JP4416991B2 - Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery - Google Patents

Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery Download PDF

Info

Publication number
JP4416991B2
JP4416991B2 JP2002242299A JP2002242299A JP4416991B2 JP 4416991 B2 JP4416991 B2 JP 4416991B2 JP 2002242299 A JP2002242299 A JP 2002242299A JP 2002242299 A JP2002242299 A JP 2002242299A JP 4416991 B2 JP4416991 B2 JP 4416991B2
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
hcf
aqueous electrolyte
fluorinated ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002242299A
Other languages
Japanese (ja)
Other versions
JP2004087136A (en
Inventor
竜一 清水
滝太郎 山口
チョルス ジョン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2002242299A priority Critical patent/JP4416991B2/en
Priority to KR10-2003-0003968A priority patent/KR100508932B1/en
Priority to US10/440,220 priority patent/US7229718B2/en
Priority to CNB031368514A priority patent/CN100459272C/en
Publication of JP2004087136A publication Critical patent/JP2004087136A/en
Application granted granted Critical
Publication of JP4416991B2 publication Critical patent/JP4416991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池用の非水電解液及びリチウム二次電池に関するものであり、特に、安全性に優れたリチウム二次電池に関するものである。
【0002】
【従来の技術】
従来のリチウム2次電池用の電解液としては、エチレンカーボネート、プロピレンカーボネートなどの環状エステル、ジメチルカーボネート、プロピオン酸エチルなどの直鎖状エステル、テトラヒドロフランなどの環状エーテルなどの混合物が用いられている。しかし従来の電解液では、安全性や充放電サイクルにおいて必ずしも満足しうるものではない。
そこで最近になって、リチウム2次電池の長期の充・放電サイクル寿命を実現させるものとして、酸化分解に対する安定性の高い有機フッ素化エーテル化合物を用いた電解液が提案されている。
【0003】
【発明が解決しようとする課題】
有機フッ素化エーテル化合物は、フッ素含量が高いために酸化分解に対する安定性が高いものであるが、その反面、リチウム2次電池用の他の電解液との相溶性が低くなるという問題がある。
【0004】
本発明は、他の電解液との相溶性に優れると同時に、酸化分解に対する安定性が高く、不燃性等の電解液としての総合的な性質に優れたリチウム二次電池用の非水電解液及びこの非水電解液を備えたリチウム二次電池を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のリチウム二次電池用の非水電解液は、R−O−Rからなる構造式(ただし、R及びRはフッ化アルキル基)で表され、前記R基及び前記R基のフッ素化率が57%以上86%以下の範囲であり、粘度が0.9cp以上2.3cp以下の範囲であり、かつ沸点が88℃以上の有機フッ素化エーテル化合物の少なくとも1種以上を含有することを特徴とする。
【0006】
係る非水電解液によれば、上記の特性で示された有機フッ素化エーテル化合物を含むので、他の溶媒との相溶性に優れると同時に、酸化分解に対する安定性に優れた非水電解液を構成することができる。また、低温でのリチウムイオン伝導度を向上できる。
【0007】
また、本発明のリチウム二次電池用の非水電解液においては、前記有機フッ素化エーテル化合物が下記に示す構造式で表されるいずれか1種以上であることが好ましい。
即ち、HCF(CFCHOCFCFH、CFCFCHOCFCFHCF、HCFCFCHOCFCFH、HCFCFCHOCFCFHCF、HCF(CFCHOCFCFHCFのいずれか1種以上である。
【0008】
また、本発明のリチウム二次電池用の非水電解液は、先に記載の非水電解液であり、環状カーボネートが含まれることを特徴とする。
【0009】
係る非水電解液によれば、誘電性の高い環状カーボネートが含まれることにより、リチウム塩を溶媒和させることができ、非水電解液のリチウムイオン伝導度を高めることができる。
【0010】
また、本発明のリチウム二次電池用の非水電解液は、先に記載の非水電解液であり、下記のいずれかに示す構造式で表される相溶化剤を含むことを特徴とする。
即ち、HCFCFCHOCHCHOCH、HCF(CFCHOCHCHOCH、CHCOOCH(CFCFH、CHCOOCHCFCFHである。
【0011】
係る非水電解液によれば、上記の構造式で表される相溶化剤を含むことにより、フッ素化エーテル化合物と環状カーボネートの相溶性を広い温度範囲で向上することができ、相分離のない均一な非水電解液を得ることができる。
【0012】
次に本発明のリチウム二次電池は、先のいずれかに記載の非水電解液を具備してなることを特徴とする。
【0013】
係るリチウム二次電池によれば、上記のいずれかに記載の非水電解液を備えているので、安全性に優れ、低温での放電特性に優れたリチウム二次電池を構成することができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
本発明のリチウム二次電池は、リチウムを吸蔵、放出が可能な正極及び負極と、非水電解液とを具備してなり、前記非水電解液は、R−O−Rからなる構造式(ただし、R及びRはフッ化アルキル基)で表され、前記R基及びR基のフッ素化率が57%以上86%以下の範囲であり、粘度が0.9cp以上2.3cp以下の範囲のものであり、かつ沸点が88℃以上で引火点のない有機フッ素化エーテル化合物の少なくとも1種以上を含有するものである。この非水電解液には有機フッ素化エーテル化合物の他に環状カーボネートが含まれ、さらにリチウム塩が含まれる。また、有機フッ素化エーテル化合物と環状カーボネートの相溶性の向上のために後述する特定の相溶化剤を含んでいてもよい。
【0015】
正極は、正極活物質粉末にポリフッ化ビニリデン等の結着材とカーボンブラック等の導電助材を混合してシート状、扁平円板状等に成形したものを例示できる。上記の正極活物質としては、コバルト、マンガン、ニッケルから選ばれる少なくとも一種とリチウムとの複合酸化物のいずれか1種以上のものが好ましく、具体的には、LiMn、LiCoO、LiNiO、LiFeO、V等が好ましい。また、TiS、MoS、有機ジスルフィド化合物または有機ポリスルフィド化合物等のリチウムを吸蔵・放出が可能なものを用いても良い。
【0016】
負極は、リチウムを吸蔵・放出が可能な負極活物質粉末に、ポリフッ化ビニリデン等の結着材と、場合によってカーボンブラック等の導電助材を混合してシート状、扁平円板状等に成形したものを例示できる。負極活物質としては、人造黒鉛、天然黒鉛、黒鉛化炭素繊維、黒鉛化メソカーボンマイクロビーズ、非晶質炭素等の炭素質材料を例示できる。また、リチウムと合金化が可能な金属質物単体やこの金属質物と炭素質材料を含む複合物も負極活物質として例示できる。リチウムと合金化が可能な金属としては、Al、Si、Sn、Pb、Zn、Bi、In、Mg、Ga、Cd等を例示できる。
また負極として金属リチウム箔も使用できる。
【0017】
本発明の非水電解液は、上述したように、R−O−Rからなる構造式(ただし、R及びRはフッ化アルキル基)で表され、R基及びR基のフッ素化率が57%以上86%以下の範囲であり、粘度が0.9cp以上2.3cp以下の範囲のものであり、かつ沸点が88℃以上で引火点のない有機フッ素化エーテル化合物の少なくとも1種以上を含有し、2種以上含んでいても良い。
【0018】
