WO2002081974A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2002081974A1
WO2002081974A1 PCT/JP2002/002224 JP0202224W WO02081974A1 WO 2002081974 A1 WO2002081974 A1 WO 2002081974A1 JP 0202224 W JP0202224 W JP 0202224W WO 02081974 A1 WO02081974 A1 WO 02081974A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air
casing
centrifugal blower
outlets
Prior art date
Application number
PCT/JP2002/002224
Other languages
French (fr)
Japanese (ja)
Inventor
Tsunehisa Sanagi
Masahito Higashida
Makio Takeuchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2002236276A priority Critical patent/AU2002236276B2/en
Priority to EP02702856A priority patent/EP1382917A4/en
Publication of WO2002081974A1 publication Critical patent/WO2002081974A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0041Indoor units, e.g. fan coil units characterised by exhaustion of inside air from the room
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0047Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in the ceiling or at the ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • F24F2013/0616Outlets that have intake openings

Definitions

  • the present invention relates to an air conditioner, particularly to an air conditioner buried in a ceiling.
  • the air conditioner has an outdoor unit having a compressor, a fan, a heat exchanger, and the like and installed outdoors, and an indoor unit having a fan and a heat exchanger.
  • outdoor units wall-mounted indoor units and ceiling-mounted indoor units are provided.
  • the ceiling-embedded indoor unit mainly includes a casing having a suction port and an outlet on the lower surface, a centrifugal blower as a fan disposed inside the casing, and a section between the centrifugal blower and the outlet. And a heat exchanger arranged.
  • the air in the room is taken into the casing from the suction port by the centrifugal blower, and the taken-in air is blown laterally. Then, the air sent from the centrifugal blower is heat-exchanged in a heat exchanger arranged so as to surround the centrifugal blower, and then supplied into the room from the outlet.
  • Ventilation from the air conditioner outlet may be uneven due to the shape of the internal ventilation section.
  • the size of the casing is limited because it is installed above the ceiling, and the centrifugal blower and heat exchanger are arranged in the limited casing space. This makes it difficult to prevent non-uniformity. If the air flow is not uniform, ventilation noise will be generated from parts with a high air volume, and cooling and heating performance will be reduced.
  • the size of the heat exchanger is limited in the indoor unit of the ceiling-mounted type, so that the heat exchange efficiency between the heat exchanger and air in the limited space is as small as possible. Need to be improved.
  • An object of the present invention is to achieve uniform air velocity distribution at an indoor unit outlet in an air conditioner having a centrifugal blower. Another object is to improve the heat exchange efficiency without increasing the size of the indoor unit.
  • the air conditioner according to claim 1 includes a casing, a centrifugal blower, and a heat exchanger.
  • the casing has a suction port for sucking air into the inside and a plurality of air outlets for blowing air to the outside.
  • the centrifugal blower is located inside the casing.
  • the heat exchanger is provided inside the casing so as to surround the centrifugal blower. In the heat exchanger, among the multiple air passages from the centrifugal blower to the multiple outlets via the heat exchanger, the air passage from the centrifugal blower to the air outlet facing the wind direction from the centrifugal blower is compared with other air passages. It is arranged to be narrow.
  • the centrifugal blower when the centrifugal blower is driven, air is sucked into the casing from the inlet, and air is blown out from the plurality of outlets.
  • the air passage formed between the centrifugal blower and the plurality of outlets depends on the shape of the casing and the position of the outlets, and the mutual positional relationship between the centrifugal blower, the heat exchanger, and the outlets. Each has a different resistance. For this reason, the wind speed of the air blown out from each of the plurality of outlets is different, and in some cases, a ventilation sound may be generated, and cooling and heating performance may be reduced.
  • the airflow from the outlet facing the wind direction from the centrifugal blower is larger than that from the outlet not facing the wind direction from the centrifugal blower.
  • the heat exchanger is arranged such that, among the plurality of air passages, the air passage leading to the air outlet facing the wind direction from the centrifugal blower is narrower than the other air passages. I have. For this reason, the resistance of the air passage is increased, the flow velocity of the air is suppressed, and the distribution of the wind speed blown out from the plurality of outlets can be made uniform. As a result, it is possible to suppress the ventilation noise and the deterioration of the cooling and heating performance.
  • the air conditioner according to claim 2 is the air conditioner according to claim 1, wherein the casing has a rectangular shape.
  • the heat exchanger has first, second, and third proximity portions that are closer to the side wall of the casing compared to both sides thereof, respectively, in reverse order with respect to the rotation direction of the centrifugal blower.
  • the length of the first region between the first proximity and the second proximity is: The length is substantially the same as the length of the second region between the second proximity portion and the third proximity portion.
  • the flow rate of the air blown out from the plurality of outlets is uniform, and the flow rates of the air passing through the first and second regions are substantially equal.
  • the heat exchange efficiency is substantially the same. As a result, the heat exchange efficiency in each air passage is made uniform, the cooling and heating efficiency is improved, and the temperature distribution of air from each outlet is made uniform.
  • An air conditioner includes a casing, a centrifugal blower, and a heat exchanger.
  • the casing is rectangular and has a suction port for sucking air therein and a plurality of outlets for blowing air to the outside.
  • the centrifugal blower is located inside the casing.
  • the heat exchanger is installed inside the casing so as to surround the centrifugal blower. ⁇ Also, the heat exchanger has the first, second and third adjacent parts that are closer to the casing compared to both sides. In the reverse order to the rotation direction.
  • the first and third proximate portions of the heat exchanger are located near an axis that passes through the center of the centrifugal blower and is orthogonal to the opposing first and second side walls of the casing.
  • the second proximity part of the heat exchanger is arranged so as to be shifted to the first proximity part side of the heat exchanger with respect to an axis passing through the center of the centrifugal blower and orthogonal to the third and fourth side walls facing the casing.
  • the plurality of outlets are provided on each of the first and second side walls of the casing so as to sandwich the first proximity portion and the third proximity portion with the first proximity portion therebetween. And third and fourth outlets.
  • the centrifugal blower when the centrifugal blower is driven, air is sucked into the casing from the suction port, and air is blown out from four outlets.
  • the air passage formed between the centrifugal blower and the multiple outlets depends on the shape of the casing and the positions of the outlets, and the mutual positional relationship between the centrifugal blower, the heat exchanger, and the outlets. Each has a different resistance. For this reason, the wind speed of the air blown out from each of the plurality of outlets is different, and in some cases, a ventilation noise may be generated, and cooling and heating performance may be reduced.
  • the first outlet and the second outlet are arranged on the first side wall of the casing so as to sandwich the first adjacent portion. Therefore, if the downstream side in the rotation direction of the centrifugal blower is the first outlet and the upstream side is the second outlet, the wind direction of the centrifugal blower is opposite to the second outlet, so that the air volume increases, The air volume for one outlet is smaller than that for the second outlet. This is the same for the third and fourth outlets.
  • the heat exchanger is arranged at an angle to the axis passing through the center of the centrifugal blower and orthogonal to the side wall of the casing to adjust the resistance of the air passage from the centrifugal blower to the outlet. In this way, the air volume from each outlet is made uniform.
  • an air passage formed between the first proximity portion and the second proximity portion is moved between the third proximity portion and the second proximity portion. It is narrower than the air passage formed between them. Since the narrowed air passage creates an air resistance in the flow of air blown out of the centrifugal blower, the flow rate of air blown out of the second outlet through the first and second adjacent portions is limited to other air passages. Therefore, the distribution of wind speeds blown out from a plurality of outlets can be made uniform. Therefore, it is possible to suppress the ventilation noise and the deterioration of the cooling and heating performance.
  • the air conditioner according to claim 4 is the air conditioner according to claim 3, wherein a length of the first region between the first proximity portion and the second proximity portion of the heat exchanger is The length of the second region between the second proximity portion and the third proximity portion is substantially the same.
  • the heat exchange efficiency in each air passage is substantially the same. Thereby, the heat exchange efficiency in each air passage is made uniform, the cooling and heating efficiency is improved, and the temperature distribution of the air from each outlet is made uniform.
  • the air conditioner according to claim 5 is the air conditioner according to claim 2 or 4, wherein the heat exchanger has a bent portion that is bent in an inner direction of the casing in the first region. I have. Since the position of the second proximity portion is biased toward the first proximity portion, it is necessary to bend the heat exchangers in the first and second regions to make the lengths equal. Here, the heat exchanger in the first region is bent inward of the casing. Thereby, the lengths of the heat exchangers are made equal without changing the size of the casing, and the configuration is simplified.
  • the air conditioner according to claim 6 is described in any one of claims 1 to 5.
  • the heat exchanger includes a plurality of heat exchanger bodies and a connecting portion that connects the plurality of heat exchanger bodies.
  • Bending the heat exchanger causes distortion in the internal structure of the heat exchanger. For this reason, there is a possibility that a defect may occur due to bending of the heat exchanger. If there are many bends, the number of bends increases and the frequency of failures increases.
  • the number of indoor unit heat exchangers is two or more, the number of bending operations per unit can be reduced. As a result, the frequency of failure of the heat exchanger can be suppressed.
  • An air conditioner includes a casing, a centrifugal blower, a heat exchanger, and a refrigerant supply unit.
  • the casing has a suction port for sucking air into the inside, and a plurality of outlets for blowing air to the outside, each of which is arranged in a rectangular shape.
  • a centrifugal blower is located inside the casing.
  • the heat exchanger is provided inside the casing so as to surround the centrifugal blower, and is arranged in a rectangular shape inside the plurality of outlets.
  • the refrigerant supply unit is provided at a corner of the caging and supplies the refrigerant to the heat exchanger.
  • the heat exchanger has an extension on the downstream side in the rotation direction of the centrifugal blower with respect to the refrigerant supply unit.
  • the air passage toward the outlet is narrowed in the vicinity of the refrigerant supply unit.Therefore, the air flow increases downstream of the centrifugal blower in the rotation direction, and the air flow is disturbed. Occurs. For this reason, the air blown from the outlet near the refrigerant supply unit is blown out without sufficient air conditioning.
  • an extension portion is provided in the heat exchanger on the downstream side in the rotation direction of the centrifugal blower with respect to the refrigerant supply portion among the plurality of air passages.
  • the air conditioner according to claim 8 is the air conditioner according to claim 7, wherein the extending portion is a bent portion that is bent in an inner direction of the casing.
  • the extending portion of the heat exchanger on the downstream side in the rotation direction of the centrifugal blower with respect to the refrigerant supply portion is a bent portion bent in the inner direction of the casing. Therefore, the length of the heat exchanger can be extended without changing the size of the casing.
  • FIG. 1 is an external perspective view of the indoor unit of the air conditioner according to the first and second embodiments.
