WO2003028405A1 - Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern - Google Patents

Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern Download PDF

Info

Publication number
WO2003028405A1
WO2003028405A1 PCT/DE2001/003653 DE0103653W WO03028405A1 WO 2003028405 A1 WO2003028405 A1 WO 2003028405A1 DE 0103653 W DE0103653 W DE 0103653W WO 03028405 A1 WO03028405 A1 WO 03028405A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio signal
bandpass
filter
frequency components
bpf
Prior art date
Application number
PCT/DE2001/003653
Other languages
English (en)
French (fr)
Inventor
Roland Aubauer
Stefano Ambrosius Klinke
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=5648291&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003028405(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US10/490,259 priority Critical patent/US7574009B2/en
Priority to DE50112650T priority patent/DE50112650D1/de
Priority to CN01823654.5A priority patent/CN1274184C/zh
Priority to EP01980187A priority patent/EP1428411B2/de
Priority to PCT/DE2001/003653 priority patent/WO2003028405A1/de
Publication of WO2003028405A1 publication Critical patent/WO2003028405A1/de
Priority to HK05102061A priority patent/HK1069705A1/xx

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response

Definitions

  • the invention relates to a method for controlling the bass reproduction of audio signals in electroacoustic transducers according to the preamble of patent claim 1 and a device for controlling the bass reproduction of audio signals in electroacoustic transducers according to the preamble of patent claim 9.
  • the bass reproduction of audio signals in an electroacoustic transducer is dependent on the size of the electroacoustic transducer, the loudspeaker or the earpiece.
  • FIGURE 1 shows a typical frequency response of a small loudspeaker.
  • Electronic audio devices in which such small electroacoustic transducers are used and in which bass reproduction is consequently unsatisfactory are primarily audio devices (devices for outputting and / or reproducing audio signals) of communication and information technology as well as entertainment and consumer goods electronics, such as Mobile and cordless telephone handsets, notebooks, personal digital assistants, mini radios, clock radios, portable music players, etc.
  • a known psychoacoustic principle can be used to improve bass reproduction with a small loudspeaker. This principle is referred to as “residual hearing (hearing of missing fundamentals)” or as a “virtual pitch”. According to this principle, the perception of a fundamental frequency can be simulated by a combination of harmonics. Therefore, the perception of a low frequency can be simulated with the corresponding combination of its harmonics.
  • a method based on the psychoacoustic principle is known from WO 00/15003, in which the harmonics present in the audio signal are amplified.
  • low frequency components of the audio signal are isolated to form a low-frequency audio signal, the isolated deep frequency components are filtered with a large number of bandpass filters, and the bandpass-filtered frequency components in an amplifier which can be controlled with respect to the gain factor amplified, the gain factor being obtained from the envelope of the band-pass filtered frequency components, and producing a simulated low-frequency audio signal by combining the original audio signal with the amplified frequency components.
  • the object on which the invention is based is to control the bass reproduction of audio signals in electroacoustic transducers based on the psychoacoustic principle referred to as “virtual pitch” or “residual hearing (hearing of missing fundamental) ⁇ ” in such a way that the perception of the virtual bass reproduction the audio signals is improved over the prior art.
  • This object is achieved both on the basis of the method defined in the preamble of patent claim 1 by the features specified in the characterizing part of patent claim 1 and on the basis of the device defined in the preamble of patent claim 9 by the features specified in the characterizing part of patent claim 9.
  • the idea that makes up the invention consists in controlling the reproductions of the low frequencies or basses emitted in the electroacoustic transducer by amplifying the harmonic harmonics already contained in the audio signal in such a way that the listener feels improved bass reproduction or perceives.
  • the control or simulation can be both digital (claim 1), by a program module in the digital signal processor DSP of the electronic device for output and / or reproduction of audio signals with the electroacoustic transducer, and analog (claim 9), by a Hardware connection between the digital / analog converter and the final amplifier of the electronic device for output and / or playback of audio signals with the electroacoustic converter.
  • the program module and the hardware circuit only the harmonic waves which are above the resonance frequency of the electroacoustic transducer, in particular the loudspeaker, are amplified in order to simulate the perception of the fundamental frequency.
  • the extraction or isolation of the harmonics is achieved in the program module by means of bandpass filtering and in the hardware circuit by means of a bandpass filter, while the amplification of the harmonics is controlled by a software-based gain factor in the program module and in the hardware circuit in a suitably designed one Gain Controlled Amplifier runs.
  • the gain factor is preferably determined by frequency Components of the audio signal controlled below the resonance frequency or cutoff frequency of the electroacoustic transducer.
  • the advantage of the method according to claim 1 is that the amplification of the harmonic original harmonics present in the audio signal ensures a significantly better quality of the modified audio signal generated in the digital signal processor. This particularly avoids distortion of the audio signal.
  • the method according to the invention places lower demands on the computing power and the memory requirement in the digital signal processor.
  • the modified audio signal is filtered to amplify selected frequencies.
  • FIGS. 2 to 7. Two exemplary embodiments of the invention are explained with reference to FIGS. 2 to 7. Show it:
  • FIGURE 2 the digital implementation of the method according to the invention in the form of a program module in a digital Signal processor of an electronic radio device for the output and / or playback of audio signals,
  • FIG. 3 shows the analog implementation of the device according to the invention in the hardware concept of an electronic radio device for output and / or playback of audio signals
  • FIGURE 4 shows a first form of implementation of the program module according to FIGURE 2
  • FIG. 5 shows a second form of implementation of the program module according to FIG. 2,
  • FIG. 6 shows a third form of implementation of the program module according to FIG. 2,
  • FIG. 7 shows a form of implementation of the control device according to FIG. 3.
  • FIGURE 2 shows, as a second exemplary embodiment, in the form of a functional or block diagram, the speech processing path in a radio device FG for the output and / or reproduction of audio signals, in particular voice signals, in which the invention is implemented in a program module PGM of a digital signal processor DSP (digital implementation).
  • the radio FG receives an analog radio signal FS via an antenna ANT, on which encoded speech information is modulated.
  • a digital demodulated signal DDS is generated from the modulated coded analog radio signal FS. This digital demodulated signal DDS is then fed to a speech decoder SDK of the digital signal processor DSP.
  • a speech signal or - generally speaking - an audio signal AS is generated from the digital demodulated signal DDS.
  • This audio signal AS is then the program module for controlling the bass reproduction of Audio signals in electro-acoustic transducers PGM of the digital signal processor DSP supplied.
  • a modified audio signal MAS is generated from the audio signal AS, which is then further filtered by a filter FIL of the digital signal processor DSP.
  • the filtered modified audio signal MAS is finally passed to a digital-to-analog converter DAW and then amplified in a power amplifier EVS before the speech information contained in the modified audio signal MAS is output by an electroacoustic converter EAS, which is preferably designed as a loudspeaker ,
  • FIG. 3 shows, as a second exemplary embodiment in the form of a functional or block diagram, the voice processing path in the radio device FG, in which, in contrast to FIG. 2, the invention outside the digital signal processor DSP in the analog part of the radio device FG in a device for controlling the bass reproduction of audio signals in electroacoustic transducers STV is implemented (analog implementation).
  • the voice signal processing in the radio device FG in turn begins with the fact that the analog radio signal FS, on which encoded speech information is modulated, is fed to the receiver EMP via the antenna ANT.
  • the microprocessor MP and the analog-digital converter ADW in turn, generate the digital demodulated signal DDS from the analog radio signal FS.
  • This digital demodulated signal DDS is then fed back to the speech decoder SDK in the digital signal processor DSP.
  • the decoded speech signal or, more generally, the decoded audio signal AS is obtained again from the digital demodulated signal DDS.
  • This audio signal AS is then filtered in the filter FIL of the digital signal processor DSP before the filtered audio signal is converted accordingly in the digital-to-analog converter DAW.
  • the converted audio signal AS is then the device for controlling the bass reproduction of audio signals in electroacoustic transducers STV supplied, where a modified audio signal MAS is generated from the audio signal AS.