有機フッ素化エーテル化合物のR基及びR基のフッ素化率を57%以上86%以下の範囲としたのは、フッ素化率が57%未満では非水電解液の耐酸化性が低下し、電池の異常時に発火する場合があるので好ましくなく、フッ素化率が86%を超えるとリチウム塩が溶解しなくなり、また環状カーボネートとの相溶性も低下するため好ましくないからである。
また、フッ素化率は、R基又はR基の水素がフッ素置換された割合のことであり、例えば、HCF(CFCH基では、H又はFで置換できる数11のうち、Fが8であるから、フッ素化率は73%となる。
【0019】
また、有機フッ素化エーテル化合物の粘度は、0.9cp以上2.3cp以下の範囲であることが、特に低温でのリチウムイオン伝導度を高めることができるので好ましい。
粘度が0.9cp未満では 有機フッ素化エーテル化合物の分子間力が弱過ぎて高揮発性となるために、沸点が88℃未満になるので好ましくなく、粘度が2.3cpを超えると 有機フッ素化エーテル化合物の分子間力が強過ぎるるために、特に低温での電解液の粘度が高くなり、リチウムイオンが動きにくくなって、伝導度が低下するので好ましくない。
また、有機フッ素化エーテル化合物の粘度は0.9cp以上2.0cp以下であっても良く、特に有機フッ素化エーテル化合物を2種以上添加する場合には、1つの有機フッ素化エーテル化合物の粘度が0.9〜2.0cpまたは0.9〜2.3cpの範囲を外れたものであっても、2種以上を混合することによって粘度が0.9〜2.0cpまたは0.9〜2.3cpの範囲内になればよい。
【0020】
また、有機フッ素化エーテル化合物の沸点が88℃以上としたのは、沸点が88℃未満では、電池の異常時に有機フッ素化エーテル化合物がガス化して好ましくない事態が発生するおそれがあるので好ましくないためである。
また、沸点が高いほど、好ましくない事態の発生するおそれが低下するが、沸点が極端に高いと粘度が2.3cpを大きく超えるため好ましくない。
【0021】
また、有機フッ素化エーテル化合物の引火点がないことが好ましい。引火点があると、電池の異常発生時に非水電解液が発火する場合があるので好ましくないためである。尚、引火点がないとは、JIS−K2265に規定される引火点試験により引火点を示さないものであることを意味する。
【0022】
以上のような特性を示す有機フッ素化エーテル化合物として、例えば、下記の構造式で表されるものを例示できる。
即ち、HCF(CFCHOCFCFH、CFCFCHOCFCFHCF、HCFCFCHOCFCFH、HCFCFCHOCFCFHCF、HCF(CFCHOCFCFHCFのいずれか1種以上である。
【0023】
これらの有機フッ素化エーテル化合物の物性値を以下に列挙する。
まず、HCF(CFCHOCFCFHは、R基のフッ素化率73%、R基のフッ素化率80%、25℃での粘度2.2cp、沸点145℃、引火点なし。
CFCFCHOCFCFHCFは、R基(CFCFCH基)のフッ素化率71%、R基(CFCFHCF)のフッ素化率86%、25℃での粘度0.9cp、沸点88℃、引火点なし。
HCFCFCHOCFCFHは、R基(HCFCFCH)のフッ素化率57%、R基(CFCFH)のフッ素化率80%、25℃での粘度1.2cp、沸点92℃、引火点なし。
HCFCFCHOCFCFHCFは、R基(HCFCFCH)のフッ素化率57%、R基(CFCFHCF)のフッ素化率86%、25℃での粘度1.3cp、沸点106℃、引火点なし。
HCF(CFCHOCFCFHCFは、R基(HCF(CFCH)のフッ素化率73%、R基(CFCFHCF)のフッ素化率86%、25℃での粘度2.2cp、沸点150℃、引火点なし。
【0024】
非水電解液における有機フッ素化エーテル化合物の添加量は、5体積%以上80体積%以下の範囲が好ましく、20体積%以上50体積%以下の範囲がより好ましい。
添加量が5体積%未満だと、非水電解液の粘度が高くなって低温でのリチウムイオン伝導度が低下するので好ましくなく、また、非水電解液の耐酸化性が低下するので好ましくない。また、添加量が80体積%を超えると、リチウム塩の溶解性が低下するので好ましくない。
【0025】
また、本発明の非水電解液に含まれる環状カーボネートとしては、例えば、エチレンカーボネート、ブチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、フルオロエチレンカーボネート等を例示でき、特にγ−ブチロラクトンを含むことが好ましい。
これらの環状カーボネートは、比較的高い誘電率を示すもので、この環状カーボネートを添加することにより、リチウム塩を溶解させることができるとともに、非水電解液の粘度を調整できる。
非水電解液における環状カーボネートの添加量は、20体積%以上95体積%以下の範囲が好ましく、30体積%以上80体積%以下の範囲がより好ましい。
添加量が20体積%未満だと、リチウム塩を充分に溶解させることができなくなるので好ましくなく、添加量が95体積%を超えると、非水電解液の粘度が過大になるので好ましくない。
【0026】
また、本発明の非水電解液には、下記のいずれかに示す構造式で表される相溶化剤が含まれることが好ましい。
即ち、HCFCFCHOCHCHOCH、HCF(CFCHOCHCHOCH、CHCOOCH(CFCFH、CHCOOCHCFCFHである。
【0027】
上記の相溶化剤は、リチウムイオンに配位可能な基と有機アルキル基を有しており、又、より好ましくは、リチウムイオンに配位可能な基と有機フッ素化アルキル基を有している。そのため、有機フッ素化エーテル化合物とリチウムイオンに配位した環状カーボネートの両者と親和性を有すると考えられる。これらを添加することで、有機フッ素化エーテル化合物と環状カーボネートの相溶性を広い温度範囲で向上することができ、相分離のない均一な非水電解液を得ることができる。これにより、低温におけるリチウムイオン伝導度を向上できる。
尚、非水電解液における相溶化剤の添加量は、0.01質量%以上10質量%以下の範囲が好ましく、0.1質量%以上3質量%以下の範囲がより好ましい。添加量が0.01質量%未満だと、有機フッ素化エーテル化合物と環状カーボネートが相互に分離してしまうので好ましくなく、添加量が10質量%を超えると、電解液の不燃性が低下して、電池の異常発生時に非水電解液が発火する場合があるので好ましくない。
【0028】
リチウム塩は、LiPF、LiBF、Li[N(SO)]、Li[B(OCOCF] 、Li[B(OCOC]を用いることができるが、LiPFまたはBETI塩(Li[N(SO])のいずれか一方または両方を用いることが好ましい。特に、BETI塩は、有機フッ素化エーテル化合物への溶解性が高いので好ましい。これらリチウム塩の非水電解液における濃度は、0.5モル/L以上2.0モル/L以下であることが好ましい。
【0029】
また本発明のリチウム二次電池においては、上記の非水電解液を、PEO、PPO、PAN、PVDF、PMA、PMMA等のポリマーあるいはその重合体に含浸させたものを用いても良い。
【0030】
上記の非水電解液によれば、上記の特性で示された有機フッ素化エーテル化合物を含むので、他の溶媒との相溶性に優れると同時に、酸化分解に対する安定性に優れた非水電解液を構成することができる。
また、上記のリチウム二次電池によれば、上記の非水電解液を備えているので、安全性に優れ、低温での放電特性に優れたリチウム二次電池を構成することができる。
【0031】
【実施例】
「実験例1」
有機フッ素化エーテル化合物(低粘度溶媒)と、環状カーボネートと、LiPFまたはBETI塩と、一部に相溶化剤を混合して、表1及び表2に示すような組成の実施例1〜実施例17の非水電解液を調製した。尚、環状カーボネートは、エチレンカーボネート(表1中、ECと表記)、プロピレンカーボネート(表1中、PCと表記)、ガンマブチロラクトン(表1中、BLと表記)を用いた。
また、ジエチルカーボネート(低粘度溶媒)、HCF(CFCHOCFCFH(低粘度溶媒)、CF(CFOCH(低粘度溶媒)、CFCHCHOCFCFHCF(低粘度溶媒)にそれぞれエチレンカーボネートを混合し、更にLiPFを1〜1.3モル/L混合することにより、表1に示すような比較例1〜4の非水電解液を調製した。
【0032】
【表1】

Figure 0004416991
【0033】
【表2】
Figure 0004416991
【0034】
得られた実施例1〜17及び比較例2の非水電解液について、含有する低粘度溶媒(有機フッ素化エーテル化合物)の粘度と、非水電解液の−20℃におけるリチウムイオンの伝導度を測定した。結果を表3に示す。
表3に示すように、実施例1〜17の非水電解液に含まれる有機フッ素化エーテル化合物(単独または2種以上の混合物)の粘度はいずれも1.2〜1.4cpの範囲であることがわかる。一方、比較例2では、2.2cpを示すことがわかる。
有機フッ素化エーテル化合物の混合物の粘度は2.0cp以下であることが重要であって、単独の有機フッ素化エーテル化合物の粘度が2.0cp以上であっても、より低い粘度の有機フッ素化エーテル化合物との混合物としたときに2.0cp以下であればよい。しかしながら、混合物の粘度は、ほぼ各成分の粘度の加重平均となるため、2.0cpを大きく超える有機フッ素化エーテル化合物を用いることは実際上できない。
【0035】
また、表3に示すように、実施例1〜17の非水電解液は、−20℃におけるリチウムイオンの伝導度が0.3〜1.7S/cmの範囲であることが分かる。一方、比較例2では伝導度を全く示さないことが分かる。これは、比較例2ではエチレンカーボネートが80体積%と多いため、−20℃で非水電解液が凍結したためである。
このように、実施例1〜17の非水電解液は、低温でのリチウムイオン伝導性に優れることが分かる。
【0036】
【表3】
Figure 0004416991
【0037】
次に、得られた実施例1〜17及び比較例3の非水電解液について、含有する有機フッ素化エーテル化合物のF化率(フッ素化率)、引火点、非水電解液の−20℃〜室温における溶解性を測定した。結果を表4に示す。尚、引火点の測定はJIS−K2265に規定される引火点試験により行い、溶解性の測定は、溶媒と支持塩を40℃で8時間攪拌して電解液を調製し、1時間静置した後、液の均一性を目視で判断して行った。また、表4中、F化率が2組記載されている欄があるが、これは低粘度溶媒(有機フッ素化エーテル化合物)が2種類含まれる場合に、それぞれのF化率を記載したものである。欄中、最初に書かれているF化率が、表1において最初に記載された組成式の有機フッ素化エーテル化合物のF化率に相当し、欄中、最後に書かれているF化率が、表1において最後に記載された組成式の有機フッ素化エーテル化合物のF化率に相当する。
表4に示すように、実施例1〜17の非水電解液に含まれる有機フッ素化エーテル化合物のR基及びR基のフッ素化率は57〜86%の範囲であることが分かる。また引火点はいずれの非水電解液でも検出されなかった。更に溶解性については、−20℃から室温の範囲で均一に溶解していることがわかる。
一方、比較例3では、溶解性の測定で相分離が確認され、均一な非水電解液が得られない状況であった。これは、R基のフッ素化率が100%と高過ぎるために、R基の極性が低過ぎ、有機フッ素化エーテル化合物とリチウムイオンに配位した環状カーボネートの相溶性が不充分であるために相分離したためと考えられる。
【0038】
【表4】
Figure 0004416991
【0039】
次に、得られた実施例1〜17及び比較例3の非水電解液について、含有する有機フッ素化エーテル化合物の沸点を測定した。結果を表5に示す。尚、表5中、低粘度溶媒の沸点が2つ記載されている欄があるが、これは低粘度溶媒(有機フッ素化エーテル化合物)が2種類含まれる場合に、それぞれの沸点を記載したものである。欄中、最初に書かれている沸点が、表1において最初に記載された組成式の有機フッ素化エーテル化合物の沸点に相当する。
表5に示すように、実施例1〜17の非水電解液に含まれる有機フッ素化エーテル化合物の沸点は、88〜150℃の範囲であることがわかる。
【0040】
【表5】
Figure 0004416991
【0041】
次に、実施例1〜17及び比較例1〜4の非水電解液を用いてリチウム二次電池を製造した。このリチウム二次電池は、LiCoOを正極活物質とするシート状の正極と、炭素繊維を負極活物質とするシート状の負極とを重ね合わせて渦巻き状に巻回した状態で電池容器に挿入し、先程の非水電解液を注入した後に電池容器を封口後、0.2Cの電流で上限電圧4.2Vの条件で8時間定電流定電圧充電して、標準容量660mAhの厚さ4mm、幅30mm、高さ60mmの角型電池を製造した。
得られたリチウム二次電池について、−20℃における容量維持率並びに90℃における電池厚増加率を測定した。結果を表3及び表5にそれぞれ示す。
尚、容量維持率の測定条件は、放電電流0.2C、放電終止電圧2.75V、充電電流0.5C、充電上限電圧4.2V、充電時間2.5時間の条件で、室温での1サイクル目の放電容量と、−20℃での2サイクル目の放電容量より求めた比率とした。
また、電池厚増加率の測定条件は、90℃、4時間保存の前後でノギスによって測定した電池厚さの変化率とした。
【0042】
表3に示すように、実施例1〜17の−20℃における容量維持率は44.3%〜89%の範囲であり、これに対して比較例2は0%であり、実施例1〜17の非水電解液を用いたリチウム二次電池は低温の容量維持率に優れることが分かる。
比較例2の容量維持率が0%になったのは、前述したように非水電解液が低温で凍結したためと考えられる。
【0043】
また、表5に示すように、実施例1〜17の電池厚増加率は、いずれも10%以下であり、ガス発生等が起きていないものと考えられる。一方、比較例3では増加率が100%を超えている。これは、沸点60℃の有機フッ素化エーテル化合物の蒸発気化により生じたガスによるものと考えられる。
【0044】
次に、非水電解液の燃焼試験及び先程製造したリチウム二次電池を3Cで過充電した場合の電池の挙動を調査した。
非水電解液の燃焼試験は、JIS−K2265に規定される引火点試験の装置を用いて、1秒以上継続して燃焼する温度の条件で行った。
更に過充電試験は、満充電状態の電池を3Cの定電流、12Vの上限電圧の定電流定電圧充電により行い、電池外周の温度変化を熱電対により測定の条件で行った。結果を表6に示す。
【0045】
【表6】
Figure 0004416991
【0046】
表6に示すように、実施例1〜17の非水電解液は、いずれも180℃まで燃焼することがなく、不燃性に優れていた。これは、有機フッ素化エーテル化合物がフッ素を多量に含むため、耐酸化性が高く、また自己消火性も有しているためと考えられる。一方、比較例1の非水電解液は、58℃で燃焼した。
更に、過充電試験についても、実施例1〜17は破裂に至らず、電池温度も97℃までの上昇に留まっていた。一方、比較例1及び4では、過充電により電池破裂が起こり、破裂直前の電池温度も300℃以上に達していた。このように、実施例1〜17の非水電解液は、過充電によって非水電解液が過酷な酸化の状態に曝された場合でも酸化して熱暴走を起こすことがなく、耐酸化性に優れていることがわかる。
【0047】
次に、先程作成した実施例1〜17及び比較例2のリチウム二次電池について、初期容量、100サイクル目における容量保持率、並びに90℃で4時間放置した後の容量保持率を測定した。
初期容量は、放電電流0.2C、放電終止電圧2.75Vという条件で測定した。
また100サイクル目における容量保持率は、充電条件を充電電流1C、充電上限電圧4.2V、充電時間2.5時間とし、放電条件を放電電流1C、放電終止電圧2.75Vとした条件により充放電を繰り返し、1サイクル目の放電容量に対する100サイクル目の放電容量の割合から求めた。
更に90℃、4時間放置後の容量保持率は、放電電流0.2C、放電終止電圧2.75V、充電電流0.5C、充電上限電圧4.2V、充電時間3時間の条件で、室温での1サイクル目の放電容量と、90℃4時間放置後の2サイクル目の放電容量より求めた比率とした。結果を表7に示す。
【0048】
【表7】
Figure 0004416991
【0049】
表7に示すように、初期容量はいずれのリチウム二次電池も660mAh以上を示しており、良好であることが分かる。
次に、100サイクル後の容量保持率は、実施例1〜17では80%以上と良好であるが、比較例2では12.4%と全く容量が出ない状態になっている。
更に、90℃放置後の容量保持率は、いずれのリチウム二次電池も80%以上を示しており、良好であることが分かる。
【0050】
また、図1には実施例5の電池及び比較例2の電池のサイクル数と放電容量の関係を示す。図1に示すように、実施例5の電池のサイクル特性は、比較例2より大幅に優れていることがわかる。
【0051】
【発明の効果】
以上、詳細に説明したように、本発明の非水電解液によれば、所定の特性で示された有機フッ素化エーテル化合物を含むので、他の溶媒との相溶性に優れると同時に、酸化分解に対する安定性に優れた非水電解液を構成することができる。また、低温でのリチウムイオン伝導度を向上できる。
【図面の簡単な説明】
【図1】 サイクル数と放電容量の関係を示すグラフ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte for a lithium secondary battery and a lithium secondary battery, and particularly to a lithium secondary battery excellent in safety.