  • FIG. 2 is a vertical sectional view of the indoor unit of the air conditioner according to the first embodiment. .
  • FIG. 3 is a horizontal sectional view of the indoor unit of the air conditioner according to the first embodiment.
  • FIG. 4 is a horizontal sectional view of the indoor unit of the air conditioner according to the second embodiment.
  • FIG. 5 is a horizontal sectional view of the indoor unit of the air conditioner according to the third embodiment. (Best mode for carrying out the invention)
  • FIG. 1 is an external perspective view of the indoor unit 1 of the air conditioner according to the first embodiment of the present invention
  • FIG. 2 is a vertical sectional view of the indoor unit in a plane including a centrifugal blower
  • FIG. 3 is a horizontal sectional view thereof. Shown.
  • the indoor unit 1 is of a ceiling embedded type and has a casing 11 embedded in the ceiling. Also, inside the casing 11, an evening fan (centrifugal blower) 40 and a heat exchanger 30 are provided.
  • the indoor unit 1 takes in the air in the installed room, performs air conditioning, and supplies the air after the heat exchange to the room.
  • the casing 11 is a case that holds the members of the indoor unit 1 therein.
  • the casing 11 has a rectangular parallelepiped outer shape, and has a bottom plate 12 at the bottom thereof.
  • the outlet 20 is for air conditioned by the indoor unit 1
  • the intake port 21 is a vent port for taking in air from the room into the indoor unit 1.
  • the outlet 20 is provided on one of the pair of long sides of the casing 11 with a first outlet 20a provided on the downstream side in the rotation direction of the turbo fan 40 from the center and the upstream side in the rotation direction.
  • a third outlet provided at a position facing the second outlet 20b on the other side of the long side on the downstream side in the rotational direction from the center on the other side of the long side.
  • a fourth outlet 20d provided at a position facing the first outlet 20a on the upstream side in the rotation direction.
  • the turbo fan 40 is located almost at the center of the casing 11.
  • the turbo fan 40 has a number of blades on its outer periphery, and rotates in the direction of arrow R in FIG. 3 to push out the air inside the turbo fan 40 in the direction of rotation, thereby causing the inside of the indoor unit 1 to rotate. Creates a flow of air.
  • the heat exchanger 30 is a member that exchanges heat with the passing air.
  • the heat exchanger 30 is formed in a substantially rhombic shape so as to surround the turbo fan 40, and the first and second heat exchangers 30 are closer to the inner wall of the casing 11 than to the other portions on both sides.
  • a third proximity portion 50a, 50b, 50c is located near the axis 14 which passes through the center of the evening fan 40 and is orthogonal to the long side of the casing 11 and has the first outlet 20a It is sandwiched between the second outlet 20b.
  • the third proximity portion 50c is located on the opposite side to the first proximity portion 50a, and is sandwiched between the third outlet 20c and the fourth outlet 20d.
  • the second proximity portion 5 Ob is located at a predetermined angle from the axis 15 passing through the center of the evening baffle 40 and orthogonal to the short side of the casing 11 at the second outlet 20 b side.
  • c is located on the axis 3 6 inclined (first proximity unit 5 0 a side) also, this heat exchanger 3 0 is connected to the coolant supply unit 3 1 at its ends.
  • the refrigerant supply unit 31 is arranged so as to be deviated toward the fourth outlet 20 d with respect to the shaft 15.
  • an air passage from the turbo fan 40 to each outlet is formed. That is, a first air passage 35a extending from the turbo fan 40 to the first outlet 20a is formed between the refrigerant supply section 31 and the first proximity section 50a.
  • a second air passage (35) reaching the outlet (20b) is formed between the first proximity part (50a) and the second proximity part (50b).
  • a third air passage 35c leading to the third outlet 20c is formed between the second proximity portion 50b and the third proximity portion 50c, and the fourth air outlet 20 from the turbo fan 40.
  • a fourth air passage 35d leading to d is formed between the third proximity part 50c and the refrigerant supply part 31.
  • respective regions 30a to 30d of the heat exchanger 30 are arranged. That is, of the heat exchanger 30, the first region 30a between the refrigerant supply unit 31 and the first proximity unit 50a is disposed in the first air passage 35a, and the first proximity unit A second region 30b between 50a and the second proximity portion 50b is arranged in the second air passage 35b. In the heat exchanger 30, a third region 30c between the second proximity portion 50b and the third proximity portion 50c is disposed in the third air passage 35c, and A fourth region 30d between the third proximity portion 50c and the refrigerant supply portion 31 is disposed in the fourth air passage 35d.
  • the first and third regions 30a and 30c are compared with the second and fourth regions 30b and 30d. And its length is becoming shorter.
  • Air As the turbo fan 40 rotates, air flows inside the indoor unit 1. Air, the air taken c taken in from the suction port 2 1 facing the chamber inside of the indoor unit 1, the turbofan 4 0, is blown around it. The extruded air is heat-exchanged by a heat exchanger 30 arranged around the turbo fan 40, and is supplied into the room from each of the outlets 20a to 20d.
  • the second outlet 20b faces the wind direction from the turbo fan 40, and the heat exchanger 30 When there is no air flow, the air flow speed from the turbo fan 40 increases.
  • the third outlet 20 c is located at a position along the wind direction from the turbo fan 40, It does not face the wind direction from Bofan 40. That is, the third outlet port 20c is arranged at a position where the air flow rate from the turbo fan 40 becomes slow when the heat exchanger 30 is not provided.
  • the first outlet 20a and the fourth outlet 20d with respect to the shaft 14, the rotation direction of the turbo fan 40 and the respective outlets 20a, 20d. Due to the arrangement, when the heat exchanger 30 is not provided, the air flow speed to the fourth outlet 20d is faster than that of the first air passage 35a.
  • the heat exchanger 30 formed in a substantially rhombic shape is arranged to be inclined with respect to the axis 15, and each of the outlets 20 a to 20 d is
  • the width (length) of each region of the heat exchanger 30 in the air passages 35a to 35d is not uniform c, that is, the widths of the second and fourth regions 30b, 3001 are the first and the third. It is narrower than the widths of the third regions 303 and 30c.
  • the resistance of the air when passing through the second and fourth regions 30b and 30d is greater than the resistance when passing through the first and third regions 30a and 30c.
  • the amount (wind speed) of air that passes through the air passages 35a to 35d and is blown out from the respective air outlets 20a to 20d is made uniform.
  • FIG. 4 shows a horizontal cross-sectional view of the indoor unit 2 of the air conditioner according to the second embodiment of the present invention.c
  • the resistance of each air passage is changed by shifting the arrangement of the heat exchanger.
  • the air volume from each outlet is made uniform.
  • the length of each region of the heat exchanger disposed in each air passage, that is, the heat exchange area is different. Therefore, although the air volume from each outlet is equalized, the temperature distribution may be uneven.
  • the heat exchanger 32 is a member that exchanges heat with the passing air, and is arranged so as to surround the turbo fan 40 as described above.
  • This heat exchanger 32 has a first position with respect to an axis 15 passing through the center of the turbo fan 40 and orthogonal to the short side of the casing 11.
  • first proximity unit 5 3 a is the shaft 1 4 It is located in the vicinity, and is sandwiched between the first outlet 20a and the second outlet 20b.
  • the third proximity portion 53c is located on the opposite side to the first proximity portion 53a, and is sandwiched between the third outlet 20c and the fourth outlet 20dc. Further, the second proximity portion 53b is located near the shaft 37 inclined to the second outlet 20b by a predetermined angle from the shaft 15.
  • an air passage from the turbo fan 40 to each outlet is formed. That is, a first air passage 35 a extending from the turbo fan 40 to the first outlet 20 a is formed between the refrigerant supply part 33 and the first proximity part 53 a, and the first air passage 35 a
  • a second air passage 35 leading to the second outlet 20b is formed between the first adjacent portion 53a and the second adjacent portion 53b, and the second air passage 35 extends from the turbo fan 40 to the third outlet 20c.
  • a third air passage 35c extending between the second proximity portion 53b and the third proximity portion 53c is formed, and a fourth air passage 3 extending from the turbo fan 40 to the fourth outlet 20d is formed. 5d is formed between the third proximity portion 53c and the coolant supply portion 33.
  • the first region 3 2a of the first body 3 2 1 of the heat exchanger 32 is disposed in the first air passage 35 a, and the second region 3 2 of the first body 3 2 1 b is disposed in the second air passage 35b. Further, a third area 32c of the second body 322 of the heat exchanger 32 is disposed in the third air passage 35c, and a fourth area 32 of the second body 3222. d is disposed in the fourth air passage 35 d.
  • the first and third regions 32a and 32c are formed with bent portions 54 that bulge out of the casing 11, and the second and fourth regions 32b and 32d are formed. Is formed with a bent portion 52 bulging inside the casing 11. As a result, the lengths of the heat exchangers in the four regions 32a to 32d are almost equal, and thus the length of each region is The heat exchange areas are almost equal.
  • the basic operation of the indoor unit 2 is the same as the operation in the first embodiment.
  • the second outlet 2 Ob and the third outlet 20 c when considering the second outlet 2 Ob and the third outlet 20 c with respect to the shaft 14, if the heat exchanger is not provided, the second The air velocity to the outlet 20b is faster than the air velocity to the third outlet 20c.
  • is faster than the air velocity
  • the second proximity portion 53b is arranged to be inclined with respect to the axis 15 and the amount of air blown out from each of the outlets 20a to 20d. (Wind speed) is uniform. Further, by bending the heat exchanger 32, the heat exchange area in each region is substantially equal, and the heat exchange efficiency in each of the air passages 35a to 35d is made uniform. Thereby, the efficiency of cooling and heating can be improved as compared with the conventional air conditioner. Further, the temperature distribution of the air blown out from each of the outlets 20a to 20d can be made uniform.
  • bent portion 52 is formed in the heat exchanger 32 to secure the heat exchange area, so that the heat exchange area can be increased without increasing the size of the indoor unit 2.
  • FIG. 5 shows a horizontal sectional view of the indoor unit 3 of the air conditioner according to the third embodiment of the present invention.
  • the casing 13 has a substantially square cross section, and has four corners with chamfers. I have.
  • An outlet 22 and a suction port (not shown) are provided along the four sides on the outer peripheral portion of the bottom plate.
  • a turbofan 40 is arranged at the center of the casing 13.
  • the heat exchangers 34 are arranged in a substantially square shape so as to surround the turbo fan 40 inside the outlet 22, and both ends are provided at one corner of the casing 13. Connected to parts 3-8.
  • the heat exchanger 34 has a bent portion 56 at a position corresponding to each corner in order to be arranged along each side of the square. Ma Among the four straight portions of the heat exchanger 34, the bending portion 5 which bends so as to expand inside the casing 13 downstream of the turbo fan 40 in the rotational direction of the turbo fan 40 with respect to the refrigerant supply portion 38. Has two.
  • the basic operation of the indoor unit 3 is the same as the operation in the first embodiment.
  • an air passage is formed in each of the paths from the turbo fan 40 to each of the outlets 22.
  • air is guided and guided to the wall of the refrigerant supply section 38.
  • a bent portion 52 is provided in a region of the heat exchanger located in an air passage through which a large amount of air flows, thereby increasing the heat exchange area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air-Flow Control Members (AREA)

Abstract

An air conditioner with centrifugal blower capable of uniformizing an air velocity distribution at the diffusers of an indoor unit and increasing a heat exchange efficiency without increasing the size of the indoor unit, comprising the indoor unit (1), the indoor unit (1) further comprising a casing (11), a heat exchanger (30), and a turbo fan (40), wherein air passages (35b, 35d) leading to the plurality of diffusers (20) opposed to the direction of the air from the turbo fan (40) among air passages (35) leading from the turbo fan (40) to the plurality of the diffusers (20) through the heat exchanger (30) are disposed to be narrower than the other air passages (35a, 35c).

Description

明 細 書 空気調和機 (技術分野)  Description Air conditioner (Technical field)
本発明は、 空気調和機、 特に、 天井に埋設される空気調和機に関する。  The present invention relates to an air conditioner, particularly to an air conditioner buried in a ceiling.
(背景技術) (Background technology)
空気調和機は、 圧縮機、 ファン、 熱交換器等を有し屋外に設置される室外機と、 ファンや熱交換器を有する室内機とを有している。 室内機としては、 壁掛けタイ プの室内機や、 天井埋込型の室内機等が提供されている。  The air conditioner has an outdoor unit having a compressor, a fan, a heat exchanger, and the like and installed outdoors, and an indoor unit having a fan and a heat exchanger. As indoor units, wall-mounted indoor units and ceiling-mounted indoor units are provided.
天井埋込型の室内機は、 主に、 下面に吸込口及び吹出口を有するケ一シングと、 ケ一シング内部に配置されたファンとしての遠心送風機と、 遠心送風機と吹出口 との間に配置された熱交換器とを有している。 このような室内機では、 遠心送風 機により、 吸込口から室内の空気がケ一シング内部に取り込まれ、 さらに取り込 まれた空気は横方向に送風される。 そして、 この遠心送風機から送り出された空 気は、 遠心送風機を取り囲むように配置された熱交換器において熱交換され、 そ の後吹出口から室内に供給される。  The ceiling-embedded indoor unit mainly includes a casing having a suction port and an outlet on the lower surface, a centrifugal blower as a fan disposed inside the casing, and a section between the centrifugal blower and the outlet. And a heat exchanger arranged. In such an indoor unit, the air in the room is taken into the casing from the suction port by the centrifugal blower, and the taken-in air is blown laterally. Then, the air sent from the centrifugal blower is heat-exchanged in a heat exchanger arranged so as to surround the centrifugal blower, and then supplied into the room from the outlet.
空気調和機の吹出口からの送風は、 内部の通風部の形状により不均一になるこ とがある。 特に、 天井埋込型の室内機では、 天井裏に設置されるためにケーシン グの大きさが制限され、 この制限されたケ一シングのスペース内に遠心送風機と 熱交換器とが配置されるために、 不均一化を防ぐことが困難になる。 そして、 送 風が不均一になると、 風量の強い部分から通風音が発生したり、 また冷房、 暖房 性能の低下を招くことになる。  Ventilation from the air conditioner outlet may be uneven due to the shape of the internal ventilation section. In particular, in the case of an indoor unit that is embedded in the ceiling, the size of the casing is limited because it is installed above the ceiling, and the centrifugal blower and heat exchanger are arranged in the limited casing space. This makes it difficult to prevent non-uniformity. If the air flow is not uniform, ventilation noise will be generated from parts with a high air volume, and cooling and heating performance will be reduced.
また、 前記と同様の理由により、 天井埋込型の室内機は熱交換器の大きさが制 限されるので、 限られた空間の中において、 できるだけ熱交換器と空気との熱交 換効率を向上させる必要がある。  Also, for the same reason as above, the size of the heat exchanger is limited in the indoor unit of the ceiling-mounted type, so that the heat exchange efficiency between the heat exchanger and air in the limited space is as small as possible. Need to be improved.
(発明の開示) この発明の目的は、 遠心送風機を有する空気調和機において、 室内機吹出口の 風速分布の均一化を図ることにある。 また、 室内機の寸法を大きくすることなく、 熱交換効率の向上を図ることにある。 (Disclosure of the Invention) An object of the present invention is to achieve uniform air velocity distribution at an indoor unit outlet in an air conditioner having a centrifugal blower. Another object is to improve the heat exchange efficiency without increasing the size of the indoor unit.
請求項 1に記載の空気調和機は、 ケーシングと遠心送風機と熱交換器とを備え ている。 ケ一シングは、 内部に空気を吸い込むための吸込口と外部に空気を吹き 出すための複数の吹出口とを有する。 遠心送風機は、 ケ—シングの内部に配置さ れている。 熱交換器は、 遠心送風機を囲むようにケーシングの内部に設けられて いる。 また、 熱交換器は、 遠心送風機から熱交換器を介して複数の吹出口に至る 複数の空気通路のうち、 遠心送風機からの風向と対向する吹出口に至る空気通路 が他の空気通路に比較して狭くなるように配置されている。  The air conditioner according to claim 1 includes a casing, a centrifugal blower, and a heat exchanger. The casing has a suction port for sucking air into the inside and a plurality of air outlets for blowing air to the outside. The centrifugal blower is located inside the casing. The heat exchanger is provided inside the casing so as to surround the centrifugal blower. In the heat exchanger, among the multiple air passages from the centrifugal blower to the multiple outlets via the heat exchanger, the air passage from the centrifugal blower to the air outlet facing the wind direction from the centrifugal blower is compared with other air passages. It is arranged to be narrow.
この空気調和機では、 遠心送風機が駆動されることにより、 吸込口からケーシ ング内部に空気が吸い込まれ、 さらに複数の吹出口から空気が吹き出される。 こ のとき、 ケ一シングの形状や吹出口の位置、 さらには遠心送風機、 熱交換器及び 吹出口の相互の位置関係によって、 遠心送風機と複数の吹出口との間に形成され る空気通路はそれぞれ抵抗が異なる。 このため、 複数の吹出口のそれぞれから吹 き出される空気の風速が異なり、 場合によっては通風音が発生したり、 また冷房、 暖房性能の低下を招く原因となる。  In this air conditioner, when the centrifugal blower is driven, air is sucked into the casing from the inlet, and air is blown out from the plurality of outlets. At this time, the air passage formed between the centrifugal blower and the plurality of outlets depends on the shape of the casing and the position of the outlets, and the mutual positional relationship between the centrifugal blower, the heat exchanger, and the outlets. Each has a different resistance. For this reason, the wind speed of the air blown out from each of the plurality of outlets is different, and in some cases, a ventilation sound may be generated, and cooling and heating performance may be reduced.
具体的には、 遠心送風機からの風向と対向する吹出口からは、 遠心送風機から の風向と対向していない吹出口に比較して風量が多くなる。  Specifically, the airflow from the outlet facing the wind direction from the centrifugal blower is larger than that from the outlet not facing the wind direction from the centrifugal blower.
そこで、 この空気調和機では、 複数の空気通路のうち、 遠心送風機からの風向 と対向する吹出口に至る空気通路が他の空気通路に比較して狭くなるように熱交 換器が配置されている。 このため、 この空気通路の抵抗が大きくなり、 空気の流 速が抑えられ、 複数の吹出口から吹き出される風速分布の均一化を図ることがで きる。 これにより、 通風音を抑えるとともに、 冷房、 暖房性能の低下を抑えるこ とができる。  Therefore, in this air conditioner, the heat exchanger is arranged such that, among the plurality of air passages, the air passage leading to the air outlet facing the wind direction from the centrifugal blower is narrower than the other air passages. I have. For this reason, the resistance of the air passage is increased, the flow velocity of the air is suppressed, and the distribution of the wind speed blown out from the plurality of outlets can be made uniform. As a result, it is possible to suppress the ventilation noise and the deterioration of the cooling and heating performance.
請求項 2に係る空気調和機は、 請求項 1に記載の空気調和機であって、 ケーシ ングは矩形形状である。 熱交換器は、 その両側に比較してケーシングの側壁にさ らに近接する第 1、 第 2及び第 3近接部をそれぞれ遠心送風機の回転方向に対し て逆順に有し、 熱交換器の、 第 1近接部と第 2近接部との間の第 1領域の長さは、 第 2近接部と第 3近接部との間の第 2領域の長さとほぼ同じである。 The air conditioner according to claim 2 is the air conditioner according to claim 1, wherein the casing has a rectangular shape. The heat exchanger has first, second, and third proximity portions that are closer to the side wall of the casing compared to both sides thereof, respectively, in reverse order with respect to the rotation direction of the centrifugal blower. The length of the first region between the first proximity and the second proximity is: The length is substantially the same as the length of the second region between the second proximity portion and the third proximity portion.
空気通路の幅による空気抵抗のために複数の吹出口から吹き出される空気流量 が均一になっており、 第 1及び第 2領域を通る空気流量はそれぞれほぼ等しくな る。 しかも、 ここでは、 第 1及び第 2領域における熱交換器の長さがほぼ等しく なっているので、 熱交換効率がほぼ同一となる。 これにより、 各空気通路におけ る熱交換効率が均一化され、 冷房、 暖房効率が向上し、 各吹出口からの空気の温 度分布が均一化される。  Because of the air resistance due to the width of the air passage, the flow rate of the air blown out from the plurality of outlets is uniform, and the flow rates of the air passing through the first and second regions are substantially equal. Moreover, since the lengths of the heat exchangers in the first and second regions are substantially equal, the heat exchange efficiency is substantially the same. As a result, the heat exchange efficiency in each air passage is made uniform, the cooling and heating efficiency is improved, and the temperature distribution of air from each outlet is made uniform.
請求項 3に記載の空気調和機は、 ケ—シングと遠心送風機と熱交換器とを備え る。 ケ—シングは、 矩形であり、 内部に空気を吸い込むための吸込口と外部に空 気を吹き出すための複数の吹出口とを有する。 遠心送風機はケーシングの内部に 配置される。 熱交換器は遠心送風機を囲むようにケーシングの内部に設けられる < また熱交換器は、 その両側に比較してケーシングにさらに近接する第 1、 第 2及 び第 3近接部をそれそれ遠心送風機の回転方向に対して逆順に有している。 熱交 換器の第 1近接部及び第 3近接部は、 遠心送風機の中心を通り且つケ—シングの 対向する第 1及び第 2側壁と直交する軸の近傍に位置する。 熱交換器の第 2近接 部は、 遠心送風機の中心を通り且つケーシングの対向する第 3及び第 4側壁と直 交する軸に対して熱交換器の第 1近接部側にずれるように配置される。複数の吹 出口は、 ケ一シングの第 1及び第 2側壁のそれぞれにおいて、 第 1近接部を挟む ように設けられた第 1及び第 2吹出口と、 第 3近接部を挟むように設けられた第 3及び第 4吹出口とを有している。  An air conditioner according to a third aspect includes a casing, a centrifugal blower, and a heat exchanger. The casing is rectangular and has a suction port for sucking air therein and a plurality of outlets for blowing air to the outside. The centrifugal blower is located inside the casing. The heat exchanger is installed inside the casing so as to surround the centrifugal blower. <Also, the heat exchanger has the first, second and third adjacent parts that are closer to the casing compared to both sides. In the reverse order to the rotation direction. The first and third proximate portions of the heat exchanger are located near an axis that passes through the center of the centrifugal blower and is orthogonal to the opposing first and second side walls of the casing. The second proximity part of the heat exchanger is arranged so as to be shifted to the first proximity part side of the heat exchanger with respect to an axis passing through the center of the centrifugal blower and orthogonal to the third and fourth side walls facing the casing. You. The plurality of outlets are provided on each of the first and second side walls of the casing so as to sandwich the first proximity portion and the third proximity portion with the first proximity portion therebetween. And third and fourth outlets.
この空気調和機では、 遠心送風機が駆動されることにより、 吸込口からケ一シ ング内部に空気が吸い込まれ、 さらに 4ケ所の吹出口から空気が吹き出される。 このとき、 ケ一シングの形状や吹出口の位置、 さらには遠心送風機、 熱交換器及 び吹出口の相互の位置関係によって、 遠心送風機と複数の吹出口との間に形成さ れる空気通路はそれぞれ抵抗が異なる。 このため、 複数の吹出口のそれぞれから 吹き出される空気の風速が異なり、 場合によっては通風音が発生したり、 また冷 房、 暖房性能の低下を招く原因となる。  In this air conditioner, when the centrifugal blower is driven, air is sucked into the casing from the suction port, and air is blown out from four outlets. At this time, the air passage formed between the centrifugal blower and the multiple outlets depends on the shape of the casing and the positions of the outlets, and the mutual positional relationship between the centrifugal blower, the heat exchanger, and the outlets. Each has a different resistance. For this reason, the wind speed of the air blown out from each of the plurality of outlets is different, and in some cases, a ventilation noise may be generated, and cooling and heating performance may be reduced.
具体的には、 この空気調和機では、 ケ—シングの第 1側壁において、 第 1近接 部を挟むように第 1吹出口及び第 2吹出口が配置されている。 したがって、 仮に 遠心送風機の回転方向の下流側を第 1吹出口とし、 上流側を第 2吹出口とすると、 第 2吹出口に対しては遠心送風機の風向が対向するので、 風量が多くなり、 逆に 第 1吹出口に対しては風量が第 2吹出口に比較して少なくなる。 これは、 第 3吹 出口及び第 4吹出口についても同様である。 Specifically, in this air conditioner, the first outlet and the second outlet are arranged on the first side wall of the casing so as to sandwich the first adjacent portion. Therefore, if If the downstream side in the rotation direction of the centrifugal blower is the first outlet and the upstream side is the second outlet, the wind direction of the centrifugal blower is opposite to the second outlet, so that the air volume increases, The air volume for one outlet is smaller than that for the second outlet. This is the same for the third and fourth outlets.
そこで、 この空気調和機では、 熱交換器を、 遠心送風機の中心を通り且つケ一 シングの側壁と直交する軸に対して傾けて配置し、 遠心送風機から吹出口に至る 空気通路の抵抗を調整して各吹出口からの風量の均一化を図っている。  Therefore, in this air conditioner, the heat exchanger is arranged at an angle to the axis passing through the center of the centrifugal blower and orthogonal to the side wall of the casing to adjust the resistance of the air passage from the centrifugal blower to the outlet. In this way, the air volume from each outlet is made uniform.
具体的には、 第 2近接部を第 1近接側にずらすことにより、 第 1近接部と第 2 近接部との間に形成される空気通路を、 第 3近接部と第 2近接部との間に形成さ れる空気通路よりも狭く している。 狭められた空気通路は、 遠心送風機から吹き 出される空気の流れに空気抵抗を生じさせるため、 第 1及び第 2近接部を通って 第 2吹出口から吹き出される空気流量は、 他の空気通路に比較して少なくなり、 複数の吹出口から吹き出される風速分布の均一化を図ることができる。 よって、 通風音を抑えるとともに、 冷房、 暖房性能の低下を抑えることができる。  Specifically, by shifting the second proximity portion to the first proximity side, an air passage formed between the first proximity portion and the second proximity portion is moved between the third proximity portion and the second proximity portion. It is narrower than the air passage formed between them. Since the narrowed air passage creates an air resistance in the flow of air blown out of the centrifugal blower, the flow rate of air blown out of the second outlet through the first and second adjacent portions is limited to other air passages. Therefore, the distribution of wind speeds blown out from a plurality of outlets can be made uniform. Therefore, it is possible to suppress the ventilation noise and the deterioration of the cooling and heating performance.
請求項 4に記載の空気調和機は、 請求項 3に記載の空気調和機であって、 熱交 換器の、 第 1近接部と第 2近接部との間の第 1領域の長さは、 第 2近接部と第 3 近接部との間の第 2領域の長さとほぼ同じである。  The air conditioner according to claim 4 is the air conditioner according to claim 3, wherein a length of the first region between the first proximity portion and the second proximity portion of the heat exchanger is The length of the second region between the second proximity portion and the third proximity portion is substantially the same.
ここでは、 請求項 2の場合と同様に、 各空気通路における熱交換効率がほぼ同 一となる。 これにより、 各空気通路における熱交換効率が均一化され、 冷房、 暖 房効率が向上し、 各吹出口からの空気の温度分布が均一化される。  Here, as in the case of the second aspect, the heat exchange efficiency in each air passage is substantially the same. Thereby, the heat exchange efficiency in each air passage is made uniform, the cooling and heating efficiency is improved, and the temperature distribution of the air from each outlet is made uniform.
請求項 5に記載の空気調和機は、 請求項 2又は 4に記載の空気調和機であって、 熱交換器は、 第 1領域にケ—シングの内部方向に屈曲する屈曲部を有している。 第 2近接部の位置は第 1近接部側に偏っているため、 第 1及び第 2領域の熱交 換器の長さを等しくするためには屈曲させる必要がある。 ここでは、 第 1領域の 熱交換器をケ一シングの内部方向に屈曲させている。 これにより、 ケーシングの 大きさを変更することなく熱交換器の長さを等しく しており、 構成が簡単になる 請求項 6に記載の空気調和機は、 請求項 1から 5のいずれかに記載の空気調和 機であって、 熱交換器は、 複数の熱交換器本体及び複数の熱交換器本体を接続す る接続部からなる。 熱交換器を屈曲させることにより、 熱交換器内部の構造にゆがみが生じる。 こ のため、 熱交換器の屈曲加工による不良が生じる可能性がある。 屈曲部が多いと、 それだけ屈曲加工の回数が増加し、 不良が生じる頻度が増す。 The air conditioner according to claim 5 is the air conditioner according to claim 2 or 4, wherein the heat exchanger has a bent portion that is bent in an inner direction of the casing in the first region. I have. Since the position of the second proximity portion is biased toward the first proximity portion, it is necessary to bend the heat exchangers in the first and second regions to make the lengths equal. Here, the heat exchanger in the first region is bent inward of the casing. Thereby, the lengths of the heat exchangers are made equal without changing the size of the casing, and the configuration is simplified.The air conditioner according to claim 6 is described in any one of claims 1 to 5. In the air conditioner, the heat exchanger includes a plurality of heat exchanger bodies and a connecting portion that connects the plurality of heat exchanger bodies. Bending the heat exchanger causes distortion in the internal structure of the heat exchanger. For this reason, there is a possibility that a defect may occur due to bending of the heat exchanger. If there are many bends, the number of bends increases and the frequency of failures increases.
ここでは、 室内機の熱交換器が二個以上であることにより、 一個当たりの屈曲 加工の回数を減らすことができる。 これにより、 熱交換器の不良の発生頻度を抑 制することができる。  Here, since the number of indoor unit heat exchangers is two or more, the number of bending operations per unit can be reduced. As a result, the frequency of failure of the heat exchanger can be suppressed.
また、 同じ形状の熱交換器を複数使用する場合には、 製造する熱交換器の種類 が少なくなるため、 製造の省力化や費用削減を図ることができる。  In addition, when a plurality of heat exchangers having the same shape are used, the number of types of heat exchangers to be manufactured is reduced, so that labor and cost for manufacturing can be reduced.
請求項 7に記載の空気調和機は、 ケーシングと遠心送風機と熱交換器と冷媒供 給部とを備える。 ケ一シングは、 内部に空気を吸い込むための吸込口と、 それぞ れが矩形状に配置された外部に空気を吹き出すための複数の吹出口とを有してい る。 遠心送風機はケ一シングの内部に配置される。 熱交換器は、 遠心送風機を囲 むようにケーシングの内部に設けられ、 前記複数の吹出口の内側に矩形状に配置 されている。 冷媒供給部は、 ケージングの角部に設けられており、 熱交換器に冷 媒を供給する。 そして、 熱交換器は冷媒供給部に対して遠心送風機の回転方向下 流側に延伸部を有している。  An air conditioner according to claim 7 includes a casing, a centrifugal blower, a heat exchanger, and a refrigerant supply unit. The casing has a suction port for sucking air into the inside, and a plurality of outlets for blowing air to the outside, each of which is arranged in a rectangular shape. A centrifugal blower is located inside the casing. The heat exchanger is provided inside the casing so as to surround the centrifugal blower, and is arranged in a rectangular shape inside the plurality of outlets. The refrigerant supply unit is provided at a corner of the caging and supplies the refrigerant to the heat exchanger. The heat exchanger has an extension on the downstream side in the rotation direction of the centrifugal blower with respect to the refrigerant supply unit.
この空気調和機では、 遠心送風機が駆動されることにより、 吸込口からケ―シ ング内部に空気が吸い込まれ、 さらに複数の吹出口から空気が吹き出される。 こ のとき、 ケ一シングの形状、 吹出口の位置、 冷媒供給部の位置、 さらには遠心送 風機、 熱交換器及び吹出口の相互の位置関係によって、 遠心送風機と複数の吹出 口との間に形成される空気通路はそれぞれ抵抗が異なる。 このため、 複数の吹出 口のそれぞれから吹き出される空気の風速が異なる。 特に、 冷媒供給部が設けら れているために、 その付近において吹出口へ向かう空気通路は狭められてしまう このため、 遠心送風機の回転方向下流側において空気流量が増加し、 空気の流れ に乱れが生じる。 このため、 冷媒供給部付近の吹出口から送風される空気が十分 に空気調和されないまま吹き出されることになる。  In this air conditioner, when the centrifugal blower is driven, air is sucked into the casing from the inlet, and air is blown out from the plurality of outlets. At this time, depending on the shape of the casing, the position of the outlet, the position of the refrigerant supply unit, and the mutual positional relationship between the centrifugal blower, the heat exchanger, and the outlet, the distance between the centrifugal blower and the multiple outlets Have different resistances. For this reason, the wind speed of the air blown out from each of the plurality of outlets is different. In particular, since the refrigerant supply unit is provided, the air passage toward the outlet is narrowed in the vicinity of the refrigerant supply unit.Therefore, the air flow increases downstream of the centrifugal blower in the rotation direction, and the air flow is disturbed. Occurs. For this reason, the air blown from the outlet near the refrigerant supply unit is blown out without sufficient air conditioning.
そこで、 この空気調和機では、 複数の空気通路のうち、 冷媒供給部に対して遠 心送風機の回転方向下流側の熱交換器に延伸部を設けている。 これにより、 複数 の吹出口から吹き出される空気調和の均一化を図ることができるため、 冷房、 暖 房性能の低下を抑えることができる。 Therefore, in this air conditioner, an extension portion is provided in the heat exchanger on the downstream side in the rotation direction of the centrifugal blower with respect to the refrigerant supply portion among the plurality of air passages. As a result, air conditioning blown out from the plurality of outlets can be made uniform, so that cooling and warming can be performed. It is possible to suppress the deterioration of the cell performance.
請求項 8に記載の空気調和機は、 請求項 7に記載の空気調和機であって、 延伸 部は、 ケ一シングの内部方向に屈曲する屈曲部である。  The air conditioner according to claim 8 is the air conditioner according to claim 7, wherein the extending portion is a bent portion that is bent in an inner direction of the casing.
ここでは、 冷媒供給部に対して遠心送風機の回転方向下流側における熱交換器 の延伸部がケーシングの内部方向に屈曲する屈曲部である。 これにより、 ケーシ ングの大きさを変更することなく熱交換器の長さを延伸することができる。  Here, the extending portion of the heat exchanger on the downstream side in the rotation direction of the centrifugal blower with respect to the refrigerant supply portion is a bent portion bent in the inner direction of the casing. Thereby, the length of the heat exchanger can be extended without changing the size of the casing.
(図面の簡単な説明) (Brief description of drawings)
第 1図は、 第 1、 第 2実施形態に係る空気調和機の室内機の外観斜視図である c 第 2図は、 第 1実施形態に係る空気調和機の室内機の垂直断面図である。  FIG. 1 is an external perspective view of the indoor unit of the air conditioner according to the first and second embodiments.c FIG. 2 is a vertical sectional view of the indoor unit of the air conditioner according to the first embodiment. .
第 3図は、 第 1実施形態に係る空気調和機の室内機の水平断面図である。  FIG. 3 is a horizontal sectional view of the indoor unit of the air conditioner according to the first embodiment.
第 4図は、 第 2実施形態に係る空気調和機の室内機の水平断面図である。  FIG. 4 is a horizontal sectional view of the indoor unit of the air conditioner according to the second embodiment.
第 5図は、 第 3実施形態に係る空気調和機の室内機の水平断面図である。 (発明を実施するための最良の形態)  FIG. 5 is a horizontal sectional view of the indoor unit of the air conditioner according to the third embodiment. (Best mode for carrying out the invention)
[第 1実施形態]  [First Embodiment]
本発明の第 1実施形態に係る空気調和機の室内機 1の外観斜視図を図 1に、 遠 心送風機を含む面における室内機の垂直断面図を図 2に、 水平断面図を図 3に示 す。  FIG. 1 is an external perspective view of the indoor unit 1 of the air conditioner according to the first embodiment of the present invention, FIG. 2 is a vertical sectional view of the indoor unit in a plane including a centrifugal blower, and FIG. 3 is a horizontal sectional view thereof. Shown.
<構成 >  <Configuration>
この室内機 1は、 天井埋込型であり、 天井に埋め込まれるケ一シング 1 1を有 している。 また、 ケ一シング 1 1の内部には夕一ボファン (遠心送風機) 4 0及 び熱交換器 3 0が設けられている。 この室内機 1は、 設置されている室内の空気 を取り込み、 空気調和を行って、 室内に熱交換を行った空気調和後の空気を供給 するものである。  The indoor unit 1 is of a ceiling embedded type and has a casing 11 embedded in the ceiling. Also, inside the casing 11, an evening fan (centrifugal blower) 40 and a heat exchanger 30 are provided. The indoor unit 1 takes in the air in the installed room, performs air conditioning, and supplies the air after the heat exchange to the room.
ケーシング 1 1は、 その内部に室内機 1の部材を保持するケースである。 ケ一 シング 1 1は、 直方体の外形をしており、 その底部に底板 1 2を有している。 底 板 1 2の長辺側において、 外側に吹出口 2 0が形成され、 この吹出口 2 0の内側 に吸込口 2 1が設けられている。 吹出口 2 0は室内機 1で空気調和した空気を室 内へ供給するための通風口であり、 吸込口 2 1は室内から室内機 1へ空気を取り 込むための通風口である。 なお、 吹出口 2 0は、 ケ—シング 1 1の一対の長辺側 の一方において、 中心よりターボファン 4 0の回転方向下流側に設けられた第 1 吹出口 2 0 aと、 回転方向上流側に設けられた第 2吹出口 2 0 bとを有し、 長辺 側の他方において、 中心より回転方向下流側で第 2吹出口 2 0 bに対向する位置 に設けられた第 3吹出口 2 0 cと、 回転方向上流側で第 1吹出口 2 0 aに対向す る位置に設けられた第 4吹出口 2 0 dとを有している。 The casing 11 is a case that holds the members of the indoor unit 1 therein. The casing 11 has a rectangular parallelepiped outer shape, and has a bottom plate 12 at the bottom thereof. On the long side of the bottom plate 12, an outlet 20 is formed on the outside, and a suction port 21 is provided inside the outlet 20. The outlet 20 is for air conditioned by the indoor unit 1 The intake port 21 is a vent port for taking in air from the room into the indoor unit 1. The outlet 20 is provided on one of the pair of long sides of the casing 11 with a first outlet 20a provided on the downstream side in the rotation direction of the turbo fan 40 from the center and the upstream side in the rotation direction. And a third outlet provided at a position facing the second outlet 20b on the other side of the long side on the downstream side in the rotational direction from the center on the other side of the long side. 20c, and a fourth outlet 20d provided at a position facing the first outlet 20a on the upstream side in the rotation direction.
ターボファン 4 0は、 ケ一シング 1 1のほぼ中央に位置する。 タ一ボファン 4 0は、 外周部に多数の翼を備えており、 図 3の矢印 R方向に回転することにより、 ターボファン 4 0内部にある空気を回転方向へ押し出し、 室内機 1の内部に空気 の流れを生じさせる。  The turbo fan 40 is located almost at the center of the casing 11. The turbo fan 40 has a number of blades on its outer periphery, and rotates in the direction of arrow R in FIG. 3 to push out the air inside the turbo fan 40 in the direction of rotation, thereby causing the inside of the indoor unit 1 to rotate. Creates a flow of air.
熱交換器 3 0は、 通風する空気に対して熱交換を行う部材である。 そして、 こ の熱交換器 3 0は、 ターボファン 4 0を囲むようにほぼ菱形に形成されており、 それぞれ両側の他の部分よりもケ—シング 1 1の内壁に近接する第 1、 第 2及び 第 3近接部 5 0 a、 5 0 b , 5 0 cを有している。 第 1近接部 5 0 aは、 夕—ボ ファン 4 0の中心を通りケ—シング 1 1の長辺部と直交する軸 1 4の近傍に位置 しており、 第 1吹出口 2 0 aと第 2吹出口 2 0 bとに挟まれている。 第 3近接部 5 0 cは、 第 1近接部 5 0 aと対向する逆側に位置しており、 第 3吹出口 2 0 c と第 4吹出口 2 0 dとに挟まれている。 また、 第 2近接部 5 O bは、 夕一ボファ ン 4 0の中心を通りケ一シング 1 1の短辺部と直交する軸 1 5から所定の角度だ け第 2吹出口 2 0 b側 (第 1近接部 5 0 a側) に傾いた軸 3 6上に位置している c また、 この熱交換器 3 0は、 その端部で冷媒供給部 3 1に接続されている。 そし て、 冷媒供給部 3 1は、 軸 1 5に対して第 4吹出口 2 0 d側に偏位して配置され ている。 The heat exchanger 30 is a member that exchanges heat with the passing air. The heat exchanger 30 is formed in a substantially rhombic shape so as to surround the turbo fan 40, and the first and second heat exchangers 30 are closer to the inner wall of the casing 11 than to the other portions on both sides. And a third proximity portion 50a, 50b, 50c. The first proximity portion 50a is located near the axis 14 which passes through the center of the evening fan 40 and is orthogonal to the long side of the casing 11 and has the first outlet 20a It is sandwiched between the second outlet 20b. The third proximity portion 50c is located on the opposite side to the first proximity portion 50a, and is sandwiched between the third outlet 20c and the fourth outlet 20d. Also, the second proximity portion 5 Ob is located at a predetermined angle from the axis 15 passing through the center of the evening baffle 40 and orthogonal to the short side of the casing 11 at the second outlet 20 b side. c is located on the axis 3 6 inclined (first proximity unit 5 0 a side) also, this heat exchanger 3 0 is connected to the coolant supply unit 3 1 at its ends. Further, the refrigerant supply unit 31 is arranged so as to be deviated toward the fourth outlet 20 d with respect to the shaft 15.
以上のように熱交換器 3 0を配置することにより、 ターボファン 4 0から各吹 出口に至る空気通路が形成される。 すなわち、 ターボファン 4 0から第 1吹出口 2 0 aに至る第 1空気通路 3 5 aが冷媒供給部 3 1 と第 1近接部 5 0 aとの間に 形成され、 ターボファン 4 0から第 2吹出口 2 0 bに至る第 2空気通路 3 5 が 第 1近接部 5 0 aと第 2近接部 5 0 bとの間に形成され、 ターボファン 4 0から 第 3吹出口 2 0 cに至る第 3空気通路 3 5 cが第 2近接部 5 0 bと第 3近接部 5 0 cとの間に形成され、 ターボファン 4 0から第 4吹出口 2 0 dに至る第 4空気 通路 3 5 dが第 3近接部 5 0 cと冷媒供給部 3 1 との間に形成される。 By arranging the heat exchanger 30 as described above, an air passage from the turbo fan 40 to each outlet is formed. That is, a first air passage 35a extending from the turbo fan 40 to the first outlet 20a is formed between the refrigerant supply section 31 and the first proximity section 50a. (2) A second air passage (35) reaching the outlet (20b) is formed between the first proximity part (50a) and the second proximity part (50b). A third air passage 35c leading to the third outlet 20c is formed between the second proximity portion 50b and the third proximity portion 50c, and the fourth air outlet 20 from the turbo fan 40. A fourth air passage 35d leading to d is formed between the third proximity part 50c and the refrigerant supply part 31.
また、 各空気通路 3 5 a〜3 5 dに対応して、 熱交換器 3 0の各領域 3 0 a〜 3 0 dが配置されている。 すなわち、 熱交換器 3 0のうちの、 冷媒供給部 3 1 と 第 1近接部 5 0 aとの間の第 1領域 3 0 aが第 1空気通路 3 5 aに配置され、 第 1近接部 5 0 aと第 2近接部 5 0 bとの間の第 2領域 3 0 bが第 2空気通路 3 5 bに配置されている。 また、 熱交換器 3 0のうちの、 第 2近接部 5 0 bと第 3近 接部 5 0 cとの間の第 3領域 3 0 cが第 3空気通路 3 5 cに配置され、 第 3近接 部 5 0 cと冷媒供給部 3 1 との間の第 4領域 3 0 dが第 4空気通路 3 5 dに配置 されている。  Further, corresponding to the respective air passages 35a to 35d, respective regions 30a to 30d of the heat exchanger 30 are arranged. That is, of the heat exchanger 30, the first region 30a between the refrigerant supply unit 31 and the first proximity unit 50a is disposed in the first air passage 35a, and the first proximity unit A second region 30b between 50a and the second proximity portion 50b is arranged in the second air passage 35b. In the heat exchanger 30, a third region 30c between the second proximity portion 50b and the third proximity portion 50c is disposed in the third air passage 35c, and A fourth region 30d between the third proximity portion 50c and the refrigerant supply portion 31 is disposed in the fourth air passage 35d.
そして、 熱交換器 3 0を前述のように傾けて配置することにより、 その第 1及 び第 3領域 3 0 a、 3 0 cは第 2及び第 4領域 3 0 b、 3 O dに比較してその長 さが短くなつている。  By arranging the heat exchanger 30 at an angle as described above, the first and third regions 30a and 30c are compared with the second and fourth regions 30b and 30d. And its length is becoming shorter.
ぐ動作 >  Operation>
室内機 1の動作について説明する。  The operation of the indoor unit 1 will be described.
まず、 ターボファン 4 0が回転することにより、 室内機 1の内部を空気が通風 する。 空気は、 室内に面している吸込口 2 1から室内機 1の内部に取り込まれる c 取り込まれた空気は、 ターボファン 4 0により、 その周囲に送風される。 押し出 された空気は、 ターボファン 4 0の周囲に配されている熱交換器 3 0により熱交 換され、 各吹出口 2 0 a〜2 0 dから室内に供給される。 First, as the turbo fan 40 rotates, air flows inside the indoor unit 1. Air, the air taken c taken in from the suction port 2 1 facing the chamber inside of the indoor unit 1, the turbofan 4 0, is blown around it. The extruded air is heat-exchanged by a heat exchanger 30 arranged around the turbo fan 40, and is supplied into the room from each of the outlets 20a to 20d.
ここで、 ターボファン 4 0が回転した場合の、 各空気通路 3 5 a〜3 5 dの風 速 (風量) について考察すると、 以下のようになる。  Here, when the wind speed (air volume) of each of the air passages 35a to 35d when the turbo fan 40 is rotated is considered, the following is obtained.
まず、 軸 1 4に対して第 2吹出口 2 0 b及び第 3吹出口 2 0 c側をについて考 察する。  First, the second outlet 20b and the third outlet 20c with respect to the shaft 14 will be considered.
ターボファン 4 0の回転方向及び各吹出口 2 0 b、 2 0 cの配置により、 第 2 吹出口 2 0 bはターボファン 4 0からの風向に対して対向しており、 熱交換器 3 0が無い場合にはターボファン 4 0からの空気流速が速くなる。 一方、 第 3吹出 口 2 0 cは、 ターボファン 4 0からの風向に沿った位置に配置されており、 夕一 ボファン 4 0からの風向に対向していない。 すなわち、 第 3吹出口 2 0 cは、 熱 交換器 3 0がない場合にはターボファン 4 0からの空気流速が遅くなる位置に配 置されている。 これは、 軸 1 4に対して第 1吹出口 2 0 a及び第 4吹出口 2 0 d 側についても同様であり、 ターボファン 4 0の回転方向及び各吹出口 2 0 a、 2 0 dの配置により、 熱交換器 3 0が無い場合には第 4吹出口 2 0 dへの空気流速 が第 1空気通路 3 5 aに比べて速くなる。 Due to the rotation direction of the turbo fan 40 and the arrangement of the outlets 20b, 20c, the second outlet 20b faces the wind direction from the turbo fan 40, and the heat exchanger 30 When there is no air flow, the air flow speed from the turbo fan 40 increases. On the other hand, the third outlet 20 c is located at a position along the wind direction from the turbo fan 40, It does not face the wind direction from Bofan 40. That is, the third outlet port 20c is arranged at a position where the air flow rate from the turbo fan 40 becomes slow when the heat exchanger 30 is not provided. The same applies to the first outlet 20a and the fourth outlet 20d with respect to the shaft 14, the rotation direction of the turbo fan 40 and the respective outlets 20a, 20d. Due to the arrangement, when the heat exchanger 30 is not provided, the air flow speed to the fourth outlet 20d is faster than that of the first air passage 35a.
しかし、 この実施形態では、 前述のように、 ほぼ菱形に形成された熱交換器 3 0を軸 1 5に対して傾けて配置されており、 各吹出口 2 0 a ~ 2 0 dへの各空気 通路 3 5 a〜3 5 dにおける熱交換器 3 0の各領域の幅 (長さ) は均等ではない c すなわち、 第 2及び第 4領域 3 0 b、 3 0 01の幅は第1及び第3領域3 0 3、 3 0 cの幅に比較して狭い。 However, in this embodiment, as described above, the heat exchanger 30 formed in a substantially rhombic shape is arranged to be inclined with respect to the axis 15, and each of the outlets 20 a to 20 d is The width (length) of each region of the heat exchanger 30 in the air passages 35a to 35d is not uniform c, that is, the widths of the second and fourth regions 30b, 3001 are the first and the third. It is narrower than the widths of the third regions 303 and 30c.
したがって、 第 2及び第 4領域 3 0 b、 3 0 dを通過する際の空気の抵抗は、 第 1及び第 3領域 3 0 a、 3 0 cを通過する際の抵抗よりも大きくなる。 その結 果、 各空気通路 3 5 a〜3 5 dを通過してそれぞれの空気吹出口 2 0 a〜2 0 d から吹き出される空気の量 (風速) が均一化される。  Therefore, the resistance of the air when passing through the second and fourth regions 30b and 30d is greater than the resistance when passing through the first and third regions 30a and 30c. As a result, the amount (wind speed) of air that passes through the air passages 35a to 35d and is blown out from the respective air outlets 20a to 20d is made uniform.
[第 2実施形態]  [Second embodiment]
<構成>  <Configuration>
本発明の第 2実施形態に係る空気調和機の室内機 2の水平断面図を図 4に示す c 第 1実施形態では、 熱交換器の配置をずらすことにより各空気通路の抵抗を変 え、 各吹出口からの風量の均一化を図っている。 この場合、 各空気通路に配置さ れる熱交換器の各領域における長さ、 すなわち熱交換面積が異なっている。 した がって、 各吹出口からの風量は均一化されるものの、 温度分布が不均一になるお それがある。  FIG. 4 shows a horizontal cross-sectional view of the indoor unit 2 of the air conditioner according to the second embodiment of the present invention.c In the first embodiment, the resistance of each air passage is changed by shifting the arrangement of the heat exchanger. The air volume from each outlet is made uniform. In this case, the length of each region of the heat exchanger disposed in each air passage, that is, the heat exchange area is different. Therefore, although the air volume from each outlet is equalized, the temperature distribution may be uneven.
そこでこの第 2実施形態では、 各吹出口から吹き出される空気の温度分布をも 均一化することを目的としてなされたものである。 したがって、 この第 2実施形 態では、 熱交換器の構成のみが第 1実施形態と異なり、 他の構成は同じである。 熱交換器 3 2は、 通風する空気に対して熱交換を行う部材であり、 前記同様に、 ターボファン 4 0を囲むように配置されている。 この熱交換器 3 2は、 ターボフ アン 4 0の中心を通りケ一シング 1 1の短辺部に直交する軸 1 5に対して第 1及 び第 2吹出口 2 0 a , 2 0 b側に配置された第 1本体 3 2 1 と、 逆側の第 3及び 第 4吹出口 2 0 c、 2 0 d側に配置された第 2本体 3 2 2とから構成されている c そして、 第 1本体 3 2 1 と第 2本体 3 2 2とは、 軸 1 5に沿った方向の一端側が 接続部材 5 5により接続され、 他端側が冷媒供給部 3 3に接続されている。 なお、 冷媒供給部 3 3は軸 1 5に対して第 4吹出口 2 0 d側に偏位して配置されている c また、 この熱交換器 3 2は、 それぞれ両側の他の部分よりもケ—シング 1 1の 内壁に近接する第 1、 第 2及び第 3近接部 5 3 a、 5 3 b、 5 3 cを有している c 第 1近接部 5 3 aは、 軸 1 4の近傍に位置しており、 第 1吹出口 2 0 aと第 2吹 出口 2 0 bとに挟まれている。 第 3近接部 5 3 cは、 第 1近接部 5 3 aと対向す る逆側に位置しており、 第 3吹出口 2 0 cと第 4吹出口 2 0 dとに挟まれている c また、 第 2近接部 5 3 bは、 軸 1 5から所定の角度だけ第 2吹出口 2 0 b側に傾 いた軸 3 7の近傍に位置している。 Therefore, in the second embodiment, the purpose is to make the temperature distribution of the air blown out from each outlet also uniform. Therefore, in the second embodiment, only the configuration of the heat exchanger is different from that of the first embodiment, and the other configurations are the same. The heat exchanger 32 is a member that exchanges heat with the passing air, and is arranged so as to surround the turbo fan 40 as described above. This heat exchanger 32 has a first position with respect to an axis 15 passing through the center of the turbo fan 40 and orthogonal to the short side of the casing 11. And the first body 321, arranged on the side of the second outlet 20a, 20b, and the second body arranged on the side of the third and fourth outlets 20c, 20d on the opposite side. 3 2 2 which c and is composed of, the first body 3 2 1 and the second body 3 2 2, one end side in the direction along the axis 1 5 are connected by connecting members 5 5, the other end refrigerant It is connected to the supply unit 33. In addition, the refrigerant supply part 33 is disposed so as to be deviated toward the fourth outlet 20 d with respect to the shaft 15 c. Ke - Thing 1 1 of the first adjacent to the inner wall, the second and third proximal part 5 3 a, 5 3 b, 5 3 a c is c first proximity unit 5 3 a is the shaft 1 4 It is located in the vicinity, and is sandwiched between the first outlet 20a and the second outlet 20b. The third proximity portion 53c is located on the opposite side to the first proximity portion 53a, and is sandwiched between the third outlet 20c and the fourth outlet 20dc. Further, the second proximity portion 53b is located near the shaft 37 inclined to the second outlet 20b by a predetermined angle from the shaft 15.
以上のように熱交換器 3 0を配置することにより、 ターボファン 4 0から各吹 出口に至る空気通路が形成される。 すなわち、 ターボファン 4 0から第 1吹出口 2 0 aに至る第 1空気通路 3 5 aが冷媒供給部 3 3と第 1近接部 5 3 aとの間に 形成され、 ターボファン 4 0から第 2吹出口 2 0 bに至る第 2空気通路 3 5 が 第 1近接部 5 3 aと第 2近接部 5 3 bとの間に形成され、 ターボファン 4 0から 第 3吹出口 2 0 cに至る第 3空気通路 3 5 cが第 2近接部 5 3 bと第 3近接部 5 3 cとの間に形成され、 ターボファン 4 0から第 4吹出口 2 0 dに至る第 4空気 通路 3 5 dが第 3近接部 5 3 cと冷媒供給部 3 3との間に形成される。  By arranging the heat exchanger 30 as described above, an air passage from the turbo fan 40 to each outlet is formed. That is, a first air passage 35 a extending from the turbo fan 40 to the first outlet 20 a is formed between the refrigerant supply part 33 and the first proximity part 53 a, and the first air passage 35 a A second air passage 35 leading to the second outlet 20b is formed between the first adjacent portion 53a and the second adjacent portion 53b, and the second air passage 35 extends from the turbo fan 40 to the third outlet 20c. A third air passage 35c extending between the second proximity portion 53b and the third proximity portion 53c is formed, and a fourth air passage 3 extending from the turbo fan 40 to the fourth outlet 20d is formed. 5d is formed between the third proximity portion 53c and the coolant supply portion 33.
そして、 熱交換器 3 2の第 1本体 3 2 1のうちの第 1領域 3 2 aは第 1空気通 路 3 5 aに配置され、 第 1本体 3 2 1のうちの第 2領域 3 2 bは第 2空気通路 3 5 bに配置されている。 さらに、 熱交換器 3 2の第 2本体 3 2 2のうちの第 3領 域 3 2 cは第 3空気通路 3 5 cに配置され、 第 2本体 3 2 2のうちの第 4領域 3 2 dは第 4空気通路 3 5 dに配置されている。  The first region 3 2a of the first body 3 2 1 of the heat exchanger 32 is disposed in the first air passage 35 a, and the second region 3 2 of the first body 3 2 1 b is disposed in the second air passage 35b. Further, a third area 32c of the second body 322 of the heat exchanger 32 is disposed in the third air passage 35c, and a fourth area 32 of the second body 3222. d is disposed in the fourth air passage 35 d.
熱交換器 3 2において、 第 1及び第 3領域 3 2 a、 3 2 cにはケーシング 1 1 の外側に膨らむ屈曲部 5 4が形成され、 第 2及び第 4領域 3 2 b、 3 2 dにはケ 一シング 1 1の内側に膨らむ屈曲部 5 2が形成されている。 これにより、 4つの 領域 3 2 a ~ 3 2 dにおける熱交換器の長さはほぼ等しく、 したがつて各領域の 熱交換面積がそれぞれほぼ等しくなる。 In the heat exchanger 32, the first and third regions 32a and 32c are formed with bent portions 54 that bulge out of the casing 11, and the second and fourth regions 32b and 32d are formed. Is formed with a bent portion 52 bulging inside the casing 11. As a result, the lengths of the heat exchangers in the four regions 32a to 32d are almost equal, and thus the length of each region is The heat exchange areas are almost equal.
<動作 >  <Operation>
室内機 2の基本動作は第 1実施形態における動作と同様である。  The basic operation of the indoor unit 2 is the same as the operation in the first embodiment.
ここで、 第 1実施形態で説明したとおり、 軸 1 4に対して第 2吹出口 2 O b及 び第 3吹出口 2 0 c側について考察すると、 熱交換器がない場合には第 2吹出口 2 0 bへの空気流速が第 3吹出口 2 0 cへの空気流速に比べて速くなる。 また、 軸 1 4に対して第 1吹出口 2 0 a及び第 4吹出口 2 0 d側についても同様であり、 第 4吹出口 2 0 dへの空気流速が第 1吹出口 2 0 aへの空気流速に比べて速くな る ο  Here, as described in the first embodiment, when considering the second outlet 2 Ob and the third outlet 20 c with respect to the shaft 14, if the heat exchanger is not provided, the second The air velocity to the outlet 20b is faster than the air velocity to the third outlet 20c. The same applies to the first outlet 20a and the fourth outlet 20d with respect to the shaft 14, and the air flow rate to the fourth outlet 20d is reduced to the first outlet 20a. Ο is faster than the air velocity
この実施形態でも第 1実施形態と同様に、 第 2近接部 5 3 bが軸 1 5に対して 傾けて配置されており、 各吹出口 2 0 a〜2 0 dから吹き出される空気の量 (風 速) が均一化されている。 さらに、 熱交換器 3 2を屈曲させることにより各領域 における熱交換面積がほぼ等しくなつており、 各空気通路 3 5 a〜3 5 dにおけ る熱交換効率が均一化される。 これにより、 従来の空気調和機に比べて冷房及び 暖房の効率を向上することができる。 また、 各吹出口 2 0 a〜2 0 dから吹き出 される空気の温度分布を均一化することができる。  Also in this embodiment, as in the first embodiment, the second proximity portion 53b is arranged to be inclined with respect to the axis 15 and the amount of air blown out from each of the outlets 20a to 20d. (Wind speed) is uniform. Further, by bending the heat exchanger 32, the heat exchange area in each region is substantially equal, and the heat exchange efficiency in each of the air passages 35a to 35d is made uniform. Thereby, the efficiency of cooling and heating can be improved as compared with the conventional air conditioner. Further, the temperature distribution of the air blown out from each of the outlets 20a to 20d can be made uniform.
特に、 熱交換器 3 2に屈曲部 5 2を形成して熱交換面積を確保しているので、 室内機 2のサイズを拡大せずに熱交換面積を大きくできる。  In particular, the bent portion 52 is formed in the heat exchanger 32 to secure the heat exchange area, so that the heat exchange area can be increased without increasing the size of the indoor unit 2.
[第 3実施形態]  [Third embodiment]
<構成 >  <Configuration>
本発明の第 3実施形態に係る空気調和機の室内機 3の水平断面図を図 5に示す c ケーシング 1 3は、 横断面がほぼ正方形状であり、 4つの角部に面取りが施さ れている。 そして、 底板の外周部分には、 4つの各辺に沿って吹出口 2 2と図示 しない吸込口とが配されている。 そして、 ケ一シング 1 3の中央部にはターボフ アン 4 0が配置されている。  FIG. 5 shows a horizontal sectional view of the indoor unit 3 of the air conditioner according to the third embodiment of the present invention. The casing 13 has a substantially square cross section, and has four corners with chamfers. I have. An outlet 22 and a suction port (not shown) are provided along the four sides on the outer peripheral portion of the bottom plate. A turbofan 40 is arranged at the center of the casing 13.
熱交換器 3 4は、 吹出口 2 2の内側においてターボファン 4 0を囲むようにほ ぼ正方形に配置されており、 両端部はケ—シング 1 3の 1つの角部に配置された 冷媒供給部 3 8に接続されている。 そして、 この熱交換器 3 4は、 正方形の各辺 に沿って配置するために、 各角部に対応する位置に屈曲部 5 6を有している。 ま た、 熱交換器 3 4における 4つの直線部のうち、 冷媒供給部 3 8に対してターボ ファン 4 0の回転方向下流側にケ一シング 1 3の内部に膨らむように屈曲する屈 曲部 5 2を有している。 The heat exchangers 34 are arranged in a substantially square shape so as to surround the turbo fan 40 inside the outlet 22, and both ends are provided at one corner of the casing 13. Connected to parts 3-8. The heat exchanger 34 has a bent portion 56 at a position corresponding to each corner in order to be arranged along each side of the square. Ma Among the four straight portions of the heat exchanger 34, the bending portion 5 which bends so as to expand inside the casing 13 downstream of the turbo fan 40 in the rotational direction of the turbo fan 40 with respect to the refrigerant supply portion 38. Has two.
<動作 >  <Operation>
室内機 3の基本動作は第 1実施形態における動作と同様である。  The basic operation of the indoor unit 3 is the same as the operation in the first embodiment.
この実施形態では、 前記実施形態と同様に、 ターボファン 4 0から各吹出口 2 2に至る経路にそれぞれ空気通路が形成される。 しかし、 4つの空気通路のうち の冷媒供給部 3 8に近接するターボファン 4 0の回転方向下流側の空気通路にお いては、 空気が冷媒供給部 3 8の壁等に案内されて導かれ、 他の空気通路に比較 して流れる空気が多くなる。  In this embodiment, similarly to the above-described embodiment, an air passage is formed in each of the paths from the turbo fan 40 to each of the outlets 22. However, in the air passage on the downstream side in the rotation direction of the turbo fan 40, which is close to the refrigerant supply section 38 of the four air paths, air is guided and guided to the wall of the refrigerant supply section 38. However, more air flows than other air passages.
そこで、 この実施形態では、 熱交換器のうちの、 空気が多く流れる空気通路に 位置する領域に屈曲部 5 2を設け、 熱交換面積を大きく している。 これにより、 熱交換効率が向上し、 各吹出口 2 2から吹き出される空気がほぼ均一に空気調和 されて吹き出されるため、 冷房、 暖房性能が向上する。  Therefore, in this embodiment, a bent portion 52 is provided in a region of the heat exchanger located in an air passage through which a large amount of air flows, thereby increasing the heat exchange area. As a result, the heat exchange efficiency is improved, and the air blown out from each of the outlets 22 is blown out after being substantially uniformly conditioned, so that the cooling and heating performance is improved.
(産業上の利用可能性) (Industrial applicability)
本発明を利用すれば、 複数の吹出口から吹き出される風速分布の均一化を図る ことができる。 これにより、 通風音を抑えるとともに、 冷房、 暖房性能の低下を 抑えることができる。  By using the present invention, it is possible to achieve a uniform distribution of wind speeds blown out from a plurality of outlets. As a result, it is possible to suppress the ventilation noise and the deterioration of the cooling and heating performance.

Claims

請 求 の 範 囲 The scope of the claims
1 . 1.
内部に空気を吸い込むための吸込口 (2 1 ) と外部に空気を吹き出すための複 数の吹出口 ( 20) とを有するケ一シング ( 1 1 ) と、  A casing (11) having a suction port (21) for sucking air therein and a plurality of outlets (20) for blowing air to the outside;
前記ケーシング ( 1 1 ) の内部に配置された遠心送風機 (40) と、 前記遠心送風機 (40) を囲むように前記ケ一シング ( 1 1 ) の内部に設けら れた熱交換器 (30) とを備え、  A centrifugal blower (40) disposed inside the casing (11); and a heat exchanger (30) provided inside the casing (11) so as to surround the centrifugal blower (40). With
前記遠心送風機 (40) から熱交換器 (30) を介して複数の吹出口 (20) に至る複数の空気通路 (35 b、 35 c) のうち、 前記遠心送風機からの風向と 対向する吹出口 (30) に至る空気通路 (35 b) が他の空気通路 (35 c) に 比較して狭くなるように、 前記熱交換器 ( 30) が配置されている、  Out of a plurality of air passages (35b, 35c) from the centrifugal blower (40) to a plurality of outlets (20) via a heat exchanger (30), an outlet facing a wind direction from the centrifugal blower. The heat exchanger (30) is arranged such that the air passage (35b) leading to (30) is narrower than the other air passages (35c).
空気調和機 ( 1 ) 。 Air conditioner (1).
2.  2.
前記ケーシング ( 1 1 ) は矩形形状であり、  The casing (11) has a rectangular shape,
前記熱交換器 (32 ) は、 その両側に比較して前記ケ—シング ( 1 1 ) の側壁 にさらに近接する第 1 、 第 2及び第 3近接部 ( 53 a, 53 b, 53 c) をそれ それ前記遠心送風機の回転方向 (R) に対して逆順に有し、  The heat exchanger (32) has first, second and third adjacent portions (53a, 53b, 53c) which are closer to the side wall of the casing (11) than both sides thereof. Each having a reverse order to the rotation direction (R) of the centrifugal blower,
前記熱交換器 ( 32 ) の、 前記第 1近接部 ( 53 a) と前記第 2近接部 ( 53 b) との間の第 1領域 (32 b) の長さは、 前記第 2近接部 (53 b) と第 3近 接部 (53 c) との間の第 2領域 (32 c) の長さとほぼ同じである、 請求項 1 に記載の空気調和機 ( 2 ) 。  The length of the first region (32b) of the heat exchanger (32) between the first proximity portion (53a) and the second proximity portion (53b) is equal to the length of the second proximity portion (53). The air conditioner (2) according to claim 1, wherein the length of the second region (32c) between 53b) and the third proximal portion (53c) is substantially the same.
3.  3.
内部に空気を吸い込むための吸込口 (2 1 ) と外部に空気を吹き出すための複 数の吹出口 ( 20) とを有する矩形のケ一シング ( 1 1 ) と、  A rectangular casing (11) having an inlet (21) for sucking air therein and a plurality of outlets (20) for blowing air to the outside;
前記ケ—シング ( 1 1 ) の内部に配置された遠心送風機 (40) と、 前記遠心送風機 (40) を囲むように前記ケーシング ( 1 1 ) の内部に設けら れた熱交換器 (30) とを備え、  A centrifugal blower (40) arranged inside the casing (11); and a heat exchanger (30) provided inside the casing (11) so as to surround the centrifugal blower (40). With
前記熱交換器 (30) は、 その両側に比較して前記ケーシング ( 1 1 ) にさら に近接する第 1、 第 2及び第 3近接部 (50 a、 50 b、 50 c) をそれぞれ前 記遠心送風機の回転方向 (R) に対して逆順に有しており、 The heat exchanger (30) is further exposed to the casing (11) compared to both sides. , The first, second and third proximity parts (50a, 50b, 50c) adjacent to the centrifugal fan in the reverse order with respect to the rotation direction (R) of the centrifugal blower, respectively.
前記熱交換器 ( 30 ) の第 1近接部 (50 a) 及び第 3近接部 ( 50 c ) は前 記遠心送風機 (40) の中心を通り且つ前記ケ—シング ( 1 1 ) の対向する第 1 及び第 2側壁と直交する軸 ( 1 4) の近傍に位置し、 前記熱交換器 ( 30、 3 2) の第 2近接部 (50 b) は前記遠心送風機 (40) の中心を通り且つ前記ケ —シング ( 1 1 ) の対向する第 3及び第 4側壁と直交する軸 (1 5 ) に対して前 記熱交換器 (30) の第 1近接部 (50 a) 側にずれるように配置され、 前記複数の吹出口 (20) は、 前記ケ—シング ( 1 1 ) の前記第 1及び第 2側 壁のそれぞれにおいて、 前記第 1近接部 (50 a) を挟むように.設けられた第 1 及び第 2吹出口 (20 a、 20 b) と、 前記第 3近接部 (50 c) を挟むように 設けられた第 3及び第 4吹出口 (20 c、 20 d) とを有している、  The first proximity portion (50a) and the third proximity portion (50c) of the heat exchanger (30) pass through the center of the centrifugal blower (40) and are opposed to the casing (11). The heat exchanger (30, 32) is located near an axis (14) orthogonal to the first and second side walls, and a second adjacent portion (50b) of the heat exchanger (30, 32) passes through the center of the centrifugal fan (40) The heat exchanger (30) is displaced toward the first adjacent portion (50a) side of the heat exchanger (30) with respect to the axis (15) orthogonal to the third and fourth side walls opposed to the casing (11). The plurality of outlets (20) are provided so as to sandwich the first adjacent portion (50a) on each of the first and second side walls of the casing (11). First and second air outlets (20a, 20b) and third and fourth air outlets (20c, 20d) provided so as to sandwich the third proximity portion (50c). are doing,
空気調和機 ( 1 ) 。 Air conditioner (1).
4.  Four.
前記熱交換器 ( 32 ) の、 前記第 1近接部 (53 a) と前記第 2近接部 ( 53 b) との間の第 1領域 (32 b) の長さは、 前記第 2近接部 (53 b) と第 3近 接部 (53 c) との間の第 2領域 (32 c) の長さとほぼ同じである、 請求項 3 に記載の空気調和機 ( 2 ) 。  The length of the first region (32b) of the heat exchanger (32) between the first proximity portion (53a) and the second proximity portion (53b) is equal to the length of the second proximity portion (53). The air conditioner (2) according to claim 3, wherein the length of the second region (32c) between 53b) and the third proximal portion (53c) is substantially the same.
5.  Five.
前記熱交換器 (32) は、 前記第 1領域 ( 32 b ) に前記ケ—シング ( 1 1 ) の内部方向に屈曲する屈曲部 (52 ) を有している、 請求項 2又は 4に記載の空 気調和機 ( 2 ) 。  The said heat exchanger (32) has the bending part (52) which bends in the said 1st area | region (32b) inward of the said casing (11). Air conditioners (2).
6.  6.
前記熱交換器 (32) は、 複数の熱交換器本体 (32 1、 322 ) 及び前記複 数の熱交換器本体 (32) を接続する接続部 (55) からなる、 請求項 1から 5 のいずれかに記載の空気調和機 (2) 。  The heat exchanger (32) according to any one of claims 1 to 5, wherein the heat exchanger (32) includes a plurality of heat exchanger bodies (321, 322) and a connection part (55) connecting the plurality of heat exchanger bodies (32). The air conditioner according to any one of (2).
7.  7.
内部に空気を吸い込むための吸込口 (2 1 ) と、 それぞれが矩形状に配置され た外部に空気を吹き出すための複数の吹出口 (22) とを有するケ一シング ( 1 3) と、 A casing (1) having a suction port (21) for sucking air therein and a plurality of outlets (22) for blowing air to the outside each arranged in a rectangular shape. 3) and
前記ケ一シング ( 1 3) の内部に配置される遠心送風機 (40) と、  A centrifugal blower (40) disposed inside the casing (13);
前記遠心送風機 (40) を囲むように前記ケーシング ( 1 3) の内部に設けら れ、 前記複数の吹出口 (22) の内側に矩形状に配置された熱交換器 (34) と、 前記矩形状の熱交換器 ( 34 ) の 1つの角部に設けられ、 前記熱交換器 ( 3 A heat exchanger (34) provided inside the casing (13) so as to surround the centrifugal blower (40) and arranged in a rectangular shape inside the plurality of outlets (22); A heat exchanger (34) provided at one corner of the heat exchanger (3);
4) に冷媒を供給する冷媒供給部 (38) とを備え、 4) a refrigerant supply unit (38) for supplying a refrigerant to the
前記熱交換器 (34) は前記冷媒供給部 (38) に対して前記遠心送風機 (4 0) の回転方向 (R) 下流側に延伸部 (52) を有している、  The heat exchanger (34) has an extending part (52) on the downstream side in the rotation direction (R) of the centrifugal blower (40) with respect to the refrigerant supply part (38).
空気調和機 ( 3 ) 。 Air conditioners (3).
8. 8.
前記延伸部 (52) は、 前記ケ—シング (1 1 ) の内部方向に屈曲する屈曲部 (52) である、 請求項 7に記載の空気調和機 ( 3 ) 。  The air conditioner (3) according to claim 7, wherein the extending portion (52) is a bent portion (52) that is bent in an inner direction of the casing (11).
PCT/JP2002/002224 2001-03-30 2002-03-08 Air conditioner WO2002081974A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002236276A AU2002236276B2 (en) 2001-03-30 2002-03-08 Air Conditioner
EP02702856A EP1382917A4 (en) 2001-03-30 2002-03-08 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-99393 2001-03-30
JP2001099393A JP4724939B2 (en) 2001-03-30 2001-03-30 Air conditioner

Publications (1)

Publication Number Publication Date
WO2002081974A1 true WO2002081974A1 (en) 2002-10-17

Family

ID=18952935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002224 WO2002081974A1 (en) 2001-03-30 2002-03-08 Air conditioner

Country Status (5)

Country Link
EP (1) EP1382917A4 (en)
JP (1) JP4724939B2 (en)
CN (2) CN1184438C (en)
AU (1) AU2002236276B2 (en)
WO (1) WO2002081974A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4141368B2 (en) * 2003-10-10 2008-08-27 三洋電機株式会社 Embedded ceiling air conditioner
JP4923639B2 (en) 2005-11-11 2012-04-25 ダイキン工業株式会社 Indoor panel of air conditioner and air conditioner
JP3972948B2 (en) * 2006-01-04 2007-09-05 ダイキン工業株式会社 Air conditioner indoor unit
JP5494705B2 (en) * 2012-03-16 2014-05-21 ダイキン工業株式会社 Two-way blowout ceiling air conditioner
CN105156345B (en) * 2015-09-11 2018-06-22 珠海格力电器股份有限公司 A kind of floor air conditioner
JP6409908B1 (en) * 2017-05-24 2018-10-24 ダイキン工業株式会社 Air conditioner indoor unit
JP6477784B2 (en) * 2017-05-24 2019-03-06 ダイキン工業株式会社 Air conditioner indoor unit
JP6409907B1 (en) * 2017-05-24 2018-10-24 ダイキン工業株式会社 Air conditioner indoor unit
CN109751666B (en) * 2019-01-14 2022-03-29 青岛海尔空调电子有限公司 Be applied to heat exchanger and card formula air conditioner of card formula air conditioner
JP7343601B2 (en) * 2019-09-24 2023-09-12 東芝キヤリア株式会社 Indoor unit and impeller of refrigeration cycle equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162830A (en) * 1986-01-13 1987-07-18 Matsushita Electric Ind Co Ltd Air conditioner
JPH055536A (en) * 1990-11-07 1993-01-14 Daikin Ind Ltd Air conditioner
JPH09133374A (en) * 1995-11-08 1997-05-20 Mitsubishi Electric Corp Air conditioner
JPH09229467A (en) * 1996-02-26 1997-09-05 Matsushita Refrig Co Ltd Heat-exchanger
JP2000121089A (en) * 1998-10-20 2000-04-28 Hitachi Ltd Air conditioner
JP2000220859A (en) * 1999-02-01 2000-08-08 Hitachi Ltd Air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450318A (en) * 1990-06-12 1992-02-19 Kanebo Ltd Spun-dyed polyester yarn having excellent light resistance
JPH0450318U (en) * 1990-08-31 1992-04-28
JPH11148711A (en) * 1997-11-14 1999-06-02 Mitsubishi Heavy Ind Ltd Ceiling embedded type air-conditioner
JPH11153344A (en) * 1997-11-21 1999-06-08 Mitsubishi Heavy Ind Ltd Air conditioner
JP2000046360A (en) * 1998-07-29 2000-02-18 Hitachi Ltd Ceiling recessed indoor machine
JP3521323B2 (en) * 1998-12-18 2004-04-19 株式会社日立製作所 In-ceiling indoor unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62162830A (en) * 1986-01-13 1987-07-18 Matsushita Electric Ind Co Ltd Air conditioner
JPH055536A (en) * 1990-11-07 1993-01-14 Daikin Ind Ltd Air conditioner
JPH09133374A (en) * 1995-11-08 1997-05-20 Mitsubishi Electric Corp Air conditioner
JPH09229467A (en) * 1996-02-26 1997-09-05 Matsushita Refrig Co Ltd Heat-exchanger
JP2000121089A (en) * 1998-10-20 2000-04-28 Hitachi Ltd Air conditioner
JP2000220859A (en) * 1999-02-01 2000-08-08 Hitachi Ltd Air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1382917A4 *

Also Published As

Publication number Publication date
EP1382917A1 (en) 2004-01-21
CN1184438C (en) 2005-01-12
CN2526722Y (en) 2002-12-18
JP2002295891A (en) 2002-10-09
EP1382917A4 (en) 2007-03-14
AU2002236276B2 (en) 2005-04-21
JP4724939B2 (en) 2011-07-13
CN1379213A (en) 2002-11-13

Similar Documents

Publication Publication Date Title
JP6022003B2 (en) Air conditioner indoor unit
US9513020B2 (en) Air-conditioning apparatus
US10480817B2 (en) Duct-type indoor unit of air conditioner
JP4906555B2 (en) Sirocco fan and air conditioner
JP6304441B1 (en) Cross flow type blower and indoor unit of air conditioner equipped with the blower
CN109073266B (en) Air conditioner
WO2002081974A1 (en) Air conditioner
JP5293684B2 (en) Air conditioner indoor unit
JP2001263703A (en) Sealing-embedded type air-conditioner
WO2018163360A1 (en) Air conditioner indoor unit
JP2001124359A (en) Air conditioner
JP3991477B2 (en) Air conditioner indoor unit
JP6370406B2 (en) Air conditioner
JP2001004198A (en) Air conditioner
JP2003343872A (en) Floor type air conditioner
JP4160678B2 (en) Air conditioner
JP3758592B2 (en) Recessed ceiling air conditioner
JP5997115B2 (en) Air conditioner
JP2000120578A (en) Cross flow fan and fluid feeding device using it
WO2022130519A1 (en) Blower, indoor unit, and air-conditioning device
JP5932966B2 (en) Air conditioner outdoor unit
JP5818984B2 (en) Outdoor unit of air conditioner and air conditioner provided with the same
JP6923845B2 (en) Duct type air conditioner
JP2003056900A (en) Air conditioner
JP2001248989A (en) Heat exchange and air conditioner provided with this heat exchanger

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002236276

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002702856

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002702856

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002236276

Country of ref document: AU