  • the modified audio signal MAS is then amplified in the power amplifier EVS before the speech information contained in the modified audio signal MAS is output via the electroacoustic converter EAW, which is again preferably designed as a loudspeaker.
  • FIG. 4 shows a first form of implementation of the program module PGM according to FIG. 2.
  • the audio signal AS is bandpass-filtered for isolation of a first frequency component FK with a bandpass filter BPF implemented with software and for isolation of a second frequency component FK X with a lowpass filter realized with software TPF , While the first frequency component FK is being amplified, an amplification factor VF determining the amplification of the first frequency component FK is generated with the second frequency component FK X.
  • a further bandpass filter implemented by software or even the bandpass filter BPF generating the first frequency component FK can alternatively be used.
  • the bandpass filter BPF is preferably designed as a finite impulse response filter (FIR filter) FIR-F or alternatively as an "infinite impulse response ⁇ filter (IIR filter) IIR-F. If the bandpass filter BPF is a finite impulse response" Designed filter FIR-F, the program module PGM contains a buffer ZWS for buffering the audio signal AS. This buffer ZWS is not required if the bandpass filter BPF is designed as an Infinite Impulse Response "filter IIR-F. To illustrate this in FIG. 4, the buffer ZWS is shown as a dashed block.
  • the bandpass-filtered audio signal FK or the frequency component FK isolated with the bandpass filter BPF is applied to amplify it at the input of an amplifier VS which can be controlled with the amplification factor VF and is implemented using software.
  • the program module PGM contains software-implemented means for calculating signal envelopes and / or signal energy MBSE, which supply an input variable from the low-pass-filtered audio signal FK ⁇ for means also used for software to calculate the gain factor MBVF of the program module PGM , The calculation means MBVF then deliver the gain factor VF with which the amplifier VS can be controlled.
  • a bandpass-filtered audio signal VSFK is thus present at the output of the amplifier VS with the amplification factor VF.
  • This operation results in the modified audio signal MAS, which is preferably filtered to improve the signal quality with a presence filter PRF implemented by software.
  • the modified audio signal MAS is fed to the filter FIL without further filtering by the presence filter PRF.
  • FIGURE 5 shows, starting from FIGURE 4, a second implementation of the program module PGM according to FIGURE 2.
  • the audio signal AS is bandpass filtered again with the bandpass filter BPF for isolation of the first frequency component FK and lowpass filtered for isolation of the second frequency component FK with the lowpass filter TPF. While the first frequency component FK is amplified again, the second frequency component FK again amplifies the Gain factor VF determines first frequency component FK.
  • the bandpass filter BPF is again preferably designed as a finite impulse response filter (FIR filter) FIR-F or alternatively as an "infinite pulse response 1 " filter (IIR filter) IIR-F. If the bandpass filter BPF is designed as a finite impulse response filter FIR-F, the program module PGM again contains the buffer ZWS for buffering the audio signal AS. This buffer ZWS is again when the bandpass filter BPF as an infinite impulse response " 1 - Filter IIR-F is formed, not required. In order to illustrate this in FIGURE 5, the buffer ZWS is shown as a dashed block.
  • the bandpass-filtered audio signal FK or the frequency component FK isolated with the bandpass filter BPF is applied to the input of an amplifier VS controllable with the gain factor VF, as in FIG.
  • the program module PGM again contains the means for calculating the signal envelope and / or signal energy MBSE, which again provide an input variable from the low-pass filtered audio signal FK ⁇ for the means for calculating the gain factor MBVF of the program module PGM.
  • the calculation means MBVF is supplied with a further input variable which comes from further means for calculating signal envelopes and / or signal energy MBSE.
  • the further input variable is calculated by the calculation means MBSE from the unfiltered audio signal AS.
  • the calculation means MBVF then deliver the gain factor VF from these two input variables, with which the amplifier VS can be controlled again.
  • the bandpass-filtered audio signal VSFK is thus present again at the output of the amplifier VS with the amplification factor VF.
  • This amplified bandpass-filtered audio signal VSFK and the audio signal AS which may have been buffered, are subsequently combined or added again with the aid of the combination means KM of the program module PGM, which are preferably again designed as addition means.
  • the modified audio signal MAS is produced, which is preferably filtered again with the presence filter PRF to improve the signal quality.
  • the modified audio signal MAS is fed to the filter FIL without further filtering by the presence filter PRF.
  • FIGURE 6 is based on FIG 4 shows a third form of implementation of the program module PGM in accordance with FIG 2.
  • the audio signal AS is again band-pass filtered to isolate the first frequency component FK with the band-pass filter BPF and again low-pass filtered to isolate the second frequency component FK ⁇ with the low pass filter LPF. While the first frequency component FK is amplified again, the amplification factor VF which determines the amplification of the first frequency component FK is generated again with the second frequency component FK ⁇ .
  • the bandpass filter BPF is again preferably designed as a finite impulse response filter (FIR filter) FIR-F or alternatively as an "infinite impulse response" filter (IIR filter) IIR-F. If the bandpass filter BPF is designed as a finite impulse response "filter FIR-F, the program module PGM again contains the buffer ZWS for buffering the audio signal AS. This buffer ZWS is again when the bandpass filter BPF as an infinite impulse response" filter IIR-F is not required. In order to show this in FIGURE 6, the buffer ZWS is shown as a dashed block.
  • the bandpass-filtered audio signal FK or the frequency component FK isolated with the bandpass filter BPF is, as in FIGS. 4 and 5, applied to the input of the amplifier VS which can be controlled with the amplification factor VF in order to amplify it.
  • the program module PGM again contains the means for calculating signal envelope and / or signal energy MBSE, which provide an input variable from the low-pass filtered audio signal FK ⁇ for means for calculating the gain factor MBVF of the program module PGM.
  • the calculation means MBVF is supplied with a further input variable which comes from further means for calculating signal envelopes and / or signal energy MBSE.
  • the further input variable-e- is calculated by the calculation means MBSE from the bandpass-filtered audio signal FK.
  • the calculation means MBVF then deliver the gain factor VF from these two input variables, with which the amplifier VS can be controlled.
  • the bandpass-filtered audio signal VSFK which is amplified with the amplification factor VF, is thus again present at the output of the amplifier VS.
  • This reinforced bandpass-filtered audio signal VSFK and the audio signal AS which may have been buffered, are subsequently combined or added again using the combination means KM of the program module PGM, which are preferably designed as addition means.
  • the modified audio signal MAS is generated again, which is preferably filtered again with the presence filter PRF to improve the signal quality.
  • the modified audio signal MAS is fed to the filter FIL without further filtering by the presence filter PRF.
  • FIG. 7 shows a form of implementation of the control device STV according to FIG. 3.
  • the audio signal AS is bandpass-filtered for isolation of the first frequency component FK with a bandpass filter BPF1 designed as a hardware module and for isolation of the second frequency component FK with a hardware module trained low-pass filter TPF1 low-pass filtered. While the first frequency component FK is amplified, the second frequency component
  • the bandpass-filtered audio signal FK or the frequency component FK isolated with the bandpass filter BPF1 is placed at the input of an amplifier VS1 designed as a hardware component that can be controlled with the amplification factor VF in order to amplify it.
  • means for calculating signal envelopes and / or signal energy MBSE1 are provided in the control device STV as hardware modules, which are preferably They consist of a series connection of a rectifier GLR and a further low-pass filter TPF2 and which supply an input variable from the low-pass filtered audio signal FK X for means for calculating the gain factor MBVFl of the control device STV, which are also designed as hardware components.
  • the calculation means MBVF1 then deliver the gain factor VF with which the amplifier VS1 can be controlled.
  • a bandpass-filtered audio signal VSFK is thus present at the output of the amplifier VS1, amplified with the amplification factor VF.
  • This amplified bandpass-filtered audio signal VSFK and the audio signal AS are further combined or added using combination means KM1 of the control device STV, which are preferably designed as addition means and as a hardware component.
  • the modified audio signal MAS is produced, which is preferably filtered with a presence filter PRF1 designed as a hardware module in order to improve the signal quality.
  • the modified audio signal MAS as explained in the description of FIG. 3, to be fed to the power amplifier EVS without further filtering by the presence filter PRF.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