[0002]
[Prior art]
As a conventional electrolyte for a lithium secondary battery, a mixture of a cyclic ester such as ethylene carbonate or propylene carbonate, a linear ester such as dimethyl carbonate or ethyl propionate, or a cyclic ether such as tetrahydrofuran is used. However, conventional electrolytes are not always satisfactory in terms of safety and charge / discharge cycles.
Recently, therefore, an electrolytic solution using an organic fluorinated ether compound having high stability against oxidative decomposition has been proposed as a means for realizing a long charge / discharge cycle life of a lithium secondary battery.
[0003]
[Problems to be solved by the invention]
The organic fluorinated ether compound has high stability against oxidative decomposition due to its high fluorine content. On the other hand, there is a problem that the compatibility with other electrolytes for lithium secondary batteries is low.
[0004]
The present invention is a non-aqueous electrolyte for a lithium secondary battery that is excellent in compatibility with other electrolytes and at the same time has high stability against oxidative decomposition and excellent overall properties as an electrolyte such as nonflammability. And it aims at providing the lithium secondary battery provided with this non-aqueous electrolyte.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention employs the following configuration.
The non-aqueous electrolyte for a lithium secondary battery of the present invention is represented by a structural formula comprising R 1 —O—R 2 (where R 1 and R 2 are fluorinated alkyl groups), and the R 1 group and the At least one organic fluorinated ether compound having a R 2 group fluorination rate in the range of 57% to 86%, a viscosity in the range of 0.9 cp to 2.3 cp, and a boiling point of 88 ° C. or higher. It contains the above, It is characterized by the above-mentioned.
[0006]
According to such a non-aqueous electrolyte solution, since it contains the organic fluorinated ether compound shown by the above characteristics, a non-aqueous electrolyte solution having excellent compatibility with other solvents and at the same time excellent in stability against oxidative decomposition is obtained. Can be configured. In addition, the lithium ion conductivity at a low temperature can be improved.
[0007]
Moreover, in the non-aqueous electrolyte for lithium secondary batteries of this invention, it is preferable that the said organic fluorinated ether compound is any 1 or more types represented by the structural formula shown below.
That, HCF 2 (CF 2) 3 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CFHCF 3, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 , HCF 2 (CF 2 ) 3 CH 2 OCF 2 CFHCF 3 .
[0008]
Moreover, the non-aqueous electrolyte for a lithium secondary battery of the present invention is the non-aqueous electrolyte described above, and includes a cyclic carbonate.
[0009]
According to such a non-aqueous electrolyte, by including a cyclic carbonate having a high dielectric constant, the lithium salt can be solvated and the lithium ion conductivity of the non-aqueous electrolyte can be increased.
[0010]
Moreover, the nonaqueous electrolytic solution for a lithium secondary battery of the present invention is the nonaqueous electrolytic solution described above, and includes a compatibilizing agent represented by any of the structural formulas shown below. .
That, HCF 2 CF 2 CH 2 OCH 2 CH 2 OCH 3, HCF 2 (CF 2) 3 CH 2 OCH 2 CH 2 OCH 3, CH 3 COOCH 2 (CF 2) 3 CF 2 H, CH 3 COOCH 2 CF 2 CF 2 H.
[0011]
According to such a nonaqueous electrolytic solution, the compatibility of the fluorinated ether compound and the cyclic carbonate can be improved in a wide temperature range by including the compatibilizing agent represented by the above structural formula, and there is no phase separation. A uniform non-aqueous electrolyte can be obtained.
[0012]
Next, a lithium secondary battery of the present invention is characterized by comprising any of the non-aqueous electrolytes described above.
[0013]
According to such a lithium secondary battery, since the nonaqueous electrolyte solution described above is provided, a lithium secondary battery excellent in safety and excellent in discharge characteristics at a low temperature can be configured.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The lithium secondary battery of the present invention comprises a positive electrode and a negative electrode capable of occluding and releasing lithium, and a non-aqueous electrolyte, and the non-aqueous electrolyte is composed of R 1 —O—R 2. R 1 and R 2 are represented by the formula (wherein R 1 and R 2 are fluorinated alkyl groups), the fluorination rate of the R 1 group and R 2 group is in the range of 57% to 86%, and the viscosity is 0.9 cp to 2 .3 cp or less and containing at least one organic fluorinated ether compound having a boiling point of 88 ° C. or higher and no flash point. This non-aqueous electrolyte contains a cyclic carbonate in addition to the organic fluorinated ether compound, and further contains a lithium salt. Moreover, the specific compatibilizing agent mentioned later may be included in order to improve the compatibility of the organic fluorinated ether compound and the cyclic carbonate.
[0015]
Examples of the positive electrode include a positive electrode active material powder mixed with a binder such as polyvinylidene fluoride and a conductive additive such as carbon black and formed into a sheet shape, a flat disk shape, or the like. The positive electrode active material is preferably a composite oxide of at least one selected from cobalt, manganese, and nickel and lithium, specifically, LiMn 2 O 4 , LiCoO 2 , LiNiO. 2 , LiFeO 2 , V 2 O 5 and the like are preferable. Moreover, you may use what can occlude / release lithium, such as TiS, MoS, an organic disulfide compound, or an organic polysulfide compound.
[0016]
The negative electrode is formed into a sheet shape, flat disk shape, etc. by mixing a negative electrode active material powder capable of occluding and releasing lithium with a binder such as polyvinylidene fluoride and a conductive auxiliary agent such as carbon black in some cases. Can be illustrated. Examples of the negative electrode active material include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbeads, and amorphous carbon. Moreover, the metal substance simple substance which can be alloyed with lithium, and the composite containing this metal substance and carbonaceous material can be illustrated as a negative electrode active material. Examples of metals that can be alloyed with lithium include Al, Si, Sn, Pb, Zn, Bi, In, Mg, Ga, and Cd.
A metal lithium foil can also be used as the negative electrode.
[0017]
As described above, the nonaqueous electrolytic solution of the present invention is represented by a structural formula consisting of R 1 —O—R 2 (where R 1 and R 2 are fluorinated alkyl groups), and R 1 group and R 2 group. The organic fluorinated ether compound has a fluorination rate of 57% to 86%, a viscosity of 0.9 cp to 2.3 cp, a boiling point of 88 ° C. or higher and no flash point. It contains at least one or more, and may contain two or more.
[0018]
The reason why the fluorination rate of the R 1 group and R 2 group of the organic fluorinated ether compound is in the range of 57% to 86% is that when the fluorination rate is less than 57%, the oxidation resistance of the non-aqueous electrolyte decreases. This is not preferable because it may ignite when the battery is abnormal, and if the fluorination rate exceeds 86%, the lithium salt is not dissolved and the compatibility with the cyclic carbonate is also not preferable.
Further, the fluorination rate is a ratio in which the hydrogen of the R 1 group or the R 2 group is substituted with fluorine. For example, in the HCF 2 (CF 2 ) 3 CH 2 group, the number of 11 that can be substituted with H or F Of these, since F is 8, the fluorination rate is 73%.
[0019]
In addition, the viscosity of the organic fluorinated ether compound is preferably in the range of 0.9 cp to 2.3 cp because lithium ion conductivity can be increased particularly at low temperatures.
If the viscosity is less than 0.9 cp, the intermolecular force of the organic fluorinated ether compound is too weak and highly volatile. Therefore, the boiling point is less than 88 ° C, which is not preferable. If the viscosity exceeds 2.3 cp, organic fluorination Since the intermolecular force of the ether compound is too strong, the viscosity of the electrolytic solution particularly at a low temperature is increased, lithium ions do not move easily, and the conductivity is lowered, which is not preferable.
Further, the viscosity of the organic fluorinated ether compound may be 0.9 cp or more and 2.0 cp or less, and particularly when two or more organic fluorinated ether compounds are added, the viscosity of one organic fluorinated ether compound is Even if it is outside the range of 0.9-2.0 cp or 0.9-2.3 cp, the viscosity is 0.9-2.0 cp or 0.9-2. It may be within the range of 3 cp.
[0020]
Moreover, the boiling point of the organic fluorinated ether compound is set to 88 ° C. or more, and if the boiling point is less than 88 ° C., the organic fluorinated ether compound may be gasified when a battery malfunctions, which may cause an undesirable situation. Because.
Also, the higher the boiling point, the lower the possibility that an undesirable situation will occur. However, an extremely high boiling point is not preferable because the viscosity greatly exceeds 2.3 cp.
[0021]
Moreover, it is preferable that there is no flash point of an organic fluorinated ether compound. If there is a flash point, the non-aqueous electrolyte may ignite when a battery abnormality occurs, which is not preferable. In addition, that there is no flash point means that the flash point is not shown by the flash point test specified in JIS-K2265.
[0022]
Examples of the organic fluorinated ether compound exhibiting the above characteristics include those represented by the following structural formula.
That, HCF 2 (CF 2) 3 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CFHCF 3, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 , HCF 2 (CF 2 ) 3 CH 2 OCF 2 CFHCF 3 .
[0023]
The physical property values of these organic fluorinated ether compounds are listed below.
First, HCF 2 (CF 2 ) 3 CH 2 OCF 2 CF 2 H has an R 1 group fluorination rate of 73%, an R 2 group fluorination rate of 80%, a viscosity at 25 ° C. of 2.2 cp, and a boiling point of 145 ° C. No flash point.
CF 3 CF 2 CH 2 OCF 2 CFHCF 3 has a fluorination rate of 71% R 1 group (CF 3 CF 2 CH 2 group), a fluorination rate of R 2 group (CF 2 CFHCF 3 ) of 86% at 25 ° C. Viscosity 0.9 cp, boiling point 88 ° C., no flash point.
HCF 2 CF 2 CH 2 OCF 2 CF 2 H is a fluorination rate of R 1 group (HCF 2 CF 2 CH 2 ) of 57%, a fluorination rate of R 2 group (CF 2 CF 2 H) of 80%, 25 ° C. Viscosity at 1.2 cp, boiling point 92 ° C., no flash point.
HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 is 57% fluorination rate of R 1 group (HCF 2 CF 2 CH 2 ), 86% fluorination rate of R 2 group (CF 2 CFHCF 3 ) at 25 ° C. Viscosity 1.3cp, boiling point 106 ° C, no flash point.
HCF 2 (CF 2 ) 3 CH 2 OCF 2 CFHCF 3 has a fluorination ratio of R 1 group (HCF 2 (CF 2 ) 3 CH 2 ) of 73% and a fluorination ratio of R 2 group (CF 2 CFHCF 3 ) of 86. %, Viscosity at 25 ° C. 2.2 cp, boiling point 150 ° C., no flash point.
[0024]
The addition amount of the organic fluorinated ether compound in the nonaqueous electrolytic solution is preferably in the range of 5% by volume to 80% by volume, and more preferably in the range of 20% by volume to 50% by volume.
If the amount added is less than 5% by volume, the viscosity of the non-aqueous electrolyte is increased and the lithium ion conductivity at low temperatures is decreased, and this is not preferable because the oxidation resistance of the non-aqueous electrolyte is decreased. . Moreover, since the solubility of lithium salt falls when the addition amount exceeds 80 volume%, it is unpreferable.
[0025]
Examples of the cyclic carbonate contained in the nonaqueous electrolytic solution of the present invention include ethylene carbonate, butylene carbonate, propylene carbonate, γ-butyrolactone, fluoroethylene carbonate, and the like, and particularly preferably γ-butyrolactone.
These cyclic carbonates exhibit a relatively high dielectric constant, and by adding this cyclic carbonate, the lithium salt can be dissolved and the viscosity of the non-aqueous electrolyte can be adjusted.
The amount of cyclic carbonate added to the non-aqueous electrolyte is preferably in the range of 20% by volume to 95% by volume, and more preferably in the range of 30% by volume to 80% by volume.
If the amount added is less than 20% by volume, the lithium salt cannot be sufficiently dissolved, which is not preferable. If the amount added exceeds 95% by volume, the viscosity of the nonaqueous electrolyte solution becomes excessive, which is not preferable.
[0026]
Moreover, it is preferable that the nonaqueous electrolytic solution of the present invention contains a compatibilizing agent represented by any of the following structural formulas.
That, HCF 2 CF 2 CH 2 OCH 2 CH 2 OCH 3, HCF 2 (CF 2) 3 CH 2 OCH 2 CH 2 OCH 3, CH 3 COOCH 2 (CF 2) 3 CF 2 H, CH 3 COOCH 2 CF 2 CF 2 H.
[0027]
The compatibilizing agent has a group capable of coordinating to lithium ions and an organic alkyl group, and more preferably has a group capable of coordinating to lithium ions and an organic fluorinated alkyl group. . Therefore, it is thought that it has affinity with both the organic fluorinated ether compound and the cyclic carbonate coordinated to lithium ions. By adding these, the compatibility of the organic fluorinated ether compound and the cyclic carbonate can be improved in a wide temperature range, and a uniform non-aqueous electrolyte without phase separation can be obtained. Thereby, the lithium ion conductivity at low temperature can be improved.
In addition, the addition amount of the compatibilizer in the nonaqueous electrolytic solution is preferably in the range of 0.01% by mass to 10% by mass, and more preferably in the range of 0.1% by mass to 3% by mass. If the addition amount is less than 0.01% by mass, the organic fluorinated ether compound and the cyclic carbonate are separated from each other, which is not preferable. If the addition amount exceeds 10% by mass, the nonflammability of the electrolytic solution decreases. This is not preferable because the non-aqueous electrolyte may ignite when an abnormality occurs in the battery.
[0028]
LiPF 6 , LiBF 4 , Li [N (SO 2 C 2 F 6 ) 2 ], Li [B (OCOCF 3 ) 4 ], Li [B (OCOC 2 F 5 ) 4 ] can be used as the lithium salt. However, it is preferable to use either one or both of LiPF 6 and BETI salt (Li [N (SO 2 C 2 F 5 ) 2 ]). In particular, a BETI salt is preferable because of its high solubility in organic fluorinated ether compounds. The concentration of these lithium salts in the nonaqueous electrolytic solution is preferably 0.5 mol / L or more and 2.0 mol / L or less.
[0029]
In the lithium secondary battery of the present invention, the nonaqueous electrolyte solution impregnated with a polymer such as PEO, PPO, PAN, PVDF, PMA, PMMA, or a polymer thereof may be used.
[0030]
According to the above non-aqueous electrolyte, since it contains the organic fluorinated ether compound shown in the above characteristics, it is excellent in compatibility with other solvents and at the same time, excellent in stability against oxidative decomposition. Can be configured.
Moreover, according to said lithium secondary battery, since said non-aqueous electrolyte is provided, the lithium secondary battery excellent in safety | security and excellent in the discharge characteristic in low temperature can be comprised.
[0031]
【Example】
"Experiment 1"
Examples 1 to 5 having compositions as shown in Tables 1 and 2 were prepared by mixing an organic fluorinated ether compound (low viscosity solvent), a cyclic carbonate, LiPF 6 or BETI salt, and a compatibilizer in part. The nonaqueous electrolyte solution of Example 17 was prepared. As the cyclic carbonate, ethylene carbonate (denoted as EC in Table 1), propylene carbonate (denoted as PC in Table 1), and gamma butyrolactone (denoted as BL in Table 1) were used.
Further, diethyl carbonate (low viscosity solvent), HCF 2 (CF 2) 3 CH 2 OCF 2 CF 2 H ( low-viscosity solvent), CF 3 (CF 2) 3 OCH 3 ( low viscosity solvent), CF 3 CH 2 CH Non-aqueous electrolysis of Comparative Examples 1 to 4 as shown in Table 1 by mixing ethylene carbonate with 2 OCF 2 CFHCF 3 (low viscosity solvent) and further mixing LiPF 6 with 1 to 1.3 mol / L. A liquid was prepared.
[0032]
[Table 1]
Figure 0004416991
[0033]
[Table 2]
Figure 0004416991
[0034]
About the obtained non-aqueous electrolyte of Examples 1-17 and Comparative Example 2, the viscosity of the low-viscosity solvent (organic fluorinated ether compound) contained and the conductivity of lithium ions at −20 ° C. of the non-aqueous electrolyte are shown. It was measured. The results are shown in Table 3.
As shown in Table 3, the viscosity of the organic fluorinated ether compound (single or a mixture of two or more) contained in the non-aqueous electrolytes of Examples 1 to 17 is in the range of 1.2 to 1.4 cp. I understand that. On the other hand, it can be seen that Comparative Example 2 shows 2.2 cp.
It is important that the viscosity of the mixture of organic fluorinated ether compounds is 2.0 cp or less, and even if the viscosity of a single organic fluorinated ether compound is 2.0 cp or more, a lower viscosity organic fluorinated ether What is necessary is just 2.0 cp or less when it is set as a mixture with a compound. However, since the viscosity of the mixture is approximately a weighted average of the viscosity of each component, it is practically impossible to use an organic fluorinated ether compound greatly exceeding 2.0 cp.
[0035]
Moreover, as shown in Table 3, it can be seen that the non-aqueous electrolytes of Examples 1 to 17 have a lithium ion conductivity in the range of 0.3 to 1.7 S / cm at −20 ° C. On the other hand, it can be seen that Comparative Example 2 shows no conductivity. This is because in Comparative Example 2, the amount of ethylene carbonate was as high as 80% by volume, and the nonaqueous electrolyte was frozen at -20 ° C.
Thus, it turns out that the non-aqueous electrolyte of Examples 1-17 is excellent in lithium ion conductivity at low temperature.
[0036]
[Table 3]
Figure 0004416991
[0037]
Next, with respect to the obtained nonaqueous electrolyte solutions of Examples 1 to 17 and Comparative Example 3, the fluorination rate (fluorination rate) of the organic fluorinated ether compound contained, the flash point, and the nonaqueous electrolyte solution at −20 ° C. ~ Solubility at room temperature was measured. The results are shown in Table 4. The flash point was measured by the flash point test specified in JIS-K2265, and the solubility was measured by stirring the solvent and the supporting salt at 40 ° C. for 8 hours to prepare an electrolytic solution and allowing to stand for 1 hour. Thereafter, the uniformity of the liquid was visually determined. In addition, in Table 4, there are two columns in which the F conversion ratios are described. This is a description of the respective F conversion ratios when two types of low-viscosity solvents (organic fluorinated ether compounds) are included. It is. In the column, the first F-conversion rate corresponds to the F-conversion rate of the organic fluorinated ether compound having the composition formula first described in Table 1, and the last F-conversion rate is written in the column. Corresponds to the fluorination rate of the organic fluorinated ether compound having the compositional formula described last in Table 1.
As shown in Table 4, it can be seen that the fluorination rates of the R 1 group and R 2 group of the organic fluorinated ether compounds contained in the non-aqueous electrolytes of Examples 1 to 17 are in the range of 57 to 86%. The flash point was not detected in any non-aqueous electrolyte. Furthermore, about solubility, it turns out that it melt | dissolves uniformly in the range of -20 degreeC to room temperature.
On the other hand, in Comparative Example 3, phase separation was confirmed by solubility measurement, and a uniform non-aqueous electrolyte solution could not be obtained. This is because the fluorination rate of the R 1 group is too high at 100%, the polarity of the R 1 group is too low, and the compatibility between the organic fluorinated ether compound and the cyclic carbonate coordinated to the lithium ion is insufficient. This is probably because of phase separation.
[0038]
[Table 4]
Figure 0004416991
[0039]
Next, the boiling points of the organic fluorinated ether compounds contained in the obtained non-aqueous electrolytes of Examples 1 to 17 and Comparative Example 3 were measured. The results are shown in Table 5. In Table 5, there are two columns in which the boiling point of the low viscosity solvent is described. This is the case where two types of low viscosity solvents (organic fluorinated ether compounds) are included. It is. In the column, the boiling point first written corresponds to the boiling point of the organic fluorinated ether compound having the composition formula first described in Table 1.
As shown in Table 5, it can be seen that the boiling points of the organic fluorinated ether compounds contained in the non-aqueous electrolytes of Examples 1 to 17 are in the range of 88 to 150 ° C.
[0040]
[Table 5]
Figure 0004416991
[0041]
Next, lithium secondary batteries were manufactured using the non-aqueous electrolytes of Examples 1 to 17 and Comparative Examples 1 to 4. This lithium secondary battery is inserted into a battery container in a state in which a sheet-like positive electrode having LiCoO 2 as a positive electrode active material and a sheet-like negative electrode having carbon fiber as a negative electrode active material are overlapped and wound in a spiral shape. After injecting the non-aqueous electrolyte, the battery container was sealed, and then charged at a constant current and constant voltage for 8 hours under the condition of an upper limit voltage of 4.2 V at a current of 0.2 C, and a standard capacity of 660 mAh with a thickness of 4 mm, A square battery having a width of 30 mm and a height of 60 mm was manufactured.
About the obtained lithium secondary battery, the capacity | capacitance maintenance factor in -20 degreeC and the battery thickness increase rate in 90 degreeC were measured. The results are shown in Table 3 and Table 5, respectively.
The capacity maintenance ratio was measured under the conditions of a discharge current of 0.2 C, a discharge end voltage of 2.75 V, a charge current of 0.5 C, a charge upper limit voltage of 4.2 V, and a charge time of 2.5 hours, The ratio was determined from the discharge capacity at the cycle and the discharge capacity at the second cycle at −20 ° C.
The battery thickness increase rate was measured at the rate of change in battery thickness measured with calipers before and after storage at 90 ° C. for 4 hours.
[0042]
As shown in Table 3, the capacity retention ratios at −20 ° C. of Examples 1 to 17 are in the range of 44.3% to 89%, whereas Comparative Example 2 is 0%. It can be seen that the lithium secondary battery using the 17 non-aqueous electrolyte is excellent in the low-temperature capacity retention rate.
The reason why the capacity retention rate of Comparative Example 2 was 0% is considered that the non-aqueous electrolyte was frozen at a low temperature as described above.
[0043]
Moreover, as shown in Table 5, the battery thickness increase rates of Examples 1 to 17 are all 10% or less, and it is considered that gas generation or the like does not occur. On the other hand, in Comparative Example 3, the increase rate exceeds 100%. This is considered to be due to gas generated by evaporation of the organic fluorinated ether compound having a boiling point of 60 ° C.
[0044]
Next, the nonaqueous electrolyte combustion test and the behavior of the battery when the lithium secondary battery manufactured earlier was overcharged at 3C were investigated.
The non-aqueous electrolyte combustion test was performed using a flash point test apparatus defined in JIS-K2265 under conditions of a temperature at which combustion continued for 1 second or longer.
Further, the overcharge test was performed by charging the fully charged battery with a constant current of 3C and a constant current / constant voltage of an upper limit voltage of 12V, and the temperature change of the battery periphery was measured under the condition of measurement with a thermocouple. The results are shown in Table 6.
[0045]
[Table 6]
Figure 0004416991
[0046]
As shown in Table 6, none of the non-aqueous electrolytes of Examples 1 to 17 burned up to 180 ° C. and were excellent in nonflammability. This is presumably because the organic fluorinated ether compound contains a large amount of fluorine and thus has high oxidation resistance and also has self-extinguishing properties. On the other hand, the non-aqueous electrolyte of Comparative Example 1 burned at 58 ° C.
Further, in the overcharge test, Examples 1 to 17 did not rupture, and the battery temperature remained at a rise to 97 ° C. On the other hand, in Comparative Examples 1 and 4, battery rupture occurred due to overcharge, and the battery temperature immediately before rupture reached 300 ° C. or higher. As described above, the non-aqueous electrolytes of Examples 1 to 17 are not oxidized and cause thermal runaway even when the non-aqueous electrolyte is exposed to a severe oxidation state due to overcharging. It turns out that it is excellent.
[0047]
Next, for the lithium secondary batteries of Examples 1 to 17 and Comparative Example 2 created earlier, the initial capacity, the capacity retention ratio at the 100th cycle, and the capacity retention ratio after being left at 90 ° C. for 4 hours were measured.
The initial capacity was measured under the conditions of a discharge current of 0.2 C and a discharge end voltage of 2.75 V.
The capacity retention rate at the 100th cycle is charged under the conditions that the charging conditions are a charging current of 1 C, a charging upper limit voltage of 4.2 V, a charging time of 2.5 hours, and the discharging conditions are a discharging current of 1 C and a discharge end voltage of 2.75 V. The discharge was repeated, and it was determined from the ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 1st cycle.
Furthermore, the capacity retention after standing at 90 ° C. for 4 hours is as follows: discharge current 0.2C, discharge end voltage 2.75V, charge current 0.5C, charge upper limit voltage 4.2V, charge time 3 hours at room temperature. The ratio obtained from the discharge capacity of the first cycle and the discharge capacity of the second cycle after standing at 90 ° C. for 4 hours. The results are shown in Table 7.
[0048]
[Table 7]
Figure 0004416991
[0049]
As shown in Table 7, the initial capacity of all the lithium secondary batteries is 660 mAh or higher, which indicates that the initial capacity is good.
Next, the capacity retention after 100 cycles is as good as 80% or more in Examples 1 to 17, but 12.4% in Comparative Example 2 and no capacity is obtained.
Furthermore, the capacity retention after leaving at 90 ° C. is 80% or more for any lithium secondary battery, and it can be seen that it is good.
[0050]
FIG. 1 shows the relationship between the number of cycles and the discharge capacity of the battery of Example 5 and the battery of Comparative Example 2. As shown in FIG. 1, it can be seen that the cycle characteristics of the battery of Example 5 are significantly superior to those of Comparative Example 2.
[0051]
【The invention's effect】
As described above in detail, according to the nonaqueous electrolytic solution of the present invention, since it contains an organic fluorinated ether compound having predetermined characteristics, it is excellent in compatibility with other solvents, and at the same time, is oxidatively decomposed. Thus, a non-aqueous electrolyte solution having excellent stability against the above can be constituted. In addition, the lithium ion conductivity at a low temperature can be improved.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the number of cycles and discharge capacity.

Claims (4)

−O−Rからなる構造式(ただし、R及びRはフッ化アルキル基)で表され、前記R基及び前記R基のフッ素化率が57%以上86%以下の範囲であり、粘度が0.9cp以上2.3cp以下の範囲であり、かつ沸点が88℃以上の有機フッ素化エーテル化合物の少なくとも1種以上を含有し、
下記のいずれかに示す構造式で表される相溶化剤を含むことを特徴とするリチウム二次電池用の非水電解液。
HCF CF CH OCH CH OCH
HCF (CF CH OCH CH OCH
CH COOCH (CF CF H、
CH COOCH CF CF
R 1 —O—R 2 is represented by a structural formula (where R 1 and R 2 are fluorinated alkyl groups), and the fluorination rate of the R 1 group and the R 2 group is 57% or more and 86% or less. Containing at least one organic fluorinated ether compound having a viscosity of 0.9 cp to 2.3 cp and a boiling point of 88 ° C. or higher ,
A nonaqueous electrolytic solution for a lithium secondary battery , comprising a compatibilizing agent represented by any of the following structural formulas .
HCF 2 CF 2 CH 2 OCH 2 CH 2 OCH 3 ,
HCF 2 (CF 2 ) 3 CH 2 OCH 2 CH 2 OCH 3 ,
CH 3 COOCH 2 (CF 2 ) 3 CF 2 H,
CH 3 COOCH 2 CF 2 CF 2 H
前記有機フッ素化エーテル化合物が下記に示す構造式で表されるいずれか1種以上であることを特徴とする請求項1に記載のリチウム二次電池用の非水電解液。
HCF(CFCHOCFCFH、
CFCFCHOCFCFHCF
HCFCFCHOCFCFH、
HCFCFCHOCFCFHCF
HCF(CFCHOCFCFHCF
The non-aqueous electrolyte for a lithium secondary battery according to claim 1, wherein the organic fluorinated ether compound is at least one of the following structural formulas.
HCF 2 (CF 2 ) 3 CH 2 OCF 2 CF 2 H,
CF 3 CF 2 CH 2 OCF 2 CFHCF 3 ,
HCF 2 CF 2 CH 2 OCF 2 CF 2 H,
HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 ,
HCF 2 (CF 2 ) 3 CH 2 OCF 2 CFHCF 3
環状カーボネートが含まれることを特徴とする請求項1または請求項2のいずれかに記載のリチウム二次電池用の非水電解液。The nonaqueous electrolytic solution for a lithium secondary battery according to any one of claims 1 and 2, wherein a cyclic carbonate is contained. 請求項1ないし請求項のいずれかに記載の非水電解液を具備してなることを特徴とするリチウム二次電池。A lithium secondary battery comprising the nonaqueous electrolytic solution according to any one of claims 1 to 3 .
JP2002242299A 2002-08-22 2002-08-22 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery Expired - Fee Related JP4416991B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002242299A JP4416991B2 (en) 2002-08-22 2002-08-22 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery
KR10-2003-0003968A KR100508932B1 (en) 2002-08-22 2003-01-21 Electrolyte for lithium secondary battery and lithium secondary battery
US10/440,220 US7229718B2 (en) 2002-08-22 2003-05-15 Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
CNB031368514A CN100459272C (en) 2002-08-22 2003-05-23 Electrolyte for chargeable lithium cell and chargeable lithium cell containg the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242299A JP4416991B2 (en) 2002-08-22 2002-08-22 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004087136A JP2004087136A (en) 2004-03-18
JP4416991B2 true JP4416991B2 (en) 2010-02-17

Family

ID=32051423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242299A Expired - Fee Related JP4416991B2 (en) 2002-08-22 2002-08-22 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP4416991B2 (en)
KR (1) KR100508932B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080871A1 (en) 2012-11-20 2014-05-30 日本電気株式会社 Lithium ion secondary battery
US9905887B2 (en) 2012-06-05 2018-02-27 Nec Corporation Lithium secondary battery
US10211482B2 (en) 2014-12-30 2019-02-19 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery employing the same
US10658699B2 (en) 2014-12-30 2020-05-19 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery employing the same
US10707529B2 (en) 2014-12-30 2020-07-07 Samsung Electronics Co., Ltd. Lithium secondary battery

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073161B2 (en) * 2004-10-13 2012-11-14 三星エスディアイ株式会社 Non-aqueous electrolyte for lithium secondary battery, lithium secondary battery and secondary battery system
JP2006216361A (en) * 2005-02-03 2006-08-17 Three M Innovative Properties Co Electrolytic solution for lithium battery
JP2007234339A (en) * 2006-02-28 2007-09-13 Three M Innovative Properties Co Solvent composition and electrochemical device
JP2007287677A (en) * 2006-03-24 2007-11-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
CN103354287B (en) * 2007-02-06 2017-07-28 大金工业株式会社 Non-aqueous electrolyte
JP5234000B2 (en) * 2007-09-12 2013-07-10 ダイキン工業株式会社 Electrolyte
JP5401836B2 (en) * 2008-01-29 2014-01-29 ダイキン工業株式会社 Solvent for dissolving electrolyte salt of lithium secondary battery
KR20110008172A (en) 2008-04-28 2011-01-26 아사히 가라스 가부시키가이샤 Secondary cell nonaqueous electrolyte and secondary cell
JP5253905B2 (en) * 2008-06-30 2013-07-31 パナソニック株式会社 Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP5369589B2 (en) * 2008-10-02 2013-12-18 ダイキン工業株式会社 Nonaqueous electrolyte containing fluorine-containing formate solvent
WO2010110290A1 (en) * 2009-03-26 2010-09-30 ダイキン工業株式会社 Nonaqueous electrolyte solution for lithium secondary battery
WO2011001985A1 (en) 2009-06-30 2011-01-06 旭硝子株式会社 Electrolytic solution for chargeable device, electrolytic solution for lithium ion secondary battery, and secondary battery
KR101117699B1 (en) 2009-11-19 2012-02-24 삼성에스디아이 주식회사 Electrolytic solution for lithium battery and lithium battery employing the same
EP2587581B1 (en) * 2010-06-25 2018-12-05 NEC Energy Devices, Ltd. Lithium ion secondary battery
JP2012033346A (en) * 2010-07-29 2012-02-16 Nec Energy Devices Ltd Aprotic electrolyte secondary battery
US9123973B2 (en) * 2010-12-22 2015-09-01 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP5120513B2 (en) 2011-03-31 2013-01-16 ダイキン工業株式会社 Lithium ion secondary battery and non-aqueous electrolyte for lithium ion secondary battery
JP2013054887A (en) * 2011-09-02 2013-03-21 Ntt Facilities Inc Nonaqueous electrolyte battery
CN103875116B (en) 2012-03-27 2016-08-17 旭硝子株式会社 Non-aqueous electrolyte for secondary battery and lithium rechargeable battery
JP6048907B2 (en) * 2012-04-11 2016-12-21 株式会社Gsユアサ Non-aqueous electrolyte battery
EP2911231B1 (en) * 2012-10-22 2017-03-22 Asahi Glass Company, Limited Non-aqueous electrolytic solution for secondary batteries and lithium-ion secondary battery comprising the same
KR20140083170A (en) 2012-12-24 2014-07-04 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same
JP6428609B2 (en) * 2013-05-10 2018-11-28 日本電気株式会社 Secondary battery electrolyte and secondary battery
KR102425826B1 (en) 2014-12-30 2022-07-28 삼성전자주식회사 Electrolyte for lithium secondary battery and lithium secondary battery employing the same
CN112786968B (en) * 2021-02-02 2022-06-03 中国科学院过程工程研究所 Phosphate-based high-voltage flame-retardant electrolyte

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9905887B2 (en) 2012-06-05 2018-02-27 Nec Corporation Lithium secondary battery
WO2014080871A1 (en) 2012-11-20 2014-05-30 日本電気株式会社 Lithium ion secondary battery
US10177413B2 (en) 2012-11-20 2019-01-08 Nec Corporation Lithium ion secondary battery
US10211482B2 (en) 2014-12-30 2019-02-19 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery employing the same
US10658699B2 (en) 2014-12-30 2020-05-19 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery employing the same
US10707529B2 (en) 2014-12-30 2020-07-07 Samsung Electronics Co., Ltd. Lithium secondary battery

Also Published As

Publication number Publication date
KR20040018096A (en) 2004-03-02
JP2004087136A (en) 2004-03-18
KR100508932B1 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JP4416991B2 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery
US7611801B2 (en) Non-aqueous electrolyte, rechargeable lithium battery, and rechargeable battery system
US6723472B2 (en) Lithium secondary battery
KR100809892B1 (en) Nonaqueous electrolytic solution and lithium secondary batteries
EP0582410B1 (en) Secondary battery
JP3475911B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP4092757B2 (en) Non-aqueous electrolyte secondary battery
JP5111455B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5073161B2 (en) Non-aqueous electrolyte for lithium secondary battery, lithium secondary battery and secondary battery system
JP6068789B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
KR100988657B1 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
JP4428653B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME
JP4765629B2 (en) Non-aqueous electrolyte and lithium secondary battery
JPH11273724A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JPH11273725A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using it
JP4785735B2 (en) Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same
JP2001015156A (en) Nonaqueous electrolyte battery
JP5068449B2 (en) Lithium secondary battery
JP2004014352A (en) Nonaqueous electrolyte secondary battery
JP2002298909A (en) Nonaqueous electrolyte and lithium secondary battery using the same
JP5117649B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP3633268B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP5110057B2 (en) Lithium secondary battery
KR100988666B1 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
KR100508931B1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091125

R150 Certificate of patent or registration of utility model

Ref document number: 4416991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees