WO2002071578A1 - Dynamo-electric machine - Google Patents

Dynamo-electric machine Download PDF

Info

Publication number
WO2002071578A1
WO2002071578A1 PCT/JP2002/001952 JP0201952W WO02071578A1 WO 2002071578 A1 WO2002071578 A1 WO 2002071578A1 JP 0201952 W JP0201952 W JP 0201952W WO 02071578 A1 WO02071578 A1 WO 02071578A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
stator
fan
ventilation
cooler
Prior art date
Application number
PCT/JP2002/001952
Other languages
English (en)
French (fr)
Inventor
Kenichi Hatori
Kazumasa Ide
Akiyoshi Komura
Takashi Watanabe
Ryoichi Shiobara
Yasuomi Yagi
Kengo Iwashige
Keiji Kobashi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to US10/469,763 priority Critical patent/US7071586B2/en
Priority to EP02705070.7A priority patent/EP1367697B1/en
Priority to JP2002570378A priority patent/JP3832434B2/ja
Publication of WO2002071578A1 publication Critical patent/WO2002071578A1/ja
Priority to US11/265,227 priority patent/US7294943B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/14Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle
    • H02K9/18Arrangements for cooling or ventilating wherein gaseous cooling medium circulates between the machine casing and a surrounding mantle wherein the external part of the closed circuit comprises a heat exchanger structurally associated with the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors

Definitions

  • the present invention relates to a rotating electric machine, and more particularly to a rotating electric machine in which a cooler is installed in a ventilation path through which a cooling medium flows.
  • the rotating electric machine rotates a rotor so as to face a fixed unit.
  • the stator and the rotor become heat sources due to iron loss or copper loss and generate high heat.
  • gas such as air is often used as a cooling medium in order to suppress the temperature rise in the machine.
  • a gas cooling medium such as air
  • a duct penetrating in the radial or axial direction shall be provided for each of the stator and the rotor.
  • a fan is provided at the end of the rotating shaft, and the stator and the rotor are cooled by flowing a gas cooling medium such as air by the urging force of the fan.
  • Techniques for cooling the stator and the rotor using air include, for example, those described in Japanese Patent Application Laid-Open Nos. Hei 10-150740 and 2000-125125. Things are known. According to this technique, both the air flowing through the stator and the air flowing through the rotor penetrates before the fan provided at the end of the rotating shaft. I do. Then, the combined air is urged and branched by the rotational force of the fan. One of the branched cooling air is guided to the stator, and the other of the branched cooling air is guided to the rotor.
  • the air is cooled by a relatively large cooler. After being cooled by the relatively large cooler, the cooling air is branched and one of the branched cooling air is guided to the stator, and the other of the branched cooling air is guided to the rotor.
  • the merged air is first branched, and the branched air is led to different coolers. Cooled separately.
  • One of the branches is guided to the stator and winding ends, and the other is guided to the rotor. Disclosure of the invention
  • An object of the present invention is to provide a rotating electric machine that has solved at least one of the above problems.
  • the present invention provides a stator ventilation duct provided inside a stator, a rotor ventilation duct provided inside a rotor, and an inlet communicating with the rotor ventilation duct.
  • a first ventilating passage for guiding gas passing through the rotor ventilation duct and passing through the stator ventilation duct to the inlet, and a gas sucked by a fan and guided to the inlet.
  • the gas pressurized by the fan is guided to the inlet side separated through the first ventilation passage, passes through the first ventilation passage, passes through the rotor ventilation duct, and then is fixed.
  • the gas that passed through the small ventilation duct was configured to be cooled by the cooler before being guided to the first ventilation path.
  • stator ventilation provided inside the stator: ⁇ , ⁇ duct, the rotor ventilation duct provided inside the rotor, an inlet portion communicating with the rotor ventilation duct, and the stator ventilation
  • a first ventilation path that guides gas that has passed through both the duct and the rotor ventilation duct to the inlet, and a vicinity of the fan so that gas sucked into the fan and gas guided to the inlet are not mixed.
  • the gas pressurized by the fan is guided to the inlet side separated through the first ventilation path, and passes through both the stator ventilation rotor and the rotor ventilation duct.
  • the gas thus cooled was cooled by a cooler and then led to the first ventilation path.
  • a stator ventilation duct provided inside the stator, a rotor ventilation duct provided inside the rotor, and at least one of the stator ventilation rotor and the rotor ventilation duct may be passed.
  • the mixed gas is guided to the inlet side separated through the first ventilation path, and the mixed gas is cooled by a cooler and then guided to the first ventilation path.
  • a stator ventilation duct provided inside the stator, a rotor ventilation duct provided inside the rotor, a gas passing through the stator ventilation duct, and the rotor ventilation duct.
  • a cooler is arranged in a ventilation path from the fan to the inlet, and is separated in the vicinity of the fan so that gas sucked by the fan and gas guided to the inlet are not mixed, and the pressure is increased by the fan.
  • the exhaust gas is led to the inlet side separated through the first ventilation path, and the gas that has passed through the rotor ventilation duct is configured to pass through the stator ventilation duct.
  • the gas urged by the fan passes through the end of the stator, and the gas that has passed through the end of the stator is cooled.
  • the gas passing through the cooler is separated in the vicinity of the fan so that the gas sucked into the fan and the gas guided to the inlet are not mixed, and the gas passed through the cooler is guided to the separated inlet. It was configured to be able to be. '
  • a stator ventilation duct provided inside the stator, a rotor ventilation duct provided inside the rotor, and a ventilation hole provided inside the fan in the radial direction and rotating with the rotating shaft.
  • the ventilation hole communicates with the rotor ventilation duct, and the cooling medium pressurized by the fan is cooled by the cooler and then guided to the ventilation hole provided on the radial inside of the fan. did.
  • stator ventilation duct provided inside the stator
  • rotor ventilation duct provided inside the rotor
  • ventilation hole provided inside the fan in the radial direction and rotating with the rotating shaft.
  • the pressure difference between the pressure on the downstream side of the fan and the pressure on the ventilation hole is configured to be greater than 2 kPa.
  • a stator ventilation duct provided inside a stator, a rotor ventilation duct provided on a rotor, and an inlet portion communicating with the rotor ventilation duct are provided.
  • a first ventilation path that guides gas that has passed through the rotor ventilation duct and then passed through the stator ventilation duct to the inlet portion without passing through the fan, and has a first ventilation path that has passed through the rotor ventilation duct. After passing through the child ventilation duct The gas was cooled by a cooler and then led to the first ventilation path.
  • the gas passing through the rotor ventilation duct is led to the stator ventilation duct, and the gas passing through the stator ventilation duct is the first gas.
  • the air was guided to the second cooler and passed through the second cooler, and was guided to the inlet without passing through the fan.
  • a cooler is placed in the ventilation path from the fan to the inlet, and the gas that has passed through the first ventilation path is guided to the inlet without passing through the fan, and the gas that has passed through the rotor ventilation duct is the stator ventilation duct.
  • Gas passed through the fan, or gas energized by a fan passes through the end of the stator, and gas passing through the end passes through the cooler, and gas passing through the cooler passes through the fan. It was configured to be guided to the rotor ventilation duct without passing through.
  • a first ventilation path for guiding the gas cooled at the end of the stator to the first cooler and a second ventilation path for guiding the gas cooled by the first cooler to the rotor ventilation duct.
  • a first ventilation path that guides the gas cooled at the end of the stator to the first cooler and a second ventilation path that guides the gas that has passed through the first cooler to the stator ventilation duct.
  • the second ventilation path is configured to pass through the outer periphery of the first cooler in the circumferential direction and to be guided to the rotor ventilation duct.
  • a first ventilation path for guiding the gas cooled at the end of the stator to the first cooler and a second ventilation path for guiding the gas passing through the stator ventilation duct to the second cooler.
  • the first ventilation path and the second ventilation path are alternate. In addition, it was configured to intersect.
  • FIG. 1 is an overall view of a turbine generator according to a first embodiment of the present invention
  • FIG. 2 shows a configuration of the turbine generator according to the first embodiment of the present invention
  • FIG. 3 is a diagram showing a configuration of a turbine generator according to a second embodiment of the present invention
  • FIG. 4 is a diagram showing a turbine generator according to a third embodiment of the present invention.
  • FIG. 5 is a diagram showing a configuration of a turbine generator according to a fourth embodiment of the present invention
  • FIG. 6 is a diagram showing a configuration of a fifth embodiment of the present invention.
  • Fig. 7 is a diagram showing a configuration of a certain turbine generator, Fig.
  • FIG. 7 is a diagram showing a configuration of a turbine generator according to a sixth embodiment of the present invention, and Fig. 8 is a flow passage near a rotor.
  • FIG. 9 is a diagram showing the details of the fan, and
  • FIG. 10 is a pressure change diagram along the flow path.
  • Fig. 1 is an overall view of the turbine generator.
  • stator core 2 As shown in the figure, there are a stator core 2 and a rotor core 6 in the stator frame 1.
  • the stator core 2 is divided into a plurality of ventilation sections in the axial direction, There are ventilation paths such as 61 and 63 that ventilate to the radial side, and ventilation paths such as 62 and 64 that ventilate from the outer diameter side to the inner diameter side.
  • Coolers 41, 42, etc. for cooling the cooling medium are provided on the outer peripheral side of the stator core 2.
  • the ventilation duct 13 provided outside the stator frame 1 forms a ventilation path from the outlets of the coolers 42, 44, etc. to the rotor, and a cooling medium (preferably, Air).
  • the stator frame further includes a ventilation duct 80 that guides the cooling medium discharged from the fan 10 to the coolers 42, 43, etc., and a cooling air discharged from the coolers 41, 43, etc. It has a ventilation duct 90 leading to 10.
  • the ventilation duct 80 introduces the cooling medium cooled by the cooler to the rotor inlet without passing through a heat source such as a fan.
  • the cooling medium in the ventilation duct 80 has already been energized by the fan, and at the rotor outlet, that is, at a pressure equivalent to the air gap 5 between the rotor core 6 and the stator core 2.
  • the centrifugal force generated by the rotation of the rotor core 6 flows from the inlet to the outlet of the rotor and cools the rotor.
  • the cooling medium that enters the rotor does not pass through a heat source such as a fan after passing through the coolers 42, 44, etc., and thus can reach the rotor inlet while the temperature is sufficiently low.
  • the ventilation duct 90 cools the cooling medium with a cooler, and then introduces a fan for energizing the cooling medium.
  • the cooling medium which has become more turbulent by passing through the fan, collides with the end of the stator without being affected by a temperature rise caused by a heat source other than the fan. Can be cooled.
  • FIG. 2 shows a ventilation structure of the turbine generator according to the first embodiment.
  • a stator frame 1 inside which a stator core 2 is provided.
  • the stator core 2 has a cylindrical shape.
  • a plurality of slots continuous in the axial direction are formed on the inner peripheral surface side of the stator core 2 to accommodate the stator winding 3.
  • the stator core 2 is provided with a plurality of radially continuous ventilation ducts 4 in the axial direction.
  • a rotor core 6 is provided on the inner periphery of the stator core 2 via an air gap 5.
  • the rotor core 6 is provided with a rotating shaft 7 integrally formed with the rotor core 6.
  • the rotating shaft 7 extends in the axial direction from the center of both end faces of the rotor core 6, and is supported by a bearing device provided on an inner peripheral portion of an end bracket 8 that closes both ends of the stator frame 1.
  • a plurality of slots continuous in the axial direction are formed on the outer peripheral surface side of the rotor core 6 to accommodate the rotor windings. Both ends of the rotor winding are fixed by retaining rings 9.
  • the rotor core 6 is provided with a plurality of radially continuous ventilation ducts 50 in the axial direction.
  • a fan 10 is provided at the end of the rotating shaft 7.
  • a fan ring 15 for fixing the fan 10 is provided, and ventilation paths 16 and 21 are provided from the fan ring 15 to below the retaining ring 9 and to the rotor core 6.
  • a cover 17 is provided on the shaft end side of the retaining ring 9 so that the refrigerant in the ventilation path 22 and the refrigerant in the ventilation path 21 outside the rotor do not interfere with each other.
  • the ventilation structure is configured symmetrically with respect to the "axial center line 12.”
  • the fan 10 rotates together with the rotating shaft 7 to flow a cooling medium such as air or hydrogen gas sealed in the machine. Ventilation paths 20, 22, 23, etc., through which the cooling medium flows are formed in the machine, and coolers 41, 42, etc., which cool the cooling medium, are installed in the middle of the ventilation paths.
  • stator core 2 is divided into a plurality of ventilation sections in the axial direction, and air is passed from the inner diameter side to the outer diameter side.
  • ventilation paths like 63.
  • Outside stator frame 1 The provided ventilation duct 13 forms a ventilation path from the outlet of the cooler 42 to the rotor, and a cooling medium is introduced into the rotor from the end.
  • the ventilation duct end 14 is stationary, and the gap between the rotating shaft 7, the fan 10, the fan ring 15, etc., which is a rotating body, has a sealing structure to reduce wind leakage. It has.
  • FIG. 8 shows a detailed view of the vicinity of the entrance of the rotor 7.
  • symbols 8 to 10 are shown to explain the pressure at each location, and the details will be described later.
  • the cooling medium that has exited the cooler 42 reaches the trochanter 7 through the ventilation path 24.
  • the hatched fan 10, fan ring 15, force par 107, retaining ring 9 and rotor coil 1.0 3 in FIG. 8 are the structures of the rotor 7. And rotates with the rotor 7.
  • the fan side air seal 106 and the shaft end side air seal 101 have a structure on the stator 2 side.
  • a fan side air seal 106 and the shaft end side air seal 101 In the vicinity of the inlet ⁇ of the rotor 7, a fan side air seal 106 and the shaft end side air seal 101, and a seal structure that keeps a proper gap between the fan ring 15 and the rotor 7 to block wind leakage . Since the rotor 7 moves in the axial direction, the rotor 7 has a structure that allows movement in the axial direction.
  • the fan ring 15 is for fixing the fan 10 and has a ventilation hole 102 for allowing a cooling medium to pass therethrough. Details of the fan ring 15 are shown in Fig. 9 as A-A 'section.
  • Fans 10 are formed on the outer portion of the fan ring 15 at equal intervals around the axis, and ventilation holes 102 are formed on the inner portion at equal intervals around the axis.
  • the cooling medium that has passed through the ventilation holes 102 provided in the fan ring 15 reaches the inside of the rotor 7.
  • the cover 107 is for separating the ventilation path on the rotor side and the ventilation path on the stator 2 side, and connects between the faning 15 and the retaining ring 9 Gear It is a structure that is held via a pump.
  • the cooling air passing through the symbol 6 passes through the lower part of the rotor coil 103 and goes to the center in the axial direction via 7 and 8.
  • the rotor 7 rotates while being supported by a bearing 105 (also arranged on the other side, not shown on the other side).
  • the ventilation cooling passage is configured as follows.
  • Stator coil from the ventilation passage 20 (the pressure at the front of the fan 10) from the outlet of the cooler 41 to the fan 10 and the exhaust side of the fan 10 (the pressure at the rear of the fan 10 after exhaust)
  • Ventilation passage 2 3 pressure 3 of ventilation passage 23) passing through the shaft end of 3 to the second cooler 42, the outlet of the second cooler 42 (the outlet of the second cooling 42) Ventilation path 24 from the pressure 4) to the inlet of the mouth, ventilation path 16 through the fan ring 15 (pressure ⁇ in front of the fan ring 15, pressure ⁇ in the rear) and the cover 17 and Ventilation passage 2 1 that passes under the retaining ring 9 and reaches the rotor core 6, and ventilation passages 5 1 and 6 1 (the pressure in front of the ventilation passage 5 1) 5 Through the pressure in the part inside 1 1), it reaches the ventilation path 20 on the outer diameter side of the stator (the pressure of the ventilation duct 4 and the pressure of the air gap 5), and returns to the first cooler 41.
  • the ventilation passages extending in the radial direction have been described as 51 and 61, but there are other ventilation passages such as 52, 62 or 54, 64, etc.
  • the flow inside the entire turbine generator is almost determined by the ventilation resistance on the stator 2 side, and the rotor 6 is exposed to a certain pressure distribution field. Since the ventilation duct 4 of the stator 2 is a ventilation fan, the pressure is lost by passing through the ventilation duct 4. That is, in ⁇ , the pressure is close to 0 pu (0.0 lpu: the differential pressure generated by the fan 10 is assumed to be 1.0 pu). Further, the cooling medium loses pressure in the course of passing through the cooler 41, and becomes almost Opu immediately before the fan 10. Although the pressure of the cooling medium passing through the cooler 42 is low, the pressure is increased by the fan 10 and becomes the highest for the stator 2 side system (approximately 1. Opu).
  • FIG. 10 shows the relationship between the pressures viewed from the ventilation on the rotor 7 side.
  • the cooling medium pressurized by the fan 10 passes through the cooler 42 and reaches 4.
  • the cooling medium that has passed through the air passages 24 and 5 passes through the fan rings 15 below the fan 10 and reaches the inside ⁇ ⁇ of the rotor and further to 7.
  • the cooling medium that reached 8 is about 0.8 pu.
  • the cooling medium that has reached the inside of the rotor 7 is again boosted to about 1.9 pu by the centrifugal force inside the rotor 7 rotating at high speed.
  • the pressure at this point is the driving force of the cooling air flowing through the rotor.
  • the pressure at the outlet side is about 0.8 pu, and the pressure difference from this pressure determines the amount of cooling air.
  • the pressure difference between 1 and 2 is about l.Opu, a cooling medium corresponding to the pressure difference is applied as a driving force for the ventilation of the rotor 2.
  • the pressure difference between the portions 9 and ⁇ ⁇ ⁇ increases, the amount of the cooling medium flowing in the rotor 7 can be increased.
  • the pressure difference between the pressure of 9 and the pressure of 10 may be 2 kPa or more, and the differential pressure is preferably 4 kPa or more or 6 kPa or more.
  • the relationship between the heat source, the cooler, and the ventilation path is as follows.
  • the cooling air that cools the rotor passes through the ventilation passages 20, 23, 24, 16, and 21, during which time the fan is a heat source that generates a temperature rise by increasing the pressure of the refrigerant. 10.
  • the heat source and the cooler are alternately arranged like the first cooler 41, the heat source, and the second cooler 42.
  • the low-temperature cooling medium that has passed through the cooler 41 rises in temperature when passing through the fan 10 and is divided into the ventilation passages 22 and 23 and circulates.
  • the refrigerant flowing to the ventilation passage 23 cools the end of the stator winding 3 and further rises in temperature, and then flows to the second cooler 42.
  • the cooling air whose temperature has been reduced by passing through the second cooler is divided into ventilation passages 63 and 24 and circulates, and the cooling air flowing to ventilation passage 24 passes through ventilation passages 16 and 21. Then, the rotor is cooled in ventilation paths such as 51, 52, 53, 54, etc., and the temperature of the refrigerant rises.
  • the high-temperature refrigerant discharged from the ventilation path 51 merges with the low-temperature cooling medium coming from the ventilation path 22 at the air gap 5, passes through the ventilation paths 6 1, 6 2, etc. Exchange heat.
  • the refrigerant that has undergone heat exchange with the stator core 2 and rises in temperature passes through the ventilation passage 20. Return to the first cooler 4 1.
  • the high-temperature cooling medium discharged from the rotor ventilation passage 53 merges with the cooling discharged from the ventilation passage 63, passes through the axial ventilation passages 71, 72, etc. Merges with the high-temperature cooling medium discharged from channels 52 and 54. At this time, the cooling medium discharged from the ventilation passage 63 exchanges heat with the stator core 2 and the temperature increases, but the rotor ventilation passages 52, 53, and
  • the temperature of the cooling medium discharged from the rotor is lower after the merging because the temperature is lower than the cooling medium discharged from 53 mag. After this, the ventilation path 6 2,
  • the temperature is further reduced by the second cooler 42, As a cooling medium.
  • the temperature of the cooling medium introduced into the rotor can be lowered, so that the temperature of the refrigerant after cooling the rotor is necessarily reduced. Since the cooling medium discharged from the rotor always passes through the ventilation duct 4 of the stator, it is possible to reduce the temperature of the stator.
  • Fig. 3 shows a second embodiment, in which two or more ventilation sections are provided in the axial direction at the stator core 2 and a cooler 4 is provided on the outer diameter side of the stator core 2 in the ventilation section. 1, 42, 43, 44, etc. are arranged, the cooling medium is blown out from the inner diameter side of the stator core, and then passes through the coolers 41, 43.
  • This is an example of application to a generator having a section that passes through the coolers 42 and 44 from the inner circumference side and then blows into the inner diameter side of the stator core 2.
  • the air is divided into a plurality of ventilation passages such as coolers 42, 44.
  • a ventilation passage 23 passing through a heat source such as a fan 10 and a shaft end portion of a stator coil 3
  • the air is divided into a plurality of ventilation passages such as coolers 42, 44.
  • a generator having a flow path such as 62, 64 extending from the outer circumference to the inner circumference of the stator.
  • a ventilation section from the outer circumference to the inner circumference, such as 32, 34, etc. is provided as a ventilation path from the outer circumference side to the inner circumference side of the stator to the rotor from 62, 64, etc.
  • the cooling medium is introduced in parallel from a plurality of cooling paths, so that the load on the cooler can be distributed.
  • FIG. 4 shows a ventilation cooling structure of a turbine generator according to a third embodiment, in which a second cooler 42 is grained outside a stator frame 1. This structure can also be applied to a generator that does not have a second cooler in the ventilation path that passes through the end of the fan 10 and the stator coil 3 inside the generator.
  • FIG. 5 shows the fourth embodiment, and shows a configuration in which a ventilation medium 24 for the rotor is further provided with a device 11 for increasing the pressure of the cooling medium. This is effective when it is desired to further increase the amount of the cooling medium in the ventilation passages 24, 21 toward the rotor.
  • the booster 11 is provided on the side of the ventilation path 23, which is the front side of the second cooler 42, but is provided on the side of the ventilation path 21 on the rotor side from the fan 42. May be.
  • FIG. 6 shows a fifth embodiment, in which a fan 10 is provided at an end of a retaining ring 9.
  • a fan 10 is provided at an end of a retaining ring 9.
  • there may be an inclusion such as another ring for fixing the fan 10.
  • the ventilation resistance generated by the fan ring 15 can be reduced.
  • FIG. 7 shows a ventilation cooling structure of a turbine generator according to a fourth embodiment, in which a ventilation improvement device 18 is provided in a rotor portion of a ventilation passage 13 near a rotor inlet.
  • the ventilation improvement device 18 has a structure in which the pressure of the cooling medium is increased.
  • a structure may be employed in which the ventilation resistance for traveling toward the ventilation passages 16 and 21 is reduced, that is, a structure is provided in which the cooling medium that has passed straight through the cooling passage 24 is swirled.
  • the fan ring 15 may be provided with the above-described mechanism for increasing the pressure or a mechanism for providing the turning.
  • a rise in temperature can be reduced.
  • the temperature of the cooling medium introduced into the rotor can be reduced without changing the ventilation path of the cooling medium discharged from the rotor, the temperature is locally high regardless of the rotor or stator. Therefore, it is possible to reduce a rise in the temperature of the rotor without generating the heat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

明 細
回転電機 技術分野
本発明は、 回転電機に係り、 特に冷却媒体が流れる通風路に冷却器を 設置した回転電機に関するものである。 背景技術
回転電機は、 固定于に対向させて回転子を回転させるものである。 こ の固定子及び回転于は鉄損或いは銅損等のため熱源となり高熱を発生す る。 機内の温度上昇を抑制するため、 一般に、 冷却媒体として空気等の 気体が多く用いられる。 空気等の気体冷却媒体を用いる場合、 固定子及 び回転子のそれぞれについて、 径あるいは軸方向に貫通したダク トを設 ける。 そして、 回転軸の端部にファンを設け、 'このファンの付勢力によ り、 空気等の気体冷却媒体を流通させることにより、 固定子及び回転子 を冷却する。
空気を用いて固定子及び回転子を冷却する技術としては、 例えば特開 平 1 0— 1 5 0 7 4 0号公報及び特開 2 0 0 0— 1 2 5 5 1 1号公報に 記載のものが知られている。 この技術によると、 固定子を貫通して流通 するダク ト、 及び、 回転子を貫通して流通するダク トを通った空気の両 方は、 回転軸端部に設けられたファンの手前で合流する。 そして、 この 合流した空気は、 ファンの回転力により、 付勢され、 分岐される。 分岐 された一方の冷却空気は固定子に導かれ、 分岐された他方の冷却空気は 回転子に導かれる。
なお、 特開平 1 0— 1 5 0 7 4 0号公報に記載の技術では、 合流した 空気は比較的に大きな冷却器で冷却される。 そして、 この比較的に大き な冷却器で冷却された後、 分岐され、 分岐された一方の冷却空気は固定 子に導かれ、 分岐された他方の冷却空気は回転子に導かれる。 また、 特 開 2 0 0 0— 1 2 5 5 1 1号公報に記載の技術では、 合流した空気はま ず分岐される、 そして、 その分岐された空気はそれぞれ異なった冷却器 に導かれて別個に冷却される。 分岐された一方は固定子及び巻線端部に 導かれ、 分岐された他方は回転子に導かれる。 発明の開示
上記の従来の技術では、 十分な冷却ができなかった。 具体的には、 分 岐された一方の冷却空気が固定子に導かれ、 分岐された他方の空気が回 転子に導かれるため、 ファンを通ることによって空気自体が温度上昇し た後に回転子に導かれるため、 回転子の冷却が不十分となっていた。 あ るいは、 ファンを逆方向に取り付け、 冷却器を通った後の空気を固定子 及び回転子に導入する技術も存在したが、 この場合には固定子巻線端部 にもつとも温度の高い冷却風が集中するとともに、 該固定子卷線端部へ の冷却空気の供給が不充分.であり、 冷却が不充分であるとともに、 構造 的に見て複雑であり、 装置全体が大型となっていた。
本発明の目的は、 上記問題点の少.なく とも 1つを解消した回転電機を 提供することに有る。
上記目的を達成するために、 本発明では、 固定子の内部に設けられた 固定子通風ダク トと、 回転子の内部に設けられた回転子通風ダク トと、 回転子通風ダク トに通じる入口部と、 前記回転子通風ダク トを通ってか ら前記固定子通風ダク トを通過した気体を前記入口部に導く第 1 の通風 路と、 ファンに吸引される気体と前記入口部に導かれる気体とが混合し ないようにファン近傍で隔てられており、 前記ファンで昇圧された気体 は前記第 1 の通風路を通って隔てられた入口部側に導かれ、 前記回転子 通風ダク トを通ってから前記固定子通風ダク トを通過した気体は冷却器 で冷却されてから第 1の通風路に導かれるように構成した。
或いは固定子の内部に設けられた固定子通: τ,ϋρダク と、 回転子の内部 に設けられた回転子通風ダク トと、 該回転子通風ダク トに通じる入口部 と、 前記固定子通風ダク トと回転子通風ダク トの両方を通過した気体を 前記入口部に導く第 1の通風路と、 ファンに吸引される気体と前記入口 部に導かれる気体とが混合しないように前記ファン近傍で隔てられてお り、 前記フアンで昇圧された気体は前記第 1 の通風路を通って隔てられ た入口部側に導かれ、 前記固定子通風ダク トと回転子通風ダク トの両方 を通過した気体は冷却器で冷却されてから前記第 1の通風路に導かれる ように構成した。
或いは、 固定子の内部に設けられた固定子通風ダクトと、 回転子の内 部に設けられた回転子通風ダク トと、 前記固定子通風ダク ト或いは回転 子通風ダク トの一方を少なく とも通過して混合した気体を入口部に導く 第 1の通風路と、 ファンに吸引される気体と前記入口部に導かれる気体 とが混合しないように前記ファン近傍で隔てられており、 前記ファンで 昇圧された気体は前記第 1 の通風路を通って隔てられた入口部側に導か れ、'混合した気体は冷却器で冷却されてから前記第 1の通風路に導かれ るように構成した。
或いは、 固定子の内部に設けられた固定子通風ダク トと、 回転子の内 部に設けられた回転子通風ダク トと、 前記固定子通風ダク トを通過した 気体と前記回転子通風ダク トを通過した気体が共通で導かれる第 1 の通 風路と、 前記回転子通風ダク トに通じる入口部を有し、 ファンの排気側 から入口部に至る通風路に冷却器を配置し、 前記ファンに吸引される気 体と前記入口部に導かれる気体とが混合しないように前記ファン近傍で 隔てられており、 前記ファンで昇圧された気体は前記第 1 の通風路を通 つて隔てられた入口部側に導かれ、 前記回転子通風ダク トを通った気体 は前記固定子通風ダク トを通るように構成した。
或いは、 回転子の内部に設けられた回転子通風ダク トを有し、 ファン で付勢された気体は固定子の端部を通過し、 さらに、 該固定子の端部を 通過した気体は冷却器を通過し、 前記ファンに吸引される気体と入口部 に導かれる気体どが混合しないようにファン近傍で隔てられており、 前 記冷却器を通過した気体は隔てられた入口部側に導かれるように構成し た。'
. 或いは、 固定子の内部に設けられた固定子通風ダク トと、 回転子の内 部に設けられた回転子通風ダク トと、 ファンの径方向内側に設けられ回 転軸と回転する通風孔を有し、 該通風孔は前記回転子通風ダク トに連通 し、 ファンで昇圧された冷却媒体は冷却器で冷却されてからファンの径 方向内側に設けられた通風孔に導かれるように構成した。
或いは、 固定子の内部に設けられた固定子通風ダク トと、 回転子の内 部に設けられた回転子通風ダク トと、 ファンの径方向内側に設けられ回 転軸と回転する通風孔を有し、 前記ファン下流側の圧力と前記通風孔の 圧力の差圧は 2 k P aより大きいように構成した。
上記目的を達成するために、 本発明では、 固定子の内部に設けられた 固定子通風ダク トと、 回転子に設けられた回転子通風ダク トと、 回転子 通風ダク トに通じる入口部と、 回転子通風ダク トを通ってから固定子通 風ダク トを通過した気体をフアンを通らずに入口部に導く第 1の通風路 を有し、 回転子通風ダク トを通ってから前記固定子通風ダク トを通過し た気体は冷却器で冷却されてから第 1 の通風路に導かれるように構成し た。
或いは、 回転子通 mダク トに連通する入口部を有し、 回転子通風ダク トを通過した気体は固定子通風ダク トに導かれ、 固定子通風ダク トを通 過した気体は第 1 の冷却器に導かれ、 第 1 の冷却器を通過した空気は第
2の冷却器に導かれ、 第 2の冷却器を通過した空気はフアンを通らずに 入口部に導かれるように構成した。
或いは、 固定子通風ダク トを通過した気体と回転子通風ダク トを通過 した気体が共通で導かれる第 1の通風路と、 回転子通風ダク トに通じる 入口部を有し、 ファンの排気側から入口部に至る通風路に冷却器を配置 し、 第 1の通風路を通った気体はファンを通らずに入口部に導かれ、 回 転子通風ダク トを通った気体は固定子通風ダク トを通るように構成した, 或いは、 ファンで付勢された気体は固定子の端部を通過し、 さらに、 端部を通過した気体は冷却器を通過し、 冷却器を通過した気体はファン を通らずに回転子通風ダク トに導かれるように構成した。
或いは、 固定子の端部を冷却した気体を第 1の冷却器に導く第 1 の通 風路と、 第 1 の冷却器で冷却された気体を回転子通風ダク トに導く第 2 の通風路と、 回転子通風路を通った気体を固定子通風路に導く第 3 の通 風路と、 固定子通風路を通った気体を第 2の冷却器に導く第 4の通風路 と、 第 2の冷却器で冷却された気体を再び回転子通風ダク トに導く第 4 の通風路を有するように構成した。
或いは、 固定子の端部を冷却した気体を第 1の冷却器に導く第 1の通 風路と、 第 1 の冷却器を通った気体を固定子通風ダク トに導く第 2 の通 風路を有し、 第 2の通風路は第 1の冷却器の周方向外側を通って回転子 通風ダク 卜に導かれるように構成した。 或いは、 固定子の端部を冷却した気体を第 1の冷却器に導く第 1の通 風路と、 固定子通風ダク トを通った気体を第 2の冷却器に導く第 2の通 風路と、 第 1 の冷却器で冷却された気体をファンを通らずに回転子通風 ダク 卜に導く第 3の通風路を有し、 第 1の通風路と第 2の通風路は、 .互 いに、 交差するように構成した。 図面の簡単な説明
第 1図は、 本発明の第 1の実施の形態であるタービン発電機に係る全 体図であり、 第 2図は、 本発明の第 1の実施の形態であるタービン発電 機の構成を示す図であり、 第 3図は、 本発明の第 2の実施の形態である タービン発電機の構成を示す図であり、 第 4図は、 本発明の第 3の実施 の形態であるタービン発電機の概観を示す図であり、 第 5図は、 本発明 の第 4の実施の形態であるタービン発電機の構成を示す図であり、 第 6 図は、 本発明の第 5の実施の形態であるタービン発電機の構成を示す図 であり、 第 7図は、 本発明の第 6の実施の形態であるタービン発電機の 構成を示す図であり、 第 8図は、 回転子付近の流路を示す図であり、 第 9図は、 ファンの詳細を示す図であり、 第 1 0図は、 流路に沿った圧力 変化図である。 発明を実施するための最良の形態
以下、 本発明の第 1の実施の形態である夕一ビン発電機に係る全体図 を図面に基づいて説明する。
第 1図は、 タービン発電機の全体図である。
図示のように、 固定子枠 1内に固定子鉄心 2 と回転子鉄心 6があり、 固定子鉄心 2の部分は軸方向に複数の通風区間に仕切り、 内径側から外 径側に通風する 6 1, 6 3のような通風路と外径側から内径側に通風す る 6 2, 6 4のような通風路が存在する。 固定子鉄心 2の外周側には冷 却媒体を冷却するための冷却器 4 1, 4 2等が存在する。 固定子枠 1 の 外部に設けた通風ダク ト 1 3は冷却器 4 2 , 4 4等の出口から回転子に 到る通風路を形成し、 端部より、 回転子に冷却媒体 (好ましくは、 空気) を導入する。 ここで通風ダク ト端部 1 4は静止しており、 回転体である 回転軸 7 , ファン .1 0, ファン 1 0を固定するファンリ ング 1 5等との 間のギヤップには、 風漏れを低減するためのシール構造を有する。 固定 子枠にはさらに、 ファン 1 0から排出された冷却媒体を冷却器 4 2 , 4 3等に導く通風ダク ト 8 0、 及び冷却器 4 1 , 4 3等から排出された 冷却風をファン 1 0に導く通風ダク ト 9 0を有する。
このうち通風ダク ト 8 0は冷却器で冷却した冷却媒体を、 ファン等の 熱源を経由することなく回転子入口に導入する。 通風ダク ト 8 0内の冷 却媒体は、 ファンにより、 すでに付勢されており、 回転子出口部つまり、 回転子鉄心 6 と固定子鉄心 2の間のエアギャップ 5 と同等の圧力になつ ているため、 回転子鉄心 6の回転に起因する遠心力によって回転子入口 から出口まで流れ、 回転子各部を冷却する。 ここで、 回転子に突入する 冷却媒体は冷却器 4 2 , 4 4等を通った後にはファン等の熱源を通って いないため、 十分に温度の低いままで回転子入口部まで到達できる。 一方通風ダク ト 9 0は、 冷却媒体を冷却器で冷却した後に、 該冷却媒 体を付勢するためのファンまで導入する。 この構造では、 ファンを通る ことによって乱れが大きくなった冷却媒体が、 ファン以外の熱源による 温度上昇の影響を受けずに固定子端部に衝突することになり、 該固定子 端部を効果的に冷却することができる。
第 2図は第 1の実施の形態であるタービン発電機の通風構造を示す。 図示のように、 固定子枠 1があり、 その内部に固定子鉄心 2を設けてい る。 固定子鉄心 2は円筒形状のものであり、. その内周面側には軸方向に 連続したスロッ トを複数形成し、 固定子巻線 3を収納している。 固定子 鉄心 2には径方向に連続した通風ダク ト 4を軸方向に複数設けている。
固定子鉄心 2の内周部にはエアギャップ 5を介して回転子鉄心 6を設 けている。 回転子鉄心 6には回転子鉄心 6 と一体形成した回転軸 7を設 けている。 回転軸 7は回転子鉄心 6の両側端面の中心部から軸方向に延 び、 固定子枠 1の両端を塞ぐェンドプラケッ ト 8の内周部に設けられた 軸受装置によって支持される。 回転子鉄心 6の外周面側には軸方向に連 続したスロッ トを複数形成し、 回転子巻線を収納している。 回転子巻線 の両端部はリテイニングリング 9によって固定している。 回転子鉄心 6 には、 径方向に連続レた通風ダク ト 5 0を軸方向に複数設けている。 回 転軸 7の端部にはファン 1 0を設けている。 また、 ファン 1 0を固定す るためのファンリング 1 5を設け、 ファンリング 1 5からリテイニング リング 9下を通り、 回転子鉄心 6に至る通風路 1 6, 2 1 を設けている。 リテイニングリング 9の軸端側には通風路 2 2の冷媒と回転子外部の通 風路 2 1の冷媒が干渉しないよう、 カバー 1 7を設けている。 なお、 通 風構造は"軸方向中央線 1 2に線対称に構成する。 ファン 1 0は回転軸 7 と共に回転し、 機内に封入されている空気や水素ガス等の冷却媒体を機 内に流通させる。 機内には冷却媒体を流通させる通風路 2 0 , 2 2 , 2 3等を形成し、 その途中に冷却媒体を冷却する冷却器 4 1 , 4 2等を 設置している。
また、 固定子鉄心 2の部分は軸方向に複数の通風区間に仕切り、 内径 側から外径側に通風する 6 1 , 6 2 , 6 4のような通風路と外径側から 内径側に通風する 6 3のような通風路が存在する。 固定子枠 1の外部に 設けた通風ダク ト 1 3は冷却器 4 2の出口から回転子に到る通風路を形 成し、 端部より、 回転子に冷却媒体を導入する。 ここで通風ダク ト端部 1 4は静止しており、 回転体である回転軸 7 , ファン 1 0 , ファンリン グ 1 5等との間のギャップには、 風漏れを低減するためのシール構造を 有する。
第 8図に回転子 7の入口付近の詳細図を示す。 なお、 第 8図には①〜 ⑩の記号が示してあるが、それぞれの場所の圧力を説明するものであり、 詳細は後述する。 冷却器 4 2を出た冷却媒体は、 通風路 2 4を介して回. 転子 7に至る。 ここで、 第 8図中の斜線が付されているファン 1 0 , フ アンリング 1 5 , 力パー 1 0 7 , リテイニングリング 9及び回転子コィ ル 1. 0 3は回転子 7の構造物であり回転子 7 と共に回転する。 一方、 フ アン側エアシール 1 0 6及び軸端側エアシール 1 0 1は固定子 2側の構 造である。 回転子 7の入口⑤付近では、 ファン側エアシール 1 0 6及び 軸端側エアシール 1 0 1 と、 ファンリング 1 5 と回転子 7の間のギヤッ プを適度に保ち風漏れを塞ぐシール構造をなす。 回転子 7は軸方向に移 動するので、 軸方向への動きを許容するような構造となっている。 ファ ンリ ング 1 5はファン 1 0を固定するためのもので、 冷却媒体を通過さ せるための通風孔 1 0 2を持つ。 ファンリング 1 5の.詳細が A— A ' 断 面として第 9図に示されている。 ファンリング 1 5の外側部分にはファ ン 1 0が軸中心で等間隔に形成されており、 また、 内側部分には通風孔 1 0 2が軸中心で等間隔に形成されている。
第 8図においてファンリング 1 5に設けた通風孔 1 0 2を通った冷却 媒体は、 回転子 7の内部⑥に至る。 ここで、 カバ一 1 0 7は回転子側の 通風路と固定子 2側の通風路を分離するためのものであり、 ファンリン グ 1 5 とリテイニングリング 9の間をつなぐが、 あるいは微妙なギヤッ プを介して保持される構造物となっている。 符号⑥を通った冷却風は、 回転子コイル 1 0 3の下部を通り⑦,⑧を経由して軸方向中心へ向かう。 なお、 回転子 7は軸受 1 0 5 (他方側にも配置、 他方側図示省略) に支 承されて回転する。
本実施の形態での回転子に至る通風冷却路をさらに説明する。 すなわ ち、 通風冷却路を次のように構成している。
冷却器 4 1 の出口からファン 1 0に至る通風路 2 0 (ファン 1 0前部 分の圧力①), ファン 1 0の排気側 (ファン 1 0の排気後部分の圧力②) から固定子コイル 3の軸端部を通り、 第 2の冷却器 4 2に至る通風路 2 3 (通風路 2 3の圧力③), 第 2の冷却器 4 2の出口(第 2の冷却 4 2 の出口の圧力④) から口一タ入口に至る通風路 2 4 , ファンリング 1 5 を通る通風路 1 6 (ファンリ ング 1 5の前の部分の圧力⑤, 後の部分の 圧力⑥) とカバー 1 7及びリテイニングリング 9の下を通り、 回転子鉄 心 6に至る通風路 2 1、 さらには径方向に抜ける通風路 5 1 , 6 1 (通 風路 5 1の前の部分の圧力⑦, 通風路 5 1内の部分の圧力⑧) を通って 固定子外径側の通風路 2 0に至り (通風ダク ト 4の圧力⑨, エアギヤッ プ 5の圧力⑩)、 第 1の冷却器 4 1 に戻る。 ここで径方向に至る通風路 としては 5 1 , 6 1について説明したが、 他に 5 2 , 6 2あるいは 5 4 , 6 4等の通風路を通る場合もあるし、 通風路 5 3からエアギャップ 5の 通風路 7 1, 7 2等を通り、 その後 6 2, 6 4等を通って固定子外径側 の通風路 2 0に至る経路もある。
尚、 上記の他に回転子を通らず、 固定子のみを通るループが存在する。 ファン 1 0を通った後にエアギャップ 5に向かう通風路 2 2及び第二の 冷却器 4 2の出口から固定子鉄心を介してエアギヤップ 5に向かう通風 路 6 3等であるが、 これらは回転子から通風路 5 1 , 5 2 , 5 3 , 5 4 等を介して排出された冷媒と合流し、 6 1 , 6 2, 6 4等の通風路を通 つて固定子外径側の通風路 2 0に至る。
ここで、 冷却媒体の流れと圧力の関係を説明する。
まず、 タービン発電機全体の内部における流れは固定子 2側の通風抵 抗でほぼ決まつており、 回転子 6はある決まった圧力分布の場にさらさ れることになる。 固定子 2の通風ダク ト 4は通気抵枋であるので、 通風 ダク ト 4を通過することによって圧力を失う。 すなわち、 ©では、 0 pu に近い ( 0. 0 l p u : 伹しファン 1 0の発生する差圧を 1. 0 p uとし ている) 圧力となる。 さらに、 冷却媒体は冷却器 4 1を通過する過程で 圧力を失い、 ファン 1 0の直前付近①でほぼ O p uとなる。 冷却器 4 2 を通った冷却媒体の圧力①は低いが、 ファン 1 0によって昇圧され、 固 定子 2側の系としては最も高圧となる② ( 1. O p u程度)。 この風は、 固定子 2 と回転子 7の間のエアギャップ 5⑩に入る。 この際⑩での圧力 は、 ②部の圧力よりは低くなるが、 ②と⑩間の圧力降下は大きくなく、 ②での圧力に近いものとなる。 一方、 回転子 7から見ると、 ⑩は排気側 'であり、 十分な通風量を得るためには、 回転子 7側での圧力を十分に高 くする必要がある。
回転子 7側の通風から見た圧力の関係を第 1 0図に示す。 まず、 ファ ン 1 0で昇圧された冷却媒体は冷却器 4 2を通り、 ④に至る。 以後、 通 風路 2 4を通って⑤を経由した冷却媒体はフアン 1 0下部のフアンリ ン グ 1 5を通って回転子内部⑥、 さらには、 ⑦に至る。 ④, ⑤, ⑥及び⑦ を各々通過する過程で各々 0. 0 l p u程度の圧力を失う。 ⑧に至った 冷却媒体は約 0. 8 p u程度である。 回転子 7内部⑧に到達した冷却媒 体は、 高速で回転している回転子 7の内部の遠心力で再度 1. 9 p u程 度に昇圧される。 この⑨での圧力が回転子を流れる冷却風の駆動力とな り、 最終的には出口側⑩での圧力は 0 . 8 p u程度であり、 この圧力と の差圧で冷却風量が決まる。
具体的には①〜②間での圧力は l . O p u程度なので、 この差圧に応 じた冷却媒体が回転子 2の通風の駆動力として加えられることとなる。 第 1 0図に示されるように、 ⑨と⑩の部分の差圧が大きくなるため、 回 転子 7内に流れる冷却媒体の量を大きく とれる。 好ましくは、 ⑨の圧力 と、 ⑩の圧力との差圧が 2 k P a以上であればよく、 差圧が 4 k P a以 上あるいは、 6 k P a以上が望ましい。
次に熱源と、 冷却器, 通風路の関係は以下のようになる。 回転子を冷 却する冷却風は通風路 2 0 , 2 3, 2 4, 1 6, 2 1を通るが、 この間 には冷媒を昇圧することによつて温度上昇を生じさせる熱源であるファ ン 1 0 , 銅損を発生する固定子巻線 3の端部からなる熱源が存在する。 つまり、 通風路は第 1の冷却器 4 1, 熱源, 第 2の冷却器 4 2のように 熱源と冷却器を交互に配置している。
次に冷却媒体の流れと冷却媒体の温度上昇について説明する。
冷却器 4 1を通った低温の冷却媒体はフアン 1 0を通過する際に温度 上昇し、 通風路 2 2と通風路 2 3に分かれて流通する。 通風路 2 3に向 かった冷媒は固定子巻線 3の端部を冷却してさらに温度上昇した後、 第 2の冷却器 4 2に向かう。 第 2の冷却器を通過することによって温度低 減した冷却風は通風路 6 3 と 2 4に分かれて流通し、 通風路 2 4に向か つた冷却風は通風路 1 6 , 2 1 を経由し、 5 1, 5 2 , 5 3 , 5 4等の 通風路で回転子を冷却し、 冷媒は温度上昇する。 その後、 通風路 5 1か ら排出した高温の冷媒は、 通風路 2 2から来た低温の冷却媒体とエアギ ヤップ 5で合流し、 通風路 6 1, 6 2等を通って固定子鉄心 2 と熱交換 する。 固定子鉄心 2 と熱交換し、 温度上昇した冷媒は、 通風路 2 0を通 つて第 1のクーラ 4 1に戻る。
軸中央部付近では、 回転子通風路 5 3から排出された高温の冷却媒体 は通風路 6 3から排出された冷却と合流し、 軸方向通風路 7 1 , 7 2等 を経由したのち、 通風路 5 2, 5 4から排出された高温の冷却媒体と、 合流する。 この際、 通風路 6 3から排出された冷却媒体は、 固定子鉄心 2と熱交換しており、 温度上昇しているが、 回転子通風路 5 2, 5 3,
5 3等から排出された冷却媒体よりは温度が低いため、 回転子から排出 された冷却媒体温度は合流後のほうが低くなる。 この後、 通風路 6 2 ,
6 4を通って固定子鉄心 2と熱交換して温度上昇した後に冷却器 4 1 に 向カゝう。
以上説明した第 1の実施の形態によれば、 ファン 1 0の排気側から固 定子コイル 3の端部等の熱源を通過させてからさらに第 2の冷却器 4 2 で温度低減し、 回転子の冷却媒体として導入する。 この構造では回転子 に導入する冷却媒体の温度を低くすることができるため、 回転子を冷却 した後の冷媒温度も必然的に低減する。 回転子から排出された冷却媒体 は必ず固定子の通風ダク ト 4を通過するため、 固定子の温度低減も見込 める。
第 3図は第 2の実施の形態であり、 固定子鉄心 2の部分で軸方向に 2 つ以上に仕切られた通風区間を設け、 通風区間の固定子鉄心 2の外径側 に冷却器 4 1 , 4 2 , 4 3, 4 4等を配置し、 冷却媒体が固定子鉄心の 内径側から吹き出した後に冷却器 4 1 , 4 3を通過する区間と、 冷却媒 体が固定子枠 1 の内周側から冷却器 4 2 , 4 4を通過した後に固定子鉄 心 2の内径側に吹き込む区間とを有した発電機への適用例である。 第 2 の実施の形態のようにファン 1 0 , 固定子コィル 3の軸端部分等の熱源 を通る通風路 2 3を経由した後に冷却器 4 2 , 4 4等複数の通風路に分 岐して固定子の外周側から内周側に向かう 6 2 , 6 4等の流路を有した 発電機への適用例である。 この場合は、 固定子の外周側から内周側に通 風する区間 6 2 , 6 4等からそれぞれ回転子に向かう通風路として 3 2 , 3 4等のように外周から内周に向かう通風区間の数だけ設けるのが良い 複数の冷却路から並列に冷却媒体を導入するため、 冷却器への負荷を分 散することができる。
第 4図は第 3の実施の形態であるタービン発電機の通風冷却構造を示 し、 第 2の冷却器 4 2を固定子枠 1の外部に穀けたものである。 この構 造では、 発電機内部にファン 1 0, 固定子コイル 3の端部を通る通風路 に第 2の冷却器を設置しない発電機にも適用できる。
第 5図は第 4の実施の形態を示し、 回転子へ向かう通風路 2 4にさら に冷却媒体を昇圧する装置 1 1を設けた構成を示す。 回転子に向かう通 風路 2 4 ·, 2 1の冷却媒体量をさらに増加させたいときに有効である。 この場合、 昇圧装置 1 1は第 2の冷却器 4 2の手前側である通風路 2 3 側に設けた例を示しているが、 ファン 4 2より回転子側の通風路 2 1側 に設けても良い。
第 6図は第 5の実施の形態を示し、 ファン 1 0をリテイニングリング 9の端部に設けたものである。 この場合、 リテイニングリング 9 とファ ン 1 0の間には、 ファン 1 0を固定するための他のリング等の介在物が あっても良い。 この構造では、 前述のファン.リング 1 5を省略すること ができるため、 ファンリング 1 5によって生じる通風抵抗分を低減する ことができる。
第 7図は第 4の実施の形態であるタービン発電機の通風冷却構造を示 し、 回転子入口付近の通風路 1 3の、 回転子部分に通風改善装置 1 8を 設けたものである。 通風改善装置 1 8は冷却媒体を昇圧する構造であつ ても良いし、 通風路 1 6、 及び 2 1に向かうための通風抵抗を減らす構 造、 すなわち冷却通路 2 4を直進しできた冷却媒体に旋回を設ける構造 となっていても良い。 さらには、 前述の昇圧するための機構や、 旋回を 設けるための機構をファンリング 1 5に持たせても良い。 産業上の利用可能性
以上説明したように、 本発明によれば、 温度上昇を低減できる。 また、 回転子内部に供給する冷却気体の風量を増加させて、 効率的に、 回転子 を冷却することができる。 また、 回転子から排出された冷 ¾P媒体の通風 路を変更することなく回転子に導入する冷却媒体の温度を下げることが できるので、 回転子, 固定子にかかわらず局所的に温度の高い部分を生 じることなく回転子の温度上昇を低減することができる。

Claims

請 求 の 範 囲
1 . 固定子と、 前記固定子と対向して回転する回転子と、 前記回転子と 回転する回転軸と、 前記回転軸の端部付近に設けられたファンと、 前言 3 固定子の内部に設けられた固定子通風ダク 卜と、 前記回転子の内部に設 けられた回転子通風ダク トと、前記回転子通風ダク トに通じる入口部と、 前記回転子通風ダク トを通ってから前記固定子通風ダク トを通過した気 体を前記入口部に導く第 1の通風路と、 前記ファンに吸引される気体と 前記入口部に導かれる気体とが混合しないように前記ファン近傍で隔て られており、 前記ファンで昇圧された気体は前記第 1 の通風路を通って 前記隔てられた入口部側に導かれ、 前記回転子通風ダク トを通ってから 前記固定子通風ダク トを通過した気体は冷却器で冷却されてから前記第 1の通風路に導かれることを特徴とする回転電機。
2 . 請求項 1 において、 前記回転子通風ダク ト及び前記固定子通風ダク トを通った気体は前記ファンにより付勢された後に前記冷却器に導かれ ることを特徴とする回転電機。
3 . 固定子と、 前記固定子と対向して回転する回転子と、 前記回転子と 回転する回転軸と、 前記回転軸の端部付近に設けられたファンと、 前記 固定子の内部に設けられた固定子通風ダク トと、 前記回転子の内部に設 けられた回転子通風ダク トと、 前記回転子通風ダク トに通じる入口部を 有し、 前記回転子通風ダク ト及び前記固定子通風ダク トを通った気体は 前記ファンにより付勢されて前記固定子の端部を通った後に冷却器に導 かれるものであって、 さらに、 前記冷却器を通過した気体を前記ファン を通らずに前記入口部に導く第 1の通風路を有することを特徵とする回 転電機。
4 . 請求項 3において、 前記回転子と前記ファンの間の通風路、 或いは、 前記固定子と前記フアンの間の通風路に、 前記冷却器とは異なる第 2の 冷却器を配置することを特徴とする回転電機。
5 . 請求項 4において、 前記冷却器を通った空気の一部は前記固定子通 風ダク トに導かれ、 前記第 2の冷却器を通った空気の一部は前記回転子 と前記固定子の間の間隙に導かれることを特徴とする回転電機。
6 . 請求項 5において、 前記回転子及び前記固定子は枠体の内部に納め られ、 前記第 2の冷却器は枠体の外部に設けられることを特徴とする回
7 . 請求項 6において、 前記固定子端部から前記入口部に至る通風路で あり且つ枠体の外部にファンを配置したことを特徴とする回転電機。
8 - 請求項 5において、 '冷却気体は空気であることを特徴とする回転電 機。
9 . 請求項 1 において、 前記回転子に巻き回された巻線と、 前記巻線の 端部を保持するリテイニングを有し、 前記ファンは前記リテイニング外 側に隣接して配置されることを特徴とする回転電機。
1 0 . 請求項 1において、 第 1の通風路における入口部分の近傍で通風 改善することを特徴とする回転電機。
1 1 . 請求項 1 0において、 通風改善は気体に旋回運動を付与してなる ことを特徴とする回転電機。
1 2 . 固定子と、' 前記固定子と対向して回転する回転子と、 前記回転子 と回転する回転軸と、 前記回転軸の端部付近に設けられたファンと、 前 記固定子の内部に設けられた固定子通風ダク トと、 前記回転子の内部に 設けられた回転子通風ダク トと、 前記回転子通風ダク トに通じる入口部 と、 前記固定子通風ダク トと前記回転子通風ダク トの両方を通過した気 体を前記入口部に導く第 1の通風路と、 前記ファンに吸引される気体と 前記入口部に導かれる気体とが混合しないように前記ファン近傍で隔て られており、 前記ファンで昇圧された気体は前記第 1 の通風路を通って 前記隔てられた入口部側に導かれ、 前記固定子通風ダク トと前記回転子 通風ダク トの両方を通過した気体は冷却器で冷却されてから前記第 1の 通風路に導かれることを特徴とする回転電機。
1 3 . 固定子と、 前記固定子と対向して回転する回転子と、 前記回転子 と回転する回転軸と、 前記回転軸の端部付近に設けられたファンと、 前 記固定子の内部に設けられた固定子通風ダク トと、 前記回転子の内部に 設けられた回転子通風ダク トと、 前記固定子通風ダク ト或いは前記回転 子通風ダク 卜の一方を少なく とも通過して混合した気体を前記入口部に 導く第 1の通風路と、 前記ファンに吸引される気体と前記入口部に導か れる気体とが混合しないように前記ファン近傍で隔てられており、 前記 フアンで昇圧された気体は前記第 1 の通風路を通って前記隔てられた入 口部側に導かれ、 前記混合した気体は冷却器で冷却されてから前記第 1 の通風路に導がれることを特徴とする回転電機。
1 4 . 固定子と、 前記固定子と対向して回転する回転子と、 前記回転子 と回転する回転軸と、 前記回転軸端部付近に設けられたファンと、 前記 固定子の内部に設けられた固定子通風ダク トと、 前記回転子の内部に設 けられた回転子通風ダク トと、 前記固定子通風ダク ドを通過した気体と 前記回転子通風ダク トを通過した気体が共通で導かれる第 1の通風路と、 前記回転子通風ダク トに通じる入口部を有し、 前記ファンの排気側から 入口部に至る通風路に冷却器を配置し、 前記フアンに吸引される気体と 前記入口部に導かれる気体とが混合しないように前記ファン近傍で隔て られており、 前記ファンで昇圧された気体は前記第 1 の通風路を通って 前記隔てられた入口部側に導かれ、 前記回転子通風ダク トを通った気体 は前記固定子通風ダク トを通ることを特徴とする回転電機。
1 5 . 固定子と、 前記固定子と対向して回転する回転子と、 前記回転子 と回転する回転軸と、 前記回転軸に設けられたファンと、 前記回転子の 内部に設けられた回転子通風ダク トを有し、 前記ファンで付勢された気 体は前記固定子の端部を通過し、 さらに、 前記端部を通過した気体は冷 却器を通過し、 前記フアンに吸引される気体と前記入口部に導かれる気 体とが混合しないように前記ファン近傍で隔てられており、 前記冷却器 を通過しだ気体は前記隔てられた入口部側に導かれることを特徴とする 回転電機。
1 6 . 固定子と、 前記固定子と対向して回転する回転子と、 前記回転子 と回転する回転軸と、 前記回転軸の端部付近に設けられたファンと、 前 記固定子の内部に設けられた固定子通風ダク トと、 前記回転子の内部に 設けられた回転子通風ダク トと、 前記回転子通風ダク トに通じる入口部 と、 前記回転子通風ダク トを通ってから前記固定子通風ダク トを通過し た気体を前記ファンを通らずに前記入口部に導く第 1 の通風路を有し、 前記回転子通風ダク トを通ってから前記固定子通風ダク トを通過した気 体は冷却器で冷却されてから前記第 1の通風路に導かれることを特徴と する回転電機。
1 7 . 請求項 1 6において、 前記回転子通風ダク ト及び前記固定子通風 ダク トを通った'気体は前記ブアンにより付勢された後に前記冷却器に導 かれることを特徴とする回転電機。
1 8 . 請求項 1 7において、 前記ファンにより付勢された気体は前記固 定子の端部を通った後に前記冷却器に導かれることを特徴とする回転電 機。
1 9 . 請求項 1 7において、 前記回転子と前記ファンの間の通風路、 或 いは、 前記固定子と前記ファンの間の通風路に、 前記冷却器とは異なる 第 2の冷却器を配置することを特徴とする回転電機。
2 0 . 請求項 1 9において、 前記冷却器を通った空気の一部は前記固定 子通風ダク トに導かれ、 前記第 2の冷却器を通った空気の一部は前記回 転子と前記固定子の間の間隙に導かれることを特徴とする回転電機。
2 1 . 請求項 2 0において、 前記回転子及び前記固定子は枠体の内部に 納められ、 前記第 2の冷却器は枠体の外部に設けられることを特徴とす る回転電機。
2 2 . 請求項 2 1において、 前記固定子端部から前記入口部に至る通風 路であり且つ枠体の外部にフアンを配置したことを特徴とする回転電機 < 2 3 . 請求項 4において、 冷却気体は空気であることを特徴とする回転
2 4 . 請求項 1 6において、 前記回転子に巻き回された巻線と、 前記巻 線の端部を保持するリテイニングを有し、 前記ファンは前記リティニン グ外側に隣接して配置されることを特徴とする回転電機。
2 5 . 請求項 1 6において、 第 1の通風路における入口部分の近傍で通 風改善することを特徵とする回転電機。
2 6 . 請求項 2 5において、 通風改善は気体に旋回運動を付与してなる ことを特徴とする回転電機。
2 7 . 固定子と、 前記固定子と対向して回転する回転子と、 前記回転子 と回転する回転軸と、 前記回転軸の端部付近に設けられたファンと、 前 記固定子の内部に設けられた固定子通風ダク トと、 前記回転子の内部に 設けられた回転子通風ダク トと、 前記回転子通風ダク トに通じる入口部 と、 前記固定子通風ダク トと前記回転子通風ダク トの両方を通過した気 体を前記ファンを通らずに前記入口部に導く第 1の通風路を有し、 前記 固定子通風ダク トと前記回転子通風ダク トの両方を通過した気体は冷却 器で冷却されてから前記第 1の通風路に導かれることを特徴とする回転 亀機。
2 8 . 固定子と、 前記固定子と対向して回転する回転子と、 前記回転子 と回転する回転軸と、 前記回転軸の端部付近に設けられたファンと、 前 記固定子の内部に設けられた固定子通風ダク トと、 前記回転子の内部に 設けられた回転子通風ダク トと、 前記固定子通風ダク ト或いは前記回転 子通風ダク トの一方を少なく とも通過して混合した気体を前記フアンを 通らずに前記入口部に導く第 1 の通風路を有し、 前記混合した気体は冷 却器で冷却されてから前記第 1の通風路に導かれることを特徴とする回
2 9 . 固定子と、 前記固定子と対向して回転する回転子と、 前記回転子 と回転する回転軸と、 前記回転軸の端部付近に設けられたファンと、 第 1の冷却器と、 前記第 1の冷却器から前記回転軸の軸方向延長線上に設 けられた第 2の冷却器と、 前記回転子の内部に設けられた回転子通風ダ ク トと、 前記固定子の内部に設けられた固定子通風ダク トと、 前記回転 子通風ダク トに連通する入口部を有し、 前記回転子通風ダク トを通過し た気体は固定子通風ダク トに導かれ、 前記固定子通風ダク トを通過した 気体は第 1の冷却器に導かれ、 前記第 1の冷却器を通過した空気は前記 固定子端部を通って第 2の冷却器に導かれ、 前記第 2の冷却器を通過し た空気は前記ファンを通らずに入口部に導かれることを特徴とする回転 電機。
3 0 . 請求項 1 4において、 前記固定子通風ダク トと異なる第 2の固定 子通風ダク トと、 前記第 1の冷却器の軸方向延長線上に設けられ且つ前 記第 2の冷却器と異なる第 3の冷却器を有し、 前記第 2 の固定子通風ダ ク トを通った気体は前記第 3の冷却器に導かれることを特徴とする回転
3 1 . 請求項 1 5において、 前記第 2の冷却器は互いに回転軸方向延長 線に設けられた 2つの冷却器よりなり、.前記第ェの冷却器を通過した気 体は一方の冷却器に、 前記第 3の冷却器を通過した気体は他方に導かれ ることを特徴とする回転電機。
3 2 . 固定子と、 前記固定子と対向して回転する回転子と、 前記回転子 と回転する回転軸と、 前記回転軸端部付近に設けられたファンと、 前記 固定子の内部に設けられた固定子通風ダクトと、 前記回転子の内部に設 けられた回転子通風ダク トと、 前記固定子通風ダク トを通過した気体と 前記回転子通風ダク トを通過した気体が共通で導かれる第 1の通風路と. 前記回転子通風ダク トに通じる入口部を有し、 前記ファンの排気側から 入口部に至る通風路に冷却器を配置し、 前^第 1の通風路を通った気体 はファンを通らずに入口部に導かれ、 前記回転子通風ダク トを通った気 体は前記固定子通風ダク トを通ることを特徴とする回転電機。
3 3 . 固定子と、 前記固定子と対向して回転する回転子と、 前記回転子 と回転する回転軸と、 前記回転軸に設けられたファンと、 前記回転子の 内部に設けられた回転子通風ダク トを有し、 前記ファンで付勢された気 体は前記固定子の端部を通過し、 さらに、 前記端部を通過した気体は冷 却器を通過し、 前記冷却器を通過した気体は前記ファンを通らずに前記 回転子通風ダク トに導かれることを特徴とする回転電機。
3 4 . 第 1の冷却器及び第 2の冷却器を有する回転電機であって、 固定 子と、 前記固定子と対向して回転する回転子と、 前記固定子の内部に設 けられた固定子通風ダク 卜と、 前記回転子の内部に設けられた回転子通 風ダク トを有し、 さらに、 前記固定子の端部を冷却した気体を前記第 1 の冷却器に導く第 1の通風路と、 前記第 1の冷却器で冷却された気体を 前記回転子通風ダク トに導く第 2の通風路を有し、 前記回転子通風ダク ト ¾:通った気体を間隙を介して前記固定子通風ダク トに導く ものであつ て、 前記固定子通風路を通った気体を前記第 2の冷却器に導く第 3の通 風路を有することを特徴とする回転電機。
3 5 . 第 1の冷却器及び第 2の冷却器を有する回転電機であって、 固定 子と、 前記固定子と対向して回転する回転子と、 前記回転子の内部に設 けられた回転子通風ダク トを有し、 .前記固定子の端部を冷却した気体を 前記第 1の冷却器に導く第 1の通風路と、 前記第 1の冷却器を通った気 体を固定子通風ダク 卜に導く第 2の通風路を有し、 前記第 2の通風路は 前記第 1の冷却器の周方向外側を通って前記回転子通風ダク トに導かれ ることを特徴とする回転電機。
3 6 . 第 1の冷却器及び第 2の冷却器を有する回転電機であって、 固定 子と、 前記固定子と対向して回転する回転子と、 前記回転子を回転する 回転軸と、 前記回転軸に設けられたファンと、 前記固定子の内部に設け られた固定子通風ダク トと、 前記回転子の内部に設けられた回転子通風 ダク トを有し、 前記固定子の端.部を冷却した気体を前記第 1の冷却器に 導く第 1の通風路と、 前記固定子通風ダク トを通った気体を前記第 2の 冷却器に導く第 2の通風路と、 前記第 1の冷却器で冷却された気体をフ ァンを通らずに前記回転子通風ダク トに導く第 3の通風路を有し、 前記 第 1の通風路と第 2の通風路は、 互いに、 交差していることを特徴とす る回転電機。
3 7 . 固定子と、 前記固定子と対向して回転する回転子と、 前記回転子 と回転する回転軸と、 前記回転軸の端部付近に設けられたファンと、 前 記固定子の内部に設けられた固定子通風ダク トと、 前記回転子の内部に 設けられた回転子通風ダク トと、 前記ファンの径方向内側に設けられ前 記回転軸と回転する通風孔を有し、 前記通風孔は前記回転子通風ダク ト に連通し、 前記ファンで昇圧された冷却媒体は冷却器で冷却されてから 前記ファンの径方向内側に設けられた通風孔に導かれることを特徴とす る回転電機。
3 8 . 固定子と、 前記固定子と対向して回転する回転子と、 前記回耘子 と回転する回転軸と、 前記回転軸の端部付近に設けられたファンと、 前 記固定子の内部に設けられた固定子通風ダク トと、 前記回転子の内部に 設けられた回転子通風ダク トと、 前記ファンの径方向内側に設けられ前 記回転軸と回転する通風孔を有し、 前記ファン下流側の圧力と前記通風 孔の圧力の差圧は 2 k P aより大きいことを特徴とする回転電機。
PCT/JP2002/001952 2001-03-07 2002-03-04 Dynamo-electric machine WO2002071578A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/469,763 US7071586B2 (en) 2001-03-07 2002-03-04 Dynamo-electric machine
EP02705070.7A EP1367697B1 (en) 2001-03-07 2002-03-04 Electric rotating machine
JP2002570378A JP3832434B2 (ja) 2001-03-07 2002-03-04 回転電機
US11/265,227 US7294943B2 (en) 2001-03-07 2005-11-03 Electric rotating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP01/01775 2001-03-07
PCT/JP2001/001775 WO2002071577A1 (fr) 2001-03-07 2001-03-07 Machine electrique rotative

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10469763 A-371-Of-International 2002-03-04
US11/265,227 Continuation US7294943B2 (en) 2001-03-07 2005-11-03 Electric rotating machine

Publications (1)

Publication Number Publication Date
WO2002071578A1 true WO2002071578A1 (en) 2002-09-12

Family

ID=11737101

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2001/001775 WO2002071577A1 (fr) 2001-03-07 2001-03-07 Machine electrique rotative
PCT/JP2002/001952 WO2002071578A1 (en) 2001-03-07 2002-03-04 Dynamo-electric machine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001775 WO2002071577A1 (fr) 2001-03-07 2001-03-07 Machine electrique rotative

Country Status (4)

Country Link
US (1) US7071586B2 (ja)
EP (1) EP1367697B1 (ja)
JP (1) JP3832434B2 (ja)
WO (2) WO2002071577A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013459A1 (de) * 2003-08-01 2005-02-10 Siemens Aktiengesellschaft Elektrische maschine mit läuferkühlung und entsprechendes kühlungsverfahren
JP2017535242A (ja) * 2014-11-18 2017-11-24 シーメンス アクティエンゲゼルシャフト 回転電機内の固定子の軸端領域の冷却

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016451A1 (de) * 2004-03-31 2005-11-03 Alstom Technology Ltd Turbogenerator
EP1703618B1 (de) * 2005-03-14 2013-05-15 Kaeser Kompressoren AG Luftgekühlter Elektromotor
US7763996B2 (en) 2006-08-28 2010-07-27 General Electric Company Method and apparatus for cooling generators
US7557475B2 (en) * 2006-08-28 2009-07-07 General Electric Company Methods and apparatus for cooling generators
JP4528865B2 (ja) * 2008-04-25 2010-08-25 株式会社日立製作所 回転電機
JP5260563B2 (ja) * 2010-01-07 2013-08-14 株式会社日立製作所 永久磁石式発電機またはモータ
EP2367267B1 (en) * 2010-03-19 2018-10-24 General Electric Technology GmbH Electric generator and method for inspecting an electric generator
US8519581B2 (en) * 2010-06-08 2013-08-27 Remy Technologies, Llc Electric machine cooling system and method
US8456046B2 (en) * 2010-06-08 2013-06-04 Remy Technologies, Llc Gravity fed oil cooling for an electric machine
US8269383B2 (en) * 2010-06-08 2012-09-18 Remy Technologies, Llc Electric machine cooling system and method
DE102012205756A1 (de) * 2012-04-10 2013-10-10 Continental Automotive Gmbh Rotor für eine fremderregte Synchronmaschine
EP3223406B1 (en) 2014-11-18 2021-03-24 Mitsubishi Electric Corporation Rotary electric machine
CN106451864B (zh) * 2016-11-11 2019-05-14 沈阳工业大学 永磁牵引电机混合通风冷却***及方法
CN110311511B (zh) * 2019-07-16 2020-06-05 珠海格力电器股份有限公司 电机的导流端环、电机定子、电机和家用电器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739208A (en) * 1971-12-03 1973-06-12 Gen Electric Reverse flow cooling system for a dynamoelectric machine
JPS5778351A (en) * 1980-11-04 1982-05-17 Hitachi Ltd Rotor cooling device of rotary electric machine
JPS61129457U (ja) * 1985-01-30 1986-08-13
DE4032944A1 (de) 1989-12-11 1991-06-13 Asea Brown Boveri Gasgekuehlte elektrische maschine
EP0522210A1 (de) 1991-07-12 1993-01-13 Siemens Aktiengesellschaft Verfahren zum Kühlen einer umlaufenden elektrischen Maschine und elektrische Maschine zur Durchführung des Verfahrens
JP2000125511A (ja) * 1998-10-15 2000-04-28 Hitachi Ltd 回転電機の冷却装置
EP1005139A2 (en) * 1998-11-25 2000-05-31 Hitachi, Ltd. Cooling device for an electric rotating machine
JP2000299951A (ja) * 1999-04-13 2000-10-24 Fuji Electric Co Ltd 回転電気機械の円筒形回転子

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1594058A (en) * 1924-10-24 1926-07-27 Gen Electric Dynamo-electric machine
US2695368A (en) * 1953-01-27 1954-11-23 Gen Electric Dynamoelectric machine stator winding with fluid-cooling passages in conductor bars
US2742582A (en) * 1953-07-21 1956-04-17 Gen Electric Gas-cooled high voltage bushing for large generator
US2887593A (en) * 1955-09-21 1959-05-19 Bbc Brown Boveri & Cie Turbo-generator with gas cooling in closed cycle
US3110827A (en) * 1960-08-12 1963-11-12 Westinghouse Electric Corp Dynamoelectric machine
JPS596135B2 (ja) * 1975-07-12 1984-02-09 株式会社東芝 突極形回転電機
US4051400A (en) * 1976-02-05 1977-09-27 General Electric Company End gas gap baffle structure for reverse flow cooled dynamoelectric machine
US4071790A (en) * 1976-06-01 1978-01-31 General Electric Company Cooling arrangement for rotor end turns of reverse flow cooled dynamoelectric machines
JPS5678352A (en) * 1979-11-30 1981-06-27 Toshiba Corp Rotary electric machine
JPS5728541A (en) * 1980-07-25 1982-02-16 Toshiba Corp Rotary electric machine
JPS5740343A (en) * 1980-08-20 1982-03-05 Toshiba Corp Counter-flow cooling type electric rotary machine
JPS589545A (ja) * 1981-07-07 1983-01-19 Hitachi Ltd 回転電機の通風冷却装置
JPS5815450A (ja) * 1981-07-16 1983-01-28 Mitsubishi Electric Corp 回転電機の通風装置
JPS58116042A (ja) * 1981-12-28 1983-07-11 Toshiba Corp 回転電機
JPS58222755A (ja) * 1982-01-22 1983-12-24 Mitsubishi Electric Corp 回転電機
JPS59113736A (ja) * 1982-12-20 1984-06-30 Hitachi Ltd 回転電機の通風冷却装置
JPS59172953A (ja) * 1983-03-17 1984-09-29 Hitachi Ltd 回転電機の通風冷却装置
US4547688A (en) * 1984-05-07 1985-10-15 Westinghouse Electric Corp. Dynamoelectric machine with rotor ventilation system including prewhirl inlet guide vanes
US4546279A (en) * 1984-05-07 1985-10-08 Westinghouse Electric Corp. Dynamoelectric machine with rotor ventilation system including exhaust coolant gas diffuser and noise baffle
JPH04351439A (ja) * 1991-05-28 1992-12-07 Toshiba Corp 回転電機
US5652469A (en) * 1994-06-16 1997-07-29 General Electric Company Reverse flow ventilation system with stator core center discharge duct and/or end region cooling system
US5633543A (en) * 1994-12-12 1997-05-27 General Electric Co. Pressure equalizer and method for reverse flow ventilated armature in power generator
JPH10150740A (ja) 1996-11-19 1998-06-02 Hitachi Ltd 回転電機
DE19736785A1 (de) * 1997-08-23 1999-02-25 Abb Research Ltd Turbogenerator
DE19818149A1 (de) * 1998-04-23 1999-10-28 Asea Brown Boveri Überströmkanäle eines Generators mit direkter Saugkühlung
JP2000308311A (ja) * 1999-04-14 2000-11-02 Hitachi Ltd 回転電機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3739208A (en) * 1971-12-03 1973-06-12 Gen Electric Reverse flow cooling system for a dynamoelectric machine
JPS5778351A (en) * 1980-11-04 1982-05-17 Hitachi Ltd Rotor cooling device of rotary electric machine
JPS61129457U (ja) * 1985-01-30 1986-08-13
DE4032944A1 (de) 1989-12-11 1991-06-13 Asea Brown Boveri Gasgekuehlte elektrische maschine
EP0522210A1 (de) 1991-07-12 1993-01-13 Siemens Aktiengesellschaft Verfahren zum Kühlen einer umlaufenden elektrischen Maschine und elektrische Maschine zur Durchführung des Verfahrens
JP2000125511A (ja) * 1998-10-15 2000-04-28 Hitachi Ltd 回転電機の冷却装置
EP1005139A2 (en) * 1998-11-25 2000-05-31 Hitachi, Ltd. Cooling device for an electric rotating machine
JP2000299951A (ja) * 1999-04-13 2000-10-24 Fuji Electric Co Ltd 回転電気機械の円筒形回転子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1367697A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013459A1 (de) * 2003-08-01 2005-02-10 Siemens Aktiengesellschaft Elektrische maschine mit läuferkühlung und entsprechendes kühlungsverfahren
US7646119B2 (en) 2003-08-01 2010-01-12 Siemens Aktiengesellschaft Electric machine with rotor cooling and corresponding cooling method
JP2017535242A (ja) * 2014-11-18 2017-11-24 シーメンス アクティエンゲゼルシャフト 回転電機内の固定子の軸端領域の冷却

Also Published As

Publication number Publication date
US7071586B2 (en) 2006-07-04
US20040090131A1 (en) 2004-05-13
JP3832434B2 (ja) 2006-10-11
JPWO2002071578A1 (ja) 2004-07-02
WO2002071577A1 (fr) 2002-09-12
EP1367697A4 (en) 2005-10-05
EP1367697B1 (en) 2016-06-15
EP1367697A1 (en) 2003-12-03

Similar Documents

Publication Publication Date Title
EP2135344B1 (en) Cooling an electrical machine
WO2002071578A1 (en) Dynamo-electric machine
JP5959687B1 (ja) 回転電機
JP4961533B2 (ja) 空気冷却システムを備えた電気機械
US8648505B2 (en) Electrical machine with multiple cooling flows and cooling method
CN101473514B (zh) 冷却电机的方法和设备
US7294943B2 (en) Electric rotating machine
EP0917757A1 (en) Rotary electrical machines
CN111969767A (zh) 一种电机冷却***和电机
JP6336503B2 (ja) ブラシレス回転電機
CN113315298A (zh) 一种风冷水冷结合冷却的电机
WO2008059687A1 (fr) Moteur rotatif
JP2001298906A (ja) 回転電機
EP4327437A1 (en) Cooling of an electric motor
CN110556973B (zh) 用于冷却电机的***
JPH11150898A (ja) 回転電機の回転子
JPH0951655A (ja) タービン発電機の回転子コイルエンド冷却装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BG BR BZ CA CN CO CR CU CZ DM DZ EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK SL TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002570378

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002705070

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10469763

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002705070

Country of ref document: EP