle diameter of 100,000 or less, particularly 50 to 350 im, in order to enable rapid dissolution in the solvent. It is also desirable to use it.
かくして得られる本発明の樹脂組成物は、 金属等の基体に塗布後、 溶媒を蒸発させ 、 必要に応じて架橋硬化させることにより、 基材との接着性ならびに耐薬品性および 耐電解液特性の優れた塗膜を生成する。 かくして、 本発明の樹脂組成物は、 金属等の 基材との接着性ならびに耐溶剤性及び耐薬品性を要求されるバインダー、 塗料、 ライ ニング剤として好適に使用されるが、 これら特性に対する要求の強い、 非水系電気化 学素子の電極製造用バインダーとして極めて優れた適性を示す。 従って、 この用途に ついて、 更に詳しく説明する。  The resin composition of the present invention thus obtained is applied to a substrate such as a metal, and then evaporated and, if necessary, cross-linked and cured, to thereby improve the adhesiveness to the substrate, the chemical resistance, and the electrolyte resistance. Produces excellent coatings. Thus, the resin composition of the present invention is suitably used as a binder, paint, or lining agent which is required to have adhesion to a substrate such as a metal and solvent resistance and chemical resistance. It has extremely good suitability as a binder for electrode production of non-aqueous electrochemical elements with strong odor. Therefore, this application will be described in more detail.
第 1図は、 本発明の非水系電気化学素子である二次電池の一例としてのリチウム二 次電池の部分分解斜視図である。  FIG. 1 is a partially exploded perspective view of a lithium secondary battery as an example of a secondary battery that is a nonaqueous electrochemical device of the present invention.
すなわち、 この二次電池は、 基本的には正極 1および負極 2間に、 電解液を含浸し たポリプロピレン、 ポリエチレン等の高分子物質の微多孔性膜からなるセパレ一夕 3 を配置積層したものを渦巻き状に巻き回した発電素子が負極端子 5 aを形成する有底 の金属ケ一シング 5中に収容された構造を有する。 この二次電池は更に、 負極は負極 端子と電気的に接続され、 頂部においてガスケット 6および安全弁 7を配置したのち 、 凸部において前記正極 1と電気的に接続された正極端子 8 aを構成する頂部プレー ト 8を配置し、 ケ一シング 5の頂部リム 5 bをかしめて、 全体を封止した構造をなし ている。  In other words, this secondary battery is basically a battery in which a separator 3 composed of a microporous film of a polymer substance such as polypropylene or polyethylene impregnated with an electrolyte is arranged and stacked between the positive electrode 1 and the negative electrode 2. The power generating element has a structure in which it is housed in a bottomed metal casing 5 forming a negative electrode terminal 5a. Further, in this secondary battery, the negative electrode is electrically connected to the negative electrode terminal, and after the gasket 6 and the safety valve 7 are arranged on the top, the positive electrode 8a is electrically connected to the positive electrode 1 at the convex portion. The top plate 8 is arranged, and the top rim 5b of the casing 5 is caulked to form a structure in which the whole is sealed.
ここで、 正極 1あるいは負極 2を構成する電極構造体 1 0は、 第 2図に部分断面構 造を示すように、 鉄、 ステンレス鋼、 鋼、 アルミニウム、 ニッケル、 チタン、 銅等の 金属箔あるいは金属網等からなり、 厚さが 5〜1 0 0 /x m、 小規模の場合には例えば 5〜2 0 mとなるような集電体 1 1の少なくとも一面、 好ましくは第 2図に示すよ うに両面に、 例えば小規模の場合厚さが 1 0〜 1 0 0 0 111の電極合剤層1 2 a、 1 2 bを形成したものである。 Here, as shown in FIG. 2, the electrode structure 10 constituting the positive electrode 1 or the negative electrode 2 is made of metal foil such as iron, stainless steel, steel, aluminum, nickel, titanium, copper, or the like. It is composed of a metal net or the like, and has a thickness of 5 to 100 / xm, and in the case of a small scale, for example, has a thickness of 5 to 20 m. Thus, for example, in the case of a small scale, the electrode mixture layers 12a and 12b having a thickness of 10 to 100111 are formed on both surfaces.
この電極合剤層 1 2 a、 1 2 bは、 粉末電極材料としての活物質、 バインダーおよ び必要により添加する炭素等の導電材からなる電極合剤形成用組成物を、 上記集電体 1 1に塗布接着し形成したものである。  The electrode mixture layers 12a and 12b are made of an electrode mixture forming composition comprising an active material as a powdered electrode material, a binder, and a conductive material such as carbon added as necessary. It was formed by applying and bonding to 11.
活物質としては、 正極の場合は、 一般式 L i MY 2 (Mは、 C o、 N i等の遷移金 属の少なくとも一種: Yは 0、 S等のカルコゲン元素) で表わされる複合金属カルコ ゲン化合物、 特に L i C o 0 2をはじめとする複合金属酸化物が好ましい。 負極の場 合は、 黒鉛、 活性炭、 あるいはフエノール樹脂やピッチ等を焼成炭化したもの等の炭 素質物質が活物資としては好ましい。 As the active material, in the case of the positive electrode, a complex metal complex represented by the general formula Li MY 2 (M is at least one transition metal such as Co or Ni: Y is a chalcogen element such as 0 or S) Gen compounds, particularly complex metal oxides, including L i C o 0 2 is preferred. In the case of the negative electrode, a carbonaceous substance such as graphite, activated carbon, or a phenol resin or pitch obtained by firing and carbonizing is preferable as the active material.
導電材は L i C o 0 2等の電子伝導性の小さい活物質を使用する場合に電極合剤層 の導電性を向上する目的で添加するもので、 力一ポンプラック、 黒鉛微粉末あるいは 繊維等の炭素質物質やニッケル、 アルミニウム等の金属微粉末あるいは、 繊維が使用 される。 活物質として導電性の大きい炭素質物質を用いる場合はこれらの導電材は使 用する必要がない。 Conductive material intended to be added in order to improve the conductivity of the electrode mixture layer when using L i C o 0 2 electron conductivity less active material such as, force first pump rack, graphite powder or fiber And carbonaceous materials such as, fine powder of metal such as nickel and aluminum, or fibers. When a conductive carbonaceous material is used as the active material, it is not necessary to use these conductive materials.
バインダーは、 電池の充放電容量には全く寄与しないため、 その使用量は極力少な くする必要があり、 少量でも活物質等をよく保持し、 集電体への接着性に優れたもの が要求される。 またバインダーは通常電気絶縁性であるため、 その使用量の増大は電 池の内部抵抗を大きくする。 この点からもパインダ一は、 できるだけ少ない使用量で その機能を果たすことが要求される。  Since the binder does not contribute to the charge / discharge capacity of the battery at all, it is necessary to minimize the amount of the binder used, and it is required that the binder retains the active material even in a small amount and has excellent adhesion to the current collector. Is done. Also, since binders are usually electrically insulating, increasing their use increases the internal resistance of the battery. From this point of view, it is required that the pinda perform its function with as little usage as possible.
通常、 バインダー量は、 極めて少量で、 全電極合剤に対して 3 0重量%以下である 。 このような少ないバインダー量では、 電極合剤中の、 活物質および/または導電材 等の微細成分間又は微細成分と集電体間の空隙を、 バインダ一が完全に充填すること はできない。 顔料等の充填剤を含有する塗料、 ライニング材等の場合は、 バインダー が充填剤間等の空隙を完全に充填するに充分な多量のバインダ一を使用するので充填 剤の保持に関してはほとんど問題が生じない。 しかし電極用のバインダーの場合は、 上述のように使用量が極めて少量であり、 少量でも活物質をよく保持し、 集電体への 接着性に優れたものが要求される。  Usually, the amount of the binder is very small and is not more than 30% by weight based on the whole electrode mixture. With such a small amount of the binder, the binder cannot completely fill the gap between the fine components such as the active material and / or the conductive material or the gap between the fine component and the current collector in the electrode mixture. In the case of paints and lining materials that contain fillers such as pigments, there are almost no problems with retaining the fillers because the binder uses a large amount of binder that is sufficient to completely fill the gaps between the fillers. Does not occur. However, in the case of a binder for an electrode, as described above, the amount of the binder used is extremely small, and a binder that retains the active material well even in a small amount and has excellent adhesiveness to the current collector is required.
セパレータ 3に含浸される非水電解液としては、 炭酸エチレン、 炭酸プロピレン、 ジメトキシェタン、 テトラヒドロフラン、 ァーブチロラクトン等の高分子に対する溶 解力の強い溶剤に L i C 1〇4、 L i P F 6、 L i B F 4等の電解質を溶かした溶液が 使用されるため、 バインダーには、 長期間これらの溶剤に浸漬しても、 バインダーと しての機能をあまり低下させない耐溶剤性が要求される。 The nonaqueous electrolyte is impregnated in the separator 3, ethylene carbonate, propylene carbonate, dimethoxyethane E Tan, tetrahydrofuran, § over butyrolactone L i C 1_Rei strong solvent having dissolve force for polymers such as 4, L i PF for 6, L i BF 4 solution of electrolytes or the like is used, the binder, a long period of time be immersed in these solvents, and a binder Solvent resistance that does not significantly reduce the function of the solvent is required.
本発明の樹脂組成物を、 電池の薄膜状電極構造体 1 0の製造用バインダーとして使 用する場合は、 以下のようにすることが好ましい。  When the resin composition of the present invention is used as a binder for producing a thin-film electrode structure 10 for a battery, the following is preferred.
本発明のエポキシ基含有フッ化ビニリデン系共重合体と、 必要に応じて加える硬化 剤とを有機溶媒に溶解して、 上述したような本発明の樹脂組成物とする。  The epoxy group-containing vinylidene fluoride copolymer of the present invention and a curing agent added as necessary are dissolved in an organic solvent to obtain the above-described resin composition of the present invention.
次に、 この樹脂組成物に、 さらに、 活物質、 導電剤を添加、 混合しスラリー状にし た電極形成用組成物を、 例えば厚さが 5〜2 0 m程度の金属箔または金属網等の集 電体に均一に塗布、 乾燥し、 加熱プレスして集電体上へ、 例えば 1 0 O ii m前後と薄 い電極合剤層を形成し薄膜状電極とする。 加熱プレス中に、 溶剤を蒸発させ、 必要に 応じて樹脂を架橋 ·硬化させて、 集電体および微細充填物との強固な接着を確保する 電極形成用組成物中の微細成分 (活物質及び導電剤) とフッ化ビニリデン系共重合 体の割合は、 通常、 重量比で 8 0 : 2 0〜 9 8 : 2程度であり、 微細成分の保持、 集 電体への接着性、 電極の導電性を考慮して決められる。  Next, an active material and a conductive agent are further added to this resin composition, and the mixture is slurried to form an electrode forming composition, for example, a metal foil or metal net having a thickness of about 5 to 20 m. The electrode is uniformly coated on the current collector, dried, and heated and pressed to form an electrode mixture layer as thin as, for example, about 10 Oim on the current collector to form a thin-film electrode. During the heating press, the solvent is evaporated, and the resin is cross-linked and hardened as necessary to ensure strong adhesion to the current collector and the fine filler. The fine components in the electrode forming composition (active material and The ratio of the conductive agent) to the vinylidene fluoride-based copolymer is usually about 80:20 to 98: 2 by weight, and retains fine components, adheres to the current collector, and conducts the electrode. Determined in consideration of gender.
本発明の非水系電気化学素子の別の好ましい態様は、 電気二重層キャパシタである 。 第 3図は、 その一例としての単セルの電気二重層キャパシ夕の断面である。 この電 気二重層キャパシタは、 それぞれが本発明の電極構造体の一例に相当する一対の分極 性電極 2 0 aおよび 2 0 b間にセパレ一夕 2 3を挟み、 これらをさらにステンレスス チ一ル製キャップ 2 4と非水電解液 2 6を入れたステンレススチール製缶 5との間に パッキング 2 7を介して封入した構造を有する。 その結果、 非水電解液 2 6はセパレ 一夕 2 3に含浸され、 一対の分極性電極 2 0 aおよび 2 0 b間に配置されることにな る。 一対の分極性電極 2 0 aおよび 2 0 bは、 それぞれ第 2図に示す集電基体 1 1と 同様な集電基体 2 1 aおよび 2 1 bの一面に、 電極合剤層 2 2 aおよび 2 2 bを形成 したものであり、 この電極合剤層 2 2 aおよび 2 2 bのそれぞれは、 本発明のフッ化 ピニリデン系共重合体をバインダーとして、 例えば約 0 . 5〜 1 5重量%、 より好ま しくは 2〜 1 0重量%となる割合で含み、 残りが粉末電極材料として、 好ましくは約 5 0 0〜 3 0 0 0 m 2 / gの比表面積を有するやしがら系、 フエノール系、 石油コ一 クス系、 ピッチ等の活性炭及びそれらを原料とし適当な製造方法により賦活された活 性炭あるいはポリアセン等からなる粉末炭素材、 ならびに必要に応じて添加される導 電剤 (二次電池用電極合剤層に含まれるものと同様) 等からなるものであり、 非水電 解液 2 6としては例えば第 4級ホスホニゥム塩、 あるいは (C 2 H 5 ) 4 N B F 4等の 第 4級アンモニゥム塩を電解質とし、 これを例えばプロピレンカーポネ一ト等の上述 した二次電池用溶媒と同様な溶媒に溶解した溶液が用いられる。 Another preferred embodiment of the nonaqueous electrochemical device of the present invention is an electric double layer capacitor. Fig. 3 is a cross-section of a single-cell electric double layer capacity as an example. In this electric double layer capacitor, a separator 23 is sandwiched between a pair of polarizable electrodes 20a and 20b, each of which corresponds to an example of the electrode structure of the present invention. And a stainless steel can 5 filled with a non-aqueous electrolyte solution 26 through a packing 27. As a result, the non-aqueous electrolyte 26 is impregnated in the separator 23, and is disposed between the pair of polarizable electrodes 20a and 20b. The pair of polarizable electrodes 20a and 20b are respectively provided on one surface of current collecting substrates 21a and 21b similar to the current collecting substrate 11 shown in FIG. Each of the electrode mixture layers 22a and 22b is formed by using the pinylidene fluoride-based copolymer of the present invention as a binder, for example, about 0.5 to 15% by weight. And more preferably 2 to 10% by weight, the remainder being powdered electrode material, preferably a palm-spray system having a specific surface area of about 500 to 300 m 2 / g, phenol. Carbon, petroleum coke, pitch, etc., activated carbon and powdered carbon material made of activated carbon or polyacene, etc., using them as raw materials, and a conductive agent (2) Non-aqueous electrolyte). As the liquid 26, for example, a quaternary phosphonium salt or a quaternary ammonium salt such as (C 2 H 5 ) 4 NBF 4 is used as an electrolyte. A solution dissolved in a solvent similar to the secondary battery solvent described above is used.
このような電気二重層キャパシタにおいても、 電極合剤層を形成するバインダーに ついては、 集電基体との良好な接着性、 耐電解質特性および耐熱性が要求されること は、 非水系二次電池中における場合と全く同様であり、 本発明のエポキシ基含有フッ 化ビニリデン系共重合体が好適に用いられる。  Even in such an electric double layer capacitor, the binder forming the electrode mixture layer is required to have good adhesiveness with the current collecting base, electrolyte resistance and heat resistance, which is required in non-aqueous secondary batteries. This is exactly the same as the case described above, and the epoxy group-containing vinylidene fluoride copolymer of the present invention is suitably used.
[実施例] [Example]
以下、 実施例、 比較例により、 本発明を更に具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
実施例 1  Example 1
(樹脂 A: VDF/2M— GMA)  (Resin A: VDF / 2M—GMA)
内容量 2リットルのォ一トクレーブに、 イオン交換水 1036 g、 メチルセルロー ス (1. 44%水溶液) 41. 7 g (メチルセルロース 0. 6 g) 、 酢酸ェチル 2. 0 g、 イソプロピルパーォキシジ力一ポネート (I PP) 3. 2 g, フッ化ビニリデ ン 400 g、 ジメチルダリシジルメタァクリレート 4 gを仕込み (フッ化ビニリデン : 2—メチルダリシジルメタァクリレ一ト (モル比) =100 : 0. 41) 、 28V で 27時間懸濁重合を行つた。  In a 2 liter autoclave, 1036 g of ion-exchanged water, 41.7 g of methylcellulose (1.44% aqueous solution), 0.6 g of methylcellulose, 2.0 g of ethyl acetate, 2.0 g of isopropyl peroxide 3.2 g of Ripponponate (IPP), 400 g of vinylidene fluoride, and 4 g of dimethyldaricidyl methacrylate (vinylidene fluoride: 2-methyldaricidyl methacrylate (molar ratio) = 100: 0.41), suspension polymerization was performed at 28 V for 27 hours.
重合完了後、 重合体スラリーを脱水、 水洗 ·脱水後、 80°Cで 20時間乾燥して、 本発明のエポキシ基含有フッ化ビニリデン系共重合体に相当する粉末状の樹脂 Aを、 重合収率約 80重量%で得た。  After completion of the polymerization, the polymer slurry is dehydrated, washed with water and dehydrated, and then dried at 80 ° C for 20 hours to obtain a powdery resin A corresponding to the epoxy group-containing vinylidene fluoride copolymer of the present invention. The yield was about 80% by weight.
樹脂 Aは、 インへレント粘度 (樹脂濃度 4 g/lの N, N—ジメチルホルムアミド 中溶液の 30°Cにおける対数粘度) は、 1. 50 d lZgであった。  Resin A had an inherent viscosity (logarithmic viscosity at 30 ° C. of a solution in N, N-dimethylformamide with a resin concentration of 4 g / l) of 1.50 dlZg.
<熱分解開始温度 >  <Temperature of thermal decomposition>
該樹脂 Aを、 窒素雰囲気中で 30°Cから 10°C/分で昇温して重量変化を見る熱重 量分析 (TGA) (メトラー社製 「TC 1 0A」 使用) に付したところ、 熱分解開始 温度 (重量減少開始温度) 425°Cを示した。  When the resin A was subjected to a thermogravimetric analysis (TGA) (using METTLER “TC10A”), which was heated at a temperature of 30 ° C. to 10 ° C./min in a nitrogen atmosphere and a weight change was observed. Thermal decomposition onset temperature (weight loss onset temperature) was 425 ° C.
(樹脂組成物 A)  (Resin composition A)
上記樹脂 Aの 10重量部を、 90重量部の NMP (N—メチルー 2—ピロリドン) に溶解して、 本発明の樹脂組成物 Aを得た。  10 parts by weight of the resin A was dissolved in 90 parts by weight of NMP (N-methyl-2-pyrrolidone) to obtain a resin composition A of the present invention.
(電極合剤組成物)  (Electrode mixture composition)
上記樹脂組成物 A40重量部に対して、 天然黒鉛を窒素雰囲気中で加熱処理して得 られた平均粒径 30 tmの炭素粉末 96重量部を添加し、 更に NMP 34重量部を追 加混合して、 本発明の電極合剤組成物 Aを形成した。 <フッ化水素発生量の測定 > To 40 parts by weight of the above resin composition A, 96 parts by weight of carbon powder having an average particle diameter of 30 tm obtained by heat-treating natural graphite in a nitrogen atmosphere are added, and 34 parts by weight of NMP are additionally mixed. Thus, an electrode mixture composition A of the present invention was formed. <Measurement of hydrogen fluoride generation>
調製直後の上記電極合剤組成物 Aの 0. 5 gを石英ポート上に採り、 直ちに 1 50 °Cに加熱した管状電気炉中で、 空気 100m 1 /m i nを流しながら、 30分加熱し 、 発生ガスをアルカリ溶液に捕集した。 該溶液中のフッ化アルカリ量をイオンクロマ トグラフィ一で定量することにより、 発生したフッ化水素発生量 (/A gZg—電極合 剤組成物) を求めたところ、 20 _i g/gであった。  0.5 g of the above electrode mixture composition A immediately after preparation was taken on a quartz port, and immediately heated in a tubular electric furnace heated to 150 ° C. for 30 minutes while flowing air at 100 m 1 / min. The evolved gas was collected in an alkaline solution. The amount of hydrogen fluoride generated (/ AgZg—electrode mixture composition) was determined by quantifying the amount of alkali fluoride in the solution by ion chromatography, and it was 20_ig / g. .
(電極構造体 A)  (Electrode structure A)
上記電極合剤組成物 Aを、 厚さ 10 の銅箔 (面積 10 OmmX 20 Omm) 上 に乾燥膜厚が約 100 になるように均一に塗布し、 130°Cで 25分間乾燥して 、 本発明の電極構造体 Aを得た。  The above-mentioned electrode mixture composition A is uniformly applied on a 10-thick copper foil (area 10 OmmX 20 Omm) so that a dry film thickness becomes about 100, and dried at 130 ° C for 25 minutes to obtain The electrode structure A of the invention was obtained.
ぐ熱分解開始温度 >  Thermal decomposition start temperature>
上記電極構造体 Aを、 上記樹脂組成物 Aと同様に熱重量分析に付したところ、 40 0 °Cの熱分解開始温度を示した。  The electrode structure A was subjected to a thermogravimetric analysis in the same manner as the resin composition A. As a result, a pyrolysis onset temperature of 400 ° C was shown.
<剥離強度 >  <Peel strength>
別途同様に形成した上記電極構造体 Aを、 60°Cのプロピレン力一ポネート中に 5 日間浸漬した。 そして浸漬前後の電極層と銅箔との接着強度を J I S K6845に 準じて、 180° 剥離試験により測定した。 その結果、 浸漬前後の剥離強度は、 それ ぞれ 6 · O g /mmおよび 3. 0 g /mmであった。  The above-mentioned electrode structure A separately formed in the same manner was immersed in propylene-based monoponate at 60 ° C. for 5 days. The adhesive strength between the electrode layer and the copper foil before and after immersion was measured by a 180 ° peel test according to JIS K6845. As a result, the peel strength before and after immersion was 6 · O g / mm and 3.0 g / mm, respectively.
上記樹脂 Aの概要および評価の結果を、 以下の実施例および比較例で得られた樹脂 の結果とともに後記表 1にまとめて記載する。  The outline of the resin A and the results of the evaluation are summarized in Table 1 below together with the results of the resins obtained in the following Examples and Comparative Examples.
実施例 2  Example 2
(樹脂 B : VDF/GMA)  (Resin B: VDF / GMA)
内容量 2リットルのォ一トクレーブに、 イオン交換水 1036 g、 メチルセルロー ス (1. 44%水溶液) 41. 7 g (メチルセルロース 0. 6 g) 、 酢酸ェチル 2. 0 g、 イソプロピルパーォキシジ力一ポネート (I PP) 3. 2 g フッ化ピニリデ ン 400 g、 グリシジルメタァクリレート 4 gを仕込み (フッ化ビニリデン:グリシ ジルメタァクリレート (モル比) = 100 : 0. 45) 、 28 °Cで 27時間懸濁重合 を行った。  In a 2 liter autoclave, 1036 g of ion-exchanged water, 41.7 g of methylcellulose (1.44% aqueous solution), 0.6 g of methylcellulose, 2.0 g of ethyl acetate, 2.0 g of isopropyl peroxide 3.2 g of Rippon Ponate (IPP) 400 g of pinylidene fluoride and 4 g of glycidyl methacrylate (vinylidene fluoride: glycidyl methacrylate (molar ratio) = 100: 0.45) Suspension polymerization was performed at 28 ° C for 27 hours.
重合完了後、 重合体スラリーを脱水、 水洗 ·脱水後、 80°Cで 20時間乾燥して、 本発明のエポキシ基含有フッ化ビニリデン系共重合体に相当する粉末状の樹脂 Bを得 て、 実施例 1の樹脂 Aと同様に評価した。  After the completion of the polymerization, the polymer slurry was dehydrated, washed with water, dehydrated, and dried at 80 ° C for 20 hours to obtain a powdery resin B corresponding to the epoxy group-containing vinylidene fluoride copolymer of the present invention. Evaluation was made in the same manner as in Resin A of Example 1.
比較例 1 (樹脂 C : VDFホモポリマー) Comparative Example 1 (Resin C: VDF homopolymer)
内容量 1 0リットルのオートクレープに、 イオン交換水 8 ] 92 g、 メチルセル口 —ス (1. 44%水溶液) 1 1 1. 3 g (メチルセルロース 1. 6 g) 、 酢酸ェチル 54. 4 g、 イソプロピルパ一ォキシジ力一ポネート (I P P) 1 1. 2 g、 フッ化 ビニリデン (VDF) 3200 gを仕込み、 26 °Cで 20時懸濁重合を行った。 重合完了後、 重合体スラリーを脱水、 水洗 ·脱水後、 80°Cで 2 0時間乾燥して、 VDF単独重合体からなる粉末状の比較樹脂 Cを得、 実施例 1の榭脂 Aと同様に評価 した。  In an autoclave with a content of 10 liters, ion-exchanged water 8] 92 g, methylcell mouth (1.44% aqueous solution) 11.3 g (methyl cellulose 1.6 g), ethyl acetate 54.4 g, 111.2 g of isopropyl peroxide and 1200 g of vinylidene fluoride (VDF) were charged, and suspension polymerization was performed at 26 ° C for 20 hours. After completion of the polymerization, the polymer slurry was dehydrated, washed with water, dehydrated, and dried at 80 ° C for 20 hours to obtain a powdery comparative resin C composed of a VDF homopolymer, similar to resin A in Example 1. Was evaluated.
比較例 2  Comparative Example 2
(樹脂 D: VDF/MMM)  (Resin D: VDF / MMM)
内容量 2リットルのオートクレーブに、 イオン交換水 1040 g、 メチルセル口一 ス 0. 8 g、 酢酸ェチル 2. 5 g、 ジイソプロピルパ一ォキシジ力一ポネート 4 g、 フッ化ビニリデン (VDF) 3 9 6 g、 マレイン酸モノメチルエステル (MMM) 4 . 0 gを仕込み (VD F : MMM (モル比) = 1 00 : 0. 50) 、 2 8°Cで 47時 間懸濁重合を行った。 重合完了後、 重合体スラリーを脱水、 水洗後 8 0でで 20時間 乾燥して、 VDF/MMM共重合体からなる比較樹脂 Dを得、 実施例 1の樹脂 Aと同 様に評価した。  In an autoclave with a capacity of 2 liters, 1040 g of ion-exchanged water, 0.8 g of methyl cell mouth, 2.5 g of ethyl acetate, 4 g of diisopropyl alcohol, 4 g of vinylidene fluoride (VDF) 396 g Then, 4.0 g of maleic acid monomethyl ester (MMM) was charged (VDF: MMM (molar ratio) = 100: 0.50), and suspension polymerization was carried out at 28 ° C for 47 hours. After the completion of the polymerization, the polymer slurry was dehydrated, washed with water, and dried at 80 at 20 hours to obtain Comparative Resin D composed of a VDF / MMM copolymer, which was evaluated in the same manner as Resin A of Example 1.
比較例 3  Comparative Example 3
(榭脂 E : VDF/AGE共重合体)  (榭 Fat E: VDF / AGE copolymer)
内容量 2リットルのオートクレープに、 イオン交換水 10 00 g、 メチルセル口一 ス 1. 2 g、 ジノルマルプロピルパ一ォキシジ力一ポネート (NP P) 5 g、 フッ化 ビニリデン (VDF) 397 g、 ァリルグリシジルエーテル (AGE) 3 gを仕込み (フッ化ビニリデン:ァリルグリシジルェ一テル (モル比) = 1 0 0 : 0. 42) 、 2 5 °Cで 5 2時間懸濁重合を行った。  In a 2 liter autoclave, 1000 g of ion-exchanged water, 1.2 g of methylcell mouth, 5 g of di-n-propylpropyloxydoxy-ponate (NPP), 397 g of vinylidene fluoride (VDF), 3 g of arylglycidyl ether (AGE) was charged (vinylidene fluoride: arylglycidyl ether (molar ratio) = 100: 0.42), and suspension polymerization was performed at 25 ° C for 52 hours. .
重合完了後、 重合体スラリーを脱水、 水洗 ·脱水後、 80°Cで 2 0時間乾燥して、 VDF/AGE共重合体からなる比較樹脂 Eを得、 実施例 :1の樹脂 Aと同様に評価し た。  After completion of the polymerization, the polymer slurry was dehydrated, washed with water, dehydrated, and dried at 80 ° C for 20 hours to obtain a comparative resin E composed of a VDF / AGE copolymer. evaluated.
比較例 4  Comparative Example 4
(樹脂 F : VDF/AGE/MMM共重合体)  (Resin F: VDF / AGE / MMM copolymer)
内容量 2リットルのオートクレープに、 イオン交換水 1 0 00 g、 メチルセルロー ス 1. 2 g、 ジノルマルプロピルパーォキシジカーボネート (NP P) 4 g、 フッ化 ビニリデン 3 96 g、 ァリルグリシジルェ一テル 4. l g、 マレイン酸モノメチルェ L ステル 1. 2 gを仕込み (フッ化ビニリデン:ァリルグリシジルェ一テル:マレイン 酸モノメチルエステル (モル比) =100 : 0. 57 : 0. 15) 、 25でで 82時 間懸濁重合を行った。 In a 2 liter autoclave, 100 g of ion-exchanged water, 1.2 g of methylcellulose, 4 g of dinormal propyl peroxydicarbonate (NPP), 96 g of vinylidene fluoride, and arylglycidyl Ether 4.lg, monomethyl maleate L Steller (1.2 g) was charged (vinylidene fluoride: arylglycidyl ether: maleic acid monomethyl ester (molar ratio) = 100: 0.57: 0.15), and suspension polymerization was performed at 25 for 82 hours. went.
重合完了後、 重合体スラリーを実施例 1と同様に処理して、 VDF/AGEZMM M共重合体からなる比較樹脂 Fを得、 実施例 1の樹脂 Aと同様に評価した。  After the completion of the polymerization, the polymer slurry was treated in the same manner as in Example 1 to obtain Comparative Resin F composed of the VDF / AGEZMM M copolymer, which was evaluated in the same manner as in Resin A of Example 1.
上記実施例および比較例の結果をまとめて次表 1に示す。  Table 1 below summarizes the results of the above Examples and Comparative Examples.
1]  1]
Figure imgf000014_0001
Figure imgf000014_0001
[産業上の利用可能性] [Industrial applicability]
上記表 1の結果より理解される通り、 本発明によれば、 金属等の基体に対して良好 な接着性を示すとともに、 改善された耐熱安定性を示し、 非水系電気化学素子用バイ ンダ一として優れた適性を示すエポキシ基含有フッ化ビニリデン系共重合体、 ならび にその効率的な製造方法、 および該フッ化ピニリデン系共重合体をバインダ一として 含む樹脂組成物、 電極構造体および非水系電気化学素子が与えられる。  As can be understood from the results in Table 1 above, according to the present invention, the binder for non-aqueous electrochemical elements shows good adhesiveness to a substrate such as a metal, and shows improved heat stability. Group-containing vinylidene fluoride copolymer having excellent suitability for use as well as a method for efficiently producing the same, a resin composition containing the pinylidene fluoride copolymer as a binder, an electrode structure and a non-aqueous resin An electrochemical device is provided.

Claims

Ι ό' 請 求 の 範 囲 Ι ό 'Scope of request
1 . フッ化ビニリデン単量体 1 0 0モルと、 少なくともエポキシ基を含有するァク リルビニル単量体 0 . 1〜5 . 0モル、 との共重合体であることを特徴とするェポキ シ基含有フッ化ビニリデン系共重合体。 1. An epoxy group characterized by being a copolymer of 100 mol of vinylidene fluoride monomer and 0.1 to 5.0 mol of an acrylic vinyl monomer containing at least an epoxy group. Containing vinylidene fluoride copolymer.
2 . エポキシ基含有アクリルビニル単量体が、 グリシジル (メタ) ァクリレート、 2—メチルダリシジル (メタ) ァクリレート、 2—ェチルダリシジル (メタ) ァクリ レートおよび、 1ーメチルダリシジル (メタ) ァクリレートからなる群より選ばれる 請求の範囲 1に記載のフッ化ビニリデン系共重合体。 2. The epoxy group-containing acrylic vinyl monomer is a group consisting of glycidyl (meth) acrylate, 2-methyldaricidyl (meth) acrylate, 2-ethyltyldicidyl (meth) acrylate, and 1-methyldaricidyl (meth) acrylate. The vinylidene fluoride copolymer according to claim 1, which is selected from the group consisting of:
3 . フッ化ピニリデン単量体 1 0 0モルと、 少なくともエポキシ基を含有するァク リルピニル単量体 0 . 1〜5 . Qモルとを含む単量体混合物を水を分散媒とする懸濁 重合で重合させることを特徴とする請求の範囲 1または 2に記載のフッ化ビニリデン 系共重合体の製造方法。 3. Suspension of a monomer mixture containing 100 mol of a pinylidene fluoride monomer and 0.1 to 5. Q mol of an acrylpinyl monomer containing at least an epoxy group, using water as a dispersion medium. 3. The method for producing a vinylidene fluoride-based copolymer according to claim 1, wherein the polymerization is carried out by polymerization.
4 . 融点 (D S Cによる窒素雰囲気中での 1 0 分の昇温における結晶融解にお ける最大吸熱ピーク温度を指すものとする) が 1 5 0〜1 8 0 °Cである請求の範囲 1 〜 3のいずれかに記載のフッ化ビニリデン系共重合体の製造方法。 4. The melting point (refers to the maximum endothermic peak temperature in crystal melting at a temperature rise of 10 minutes by DSC in a nitrogen atmosphere) is 150 to 180 ° C. 4. The method for producing a vinylidene fluoride-based copolymer according to any one of 3.
5 . インへレント粘度 (樹脂 4 gを 1リットルの N, N—ジメチルアミドに溶解さ せた溶液の 3 0 °Cにおける対数粘度) が 0 . 5〜5 d 1 / gである請求の範囲 1〜4 のいずれかに記載のフッ化ピニリデン系共重合体の製造方法。 5. The inherent viscosity (logarithmic viscosity at 30 ° C of a solution of 4 g of resin dissolved in 1 liter of N, N-dimethylamide) is 0.5 to 5 d 1 / g. 5. The method for producing a pinylidene fluoride-based copolymer according to any one of 1 to 4.
6 . 熱分解開始温度 (D S Cによる窒素雰囲気中での 1 0 °C/分の昇温における重 量減少開始温度) が 3 5 0 °C以上である請求の範囲 1〜5のいずれかに記載のフッ化 ビニリデン系共重合体の製造方法。 6. The method according to any one of claims 1 to 5, wherein the thermal decomposition onset temperature (the temperature at which the weight starts to decrease at a temperature rise of 10 ° C / min in a nitrogen atmosphere by DSC) is 350 ° C or more. For producing a vinylidene fluoride copolymer.
7 . 請求の範囲 1〜 6のいずれかに記載のフッ化ビニリデン系共重合体を有機溶媒 に溶解してなる樹脂組成物。 7. A resin composition obtained by dissolving the vinylidene fluoride-based copolymer according to any one of claims 1 to 6 in an organic solvent.
8 . 請求の範囲 7に記載の樹脂組成物に粉末電極材料を加えてなる電極合剤組成物 8. An electrode mixture composition obtained by adding a powdered electrode material to the resin composition according to claim 7.
9 . 請求の範囲 1〜 6のいずれかに記載のエポキシ基含有フッ化ビニリデン系共重 合体と粉末電極材料とからなる多孔質電極層を集電基体上に形成してなる非水系電気 化学素子用電極構造体。 9. A non-aqueous electrochemical element formed by forming a porous electrode layer comprising the epoxy group-containing vinylidene fluoride-based copolymer according to any one of claims 1 to 6 and a powder electrode material on a current collecting substrate. Electrode structure.
1 0 . 正極と、 負極と、 該正極および負極間に配置された非水電解液とからなり、 該正極と負極の少なくとも一方が請求の範囲 9の電極構造体からなる非水溶媒系二次 電池。 10. A non-aqueous solvent-based secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte disposed between the positive electrode and the negative electrode, wherein at least one of the positive electrode and the negative electrode comprises the electrode structure according to claim 9. battery.
1 1 . それぞれが請求の範囲 9に記載の構造の一対の電極構造体間に非水電解液を 配置してなる電気二重層キャパシ夕。 11. An electric double layer capacity in which a non-aqueous electrolyte is disposed between a pair of electrode structures each having the structure described in claim 9.
PCT/JP2002/012266 2001-11-26 2002-11-25 Epoxy group containing vinylidene fluoride copolymer, and resin composition, electrode structure and non-aqueous electrochemical element comprising the same WO2003046026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002349709A AU2002349709A1 (en) 2001-11-26 2002-11-25 Epoxy group containing vinylidene fluoride copolymer, and resin composition, electrode structure and non-aqueous electrochemical element comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001358897A JP2003155313A (en) 2001-11-26 2001-11-26 Epoxy group-containing vinylidene fluoride-based copolymer, resin composition containing the same, electrode structure and non-aqueous electrochemical device
JP2001-358897 2001-11-26

Publications (1)

Publication Number Publication Date
WO2003046026A1 true WO2003046026A1 (en) 2003-06-05

Family

ID=19170000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012266 WO2003046026A1 (en) 2001-11-26 2002-11-25 Epoxy group containing vinylidene fluoride copolymer, and resin composition, electrode structure and non-aqueous electrochemical element comprising the same

Country Status (3)

Country Link
JP (1) JP2003155313A (en)
AU (1) AU2002349709A1 (en)
WO (1) WO2003046026A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097618A1 (en) * 2012-12-19 2014-06-26 パナソニック株式会社 Nonaqueous solvent for electricity storage devices, nonaqueous electrolyte solution, electricity storage device using nonaqueous electrolyte solution, and lithium secondary battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310747A (en) * 2004-03-23 2005-11-04 Kureha Chem Ind Co Ltd Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element
JP4887653B2 (en) * 2005-03-25 2012-02-29 日本ゼオン株式会社 Nonaqueous electrolyte secondary battery electrode binder, binder composition, electrode composition, and electrode
JP5726181B2 (en) * 2010-05-27 2015-05-27 昭和電工株式会社 Fluorine and epoxy group-containing copolymer and method for producing the same
AU2013222135A1 (en) * 2012-02-22 2014-09-18 Seldon Technologies, Inc. Electrodes and applications
JP6380808B2 (en) * 2015-05-19 2018-08-29 トヨタ自動車株式会社 Method for manufacturing electrode for secondary battery
WO2018092676A1 (en) * 2016-11-15 2018-05-24 株式会社クレハ Electrode mixture, electrode mixture production method, electrode structure body, electrode structure body production method and secondary battery
JP7014639B2 (en) * 2018-02-28 2022-02-01 株式会社クレハ Production method of vinylidene fluoride polymer, binder composition, electrode mixture, electrode and non-aqueous electrolyte secondary battery, and electrode mixture.
JP7060986B2 (en) * 2018-03-15 2022-04-27 株式会社クレハ Binder composition, mixture for producing electrodes for non-aqueous electrolyte secondary batteries, electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218612A (en) * 1985-03-25 1986-09-29 Daikin Ind Ltd Plating jig
JPH03213336A (en) * 1990-01-19 1991-09-18 Mitsubishi Petrochem Co Ltd Multilayered laminate
JPH10302799A (en) * 1997-04-25 1998-11-13 Jsr Corp Binder for nonaqueous battery electrode
JPH11246631A (en) * 1998-03-04 1999-09-14 Kanto Denka Kogyo Co Ltd Hardenable fluorine-containing copolymer and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218612A (en) * 1985-03-25 1986-09-29 Daikin Ind Ltd Plating jig
JPH03213336A (en) * 1990-01-19 1991-09-18 Mitsubishi Petrochem Co Ltd Multilayered laminate
JPH10302799A (en) * 1997-04-25 1998-11-13 Jsr Corp Binder for nonaqueous battery electrode
JPH11246631A (en) * 1998-03-04 1999-09-14 Kanto Denka Kogyo Co Ltd Hardenable fluorine-containing copolymer and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097618A1 (en) * 2012-12-19 2014-06-26 パナソニック株式会社 Nonaqueous solvent for electricity storage devices, nonaqueous electrolyte solution, electricity storage device using nonaqueous electrolyte solution, and lithium secondary battery

Also Published As

Publication number Publication date
JP2003155313A (en) 2003-05-27
AU2002349709A1 (en) 2003-06-10

Similar Documents

Publication Publication Date Title
JP3999927B2 (en) Coating composition containing polar vinylidene fluoride copolymer
JP3467499B2 (en) Epoxy group-containing vinylidene fluoride copolymer, resin composition containing the same, electrode structure, and secondary battery
JP6641400B2 (en) Electrode binder composition for lithium ion storage device
JP2010514140A (en) Electrode binder composition and electrode for lithium ion battery and electric double layer capacitor
JP5955496B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode, secondary battery, and method for producing secondary battery negative electrode binder composition
JP2010521798A (en) Aqueous adhesive for lithium ion battery, method for producing the same, and lithium ion battery positive electrode sheet
JPWO2004049475A1 (en) Non-aqueous electrolyte battery electrode binder composition and use thereof
KR102256440B1 (en) Composite binder material for binding electrode, electrode paste composition having the composite binder material, and electrode structure for energy storage apparatus having the composite binder material
JP2005310747A (en) Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element
CN107408668B (en) Electrode for Li-ion battery with improved conductivity
JP7060986B2 (en) Binder composition, mixture for producing electrodes for non-aqueous electrolyte secondary batteries, electrodes for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
JP3518712B2 (en) Non-aqueous battery electrode forming binder, electrode mixture, electrode structure and battery
WO2003046026A1 (en) Epoxy group containing vinylidene fluoride copolymer, and resin composition, electrode structure and non-aqueous electrochemical element comprising the same
JP6256329B2 (en) Secondary battery negative electrode binder composition, secondary battery negative electrode slurry composition, secondary battery negative electrode, secondary battery, and method for producing secondary battery negative electrode binder composition
KR20200123781A (en) Slurry composition for lithium ion secondary battery and electrode for lithium ion secondary battery
JPH10302800A (en) Battery binder solution, electrode mix containing the same and electrode body structure and battery using mix
JP2016213027A (en) Binder resin composition for electrodes of nonaqueous electrolyte energy devices, nonaqueous electrolyte energy device electrode arranged by use thereof, and nonaqueous electrolyte energy device
US8642210B2 (en) Negative electrode mixture for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2002141068A (en) Binder for forming nonaqueous battery electrode, electrode composite agent, electrode structure and nonaqueous battery
CN112542588A (en) Vinylidene fluoride copolymer, and preparation method and application thereof
JP7328219B2 (en) PVDF binder for graphite/silicon anodes
EP4338215A1 (en) Slurry compositions including polymers having silicon-containing functional groups for lithium ion electrical storage devices
JP2000228218A (en) Lithium battery having high polymer electrolyte
WO2023056397A1 (en) Slurry compositions for lithium-ion electrical storage devices

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase