WO2002047192A1 - Nonaqueous electrolyte and secondary cell using the same - Google Patents

Nonaqueous electrolyte and secondary cell using the same Download PDF

Info

Publication number
WO2002047192A1
WO2002047192A1 PCT/JP2001/010541 JP0110541W WO0247192A1 WO 2002047192 A1 WO2002047192 A1 WO 2002047192A1 JP 0110541 W JP0110541 W JP 0110541W WO 0247192 A1 WO0247192 A1 WO 0247192A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hydride
ring
aromatic
lithium
Prior art date
Application number
PCT/JP2001/010541
Other languages
French (fr)
Japanese (ja)
Inventor
Takehiro Shimizu
Tadashi Kuratomi
Tetsuo Sakai
Original Assignee
Nippon Steel Chemical Co., Ltd.
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd., National Institute Of Advanced Industrial Science And Technology filed Critical Nippon Steel Chemical Co., Ltd.
Priority to KR1020037005900A priority Critical patent/KR100751466B1/en
Priority to JP2002548808A priority patent/JP4184081B2/en
Publication of WO2002047192A1 publication Critical patent/WO2002047192A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aromatic additive added to an electrolyte for preventing overcharge of a chargeable / dischargeable lithium battery using a non-aqueous electrolyte, and a lithium secondary battery using the same.
  • BACKGROUND ART Lithium has an extremely low potential and an extremely large charge per weight, and is suitable as a high-voltage, high-capacity rechargeable battery material.
  • lithium is an extremely reactive and unstable substance, so there is a high risk of fire and the like, and in a battery capable of high capacity, the stored energy is large, and the electrochemical reaction has run away. The dangers in that case are even greater.
  • rechargeable lithium batteries lithium rechargeable batteries
  • R & D is actively pursued. Have been done.
  • a carbon-based material capable of inserting and extracting lithium ions is used as a negative electrode active material
  • a lithium-containing transition metal oxide is used as a positive electrode active material
  • a nonaqueous solvent in which lithium salt is dissolved is used as an electrolyte.
  • a rechargeable lithium-ion battery that can be used has been developed. Excessive extraction of lithium at the electrode ⁇ Insertion, resulting in the decomposition of organic solvent electrolytes, which eventually causes abnormal heating of the battery, causing the battery to ignite or explode.
  • Japanese Patent Application Laid-Open No. 2000-51816 discloses an electrolytic solution containing a terphenyl compound such as 0-terphenyl which may be substituted with an alkyl group.
  • Japanese Patent Application Laid-Open No. 10-74537 proposes the addition of various compounds to improve the charge / discharge characteristics, including aromatic compounds and partial hydrogen. Aromatic compounds.
  • a non-aqueous electrolytic solution obtained by dissolving a lithium salt as an electrolyte in an organic solvent a partially-nucleated hydride of a three-ring aromatic compound represented by the following general formula (1) is used. It is a non-aqueous electrolyte characterized by containing 1 to 20% by weight.
  • a ri is a phenyl group or a phenyl group substituted by an alkyl group having 1 to 4 carbon atoms
  • Ar 2 is a condensed aromatic group having two rings.
  • R is A single bond or a methylene group substituted with a methylene group or an alkyl group having 1 to 4 carbon atoms
  • partial hydrides of tricyclic aromatic compounds include terfuninyls, benzylino biphenyls, dibenzylbenzenes, pheninolenaphthalenes, benzylnaphthalenes, and substitutable hydrogens of these aromatic compounds.
  • Preferable examples include partially nuclear hydrides of one or more aromatic compounds selected from the group of group compounds in which carbon atoms are substituted with an alkyl group having 1 to 4 carbon atoms, more preferably terphenyl or Partial hydride of Benzyl bifuel is mentioned.
  • the nuclear hydrogenation rate of the above partial nuclear hydride is It is preferably from 10 to 65%.
  • the present invention is a non-aqueous lithium secondary battery using the non-aqueous electrolyte according to any of the above.
  • Ar i is a phenyl group or a substituted phenyl group in which one or more alkyl groups having 1 to 4 carbon atoms (hereinafter referred to as lower alkyl groups) are substituted.
  • R is a single bond, a methylene group represented by —C (R 3 R 4 ) —, or a methylene group substituted by one or two lower alkyl groups.
  • Ar 2 may be substituted with a lower alkyl group.A condensed bicyclic aromatic group or one Ar 3 -R 2 to Ar 4 (however, Ar 3 and Ar 4 are independently substituted with a lower alkyl group.
  • R 2 is a single bond or a methylene group represented by -C (R 3 R 4 )-or a methylene group substituted by one or two lower alkyl groups.
  • This is a bicyclic aromatic group represented by
  • R 3 and R 4 independently represent hydrogen or a lower alkyl group.
  • a methyl group is preferable as the lower alkyl group, a single bond, a methylene group or an ethylidene group is preferable as R and R 2, and a naphthyl group or methylnaphthyl is preferable as the bicyclic fused aromatic group.
  • Alpha gamma iota, aromatic group and to the Fuweni group or Mechirufue represented by Ar 4 - Le group is preferable, in the aromatic group represented by Ar 3 phenylene group or Mechirufue two alkylene groups laid preferred, - Ar 3 - R 2 - is a bicyclic aromatic group represented by Ar 4, Bifuwe Ya two drill group or Mechirubifue two drill radical R 2 is a single bond And an aromatic group in which R 2 is a methylene group or an ethylidene group is preferred.
  • the free A ri for substituted ⁇ alkyl group in A r 2 the number is 2 or less in A. ri, in A r 2 is The number is preferably 6 or less, and the alkyl group is preferably a methyl group or an ethyl group.
  • R is a direct bond A r ⁇ A r 2
  • a r ⁇ C in the case of alkyl-substituted methylene group
  • R 3 and R 4 are preferably H, a methyl group or an ethyl group (provided that one of R 3 and R 4 is other than H).
  • An example of a preferred three-ring aromatic compound represented by the general formula (1) is a compound group represented by the following formula 2.
  • preferable three-ring aromatic compounds include terphenyls (the meanings include the isomers; the same shall apply hereinafter), benzyl biphenyls, dibendinolebenzenes, phenylnaphthalenes, and benzylnaphthalenes. Or a three-ring aromatic compound in which a carbon having a substitutable hydrogen of these aromatic compounds is substituted by a lower alkyl group. More preferably, they are terphenyls or benzyl biphenyls.
  • partial hydride of a three-ring aromatic compound a partial hydride of a structure in which a part of the aromatic ring of the above aromatic compound is nuclei-hydrogenated may be mentioned.
  • Nuclear hydrides are compounds obtained by hydrogenating a three-ring aromatic compound, but are compounds that have both a hydrogenated ring such as a hexane ring and an aromatic ring such as a benzene ring from the beginning. However, the former is easier to obtain.
  • the product obtained by partial nuclear hydrogenation of a three-ring aromatic compound is usually obtained as a mixture having different degrees of nuclear hydrogenation, but the partial nuclear hydride used in the present invention is obtained by nuclear hydrogenation. Even if the mixture has different degrees, it may be a compound having a uniform degree of nuclear hydrogenation obtained by separating the mixture by distillation or the like. It is also preferable that the content of partial hydride obtained by separating unhydride and complete hydride by distillation or the like is 70 wt% or more.
  • the partial hydride obtained in this manner is one in which at least one of the aromatic rings of the aromatic compound represented by the general formula (1) is a cyclohexane ring or a cyclohexene ring. is there. In some cases, it is desirable to reduce the number of unsaturated aliphatic rings such as a cyclohexene ring. In such a case, the hydrogenation conditions and the like are controlled as such.
  • the nuclear hydrogenation rate in the case of partial nuclear hydrogenation of an aromatic compound is 100 to 50%, preferably 100 to 50%, preferably 100% in the case of complete nuclear hydrogenation. It is 15 to 40%. If it exceeds 50%, it becomes difficult to provide safety, and if it is less than 10%, the effect of balancing safety and maintaining electric capacity is diminished.
  • preferred partial hydrides include partial hydrides of aromatic compounds which are preferred in the case of partial nuclear hydrogenation of an aromatic compound.
  • partial nuclear hydride of Tarpheel partial nuclear hydride of benzyl biphenyl
  • partial nuclear hydride of dibenzylbenzene partial nuclear hydride of dibenzyltoluene
  • partial nuclear hydride of di (methylbenzyl) xylene partial nuclear hydride of di (methylbenzyl) xylene
  • Partial hydrides of benzylnaphthalene and partial hydrides of furnaphthalene can be mentioned.
  • Examples of preferred partial hydride compounds include a group of compounds represented by the following formula (3).
  • Examples of the above compounds by compound names include 2-hexylhexylbiphenyl, (2'-pheninole) -cyclohexylolebenzene, 2-phenylenoxy-hexanol, 1,2-dicyclohexynole Benzene, 3-cyclohexynolebiphenyl, (3'-phenyl) -cyclohexylbenzene, 3-phenylenobicyclohexyl, 1,3-dicyclohexylhexylbenzene, 2- (cyclohexene (Xylmethyl) bif e-nore, (2'-benzinole) -hex hexinolebenzene, 2-benzinoresic hexinolebenzene, (2, -six hexinolemethine) -six hexinolebenzene, 2-benzinorevicik hexyl mouth, 1-six hexylmethyl chino
  • the compound contained in the non-aqueous electrolyte solution in the present invention causes an oxidation reaction in the initial region of overcharge, and by its action protects the battery from overcharge and provides safety. In addition, it has the feature that it does not adversely affect the battery characteristics even when charge and discharge are repeated at a high operating voltage, and acts as an overcharge prevention agent that can maintain a high electric capacity.
  • the oxidation potential was measured by adding it to the lithium battery electrolyte, and it was found that oxidation started at almost the same potential as 0-terphenyl. In a slightly lower potential area, the electrolyte containing o-terphenyl This is presumably because, while a current showing strong oxidation flows, the electrolytic solution to which the compound of the present invention is added hardly has any.
  • the amount of the partially hydrided aromatic compound contained in the non-aqueous electrolyte (the total amount when two or more compounds are mixed and used) is 0 to the amount of the organic solvent used as the electrolyte solvent.
  • the content is 1 to 20% by weight, preferably 1 to 10% by weight, and more preferably 2 to 5% by weight.
  • the partially hydride of the aromatic compound in the present invention does not hinder the combined use with a known additive having an overcharge preventing effect as long as the effect of the present invention is not impaired.
  • the partial hydride of the compound must have a content in the above range.
  • the members constituting the secondary battery prepared using the electrolytic solution prepared by using the compound of the present invention are not particularly limited, and various conventionally used members can be used. For example, a configuration or a member as described in the above publication can be used.
  • a positive electrode foil can be prepared by applying a slurry in which the lithium compound powder, the conductive powder and the binder are mixed to an aluminum foil, drying the slurry, and appropriately processing the slurry.
  • any material can be used as long as it can absorb and release lithium and can be generally used for a rechargeable lithium battery.
  • An example is a carbonaceous insertion compound in which lithium is intercalated. Carbonaceous insertion compounds are used to build batteries into carbon materials. Alternatively, it may be prepared by electrochemically inserting lithium in the electrolyte or by premixing carbon powder and the electrolyte from the beginning.
  • a negative electrode foil can be prepared by applying a slurry in which such a carbonaceous insertion compound or a mixture of carbon and a binder is applied to a copper foil, followed by drying and appropriate processing.
  • any separator that can be generally used for a rechargeable lithium battery can be used, and examples thereof include microporous polypropylene and a polyethylene membrane.
  • the non-aqueous electrolyte is used by appropriately combining an organic solvent and a solute. Any non-aqueous electrolyte can be used as long as it can be generally used for a rechargeable lithium battery. Examples include solvents containing dimethyl carbonate, dimethyl carbonate, jetinole carbonate, propylene carbonate, methylethylene carbonate, and the like.
  • a liquid electrolyte solute lithium hexafluorophosphate ( L i PF 6), Te preparative Rafuruoro borate lithium (L i BF 4), Application Benefits Furuorome Tan sulfonic Sanli lithium (L i CF 3 SO 3), and the like.
  • the above constituent materials are laminated with a positive electrode (aluminum foil) z separator (impregnated with non-aqueous electrolyte) and a negative electrode (copper foil) / separator (impregnated with non-aqueous electrolyte) to form a battery.
  • a positive electrode aluminum foil
  • a negative electrode copper foil
  • separator impregnated with non-aqueous electrolyte
  • the electrolytic solution has compatibility such as propylene carbonate being unsuitable.
  • the shape of the battery can be applied to any shape that is generally manufactured for a rechargeable lithium battery, but examples thereof include a prismatic battery and a small coin battery. .
  • the compound contained in the electrolytic solution in the present invention has a specific action of having both an overcharge preventing effect and stability in a high voltage region.
  • electrolyte A To 100 g of the above-mentioned basic electrolyte, 2.0 g of 2-cyclohexylbiphenyl as a partially hydrogenated aromatic compound was added to prepare electrolyte A.
  • Electrolyte solution C was prepared by adding 1.7 g of a mixture composed of about 0.1 g of 2 g, about 0.1 g of 1,2-dihexyl hexylbenzene, and 0.3 g of o-terphenyl.
  • L i C o O 2 powder 8 5 weight 0/0 and polyvinylidene fluoride 7 wt 0/0, ⁇ Se Chirenbura click 8 were mixed by weight 0/0, paste with N- main Chiru 2 pyro Li Dong Rolls are applied to aluminum foil, dried, and roll pressed.
  • the positive electrode was prepared by compression molding with a machine.
  • the electrolyte solution A prepared as described above is injected between the positive electrode and the negative electrode processed into a predetermined size, and the electrolyte solution A impregnated with porous polypropylene is sandwiched between the positive electrode and the negative electrode to have a diameter of 20 mra.
  • a coin battery with a thickness of 5 mm was manufactured.
  • a coin battery was produced in the same manner as in Example 2, except that the electrolytic solution B, C, D or E prepared by the above-mentioned method was used as the electrolytic solution.
  • a coin battery was manufactured in the same manner as in Example 2, except that the electrolyte F was used as the electrolyte.
  • a coin battery was prepared in the same manner as in Example 2 except that the basic electrolyte was used as it was.
  • a constant current charge of 1 C was performed at an upper limit voltage of 4. IV, and then the battery was fully charged at 4. IV for 3 hours. Thereafter, discharge was performed at 1 C with a lower limit voltage of 3.0 V. Such charge / discharge was repeated up to 20 cycles.
  • the discharge capacity at the 1st cycle and the 20th cycle was measured to examine the effect of the addition of aromatic hydride partial hydride on the capacity. Each test was performed three times, and Table 1 shows the average value of the discharge capacity ratio before the test (1st cycle) and after the test (20th cycle).
  • the electrolytes A, B, C, D, E, and the electrolyte F to which o-terphenyl was added in which the compound of the present invention was added.
  • the cell using the cell was slightly lower than the cell using the electrolyte without any additives, the level was not much different.
  • the cells containing the electrolytic solutions A, B, C, D, and E to which the compound of the present invention was added were 0.90. %, While the cell containing electrolyte F with o_terphenyl decreased to 87%.
  • SUS304 (diameter 16.0mm, thickness 6.0mm) for working electrode, lithium (diameter 20mm, thickness 0.55mm) for counter electrode, polypropylene separator, electrolyte solution described in each example and comparative example.
  • a cell for evaluation was prepared by inserting 5 ral.
  • the battery in a chargeable / dischargeable lithium battery, the battery is protected from overcharging, and danger such as ignition or explosion can be avoided. In addition, even when the maximum operating voltage is increased, there is little battery capacity reduction due to charge / discharge cycles. Effectively take out electric capacity and enable long-term use

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

A nonaqueous electrolyte solution having an organic solvent and, dissolved therein, a lithium salt as an electrolyte, characterized in that the electrolyte solution further comprises 0.1 to 20 wt % of a compound obtained by partial nucleus hydrogenation of an aromatic compound having three rings represented by Ar1-R-Ar2, wherein Ar1 represents a phenyl group which optionally has a substituent, Ar2 represents a condensed or non-condensed aromatic group having two rings which optionally has a substituent, and R represents a direct bond, a methylene group or an alkylidene group. The above compounds obtained by partial nucleus hydrogenation include compounds obtained by partial nucleus hydrogenation of terphenyl or benzylbiphenyl; and a lithium secondary cell using the nonaqueous electrolyte solution. The nonaqueous electrolyte solution is capable of protecting a chargable lithium cell suitable for portable devices and electric cars against the damage due to frequently repeated overcharges and improving the safety of the cell, and also allows the retention of a high electric capacity even after repeated charges and discharges at a high maximum operating voltage.

Description

明細書 非水系電解液及びそれを用いた二次電池 技術分野  Description Non-aqueous electrolyte and secondary battery using the same
.本発明は非水電解液を用いた充放電可能なリチウム電池の過充電防止 のために、 電解液に添加する芳香族添加剤及びこれを添加使用したリチ ゥム二次電池に関する。 背景技術 リチウムは極めて卑な電位を有し、 重量あたりの電荷が極めて大きい ので、 高電圧、 高容量の再充電可能な電池材料と して適している。 一方 で、 リチウムは極めて反応性に富む不安定な物質であることから火災な どの危険性も大きく 、 また高容量を可能とする電池においては蓄積され たエネルギーが大きいため、 電気化学反応が暴走した場合の危険性も更 に大きいものとなる。 携帯機器や電気自動車用の電池と して充放電可能 なリチウム電池 (リチウム二次電池) を使用するためには、 安全性の確 保が重要な課題となっており、 研究開発が盛んに行われている。 The present invention relates to an aromatic additive added to an electrolyte for preventing overcharge of a chargeable / dischargeable lithium battery using a non-aqueous electrolyte, and a lithium secondary battery using the same. BACKGROUND ART Lithium has an extremely low potential and an extremely large charge per weight, and is suitable as a high-voltage, high-capacity rechargeable battery material. On the other hand, lithium is an extremely reactive and unstable substance, so there is a high risk of fire and the like, and in a battery capable of high capacity, the stored energy is large, and the electrochemical reaction has run away. The dangers in that case are even greater. In order to use rechargeable lithium batteries (lithium rechargeable batteries) as batteries for mobile devices and electric vehicles, ensuring safety is an important issue, and R & D is actively pursued. Have been done.
そこで、 負極活物質と してリチウムイオンを吸蔵放出し得るカーボン 系材料等を用い、 正極活物質と してリチウム含有遷移金属酸化物を用い 電解液と してリチゥム塩を溶解した非水溶媒を用いた充放電可能なリチ ゥムイオン電池が開発されているが、 この様な電池では過充電状態時に 電極においてリチウムの過剰な抽出 ■ 挿入が生じ、 その結果有機溶媒電 解質が分解され、 ついには電池が異常に発熱し、 電池が発火、 爆発する という問題が生じる。 Therefore, a carbon-based material capable of inserting and extracting lithium ions is used as a negative electrode active material, a lithium-containing transition metal oxide is used as a positive electrode active material, and a nonaqueous solvent in which lithium salt is dissolved is used as an electrolyte. A rechargeable lithium-ion battery that can be used has been developed. Excessive extraction of lithium at the electrode ■ Insertion, resulting in the decomposition of organic solvent electrolytes, which eventually causes abnormal heating of the battery, causing the battery to ignite or explode.
充放電可能なリチゥム電池の安全性を確保するため、 盛んに研究開発 が行われており、 安全弁、 電流遮断弁、 保護回路等の過充電対策を施し たものが提案されているが、 更に安全性を確かなものとするためには、 確実で、 且つ電池特性を犠牲にしない簡便な二重三重の安全対策を施す ことが求められている。 この様な方策の一つと して、 例えば特開 2 0 0 0 - 5 8 1 1 6号公報では、 アルキル基で置換されていてもよい 0 -ター フェエル等のターフェ -ル化合物を含む電解液を用いることにより、 該 電解液を備えた非水二次電池が過充電状態に置かれた場合であつても安 全性が確保できると共に、 低温特性や保存特性などの電池特性に及ぼす 悪影響が少ないことが開示されている。 これによると確かにターフェ二 ル化合物はそれ以前に提案されていた添加剤と比較して、 過充電保護効 果を有し、 且つ低温特性や保存特性への悪影響が低減されているのが認 められる。 なお、 上記公報では、 従来の技術についても次のように触れ ている。  Active research and development are underway to ensure the safety of rechargeable lithium batteries, and safety valves, current cut-off valves, protection circuits, etc., have been proposed that provide countermeasures for overcharging. In order to ensure the reliability, it is required to take simple and triple safety measures that are reliable and do not sacrifice the battery characteristics. As one of such measures, for example, Japanese Patent Application Laid-Open No. 2000-51816 discloses an electrolytic solution containing a terphenyl compound such as 0-terphenyl which may be substituted with an alkyl group. By using a non-aqueous secondary battery, safety can be ensured even when the non-aqueous secondary battery including the electrolyte is placed in an overcharged state, and adverse effects on battery characteristics such as low-temperature characteristics and storage characteristics can be obtained. It is disclosed that there is less. This clearly shows that the terfenyl compound has an overcharge protection effect and has a reduced adverse effect on low-temperature characteristics and storage characteristics as compared with the additives previously proposed. Can be In the above-mentioned publication, the conventional technology is described as follows.
特開平 7— 3 0 2 6 1 4号公報、 U S特許 5 7 0 9 9 6 8号公報にお いて提案されたものにあっては、 ァニソール誘導体は過充電に対しては 有効に作用するのに対して、 サイクル特性や保存特性などに悪影響を及 ぼすほか、 4 . 5 V程度の電位で酸化分解されて、 ガスを発生すると と もに、 重合物を形成することにより、 過充電を消費して電池を保護する 反面、 電解液組成によっては、 その重合物が溶解して過充電を消費でき ない場合も生じる。 結局、 π電子軌道をもつァニソール誘導体などの芳 香族化合物は必ずしも過充電を抑制するとはいえない。 U S特許 5 8 7 9 8 3 4号公報において提案されたものにあっては、 電解液の添加剤と して使用するビフ -ニルは、 極性が低く、 かつ電解液に対する溶解性が 低いため、 低温作動時に添加剤が一部析出して電池特性の低下を惹起す る。 また、 3—クロローチォフェンは刺激性があり、' しかも悪臭が強く て取り扱いが難しく、 さ らに酸化分解されやすいという問題点があり、 フランも酸化分解されやすく、 いずれの化合物も電池特性に悪影響を及 ぼすという問題点がある。 In those proposed in Japanese Patent Application Laid-Open Nos. 7-32026-14 and US Pat. No. 5,970,968, the anisol derivative effectively acts on overcharging. In addition to adverse effects on cycle characteristics and storage characteristics, overcharge is caused by oxidation decomposition at a potential of about 4.5 V, gas generation, and polymer formation. While it protects the battery by consuming it, depending on the composition of the electrolyte, the polymer may dissolve and the overcharge may not be consumed. Eventually, properties such as anisole derivatives having π electron orbitals Aromatic compounds cannot always be said to suppress overcharge. In the method proposed in US Pat. No. 5,879,834, bifinyl used as an additive of the electrolyte has low polarity and low solubility in the electrolyte, At the time of low-temperature operation, some of the additives precipitate and cause deterioration of battery characteristics. In addition, 3-chloro-thiophene is irritating, has a problem that it is difficult to handle due to strong odor, and it is easily oxidized and decomposed. Furan is also easily oxidized and decomposed. This has the problem of adversely affecting
その他、 特開 1 0 - 7 4 5 3 7号公報では、 充放電特性を改良するた め、 多様な化合物を添加することを提案しており、 その中には芳香族化 合物や部分水素化芳香族化合物が含まれている。  In addition, Japanese Patent Application Laid-Open No. 10-74537 proposes the addition of various compounds to improve the charge / discharge characteristics, including aromatic compounds and partial hydrogen. Aromatic compounds.
一方で、 近年、 電解液の高電圧領域での安定性が改良されてきたことなどに伴い、 最大作動電圧を高くすることが要求されている。 最大作動電圧が高くなれば、 各部材 の集合体としての電池システムが本来有する電気容量をより有効に利用することがで き、 実質的に電池の充放電容量を向上することができる。  On the other hand, in recent years, as the stability of the electrolyte in the high voltage region has been improved, it has been required to increase the maximum operating voltage. When the maximum operating voltage increases, the electric capacity inherent in the battery system as an assembly of the members can be more effectively used, and the charge / discharge capacity of the battery can be substantially improved.
しかしながら、 このよ うに最大作動電圧が高く なってく ると、 先に述 ベたターフェニル化合物を電解液添加剤と して使用した場合、 電池特性、 特に充放電を繰り返すなかでの電気容量について顕著な劣化が認められ るようになる。 これはおそらく、 ターフェニル化合物が高電圧領域にお いて、 徐々に酸化分解や重合等の好ましく ない反応を起こすためである と考えられる。  However, when the maximum operating voltage is increased in this way, when the above-mentioned terphenyl compound is used as an electrolyte additive, the battery characteristics, particularly the electric capacity during repeated charge and discharge, are remarkable. Significant deterioration will be observed. This is probably because the terphenyl compound gradually causes undesirable reactions such as oxidative decomposition and polymerization in the high voltage region.
本発明の課題は、 充放電可能なリチウム電池において、 従来の電解液 添加剤と同等、 あるいはそれ以上の過充電防止効果を有し、 且つ従来の 電解液添加剤と比較して高電圧領域において安定な添加剤を提供しょう とすることである。 It is an object of the present invention to provide a chargeable / dischargeable lithium battery having an overcharge prevention effect equal to or higher than that of a conventional electrolyte additive, and in a high voltage region as compared with the conventional electrolyte additive. Providing stable additives It is to be.
発明の開示 本発明者らは、 これらの問題点を解決すベく鋭意検討を行なつた結果. 特定の 3環の部分水素化芳香族化合物がより優れた性能を示すことを見 出し、 本発明を完成した。  DISCLOSURE OF THE INVENTION The present inventors have conducted intensive studies to solve these problems. The present inventors have found that a specific three-ring partially hydrogenated aromatic compound exhibits superior performance, and Completed the invention.
すなわち、 本発明は、 有機溶媒に電解質と してリチウム塩を溶解して なる非水系電解液において、 下記一般式 ( 1 ) で表される 3環の芳香族 化合物の部分核水素化物が 0 . 1〜 2 0重量%含有されていることを特 徴とする非水系電解液である。  That is, according to the present invention, in a non-aqueous electrolytic solution obtained by dissolving a lithium salt as an electrolyte in an organic solvent, a partially-nucleated hydride of a three-ring aromatic compound represented by the following general formula (1) is used. It is a non-aqueous electrolyte characterized by containing 1 to 20% by weight.
A r 厂 R -A r 2 ( 1 ) A r factory R -A r 2 (1)
(但し、 式中、 A r iはフエニル基又は炭素数 1 ~ 4 のアルキル基で置換 されたフエニル基であり、 A r 2は 2環の縮合芳香族基.、 芳香環同士が直 接若しくは炭素一原子を介して結合される 2環の非縮合芳香族基又は炭 素数 1〜 4のアルキル基で置換された 2環の縮合芳香族基若しくは 2環 の非縮合芳香族基であり、 Rは単結合又はメチレン基又は炭素数 1〜 4 のアルキル基で置換されたてメチレン基を示す) (Wherein, A ri is a phenyl group or a phenyl group substituted by an alkyl group having 1 to 4 carbon atoms, and Ar 2 is a condensed aromatic group having two rings. A two-ring non-fused aromatic group or a two-ring fused aromatic group or a two-ring non-fused aromatic group substituted by an alkyl group having 1 to 4 carbon atoms, and R is A single bond or a methylene group substituted with a methylene group or an alkyl group having 1 to 4 carbon atoms)
3環の芳香族化合物の部分核水素化物と しては、 ターフニニル類、 ベ ンジノレビフエ二ノレ類、 ジベンジルベンゼン類、 フエニノレナフタ レン類、 ベンジルナフタレン類及びこれらの芳香族化合物類の置換可能な水素を 有する炭素に炭素数 1〜 4のアルキル基が置換した族化合物の群れから 選択される 1種又は 2種以上の芳香族化合物の部分核水素化物が好まし く挙げられ、 より好ましくはターフェニル又はべンジルビフエエルの部 分核水素化物が挙げられる。 また、 上記部分核水素化物の核水素化率は 1 0〜 6 5 %であることが好ま しい。 Examples of partial hydrides of tricyclic aromatic compounds include terfuninyls, benzylino biphenyls, dibenzylbenzenes, pheninolenaphthalenes, benzylnaphthalenes, and substitutable hydrogens of these aromatic compounds. Preferable examples include partially nuclear hydrides of one or more aromatic compounds selected from the group of group compounds in which carbon atoms are substituted with an alkyl group having 1 to 4 carbon atoms, more preferably terphenyl or Partial hydride of Benzyl bifuel is mentioned. Also, the nuclear hydrogenation rate of the above partial nuclear hydride is It is preferably from 10 to 65%.
更に、 本発明は、 前記のいずれかに記載の非水系電解液を用いた非水 系リチウムニ次電池である。  Furthermore, the present invention is a non-aqueous lithium secondary battery using the non-aqueous electrolyte according to any of the above.
上記一般式 ( 1 ) において、 Ar iはフエニル基又は炭素数 1〜 4のァ ルキル基 (以下、 低級アルキル基という) が 1又は 2以上置換した置換 フエニル基である。 Rは単結合又は - C (R3R4) -で表されるメチレン 基又は 1又は 2個の低級アルキル基が置換したメチレン基である。 Ar 2 は低級アルキル基で置換されていてもよい 2環の縮合芳香族基又は一 A r 3 - R2~Ar 4 (但し、 Ar 3と Ar 4は独立に、 低級アルキル基で置換さ れていてもよい単環の芳香族基であり、 R2は単結合又は - C (R3R 4) -で表されるメチレン基又は 1又は 2個の低級アルキル基が置換した メチレン基でを示す) で表される 2環の芳香族基である。 ここで、 R3と R4は独立に、 水素又は低級アルキル基を示す。 低級アルキル基と しては メチル基が好ま しく 、 R及び R2と しては単結合、 メチレン基又はェチリ デン基が好ま しく、 2環の縮合芳香族基と してはナフチル基又はメチル ナフチル基が好ま しく、 ΑΓ ι、 Ar 4で表される芳香族基と してはフヱニ ル基又はメチルフエ -ル基が好ましく、 Ar 3で表される芳香族基と して はフエ二レン基又はメチルフエ二レン基が好ま しく 、 - Ar 3— R2— Ar 4 で表される 2環の芳香族基と しては、 R 2が単結合である ビフヱ二リル基 又はメチルビフエ二リル基や、 R2がメチレン基又はェチリデン基である 芳香族基が好ま しく 、 後者の例と しては、 フエニルメチルフエニル基、 ト リ ルメチルフエ二ノレ基、 1, 1一 ト リノレエチノレフェニル基、 1, 1— ト リ ル ェチル ト リル基が挙げられる。 なお、 A r iないし A r 2における置換ァ ルキル基について、 個数は A. r iにおいては 2個以下、 A r 2においては 6個以下が好ま しく 、 またアルキル基はメチル基又はェチル基が好ま し い。 また、 Rが直結合の場合は A r厂 A r 2となり、 メチレン基の場合は A r「 C H2- A r 2と な り 、 アルキル置換メチレン基の場合は A r厂 CIn the above general formula (1), Ar i is a phenyl group or a substituted phenyl group in which one or more alkyl groups having 1 to 4 carbon atoms (hereinafter referred to as lower alkyl groups) are substituted. R is a single bond, a methylene group represented by —C (R 3 R 4 ) —, or a methylene group substituted by one or two lower alkyl groups. Ar 2 may be substituted with a lower alkyl group.A condensed bicyclic aromatic group or one Ar 3 -R 2 to Ar 4 (however, Ar 3 and Ar 4 are independently substituted with a lower alkyl group. R 2 is a single bond or a methylene group represented by -C (R 3 R 4 )-or a methylene group substituted by one or two lower alkyl groups. This is a bicyclic aromatic group represented by Here, R 3 and R 4 independently represent hydrogen or a lower alkyl group. A methyl group is preferable as the lower alkyl group, a single bond, a methylene group or an ethylidene group is preferable as R and R 2, and a naphthyl group or methylnaphthyl is preferable as the bicyclic fused aromatic group. group laid preferred, Alpha gamma iota, aromatic group and to the Fuweni group or Mechirufue represented by Ar 4 - Le group is preferable, in the aromatic group represented by Ar 3 phenylene group or Mechirufue two alkylene groups laid preferred, - Ar 3 - R 2 - is a bicyclic aromatic group represented by Ar 4, Bifuwe Ya two drill group or Mechirubifue two drill radical R 2 is a single bond And an aromatic group in which R 2 is a methylene group or an ethylidene group is preferred. Examples of the latter include a phenylmethylphenyl group, a trimethylmethylphenyl group, and a 1,1-trinoethylenophenyl And 1,1-triethyl tolyl groups. Incidentally, the free A ri for substituted § alkyl group in A r 2, the number is 2 or less in A. ri, in A r 2 is The number is preferably 6 or less, and the alkyl group is preferably a methyl group or an ethyl group. Also, when R is a direct bond A r厂A r 2, whereas for the methylene group A r "CH 2 - A r 2 and Do Ri, A r厂C in the case of alkyl-substituted methylene group
( R3 4) - A r 2となる。 ここで、 R3、 R4と しては H、 メチル基又はェ チル基 (但し、 R3、 R4のいずれか一つは H以外である) が好ましく挙 げられる。 (R3 4)-A r 2 Here, R 3 and R 4 are preferably H, a methyl group or an ethyl group (provided that one of R 3 and R 4 is other than H).
好ま しい一般式 ( 1 ) で表される 3環の芳香族化合物を例示すれば、 下記式 2で表される化合物群がある。  An example of a preferred three-ring aromatic compound represented by the general formula (1) is a compound group represented by the following formula 2.
Figure imgf000008_0001
Figure imgf000008_0001
好ま しい 3環の芳香族化合物を例示する と、 ターフェニル類 (類は異 性体を含む意味である。 以下、 同じ) 、 ベンジルビフエエル類、 ジベン ジノレベンゼン類、 フエエルナフタ レン類、 ベンジルナフタ レン類又はこ れらの芳香族化合物類の置換可能な水素を有する炭素に低級アルキル基 が置換した 3環の芳香族化合物がある。 よ り好ま しく は、 ターフェニル 類又はべンジルビフエ二ル類である。  Examples of preferable three-ring aromatic compounds include terphenyls (the meanings include the isomers; the same shall apply hereinafter), benzyl biphenyls, dibendinolebenzenes, phenylnaphthalenes, and benzylnaphthalenes. Or a three-ring aromatic compound in which a carbon having a substitutable hydrogen of these aromatic compounds is substituted by a lower alkyl group. More preferably, they are terphenyls or benzyl biphenyls.
3環の芳香族化合物の部分核水素化物は、 前記芳香族化合物の芳香環 の一部が核水素化された構造の部分核水素化物が挙げられる。 この部分 核水素化物は、 3環の芳香族化合物を水素化して得られるものであって も、 シク口へキサン環等の核水素化された環とベンゼン環等の芳香環の 両者を最初から有する化合物であつても差し支えないが、 前者の方が入 手容易である。 As the partial hydride of a three-ring aromatic compound, a partial hydride of a structure in which a part of the aromatic ring of the above aromatic compound is nuclei-hydrogenated may be mentioned. this part Nuclear hydrides are compounds obtained by hydrogenating a three-ring aromatic compound, but are compounds that have both a hydrogenated ring such as a hexane ring and an aromatic ring such as a benzene ring from the beginning. However, the former is easier to obtain.
3環の芳香族化合物を部分核水素化して得られるものは、 通常、 核水 素化の程度が異なる混合物と して得られるが、 本発明で使用する部分核 水素化物は、 核水素化の程度が異なる混合物であっても、 これを蒸留等 で分離して得られる核水素化の程度が揃った化合物であってもよい。 ま た、 未水素化物及び完全核水素化物を蒸留等で分離して得られる部分核 水素化物の含有率が 7 0 wt %以上と したものも好ま しい。 このよ うにし て得られる部分水素化物は、 上記一般式 ( 1 ) で表される芳香族化合物 の芳香環の 1つ以上がシクロへキサン環、 シク 口へキセン環となったも のなどがある。 なお、 シクロへキセン環等の不飽和脂肪族環は少ない方 が望ま しい場合もあるが、 その場合は水素化条件等をそのように制御す る。  The product obtained by partial nuclear hydrogenation of a three-ring aromatic compound is usually obtained as a mixture having different degrees of nuclear hydrogenation, but the partial nuclear hydride used in the present invention is obtained by nuclear hydrogenation. Even if the mixture has different degrees, it may be a compound having a uniform degree of nuclear hydrogenation obtained by separating the mixture by distillation or the like. It is also preferable that the content of partial hydride obtained by separating unhydride and complete hydride by distillation or the like is 70 wt% or more. The partial hydride obtained in this manner is one in which at least one of the aromatic rings of the aromatic compound represented by the general formula (1) is a cyclohexane ring or a cyclohexene ring. is there. In some cases, it is desirable to reduce the number of unsaturated aliphatic rings such as a cyclohexene ring. In such a case, the hydrogenation conditions and the like are controlled as such.
これらの部分水素化物は、 前出のよ うな方法によ り単離した 1種類を 単独で用いても、 過充電時の電池保護効果と最大作動電圧を高く した場 合における電池特性向上の効果を両立しう るが、 部分水素化物の混合物 を用いるこ とによ り、 添加剤の粘度をさ らに下げ、 部分水素化物 1種類 のみを添加剤と して用いる場合よ り も電解液の粘度を上昇させにく く、 その結果大電流にて充放電する場合の電池特性を良好にすると考えられ 好ま しい。  Even if these partial hydrides are used alone, isolated by the above-mentioned method, the effect of protecting the battery during overcharge and the effect of improving the battery characteristics when the maximum operating voltage is increased However, by using a mixture of partially hydrides, the viscosity of the additive is further reduced, and the use of a mixture of partially hydrides as an additive is more efficient than when only one type of partially hydride is used as an additive. It is considered that it is difficult to increase the viscosity, and as a result, the battery characteristics when charging and discharging with a large current are considered to be good.
ここで、 芳香族化合物を部分核水素化する場合の核水素化率は、 完全 核水素化された場合を 1 0 0 %と したとき、 1 0 ~ 5 0 %、 好ま しく は 1 5〜 4 0 %である。 5 0 %を上回ると安全性の付与が困難になり、 1 0 %を下回ると、 安全性と電気容量保持が両立する効果が薄く なる。 好ま しい部分核水素化物を例示すると、 芳香族化合物を部分核水素化 する場合は、 前記で好ま しいと した芳香族化合物の部分核水素化物が挙 げられる。 例えば、 ターフェエルの部分核水素化物、 ベンジルビフエ二 ルの部分核水素化物、 ジベンジルベンゼンの部分核水素化物、 ジベンジ ル トルエンの部分核水素化物、 ジ(ひ -メ チルベンジル)キシレンの部分 核水素化物、 ベンジルナフタ レンの部分核水素化物及びフ 二ルナフタ レンの部分核水素化物等を挙げるこ とができ る。 Here, the nuclear hydrogenation rate in the case of partial nuclear hydrogenation of an aromatic compound is 100 to 50%, preferably 100 to 50%, preferably 100% in the case of complete nuclear hydrogenation. It is 15 to 40%. If it exceeds 50%, it becomes difficult to provide safety, and if it is less than 10%, the effect of balancing safety and maintaining electric capacity is diminished. Examples of preferred partial hydrides include partial hydrides of aromatic compounds which are preferred in the case of partial nuclear hydrogenation of an aromatic compound. For example, partial nuclear hydride of Tarpheel, partial nuclear hydride of benzyl biphenyl, partial nuclear hydride of dibenzylbenzene, partial nuclear hydride of dibenzyltoluene, partial nuclear hydride of di (methylbenzyl) xylene, Partial hydrides of benzylnaphthalene and partial hydrides of furnaphthalene can be mentioned.
好ま しい部分核水素化物の化合物を例示する と下記式 ( 3 ) で表され る化合物の群れが挙げられる。  Examples of preferred partial hydride compounds include a group of compounds represented by the following formula (3).
Figure imgf000010_0001
Figure imgf000010_0001
Figure imgf000010_0002
Figure imgf000010_0003
( 3 ) 上記化合物を化合物名で例示すれば、 2-シク口へキシルビフェニル、 ( 2 ' -フエ二ノレ) -シク 口へキシノレベンゼン、 2-フエニノレビシク 口へキシノレ、 1 , 2 -ジシク ロへキシノレベンゼン、 3-シク ロへキシノレビフエ二ノレ、 (3 '-フ ェニル)-シク ロへキシルベンゼン、 3-フエニノレビシク ロへキシル、 1 , 3- ジシク 口 へキシノレベンゼン'、 2- (シク 口 へキシルメ チル) ビフ エ -ノレ、 ( 2 ' -べンジノレ )—シク 口へキシノレベンゼン、 2-ベンジノレシク 口へキシノレべ ンゼン、 ( 2,-シク 口へキシノレメ チノレ) -シク 口へキシノレベンゼン、 2-ベン ジノレビシク 口へキシル、 1 -シク 口へキシルメ チノレ一 2-シク 口へキシルベ ンゼン、 4- (シク ロへキシルメ チル) ビフエニル、 (4 ' -ベンジル) -シク ロ へキシノレベンゼン、 4—ベンジノレシク 口へキシノレベンゼン、 (4 ' _シク 口へ キシノレメ チノレ) -シク 口へキシノレベンゼン、 4-ベンジルビシク 口へキシノレ , 1 -シク口へキシノレメチノレ一 4-シク口へキシノレベンゼンなどが挙げられる t これらの化合物は単独で用いてもよく、 また二種類以上の化合物を混合 して用いてもよい。
Figure imgf000010_0002
Figure imgf000010_0003
(3) Examples of the above compounds by compound names include 2-hexylhexylbiphenyl, (2'-pheninole) -cyclohexylolebenzene, 2-phenylenoxy-hexanol, 1,2-dicyclohexynole Benzene, 3-cyclohexynolebiphenyl, (3'-phenyl) -cyclohexylbenzene, 3-phenylenobicyclohexyl, 1,3-dicyclohexylhexylbenzene, 2- (cyclohexene (Xylmethyl) bif e-nore, (2'-benzinole) -hex hexinolebenzene, 2-benzinoresic hexinolebenzene, (2, -six hexinolemethine) -six hexinolebenzene, 2-benzinorevicik hexyl mouth, 1-six hexylmethyl chinole 2-six hexylbenzene, 4- (cyclohexylmethyl) biphenyl, (4'-benzyl) -cyclohexynoleven 1,4-benzinolesik hexinolebenzene, (4 '_six mouth xinolemethinole) -six mouth hexinolebenzene, 4-benzylbisik mouth hexinole, 1-six mouth hexinolemethine 1 4-six mouth hexinole t these compounds and benzene may be used alone, or may be used by mixing two or more compounds.
以下に、 本発明の再充電可能なリチウム電池の実施形態について説明 する。  Hereinafter, embodiments of the rechargeable lithium battery of the present invention will be described.
本発明で非水系電解液に含有させる化合物は、 過充電の初期領域で酸 化反応を起こし、 その作用で過充電から電池を保護し、 安全性を付与す る。 また、 作動電圧を高く して充放電を繰り返した場合でも電池特性に 悪影響を及ぼさないという特徴を有し、 高い電気容量の保持を可能にで きる過充電防止剤と して作用する。 これについて、 詳しい機構は現在判 つていないが、 リチウム電池電解液に添加して酸化電位を測定した結果 よ り、 0 -ターフェニルとほぼ同じ電位で酸化が開始されること と、 それ よ り若干低い電位の領域で、 o -ターフェニルを添加した電解液には微小 な酸化を示す電流が流れているのに対し、 本発明の化合物を添加した電 解液にはそれが殆どないためと考えられる。 The compound contained in the non-aqueous electrolyte solution in the present invention causes an oxidation reaction in the initial region of overcharge, and by its action protects the battery from overcharge and provides safety. In addition, it has the feature that it does not adversely affect the battery characteristics even when charge and discharge are repeated at a high operating voltage, and acts as an overcharge prevention agent that can maintain a high electric capacity. Although the detailed mechanism of this is not known at present, the oxidation potential was measured by adding it to the lithium battery electrolyte, and it was found that oxidation started at almost the same potential as 0-terphenyl. In a slightly lower potential area, the electrolyte containing o-terphenyl This is presumably because, while a current showing strong oxidation flows, the electrolytic solution to which the compound of the present invention is added hardly has any.
また、 非水系電解液に含有させる前記芳香族化合物の部分水素化物の 量(二種類以上の化合物を混合して使用する場合はその合計)は、 電解液 溶媒と して用いる有機溶媒に対し 0 . 1〜 2 0重量%とするが、 好まし くは 1〜 1 0重量%、 更に好ましくは 2〜 5重量%とするのがよい。  The amount of the partially hydrided aromatic compound contained in the non-aqueous electrolyte (the total amount when two or more compounds are mixed and used) is 0 to the amount of the organic solvent used as the electrolyte solvent. The content is 1 to 20% by weight, preferably 1 to 10% by weight, and more preferably 2 to 5% by weight.
また、 本発明における前記芳香族化合物の部分水素化物は、 本発明の 効果を阻害しない範囲であれば、 既知の過充電防止効果を持つ添加剤と の併用を妨げるものではないが、 前記芳香族化合物の部分水素化物は上 記範囲の含有量が必要である。  In addition, the partially hydride of the aromatic compound in the present invention does not hinder the combined use with a known additive having an overcharge preventing effect as long as the effect of the present invention is not impaired. The partial hydride of the compound must have a content in the above range.
本発明の化合物を使用して調製した電解液を用いて作成する二次電池 を構成する部材は特に限定されず、 従来使用されている種々の構成部材 を使用できる。 例えば、 前記公報に記載されたよ うな構成や部材が使用 できる。  The members constituting the secondary battery prepared using the electrolytic solution prepared by using the compound of the present invention are not particularly limited, and various conventionally used members can be used. For example, a configuration or a member as described in the above publication can be used.
例えば正極の材料と しては、 リチウムを含むもので充放電可能なリチ ゥム電池用に一般的に使用可能なものであれば何れも使用できるが L i M n 24、 L i C o〇2や L i N i O 2等の複合金属酸化物及びリチウム を含む層間化合物等が例示される。 これらのリチウム化合物粉末、 導電 性粉末及び結合剤とを混合したスラ リーをアルミニウム箔に塗布後、 乾 燥し、 適宜加工することによ り正極箔を作製することができる。 For example, as a positive electrode material, although either may be used as long as it is generally usable for rechargeable lithium © batteryless those containing lithium L i M n 24, L i C O_〇 2 and L i N i O 2 composite metal oxide and an intercalation compound containing lithium, such as and the like. A positive electrode foil can be prepared by applying a slurry in which the lithium compound powder, the conductive powder and the binder are mixed to an aluminum foil, drying the slurry, and appropriately processing the slurry.
負極の材料と しては、 リチウムを吸蔵放出可能なものであり充放電可 能なリチウム電池用に一般的に使用可能なものであれば何れも使用でき るが、 炭素の六角網目の層間にリチウムをインター力レート した炭素質 系挿入化合物が例示される。 炭素質系挿入化合物は炭素材料に電池を組 んだ後に電気化学的に電解質のリチウムを挿入することで調製してもよ いし、 最初から炭素粉と電解質とを予備混合して調製してもよい。 この ような炭素質系挿入化合物又は炭素と結合剤とを混合したスラ リーを銅 箔に塗布後、 乾燥し、 適宜加工することにより負極箔を作製することが できる。 As the material of the negative electrode, any material can be used as long as it can absorb and release lithium and can be generally used for a rechargeable lithium battery. An example is a carbonaceous insertion compound in which lithium is intercalated. Carbonaceous insertion compounds are used to build batteries into carbon materials. Alternatively, it may be prepared by electrochemically inserting lithium in the electrolyte or by premixing carbon powder and the electrolyte from the beginning. A negative electrode foil can be prepared by applying a slurry in which such a carbonaceous insertion compound or a mixture of carbon and a binder is applied to a copper foil, followed by drying and appropriate processing.
セパレーターと しては、 充放電可能なリチウム電池用に一般的に使用 可能なものであれば何れも使用できるが、 微孔性のポリ プロ ピレン、 ポ リエチレン膜等が例示できる。  As the separator, any separator that can be generally used for a rechargeable lithium battery can be used, and examples thereof include microporous polypropylene and a polyethylene membrane.
非水系電解液は有機溶媒と溶質を適宜組み合わせて使用され、 充放電 可能なリチウム電池用に一般的に使用可能なものであれば何れも使用で きるが、 有機溶媒と しては、 エチレンカーボネー ト、 ジメチルカーボネ ー ト、 ジェチノレカーボネー ト、 プロ ピレンカーボネー ト、 メチ レエチノレ カーボネー ト等を含有する溶剤が例示され、 液体電解質溶質と しては、 へキサフルォロ リ ン酸リチウム ( L i P F 6 ) 、 テ ト ラフルォロ硼酸リ チウム ( L i B F 4 ) 、 ト リ フルォロメ タンスルホン酸リ チウム ( L i C F 3 S O 3 ) 等が例示される。 The non-aqueous electrolyte is used by appropriately combining an organic solvent and a solute. Any non-aqueous electrolyte can be used as long as it can be generally used for a rechargeable lithium battery. Examples include solvents containing dimethyl carbonate, dimethyl carbonate, jetinole carbonate, propylene carbonate, methylethylene carbonate, and the like. As a liquid electrolyte solute, lithium hexafluorophosphate ( L i PF 6), Te preparative Rafuruoro borate lithium (L i BF 4), Application Benefits Furuorome Tan sulfonic Sanli lithium (L i CF 3 SO 3), and the like.
以上の構成材料を、 正極 (アルミニウム箔) zセパレーター (非水系 電解液含浸) 負極 (銅箔) /セパレーター (非水系電解液含浸) と積 層して、 電池を構成するが、 各々の材料の組み合わせについては、 例え ば黒鉛系の炭素材料を用いた場合は電解液にはプロ ピレンカーボネー ト は適さないなどの相性があるので、 適宜選択する必要がある。 電池の形 状と しては、 充放電可能なリチウム電池用に一般的に製造されている形 状であれば、 何れにも適用できるが、 角柱状電池や小形のコイン形電池 等が例示できる。 本発明で電解液中に含有させる化合物は、 過充電防止効果と高電圧領 域における安定性とを併せ持つという特異的な作用を有する。 また、 本 発明の化合物を添加後であつても電解液の粘度を上昇させにく いので、 大電流にて充放電した場合の電池特性も良好になると考えられる。 発明を実施するための最良の形態 次に、 実施例及び比較例を挙げて、 本発明を具体的に説明するが、 こ れらは、 本発明を何ら限定するものではない。 The above constituent materials are laminated with a positive electrode (aluminum foil) z separator (impregnated with non-aqueous electrolyte) and a negative electrode (copper foil) / separator (impregnated with non-aqueous electrolyte) to form a battery. As for the combination, for example, when a graphite-based carbon material is used, the electrolytic solution has compatibility such as propylene carbonate being unsuitable. The shape of the battery can be applied to any shape that is generally manufactured for a rechargeable lithium battery, but examples thereof include a prismatic battery and a small coin battery. . The compound contained in the electrolytic solution in the present invention has a specific action of having both an overcharge preventing effect and stability in a high voltage region. Further, even after the addition of the compound of the present invention, it is difficult to increase the viscosity of the electrolytic solution, so that it is considered that the battery characteristics when charging and discharging with a large current are improved. BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described specifically with reference to Examples and Comparative Examples, but these do not limit the present invention at all.
本発明評価方法により評価特性を測定する実験を行つた。 基本電解液 には、 エチレンカーボネー ト とジェチルカーボネー トが容量比 1 : 1 で 構成された有機溶媒に、 電解質と して六フッ化リ ン酸リチウム (L i P F 6 ) を 1 モル/ L溶解したものを使用した。 An experiment for measuring the evaluation characteristics by the evaluation method of the present invention was performed. The basic electrolyte solution, ethylene carbonate Natick preparative and Jefferies chill carbonate Natick preparative capacity ratio 1: in an organic solvent composed of 1, 1 mol hexafluoride potash lithium phosphate (L i PF 6) as an electrolyte / L dissolved was used.
実施例 1 Example 1
上記の基本電解液 1 0 0 gに、 部分水素化芳香族化合物と して 2-シク 口へキシルビフヱ-ルを 2 . 0 g添加し、 電解液 Aを調整した。  To 100 g of the above-mentioned basic electrolyte, 2.0 g of 2-cyclohexylbiphenyl as a partially hydrogenated aromatic compound was added to prepare electrolyte A.
また、 上記と同様の方法で、 基本電解液 1 0 O gに、 部分水素化芳香 族化合物と して、 2 '-フエエルシクロへキシルベンゼン約 1 . 0 g、 2-シ ク口へキシノレビフ エ二ノレ約 0 . 6 g、 2-フ エニノレビシク 口へキシノレ約 0 . 3 g、 1, 2-ジシク口へキシルベンゼン約 0 . 1 gで構成される混合物 2 . 0 gを添加し、 電解液 Bを調整した。  In the same manner as described above, about 1.0 g of 2'-phenylcyclohexylbenzene as a partially hydrogenated aromatic compound was added to 10 Og of the basic electrolyte, Add about 2.0 g of a mixture consisting of about 0.6 g of phenol and about 0.3 g of 2-hexinolevic hexyl benzene and about 0.1 g of 1,2-dihexyl hexylbenzene. Was adjusted.
更に、 上記と同様の方法で、 基本電解液 1 0 O gに、 部分水素化芳香 族化合物と して、 2 ' -フエエノレシクロへキシノレベンゼン約 0 . 9 g、 2 -シ ク ロへキシノレビフエ二ノレ約 0 . 5 g、 2-フ エニノレビシク ロへキシノレ約 0 . 2 g、 1, 2_ジシク口へキシルベンゼン約 0 . 1 gで構成される混合物 1 . 7 gと、 o —ターフェニル 0 . 3 gを添加し、 電解液 Cを調整した。 Further, in the same manner as described above, about 0.9 g of 2'-phenenocyclohexynolebenzene as a partially hydrogenated aromatic compound was added to 10 Og of the basic electrolyte, and Approximately 0.5 g of 2-phenylenoxycyclohexanol. Electrolyte solution C was prepared by adding 1.7 g of a mixture composed of about 0.1 g of 2 g, about 0.1 g of 1,2-dihexyl hexylbenzene, and 0.3 g of o-terphenyl.
上記と同様の方法で、 基本電解液 1 0 0 gに、 部分水素化芳香族化合 物と して、 3 ' -フェニルシク 口へキシノレべンゼン約 0 . 5 g、 3-シク ロへ キシノレビフエエル約 0 . 4 g、 3-フエ二ルビシクロへキシル約 0 . 6 g、 1 , 3-ジシク 口へキシルベンゼン約 0 . 5 gで構成される混合物 2 . 0 gを添 加し、 電解液 Dを調整した。  In the same manner as above, 100 g of the basic electrolyte was added with about 0.5 g of 3'-phenylcyclohexyloxybenzene as a partially hydrogenated aromatic compound, and 3-cyclohexyloxyphene as a partially hydrogenated aromatic compound. Add about 2.0 g of a mixture consisting of about 0.4 g of L, about 0.6 g of 3-phenylbicyclohexyl, and about 0.5 g of 1,3-dicyclohexylbenzene, and D was adjusted.
また、 上記と同様の方法で、 .基本電解液 1 0 0 gに、 部分水素化芳香 族化合物と して、 2- (シク 口へキシルメ チル) ビフエニル約 0 . 1 g、 2, - (シク 口へキシノレメ チル)シク ロへキシノレベンゼン約 0 . 1 g、 2-ベンジノレ シク 口へキシノレべンゼン約 0 . 2 g、 2 ' -べンジノレシク 口へキシルベンゼ ン約 1 . 1 gで構成される混合物 1 . 7 gと、 o ベンジルビフエエル 0 . In the same manner as above, 100 g of the basic electrolyte was added as a partially hydrogenated aromatic compound to about 0.1 g of 2- (cyclohexylmethyl) biphenyl, 2,-(cyclohexyl). Methyl hexinolemethyl) Cyclohexinolebenzene Approx.0.1 g, 2-Benzinole cycle Hexinolene benzene approx.0.2 g, 2'-Venzinolesh Approx.1.1 g hexylbenzene 1.7 g of the mixture and 0.
3 gを添加し、 電解液 Eを調整した。 3 g was added to adjust the electrolyte solution E.
比較のため、 上記と同様の方法で、 基本電解液 1 0 0 gに o _ターフェ ニルを 2 . 0 g添加し、 電解液 Fを調整した。  For comparison, 2.0 g of o_terphenyl was added to 100 g of the basic electrolyte to prepare electrolyte F in the same manner as described above.
実施例 2 Example 2
天然黒鉛を平均粒径 0 . 8 μ mに粉碎したもの 8 0重量。/。、 L i P F 6 を平均粒径 5 μ mに粉砕したもの 1 0重量%に、 結合剤と してポリ フ ッ 化ビニリデンを 1 ◦重量0 /0混合し、 N—メチル一 2—ピロ リ ドンでぺー ス ト状にしたものを銅箔に塗布し、 乾燥した後、 ロールプレス機で圧縮 成型にて加工し、 負極を調製した。 80 weight of natural graphite ground to 0.8 μm. /. , L a i PF 6 which ground to an average particle size of 5 mu m to 1 0 wt%, a polyunsaturated Tsu fluoride 1 ◦ weight 0/0 were mixed with a binder, N- methyl one 2- pyro Li The paste made in a paste shape was applied to a copper foil, dried, and then processed by compression molding using a roll press to prepare a negative electrode.
L i C o O 2粉末 8 5重量0 /0とポリ フッ化ビニリデン 7重量0 /0、 ァセ チレンブラ ック 8重量0 /0を混合し、 N—メ チルー 2— ピロ リ ドンでペース ト状にしたものをアルミニウム箔に塗布し、 乾燥した後、 ロールプレス 機で圧縮成型にて加工し、 正極を調製した。 L i C o O 2 powder 8 5 weight 0/0 and polyvinylidene fluoride 7 wt 0/0, § Se Chirenbura click 8 were mixed by weight 0/0, paste with N- main Chiru 2 pyro Li Dong Rolls are applied to aluminum foil, dried, and roll pressed. The positive electrode was prepared by compression molding with a machine.
所定の大きさに加工した正極と負極の間に、 前記の方法で調整した電 解液 Aを注入し、 同じく電解液 Aを多孔質ポリプロ ピレンに含浸させた ものを挟持して直径 2 0 mra、 厚み 5 mmのコィ ン電池を作製した。  The electrolyte solution A prepared as described above is injected between the positive electrode and the negative electrode processed into a predetermined size, and the electrolyte solution A impregnated with porous polypropylene is sandwiched between the positive electrode and the negative electrode to have a diameter of 20 mra. A coin battery with a thickness of 5 mm was manufactured.
実施例 3〜 6 Examples 3 to 6
電解液と して前記の方法で調整した電解液 B、 C、 D又は Eを使用し た以外は実施例 2 と同様にコイン電池を作製した。  A coin battery was produced in the same manner as in Example 2, except that the electrolytic solution B, C, D or E prepared by the above-mentioned method was used as the electrolytic solution.
比較例 1 Comparative Example 1
電解液と して電解液 Fを使用した以外は実施例 2 と同様にコィン電池 を作製した。  A coin battery was manufactured in the same manner as in Example 2, except that the electrolyte F was used as the electrolyte.
比較例 2 Comparative Example 2
前記基本電解液をそのまま使用した以外は実施例 2 と同様にコィン電 池を作製した。 このようにして作製した電池のサイクル性能を比較するために、 上限 電圧 4 . I Vと して 1 Cの定電流充電を行い、 その後 4. I Vで 3時間充電し 満充電状態と した。 その後下限電圧を 3 . 0 Vと して 1 Cで放電を行い. この様な充放電を 2 0サイクル迄繰り返した。  A coin battery was prepared in the same manner as in Example 2 except that the basic electrolyte was used as it was. In order to compare the cycle performance of the batteries fabricated in this way, a constant current charge of 1 C was performed at an upper limit voltage of 4. IV, and then the battery was fully charged at 4. IV for 3 hours. Thereafter, discharge was performed at 1 C with a lower limit voltage of 3.0 V. Such charge / discharge was repeated up to 20 cycles.
1サイクル目と 2 0サイクル目の放電容量を計測して、 芳香族炭化水 素の部分核水素化物の添加が容量に及ぼす影響を調べた。 それぞれ 3回 試験を行い、 表 1に試験前 ( 1サイクノレ目) と試験後 ( 2 0サイ クル 目) の放電容量の比率の平均値を示した。  The discharge capacity at the 1st cycle and the 20th cycle was measured to examine the effect of the addition of aromatic hydride partial hydride on the capacity. Each test was performed three times, and Table 1 shows the average value of the discharge capacity ratio before the test (1st cycle) and after the test (20th cycle).
次いで上限電圧 4 . 2 Vと して同様の充放電評価を行い、 先の場合と 同様に 1サイクル目 と 2 0サイクル目の放電容量を計測した。 同様にそ れぞれ 3回試験を行い、 表 1に試験前 ( 1サイクル目) と試験後 ( 2 0 サイクル目) の放電容量の比率の平均値を示した。 Next, the same charge / discharge evaluation was performed at an upper limit voltage of 4.2 V, and the discharge capacity at the first cycle and the 20th cycle was measured in the same manner as in the previous case. Likewise Each test was performed three times, and Table 1 shows the average value of the discharge capacity ratio before the test (1st cycle) and after the test (20th cycle).
【表 1 】【table 1 】
Figure imgf000017_0001
試験前と試験後の放電容量の比率 (3. 0〜4. IV) について、 本発明の 化合物を添加した電解液 A、 B、 C、 D、 E及び o -ターフヱニルを添 加した電解液 Fを使用したセルは、 無添加の電解液を使用したセルよ り 若干低下しているが、 どれも大差ないレベルである。
Figure imgf000017_0001
Regarding the ratio of the discharge capacity before and after the test (3.0 to 4.IV), the electrolytes A, B, C, D, E, and the electrolyte F to which o-terphenyl was added, in which the compound of the present invention was added. Although the cell using the cell was slightly lower than the cell using the electrolyte without any additives, the level was not much different.
また、 試験前と試験後の放電容量の比率 (3. 0〜4. 2V) については、 本発明の化合物を添加した電解液 A、 B、 C、 D、 Eを配合したセルは. 9 0 %以上のレベルを維持しているのに対し、 o _ターフェニルを添加 した電解液 Fを配合したセルでは 8 7 %と低下している。  Regarding the ratio of the discharge capacity before and after the test (3.0 to 4.2 V), the cells containing the electrolytic solutions A, B, C, D, and E to which the compound of the present invention was added were 0.90. %, While the cell containing electrolyte F with o_terphenyl decreased to 87%.
これは、 動作電圧 4. I Vと 4. 2Vの間で 0 -ターフェニルがわずかながら反 応し、 その結果最大作動電圧を高く した際の電池特性に影響を与えるの に対し、 本発明の添加剤はその反応がなく、 その結果電池特性に影響を 与えないからだと考えられる。 この推定を補足するため、 酸化電位を測 定し、 電位と添加剤の酸化反応の度合いを調べた。 This is because the 0-terphenyl slightly reacts between the operating voltages of 4.IV and 4.2V, which affects the battery characteristics when the maximum operating voltage is increased. It is considered that the agent does not react and does not affect the battery characteristics. To supplement this estimate, measure the oxidation potential. And the potential and the degree of the oxidation reaction of the additive were examined.
実施例 7 Example 7
作用極に S U S 3 0 4 (直径 16.0mm、 厚み 6.0mm) 、 対極にリチ ゥム (直径 20mm、 厚み 0.55mm) 、 ポリプロピレン製セパレータを使 用し、 各実施例、 比較例記載の電解液 0. 5 ralを入れて、 評価用のセル を作製した。  SUS304 (diameter 16.0mm, thickness 6.0mm) for working electrode, lithium (diameter 20mm, thickness 0.55mm) for counter electrode, polypropylene separator, electrolyte solution described in each example and comparative example. A cell for evaluation was prepared by inserting 5 ral.
このセルに、 3 . 0 V力 ら 5. 0 Vの電圧 (対 L i Z L i +) を毎秒 5 mVの速度で印加し、 その間に通電した電流を測定する と共に、 電流密 度値を測定した。 測定された最大通電流密度 ( μ Α/ c m2) を表 2に示 す。 A voltage of 3.0 V to 5.0 V (vs. Li ZL i +) was applied to this cell at a rate of 5 mV / s, and the current passed during that time was measured, and the current density was measured. did. Table 2 shows the measured maximum current density (μΑ / cm 2 ).
【表 2】 [Table 2]
Figure imgf000018_0001
これらの結果から、 いずれの化合物も 4. 5〜 4. 7 Vの比較的高い 電圧領域では酸化反応を起こしているが、 4. 0〜 4. 2 Vの比較的低 い電圧領域では o -ターフェニルを配合した電解液 Fを使用すると、 本 発明の化合物を配合した電解液 A、 B、 C、 D、 Eを使用した場合に比 ベ酸化電流の値が大きいことが判る。
Figure imgf000018_0001
From these results, all compounds undergo an oxidation reaction in the relatively high voltage range of 4.5 to 4.7 V, but o-in the relatively low voltage range of 4.0 to 4.2 V. When the electrolytic solution F containing terphenyl is used, the ratio is higher than when the electrolytic solutions A, B, C, D and E containing the compound of the present invention are used. It can be seen that the value of the beoxidation current is large.
実施例 8 Example 8
更に、 このよ うにして作製した電池の安全性を比較するために、 充放 電評価で 2 0サイクル終了後の電池を再び 4 . 2 Vで満充電状態と し、 その後 1 Cで充電を継続して過充電を起こさ しめ、 電池が破裂又は発火 する前に過充電防止機能が働くかどうか確認した。 その結果を表 3に示 す。 本発明の化合物を用いた電解液 A〜 Eの何れも過充電防止機能を有 し、 安全性を向上する効果があることが示された。  Furthermore, in order to compare the safety of the battery fabricated in this way, the battery after the completion of the 20th cycle was again fully charged with 4.2 V in the charge / discharge evaluation, and then charged at 1 C. We continued overcharging and checked whether the overcharge protection function worked before the battery exploded or ignited. The results are shown in Table 3. It was shown that each of the electrolytes A to E using the compound of the present invention had an overcharge prevention function and had an effect of improving safety.
【表 3 】 [Table 3]
Figure imgf000019_0001
Figure imgf000019_0001
産業上の利用可能性 本発明によれば、 充放電可能なリチウム電池において、 過充電から電 池が保護され、 発火、 破裂等の危険が回避できる。 また、 最大作動電圧 を高く した場合でも充放電サイクルに伴う電池容量低下が少ないので、 有効に電気容量をと りだし、 且つ長期の使用を可能とする INDUSTRIAL APPLICABILITY According to the present invention, in a chargeable / dischargeable lithium battery, the battery is protected from overcharging, and danger such as ignition or explosion can be avoided. In addition, even when the maximum operating voltage is increased, there is little battery capacity reduction due to charge / discharge cycles. Effectively take out electric capacity and enable long-term use

Claims

請求の範囲 The scope of the claims
( 1 ) 有機溶媒に電解質と してリチウム塩を溶解してなる非水系電解 液において、 下記一般式 ( 1 ) で表される 3環の芳香族化合物の部分核 水素化物が 0 . 1 〜 2 0重量%含有されていることを特徴とする非水系 電解液。 (1) In a non-aqueous electrolyte obtained by dissolving a lithium salt as an electrolyte in an organic solvent, a partially hydride of a tricyclic aromatic compound represented by the following general formula (1) is 0.1 to 2 parts. A non-aqueous electrolyte solution containing 0% by weight.
A r R -A r 2 ( 1 ) A r R -A r 2 (1)
(但し、 式中、 A r ^まフエニル基又は炭素数 1〜 4のアルキル基で置換 されたフエエル基であり、 A r 2は 2環の縮合芳香族基、 芳香環同士が直 接若しく は炭素一原子を介して結合される 2環の非縮合芳香族基又は炭 素数 1〜 4のアルキル基で置換された 2環の縮合芳香族基若しく は 2環 の非縮合芳香族基であり、 Rは単結合又はメチレン基又は炭素数 1〜 4 のアルキル基で置換されたメチレン基を示す) (However, in the formula, A r ^ is a phenyl group or a fuel group substituted by an alkyl group having 1 to 4 carbon atoms, and Ar 2 is a condensed two-ring aromatic group, Is a two-ring non-fused aromatic group or a two-ring fused aromatic group or a two-ring non-fused aromatic group substituted by an alkyl group having 1 to 4 carbon atoms, which is bonded through one carbon atom. R represents a single bond or a methylene group or a methylene group substituted with an alkyl group having 1 to 4 carbon atoms.)
( 2 ) 部分核水素化物が、 ターフ ニル類、 ベンジルビフ ニル類、 ジベンジルベンゼン類、 フエニノレナフタ レン類、 ベンジルナフタ レン類 及びこれらの芳香族化合物の置換可能な水素を有する炭素に炭素数 1 〜 4のアルキル基が置換した 3環の芳香族化合物の部分核水素化物の群れ から選択される 1種又は 2種以上である請求項 1記載の非水系電解液。 (2) The partial hydride is a terphenyl, a benzylbiphenyl, a dibenzylbenzene, a phenylenophthalene, a benzylnaphthalene, or a carbon atom having 1 to 4 carbon atoms having a hydrogen which can be substituted in these aromatic compounds. 2. The non-aqueous electrolyte according to claim 1, wherein the non-aqueous electrolyte is at least one member selected from the group consisting of partially hydrides of three-ring aromatic compounds substituted with an alkyl group.
( 3 ) 部分核水素化物が、' ターフ ニル又はべンジルビフ -ルの部 分核水素化物である請求項 1記載の非水系電解液。 (3) The non-aqueous electrolytic solution according to claim 1, wherein the partially nuclear hydride is a partially hydride of terphenyl or benzyl bifluor.
( 4 ) 部分核水素化物の核水素化率が 1 0〜 6 5 %である請求項 1記 載の非水系電解液。  (4) The non-aqueous electrolyte according to claim 1, wherein the nuclear hydrogenation rate of the partial nuclear hydride is 10 to 65%.
( 5 ) 請求項 1〜 4のいずれかに記載の非水系電解液を用いたことを 特徴とする非水系リチゥム二次電池, (5) The use of the non-aqueous electrolyte according to any one of claims 1 to 4 Non-aqueous lithium secondary battery,
PCT/JP2001/010541 2000-12-04 2001-12-03 Nonaqueous electrolyte and secondary cell using the same WO2002047192A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020037005900A KR100751466B1 (en) 2000-12-04 2001-12-03 Nonaqueous electrolyte and secondary cell using the same
JP2002548808A JP4184081B2 (en) 2000-12-04 2001-12-03 Non-aqueous electrolyte and secondary battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000368392 2000-12-04
JP2000-368392 2000-12-04

Publications (1)

Publication Number Publication Date
WO2002047192A1 true WO2002047192A1 (en) 2002-06-13

Family

ID=18838643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010541 WO2002047192A1 (en) 2000-12-04 2001-12-03 Nonaqueous electrolyte and secondary cell using the same

Country Status (4)

Country Link
JP (1) JP4184081B2 (en)
KR (1) KR100751466B1 (en)
CN (1) CN1297034C (en)
WO (1) WO2002047192A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1414099A1 (en) * 2001-07-27 2004-04-28 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution and non-aqueous electrolytic solution secondary cell using the same
US6921612B2 (en) * 2001-10-20 2005-07-26 Samsung Sdi Co., Ltd. Nonaqueous electrolyte composition for improving overcharge safety and lithium battery using the same
US7049029B2 (en) * 2001-10-20 2006-05-23 Samsung Sdi Co., Ltd. Nonaqueous electrolyte composition for improving overcharge safety and lithium battery using the same
JP2011159550A (en) * 2010-02-03 2011-08-18 Hitachi Ltd Overcharging inhibitor and nonaqueous electrolyte and secondary battery using the same
US20150056503A1 (en) * 2006-04-27 2015-02-26 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106450459A (en) * 2016-12-02 2017-02-22 张家港市国泰华荣化工新材料有限公司 Multifunctional lithium-ion battery electrolyte and lithium-ion battery
CN110690504B (en) * 2019-12-10 2020-05-22 中化蓝天集团有限公司 Non-aqueous electrolyte

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074537A (en) * 1996-08-30 1998-03-17 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP2939469B1 (en) * 1998-07-31 1999-08-25 三洋電機株式会社 Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2001023690A (en) * 1999-07-08 2001-01-26 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolyte for secondary battery
JP2001332297A (en) * 2000-05-25 2001-11-30 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using the same
JP2001357876A (en) * 2000-06-13 2001-12-26 Nippon Steel Chem Co Ltd Lithium battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474537A (en) * 1987-09-16 1989-03-20 Asahi Optical Co Ltd Balancer for camera or the like
JP3680441B2 (en) * 1996-10-03 2005-08-10 株式会社デンソー Non-aqueous electrolyte secondary battery
JP4411691B2 (en) * 1999-06-30 2010-02-10 パナソニック株式会社 Non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery charge control system, and equipment using the same
CN1112739C (en) * 2000-06-15 2003-06-25 华南理工大学 Overcharge protection method for secondary lithium ion battery
JP2002083629A (en) * 2000-07-04 2002-03-22 Mitsui Chemicals Inc Nonaqueous electrolytic solution and secondary battery using the same
JP4695748B2 (en) * 2000-10-12 2011-06-08 パナソニック株式会社 Nonaqueous battery electrolyte and nonaqueous secondary battery
JP4878687B2 (en) * 2001-02-23 2012-02-15 三洋電機株式会社 Lithium secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074537A (en) * 1996-08-30 1998-03-17 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JP2939469B1 (en) * 1998-07-31 1999-08-25 三洋電機株式会社 Electrolyte for non-aqueous battery and secondary battery using this electrolyte
JP2000058116A (en) * 1998-07-31 2000-02-25 Sanyo Electric Co Ltd Nonaqueous battery electrolyte and secondary battery using the same
JP2001023690A (en) * 1999-07-08 2001-01-26 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolyte for secondary battery
JP2001332297A (en) * 2000-05-25 2001-11-30 Ube Ind Ltd Nonaqueous electrolytic solution and lithium secondary battery using the same
JP2001357876A (en) * 2000-06-13 2001-12-26 Nippon Steel Chem Co Ltd Lithium battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1414099A1 (en) * 2001-07-27 2004-04-28 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution and non-aqueous electrolytic solution secondary cell using the same
US7144660B2 (en) 2001-07-27 2006-12-05 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte solution secondary battery using the same
EP1414099A4 (en) * 2001-07-27 2009-05-27 Mitsubishi Chem Corp Non-aqueous electrolytic solution and non-aqueous electrolytic solution secondary cell using the same
US6921612B2 (en) * 2001-10-20 2005-07-26 Samsung Sdi Co., Ltd. Nonaqueous electrolyte composition for improving overcharge safety and lithium battery using the same
US7049029B2 (en) * 2001-10-20 2006-05-23 Samsung Sdi Co., Ltd. Nonaqueous electrolyte composition for improving overcharge safety and lithium battery using the same
US20150056503A1 (en) * 2006-04-27 2015-02-26 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery
JP2011159550A (en) * 2010-02-03 2011-08-18 Hitachi Ltd Overcharging inhibitor and nonaqueous electrolyte and secondary battery using the same

Also Published As

Publication number Publication date
CN1297034C (en) 2007-01-24
JPWO2002047192A1 (en) 2004-04-08
JP4184081B2 (en) 2008-11-19
CN1643725A (en) 2005-07-20
KR20030051752A (en) 2003-06-25
KR100751466B1 (en) 2007-08-23

Similar Documents

Publication Publication Date Title
JP3055358B2 (en) Non-aqueous electrolyte battery
EP2863468B1 (en) Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
CA2560605C (en) Overcharge protection for electrochemical cells
JP4416991B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery
EP0778985B1 (en) Lithium ion battery with lithium vanadium pentoxide positive electrode
JP4625231B2 (en) Non-aqueous secondary battery
TW201405912A (en) Electrolyte for non-aqueous electrolyte battery, and non-aqueous electrolyte battery using same
KR100691113B1 (en) Functional electrolyte additives and electrochemical device comprising the same
KR102629756B1 (en) Rechargeable lithium-ion cell comprising a redox shuttle additive
JP5827404B2 (en) Electrode protective film forming agent
JP2006085912A (en) Nonaqueous electrolyte secondary battery
JP3055536B2 (en) Non-aqueous electrolyte battery
CN108736065B (en) Electrolyte and lithium ion battery containing electrolyte and/or anode
CN106063019A (en) Nonaqueous electrolyte secondary battery
CN114207901A (en) Nonaqueous electrolyte solution and nonaqueous electrolyte battery
JPH1021958A (en) Lithium ion secondary battery
JP2001357876A (en) Lithium battery
JP4431941B2 (en) Nonaqueous electrolyte secondary battery
WO2002047192A1 (en) Nonaqueous electrolyte and secondary cell using the same
JP2003151625A (en) Nonaqueous electrolyte with high safety to overcharging and lithium battery adopting the same
JPH07169505A (en) Lithium secondary battery
US20010018146A1 (en) Lithium secondary battery
JP2003157894A (en) Nonaqueous electrolyte superior in overcharge safety and lithium battery adopting this nonaqueous electrolyte
EP3331064A1 (en) Use of 4,5-imidazoledicarboxylic acid as an electrode active material
JP2012204005A (en) Electrolyte for lithium-ion battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020037005900

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002548808

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 018197469

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037005900

Country of ref document: KR