WO2002042339A1 - Materiau photoreticulable contenant un chromophore materiau reticule circuit integre optique comprenant ce materiau et son procede de preparation - Google Patents

Materiau photoreticulable contenant un chromophore materiau reticule circuit integre optique comprenant ce materiau et son procede de preparation Download PDF

Info

Publication number
WO2002042339A1
WO2002042339A1 PCT/FR2001/003640 FR0103640W WO0242339A1 WO 2002042339 A1 WO2002042339 A1 WO 2002042339A1 FR 0103640 W FR0103640 W FR 0103640W WO 0242339 A1 WO0242339 A1 WO 0242339A1
Authority
WO
WIPO (PCT)
Prior art keywords
material according
chromophores
chromophore
crosslinked
optical
Prior art date
Application number
PCT/FR2001/003640
Other languages
English (en)
Inventor
Christiane Morlet-Savary
Carole Ecoffet
Loïc MAGER
Alain Fort
Original Assignee
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique filed Critical Centre National De La Recherche Scientifique
Priority to AU2002220802A priority Critical patent/AU2002220802A1/en
Publication of WO2002042339A1 publication Critical patent/WO2002042339A1/fr

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/061Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/061Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material
    • G02F1/065Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on electro-optical organic material in an optical waveguide structure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor

Definitions

  • the invention relates to a photocrosslinkable material containing a chromophore, and to a crosslinked material capable of being obtained by photocrosslinking of this photocrosslinkable material.
  • the invention further relates to an optical integrated circuit comprising this crosslinked material.
  • the invention finally relates to a method for preparing an optical integrated circuit.
  • the present invention is in the field of manufacturing optical integrated circuits ("CIO").
  • Optical integrated circuits are a combination of optical elements, such as waveguides, diffractive optics, BRAGG gratings etc., on the same component or matrix.
  • All these elements are constituted by structures having a contrast of refractive index compared to the matrix which supports them. It is also possible, depending on the nature of the material, to modify the value of the refractive index by applying an electric field (this is called the electro-optical effect) . There are thus dynamic components that can be controlled electrically.
  • An example of such a device is given in FIG. 1. It is an optical gyroscope using an integrated phase modulator (1), implementing as matrix (2), a crystal of lithium niobate (LiNb0 3 ). The index contrast necessary for the constitution of the waveguides (3) is obtained by ion bombardment of the desired regions. Lithium niobate has important electro-optical properties, the control of the refractive index is therefore obtained by application of an electric field on the waveguide.
  • the field is applied by means of the electrodes (4) deposited on the circuit.
  • the device described above in Figure 1, is only an example of the application of a type of material to a given device.
  • materials such as doped glasses and semiconductors, etc., used for the production of CIO.
  • the circuit may not be implanted in the volume of the material, but consist of tracks deposited on a substrate. It then appears in relief on the support.
  • the materials used for producing the matrices of optical integrated circuits are currently inorganic materials, which have the drawback in particular of the heaviness of their preparation, and their high dielectric constant limiting the switching frequency (capacitive effect).
  • Chromophores are molecules that have several specific properties. They have a dipole moment which allows their orientation in an electric field. They also have an anisotropy of significant linear polarizability; this property can be assimilated to a birefringence on the molecular scale. Chromophores also have quadratic hyperpolarisability which is the basis of the electro-optical effect.
  • the chromophores family includes very different molecules. However, most of the time, these are - molecules having an electron accepting group and an electron donor group linked by a conjugation path ( ⁇ orbitals) allowing the delocalization of the electrons on the whole molecule. These molecules are called "push-pull molecules”.
  • the solution used to avoid this problem is to disperse the chromophores in a polymer matrix.
  • the matrix must be transparent in the part of the spectrum used and must allow the orientation of the molecules. Again, there are a large number of possible matrices ranging from polymers to sol-gels.
  • the collective orientation of the molecules will induce several effects including the appearance on the macroscopic scale of a birefringence linked to the organization of the chromophores, the material passing from an isotropic phase to a non-centrosymmetric phase, there is appearance of 'a quadratic hyperpolarisability on the macroscopic scale and the material is then electro-optical.
  • Two methods are mainly used, the first is to use a rigid matrix at room temperature and to heat it above its glass transition temperature, before applying the electric field.
  • the viscosity having decreased with increasing temperature, the molecules are free to orient themselves.
  • the rigidity of the material prevents rapid relaxation of the orientation of the chromophores, so there is slow relaxation over a few days.
  • Another method consists in modifying the rigidity of the matrix by modifying its chemical nature, after polarization. Either polymerization or crosslinking is used, that is to say the formation of a three-dimensional molecular network, or gelation.
  • the chemical reaction can be spontaneous or induced. In the latter case, the reaction is mainly caused by a rise in temperature, we are then dealing with ther oriculation, or even by irradiation, for example X, or even gamma. Immobilization of chromophores can be enhanced by making them intervene in the crosslinking reaction. The chromophore then becomes an integral part of the matrix and its mobility is greatly reduced.
  • document EP-A-0 313 475 describes a photopoly erisable system receiving a molecule having an optical non-linearity of order two.
  • the polymerization of the host matrix is uniform.
  • the molecule having a second order optical non-linearity can polymerize and therefore be attached to the three-dimensional network, which improves its blocking in the medium. This document does not in any way mention a local increase in viscosity and refractive index.
  • the object of the present invention is to provide a crosslinkable organic material containing chromophores, which meets, among other things, these needs.
  • the object of the present invention is also to provide a crosslinkable organic material, which does not have the drawbacks, defects, limitations and disadvantages of the prior art methods and which solves the problems of the prior art.
  • a photocrosslinkable material and microstructurable in whole or in part by visible light essentially comprising a matrix of a monomer having at least three crosslinkable functions, said matrix containing a chromophore and a photosensitizer having an absorption peak in the distinct visible region, separate from that of the chromophore, said material being capable, during its crosslinking, of exhibiting, in the crosslinked part, a local increase in viscosity and refractive index.
  • the material according to the invention meets, among other things, all of the needs indicated above, and does not have the disadvantages of the materials described above.
  • the material according to the invention is a photocrosslinkable matrix in the visible doped by chromophores with non-linear optical properties.
  • the material according to the invention being a photocrosslinkable material in the visible range, there will be no destruction or degradation of the chromophores under irradiation.
  • the material according to the invention provides crosslinking over a large thickness, throughout the material.
  • the material according to the invention offers the possibility of fine spatial resolution.
  • the material we are proposing is not a simple host matrix. It is microstructurable by photochemical route and therefore participates directly in the manufacture of the desired elements during its crosslinking, that is to say when it is illuminated by visible light, the crosslinked part (s) illuminated. (s) becomes (nent) microstructured (s), rigidified (s). This microstructuring linked to an increase in viscosity is accompanied, in addition, by an increase in the refractive index.
  • the refractive index and / or the viscosity are, in the areas, parts, crosslinked, greater than those of the material in the areas or parts not crosslinked, not lit, or when the whole of the material is illuminated, crosslinked, that the refractive index and / or the viscosity are higher than those of the same unlit material.
  • the material according to the invention differs fundamentally from that described in EP-A-0 313 475, which makes no mention of the notions of local photocrosslinking and variation of the refractive index, fundamental in the material of the invention.
  • the illumination and therefore the crosslinking are illuminations and therefore selective, partial crosslinking, relating only to certain zones, or defined parts of the material, and the increase in the refractive index and in the viscosity are therefore increases. local, partial, affecting only certain areas of the material.
  • crosslinkable functions are chosen from acrylate functions and epoxy functions.
  • the monomer is advantageously chosen from pentaerythritol tetraacrylate, pentaerythritol triacrylate (PETIA), and tris (2-hydroxyethyl) isocyanurate triacrylate (and others ).
  • the chromophore is advantageously chosen from OCB, MMONS, MOCC, and others, such as chromophores with non-zero quadratic hyperpolarizability.
  • the photosensitizer is advantageously chosen from eosin Y and methylene blue and others.
  • the material according to the invention may also comprise, in certain cases, a co-initiator, such as methyl diethanolamine.
  • all or part of the chromophores is (are) aligned, for example, by application of an electric field.
  • the invention further relates to a crosslinked material, microstructured in whole or in part, capable of being obtained by photocrosslinking, in whole or in part, by visible light of the photocrosslinkable material defined above, said material having in the part crosslinked one local increase in viscosity and refractive index.
  • a photosensitizer suitable for crosslinking and thus blocking the orientation of the chromophores definitively gives the material the desired properties.
  • this material can present strong dopings in chromophores. These being preferably oriented in whole or in part (in the whole of the material or only in certain selected areas thereof).
  • the invention also relates to an optical integrated circuit comprising this crosslinked material; this optical integrated circuit being chosen from amplitude, phase modulators or other devices.
  • the invention also relates to a method for preparing an optical integrated circuit, comprising the following successive steps: - putting the photocrosslinkable material, as described above, in which the chromophores are not aligned, in the form of a layer ;
  • the etching of the circuit can be carried out by leaving the sample in place and that there is no post-processing.
  • the process is very simple and requires very little handling.
  • the technique also makes it possible to facilitate the optical connection of the circuit.
  • the method according to the invention makes it possible to limit the losses of insertions, an important problem in the context of optical integrated circuits.
  • FIG. 1 is a block diagram of an example of CIO, which is an optical gyroscope using a double integrated phase modulator;
  • FIG. 2 is a graph showing the absorption of each of the constituents of the photocrosslinkable material according to the invention; on the ordinate, is range the absorption A (arbitrary units) and at o the wavelength ⁇ (at A);
  • FIG. 3A, 3B, 3C, 3D constitute a block diagram which illustrates the various stages of production of an amplitude modulator according to the invention.
  • the. material photocrosslinkable by visible light essentially comprises a matrix of a monomer having at least three crosslinkable functions.
  • said matrix generally represents more than 50% by weight and preferably from 30 to 90% by weight of the material according to the invention.
  • matrix of a monomer is meant that the monomer is in the form of a homogeneous structure, in which the other elements, namely the chromophore and the photosensitizer are distributed, preferably uniformly, in a homogeneous manner.
  • the photocrosslinkable matrix is composed of monomers, also called “precursors”, having at least three crosslinkable functions.
  • the crosslinkable functions are broken in favor of a bond between two molecules.
  • a crosslinked three-dimensional network is thus formed, the viscosity of which is considerably higher than that of the precursor: for example, this viscosity can go from 500 cps to 10 13 ps.
  • the use of precursors having only two crosslinkable functions leads not to a three-dimensional network, in accordance with the invention, but to a polymer, which is clearly less advantageous.
  • crosslinkable functions can be chosen from all known crosslinkable functions. Examples of such crosslinkable functions are the acrylate function, the epoxy function. Examples of precursors, monomers, crosslinkable, photopolymerizable are therefore pentaerythritol (II) triacrylate and pentaerythritol (I) tetraacrylate, the formulas of which are given below:
  • the initiation of the reaction by light is not done directly by action on the crosslinkable function with creation of free radicals under UV - with all the harmful effects that this can have on the chromophores, but also on the matrix - but via a photosensitizer compound added to the matrix, advantageously allowing, in accordance with the invention, crosslinking with visible light.
  • the invention is only illuminated in the range of the absorption peak of the photosensitizer, that is to say only on the peak of the photosensitizer, very precisely, for example with a laser.
  • photosensitizer is conditioned by the fact that, according to the invention, it is desired to induce crosslinking, photopolymerization, in a window of the well defined spectrum corresponding to the wavelength range of visible light.
  • the photosensitizer concentration is low, generally from one to a few hundredths by weight, up to 1 to a few thousandths by weight.
  • the photosensitizer concentration makes it possible to control the transparency of the precursor-monomer.
  • the photosensitizing compound has an absorption peak in the visible light domain, this absorption peak being, moreover, distinct, separate from that of the chromophore.
  • FIG. 2 illustrates this situation by showing the contribution to the absorption of each component of the material according to the invention.
  • the chromophore (C) absorbs, in general, mainly in the visible, and the photosensitizing chromophore couple (S) is, moreover, adapted so that there is no overlap of the two absorption parts.
  • the absorption peak of the photosensitizer (S) will therefore also be in the visible, but, for example, at a higher wavelength than that of the chromophore.
  • FIG. 2 also shows the absorption peak of the monomer (M) or precursor which is rather located in the UV.
  • the photocrosslinking is carried out with visible light in the narrow range corresponding to the absorption peak of the photosensitizer (see arrow), distant, distinct from the chromophore peak, it does not undergo any deterioration.
  • chromophore (C) is present in a high concentration, which can generally range from 1% to 50% by weight. Therefore, its absorption would mask that of the photosensitizer, if, according to the invention, the respective absorption peaks of the photosensitizer (S) and of the chromophore (C) were not distinct, separate.
  • chromophores or doping molecules having nonlinear optical properties examples include OCB (III), MMONS (IV) and
  • photosensitizers i.e. dyes, used to induce visible photocrosslinking
  • eosin Y VI
  • VII methylene blue
  • a material particularly preferred according to the invention, comprises a matrix of PETIA monomer, a MOCC chromophore, in an amount of 10 to 20% by weight and a photosensitizer (eosin), in an amount of 0.1 to
  • the material in this case, also contains a co-initiator, such as the amino methyl diethanol, in a proportion generally from 1 to 10% by weight.
  • a co-initiator such as the amino methyl diethanol
  • the material according to the invention can be prepared by simple mixing of the precursor monomer, the photosensitizer and the chromophore.
  • optical integrated circuit using the photocrosslinkable material according to the invention, comprises several steps.
  • FIG. 3 shows the embodiment, by way of example, of an amplitude modulator. It is obvious that other optical integrated circuits (“CIO”) can be prepared in a similar manner, with possible slight adaptations.
  • CIO optical integrated circuits
  • FIG. 3A the monomer-precursor, photosensitizer and chromophore mixture is put in the form of a layer (31) of desired thickness, for example from 100 to 200 ⁇ m.
  • the chromophores (32) doping the precursor are randomly oriented, they are not aligned.
  • the layer is polarized, that is to say that an electric field (E) is applied (polarization coronna) so as to achieve the alignment of the chromophores, that is to say orient them all in the same direction ( Figure 3B).
  • E electric field
  • the electric field is generally perpendicular to the main plane of the layer (31).
  • a first photocrosslinking is carried out, by illuminating with visible light (33) (suitable wavelength) the layer (31), through a mask (34) (it is also possible to use a interference figure) provided with a pattern (35) corresponding to the pattern, to the layout of the optical circuit which it is desired to obtain on the layer, that is to say that the mask (34) does not allow the illumination on the layer only areas corresponding to the pattern, to the optical tracing that one wishes to obtain.
  • This second step of the method which is in fact a first crosslinking operation along the path of the desired optical circuit, has in particular three consequences: there is a densification of the matrix, accompanied by an increase in the refractive index, and there is immobilization of the chromophore, and therefore, as a result, an induction of a birefringence and permanent electro-optical properties.
  • this step makes it possible to induce a selective stiffening of the matrix, this on scales of between 0.2 and 20 mm. It corresponds to a blockage of the molecule having an optical non-linearity of order two, only in the lit areas. This structuring is accompanied by more than one local increase in the refractive index.
  • the molecules having an optical non-linearity of order two, in the areas not stiffened during the second step may or may not be oriented in a direction different from that initially applied.
  • the polarization field is cut, in other words, the electric field is suppressed.
  • the entire layer is uniformly illuminated with visible light (33) (FIG. 3C) and the orientations are thus frozen.
  • the chromophores are aligned, have a preferred orientation only in the region (38) corresponding to the drawing of the mask motif in FIG. 3B, through which the light could pass.
  • a contrast of optical properties is thus obtained between the regions where the orientation has been blocked and those where it has been relaxed. This contrast constitutes the optical circuit. In other words, this induces an index jump ensuring the guidance conditions.
  • the layer gives the material electro-optical properties.
  • the deposition of electrodes makes it possible, in fact, to apply an electric field which modulates the refractive index of the guide. In FIG. 3D, an amplitude modulator is thus obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

