WO2002048421A1 - Method for regenerating container for plasma treatment, member inside container for plasma treatment, method for preparing member inside container for plasma treatment, and apparatus for plasma treatment - Google Patents

Method for regenerating container for plasma treatment, member inside container for plasma treatment, method for preparing member inside container for plasma treatment, and apparatus for plasma treatment Download PDF

Info

Publication number
WO2002048421A1
WO2002048421A1 PCT/JP2001/010715 JP0110715W WO0248421A1 WO 2002048421 A1 WO2002048421 A1 WO 2002048421A1 JP 0110715 W JP0110715 W JP 0110715W WO 0248421 A1 WO0248421 A1 WO 0248421A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma processing
plasma
plasma treatment
processing container
container
Prior art date
Application number
PCT/JP2001/010715
Other languages
French (fr)
Japanese (ja)
Inventor
Kosuke Imafuku
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to KR1020037007810A priority Critical patent/KR100945315B1/en
Priority to US10/450,094 priority patent/US20040081746A1/en
Priority to JP2002550132A priority patent/JP4440541B2/en
Publication of WO2002048421A1 publication Critical patent/WO2002048421A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/01Selective coating, e.g. pattern coating, without pre-treatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Definitions

  • the present invention relates to a method for regenerating a plasma processing container, a member inside the plasma processing container, a method for manufacturing a material inside the plasma processing container, and a plasma processing apparatus.
  • the present invention relates to a method for regenerating a plasma processing container, a member inside the plasma processing container, a method for manufacturing a member inside the plasma processing container, and a plasma processing apparatus.
  • the present invention relates to a method for regenerating a plasma processing container, a member inside the plasma processing container, a method for manufacturing the same, and a plasma processing apparatus.
  • a plasma processing container capable of regenerating a member whose surface has been deteriorated by use in plasma as new.
  • a plasma processing apparatus such as an etching apparatus is used.
  • reactive gas such as CF 4 is used as a processing gas, so the internal members are easily damaged by chemicals. It is susceptible to erosion damage.
  • the inner surface of the plasma processing vessel had been protected by covering the surface of the base material, such as aluminum, with a coating with low plasma consumption.
  • a coating with low plasma consumption e.g., sprayed films of alumina, rare earth oxides, etc. were used as coatings because of their low plasma consumption.
  • a 1.5-mm-thick polyimide plate was installed on the base of the plasma processing vessel inner member made of Rimidium or the like to protect the members.
  • equipment parts a large number of replaceable parts with conductive or insulating properties such as four-force slings and shield rings (hereinafter referred to as “equipment parts”) are located at predetermined positions in the processing chamber. Had been arranged.
  • the sprayed coating deteriorates from the surface after prolonged use and the film thickness decreases. This reduction inevitably determines the life of the internal parts, and used parts need to be replaced with new ones, which is uneconomical.
  • the sprayed film has many irregularities on the surface, and particularly in the convex portion, particles such as reaction products with the processing gas are likely to be formed in the initial stage of using the inner member of the plasma processing vessel, which may cause a product defect.
  • the present invention has been made in view of the above-mentioned problems of a conventional inner member of a plasma processing container, and an object of the present invention is to provide a new and improved method for regenerating a plasma processing container that can be regenerated as new. And a method for manufacturing a plasma processing container internal member and a plasma processing container, and a plasma processing apparatus.
  • the aim of the present invention is to provide a method for regenerating a plasma processing container that can repair a device part as a substitute by a simple method even when the shape of the device part is partially deformed. Disclosure of the invention
  • the first invention of the present application provides a method in which the surface of a base material is coated with a sprayed film of any one of alumina, rare earth oxide, polyimide, and polybenzoimidazono.
  • the same material as that of the sprayed film is re-sprayed on the sprayed film of the member inside the plasma processing container that has been deteriorated by use in plasma. This makes it possible to regenerate a plasma processing vessel whose surface has deteriorated due to use in plasma, as well as a new one.
  • a step of performing dry ice blasting before the re-spraying may be included. This makes it possible to suppress the initial generation of particles.
  • the part when a part of the part disposed at a predetermined position in the plasma processing container is deformed by the plasma processing, the part is removed and then formed into a shape before the deformation. The formed part is joined to the portion from which the deformed portion has been removed.
  • the entire equipment part is replaced with a new part by replacing only the deformed part with a part formed in the shape before deformation.
  • the equipment can be restored to its original shape by simple repair work.
  • the third invention of the present application is an inner member of a plasma processing vessel, wherein a surface of a base material is coated with a sprayed film of any one of alumina, rare earth oxide, polyimide, and polybenzoimidazole;
  • the sprayed film is characterized by dry ice blasting after spraying.
  • the fourth invention of the present application is a method for manufacturing a member inside a plasma processing vessel, which comprises coating a surface of a base material with a sprayed film of any one of alumina, rare earth oxide, polyimide, and polybenzoimidazole. And dry blasting after spraying any of the sprayed films.
  • a plasma processing container inner material and a manufacturing method capable of suppressing generation of particles in an early stage of use and regenerating a new product without functional deterioration even after re-spraying. it can.
  • FIG. 1 is a configuration diagram of a plasma processing apparatus according to the first and second embodiments.
  • FIG. 2 is a schematic cross-sectional view of the inner member of the plasma processing container according to the first embodiment.
  • Fig. 3 shows the process of regenerating the members inside the plasma processing vessel according to the first embodiment. It is sectional drawing which represents typically.
  • FIG. 4 is a cross-sectional view schematically showing the process of regenerating the members inside the plasma processing container according to the second embodiment.
  • FIG. 5 is an internal structural diagram of an etching apparatus as a plasma apparatus according to the third embodiment. .
  • Figure 6 is a cross-sectional view of the focus ring.
  • FIG. 7 is a diagram showing an embodiment of a method for regenerating a component for a plasma device according to the third embodiment.
  • Figure 8 is a cross-sectional view of the shield ring. '
  • FIG. 9 is a view showing another embodiment of the method for restoring a component for a plasma device according to the third embodiment.
  • the regenerable plasma processing vessel inner member according to the present invention can be used for various members in a plasma processing apparatus, for example, a deposit shield, a baffle plate, a focus ring, an insulator ring, a shield ring, a bellows force par, an electrode, and the like. Wear.
  • description will be mainly given of an example of a semiconductor manufacturing apparatus.
  • FIG. 1 is a cross-sectional view showing a configuration of a plasma apparatus 1 according to the first and second embodiments of the present invention.
  • the processing chamber 2 in the plasma apparatus 1 is formed as a cylindrical processing vessel made of a substrate made of, for example, aluminum subjected to anodizing and alumite processing, and is grounded.
  • An insulating support plate 3 made of ceramic or the like is provided at the bottom of the processing chamber 2, and a substantially circular substrate for mounting a substrate to be processed, for example, a semiconductor wafer W having a diameter of 8 inches, is provided on the insulating support plate 3.
  • a columnar susceptor support 4 is provided.
  • a susceptor 5 constituting a lower electrode is provided on the susceptor support 4.
  • Luther (HPF) 6 is connected.
  • a heat exchange chamber 7 is provided inside the susceptor support 4, and a heat exchange medium circulates from the outside through a heat exchange medium introduction pipe 8 and a heat exchange medium discharge pipe 9, and the semiconductor wafer W is transferred through the susceptor 5. It is configured so that it can be maintained at a predetermined temperature. The temperature is automatically controlled by a temperature sensor (not shown) and a temperature control mechanism (not shown).
  • an electrostatic chuck 11 for holding the semiconductor wafer W by suction On the susceptor 5, an electrostatic chuck 11 for holding the semiconductor wafer W by suction is provided.
  • the electrostatic chuck 11 has a configuration in which, for example, a conductive thin-film electrode 12 is sandwiched between polyimide resins from above and below. When a voltage of 5 kV is applied to the electrode 12, the Coulomb force causes the wafer W to be held on the upper surface of the electrostatic chuck 11 by suction.
  • a configuration in which the wafer W is held on the susceptor 5 by pressing the peripheral portion of the wafer W by a mechanical clamp without depending on such an electrostatic chuck may be employed.
  • the insulating plate 3, the susceptor support 4, the susceptor 5, and the electrostatic chuck 11 are provided with a gas passage 1 for supplying, for example, He gas to the back surface of the semiconductor wafer W.
  • a substantially annular focus ring 15 is provided around the susceptor 5 so as to surround the electrostatic chuck 11.
  • the focus ring 15 is made of, for example, a conductive silicon and has a function of effectively causing ions in the plasma to enter the semiconductor wafer W.
  • An upper electrode 21 is supported at an upper portion in the processing chamber 2 via an insulating member 25 and a shield ring 55.
  • the upper electrode 21 has, for example, an electrode support 22 made of aluminum and an electrode plate 23 made of silicon, for example, which is provided in parallel with the susceptor 5 and has a large number of discharge holes 24. .
  • the susceptor 5 is separated from the upper electrode 21 by, for example, about 10 to 60 mm.
  • the electrode support 22 is provided with a gas inlet 26 and is connected to a gas supply pipe 27. Further, the processing gas is supplied via the valve 28 and the mass flow controller 29. The etching gas and other processing gases are introduced into the processing chamber 2.
  • a gas containing a halogen element such as a fluorocarbon gas (CxFy) or a hide-port fluorocarbon gas (CpHqFr), can be used.
  • a fluorocarbon gas CxFy
  • CpHqFr hide-port fluorocarbon gas
  • the lower part of the processing chamber 2 is connected to an exhaust pipe 31 leading to an exhaust device 35 such as a vacuum pump.
  • the air generator 35 is equipped with a vacuum pump such as a turbo-molecular pump, and the processing chamber 2 ⁇ can be evacuated to an arbitrary degree of reduced pressure, for example, from 10 mTorr to 1000 mTorr.
  • a gate valve 32 is provided on the side wall of the processing chamber 2 so that the semiconductor wafer W can be transferred to and from an adjacent load lock chamber (not shown) with the gate valve 32 opened. I have.
  • a high-frequency power supply system of the combed plasma device 1 will be described.
  • power is supplied to the upper electrode 21 from the first high-frequency power supply 40 that outputs high-frequency power with a frequency of, for example, 27 to 15 OMHz, via the matching box 41 and the feed rod 33. It has a configuration.
  • a low-pass filter (LPF) 42 is connected to the upper electrode 21.
  • a high-density plasma can be formed in the processing chamber 2 in a preferable dissociated state, and plasma processing under low pressure conditions becomes possible.
  • the high frequency power supply 40 for example, a 6 OMHz power supply can be used.
  • the susceptor 5 serving as the lower electrode is configured so that power from a high-frequency power supply 50 that outputs high-frequency power with a frequency of, for example, 4 MHz or less is supplied via a matching unit 51.
  • a frequency in such a range an appropriate ion effect can be imparted to the semiconductor wafer W without damaging it.
  • the inner member of the plasma processing vessel according to the present embodiment is exposed to plasma during processing, for example, the inner wall 2a of the processing chamber 2, the insulating support plate 3, the susceptor, and the like. Applicable to support base 4, susceptor 5, electrostatic chuck 11, focus ring 15, insulating member 25, shield ring 55, etc.
  • FIG. 2 is a schematic cross-sectional view of the plasma processing vessel inner member 100 according to the present embodiment.
  • FIG. (A) it is, immediately after the spraying ⁇
  • (b) shows the post-C0 2 blasting.
  • a sprayed film 110 is formed on the surface of a base material 120 of a member inside a plasma processing vessel made of A1.
  • the sprayed film 110 an alumina (Al 2 0 3), rare earth oxides, such as polyimide or polybenzimidazole Zi Mi imidazole can be used.
  • thermal spraying has been performed by impact at the time of collision due to heat and flash speed, but here, spraying is performed only by impact at the time of collision due to jet speed. As a result, thermal spraying with a thickness of several mm is possible, and it can be used as a thermal spray coating.