Um die Basswiedergabe von Audiosignalen (AS) in elektroakustischen Wandlern (EAW) basierend auf dem als "virtual pitch" oder als "residual hearing (hearing of missing fundamental)" bezeichneten psychoakustischen Prinzip so zu steuern, dass die Wahrnehmung der virtuellen Basswiedergabe der Audiosignale (AS) Gegenüber dem Stand der Technik verbessert ist, wird Wiedergabe der in dem elektroakustischen Wandler (EAW) abgegebenen tiefen Frequenzen bzw. Bässe durch das Verstärken der schon im Audiosignal (AS) enthaltenen harmonischen Oberwellen so im Sinne einer Simulation gesteuert, dass der Hörer eine verbesserte Basswiedergabe empfindet bzw. wahrnimmt. Die Steuerung bzw. Simulation kann dabei sowohl digital (Anspruch 1), durch ein Programmodul (PGM) in einem Digitalen Signal Prozessor (DSP) eines elektronischen Gerätes zur Aus- und/oder Wiedergabe von Audiosignalen (AS) mit dem elektroakustischen Wandler (EAW), als auch analog (Anspruch 9), durch eine Hardware-Schaltung zwischen einem Digital/Analog-Wandler (DAW) und einem Endverstärker (EVS) des elektronischen Gerätes (FG) zur Aus- und/oder Wiedergabe von Audiosignalen (AS) mit dem elektroakustischen Wandler (EAW), erfolgen.

Description

Beschreibung
Verfahren und Vorrichtung zur Steuerung der Basswiedergabe von Audiosignalen in elektroakustischen Wandlern
Die Erfindung betrifft ein Verfahren zur Steuerung der Basswiedergabe von Audiosignalen in elektroakustischen Wandlern gemäß dem Oberbegriff des Patentanspruches 1 und eine Vorrichtung zur Steuerung der Basswiedergabe von Audiosignalen in elektroakustischen Wandlern gemäß dem Oberbegriff des Patentanspruches 9.
Die Basswiedergabe von Audiosignalen in einem elektroakustischen Wandler, insbesondere einem Lautsprecher oder einer Hörkapsel, ist durch die Größe des elektroakustischen Wandlers, des Lautsprechers bzw. der Hörkapsel bedingt. Je kleiner die Lautsprecher-Membrane und deren maximale Auslenkung sind, desto höher ist die untere Resonanzfrequenz.
In FIGUR 1 ist ein typischer Frequenzgang eines kleinen Lautsprechers dargestellt. Elektronische Audiogeräte, in denen solche kleinen elektroakustischen Wandler zum Einsatz kommen und in denen folglich die Basswiedergabe unbefriedigend ist, sind in erster Linie Audiogeräte (Geräte zur Aus- und/oder Wiedergabe von Audiosignalen) der Kommunikations- und Informationstechnik sowie der Unterhaltungs- und Konsumgüterelektronik, wie z.B. Mobilfunk- und Schnurlostelefon-Handapparate, Notebooks, Personal Digital Assistants, Mini-Radios, Radiowecker, tragbare Musikabspielgeräte etc.
Um die Basswiedergabe mit einem kleinen Lautsprecher zu verbessern, kann ein bekannter psychoakustisches Prinzip benutzt werden. Dieses Prinzip wird als „Residual Hearing (Hearing of Missing Fundamentals) * oder als „Virtual Pitch" be- zeichnet. Nach diesem Prinzip kann die Wahrnehmung einer Grundfrequenz durch eine Kombination von Oberwellen simuliert werden. Daher kann auch die Wahrnehmung einer tiefen Frequenz mit der entsprechenden Kombination ihrer Oberwellen simuliert werden.
Eine detaillierte Beschreibung des Virtual Pitch" -Prinzips ist in der Publikation Psychoakustik" von E. Zwicker; H.Fastl; Springer Verlag , 2nd. Edition, 1999 zu finden.
Aus der US 6,111,960 und der US 5,930,373 sind auf dem psychoakustischen Prinzip beruhende Verfahren bekannt, die anhand des Audiosignals eine entsprechende Reihe von Oberwellen erzeugen, um die Frequenzen unterhalb der Grenzfrequenz zu simulieren.
Aus der WO 00/15003 ist eine auf dem psychoakustischen Prinzip beruhendes Verfahren bekannt, bei dem die in dem Audiosignal vorhandenen Oberwellen verstärkt werden. Dabei werden zur Verbesserung der Basswiedergabe der Audiosignale in elek- troakustischen Wandlern tiefe Frequenzkomponenten des Audio- signals zu einem tieffrequenten Audiosignal isoliert, die i- solierten tiefen Frequenzkomponenten mit einer Vielzahl von Bandpassfiltern gefiltert, die bandpassgefilterten Frequenzkomponenten in einem bezüglich des Verstärkungsfaktors steu- erbaren Verstärker verstärkt, wobei der Verstärkungsfaktor aus der Einhüllenden der bandpassgefilterten Frequenzkomponenten gewonnen wird, und ein simulierte tieffrequentes Audiosignal durch Kombinieren des ursprünglichen Audiosignals mit den verstärkten Frequenzkomponenten erzeugt.
Die der Erfindung zugrundeliegende Aufgabe besteht darin, die Basswiedergabe von Audiosignalen in elektroakustischen Wandlern basierend auf dem als „Virtual pitch" oder als „residual hearing (hearing of missing fundamental)λ bezeichneten psy- choakustischen Prinzip so zu steuern, dass die Wahrnehmung der virtuellen Basswiedergabe der Audiosignale gegenüber dem Stand der Technik verbessert ist. Diese Aufgabe wird sowohl ausgehend von dem im Oberbegriff des Patentanspruches 1 definierten Verfahren durch die im Kennzeichen des Patentanspruches 1 angegebenen Merkmale als auch ausgehend von der im Oberbegriff des Patentanspruches 9 definierten Vorrichtung durch die im Kennzeichen des Patentanspruches 9 angegebenen Merkmale gelöst.
Die die Erfindung ausmachende Idee besteht darin, die Wieder- gäbe der in dem elektroakustischen Wandler abgegebenen tiefen Frequenzen bzw. Bässe durch das Verstärken der schon im Audiosignal enthaltenen harmonischen Oberwellen so im Sinne einer Simulation zu steuern, dass der Hörer eine verbesserte Basswiedergabe empfindet bzw. wahrnimmt. Die Steuerung bzw. Simulation kann dabei sowohl digital (Anspruch 1), durch eine Programmmodul im Digitalen Signal-Prozessor DSP des elektronischen Gerätes zur Aus- und/oder Wiedergabe von Audiosignalen mit dem elektroakustischen Wandler, als auch analog (Anspruch 9) , durch eine Hardware-Schaltung zwischen dem Digi- tal/Analog-Wandler und dem Endverstärker des elektronischen Gerätes zur Aus- und/oder Wiedergabe von Audiosignalen mit dem elektroakustischen Wandler, erfolgen.
Mit dem Programmmodul und der Hardware-Schaltung werden nur die harmonischen Oberwellen verstärkt, die sich oberhalb der Resonanzfrequenz des elektroakustischen Wandlers, insbesondere des Lautsprechers, befinden, um die Wahrnehmung der Grundfrequenz zu simulieren. Die Extraktion bzw. Isolierung der harmonischen Oberwellen wird beim Programmmodul durch Band- passfilterung und bei der Hardware-Schaltung mittels eines Bandpassfilters erreicht, während die Verstärkung der Oberwellen gesteuert durch einen Verstärkungsfaktor in dem Programmmodul softwaregestützt und in der Hardware-Schaltung in einem dafür entsprechend ausgebildeten verstärkungsfaktor- gesteuerten Verstärker (engl.: Gain Controlled Amplifier) abläuft. Der Verstärkungsfaktor wird vorzugsweise von Frequenz- komponenten des Audiosignals unterhalb der Resonanzfrequenz bzw. Grenzfrequenz des elektroakustischen Wandlers gesteuert.
Der Vorteil des Verfahrens gemäß Anspruch 1 liegt darin, ' dass die Verstärkung der im Audiosignal vorhandenen harmonischen Original-Oberwellen eine deutliche bessere Qualität des im Digitalen Signal-Prozessor erzeugten modifizierten Audiosignals gewährleistet. Dadurch werden insbesondere Verzerrungen des Audiosignals vermieden. Außerdem stellt das erfindungsge- mäße Verfahren geringere Anforderungen hinsichtlich der Rechnerleistung und des Speicherbedarfs im Digitalen Signal- Prozessor.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unter- ansprüchen angegeben.
So ist es nach Anspruch 2 iVm Anspruch 4 von Vorteil, wenn bei der Verwendung eines „Finite Impulse Response"-Filters - im Unterschied zu der Verwendung eines „Infinite Impulse Res- ponse"-Filter gemäß Anspruch 3 - das mit den verstärkten Frequenzkomponenten zu kombinierende Audiosignal gepuffert wird, um für die Kombination aufgrund der Verwendung des FIR- Filters vorhandene Phasenverschiebungen zwischen der verstärkten Frequenzkomponenten und dem Audiosignal zu kompen- sieren.
Nach den Ansprüchen 7 und 10 ist es vorteilhaft, wenn zur Verbesserung der Qualität des vom elektroakustischen Wandler abgegebenen modifizierten Audiosignals das modifizierte Au- diosignal zur Verstärkung von ausgewählten Frequenzen gefiltert wird.
Zwei Ausführungsbeispiele der Erfindung werden anhand der FIGUREN 2 bis 7 erläutert. Es zeigen:
FIGUR 2 die digitale Implementierung des erfindungsgemäßen Verfahrens in Form eines Programmmoduls in einem Digitalen Signal-Prozessor eines elektronischen Funkgerätes zur Aus- und/oder Wiedergabe von Audiosignalen,
FIGUR 3 die analoge Implementierung der erfindungsgemäßen Vorrichtung in das Hardware-Konzept eines elektronischen Funkgerätes zur Aus- und/oder Wiedergabe von Audiosignalen,
FIGUR 4 eine erste Realisierungsform des Programmmoduls nach FIGUR 2,
FIGUR 5 eine zweite Realisierungsform des Programmmoduls nach FIGUR 2,
FIGUR 6 eine dritte Realisierungsform des Programmmoduls nach FIGUR 2,
FIGUR 7 eine Realisierungsform der Steuerungsvorrichtung nach FIGUR 3.
FIGUR 2 zeigt als zweites Ausführungsbeispiel in Form eines Funktions- oder Blockschaltbildes die Sprachverarbeitungs- strecke in einem Funkgerät FG zur Aus- und/oder Wiedergabe von Audiosignalen, insbesondere Sprachsignalen, bei dem die Erfindung in einem Programmmodul PGM eines Digitalen Signal- Prozessors DSP implementiert ist (digitale Implementierung) . Das Funkgerät FG empfängt über eine Antenne ANT ein analoges Funksignal FS, auf dem eine kodierte Sprachinformation aufmoduliert ist. In einem Empfänger EMP unterstützt von einem Mikroprozessor MP und einem Analog-Digital-Wandler ADW wird aus dem modulierten codierten analogen Funksignal FS ein digitales demoduliertes Signal DDS erzeugt. Dieses digitale demodulierte Signal DDS wird danach einem Sprachdekodierer SDK des Digitalen Signal-Prozessors DSP zugeführt. In dem Sprachdekodierer SDK wird aus dem digitalen demodulierten Signal DDS ein Sprachsignal oder - ganz allgemein formuliert - ein Audiosignal AS erzeugt. Dieses Audiosignal AS wird anschließend dem Programmmodul zur Steuerung der Basswiedergabe von Audiosignalen in elektroakustischen Wandlern PGM des Digitalen Signal-Prozessors DSP zugeführt. In dem Programmmodul PGM des digitalen Signal-Prozessors DSP wird aus dem Audiosignal AS ein modifiziertes Audiosignal MAS generiert, das dann im weiteren von einem Filter FIL des Digitalen Signal-Prozessors DSP gefiltert wird. Das gefilterte modifizierte Audiosignal MAS wird schließlich auf einen Digital-Analog-Wandler DAW gegeben und danach in einem Endverstärker EVS verstärkt, bevor die in dem modifizierten Audiosignal MAS enthaltene Sprachin- formation von einem elektroakustischen Wandler EAS, der vorzugsweise als Lautsprecher ausgebildet ist, ausgegeben wird.
FIGUR 3 zeigt als zweites Ausführungsbeispiel in Form eines Funktions- oder Blockschaltbildes die Sprachverarbeitungs- strecke in dem Funkgerät FG, bei dem die Erfindung im Unterschied zu FIGUR 2 außerhalb des Digitalen Signal-Prozessors DSP im Analogteil des Funkgerätes FG in einer Vorrichtung zur Steuerung des Basswiedergabe von Audiosignalen in elektroakustischen Wandlern STV implementiert ist (analoge Implemen- tierung) . Die Sprachsignalverarbeitung in dem Funkgerät FG beginnt wiederum damit, dass das analoge Funksignal FS, auf dem eine kodierte Sprachinformation aufmoduliert ist, über die Antenne ANT dem Empfänger EMP zugeführt wird. In dem Empfänger EMP wird wiederum unterstützt durch den Mikroprozessor MP und den Analog-Digital-Wandler ADW aus dem analogen Funksignal FS wiederum das digitale demodulierte Signal DDS erzeugt. Dieses digitale demodulierte Signal DDS wird anschließend wieder dem Sprachdekodierer SDK in dem Digitalen Signal- Prozessor DSP zugeführt. In dem Sprachdecodierer SDK wird aus dem digitalen demodulierten Signal DDS wieder das dekodierte Sprachsignal oder ganz allgemein das dekodierte Audiosignal AS gewonnen. Dieses Audiosignal AS wird anschließend in dem Filter FIL des Digitalen Signal-Prozessors DSP gefiltert, bevor das gefilterte Audiosignal in dem Digital-Analog-Wandler DAW entsprechend gewandelt wird. Das gewandelte Audiosignal AS wird anschließend der Vorrichtung zur Steuerung der Basswiedergabe von Audiosignalen in elektroakustischen Wandlern STV zugeführt, wo aus dem Audiosignal AS ein modifiziertes Audiosignal MAS generiert wird. Das modifizierte Audiosignal MAS wird im Anschluss daran in dem Endverstärker EVS verstärkt, bevor die in dem modifizierten Audiosignal MAS ent- haltene Sprachinformation über den elektroakustischen Wandler EAW, der wieder vorzugsweise als Lautsprecher ausgebildet ist, ausgegeben wird.
FIGUR 4 zeigt eine erste Realisierungsform des Programmmoduls PGM gemäß der FIGUR 2. Das Audiosignal AS wird zur Isolation einer ersten Frequenzkomponente FK mit einem mittels Software realisierten Bandpassfilter BPF bandpassgefiltert und zur Isolation einer zweiten Frequenzkomponente FKX mit einem mittels Software realisierten Tiefpassfilter TPF tiefpassgefil- tert. Während die erste Frequenzkomponente FK verstärkt wird, wird mit der zweiten Frequenzkomponente FKX ein die Verstärkung der ersten Frequenzkomponente FK bestimmender Verstärkungsfaktor VF erzeugt.
Anstelle des Tiefpassfilters TPF kann alternativ auch ein weiteres mittels Software realisiertes Bandpassfilter oder sogar das die erste Frequenzkomponente FK erzeugende Bandpassfilter BPF verwendet werden. Im letztgenannten Fall wären die beiden Frequenzkomponenten FK, FKλ gleich (FK=FK ).
Das Bandpassfilter BPF ist vorzugsweise als Finite Impulse Response" -Filter (FIR-Filter) FIR-F oder alternativ als „Infinite Impulse Response^-Filter (IIR-Filter) IIR-F ausgebildet. Ist das Bandpassfilter BPF als Finite Impulse Response"- Filter FIR-F ausgebildet, enthält das Programmmodul PGM zur Pufferung des Audiosignals AS einen Zwischenspeicher ZWS. Dieser Zwischenspeicher ZWS ist dann, wenn das Bandpassfilter BPF als Infinite Impulse Response" -Filter IIR-F ausgebildet ist, nicht erforderlich. Um dieses zu in der FIGUR 4 darzu- stellen, ist der Zwischenspeicher ZWS als gestrichelter Block dargestell . Das bandpassgefilterte Audiosignal FK bzw. die mit dem Bandpassfilter BPF isolierte Frequenzkomponente FK wird zur deren Verstärkung an den Eingang eines mit dem Verstärkungsfaktor VF steuerbaren mittels Software realisierten Verstärker VS gelegt. Für die Ermittlung des Verstärkungsfaktor VF sind in dem Programmmodul PGM mittels Software realisierte Mittel zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE vorhanden, die aus dem tiefpassgefilterten Audiosignal FKΛ eine Eingangsgröße für ebenfalls mittels Software realisierte Mittel zur Berechnung des Verstärkungsfaktors MBVF des Programmmoduls PGM liefern. Die Berechnungsmittel MBVF liefern dann den Verstärkungsfaktor VF, mit dem der Verstärker VS steuerbar ist. Am Ausgang des Verstärkers VS liegt somit ein mit dem Verstärkungsfaktor VF verstärktes bandpassgefiltertes Audiosignal VSFK an. Dieses verstärkte bandpassgefilterte Audiosignal VSFK und das Audiosignal AS, das gegebenenfalls zwischengespeichert worden ist, werden im weiteren mit Hilfe von vorzugsweise als Additionsmittel ausgebildeten, mittels Software realisierten Kombinationsmittel KM des Programmmo- duls PGM kombiniert bzw. addiert. Infolge dieser Operation entsteht das modifizierte Audiosignal MAS, das vorzugsweise zur Verbesserung der Signalqualität mit einem mittels Software realisierten Präsenzfilter PRF gefiltert wird. Es ist aber auch möglich, dass das modifizierte Audiosignal MAS, wie bei der Beschreibung der FIGUR 2 erläutert, ohne weitere Filterung durch das Präsenzfilter PRF dem Filter FIL zugeführt wird.
FIGUR 5 zeigt ausgehend von FIGUR 4 eine zweite Realisie- rungsfor des Programmmoduls PGM gemäß der FIGUR 2. Das Audiosignal AS wird zur Isolation der ersten Frequenzkomponente FK wieder mit dem Bandpassfilter BPF bandpassgefiltert und zur Isolation der zweiten Frequenzkomponente FK mit dem Tiefpassfilter TPF tiefpassgefiltert . Während die erste Fre- quenzkomponente FK wieder verstärkt wird, wird mit der zweiten Frequenzkomponente FK wieder der die Verstärkung der ersten Frequenzkomponente FK bestimmende Verstärkungsfaktor VF erzeugt.
Anstelle des Tiefpassfilters TPF kann wiederum alternativ auch ein weiteres Bandpassfilter oder sogar das die erste
Frequenzkomponente FK erzeugende Bandpassfilter BPF verwendet werden. Im letztgenannten Fall wären die beiden Frequenzkomponenten FK, FK dann wieder gleich (FK=FKλ) .
Das Bandpassfilter BPF ist wieder vorzugsweise als Finite Impulse Response" -Filter (FIR-Filter) FIR-F oder alternativ als „Infinite Impulse Response1" -Filter (IIR-Filter) IIR-F ausgebildet. Ist das Bandpassfilter BPF als Finite Impulse Respon- se" -Filter FIR-F ausgebildet, enthält das Programmmodul PGM wieder zur Pufferung des Audiosignals AS den Zwischenspeicher ZWS. Dieser Zwischenspeicher ZWS ist dann wieder, wenn das Bandpassfilter BPF als Infinite Impulse Response"1 -Filter IIR- F ausgebildet ist, nicht erforderlich. Um dieses zu in der FIGUR 5 darzustellen, ist der Zwischenspeicher ZWS als ge- strichelter Block dargestellt.
Das bandpassgefilterte Audiosignal FK bzw. die mit dem Bandpassfilter BPF isolierte Frequenzkomponente FK wird wie in der FIGUR 4 zur deren Verstärkung an den Eingang eines mit dem Verstärkungsfaktor VF steuerbaren Verstärker VS gelegt.
Für die Ermittlung des Verstärkungsfaktor VF sind in dem Programmmodul PGM wieder die Mittel zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE vorhanden, die aus dem tiefpassgefilterten Audiosignal FKλ wieder eine Eingangs- große für die Mittel zur Berechnung des Verstärkungsfaktors MBVF des Programmmoduls PGM liefern.
In der Realisierungsform des Programmmoduls PGM gemäß der FIGUR 5 wird im Unterschied zu der gemäß der FIGUR 4 den Be- rechnungsmitteln MBVF eine weitere Eingangsgröße zugeführt, die von weiteren Mitteln zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE stammt. Die weitere Eingangsgröße wird von den Berechnungsmitteln MBSE aus dem ungefilterten Audiosignal AS berechnet.
Die Berechnungsmittel MBVF liefern dann aus diesen beiden Eingangsgrößen den Verstärkungsfaktor VF, mit dem der Verstärker VS wieder steuerbar ist. Am Ausgang des Verstärkers VS liegt somit wieder das mit dem Verstärkungsfaktor VF verstärkte bandpassgefilterte Audiosignal VSFK an. Dieses verstärkte bandpassgefilterte Audiosignal VSFK und das Audiosig- nal AS, das gegebenenfalls zwischengespeichert worden ist, werden im weiteren wieder mit Hilfe der vorzugsweise wieder als Additionsmittel ausgebildeten Kombinationsmittel KM des Programmmoduls PGM kombiniert bzw. addiert. Infolge dieser Operation entsteht das modifizierte Audiosignal MAS, das vor- zugsweise zur Verbesserung der Signalqualität wieder mit dem Präsenzfilter PRF gefiltert wird. Es ist aber auch wieder möglich, dass das modifizierte Audiosignal MAS, wie bei der Beschreibung der FIGUR 2 erläutert, ohne weitere Filterung durch das Präsenzfilter PRF dem Filter FIL zugeführt wird.
FIGUR 6 zeigt ausgehend von FIGUR 4 eine dritte Realisierungsform des Programmmoduls PGM gemäß der FIGUR 2. Das Audiosignal AS wird zur Isolation der ersten Frequenzkomponente FK erneut mit dem Bandpassfilter BPF bandpassgefiltert und zur Isolation der zweiten Frequenzkomponente FKΛ erneut mit dem Tiefpassfilter TPF tiefpassgefiltert . Während die erste Frequenzkomponente FK wieder verstärkt wird, wird mit der zweiten Frequenzkomponente FKλ erneut der die Verstärkung der ersten Frequenzkomponente FK bestimmende Verstärkungsfaktor VF erzeugt.
Anstelle des Tiefpassfilters TPF kann erneut alternativ auch ein weiteres Bandpassfilter oder sogar das die erste Frequenzkomponente FK erzeugende Bandpassfilter BPF verwendet werden. Im letztgenannten Fall wären die beiden Frequenzkomponenten FK, FKΛ gleich (FK=FKX) . Das Bandpassfilter BPF ist erneut vorzugsweise als Finite Impulse Response"-Filter (FIR-Filter) FIR-F oder alternativ als „Infinite Impulse Response" -Filter (IIR-Filter) IIR-F ausgebildet. Ist das Bandpassfilter BPF als Finite Impulse Respon- se"-Filter FIR-F ausgebildet, enthält das Programmmodul PGM erneut zur Pufferung des Audiosignals AS den Zwischenspeicher ZWS. Dieser Zwischenspeicher ZWS ist dann erneut, wenn das Bandpassfilter BPF als Infinite Impulse Response" -Filter IIR- F ausgebildet ist, nicht erforderlich. Um dieses zu in der FIGUR 6 darzustellen, ist der Zwischenspeicher ZWS als gestrichelter Block dargestellt.
Das bandpassgefilterte Audiosignal FK bzw. die mit dem Bandpassfilter BPF isolierte Frequenzkomponente FK wird wie in den FIGUREN 4 und 5 zur deren Verstärkung an den Eingang des mit dem Verstärkungsfaktor VF steuerbaren Verstärker VS gelegt. Für die Ermittlung des Verstärkungsfaktor VF sind in dem Programmmodul PGM erneut die Mittel zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE vorhanden, die aus dem tiefpassgefilterten Audiosignal FKΛ eine Eingangsgröße für Mittel zur Berechnung des Verstärkungsfaktors MBVF des Programmmoduls PGM liefern.
In der Realisierungsform des Programmmoduls PGM gemäß der FIGUR 6 wird im Unterschied zu der gemäß der FIGUR 4 den Berechnungsmitteln MBVF eine weitere Eingangsgröße zugeführt, die von weiteren Mitteln zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE stammt. Die weitere Eingangsgröß-e- wird im Unterschied zu der gemäß der FIGUR 5 von den Berech- nungsmitteln MBSE aus dem bandpassgefilterten Audiosignal FK berechnet .
Die Berechnungsmittel MBVF liefern dann aus diesen beiden Eingangsgrößen den Verstärkungsfaktor VF, mit dem der Ver- stärker VS steuerbar ist. Am Ausgang des Verstärkers VS liegt somit erneut das mit dem Verstärkungsfaktor VF verstärkte bandpassgefilterte Audiosignal VSFK an. Dieses verstärkte bandpassgefilterte Audiosignal VSFK und das Audiosignal AS, das gegebenenfalls zwischengespeichert worden ist, werden im weiteren erneut mit Hilfe der vorzugsweise als Additionsmittel ausgebildeten Kombinationsmittel KM des Programmmoduls PGM kombiniert bzw. addiert. Infolge dieser Operation entsteht erneut das modifizierte Audiosignal MAS, das vorzugsweise erneut zur Verbesserung der Signalqualität mit dem Präsenzfilter PRF gefiltert wird. Es ist aber auch erneut möglich, dass das modifizierte Audiosignal MAS, wie bei der Be- Schreibung der FIGUR 2 erläutert, ohne weitere Filterung durch das Präsenzfilter PRF dem Filter FIL zugeführt wird.
FIGUR 7 zeigt eine Realisierungsform des Steuerungsvorrichtung STV gemäß der FIGUR 3. Das Audiosignal AS wird zur Iso- lation der ersten Frequenzkomponente FK mit einem als Hardware-Baustein ausgebildeten Bandpassfilter BPF1 bandpassge- filtert und zur Isolation der zweiten Frequenzkomponente FK mit einem als Hardware-Baustein ausgebildeten Tiefpassfilter TPF1 tiefpassgefiltert . Während die erste Frequenzkomponente FK verstärkt wird, wird mit der zweiten Frequenzkomponente
FKλ der die Verstärkung der ersten Frequenzkomponente FK bestimmender Verstärkungsfaktor VF erzeugt.
Anstelle des Tiefpassfilters TPF1 kann alternativ auch ein weiteres als Hardware-Baustein ausgebildetes Bandpassfilter oder sogar das die erste Frequenzkomponente FK erzeugende Bandpassfilter BPF1 verwendet werden. Im letztgenannten Fall wären die beiden Frequenzkomponenten FK, FKX gleich (FK=FK ).
Das bandpassgefilterte Audiosignal FK bzw. die mit dem Bandpassfilter BPFl isolierte Frequenzkomponente FK wird zur deren Verstärkung an den Eingang eines mit dem Verstärkungsfaktor VF steuerbaren als Hardware-Baustein ausgebildeten Verstärker VSl gelegt. Für die Ermittlung des Verstärkungsfaktor VF sind in der Steuerungsvorrichtung STV als Hardware- Baustein ausgebildete Mittel zur Berechnung von Signaleinhüllende und/oder Signalenergie MBSE1 vorhanden, die vorzugswei- se aus der Serienschaltung von einem Gleichrichter GLR und einem weiteren Tiefpassfilter TPF2 bestehen und die aus dem tiefpassgefilterten Audiosignal FKX eine Eingangsgröße für ebenfalls als Hardware-Baustein ausgebildete Mittel zur Be- rechnung des Verstärkungsfaktors MBVFl der Steuerungsvorrichtung STV liefern. Die Berechnungsmittel MBVFl liefern dann den Verstärkungsfaktor VF, mit dem der Verstärker VS1 steuerbar ist. Am Ausgang des Verstärkers VS1 liegt somit ein mit dem Verstärkungsfaktor VF verstärktes bandpassgefiltertes Au- diosignal VSFK an. Dieses verstärkte bandpassgefilterte Audiosignal VSFK und das Audiosignal AS werden im weiteren mit Hilfe von vorzugsweise als Additionsmittel und als Hardware- Baustein ausgebildeten Kombinationsmittel KM1 der Steuerungsvorrichtung STV kombiniert bzw. addiert. Infolge dieser Ope- ration entsteht das modifizierte Audiosignal MAS, das vorzugsweise zur Verbesserung der Signalqualität mit einem als Hardware-Baustein ausgebildeten Präsenzfilter PRF1 gefiltert wird. Es ist aber auch möglich, dass das modifizierte Audiosignal MAS, wie bei der Beschreibung der FIGUR 3 erläutert, ohne weitere Filterung durch das Präsenzfilter PRF dem Endverstärker EVS zugeführt wird.

Claims

Patentansprüche
1. Verfahren zur Steuerung der Basswiedergabe von Audiosignalen in elektroakustischen Wandlern, bei dem a) Frequenzkomponenten (FK, FKλ) des Audiosignals (AS) isoliert und mit einem auf der Basis des Audiosignales (AS) berechneten Verstärkungsfaktor (VF) verstärkt werden (VS, VS1), b) die verstärkten Frequenzkomponenten (VSFK) des Audiosig- nals (AS) und das Audiosignal (AS) derart kombiniert werden (KM, KM1), dass ein modifiziertes Audiosignal (MAS) entsteht, c) das modifizierte Audiosignal (MAS) dem elektroakustischen Wandler (EAW) zugeführt wird, dadurch geke nzeichnet, dass d) das Audiosignal (AS) zur Isolation und Verstärkung von ersten Frequenzkomponenten (FK) bandpassgefiltert wird (BPF, BPF1), e) zur Berechnung (MBVF, MBVFl) des Verstärkungsfaktors (VF) el) das Audiosignal (AS) zur Isolation von zweiten Frequenzkomponenten (FK ) tiefpass- und/oder bandpassgefiltert wird (BPF, BPF1, TPF, TPFl ) , e2) die Einhüllende und/oder die Energie des ungefilterten, tiefpassgefilterten und/oder bandpassgefilterten Audio- Signals (AS, FKλ) berechnet wird (MBSE, MBSE1) .
2. Verfahren nach Anspruch 1, dadurch gekennzeich- -n e t , dass die Bandpassfilterung mit einem „Finite Impulse Responseλλ- Filter (FIR-F) durchgeführt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Bandpassfilterung mit einem „Infinite Impulse Response"- Filter (IIR-F) durchgeführt wird.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das mit den verstärkten Frequenzkomponenten (VFK) zu kombinierende Audiosignal (AS) gepuffert wird (ZWS) .
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Bandpassfilterung für die Isolierung und Verstärkung der Frequenzkomponenten und für die Berechnung des Verstärkungs- faktors mit einem einzigen Bandpassfilter (BPF, BPFl) vorgenommen wird.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet , dass die Bandpassfilterung für die Isolierung und Verstärkung der Frequenzkomponenten mit einem Bandpassfilter (BPF, BPFl) und die Bandpassfilterung für die Berechnung des Verstärkungsfaktors mit einem weiteren Bandpassfilter vorgenommen wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das modifizierte Audiosignal (MAS) zur Verstärkung von ausgewählten Frequenzen gefiltert wird (PRF, PRF1) .
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Verfahren in einem elektronischen Gerät zur Aus- und/oder Wiedergabe von Audiosignalen abläuft.
9. Vorrichtung zur Steuerung der Basswiedergabe in elektroakustischen Wandlern, bei der
(a) Isoliermittel (BPF, BPFl, TPF, TPF1) vorhanden sind, bei denen am Eingang das Audiosignal (AS) anliegt und die Frequenzkomponenten (FK, FK ) des Audiosignals (AS) iso- lieren, (b) Berechnungsmittel (MBVF, MBVFl) vorhanden sind, die auf der Basis des Audiosignals (AS) einen Verstärkungsfaktor (VF) berechnen,
(c) ein Verstärker (VS, VS1) vorhanden ist, der mit den Iso- lier- und Berechnungsmitteln derart verbunden ist, dass die Frequenzkomponenten (FK, FKΛ) des Audiosignals (AS) mit dem berechneten Verstärkungsfaktor (VF) verstärkt werden,
(d) Kombinationsmittel (KM, KMl) vorhanden sind, bei denen am Eingang das Audiosignal (AS) und die verstärkten Frequenzkomponenten (VSFK) des Audiosignals (AS) anliegen und die das Audiosignal (AS) und die verstärkten Frequenzkomponenten (VSFK) des Audiosignals (AS) derart kombinieren, dass am Ausgang der Kombinationsmittel (KM, KMl) ein für den elektroakustischen Wandler (EAW) bestimmtes modifiziertes Audiosignal (MAS) anliegt, dadurch gekennzeic net, dass
(e) mindestens ein Bandpassfilter (BPF, BPFl) oder jeweils mindestens ein Bandpassfilter (BPF, BPFl) und Tiefpass- filter (TPF, TPF1) zur Isolation einer ersten Frequenzkomponenten (FK) und einer zweiten Frequenzkomponente (FKΛ) des Audiosignals (AS) vorhanden ist,
(f) von den Bandpassfiltern (BPF, BPFl) ein Bandpassfilter zur Isolation der ersten Frequenzkomponente (FK) aus- gangsseitig mit dem Verstärker (VS, VS1) verbunden ist
(g) Mittel zur Berechnung von Signaleinhüllende und/oder Signalenergie (MBSE, MBSE1) vorhanden sind, bei denen ein- gangsseitig das ungefilterte, tiefpassge ilterte und/oder bandpassgefilterte Audiosignal (AS, FK ) anliegt, (h) die Berechnungsmittel (MBVF, MBVFl) zur Berechnung des Verstärkungsfaktors (VF) eingangsseitig mit den Mitteln zur Berechnung der Signaleinhüllende und/oder Signalenergie (MBSE, MBSE1) und ausgangsseitig zur Einstellung des Verstärkungsfaktors (VF) mit dem Verstärker (VS, VS1) verbunden sind.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet , dass ein Präsenzfilter (PRF, PRFl) zur Verstärkung von ausgewählten Frequenzen des modifizierten Audiosignals (MAS) vorhanden ist.
11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Vorrichtung in einem elektronischen Gerät zur Aus- und/oder Wiedergabe von Audiosignalen integriert oder enthalten ist.
PCT/DE2001/003653 2001-09-21 2001-09-21 Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern WO2003028405A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/490,259 US7574009B2 (en) 2001-09-21 2001-09-21 Method and apparatus for controlling the reproduction in audio signals in electroacoustic converters
DE50112650T DE50112650D1 (de) 2001-09-21 2001-09-21 Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern
CN01823654.5A CN1274184C (zh) 2001-09-21 2001-09-21 在电声变换器中控制音频信号的低音放音的方法和装置
EP01980187A EP1428411B2 (de) 2001-09-21 2001-09-21 Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern
PCT/DE2001/003653 WO2003028405A1 (de) 2001-09-21 2001-09-21 Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern
HK05102061A HK1069705A1 (en) 2001-09-21 2005-03-09 Method and device for controlling the bass reproduction of audio signals in electroacoustic transducers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2001/003653 WO2003028405A1 (de) 2001-09-21 2001-09-21 Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern

Publications (1)

Publication Number Publication Date
WO2003028405A1 true WO2003028405A1 (de) 2003-04-03

Family

ID=5648291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/003653 WO2003028405A1 (de) 2001-09-21 2001-09-21 Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern

Country Status (6)

Country Link
US (1) US7574009B2 (de)
EP (1) EP1428411B2 (de)
CN (1) CN1274184C (de)
DE (1) DE50112650D1 (de)
HK (1) HK1069705A1 (de)
WO (1) WO2003028405A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005027569A1 (en) * 2003-09-16 2005-03-24 Koninklijke Philips Electronics N.V. High efficiency audio reproduction
WO2005027568A1 (en) * 2003-09-16 2005-03-24 Koninklijke Philips Electronics N.V. Audio frequency range adaptation
WO2005027570A1 (en) * 2003-09-16 2005-03-24 Koninklijke Philips Electronics N.V. High efficiency audio transducer
EP1519619A1 (de) * 2003-09-25 2005-03-30 Sony Ericsson Mobile Communications AB Lautsprecherempfindliche Tonwiedergabesystem
WO2007086000A2 (en) * 2006-01-27 2007-08-02 Koninklijke Philips Electronics N.V. Device and method for adapting an audio signal to a transducer unit
WO2009103357A1 (en) * 2008-02-22 2009-08-27 Sony Ericsson Mobile Communications Ab Method and device for providing an improved music experience
US9794689B2 (en) 2015-10-30 2017-10-17 Guoguang Electric Company Limited Addition of virtual bass in the time domain
US9794688B2 (en) 2015-10-30 2017-10-17 Guoguang Electric Company Limited Addition of virtual bass in the frequency domain
US10405094B2 (en) 2015-10-30 2019-09-03 Guoguang Electric Company Limited Addition of virtual bass
US10893362B2 (en) 2015-10-30 2021-01-12 Guoguang Electric Company Limited Addition of virtual bass

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7826626B2 (en) * 2004-09-07 2010-11-02 Audyssey Laboratories, Inc. Cross-over frequency selection and optimization of response around cross-over
US7720237B2 (en) * 2004-09-07 2010-05-18 Audyssey Laboratories, Inc. Phase equalization for multi-channel loudspeaker-room responses
JP2008263583A (ja) * 2007-03-16 2008-10-30 Sony Corp 低域増強方法、低域増強回路および音響再生システム
US7991171B1 (en) * 2007-04-13 2011-08-02 Wheatstone Corporation Method and apparatus for processing an audio signal in multiple frequency bands
CN101262662B (zh) * 2007-06-29 2011-02-09 浙江华立通信集团有限公司 用于3g和4g终端的音调生成方法及装置
US20100189283A1 (en) * 2007-07-03 2010-07-29 Pioneer Corporation Tone emphasizing device, tone emphasizing method, tone emphasizing program, and recording medium
CN101505443B (zh) * 2009-03-13 2013-12-11 无锡中星微电子有限公司 一种虚拟重低音增强方法及***
US20130114816A1 (en) * 2010-01-04 2013-05-09 Noel Lee Audio Coupling System
US8705764B2 (en) 2010-10-28 2014-04-22 Audyssey Laboratories, Inc. Audio content enhancement using bandwidth extension techniques
CN103891310B (zh) 2011-11-10 2018-10-19 宗德工业国际有限公司 包括具有独立的插座的头戴式耳机的音频附件
US9379777B2 (en) * 2012-05-07 2016-06-28 Nokia Technologies Oy Near field communication circuitry used for hearing aid compatibility
US20140372110A1 (en) * 2013-02-15 2014-12-18 Max Sound Corporation Voic call enhancement
US20150006180A1 (en) * 2013-02-21 2015-01-01 Max Sound Corporation Sound enhancement for movie theaters
US9247342B2 (en) 2013-05-14 2016-01-26 James J. Croft, III Loudspeaker enclosure system with signal processor for enhanced perception of low frequency output
GB2555842A (en) 2016-11-11 2018-05-16 Eartex Ltd Auditory device assembly
DE102017212431A1 (de) * 2017-07-20 2019-01-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Verarbeitung eines Signals
CN109996151A (zh) * 2019-04-10 2019-07-09 上海大学 一种基于瞬稳态信号分离混合虚拟低音增强处理方法
CN110536216B (zh) * 2019-09-05 2021-04-06 长沙市回音科技有限公司 一种基于插值处理的均衡参数匹配方法、装置、终端设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2403684A1 (fr) * 1977-09-01 1979-04-13 Serac Sa Separateur amplificateur de registre grave pour systemes audio
EP0546619A2 (de) * 1991-12-09 1993-06-16 Koninklijke Philips Electronics N.V. Schaltung zur Mischung und Verdoppelung von niedrigen Tonfrequenzen
EP1089507A2 (de) * 1999-09-28 2001-04-04 Siemens Information and Communication Networks S.p.A. Verfahren für die Koeffizientenberechnung eines FIR Polyphasenfilters
WO2001056157A1 (en) * 2000-01-26 2001-08-02 Acoustic Technologies, Inc. Band pass filter from two filters

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182930A (en) 1978-03-10 1980-01-08 Dbx Inc. Detection and monitoring device
US4454609A (en) * 1981-10-05 1984-06-12 Signatron, Inc. Speech intelligibility enhancement
US6072885A (en) * 1994-07-08 2000-06-06 Sonic Innovations, Inc. Hearing aid device incorporating signal processing techniques
US6885752B1 (en) * 1994-07-08 2005-04-26 Brigham Young University Hearing aid device incorporating signal processing techniques
US5661808A (en) * 1995-04-27 1997-08-26 Srs Labs, Inc. Stereo enhancement system
TW343417B (en) * 1996-05-08 1998-10-21 Philips Eloctronics N V Circuit, audio system and method for processing signals, and a harmonics generator
US5930373A (en) * 1997-04-04 1999-07-27 K.S. Waves Ltd. Method and system for enhancing quality of sound signal
US6285767B1 (en) 1998-09-04 2001-09-04 Srs Labs, Inc. Low-frequency audio enhancement system
WO2000014998A1 (en) 1998-09-08 2000-03-16 Koninklijke Philips Electronics N.V. Means for bass enhancement in an audio system
DE19928420A1 (de) 1999-06-23 2000-12-28 Micronas Gmbh Verfahren zur Verarbeitung eines Audiosignals

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2403684A1 (fr) * 1977-09-01 1979-04-13 Serac Sa Separateur amplificateur de registre grave pour systemes audio
EP0546619A2 (de) * 1991-12-09 1993-06-16 Koninklijke Philips Electronics N.V. Schaltung zur Mischung und Verdoppelung von niedrigen Tonfrequenzen
EP1089507A2 (de) * 1999-09-28 2001-04-04 Siemens Information and Communication Networks S.p.A. Verfahren für die Koeffizientenberechnung eines FIR Polyphasenfilters
WO2001056157A1 (en) * 2000-01-26 2001-08-02 Acoustic Technologies, Inc. Band pass filter from two filters

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101125642B1 (ko) * 2003-09-16 2012-03-27 코닌클리케 필립스 일렉트로닉스 엔.브이. 고효율 오디오 트랜스듀서
WO2005027568A1 (en) * 2003-09-16 2005-03-24 Koninklijke Philips Electronics N.V. Audio frequency range adaptation
WO2005027570A1 (en) * 2003-09-16 2005-03-24 Koninklijke Philips Electronics N.V. High efficiency audio transducer
JP2007522689A (ja) * 2003-09-16 2007-08-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ オーディオ周波数レンジ適応
WO2005027569A1 (en) * 2003-09-16 2005-03-24 Koninklijke Philips Electronics N.V. High efficiency audio reproduction
JP4682137B2 (ja) * 2003-09-16 2011-05-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ オーディオ周波数レンジ適応
KR101104920B1 (ko) * 2003-09-16 2012-01-12 코닌클리케 필립스 일렉트로닉스 엔.브이. 오디오 주파수 범위 적응
EP1519619A1 (de) * 2003-09-25 2005-03-30 Sony Ericsson Mobile Communications AB Lautsprecherempfindliche Tonwiedergabesystem
WO2005032208A1 (en) * 2003-09-25 2005-04-07 Sony Ericsson Mobile Communications Ab Loudspeaker sensitive sound reproduction
WO2007086000A2 (en) * 2006-01-27 2007-08-02 Koninklijke Philips Electronics N.V. Device and method for adapting an audio signal to a transducer unit
WO2007086000A3 (en) * 2006-01-27 2007-11-01 Koninkl Philips Electronics Nv Device and method for adapting an audio signal to a transducer unit
WO2009103357A1 (en) * 2008-02-22 2009-08-27 Sony Ericsson Mobile Communications Ab Method and device for providing an improved music experience
US9794689B2 (en) 2015-10-30 2017-10-17 Guoguang Electric Company Limited Addition of virtual bass in the time domain
US9794688B2 (en) 2015-10-30 2017-10-17 Guoguang Electric Company Limited Addition of virtual bass in the frequency domain
US10405094B2 (en) 2015-10-30 2019-09-03 Guoguang Electric Company Limited Addition of virtual bass
US10893362B2 (en) 2015-10-30 2021-01-12 Guoguang Electric Company Limited Addition of virtual bass

Also Published As

Publication number Publication date
CN1274184C (zh) 2006-09-06
EP1428411B2 (de) 2011-11-30
CN1550121A (zh) 2004-11-24
US20050002534A1 (en) 2005-01-06
HK1069705A1 (en) 2005-05-27
EP1428411A1 (de) 2004-06-16
EP1428411B1 (de) 2007-06-20
DE50112650D1 (de) 2007-08-02
US7574009B2 (en) 2009-08-11

Similar Documents

Publication Publication Date Title
EP1428411B1 (de) Verfahren und vorrichtung zur steuerung der basswiedergabe von audiosignalen in elektroakustischen wandlern
DE69919506T2 (de) Mittel zur hervorhebung der bassfrequenz in einem audiosystem
DE60203999T2 (de) Mikrofoneinheit mit internem a/d-umsetzer
JP4243021B2 (ja) 電気音響スピーカ用コンデンサの無いクロスオーバ・ネットワーク
DE69919728T2 (de) Niederfrequenz-audioverbesserungssystem
DE112012006458B4 (de) Signalverarbeitungsvorrichtung
EP1192837B1 (de) Verfahren zur verarbeitung eines audiosignales
DE102005019677A1 (de) Verbesserungen für oder in Bezug auf eine Signalverarbeitung
DE10018666A1 (de) Vorrichtung und Verfahren zum geräuschabhängigen Anpassen eines akustischen Nutzsignals
US20100266141A1 (en) Processing an Audio Signal
DE102007003165A1 (de) Flächenlautsprecher sowie Verfahren zur Einstellung des Schwingverhaltens eines Schwingsystems
EP1430674B1 (de) Vorrichtung und verfahren zur unterdrückung von periodischen störsignalen
US20050141727A1 (en) Apparatus for generating harmonics in an audio signal
DE112009005147T5 (de) System und Verfahren zum Modifizieren eines Audiosignals
DE102009058415B4 (de) Verfahren zur Frequenztransposition bei einem Hörhilfegerät sowie Hörhilfegerät
DE10134927C1 (de) Filterschaltung und Verfahren zur Verarbeitung eines Audiosignals
US11638095B2 (en) Method and apparatus for improving effective signal-to-noise ratio of analog to digital conversion for multi-band digital signal processing devices
DE112009005145T5 (de) Elektronische Audiovorrichtung
DE19832472A1 (de) Vorrichtung und Verfahren zur Beeinflussung eines Audiosignals in Abhängigkeit von Umgebungsgeräuschen
DE102011055533A1 (de) Gerät der Unterhaltungselektronik
DE202009015988U1 (de) Kompakte Anordnung von Hornlautsprechern
RU2267867C2 (ru) Способ и устройство для управления воспроизведением басов аудиосигналов в электроакустических преобразователях
DE19601786C2 (de) Verfahren und Vorrichtung zur pneumatischen Gehörkurven-Linearisierung bei der Wiedergabe von Musik
DE102019126509A1 (de) Verbesserung der subjektiven bass-wahrnehmung eines audiosignals mit hilfe höherer harmonischer
DE4134578A1 (de) Schaltungsanordnung zur elektrischen erzeugung von oberwellen fuer audio-signale

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN HU JP KR PL RU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001980187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20018236545

Country of ref document: CN

Ref document number: 10490259

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001980187

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2001980187

Country of ref document: EP