Matériau photoréticulable et microstructurable en totalité ou en partie par la lumière visible comprenant essentiellement une matrice d'un monomère possédant au moins trois fonctions réticulables, ladite matrice contenant un chromophore et un photosensibilisateur présentant un pic d'absorption dans le domaine visible distinct, séparé, de celui du chromophore, ledit matériau étant susceptible, lors de sa réticulation, de présenter, dans la partie réticulée, une augmentation locale de la viscosité et de l'indice de réfraction.Matériau réticulé, microstructuré en totalité ou en partie, susceptible d'être obtenu par photoréticulation, en totalité ou en partie, par la lumière visible du matériau photoréticulable, ledit matériau présentant dans la partie réticulée un augmentation locale de la viscosité et de l'indice de réfraction.Circuit intégré optique comprenant ce matériau réticulé et procédé de préparation de ce circuit.

Description

MATERIAU PHOTORETICULABLE CONTENANT UN CHROMOPHORE,
MATERIAU RETICULE, CIRCUIT INTEGRE OPTIQUE
COMPRENANT CE MATERIAU, ET SON PROCEDE DE PREPARATION
DESCRIPTION
L'invention concerne un matériau photoréticulable contenant un chromophore, et un matériau réticulé susceptible d'être obtenu par photoréticulation de ce matériau photoréticulable.
L'invention concerne, en outre, un circuit intégré optique comprenant ce matériau réticulé.
L'invention a enfin trait à un procédé de préparation d'un circuit intégré optique. La présente invention se situe dans le domaine de la fabrication des circuits intégrés optiques ( « CIO » ) .
Les circuits intégrés optiques ( « CIO » ) sont une association d'éléments optiques, tels que des guides d'onde, des optiques diffractives, des réseaux de BRAGG etc., sur un même composant ou matrice.
Tous ces éléments sont constitués par des structures présentant un contraste d'indice de réfraction par rapport à la matrice qui les supporte. II est, en outre, possible, en fonction de la nature du matériau, de modifier la valeur de l'indice de réfraction par application d'un champ électrique (c'est ce que l'on appelle l'effet électro-optique). On a ainsi des composants dynamiques pouvant être contrôlés électriquement. Un exemple d'un tel dispositif est donné sur la figure 1. Il s'agit d'un gyroscope optique utilisant un modulateur de phase intégré (1), mettant en œuvre comme matrice (2), un cristal de niobate de lithium (LiNb03). Le contraste d'indice nécessaire à la constitution des guides d'onde (3) est obtenu par bombardement ionique des régions voulues. Le niobate de lithium possède des propriétés électro-optiques importantes, le contrôle de l'indice de réfraction est donc obtenu par application d'un champ électrique sur le guide d'onde.
Le champ est appliqué par l'intermédiaire des électrodes (4) déposées sur le circuit.
Le dispositif, décrit ci-dessus sur la figure 1, n'est qu'un exemple d'application d'un type de matériau à un dispositif donné. Il existe d'autres matériaux, tels que les verres dopés et les semi-conducteurs, etc., utilisés pour la réalisation de CIO. De plus, le circuit peut ne pas être implanté dans le volume du matériau, mais être constitué de pistes déposées sur un substrat. Il apparaît alors en relief sur le support.
Les matériaux utilisés pour la réalisation des matrices des circuits intégrés optiques sont actuellement des matériaux inorganiques, qui ont notamment pour inconvénient la lourdeur de leur préparation, et leur constante diélectrique élevée limitant la fréquence de commutation (effet capacitif).
On cherche, toutefois, a mettre au moins des matériaux organiques susceptibles de remplacer les matériaux inorganiques. Il est alors nécessaire de créer dans ces matériaux organiques une modulation localisée et permanente de l'indice de réfraction, accompagnée de l'induction de propriétés électro-optiques . On connaît ainsi des composants préparés essentiellement par masquage et attaque chimique d'une matrice. Une telle façon de procéder, semblable à celles utilisées en microélectronique, est longue et difficile à mettre en œuvre, en particulier lors de l'étape finale de développement, et nécessite l'utilisation de nombreux solvants, acides et autres produits de traitement.
On sait, par ailleurs, que c'est précisément le rôle des chromophores que d'induire dans un matériau, une variation de l'indice et de l'effet électro-optique.
Les chromophores sont des molécules qui possèdent plusieurs propriétés spécifiques. Elles ont un moment dipolaire qui permet leur orientation dans un champ électrique. Elles possèdent aussi une anisotropie de polarisabilité linéaire importante ; cette propriété peut être assimilée à une biréfringence à l'échelle moléculaire. Les chromophores possèdent, en outre, une hyperpolarisabilité quadratique qui est à la base de l'effet électro-optique.
La famille des chromophores regroupe des molécules très différentes. Cependant, il s'agit, la plupart du temps, - de molécules possédant un groupement accepteur d'électrons et un groupement donneur d'électrons liés par un chemin de conjugaison (orbitales π) permettant la délocalisation des électrons sur l'ensemble de la molécule. Ces molécules sont appelées « molécules push-pull » .
Une des difficultés de la mise en œuvre de ces molécules est liée à leur tendance à la cristallisation. Dans la phase cristalline, les chromophores ont tendance à s'orienter tête-bêche. Les microcristaux, ainsi formés, ne présentent ni moment dipolaire, ni hyperpolarisabilité quadratique et il est donc impossible de retrouver ces propriétés à l'échelle macroscopique.
La solution utilisée pour éviter ce problème est de disperser les chromophores dans une matrice polymère. La matrice doit être transparente dans la partie du spectre utilisée et doit permettre l'orientation des molécules. Là encore, il existe un grand nombre de matrices possibles allant des polymères aux sol-gels.
L'orientation collective des molécules va induire plusieurs effets dont l'apparition à l'échelle macroscopique d'une biréfringence liée à l'organisation des chromophores, le matériau passant d'une phase isotrope à une phase non centrosymétrique, il y a apparition d'une hyperpolarisabilité quadratique à l'échelle macroscopique et le matériau est alors électro-optique.
Un nouveau problème apparaît alors, celui de la pérennité de l'orientation collective. En orientant les molécules, le matériau a été placé dans un état thermodynamique instable et on a une tendance forte à la désorientation des molécules une fois le champ électrique supprimé. Or, si l'on veut conserver les propriétés optiques recherchées, il est important de pouvoir figer l'orientation moléculaire dans le matériau.
Il existe plusieurs solutions pour conserver " l'orientation des chromophores dans la matrice qui les contient, mais elles ont toutes en commun une augmentation de la viscosité, après la phase de polarisation.