  • the film immediately after thermal spraying is in a state with very many irregularities. If this film is used inside the plasma processing vessel as it is, particles are generated by collision of ions in the plasma, especially in the fracture layer (crack layer) of the convex part. It may be a cause of deterioration of the film.
  • Fig. 2 (b) when CO 2 blasting is performed immediately after thermal spraying, the surface irregularities are flattened, and the members inside the plasma processing vessel are used for a certain period of time in the plasma processing vessel. Can be realized, and the initial generation of particles can be suppressed. In this process, the thickness of the thermal sprayed ⁇ -surface 131 shown in Fig. 2 (a) is reduced by t1.
  • FIG. 3 shows that the member 100 in the plasma processing container according to the first embodiment is regenerated.
  • FIG. 4 is a cross-sectional view schematically showing the progress of the operation.
  • respraying refers to spraying again on the sprayed film that has been applied before plasma treatment after use in the plasma treatment vessel. '.
  • a sprayed film 110 is formed on the surface of a substrate 120 of a plasma processing vessel inner member 100 made of A1 as a material, and the surface is flattened by CO 2 blasting. is there.
  • Alumina, rare earth oxide, polyimide, polybenzimidazole, or the like can be used for the thermal spray coating 110.
  • the sprayed film surface 133 shown in Fig. 3 (a) is consumed by the thickness t2 as shown in Fig. 3 (b).
  • Table 1 shows the reduction in film thickness t2 when the members inside the plasma processing vessel coated with various materials were left in the plasma processing apparatus.
  • the blast time was set to 30 sec and 60 sec, the blast amount was 5 ⁇ and 10 ⁇ , respectively.
  • the sprayed film surface 135 in Fig. 3 (b) is cut by thickness t3, the unevenness generated on the surface is flattened, and foreign matter can be removed.
  • the film thickness decrease t 3 according Rei_0 2 blasting in the case of Y 2 0 3 sprayed coating, 10 Myupaiiota more, and preferably from more than 20 ⁇ .
  • FIG. 3 (d) the same material as that of the sprayed film 110 is sprayed again.
  • the reusable plasma processing container inner member and the method of manufacturing the same with the countermeasures against the initial particles and the method of regenerating the plasma processing container internal member have the following advantages. It is possible to provide a member inside the plasma processing container that can suppress generation of particles and can be regenerated as new after use.
  • a method of removing the surface of the plasma processing chamber member after use foreign matter but are not limited to Rei_0 2 blasting is preferred not to remain on the surface. If the surface can be cleaned and cleaned with a chemical solution without damaging the base material, it can be polished with abrasives such as blasts using Alumina or SiC, sand sand, etc. Furthermore, chemical polishing by etching with a chemical solution may be applicable.
  • FIG. 4 is a cross-sectional view schematically illustrating a process of regenerating the plasma processing container inner member 100 according to the second embodiment.
  • (A) shows the initial state
  • (b) shows the state after use in the plasma processing vessel
  • (c) shows the state after respraying.
  • the sprayed film during re-spraying is more easily adhered. This is because the sprayed film is more likely to adhere during re-spraying when the surface is uneven after plasma treatment than when it is relatively flat. This makes it possible to regenerate a plasma processing vessel whose surface has deteriorated as a result of using it in plasma.
  • FIG. 5 is a diagram showing the internal structure of a plasma etching apparatus as a plasma processing apparatus.
  • the inside of the apparatus main body 201 of the plasma etching apparatus, that is, the processing chamber 221, has a large number of variously formed various shapes. Device parts are arranged at predetermined positions.
  • a lower electrode 202 made of a conductive material is provided below the processing chamber 221, and an electrostatic chuck 2 for sucking and holding a semiconductor wafer W as an object to be processed is further provided.
  • the lower electrode 202 is mounted on the lower electrode 202, and the lower electrode 202 is supported on an elevating shaft 205 that can move up and down in the direction of arrow A.
  • the elevating shaft 205 is connected to a high-frequency power source 207 via a matching unit 206, and the elevating shaft 205 is penetrated by an annular member 209 made of a conductive material. I have.
  • the lower electrode 202 is protected by an electrode holding member 229, and is formed of a conductive material such as stainless steel between the electrode protecting member 229 and the bottom surface of the apparatus main body 201.
  • An expandable bellows 208 is seated.
  • a focus ring 210 made of a conductive material or an insulating material is provided on the upper side surface of the lower electrode 202, and a first bellows cover is provided on the bottom surface of the focus ring 210.
  • a second bellows power par 2 1 2 is provided upright from the bottom of the main body 201 so as to partially overlap the first bellows cover 2 1 1 .
  • an upper electrode 213 made of a conductive material is disposed in a pair with the lower electrode 202, and the upper electrode 213 is further matched with a matching device 218.
  • a number of gas discharge holes 2 16 penetrate the upper electrode 2 13, and the gas supply holes 2 17 provided on the top Reactive gas containing CF (fluorocarbon) -based gas is supplied to the processing chamber 221 through the gas discharge port 216. That is, the gas supply port 217 is connected to the gas supply source 220 through the flow control valve 218 and the on-off valve 219, and the reaction gas from the gas supply source 220 opens and closes.
  • the gas is supplied to the gas supply port 217 via the valve 219 and the flow control valve 218, and is discharged from the gas discharge hole 216 and introduced into the processing chamber 221.
  • the upper electrode 2 13 is held by a shield ring 222 formed of an insulating material, and a protective ring 222 is provided around the shield ring 222.
  • a shield member 224 is vertically provided from the outer periphery of the cover.
  • a discharge hole 225 is formed at the bottom of the device main body 201, and the discharge hole 225 is connected to a vacuum pump 226.
  • a workpiece transfer hole 227 is provided through the semiconductor wafer W, and the semiconductor wafer W is loaded and unloaded.
  • the elevation shaft 205 is Acts as a power supply rod, and high-frequency power of 13.56 MHz, for example, is applied to lower electrode 202 and upper electrode 2 13 from high-frequency power sources 207 and 215 Then, a glow discharge occurs.
  • the processing chamber 221 is depressurized to a predetermined vacuum atmosphere by the vacuum pump 226 and the reactive gas from the gas supply source 220 is supplied to the processing chamber 221, the above-mentioned glow discharge occurs.
  • the reactive gas is turned into a plasma through the filter, and the plasma is confined between the lower electrode 210 and the upper electrode 21 3 by the focus ring 210 and the shield ring 222, and as a result, A desired fine color is applied to the masked semiconductor wafer W.
  • semiconductors E and W are the forces S that are finely processed by the dry etching process.
  • the surfaces of various device parts that are exposed to the plasma atmosphere such as the focus ring 210 and the shield ring 222, are also observed. Since it is consumed by etching, it is necessary to replace these worn out equipment parts with new parts according to the degree of wear. However, if such a worn out device part is always replaced with a new part, the production cost will rise or if the new part is not in stock, it will be lost. The production line must be stopped.
  • the deformed part when a part of each component is deformed, the deformed part is cut off, and the part formed in the shape before the deformation is cut and removed. Welded to the location.
  • Fig. 6 is a cross-sectional view of the focus ring 210.
  • the focus ring 210 is a ring shape having an inner diameter D1 and an outer diameter D2 in the case of an ordinary new part.
  • the peripheral surface has a stepped portion 230. '
  • the focus ring 2 1 0 is formed of an insulating ten raw material such as conductive 'material or S i O 2, such as A 1, the plasma uniformity around the semiconductor wafer W when it is formed of a conductive material When formed from an insulating material, it acts to form high-density plasma on the semiconductor wafer W.
  • the focus ring 210 since the focus ring 210 is exposed to a plasma atmosphere, The surface is etched away by the plasma, and as a result, as shown in Fig. 7 (a), a part of the focus ring 210 is deformed and a deformed part 210a is formed. .
  • a new part 210b having dimensions and shape before deformation is separately manufactured, while along the cut line C1 in FIG. 7 (a). Then, the focus ring 210 is cut to remove the deformed part 210a, and as shown in [B] of Fig. 7 (c), a new part 210 is added to the part corresponding to the deformed part 210a. b is welded to produce a focus ring 210 having a stepped portion 230 similar to that of FIG. 6 on the inner peripheral surface. Then, the focus ring 210 thus repaired / manufactured is disposed at a predetermined position of the plasma etching apparatus, whereby a desired etching process is restarted.
  • the deformed part 210a is removed and replaced with a new part 210b.
  • the desired focus ring 210 can be obtained again only by itself, so that it is not necessary to always replace the deformed focus ring with a new focus ring, and it is possible to repair a device part as a substitute by a simple method. Thus, the cost can be reduced.
  • the plasma etching device it goes without saying that the same can be applied to other device parts, for example, the shield ring 222, the protective ring 222, the shield member 222, and the like.
  • FIGS. 8 and 9 show a case where the reproducing method of the third embodiment is applied to the shield ring 222.
  • FIG. 8 is a cross-sectional view of the above shield ring 222.
  • the shield ring 222 is formed in a ring shape having an inner diameter D3 and an outer diameter D4. Further, it is formed to have a thin portion 2 31.
  • the scino red ring 222 is also exposed to the plasma atmosphere, and as shown in FIG. Etching is performed to form a deformed portion 2 2 2a.
  • a new part 222-b having the dimensions and shape before deformation is separately manufactured.
  • the shield ring 222 was cut along the cut line C2 in Fig. 9 (a) to remove the deformed part 222a, and as shown in Fig. 9 (c), "E".
  • a new part 222b is welded to the part corresponding to the part 222a, and a shield ring 222 having a thin part 231 similar to that shown in Fig. 8 is manufactured.
  • the shield ring 222 thus repaired / manufactured is disposed again at a predetermined position of the plasma etching apparatus, whereby the desired etching process can be restarted.
  • the deformed portion 222a is removed and the new part 2 is removed.
  • the desired shield ring 2 2 2 can be obtained simply by replacing it with 22 b, eliminating the need to constantly replace the deformed focus ring with a new focus ring, and manufacturing device parts as replacements in a simple manner. The cost can be reduced.
  • the third embodiment is not limited to the above embodiment.
  • the ion etching assisted plasma etching apparatus has been described as an example. However, it is needless to say that a magnetic field assisted plasma etching apparatus may be used.
  • the surface of the substrate is made of alumina, rare earth oxide,
  • the deformed part is removed after removing the deformed part. Since it is joined to the removed part, even if the shape of the equipment part is deformed, it is not necessary to always replace the deformed equipment part with a new rail equipment part. It is possible to manufacture equipment parts as substitutes, reduce costs, and minimize the downtime of the production line due to lack of stock of new parts.
  • the alumina surface of the substrate in the plasma processing container member rare earth oxides, coated with a thermally sprayed film of polyimide or polybenzoxazole I Mi imidazole, by smoothing the surface by co 2 blasting prior to use, Initial particle generation can be suppressed.
  • the power described in the preferred embodiment of the method for regenerating the inner member of the plasma processing container and the renewable inner member of the plasma processing container according to the present invention is not limited to such an example. Les ,. It will be apparent to those skilled in the art that various changes or modifications may be made within the scope of the technical idea described in the appended claims. It is understood that it belongs to the technical scope. ⁇ Industrial applicability
  • the present invention can be applied to the renewal of internal parts of a plasma processing vessel whose surface has been deteriorated by use in plasma as if it were a new one, and particularly to the manufacturing process of semiconductor devices and LCD substrates. It is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

A method for regenerating a container for plasma treatment, characterized in that, to a thermally sprayed coating comprising one of alumina, a rare earth metal oxide, a polyimide and polybenzimidazole, which has been deteriorated by the use in plasma, on the surface of a member inside a container for plasma treatment having a substrate and, applied thereon, the thermally sprayed coating, a material being the same as that for the deteriorated sprayed coating is re-sprayed. The method allows a container for plasma treatment having a surface deteriorated by the use in plasma to be generated into the one as good as new.

Description

明 細 書  Specification
プラズマ処理容器の再生方法, プラズマ処理容器内部材, プラズマ処理容器内部 材の製造方法, 及びプラズマ処理装置 技術分野  TECHNICAL FIELD The present invention relates to a method for regenerating a plasma processing container, a member inside the plasma processing container, a method for manufacturing a material inside the plasma processing container, and a plasma processing apparatus.
本発明は, プラズマ処理容器の再生方法, プラズマ処理容器内部材, プラズマ 処理容器内部材の製造方法, 及ぴプラズマ処理装置に関する。 背景技術  The present invention relates to a method for regenerating a plasma processing container, a member inside the plasma processing container, a method for manufacturing a member inside the plasma processing container, and a plasma processing apparatus. Background art
本発明は, プラズマ処理容器の再生方法とプラズマ処理容器内部材とその製造 方法, 及びプラズマ処理装置にかかり, 特にプラズマ中での使用により表面が劣 化した部材を新品同様に再生できるプラズマ処理容器の再生方法に関する。  The present invention relates to a method for regenerating a plasma processing container, a member inside the plasma processing container, a method for manufacturing the same, and a plasma processing apparatus. In particular, a plasma processing container capable of regenerating a member whose surface has been deteriorated by use in plasma as new. Related to the reproduction method.
一般に, 半導体及び液晶等を用いたデバイスを製造する工程においては, エツ チング装置などのプラズマ処理装置が用いられる。 それらのプラズマ処理装置内 (プラズマ処理容器内) では, 処理ガスとして C F 4などの反応性ガスが用いら れるため, 内部材は化学的損傷を受け易く, また, プラズマによって励起された' 'イオン等によって, エロージョン損傷を受け易い。 Generally, in the process of manufacturing devices using semiconductors and liquid crystals, a plasma processing apparatus such as an etching apparatus is used. In these plasma processing devices (plasma processing vessels), reactive gas such as CF 4 is used as a processing gas, so the internal members are easily damaged by chemicals. It is susceptible to erosion damage.
そこで従来, プラズマ処理容器内部材は, アルミニウム材など基材の表面を, プラズマ消耗の少ない被膜で覆い保護していた。 'とくに, アルミナ, 希土類酸化 物等の溶射膜は, プラズマ消耗が少なく, 被膜として用いられていた。 また, 了 ミ二ゥムなどを材料とするプラズマ処理容器内部材の下地の上に, 例えば厚さ 1 . 5 mmのポリイミド板を設置し, 部材を保護していた。  Therefore, in the past, the inner surface of the plasma processing vessel had been protected by covering the surface of the base material, such as aluminum, with a coating with low plasma consumption. 'Especially, sprayed films of alumina, rare earth oxides, etc. were used as coatings because of their low plasma consumption. In addition, a 1.5-mm-thick polyimide plate, for example, was installed on the base of the plasma processing vessel inner member made of Rimidium or the like to protect the members.
一方, この種のプラズマ処理装置では, フォー力スリングゃシールドリング等 の導電性又は絶縁性を有する多数の交換可能な部品類(以下, 「装置部品」とレヽう) が処理室内の所定位置に配設されていた。  On the other hand, in this type of plasma processing equipment, a large number of replaceable parts with conductive or insulating properties such as four-force slings and shield rings (hereinafter referred to as “equipment parts”) are located at predetermined positions in the processing chamber. Had been arranged.
そして, 上記プラズマ処理装置では, 処理室内で生成されるプラズマにより装 置部品の表面が削り取られて変形するため, 斯かる変形部品を消耗品として廃棄 し, 新規部品と交換していた。 '  In addition, in the above-described plasma processing apparatus, since the surface of the equipment part is shaved and deformed by the plasma generated in the processing chamber, the deformed part is discarded as a consumable and replaced with a new part. '
しかしながら, 溶射膜は長時間の使用後には表面から劣化し膜厚が減少するこ とは避けられず, この減少が, 内部材の寿命を決定しており, 使用済みの部材は 新品と交換が必要で不経済であった。 また, 溶射膜は表面に凹凸が多く, 特に凸 部はプラズマ処理容器内部材使用初期に処理ガスとの反応生成物などのパーティ クルが形成されやすく, 製品不良を招く可能性があった。 However, the sprayed coating deteriorates from the surface after prolonged use and the film thickness decreases. This reduction inevitably determines the life of the internal parts, and used parts need to be replaced with new ones, which is uneconomical. In addition, the sprayed film has many irregularities on the surface, and particularly in the convex portion, particles such as reaction products with the processing gas are likely to be formed in the initial stage of using the inner member of the plasma processing vessel, which may cause a product defect.
ポリイミド等の板を設置する場合にも同様に表面が劣ィ匕すると交換が必要であ り, また, 下地と樹脂板との間に隙間ができることが避けられず, 密着性の悪さ から汚れが溜まるなどの問題があった。  Similarly, when a board made of polyimide or the like is installed, if the surface is inferior, it is necessary to replace the board. In addition, it is unavoidable that a gap is formed between the base and the resin board. There was a problem such as accumulation.
一方,上述した交換可能な装置部品では,装置部品が消耗して変形した場合は, 上述したように当該変形した部品を消耗品として廃棄し, 新規部品と交換する場 合がある。 しかし, 斯かる消耗した装置部品を常に新規部品と交換することはコ スト的に高くなり, また前記新規部品の在庫がないときは生産ラインの停止を余 儀なくされるという問題点があった。  On the other hand, with the replaceable device parts described above, if the device parts are worn and deformed, as described above, the deformed parts may be discarded as consumables and replaced with new parts. However, there is a problem in that it is costly to constantly replace such worn out device parts with new parts, and when the new parts are not in stock, the production line must be stopped. .
本発明は, 従来のブラズマ処理容器内部材が有する上記問題点に鑑みてなされ たものであり, 本発明の目的は, 新品同様に再生の可能な, 新規かつ改良された ブラズマ処理容器の再生方法とプラズマ処理容器内部材とブラズマ処理容器の製 造方法, 及びプラズマ処理装置を提供することである。  SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of a conventional inner member of a plasma processing container, and an object of the present invention is to provide a new and improved method for regenerating a plasma processing container that can be regenerated as new. And a method for manufacturing a plasma processing container internal member and a plasma processing container, and a plasma processing apparatus.
さらに, 装置部品の一部形状が変形した場合であっても簡単な方法で代替品と しての装置部品を修復することのできるブラズマ処理容器の再生方法を提供する ことを目白勺とする。 発明の開示  Furthermore, the aim of the present invention is to provide a method for regenerating a plasma processing container that can repair a device part as a substitute by a simple method even when the shape of the device part is partially deformed. Disclosure of the invention
上記課題を解決するため, 本願第 1の発明は, 基材の表面が, アルミナ, 希土 類酸化物, ポリイミドまたはポリベンゾィミダゾーノレのうちのレ、ずれかの溶射膜 によつて被覆されたブラズマ処理容器の内部の部材の, プラズマ中での使用によ り劣ィ匕した溶射膜に, 前記溶射膜と同一の材料を再溶射することを特徴とする。 これにより, プラズマ中での使用により表面が劣化したプラズマ処理容器を新品 •同様に再生することが可能となる。  In order to solve the above-mentioned problems, the first invention of the present application provides a method in which the surface of a base material is coated with a sprayed film of any one of alumina, rare earth oxide, polyimide, and polybenzoimidazono. The same material as that of the sprayed film is re-sprayed on the sprayed film of the member inside the plasma processing container that has been deteriorated by use in plasma. This makes it possible to regenerate a plasma processing vessel whose surface has deteriorated due to use in plasma, as well as a new one.
よりよい形態として, 前記再溶射する前に, ドライアイスブラストを行う工程 を有してもよい。 これにより, 初期のパーティクル発生を抑制が可能となる。 よりよい形態として, 前記再溶射した後に, ドライアイスブラストを行う工程 有,しても良い。 As a better mode, a step of performing dry ice blasting before the re-spraying may be included. This makes it possible to suppress the initial generation of particles. As a better mode, there may be a step of performing dry ice blasting after the re-spraying.
本願第 2の発明は, プラズマ処理により, 前記プラズマ処理容器内の所定位置 に配設される前記部品の一部形状が変形した場合は,当該変形部品を除去した後, 変形前の形状に形成された部品を前記変形部分が除去された箇所に接合すること を特徴としている。  In the second invention of the present application, when a part of the part disposed at a predetermined position in the plasma processing container is deformed by the plasma processing, the part is removed and then formed into a shape before the deformation. The formed part is joined to the portion from which the deformed portion has been removed.
上記方法によれば, 装置部品の一部形状が変形した場合は, 当該変形部分のみ を変形前の形状に形成された部品と交換することにより, 当該装置部品全体を新 規部品と交換することなく, 簡単な補修作業でもつて該装置部品をもとの形状に 復元することができる。  According to the above method, when the shape of a part of an equipment part is deformed, the entire equipment part is replaced with a new part by replacing only the deformed part with a part formed in the shape before deformation. In addition, the equipment can be restored to its original shape by simple repair work.
本願第 3の発明は,プラズマ処理容器内部材であって,基材の表面がアルミナ, 希土類酸化物, ポリイミドまたはポリベンゾィミダゾールのうちのいずれかの溶 射膜によって被覆され, 前記いずれかの溶射膜は溶射後にドライアイスブラスト されていることを特徴とする。  The third invention of the present application is an inner member of a plasma processing vessel, wherein a surface of a base material is coated with a sprayed film of any one of alumina, rare earth oxide, polyimide, and polybenzoimidazole; The sprayed film is characterized by dry ice blasting after spraying.
本願第 4の発明は, プラズマ処理容器内部材の製造方法であって, 基材の表面 をアルミナ, 希土類酸化物, ポリイミドまたはポリべンゾイミダゾールのうちの いずれかの溶射膜によって被覆する工程と, 前記いずれかの溶射膜を溶射後にド ライアイスブラストする工程とを有することを特徴とする。  The fourth invention of the present application is a method for manufacturing a member inside a plasma processing vessel, which comprises coating a surface of a base material with a sprayed film of any one of alumina, rare earth oxide, polyimide, and polybenzoimidazole. And dry blasting after spraying any of the sprayed films.
本願第 3, 第 4の発明によれば, 初期パーティクルの発生を抑制することが可 能となる。  According to the third and fourth inventions of the present application, it is possible to suppress the generation of initial particles.
また, 第 3, 第 4の発明によれば, 使用初期におけるパーティクル発生を抑制 し, 再溶射後も機能的な劣ィ匕なく新品同様に再生可能な, プラズマ処理容器内部 材および製造方法が提供できる。 , . 図面の簡単な説明  Further, according to the third and fourth aspects of the present invention, there is provided a plasma processing container inner material and a manufacturing method capable of suppressing generation of particles in an early stage of use and regenerating a new product without functional deterioration even after re-spraying. it can. Brief description of the drawings
図 1は,本第 1 ,第 2の実施の形態にかかるプラズマ処理装置の構成図である。 図 2は, 本第 1の実施の形態にかかるブラズマ処理容器内部材の模式的な断面 図である。  FIG. 1 is a configuration diagram of a plasma processing apparatus according to the first and second embodiments. FIG. 2 is a schematic cross-sectional view of the inner member of the plasma processing container according to the first embodiment.
図 3は, 本第 1実施の形態にかかるプラズマ処理容器内部材が再生される経過 を模式的に表す断面図である。 Fig. 3 shows the process of regenerating the members inside the plasma processing vessel according to the first embodiment. It is sectional drawing which represents typically.
図 4は, 本第 2の実施の形態にかかるプラズマ処理容器内部材が再生される経 過を模式的に表す断面図である。  FIG. 4 is a cross-sectional view schematically showing the process of regenerating the members inside the plasma processing container according to the second embodiment.
図 5は, 本第 3の実施形態にかかるプラズマ装置としてのエッチング装置の内 部構造図である。 .  FIG. 5 is an internal structural diagram of an etching apparatus as a plasma apparatus according to the third embodiment. .
図 6は, フォーカスリングの断面図である。  Figure 6 is a cross-sectional view of the focus ring.
図 7は, 本第 3の実施形態にかかるプラズマ装置用部品の再生方法の一実施の 形態を示す図である。  FIG. 7 is a diagram showing an embodiment of a method for regenerating a component for a plasma device according to the third embodiment.
図 8は, シールドリングの断面図である。 '  Figure 8 is a cross-sectional view of the shield ring. '
図 9は, 本第 3の実施形態に係るプラズマ装置用部品の修復方法の他の実施の 形態を示す図である。 発明を実施するための最良の形態  FIG. 9 is a view showing another embodiment of the method for restoring a component for a plasma device according to the third embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付図面を参照しながら, 本発明にかかる再生可能なブラズマ処理容器 の再生方法とプラズマ処理容器内部材とその製造方法, およびプラズマ処理装置 の好適な実施の形態について詳細に説明する。  DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a regenerative method for a regenerable plasma processing container, a member in a plasma processing container, a method for manufacturing the same, and a plasma processing apparatus according to the present invention will be described in detail below with reference to the accompanying drawings.
本発明にかかる再生可能なプラズマ処理容器内部材は, プラズマ処理装置内の 例えば, デポシールド, バッフルプレート, フォーカスリング, インシユレータ リング, シールドリング, ベローズ力パー, 電極等, 各種部材に用いることがで きる。 以下主に半導体製造装置の例で説明する。  The regenerable plasma processing vessel inner member according to the present invention can be used for various members in a plasma processing apparatus, for example, a deposit shield, a baffle plate, a focus ring, an insulator ring, a shield ring, a bellows force par, an electrode, and the like. Wear. Hereinafter, description will be mainly given of an example of a semiconductor manufacturing apparatus.
' (第 1およぴ第 2の実施の形態)  '' (First and second embodiments)
図 1は, 本発明の第 1 , 第 2の実施の形態に力かるプラズマ装置 1の構成を示 す断面図である。 プラズマ装置 1における処理室 2は, 例えば酸ィ匕アルマイト処 理されたアルミニウムなどの基材からなる円筒形状の処理容器として形成され, 接地されている。  FIG. 1 is a cross-sectional view showing a configuration of a plasma apparatus 1 according to the first and second embodiments of the present invention. The processing chamber 2 in the plasma apparatus 1 is formed as a cylindrical processing vessel made of a substrate made of, for example, aluminum subjected to anodizing and alumite processing, and is grounded.
処理室 2内の底部にはセラミックなどの絶縁支持板 3が設けられており, この 絶縁支持板 3の上部に, 被処理基板, 例えば直径 8ィンチの半導体ウェハ Wを載 置するための略円柱状のサセプタ支持台 4が設けられている。 さらにサセプタ支 持台 4の上に, 下部電極を構成するサセプタ 5が設けられており, ハ' ルター (H P F) 6が接続されている。 An insulating support plate 3 made of ceramic or the like is provided at the bottom of the processing chamber 2, and a substantially circular substrate for mounting a substrate to be processed, for example, a semiconductor wafer W having a diameter of 8 inches, is provided on the insulating support plate 3. A columnar susceptor support 4 is provided. Furthermore, a susceptor 5 constituting a lower electrode is provided on the susceptor support 4. Luther (HPF) 6 is connected.
サセプタ支持台 4の内部には熱交換室 7が設けられ, 外部から熱交換媒体が熱 交換媒体導入管 8および熱交換媒体排出管 9を介して循環し, サセプタ 5を介し て半導体ウェハ Wを所定温度に維持することが可能なように構成されている。 ま たかかる温度は, 温度センサ' (図示せず), 温度制御機構(図示せず) によって自 動的に制御される構成となっている。  A heat exchange chamber 7 is provided inside the susceptor support 4, and a heat exchange medium circulates from the outside through a heat exchange medium introduction pipe 8 and a heat exchange medium discharge pipe 9, and the semiconductor wafer W is transferred through the susceptor 5. It is configured so that it can be maintained at a predetermined temperature. The temperature is automatically controlled by a temperature sensor (not shown) and a temperature control mechanism (not shown).
またサセプタ 5上には, 半導体ウェハ Wを吸着保持するための静電チャック 1 1が設けられている。 この静電チヤック 1 1は, 例えば導電性の薄膜電極 1 2を ポリイミド系の樹脂によって上下から挟持した構成を有し, 処理室 2の外部に設 置されている直流電源 1 3から例えば 1 . 5 k Vの電圧が電極 1 2に印加される と, そのクーロン力によってウェハ Wは, 静電チャック 1 1の上面に吸着保持さ れるようになっている。 もちろんそのような静電チャックに拠らず, 機械的クラ ンプによってウェハ Wの周縁部を押圧するようにして, サセプタ 5上にウェハ W を保持する構成としてもよい。  On the susceptor 5, an electrostatic chuck 11 for holding the semiconductor wafer W by suction is provided. The electrostatic chuck 11 has a configuration in which, for example, a conductive thin-film electrode 12 is sandwiched between polyimide resins from above and below. When a voltage of 5 kV is applied to the electrode 12, the Coulomb force causes the wafer W to be held on the upper surface of the electrostatic chuck 11 by suction. Of course, a configuration in which the wafer W is held on the susceptor 5 by pressing the peripheral portion of the wafer W by a mechanical clamp without depending on such an electrostatic chuck may be employed.
さらに, 絶縁板 3, サセプタ支持台 4, サセプタ 5, およぴ静電チャック 1 1 には, 半導体ゥェハ Wの裏面に例えば H eガスなどを供給するためのガス通路 1 Further, the insulating plate 3, the susceptor support 4, the susceptor 5, and the electrostatic chuck 11 are provided with a gas passage 1 for supplying, for example, He gas to the back surface of the semiconductor wafer W.
4が形成されており, この H eガスなどの伝熱媒体を介して半導体ウエノ、 Wが所 定の温度に維持される。 ' 4 is formed, and the semiconductor wafer and W are maintained at a predetermined temperature via a heat transfer medium such as He gas. '
サセプタ 5上の周辺には, 静電チャック 1 1を囲むようにして, 略環状のフォ 一カスリング 1 5が設けられている。 フォーカスリング 1 5は例えば導電性のシ リコンからなり, プラズマ中のイオンを効果的に半導体ウェハ Wに入射させる機 能を有している。  A substantially annular focus ring 15 is provided around the susceptor 5 so as to surround the electrostatic chuck 11. The focus ring 15 is made of, for example, a conductive silicon and has a function of effectively causing ions in the plasma to enter the semiconductor wafer W.
処理室 2内の上部には, 絶縁部材 2 5およびシールドリング 5 5を介して, 上 部電極 2 1が支持されている。 上部電極 2 1は, 例えばアルミニウムからなる電 極支持体 2 2および, サセプタ 5と平行に対向し, 多数の吐出孔 2 4を備えた例 えばシリコンからなる電極板 2 3等を有している。 サセプタ 5と上部電極 2 1と は, 例えば 1 0〜 6 0 mm程度離間している。  An upper electrode 21 is supported at an upper portion in the processing chamber 2 via an insulating member 25 and a shield ring 55. The upper electrode 21 has, for example, an electrode support 22 made of aluminum and an electrode plate 23 made of silicon, for example, which is provided in parallel with the susceptor 5 and has a large number of discharge holes 24. . The susceptor 5 is separated from the upper electrode 21 by, for example, about 10 to 60 mm.
電極支持体 2 2には, ガス導入口 2 6が設けられ, ガス供給管 2 7に接続され ている。 さらに, バルブ 2 8およびマスフローコントローラ 2 9を介して処理ガ ス供給源 30に接続され, エッチングガスやその他の処理ガスが処理室 2内に導 入される。 The electrode support 22 is provided with a gas inlet 26 and is connected to a gas supply pipe 27. Further, the processing gas is supplied via the valve 28 and the mass flow controller 29. The etching gas and other processing gases are introduced into the processing chamber 2.
処理ガスとしては, 伊!]えば, フロロカーボンガス (CxFy), ハイド口フロロ カーボンガス (CpHqF r) 等の, ハロゲン元素を含有するガスを用いること ができる。 '  As the processing gas, for example, a gas containing a halogen element, such as a fluorocarbon gas (CxFy) or a hide-port fluorocarbon gas (CpHqFr), can be used. '
処理室 2の下部には, 真空ポンプなどの排気装置 35に通ずる排気管 31が接 続されている。 お気装置 35は, ターボ分子ポンプなどの真空ポンプを備えてお り, 処理室 2內は, 例えば 10mTo r r〜1000mTo r rの任意の減圧度 にまで真空引きすることが可能となっている。  The lower part of the processing chamber 2 is connected to an exhaust pipe 31 leading to an exhaust device 35 such as a vacuum pump. The air generator 35 is equipped with a vacuum pump such as a turbo-molecular pump, and the processing chamber 2 內 can be evacuated to an arbitrary degree of reduced pressure, for example, from 10 mTorr to 1000 mTorr.
処理室 2の側壁には, ゲートバルブ 32が設けられ, ゲートバルブ 32を開に した状態で半導体ウェハ Wを, 隣接するロードロック室 (図示せず) との間で搬 送させるようになつている。  A gate valve 32 is provided on the side wall of the processing chamber 2 so that the semiconductor wafer W can be transferred to and from an adjacent load lock chamber (not shown) with the gate valve 32 opened. I have.
次にこめプラズマ装置 1の高周波電力の供給系について説明する。 まず上部電 極 21に対しては, 整合器 41および給電棒 33を介して, 周波数が例えば 27 〜15 OMHzの周波数の高周波電力を出力する第 1の高周波電源 40からの電 力が供給される構成となっている。 また, 上部電極 21にはローパスフィルター (LPF) 42が接続されている。  Next, a high-frequency power supply system of the combed plasma device 1 will be described. First, power is supplied to the upper electrode 21 from the first high-frequency power supply 40 that outputs high-frequency power with a frequency of, for example, 27 to 15 OMHz, via the matching box 41 and the feed rod 33. It has a configuration. Also, a low-pass filter (LPF) 42 is connected to the upper electrode 21.
このように高い周波数を印加することにより, 処理室 2内に, 好ましい解離状 態でかつ高密度のプラズマを形成でき,低圧条件下のプラズマ処理が可能となる。 高周波電源 40としては, 例えば 6 OMHzのものを用いることができる。  By applying such a high frequency, a high-density plasma can be formed in the processing chamber 2 in a preferable dissociated state, and plasma processing under low pressure conditions becomes possible. As the high frequency power supply 40, for example, a 6 OMHz power supply can be used.
一方下部電極となるサセプタ 5に対しては, 周波数がたとえば 4 MHz以下の 高周波電力を出力する高周波電源 50からの電力が, 整合器 51を介して供給さ れる構成となっている。 このような範囲の周波数を印加することで, 半導体ゥェ ハ Wに対してダメージを与えることなく適切なィオン作用を与えることができる。 このようなプラズマ処理装置 1におレ、て, 本実施の形態にかかるプラズマ処理 容器内部材は, 処理中にプラズマに曝される例えば, 処理室 2の内壁 2 a, 絶縁 支持板 3, サセプタ支持台 4, サセプタ 5, 静電チャック 11, フォーカスリン グ 15絶縁部材 25, シールドリング 55などに適応できる。  On the other hand, the susceptor 5 serving as the lower electrode is configured so that power from a high-frequency power supply 50 that outputs high-frequency power with a frequency of, for example, 4 MHz or less is supplied via a matching unit 51. By applying a frequency in such a range, an appropriate ion effect can be imparted to the semiconductor wafer W without damaging it. In such a plasma processing apparatus 1, the inner member of the plasma processing vessel according to the present embodiment is exposed to plasma during processing, for example, the inner wall 2a of the processing chamber 2, the insulating support plate 3, the susceptor, and the like. Applicable to support base 4, susceptor 5, electrostatic chuck 11, focus ring 15, insulating member 25, shield ring 55, etc.
図 2は, 本実施の形態にかかるプラズマ処理容器内部材 100の模式的な断面 図である。 (a) は,溶射賺射直後, (b)は C02ブラスト後を示す。図 2 (a) に示すように, 例えば A 1を材料としたプラズマ処理容器内部材の基材 120の 表面に, 溶射膜 110を形成する。 溶射膜 110には, アルミナ (Al 203), 希土類酸化物, ポリイミドまたはポリベンゾズィミダゾールなどを用いることが できる。 FIG. 2 is a schematic cross-sectional view of the plasma processing vessel inner member 100 according to the present embodiment. FIG. (A) it is, immediately after the spraying賺射, (b) shows the post-C0 2 blasting. As shown in FIG. 2 (a), for example, a sprayed film 110 is formed on the surface of a base material 120 of a member inside a plasma processing vessel made of A1. The sprayed film 110, an alumina (Al 2 0 3), rare earth oxides, such as polyimide or polybenzimidazole Zi Mi imidazole can be used.
従来, ポリイミド等の樹脂を基材保護に用いる場合は, 例えば A 1基材の上に 厚さ 1. 5 mmのポリイミド板を設置し, プラズマ中での使用により劣ィ匕すると 樹脂を交換していた。  Conventionally, when a resin such as polyimide is used to protect a substrate, for example, a 1.5-mm-thick polyimide plate is placed on the A1 substrate, and the resin is replaced when the substrate is degraded by use in plasma. I was
従来の溶射は, 熱と嘖出スピードによる衝突時衝撃で行つていたが, ここでは 噴出スピードによる衝突時衝擊のみで溶射することとしている。 これによつて, 数 mm程度の膜厚の溶射が可能となり, 溶射被膜として使用できるようになつ 7*—  Conventional thermal spraying has been performed by impact at the time of collision due to heat and flash speed, but here, spraying is performed only by impact at the time of collision due to jet speed. As a result, thermal spraying with a thickness of several mm is possible, and it can be used as a thermal spray coating.
また, A 1203溶射膜, Y203溶射膜を形成するには, 大気プラズマ溶射法, または, 実質的に酸素を含まない雰囲気中でのプラズマ溶射法が好適であるが, 高速フレーム溶射や, 爆発溶射法も適用可能である。 Further, A 1 2 0 3 sprayed coating, to form a Y 2 0 3 sprayed coating, atmospheric plasma spraying method, or, although plasma spraying in an atmosphere substantially free of oxygen is preferred, fast Flame spraying and explosive spraying are also applicable.
これら溶射直後の膜は, 非常に凹凸の多い状態であり, これをそのままプラズ マ処理容器内部で使用すると, 特に凸部の破碎層 (クラック層) においてプラズ マ中のイオンの衝突によりパーティクルが発生しゃすく, 膜の劣化の原因となる 可能性がある。  The film immediately after thermal spraying is in a state with very many irregularities. If this film is used inside the plasma processing vessel as it is, particles are generated by collision of ions in the plasma, especially in the fracture layer (crack layer) of the convex part. It may be a cause of deterioration of the film.
そこで, 図 2 (b) に示すように, 溶射直後の朦を CO2ブラストすると, 表 面の凹凸が平坦化され, ブラズマ処理容器内部材をブラズマ処理容器内で一定時 間使用したのと同様の状態が実現でき,.初期のパーティクル発生を抑制できる。 なお, この工程により図 2 (a) の溶射 β莫表面 131は厚さ t 1削られることに なる。 Therefore, as shown in Fig. 2 (b), when CO 2 blasting is performed immediately after thermal spraying, the surface irregularities are flattened, and the members inside the plasma processing vessel are used for a certain period of time in the plasma processing vessel. Can be realized, and the initial generation of particles can be suppressed. In this process, the thickness of the thermal sprayed β-surface 131 shown in Fig. 2 (a) is reduced by t1.
じ02ブラストは, 例えば圧力 2. 5〜4. 2k g fZcm2, ノズル径 16m m, ノズル〜溶射面距離 15 mm, ドライアイス粒径 0. 3〜 2. 0 mm, ドラ ィアイス ート 0. 5 k g i n . の条件下で行う。 例えば ,Υ 2 Ο 3溶射膜を用 いる場合, CO 2ブラストによる膜厚減少量 t 1は 1 Ομιη以下が好ましい。 図 3は, 本第 1の実施の形態にかかるブラズマ処理容器内部材 100が再生さ れる経過を模式的に表す断面図である。 (a) は初期状態 (使用前の C02ブラス ト済み), (b) はプラズマ処理容器内での使用後, (c) は再生のための C02ブ ラスト後, (d) は, 再溶射後の状態を表す。 ここで再溶射とは, プラズマ処理容 器内での使用後, プラズマ処理前に施された溶射膜の上に, 再度溶射することを 言う。' . Flip 0 2 blasting, for example, a pressure 2. 5~4. 2k g fZcm 2, nozzle diameter 16m m, nozzle-spraying plane distance 15 mm, the dry ice particle diameter 0.. 3 to 2. 0 mm, Dora Iaisu over preparative 0 Perform under 5 kgin. For example, Upsilon if there are use a 2 Omicron 3 sprayed coating, CO 2 thickness decrease t 1 by blasting 1 Omikuronmyuiotaita less. FIG. 3 shows that the member 100 in the plasma processing container according to the first embodiment is regenerated. FIG. 4 is a cross-sectional view schematically showing the progress of the operation. (A) the initial state (C0 2 already Brass bets before use), (b) after use in a plasma processing chamber, (c) after C0 2 Bed last for playback, (d) the re Indicates the condition after thermal spraying. Here, respraying refers to spraying again on the sprayed film that has been applied before plasma treatment after use in the plasma treatment vessel. '.
図 3 (a) ほ, 例えば A 1を材料としたプラズマ処理容器内部材 1 00の基材 1 20の表面に, 溶射膜 1 1 0を形成し, CO 2ブラストにより表面を平坦化し たものである。 溶射膜 1 1 0には, アルミナ, 希土類酸化物, ポリイミドまたは ポリベンゾィミダゾールなどを用いることができる。 Figure 3 (a) For example, a sprayed film 110 is formed on the surface of a substrate 120 of a plasma processing vessel inner member 100 made of A1 as a material, and the surface is flattened by CO 2 blasting. is there. Alumina, rare earth oxide, polyimide, polybenzimidazole, or the like can be used for the thermal spray coating 110.
希土類酸化物である Y203は例えば厚さ t = 50〜2000 ^ m, ポリイミド またはポリベンゾィミダゾーノレは, 例えば厚さ t == 2〜3mmとなるよう溶射さ れる。これらは,損傷防止の効果と経済性を勘案して妥当と考えられる値である。 これをプラズマ中で使用した場合, 図 3 (b) に示すように, 図 3 (a) の溶射 膜表面 1 3 3が厚さ t 2消耗されることになる。 A rare earth oxide Y 2 0 3 is a thickness of t = 50 to 2000 ^ m, polyimide or polybenzoxazole I Mi Dazo Honoré, for example, it is sprayed to a thickness of t == 2 to 3 mm. These values are considered to be reasonable considering the effect of damage prevention and economic efficiency. When this is used in a plasma, the sprayed film surface 133 shown in Fig. 3 (a) is consumed by the thickness t2 as shown in Fig. 3 (b).
表 1に, プラズマ処理装置中に各種材料で被覆したプラズマ処理容器内部材を 放置した場合の, 膜厚の減少量 t 2を示す。 なお, 用いたプラズマ処理装置は平 行平板型のプラズマエツチング装置であり, チヤンバー圧力は 40 mT o r r, RF電力は 1 500W, エッチングガスは CF4/Ar/02= 1 0 Table 1 shows the reduction in film thickness t2 when the members inside the plasma processing vessel coated with various materials were left in the plasma processing apparatus. The plasma processing equipment used was a parallel plate type plasma etching equipment, with a chamber pressure of 40 mTorr, RF power of 1,500 W, and etching gas of CF 4 / Ar / O 2 = 10.
00の混合ガスという条件下で, 20時間放置したも である。 It was left for 20 hours under the condition of the mixed gas of 00.
【表 1】  【table 1】
Figure imgf000009_0001
表 1に示したように, ハロゲン化合物を含む雰囲気下においても, Y203, A 12o3の耐プラズマエ口ージョン性は良好であることが分かる。特に上記の条件 下, 4種類の膜の中では, Y2O 3溶射膜が最も消耗量が少なく, 耐プラズマ特性 に優れている。 次にこの γ2ο 3溶射膜について, co2ブラストを行った場合について説明す る。 C02ブラストは, 圧力 2. 5〜4. 2k g f /cm2, ノズル径 16 mm, ノズル〜溶射面距離 15 mm, ドライアイス粒径 0. 3〜2. Omm, ドライア イスレート 0. 5k g /m i n . の条件下で行った。
Figure imgf000009_0001
As shown in Table 1, even in an atmosphere containing a halogen compound, Y 2 0 3, A 1 2 o 3 anti Purazumae port, Version property is found to be satisfactory. Especially under the above conditions, in one of four films, Y 2 O 3 sprayed coating is most consumption is small, is excellent in plasma resistance. Next, the gamma 2 o 3 sprayed coating, that explains the case of performing the co 2 blasting. C0 2 blast pressure 2.5 ~ 4.2kgf / cm2, nozzle diameter 16mm, nozzle to sprayed surface distance 15mm, dry ice particle size 0.3 ~ 2. Omm, dry ice rate 0.5kg / min.
ブラスト時間を 30 s e c および 60 s e c とした時, ブラスト量はそれ ぞれ 5μπι, および 10 μπιであった。 この工程により, 図 3 (c) に示すよう に, 図 3 (b) での溶射膜表面 135が厚さ t 3削られ, 表面に発生した凹凸を 平坦化し, 異物を除去できる。 なお, 〇02ブラストによる膜厚減少量 t 3は, Y203溶射膜の場合, 10 μπι以上, 好ましくは 20 μπι以上が適当である。 次に, 図 3 (d) に示すように, 溶射膜 110と同一の材料を再溶射する。 ァ ルミナ, 希土類酸化物, ポリイミドまたはポリべンゾイミダゾール溶射膜では, 経時変化による膜内の結晶変化が無く, 再溶射する;とで新旧の結晶が接面にお いて連続的に形成され, 新品同様に再生される。 またこの後, 再度 CO2ブラス トを行い, 溶射膜表面の凹凸を平坦化してもよい。 When the blast time was set to 30 sec and 60 sec, the blast amount was 5 μπι and 10 μπι, respectively. By this step, as shown in Fig. 3 (c), the sprayed film surface 135 in Fig. 3 (b) is cut by thickness t3, the unevenness generated on the surface is flattened, and foreign matter can be removed. Incidentally, the film thickness decrease t 3 according Rei_0 2 blasting in the case of Y 2 0 3 sprayed coating, 10 Myupaiiota more, and preferably from more than 20 μπι. Next, as shown in FIG. 3 (d), the same material as that of the sprayed film 110 is sprayed again. In the sprayed film of aluminum, rare earth oxide, polyimide or polybenzoimidazole, there is no crystal change in the film due to aging and respraying; new and old crystals are continuously formed on the interface, Reproduced as new. After this, CO 2 blasting may be performed again to flatten the unevenness of the sprayed film surface.
以上説明したように, 本第 1の実施の形態にかかる初期パーティクル対策を施 した再生可能なプラズマ処理容器内部材とその製造方法, およびプラズマ処理容 器内部材の再生方法によれば, 初期のパーティクル発生を抑制し, 使用後も新品 同様に再生できるプラズマ処理容器内部材が提供できる。  As described above, according to the first embodiment of the present invention, the reusable plasma processing container inner member and the method of manufacturing the same with the countermeasures against the initial particles and the method of regenerating the plasma processing container internal member have the following advantages. It is possible to provide a member inside the plasma processing container that can suppress generation of particles and can be regenerated as new after use.
また, 例えば, 使用後のプラズマ処理容器内部材の表面を除去する方法は異物 が表面に残留しない〇02ブラストが好ましいがこれに限定されない。 溶射 B莫ゃ 基材にダメージを与えずに薬液等で表面を洗浄して清浄化できれば, アルミナや S i Cを用いたブラストゃ,砂ずりなどの砥粒による研磨も可能である。さらに, 薬液でのエッチングによる化学的研磨も適用できる可能性がある。 Further, for example, a method of removing the surface of the plasma processing chamber member after use foreign matter but are not limited to Rei_0 2 blasting is preferred not to remain on the surface. If the surface can be cleaned and cleaned with a chemical solution without damaging the base material, it can be polished with abrasives such as blasts using Alumina or SiC, sand sand, etc. Furthermore, chemical polishing by etching with a chemical solution may be applicable.
図 4は, 第 2の実施形態にかかるブラズマ処理容器内部材 100が再生される 経過を模式的に表す断面図である。 (a) は初期状態, (b) はプラズマ処理容器 内での使用後, (c) は再溶射後の状態を表す。 ·  FIG. 4 is a cross-sectional view schematically illustrating a process of regenerating the plasma processing container inner member 100 according to the second embodiment. (A) shows the initial state, (b) shows the state after use in the plasma processing vessel, and (c) shows the state after respraying. ·
本第 2の実施形態では, 第 1の実施形態のようにブラズマ処理容器内での使用 後に C〇2ブラストを行わず, プラズマ処理容器内での使用後に使用前の溶射膜 と同一の溶射膜を用いて再度溶射 (再溶射) を行っている。 本第 2の実施形態の 実施条件は, c o2ブラストを行うこと以外の点において, 第 1の実施形態と同 様である。 In the second embodiment, without C_〇 2 blasting after use in Burazuma processing chamber as in the first embodiment, prior to use after the use of the plasma processing vessel sprayed film of the same spray film Is used to perform thermal spraying (respraying) again. Of the second embodiment Implementation conditions, in terms of non-performing the co 2 blasting, which is a first embodiment the same way.
co 2ブラストを行わずに, プラズマ処理前の溶射膜と同一の材料を用いて再 溶射を行うことで, 再溶射時の溶射膜がよりつきやすくなるという効果がある。 それは, プラズマ処理後の凸凹のある状態時の方が比較的平らな状態時より, 再 溶射時の溶射膜がより付着しやすいからである。 これにより, プラズマ中での使 用により表面が劣化したプラズマ処理容器を新品同様に再生が可能となる。 By performing re-spraying using the same material as the sprayed film before plasma treatment without performing co- 2 blasting, the sprayed film during re-spraying is more easily adhered. This is because the sprayed film is more likely to adhere during re-spraying when the surface is uneven after plasma treatment than when it is relatively flat. This makes it possible to regenerate a plasma processing vessel whose surface has deteriorated as a result of using it in plasma.
' (第 3の実施の形態)  '' (Third embodiment)
次に, 本発明の第 3の実施の形態を図面に基づいて詳説する。  Next, a third embodiment of the present invention will be described in detail with reference to the drawings.
図 5はプラズマ処理装置としてのプラズマエッチング装置の内部構造図であつ て, 該プラズマエッチング装置の装置本体 2 0 1の内部, すなわち処理室 2 2 1 内には所定形状に形成された多数の各種装置部品が所定位置に配設されている。 具体的には, 処理室 2 2 1の下方には導電性材料で形成された下部電極 2 0 2 が配設され, 'さらに被処理物としての半導体ウェハ Wを吸着保持する静電チヤッ ク 2 0 4が前記下部電極 2 0 2に載設され, また該下部電極 2 0 2は矢印 A方向 に昇降可能な昇降軸 2 0 5に支持されている。 そして, 昇降軸 2 0 5は整合器 2 0 6を介して高周波電源 2 0 7に接続され, さらに, 昇降軸 2 0 5は導電性材料 で形成された環状部材 2 0 9に貫揷されている。  FIG. 5 is a diagram showing the internal structure of a plasma etching apparatus as a plasma processing apparatus. The inside of the apparatus main body 201 of the plasma etching apparatus, that is, the processing chamber 221, has a large number of variously formed various shapes. Device parts are arranged at predetermined positions. Specifically, a lower electrode 202 made of a conductive material is provided below the processing chamber 221, and an electrostatic chuck 2 for sucking and holding a semiconductor wafer W as an object to be processed is further provided. The lower electrode 202 is mounted on the lower electrode 202, and the lower electrode 202 is supported on an elevating shaft 205 that can move up and down in the direction of arrow A. The elevating shaft 205 is connected to a high-frequency power source 207 via a matching unit 206, and the elevating shaft 205 is penetrated by an annular member 209 made of a conductive material. I have.
また, 下部電極 2 0 2は電極保持部材 2 2 9により保護されると共に, 該電極 保護部材 2 2 9と装置本体 2 0 1の底面との間にはステンレス等の導電性材料で 形成された伸縮可能なベローズ 2 0 8が着座されている。 また, 下部電極 2 0 2 の上部側面には導電性部材または絶縁性部材で形成されたフォーカスリング 2 1 0が配設され, さらに該フォーカスリング 2 1 0の底面には第 1のべローズカバ - 2 1 1が垂設され, また装置本体 2 0 1の底面からは第 1のべ口ーズカバー 2 1 1と一部が重なり合うように第 2のべローズ力パー 2 1 2が立設されている。 処理室 2 2 1の上方には導電性材料で形成された上部電極 2 1 3が前記下部電 極 2 0 2と対向上に配設され, さらに該上部電極 2 1 3は整合器 2 1 4を介して 高周波電源 2 1 5に接続されている。 また, 上部電極 2 1 3には多数のガス吐出 孔 2 1 6が貫設され, 装置本体 2 0 1の上面に設けられたガス供給口 2 1 7から C F (フロロカーボン) 系ガスを含む反応性ガスがガス吐出孔 2 1 6を介して処 理室 2 2 1に供給される。 すなわち, ガス供給口 2 1 7は流量調整弁 2 1 8及ぴ 開閉弁 2 1 9を介してガス供給源 2 2 0に接続され, ガス供給源 2 2 0力ゝらの反 応ガスが開閉弁 2 1 9及ぴ流量調節弁 2 1 8を介してガス供給口 2 1 7に供給さ れ, ガス吐出孔 2 1 6から吐出されて処理室 2 2 1に導入される。 The lower electrode 202 is protected by an electrode holding member 229, and is formed of a conductive material such as stainless steel between the electrode protecting member 229 and the bottom surface of the apparatus main body 201. An expandable bellows 208 is seated. A focus ring 210 made of a conductive material or an insulating material is provided on the upper side surface of the lower electrode 202, and a first bellows cover is provided on the bottom surface of the focus ring 210. A second bellows power par 2 1 2 is provided upright from the bottom of the main body 201 so as to partially overlap the first bellows cover 2 1 1 . Above the processing chamber 221, an upper electrode 213 made of a conductive material is disposed in a pair with the lower electrode 202, and the upper electrode 213 is further matched with a matching device 218. Connected to the high frequency power supply 2 15. Also, a number of gas discharge holes 2 16 penetrate the upper electrode 2 13, and the gas supply holes 2 17 provided on the top Reactive gas containing CF (fluorocarbon) -based gas is supplied to the processing chamber 221 through the gas discharge port 216. That is, the gas supply port 217 is connected to the gas supply source 220 through the flow control valve 218 and the on-off valve 219, and the reaction gas from the gas supply source 220 opens and closes. The gas is supplied to the gas supply port 217 via the valve 219 and the flow control valve 218, and is discharged from the gas discharge hole 216 and introduced into the processing chamber 221.
また, 上部電極 2 1 3は絶縁性部材で形成されたシールドリング 2 2 2で保持 され, さらに, シールドリング 2 2 2には保護リング 2 2 3が周設され, また該 保護リング 2 2 3の外周からはシールド部材 2 2 4が垂設される。  The upper electrode 2 13 is held by a shield ring 222 formed of an insulating material, and a protective ring 222 is provided around the shield ring 222. A shield member 224 is vertically provided from the outer periphery of the cover.
また, 装置本体 2 0 1の底部には排出孔 2 2 5が貫設されると共に, 該排出孔 2 2 5は真空ポンプ 2 2 6に接続され, さらに装置本体 2 0 1の下方側面には被 処理物搬送孔 2 2 7が貫設され, 半導体ウェハ Wの搬入 ·搬出が行われる。  A discharge hole 225 is formed at the bottom of the device main body 201, and the discharge hole 225 is connected to a vacuum pump 226. A workpiece transfer hole 227 is provided through the semiconductor wafer W, and the semiconductor wafer W is loaded and unloaded.
このように構成されたプラズマエッチング装置においては, 不図示の駆動機構 により昇降軸 2 0 5を矢印 A方向に移動させて半導体ウェハ Wの位置調整を行つ た後, 該昇降軸 2 0 5は給電棒としての作用をなし, 高周波電源 2 0 7, 2 1 5 から, 例えば, 1 3 . 5 6 MH zの高周波電力が下部電極 2 0 2及ぴ上部電極 2 1 3に印カ卩されると, グロ一放電が生じる。  In the plasma etching apparatus configured as described above, after the elevation shaft 205 is moved in the direction of arrow A by a driving mechanism (not shown) to adjust the position of the semiconductor wafer W, the elevation shaft 205 is Acts as a power supply rod, and high-frequency power of 13.56 MHz, for example, is applied to lower electrode 202 and upper electrode 2 13 from high-frequency power sources 207 and 215 Then, a glow discharge occurs.
一方, 処理室 2 2 1が真空ポンプ 2 2 6により所定の真空雰囲気に減圧され, ガス供給源 2 2 0力 らの反応性ガスが処理室 2 2 1に供給されると, 前記グロ一 放電を介して反応性ガスがプラズマ化し, フォーカスリング 2 1 0及ぴシールド リング 2 2 2により下部電極 2 1 0と上部電極 2 1 3との間にプラズマが閉じ込 められ, その結果, 所定のマスキングがなされた半導体ウェハ Wに所望の微細カロ ェが施される。  On the other hand, when the processing chamber 221 is depressurized to a predetermined vacuum atmosphere by the vacuum pump 226 and the reactive gas from the gas supply source 220 is supplied to the processing chamber 221, the above-mentioned glow discharge occurs. The reactive gas is turned into a plasma through the filter, and the plasma is confined between the lower electrode 210 and the upper electrode 21 3 by the focus ring 210 and the shield ring 222, and as a result, A desired fine color is applied to the masked semiconductor wafer W.
ところで, このようにして半導体ゥエノ、 Wはドライエツチング処理により微細 加工される力 S,その一方で,フォーカスリング 2 1 0やシールドリング 2 2 2等, ブラズマ雰囲気に晒される各種装置部品の表面もエッチングされて消耗するため, その消耗度合 ヽに応じてこれら消耗した装置部品を新規部品と交換する必要があ る。 . しかしながら, 斯かる消耗した装置部品を常に新規部品に交換することとする と, 生産コストの高騰を招いたり, あるいは前記新規部品の在庫がないときは生 産ラインの停止を余儀なくされることとなる。 By the way, in this way, semiconductors E and W are the forces S that are finely processed by the dry etching process. On the other hand, the surfaces of various device parts that are exposed to the plasma atmosphere, such as the focus ring 210 and the shield ring 222, are also observed. Since it is consumed by etching, it is necessary to replace these worn out equipment parts with new parts according to the degree of wear. However, if such a worn out device part is always replaced with a new part, the production cost will rise or if the new part is not in stock, it will be lost. The production line must be stopped.
そこで, 本第 3の実施の形態では, 各構成部品の一部形状が変形した場合は, 当該変形部分を切除し, 変形前の形状に形成された部品を前記変形部分が切断除 去された箇所に溶着接合している。  Thus, in the third embodiment, when a part of each component is deformed, the deformed part is cut off, and the part formed in the shape before the deformation is cut and removed. Welded to the location.
図 6は上記フォーカスリング 2 1 0の断面図であって, 該フォーカスリング 2 1 0は, 通常の新規部品の場合は, 内径 D 1及ぴ外径 D 2からなるリング状とさ れ, 内周面に段付き部 2 3 0を有している。 '  Fig. 6 is a cross-sectional view of the focus ring 210. The focus ring 210 is a ring shape having an inner diameter D1 and an outer diameter D2 in the case of an ordinary new part. The peripheral surface has a stepped portion 230. '
該フォーカスリング 2 1 0は, A 1等の導電 '性材料または S i O 2等の絶縁十生 材料で形成され, 導電性材料で形成された場合は半導体ウェハ W周辺のプラズマ の均一性を向上させる作用をなし, 絶縁性材料で形成された場合は半導体ウェハ W上に高密度プラズマを形成する作用をなすが, いずれにしても該フォーカスリ ング 2 1 0はプラズマ雰囲気に晒されるため, 該プラズマによりその表面がエツ チングされて削り取られ, その結果, 図 7 ( a ) に示すように, フォーカスリン グ 2 1 0はその一部が変形し, 変形部分 2 1 0 aが形成される。 The focus ring 2 1 0 is formed of an insulating ten raw material such as conductive 'material or S i O 2, such as A 1, the plasma uniformity around the semiconductor wafer W when it is formed of a conductive material When formed from an insulating material, it acts to form high-density plasma on the semiconductor wafer W. In any case, since the focus ring 210 is exposed to a plasma atmosphere, The surface is etched away by the plasma, and as a result, as shown in Fig. 7 (a), a part of the focus ring 210 is deformed and a deformed part 210a is formed. .
そこで, 本実施の形態では, 図 7 ( b ) に示すように, 変形前の寸法形状を有 する新規部品 2 1 0 bを別途製造する一方, 図 7 ( a ) のカットライン C 1に沿 つてフォーカスリング 2 1 0を切断して変形部分 2 1 0 aを除去し, 図 7 ( c ) の [B] に示すように, 変形部分 2 1 0 aに相当する箇所に新規部品 2 1 0 bを 溶着接合し, 図 6と同様の段付き部 2 3 0を内周面に有するフォーカスリング 2 1 0を製造する。 そして, このようにして補修'製造されたフォーカスリング 2 1 0をプラズマエッチング装置の所定位置に配設し, これにより所望のエツチン グ処理を再開している。  Therefore, in the present embodiment, as shown in FIG. 7 (b), a new part 210b having dimensions and shape before deformation is separately manufactured, while along the cut line C1 in FIG. 7 (a). Then, the focus ring 210 is cut to remove the deformed part 210a, and as shown in [B] of Fig. 7 (c), a new part 210 is added to the part corresponding to the deformed part 210a. b is welded to produce a focus ring 210 having a stepped portion 230 similar to that of FIG. 6 on the inner peripheral surface. Then, the focus ring 210 thus repaired / manufactured is disposed at a predetermined position of the plasma etching apparatus, whereby a desired etching process is restarted.
このように本実施の形態によれば, フォーカスリング 2 1 0がエッチングされ て一部形状が変形した場合であっても, 変形部分 2 1 0 aを除去して新規部品 2 1 0 bに置き換えるだけで所望のフォーカスリング 2 1 0を再び得ることができ, 従って変形したフォーカスリングを常に新品のフォーカスリングに交換する必要 もなくなり, 簡単な方法で代替品としての装置部品を修復することができ, コス トの低減ィ匕を図ることができる。  As described above, according to the present embodiment, even if the focus ring 210 is etched and its shape is partially deformed, the deformed part 210a is removed and replaced with a new part 210b. The desired focus ring 210 can be obtained again only by itself, so that it is not necessary to always replace the deformed focus ring with a new focus ring, and it is possible to repair a device part as a substitute by a simple method. Thus, the cost can be reduced.
さらに, 本第 3の実施形態は, プラズマエッチング装置に配設されているその 他の装置部品, 例えば, シールドリング 2 2 2, 保護リング 2 2 3, シールド部 材 2 2 4等についても同様に適用することができるのはいうまでもない。 Further, in the third embodiment, the plasma etching device It goes without saying that the same can be applied to other device parts, for example, the shield ring 222, the protective ring 222, the shield member 222, and the like.
図 8及び図 9は本第 3の実施形態の再生方法をシールドリング 2 2 2に適用し た場合を示している。  FIGS. 8 and 9 show a case where the reproducing method of the third embodiment is applied to the shield ring 222.
すなわち, 図 8は上記シールドリング 2 2 2の断面図であって, 該シールドリ ング 2 2 2は, 通常の新規部品の場合は, 内径 D 3及び外径 D 4力 らなるリング 状とされ, また薄肉部 2 3 1を有して形成されている。  That is, FIG. 8 is a cross-sectional view of the above shield ring 222. In the case of a normal new part, the shield ring 222 is formed in a ring shape having an inner diameter D3 and an outer diameter D4. Further, it is formed to have a thin portion 2 31.
そして, 該シーノレドリング 2 2 2も, 上記フォーカスリング 2 1 0と同様, プ ラズマ雰囲気にさらされるため, 図 9 ( a ) に示すように, 経時変化により薄肉 部 2 3 1の一部がエッチングされて変形部分 2 2 2 aが形成される。  And, as in the case of the focus ring 210, the scino red ring 222 is also exposed to the plasma atmosphere, and as shown in FIG. Etching is performed to form a deformed portion 2 2 2a.
そこで, 本実施の形態では, フォーカスリング 2 1 0の場合 (図 7 ) と同様, 図 9 ( b ) に示すように, 変形前の寸法形状を有する新規部品 2 2 2 bを別途製 造する一方, 図 9 ( a ) のカットライン C 2に沿ってシールドリング 2 2 2を切 断して変形部分 2 2 2 aを除去し, 図 9 ( c ) の 「E」 に示すように, 変形部分 2 2 2 aに相当する箇所に新規部品 2 2 2 bを溶着接合し, 図 8と同様の薄肉部 2 3 1を有するシールドリング 2 2 2を製造している。 そして, このようにして 補修 ·製造されたシールドリング 2 2 2を再度プラズマエッチング装置の所定位 置に配設し, これにより所望のエッチング処理を再開することができる。  Therefore, in this embodiment, as in the case of the focus ring 210 (FIG. 7), as shown in FIG. 9 (b), a new part 222-b having the dimensions and shape before deformation is separately manufactured. On the other hand, the shield ring 222 was cut along the cut line C2 in Fig. 9 (a) to remove the deformed part 222a, and as shown in Fig. 9 (c), "E". A new part 222b is welded to the part corresponding to the part 222a, and a shield ring 222 having a thin part 231 similar to that shown in Fig. 8 is manufactured. Then, the shield ring 222 thus repaired / manufactured is disposed again at a predetermined position of the plasma etching apparatus, whereby the desired etching process can be restarted.
このようにして, フォーカスリング 2 1 0の場合と同様, シーノレドリング 2 2 2がェツチングされて一部形状が変形した場合であつても, 変形部分 2 2 2 aを 除去して新規部品 2 2 2 bに置き換えるだけで所望のシールドリング 2 2 2を得 ることができ, 変形したフォーカスリングを常に新品のフォーカスリングに交換 する必要もなくなり, 簡単な方法で代替品としての装置部品を製造することがで き, コストの低減化を図ることができる。  In this way, as in the case of the focus ring 210, even when the scenery red ring 222 is partially etched and partially deformed, the deformed portion 222a is removed and the new part 2 is removed. The desired shield ring 2 2 2 can be obtained simply by replacing it with 22 b, eliminating the need to constantly replace the deformed focus ring with a new focus ring, and manufacturing device parts as replacements in a simple manner. The cost can be reduced.
尚, 本第 3の実施形態は上記実施の形態に限定されるものではない。 上記実施 の形態ではレ、わゆるイオンアシスト方式のブラズマエッチング装置を例示して説 明したが, 例えば磁場アシスト方式のプラズマエッチング装置であってもよいこ とはいうまでもなレ、。  Note that the third embodiment is not limited to the above embodiment. In the above embodiment, the ion etching assisted plasma etching apparatus has been described as an example. However, it is needless to say that a magnetic field assisted plasma etching apparatus may be used.
以上説明したように本発明によれば,基材の表面が,アルミナ,希土類酸化物, ポリイミドまたはポリベンゾィミダゾールのうちのレ、ずれかの溶射膜によつて被 覆されたプラズマ処理容器の内部の部材の, プラズマ中での使用により劣ィ匕した 溶射膜に, 前記溶射膜と同一の材料を再溶射することにより, プラズマ中での使 用により表面が劣化したブラズマ処理容器を新品同様に再生することが可能とな る。 As described above, according to the present invention, the surface of the substrate is made of alumina, rare earth oxide, The sprayed film formed on the inner member of the plasma processing vessel covered with the sprayed film of polyimide or polybenzoimidazole, which is inferior due to use in plasma, By re-spraying the same material as above, it becomes possible to regenerate a plasma processing container whose surface has deteriorated due to use in plasma as if it were a new product.
また, プラズマ処理により, プラズマ処理容器内の所定位置に配設される部品 の一部形状が変形した場合は当該変形部分を除去した後, 変形前の形状に形成さ れた部品を変形部分が除去された箇所に接合しているので, 装置部品の一部形状 が変形した場合であつても, 変形し,た装置部品を常に新しレヽ装置部品に交換する 必要もなくなり, 簡単な方法で代替品としての装置部品を製造することができ, コストの低減化を図ることができ, また新規部品の在庫がないために生産ライン が長時間停止するのを極力回避することができる。  In addition, if a part of a component disposed at a predetermined position in the plasma processing vessel is deformed by the plasma processing, the deformed part is removed after removing the deformed part. Since it is joined to the removed part, even if the shape of the equipment part is deformed, it is not necessary to always replace the deformed equipment part with a new rail equipment part. It is possible to manufacture equipment parts as substitutes, reduce costs, and minimize the downtime of the production line due to lack of stock of new parts.
さらに, プラズマ処理容器内部材の基材の表面をアルミナ, 希土類酸化物, ポ リイミドまたはポリベンゾィミダゾールの溶射膜で被覆し, 使用前に c o 2ブラ ストにより表面を平滑にすることで, 初期パーティクル発生を抑制することが可 能となる。 Further, the alumina surface of the substrate in the plasma processing container member, rare earth oxides, coated with a thermally sprayed film of polyimide or polybenzoxazole I Mi imidazole, by smoothing the surface by co 2 blasting prior to use, Initial particle generation can be suppressed.
以上, 添付図面を参照しながら本発明にかかるプラズマ処理容器内部材の再生 方法及び再生可能なブラズマ処理容器内部材の好適な実施形態にっレヽて説明した 力 本発明はかかる例に限定されなレ、。 当業者であれば, 特許請求の範囲に記載 された技術的思想の範疇内において各種の変更例または修正例に想到し得ること は明らかであり, それらにつレ、ても当然に本発明の技術的範囲に属するものと了 解される。 · 産業上の利用の可能性  As described above, with reference to the accompanying drawings, the power described in the preferred embodiment of the method for regenerating the inner member of the plasma processing container and the renewable inner member of the plasma processing container according to the present invention is not limited to such an example. Les ,. It will be apparent to those skilled in the art that various changes or modifications may be made within the scope of the technical idea described in the appended claims. It is understood that it belongs to the technical scope. · Industrial applicability
本発明は, プラズマ中での使用により表面が劣化したプラズマ処理容器の, 内 部の部材の新品同様な再生に適用が可能であり, 特に, 半導体装置や, L C D基 板などの製造工程に適用可能である。  INDUSTRIAL APPLICABILITY The present invention can be applied to the renewal of internal parts of a plasma processing vessel whose surface has been deteriorated by use in plasma as if it were a new one, and particularly to the manufacturing process of semiconductor devices and LCD substrates. It is possible.

Claims

請求の範囲 The scope of the claims
( 1 ) 基材の表面がアルミナ, 希土類酸化物, ポリイミドまたはポリべンゾイミ ダゾールのうちのいずれかの溶射膜によって被覆されたプラズマ処理容器の内部 の部材の, プラズマ中での使用により劣ィ匕した溶射膜に, 前記溶射膜と同一の材 料を再溶射することを特徴とするブラズマ処理容器の再生方法。  (1) A member inside the plasma processing vessel whose surface is coated with a sprayed film of any one of alumina, rare earth oxide, polyimide and polybenzoimidazole is deteriorated by use in plasma. A method for regenerating a plasma processing container, wherein the same material as the sprayed film is sprayed again on the sprayed film.
( 2 ) 前記再溶射する前に, ドライアイスブラストを行う工程を有することを特 徴とする請求項 1記載のブラズマ処理容器の再生方法。 (2) The method of claim 1, further comprising a step of performing dry ice blasting before the re-spraying.
( 3 ) 前記再溶射した後に, ドライアイスブラストを行う工程を有することを特 徴とする請求項 1または請求項 2に記載のブラズマ処理容器の再生方法。 (3) The method according to claim 1 or 2, further comprising a step of performing dry ice blasting after the re-spraying.
( 4 ) 被処理体にプラズマ処理 施すブラズマ処理容器の再生方法であつて, 前記プラズマ処理により, 前記プラズマ処理容器内の所定位置に配設される前記 部品の一部形状が変形した場合は, 当該変形部分を除去した後, 変形前の形状に 形成された部品を前記変形部分が除去された箇所に接合することを特徴とするプ ラズマ処理容器の再生方法。 ' (4) A method for regenerating a plasma processing container for performing plasma processing on an object to be processed, wherein a part of the component disposed at a predetermined position in the plasma processing container is deformed by the plasma processing. A method for regenerating a plasma processing container, comprising: after removing the deformed portion, joining a component formed into a shape before the deformation to a portion from which the deformed portion has been removed. '
( 5 ) 基材の表面がアルミナ, 希土類酸化物, ポリイミドまたはポリベンゾィミ ダゾールのうちのレ、ずれかの溶射膜によつて被覆され, 前記レ、ずれかの溶射膜は 溶射後にドライアイスブラストされていることを特徴とするプラズマ処理容器内 部材。 (5) The surface of the base material is coated with a sprayed film of any one of alumina, rare earth oxide, polyimide and polybenzoimidazole, and the sprayed film of the material is subjected to dry ice blasting after spraying. A member inside the plasma processing vessel.
( 6 ) 基材の表面をアルミナ, 希土類酸化物, ポリイミドまたはポリべンゾイミ ダゾールのうちのいずれかの溶射膜によって被覆する工程と, (6) coating the surface of the substrate with a sprayed film of any of alumina, rare earth oxide, polyimide, and polybenzoimidazole;
前記いずれかの溶射膜を溶射後にドライアイスブラストする工程と A step of dry ice blasting after spraying any of the sprayed films;
を有することを特徴とするブラズマ処理容器内部材の製造方法。 A method for producing a member inside a plasma processing container, comprising:
( 7) 基材の表面が, ポリイミドまたはポリベンゾィミダゾールのうちのいずれ かの溶射膜によつて被覆されてレヽることを特徴とするブラズマ処理容器内部材。 (7) An inner member of a plasma processing container, wherein the surface of the substrate is coated with a sprayed film of either polyimide or polybenzimidazole, and is coated.
( 8 ) 請求項 1カゝら 4までのいずれ力、一項記載のブラズマ処理容器の再生方法を 用いて, プラズマ処理を行うプラズマ処理装置。 (8) A plasma processing apparatus for performing a plasma process using the method for regenerating a plasma processing container according to any one of (1) to (4).
( 9 ) 請求項 5のブラズマ処理容器内部材を有するブラズマ処理装置。 (9) A plasma processing apparatus having the plasma processing container inner member according to claim 5.
PCT/JP2001/010715 2000-12-12 2001-12-07 Method for regenerating container for plasma treatment, member inside container for plasma treatment, method for preparing member inside container for plasma treatment, and apparatus for plasma treatment WO2002048421A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020037007810A KR100945315B1 (en) 2000-12-12 2001-12-07 Method for regenerating container for plasma treatment, member inside container for plasma treatment, method for preparing member inside container for plasma treatment, and apparatus for plasma treatment
US10/450,094 US20040081746A1 (en) 2000-12-12 2001-12-07 Method for regenerating container for plasma treatment, member inside container for plasma treatment, method for preparing member inside container for plasma treatment, and apparatus for plasma treatment
JP2002550132A JP4440541B2 (en) 2000-12-12 2001-12-07 Method for regenerating plasma processing apparatus, plasma processing apparatus, and method for regenerating member inside plasma processing container

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000377100 2000-12-12
JP2000-377100 2000-12-12
JP2001-59985 2001-03-05
JP2001059985 2001-03-05

Publications (1)

Publication Number Publication Date
WO2002048421A1 true WO2002048421A1 (en) 2002-06-20

Family

ID=26605649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010715 WO2002048421A1 (en) 2000-12-12 2001-12-07 Method for regenerating container for plasma treatment, member inside container for plasma treatment, method for preparing member inside container for plasma treatment, and apparatus for plasma treatment

Country Status (4)

Country Link
JP (1) JP4440541B2 (en)
KR (2) KR101005983B1 (en)
CN (1) CN100386467C (en)
WO (1) WO2002048421A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190136A (en) * 2002-11-28 2004-07-08 Tokyo Electron Ltd Member inside plasma treatment vessel
JP2007516921A (en) * 2003-12-18 2007-06-28 ラム リサーチ コーポレーション Ceramic part coated with yttria in a semiconductor material processing apparatus and method for manufacturing the part
JP2008028052A (en) * 2006-07-20 2008-02-07 Tokyo Electron Ltd Repairing method of electrostatic chuck electrode
JP2008103403A (en) * 2006-10-17 2008-05-01 Tokyo Electron Ltd Substrate mount table and plasma treatment apparatus
US8043971B2 (en) 2003-02-07 2011-10-25 Tokyo Electron Limited Plasma processing apparatus, ring member and plasma processing method
JP2012004580A (en) * 2011-07-29 2012-01-05 Tokyo Electron Ltd Method for repairing electrostatic chuck electrode
JP2013140950A (en) * 2011-12-05 2013-07-18 Tokyo Electron Ltd Plasma processing device and plasma processing method
US8877002B2 (en) 2002-11-28 2014-11-04 Tokyo Electron Limited Internal member of a plasma processing vessel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100859955B1 (en) * 2005-04-22 2008-10-06 주식회사 코미코 Internal memeber of plasma processing container and method for preparing the same
JP5248038B2 (en) * 2007-05-22 2013-07-31 東京エレクトロン株式会社 Mounting table and plasma processing apparatus using the same
KR100872328B1 (en) * 2008-02-11 2008-12-05 주식회사 코미코 Internal member of plasma processing apparatus and method for manufacturing the same
KR100933433B1 (en) * 2008-11-07 2009-12-23 주식회사 코미코 Method of manufacturing baffle plate for plasma processing apparatus
JP5623722B2 (en) * 2009-09-28 2014-11-12 東京エレクトロン株式会社 Method for recycling silicon parts for plasma etching equipment
JP2012049220A (en) * 2010-08-25 2012-03-08 Mitsui Eng & Shipbuild Co Ltd Plasma resistant member and method for recycling the same
KR101301940B1 (en) * 2012-12-05 2013-08-30 (주)오씨티 Reproducing apparatus and reproducing method for battery
JP6598132B1 (en) * 2019-06-13 2019-10-30 株式会社アドマップ Method for regenerating film forming structure and regenerating film forming structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312087A (en) * 1988-06-09 1989-12-15 Anelva Corp Dry etching device
JPH04238882A (en) * 1991-01-10 1992-08-26 Denki Kagaku Kogyo Kk High-temperature insulated article
JPH0841309A (en) * 1994-07-28 1996-02-13 Hoechst Japan Ltd Polybenzimidazole resin article for dry etching apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA927990A (en) * 1970-03-03 1973-06-05 J. Durmann George High temperature plastic flame spray powder
JPH065155B2 (en) * 1984-10-12 1994-01-19 住友金属工業株式会社 Furnace wall repair device for kiln
JPS644083A (en) * 1987-06-25 1989-01-09 Sanyo Electric Co Photovoltaic device
US5223550A (en) * 1991-12-19 1993-06-29 Hoechst Celanese Corp. Fine polybenzimidazole-containing particles
CA2097222A1 (en) * 1992-06-01 1993-12-02 Somyong Visaisouk Particle blasting utilizing crystalline ice
US5366585A (en) * 1993-01-28 1994-11-22 Applied Materials, Inc. Method and apparatus for protection of conductive surfaces in a plasma processing reactor
KR100497879B1 (en) * 1997-01-23 2005-09-08 동경 엘렉트론 주식회사 Plasma treatment apparatus
JPH11191555A (en) * 1997-12-26 1999-07-13 Gunze Ltd Plasma cvd apparatus
JP2001226741A (en) * 2000-02-15 2001-08-21 Kawasaki Steel Corp High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01312087A (en) * 1988-06-09 1989-12-15 Anelva Corp Dry etching device
JPH04238882A (en) * 1991-01-10 1992-08-26 Denki Kagaku Kogyo Kk High-temperature insulated article
JPH0841309A (en) * 1994-07-28 1996-02-13 Hoechst Japan Ltd Polybenzimidazole resin article for dry etching apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004190136A (en) * 2002-11-28 2004-07-08 Tokyo Electron Ltd Member inside plasma treatment vessel
JP4503270B2 (en) * 2002-11-28 2010-07-14 東京エレクトロン株式会社 Inside the plasma processing vessel
US8877002B2 (en) 2002-11-28 2014-11-04 Tokyo Electron Limited Internal member of a plasma processing vessel
US8043971B2 (en) 2003-02-07 2011-10-25 Tokyo Electron Limited Plasma processing apparatus, ring member and plasma processing method
JP2007516921A (en) * 2003-12-18 2007-06-28 ラム リサーチ コーポレーション Ceramic part coated with yttria in a semiconductor material processing apparatus and method for manufacturing the part
JP2008028052A (en) * 2006-07-20 2008-02-07 Tokyo Electron Ltd Repairing method of electrostatic chuck electrode
JP2008103403A (en) * 2006-10-17 2008-05-01 Tokyo Electron Ltd Substrate mount table and plasma treatment apparatus
JP2012004580A (en) * 2011-07-29 2012-01-05 Tokyo Electron Ltd Method for repairing electrostatic chuck electrode
JP2013140950A (en) * 2011-12-05 2013-07-18 Tokyo Electron Ltd Plasma processing device and plasma processing method
KR101903831B1 (en) 2011-12-05 2018-10-02 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus and plasma processing method

Also Published As

Publication number Publication date
CN100386467C (en) 2008-05-07
CN1479801A (en) 2004-03-03
KR101005983B1 (en) 2011-01-05
JPWO2002048421A1 (en) 2004-04-15
KR20030063415A (en) 2003-07-28
JP4440541B2 (en) 2010-03-24
KR100945315B1 (en) 2010-03-05
KR20090081446A (en) 2009-07-28

Similar Documents

Publication Publication Date Title
WO2002048421A1 (en) Method for regenerating container for plasma treatment, member inside container for plasma treatment, method for preparing member inside container for plasma treatment, and apparatus for plasma treatment
US20040081746A1 (en) Method for regenerating container for plasma treatment, member inside container for plasma treatment, method for preparing member inside container for plasma treatment, and apparatus for plasma treatment
US8475622B2 (en) Method of reusing a consumable part for use in a plasma processing apparatus
JP5364514B2 (en) Cleaning method in chamber
JP4657824B2 (en) Substrate mounting table, substrate processing apparatus, and method for manufacturing substrate mounting table
JP5612300B2 (en) Substrate mounting table, manufacturing method thereof, and substrate processing apparatus
JP2007332462A (en) Method for regenerating plasma treatment container, member inside the plasma treatment container, method for manufacturing the member inside the plasma treatment container and apparatus for plasma treatment
KR20050039605A (en) Cleaning and refurbishing chamber components having metal coatings
TWI555070B (en) Methods for depositing bevel protective film
WO2009116588A1 (en) Surface treatment method, showerhead, treatment container, and treatment apparatus using same
JP2010199475A (en) Cleaning method of plasma processing apparatus and storage medium
JP5566891B2 (en) Semiconductor manufacturing equipment parts and semiconductor manufacturing equipment
TWI811421B (en) Coating material for processing chambers
KR20080055645A (en) Substrate mounting table and method for manufacturing same, substrate processing apparatus, and fluid supply mechanism
KR101906641B1 (en) Plasma processing device
JP2006319041A (en) Plasma cleaning method and method for forming film
JP5137304B2 (en) Corrosion resistant member and manufacturing method thereof
KR101323645B1 (en) Regeneration method for side of electrostatic chuck using aerosol coating and electrostatic chuck regenerated by the same
CN112736007A (en) Substrate processing system with electrostatic chuck and method of manufacturing electrostatic chuck
JP2004071791A (en) Substrate placement member and substrate treatment apparatus using same
JP2006339673A (en) Plasma processing apparatus
JP7357182B1 (en) Maintenance method for substrate processing equipment and substrate processing equipment
CN115836378A (en) Process kit with protective ceramic coating for hydrogen and ammonia plasma applications
KR20240046578A (en) Processed ceramic chamber parts
JP2022030376A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002550132

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037007810

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018204775

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037007810

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10450094

Country of ref document: US