On utilise principalement deux méthodes, la première est d'utiliser une matrice rigide à température ambiante et de la chauffer au-dessus de sa température de transition vitreuse, avant d'appliquer le champ électrique. La viscosité ayant diminué avec l'augmentation de la température, les molécules sont libres de s'orienter. En revenant à la température ambiante, la rigidité du matériau interdit la relaxation rapide de l'orientation des chromophores, on a donc une relaxation lente sur quelques jours.
Une autre méthode consiste à modifier la rigidité de la matrice en modifiant sa nature chimique, après la polarisation. On utilise alors soit une polymérisation, soit une réticulation, c'est-à-dire la formation d'un réseau moléculaire tridimensionnel, soit une gélification. Là réaction chimique peut être spontanée ou induite. Dans ce dernier cas, la réaction est principalement provoquée par une élévation de la température, on a alors affaire à une ther oréticulation, ou encore par une irradiation, par exemple X, voire gamma. L'immobilisation des chromophores peut être renforcée en les faisant intervenir dans la réaction de reticulation. Le chromophore fait alors partie intégrante de la matrice et sa mobilité est fortement réduite.
Le problème essentiel qui se pose alors est la dégradation du chromophore. En effet, les molécules aux propriétés optiques non linéaires sont fragiles et ne supportent pas les hautes températures ou les rayonnements durs.
La réalisation de circuits intégrés optiques demande, en outre, la possibilité d'induire des variations locales de propriétés correspondant aux dessins du circuit optique désiré. La thermoréticulation est ici mal adaptée. L'échauffement, pour être exercé de façon locale, doit être induit par illumination laser importante, susceptible de dégrader le chromophore. De plus, la diffusion de la chaleur interdit une résolution fine.
On aurait pu penser appliquer à la reticulation des matrices organiques, contenant des chromophores, la reticulation par excitation optique ou photoréticulation dans le domaine des UV, telle qu'elle est mise en œuvre dans les domaines des revêtements, vernis et peintures. En effet, la photoréticulation permettrait, elle, d'obtenir la résolution spatiale fine.
Or, du fait que la photoréticulation se fait dans le domaine UV, elle aurait deux inconvénients : une dégradation des chromophores induite par le rayonnement et une faible épaisseur de pénétration des UV empêchant la reticulation sur des épaisseurs de plus de quelques microns. En outre, le document EP-A-0 313 475 décrit un système photopoly érisable accueillant une molécule présentant une non-linéarité optique d'ordre deux. La polymérisation de la matrice hôte est uniforme. La molécule présentant une non-linéarité optique d'ordre deux peut polymériser et donc être accrochée au réseau tridimensionnel, ce qui améliore son blocage dans le milieu. Ce document ne mentionne en aucune façon une augmentation locale de la viscosité et de l'indice de réfraction.
Il existe donc un besoin pour un matériau organique réticulable contenant des chromophores, convenant en particulier pour la fabrication de circuits intégrés optiques, qui ne présente pas les inconvénients des matériaux de l'art antérieur, décrits ci-dessus.
Il existe, en d'autres termes, un besoin pour un matériau organique réticulable, dans lequel les chromophores ne soient ni détériorés, ni, a fortiori, détruits lors du processus de reticulation, dans lequel la reticulation se produise sur une profondeur importante et dans l'ensemble du matériau, qui permette une révolution spatiale fine, et, enfin, qui puisse être préparé par un procédé simple et fiable. Le but de la présente invention est de fournir un matériau organique réticulable contenant des chromophores, qui réponde, entre autres, à ces besoins.
Le but de la présente invention est encore de fournir un matériau organique réticulable, qui ne présente pas les inconvénients, défauts, limitations et désavantages des procédés de l'art antérieur et qui résolve les problèmes de l'art antérieur.
Ce but et d'autres encore sont atteints, conformément à l'invention, par un matériau photoréticulable et microstructurable en totalité ou en partie par la lumière visible, comprenant essentiellement une matrice d'un monomère possédant au moins trois fonctions réticulables, ladite matrice contenant un chromophore et un photosensibilisateur présentant un pic d'absorption dans le domaine visible distinct, séparé, de celui du chromophore, ledit matériau étant susceptible, lors de sa reticulation, de présenter, dans la partie réticulée, une augmentation locale de la viscosité et de l'indice de réfraction. Le matériau, selon l'invention, répond, entre autres, à l'ensemble des besoins indiqués ci-dessus, et ne présente pas les inconvénients des matériaux décrits plus haut.
Le matériau, selon l'invention, est une matrice photoréticulable dans le visible dopée par des chromophores aux propriétés optiques non linéaires.
Le matériau selon l'invention étant un matériau photoréticulable dans le domaine du visible, il n'y aura pas de destruction, ni de dégradation des chromophores sous irradiation. Le matériau selon l'invention assure une reticulation sur une épaisseur importante, dans la totalité du matériau.
Du fait que la reticulation est réalisée par un procédé optique et non thermique, le matériau selon l'invention offre la possibilité d'une résolution spatiale fine. En d'autres termes, le matériau que nous proposons n'est pas une simple matrice hôte. Il est microstructurable par voie photochimique et participe donc directement à la fabrication des éléments souhaités lors de sa reticulation, c'est-à-dire lors de son éclairement par de la lumière visible, la ou les partie(s) réticulée(s) éclairée(s) devient(nent) microstructurée(s) , rigidifiée(s) . Cette microstructuration liée à une augmentation de la viscosité s'accompagne, en outre, d'une augmentation de l'indice de réfraction.
Par « augmentation » , on entend que l'indice de réfraction et/ou la viscosité sont, dans les zones, parties, réticulées, supérieurs à ceux du matériau dans les zones ou parties non réticulées, non éclairées, ou lorsque l'ensemble du matériau est éclairé, réticulé, que l'indice de réfraction et/ou la viscosité sont supérieurs à ceux d'un même matériau non éclairé. Le matériau selon l'invention se distingue fondamentalement de celui décrit dans EP-A-0 313 475, qui ne fait aucunement mention des notions de photoréticulation locale et de variation de l'indice de réfraction, fondamentales dans le matériau de l'invention.
Généralement, l' éclairement et donc la reticulation sont des éclairements et donc des réticulations sélectifs, partiels, ne concernant que certaines zones, ou parties définies du matériau, et l'augmentation de l'indice de réfraction et de la viscosité sont donc des augmentations locales, partielles, ne concernant que certaines zones du matériau.
Avantageusement, les fonctions réticulables sont choisies parmi les fonctions acrylate, et les fonctions époxy.
Le monomère est choisi avantageusement parmi le tétraacrylate de pentaérythritol, le triacrylate de pentaérythritol (PETIA), et le tris(2-hydroxyéthyl) isocyanurate triacrylate (et d'autres encore...).
Le chromophore est choisi avantageusement parmi le 5 OCB, le MMONS, le MOCC, et autres, tels que les chromophores à hyperpolarisabilité quadratique non nulle. Le photosensibilisateur est choisi avantageusement parmi l'éosine Y et le bleu de méthylène et d'autres.
Le matériau, selon l'invention, peut, en outre, comprendre, dans certains cas, un co-amorceur, tel que la méthyl-diéthanolamine.
Avantageusement, dans le matériau selon l'invention, tous les chromophores ou une partie de ceux-ci est(sont) aligné (e) (s) , par exemple, par application d'un champ électrique. L'invention concerne, en outre, un matériau réticulé, microstructuré en totalité ou en partie, susceptible d'être obtenu par photoréticulation, en totalité ou en partie, par la lumière visible du matériau photoréticulable défini plus haut, ledit matériau présentant dans la partie réticulée un augmentation locale de la viscosité et de l'indice de réfraction.
L'utilisation, selon l'invention, d'un photosensibilisateur adapté pour réaliser la reticulation et bloquer ainsi l'orientation des chromophores confère définitivement au matériau les propriétés voulues. En outre, ce matériau peut présenter de fort dopages en chromophores. Ceux-ci étant, de préférence, orientés en totalité ou en partie (dans l'ensemble du matériau ou seulement dans certaines zones choisies de celui-ci).
L'invention a encore trait à un circuit intégré optique comprenant ce matériau réticulé ; ce circuit intégré optique étant choisi parmi les modulateurs d'amplitude, de phase, ou d'autres dispositifs.
L'invention concerne aussi un procédé de préparation d'un circuit intégré optique, comprenant les étapes successives suivantes : - mettre le matériau photoréticulable, tel que décrit ci-dessus, dans lequel les chromophores ne sont pas alignés, sous la forme d'une couche ;
- réaliser l'alignement des chromophores par application d'un champ électrique ; - maintenir le champ électrique et éclairer la couche par la lumière visible, au travers d'un masque ou d'une figure d'interférences ne permettant l'éclairement sur la couche que des zones correspondant au motif du circuit optique désiré ; - supprimer le champ électrique ; éclairer l'ensemble de la couche, moyennant quoi les chromophores ne sont alignés que dans les zones correspondant au motif du circuit intégré optique ; - déposer l'électrode aux endroits voulus.
Grâce au procédé de l'invention, on remarque que la gravure du circuit peut être menée à bien en laissant l'échantillon en place et qu'il n'y a pas de traitement à posteriori. Le procédé est très simple et demande une manutention très réduite. La technique permet, en outre, de faciliter la connexion optique du circuit.
Avantageusement, on peut, au cours de la première étape, noyer une fibre optique dans le matériau et commencer le circuit à partir de la fibre.
Le procédé, selon l'invention, permet de limiter les pertes d'insertions, problème important dans le cadre des circuits intégrés optiques.
D'autres détails et avantages de la présente invention apparaîtront mieux à la lecture de la description qui va suivre, donnée à titre illustratif et non limitatif, et faite en référence aux dessins joints, dans lesquels :
- la figure 1 est un schéma de principe d'un exemple de CIO, qui est un gyroscope optique utilisant un double modulateur de phase intégré ;
- la figure 2 est un graphique qui montre l'absorption de chacun des constituants du matériau photoréticulable selon l'invention ; en ordonnée, est portée l'absorption A (unités arbitraires) et en o abscisse la longueur d'onde λ (en A) ;
- les figures 3A, 3B, 3C, 3D constituent un schéma de principe qui illustre les différentes étapes de réalisation d'un modulateur d'amplitude selon 1 ' invention.
De manière détaillée, le . matériau photoréticulable par la lumière visible, selon l'invention, comprend essentiellement une matrice d'un monomère possédant au moins trois fonctions réticulables.
Par comprend essentiellement, on entend que ladite matrice représente généralement plus de 50 % en poids et de préférence de 30 à 90 % en poids du matériau selon l'invention.
Par matrice d'un monomère, on entend que le monomère est sous la forme d'une structure homogène, dans laquelle les autres éléments, à savoir le chromophore et le photosensibilisateur sont répartis, de préférence uniformément, de manière homogène.
La matrice photoréticulable est composée de monomères, encore appelés « précurseurs », présentant au moins trois fonctions réticulables.
Lors de la réaction de reticulation que subit le matériau selon l'invention, les fonctions réticulables sont brisées au profit d'une liaison entre deux molécules. On forme ainsi un réseau tridimensionnel réticulé dont la viscosité est considérablement plus importante que celle du précurseur : à titre d'exemple, cette viscosité peut passer de 500 cps à 1013 ps. L'utilisation de précurseurs n'ayant que deux fonctions réticulables conduit non pas à un réseau tridimensionnel, conformément à l'invention, mais à un polymère, ce qui est nettement moins intéressant.
Les fonctions réticulables peuvent être choisies parmi toutes les fonctions réticulables connues. Des exemples de telles fonctions réticulables sont la fonction acrylate, la fonction époxy. Des exemples de précurseurs, monomères, réticulables, photopolymérisables sont donc le triacrylate de pentaérythritol (II) et le tétraacrylate de pentaérythritol (I) dont les formules sont données ci-après :
Figure imgf000015_0001
Figure imgf000015_0002
ou encore le tris(2-hydroxyéthyl) isocyanurate triacrylate (et d'autres encore).
Selon l'invention, l'amorce de la réaction par la lumière ne se fait pas directement par action sur la fonction réticulable avec création de radicaux libres sous UV - avec tous les effets néfastes que cela peut avoir sur les chromophores, mais aussi sur la matrice - mais par l'intermédiaire d'un composé photosensibilisateur ajouté à la matrice, permettant, de manière avantageuse, conformément à l'invention, une reticulation avec la lumière visible.
De préférence, selon l'invention, on éclaire seulement dans la plage du pic d'absorption du photosensibilisateur, c'est-à-dire seulement sur le pic du photosensibilisateur, de manière très précise, par exemple avec un laser.
Le choix du photosensiblisateur est conditionné par le fait que, selon l'invention, on souhaite induire la reticulation, la photopolymérisation, dans une fenêtre du spectre bien défini correspondant à la plage de longueurs d'ondes de la lumière visible.
La concentration en photosensibilisateur est faible, généralement de un à quelques centièmes en poids, jusqu'à 1 à quelques millièmes en poids.
La concentration en photosensibilisateur permet de contrôler la transparence du précurseur-monomère.
On peut ainsi travailler - au contraire de l'art antérieur - sur des épaisseurs importantes, pouvant aller jusqu'à quelques centaines de microns, par exemple 400 μm, pour des dosages modérés.
Selon l'invention, le composé photosensibilisateur présente un pic d'absorption dans le domaine de la lumière visible, ce pic d'absorption étant, en outre, distinct, séparé de celui du chromophore.
La figure 2 illustre cette situation en montrant la contribution à l'absorption de chaque composant du matériau selon l'invention.
Le chromophore (C) absorbe, en général, principalement dans le visible, et le couple chromophore photosensibilisateur (S) est, en outre, adapté afin qu'il n'y ait pas recouvrement des deux pièces d'absorption. Le pic d'absorption du photosensibilisateur (S) va donc se situer également dans le visible, mais, par exemple, à une longueur d'onde plus élevée que celui du chromophore.
Sur la figure 2, on a également représenté le pic d'absorption du monomère (M) ou précurseur qui se situe plutôt dans l'UV.
On note qu'il existe un recouvrement entre le pic d'absorption du monomère (M) et celui du chromophore (C) ; ce recouvrement serait gênant si on opérait une photoréticulation directe du monomère par irradiation aux UV, puisque l'on détériorerait alors le chromophore, extrêmement sensible aux UV.
Du fait que, selon l'invention, la photoréticulation est réalisée avec de la lumière visible dans la plage étroite correspondant au pic d'absorption du photosensibilisateur (voir flèche), éloigné, distinct du pic du chromophore, celui-ci ne subit aucune détérioration.
En outre, le chromophore (C) est présent à une forte concentration, qui peut aller généralement de 1 % à 50 % en poids. De ce fait, son absorption masquerait celle du photosensibilisateur, si, selon l'invention, les pics d'absorption respectifs du photosensibilisateur (S) et du chromophore (C) n'étaient pas distincts, séparés. Ces conditions étant remplies, l'homme du métier pourra déterminer quelles sont les associations chromophore/photosensibilisateur adéquates .
Des exemples de chromophores ou molécules dopantes possédant des propriétés optiques non linéaires, sont le 5 OCB (III), le MMONS (IV) et le
MOCC(V) dont les formules sont données ci-après :
Figure imgf000018_0001
Figure imgf000018_0002
Figure imgf000019_0001
Des exemples de photosensibilisateurs, c'est-à-dire de colorants, servant à induire une photoréticulation dans le visible, sont l'éosine Y (VI) et le bleu de méthylène (VII), dont le formules sont données ci-après :
Figure imgf000019_0002
Figure imgf000020_0001
Un matériau, particulièrement préféré selon l'invention, comprend une matrice de monomère PETIA, un chromophore MOCC, à raison de 10 à 20 % en poids et un photosensibilisateur (éosine), à raison de 0,1 à
0,001 % en poids.
Le matériau, dans ce cas, contient, en outre, un co-amorceur, tel que la méthyl-diéthanol aminé, à raison généralement de 1 à 10 % en poids.
Le matériau, selon l'invention, peut être préparé par simple mélange de monomère précurseur, du photosensibilisateur et du chromophore.
La réalisation d'un circuit intégré optique (« CIO »), à l'aide du matériau photoréticulable selon l'invention, comprend plusieurs étapes.
Ces étapes sont illustrées sur la figure 3, qui montre la réalisation à titre d'exemple d'un modulateur d'amplitude. II est bien évident que d'autres circuits intégrés optiques (« CIO ») peuvent être préparés de manière analogue, avec éventuellement de légères adaptations. Tout d'abord (figure 3A) , le mélange monomère-précurseur, photosensibilisateur et chromophore est mis sous la forme d'une couche (31) d'épaisseur voulue, par exemple de 100 à 200 μm. Dans cette couche, les chromophores (32) dopant le précurseur sont orientés, de manière aléatoire, ils ne sont pas alignés.
Dans une deuxième étape, on polarise la couche, c'est-à-dire que l'on applique un champ électrique (E) (polarisation coronna) de façon à réaliser l'alignement des chromophores, c'est-à-dire à tous les orienter dans la même direction (figure 3B). Le champ électrique est généralement perpendiculaire au plan principal de la couche (31). Le champ électrique étant maintenu, on réalise une première photoréticulation, en éclairant avec de la lumière visible (33) (longueur d'onde adaptée) la couche (31), au travers d'un masque (34) (on peut aussi utiliser une figure d'interférences) pourvu d'un motif (35) correspondant au motif, au tracé du circuit optique que l'on souhaite obtenir sur la couche, c'est-à-dire que le masque (34) ne permet l'éclairement sur la couche que des zones correspondant au motif, au tracé optique que l'on souhaite obtenir. Cette deuxième étape du procédé, qui est en fait une première opération de reticulation suivant le tracé du circuit optique désiré, a notamment trois conséquences : il y a une densification de la matrice, accompagnée d'une augmentation de l'indice de réfraction, et il y a une immobilisation du chromophore, et donc, de ce fait, une induction d'une biréfringence et de propriétés électro-optiques permanentes. En d'autres termes, cette étape permet d'induire une rigidification sélective de la matrice, ceci sur des échelles comprises entre 0,2 et 20 mm. Elle correspond à un blocage de la molécule présentant une non-linéarité optique d'ordre deux, uniquement dans les zones éclairées. Cette structuration s'accompagne de plus d'une augmentation locale de l'indice de réfraction. L'irradiation complète du système intervient en phase finale décrite plus loin, les molécules présentant une non-linéarité optique d'ordre deux, dans les zones non rigidifiées au cours de la deuxième étape pouvant ou non être orientées dans une direction différentes de celle initialement appliquée. Dans la troisième étape du procédé, on coupe le champ de polarisation, autrement dit, on supprime le champ électrique. L'orientation des chromophores dans les régions non réticulées, non éclairées (protégées par le masque) au cours de l'étape précédente, c'est-à-dire dans les régions (36) en dehors du motif, du tracé du circuit optique, que l'on souhaite obtenir, relaxe alors (37).
On éclaire uniformément, avec de la lumière visible (33) (figure 3C), l'ensemble de la couche et on fige ainsi les orientations. Les chromophores ne sont alignés, n'ont une orientation privilégiée que dans la région (38) correspondant au dessin du motif du masque de la figure 3B, au travers de laquelle pouvait passer la lumière. On obtient ainsi un contraste de propriétés optiques entre les régions où l'orientation a été bloquée et celles où elle a été relaxée. Ce contraste constitue le circuit optique. Autrement dit, cela induit un saut d'indice assurant les conditions de guidage.
L'orientation fixée, l'alignement des chromophores dans une direction qui est perpendiculaire au plan la couche confère au matériau des propriétés électro-optiques. Pour , utiliser l'effet électro-optique, il faut encore déposer les électrodes (39, 40) nécessaires à l'application d'un champ électrique aux endroits voulus (figure 3D). Le dépôt d'électrodes permet, en effet, d'appliquer un champ électrique qui module l'indice de réfraction du guide. Sur la figure 3D, on obtient ainsi un modulateur d'amplitude.

Claims

REVENDICATIONS
1. Matériau photoréticulable et microstructurable en totalité ou en partie par la lumière visible, comprenant essentiellement une matrice d'un monomère possédant au moins trois fonctions réticulables, ladite matrice contenant un chromophore et un photosensibilisateur présentant un pic d'absorption dans le domaine visible distinct, séparé, de celui du chromophore, ledit matériau étant susceptible, lors de sa reticulation, de présenter, dans la partie réticulée, une augmentation locale de la viscosité et de l'indice de réfraction.
2. Matériau selon la revendication 1 , dans lequel lesdites fonctions réticulables sont choisies parmi les fonctions acrylate, et les- fonctions époxy.
3. Matériau selon la revendication 2 , dans lequel ledit monomère est choisi parmi le tétraacrylate de pentaérythritol, le triacrylate de pentaérythritol (PETIA) et le tris(2-hydroxyéthyl) isocyanurate triacrylate.
4. Matériau selon la revendication 1, dans lequel ledit chromophore est choisi parmi le 5 OCB, le MMONS, le MOCC et les chromophores à hyperpolarisibilité quadratique non nulle.
5. Matériau selon la revendication 1, dans lequel ledit photosensibilisateur est choisi parmi l'éosine Y et le bleu de méthylène.
6. Matériau selon la revendication 1, comprenant, en outre, un co-amorceur.
7. Matériau selon la revendication 1, dans lequel tous les chromophores ou une partie de ceux-ci (est) sont aligné(e) (s) , par exemple, par application d'un champ électrique.
8. Matériau réticulé, microstructuré en totalité ou en partie, susceptible d'être obtenu par photoréticulation, en totalité ou en partie, par la lumière visible du matériau photoréticulable selon l'une quelconque des revendications 1 à 7, ledit matériau présentant dans la partie réticulée un augmentation locale de la viscosité et de l'indice de réfraction.
9. Matériau selon la revendication 8, dans lequel ladite photoréticulation est réalisée en éclairant seulement sur le pic d'absorption du photosensibilisateur.
10. Circuit intégré optique comprenant le matériau réticulé selon la revendication 8 ou la revendication 9.
11. Procédé de préparation d'un circuit intégré optique, comprenant les étapes successives suivantes :
- mettre le matériau photoréticulable selon l'une quelconque des revendications 1 à 6, dans lequel les chromophores ne sont pas alignés, sous la forme d'une couche ;
- réaliser l'alignement des chromophores par application d'un champ électrique ;
- maintenir le champ électrique et éclairer la couche par la lumière visible, au travers d'un masque ou d'une figure d'interférences ne permettant 1'éclairement sur la couche que des zones correspondant au motif du circuit optique désiré ;
- supprimer le champ électrique ;
- éclairer l'ensemble de la couche, moyennant quoi les chromophores ne sont alignés que dans les zones correspondant au motif du circuit intégré optique ;
- déposer l'électrode aux endroits voulus.
12. Procédé selon la revendication 11, dans lequel au cours de la première étape, on noie une fibre optique dans le matériau.
13. Procédé selon la revendication 11, dans lequel le circuit intégré optique est un modulateur d'amplitude, ou un modulateur de phase.
PCT/FR2001/003640 2000-11-21 2001-11-20 Materiau photoreticulable contenant un chromophore materiau reticule circuit integre optique comprenant ce materiau et son procede de preparation WO2002042339A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002220802A AU2002220802A1 (en) 2000-11-21 2001-11-20 Crosslinkable material containing a chromophore, crosslinked material, optical integrated circuit comprising said material and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/15008 2000-11-21
FR0015008A FR2817049A1 (fr) 2000-11-21 2000-11-21 Materiau photoreticulable contenant un chromophore, materiau reticule, circuit integre optique comprenant ce materiau, et son procede de preparation

Publications (1)

Publication Number Publication Date
WO2002042339A1 true WO2002042339A1 (fr) 2002-05-30

Family

ID=8856706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/003640 WO2002042339A1 (fr) 2000-11-21 2001-11-20 Materiau photoreticulable contenant un chromophore materiau reticule circuit integre optique comprenant ce materiau et son procede de preparation

Country Status (3)

Country Link
AU (1) AU2002220802A1 (fr)
FR (1) FR2817049A1 (fr)
WO (1) WO2002042339A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871582B1 (fr) * 2004-06-11 2006-08-25 Univ Louis Pasteur Etablisseme Procede de fabrication d'un bloc optique a circuit optique integre par photopolymerisation localisee d'une matrice organique par absorption a deux photons et bloc optique ainsi obtenu

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0097012A1 (fr) * 1982-06-10 1983-12-28 Jotun Polymer (UK) LTD. Résines photodurcissables et leur utilisation
EP0237233A2 (fr) * 1986-02-28 1987-09-16 Minnesota Mining And Manufacturing Company Adhésif photopolymérisable pour émail dentaire en une seule phase
US4743531A (en) * 1986-11-21 1988-05-10 Eastman Kodak Company Dye sensitized photographic imaging system
EP0313475A2 (fr) * 1987-09-28 1989-04-26 EASTMAN KODAK COMPANY (a New Jersey corporation) Article d'optique contenant un milieu de transmission ayant un degré élevé de susceptibilité de polarisation de second ordre
US4997745A (en) * 1988-08-11 1991-03-05 Fuji Photo Film Co., Ltd. Photosensitive composition and photopolymerizable composition employing the same
EP0625724A1 (fr) * 1993-05-21 1994-11-23 BASF Aktiengesellschaft Procédé de polarisation et orientation de matériaux organiques contenant des chromophores optiquement nonlinéaires, et leur utilisation
JPH06332173A (ja) * 1993-05-21 1994-12-02 Toyobo Co Ltd 光重合性組成物
JPH08217813A (ja) * 1995-02-17 1996-08-27 Toyo Ink Mfg Co Ltd 光開始剤組成物、光重合性組成物および光重合方法
US5635576A (en) * 1994-09-16 1997-06-03 France Telecom Crosslinkable material which may be used in opto-electronics, process for producing this material, and monomer allowing this material to be obtained
US5667930A (en) * 1995-08-31 1997-09-16 Cheil Synthetics Incorporation Photoresist composition containing 4,6-(bis)chloromethyl-5-triazine initiator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0097012A1 (fr) * 1982-06-10 1983-12-28 Jotun Polymer (UK) LTD. Résines photodurcissables et leur utilisation
EP0237233A2 (fr) * 1986-02-28 1987-09-16 Minnesota Mining And Manufacturing Company Adhésif photopolymérisable pour émail dentaire en une seule phase
US4743531A (en) * 1986-11-21 1988-05-10 Eastman Kodak Company Dye sensitized photographic imaging system
EP0313475A2 (fr) * 1987-09-28 1989-04-26 EASTMAN KODAK COMPANY (a New Jersey corporation) Article d'optique contenant un milieu de transmission ayant un degré élevé de susceptibilité de polarisation de second ordre
US4997745A (en) * 1988-08-11 1991-03-05 Fuji Photo Film Co., Ltd. Photosensitive composition and photopolymerizable composition employing the same
EP0625724A1 (fr) * 1993-05-21 1994-11-23 BASF Aktiengesellschaft Procédé de polarisation et orientation de matériaux organiques contenant des chromophores optiquement nonlinéaires, et leur utilisation
JPH06332173A (ja) * 1993-05-21 1994-12-02 Toyobo Co Ltd 光重合性組成物
US5635576A (en) * 1994-09-16 1997-06-03 France Telecom Crosslinkable material which may be used in opto-electronics, process for producing this material, and monomer allowing this material to be obtained
JPH08217813A (ja) * 1995-02-17 1996-08-27 Toyo Ink Mfg Co Ltd 光開始剤組成物、光重合性組成物および光重合方法
US5667930A (en) * 1995-08-31 1997-09-16 Cheil Synthetics Incorporation Photoresist composition containing 4,6-(bis)chloromethyl-5-triazine initiator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 03 28 April 1995 (1995-04-28) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 12 26 December 1996 (1996-12-26) *

Also Published As

Publication number Publication date
FR2817049A1 (fr) 2002-05-24
AU2002220802A1 (en) 2002-06-03

Similar Documents

Publication Publication Date Title
Shi et al. Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side groups
US5142605A (en) Integrated optic components
US5447662A (en) Optically non-linear polymeric coatings
FR2743429A1 (fr) Procede pour controler la direction de l'angle de pre-orientation dans une cellule a cristaux liquides
Ritacco et al. Tuning cholesteric selective reflection in situ upon two‐photon polymerization enables structural multicolor 4D microfabrication
JP2008523453A (ja) 有孔性ホログラフィック膜
Ali et al. A thin‐film flexible defect‐mode laser
Shi et al. Double-end crosslinked electro-optic polymer modulators with high optical power handling capability
WO2002042339A1 (fr) Materiau photoreticulable contenant un chromophore materiau reticule circuit integre optique comprenant ce materiau et son procede de preparation
WO2006003313A1 (fr) Procede de fabrication d’un bloc optique a circuit optique integre par photopolymerisation localisee d’une matrice organique par absorption a deux photons et bloc optique ainsi obtenu
Giacon et al. Fabrication and characterization of polymeric optical by plasma fluorination process
Trainer et al. Optimization of an acrylamide-based photopolymer system for holographic inscription of surface patterns with sub-micron resolution
EP0442796A1 (fr) Composant optique pour applications en optique intégrée
JPH0566435A (ja) 非線形光学素子の作製方法
Tian et al. Polymer/silica hybrid waveguide Bragg grating fabricated by UV-photobleaching
Casalboni et al. Bragg grating optical filters by UV nanoimprinting
KR101969951B1 (ko) 광반응 재료 막 및 그 제조 방법
FR2843205A1 (fr) Solution sol-gels photoreticulables dans le spectre du visible, et leurs utilisations
Mochizuki et al. Simple fabrication of optical transportation media using a vacuum transportation technique
EP1922385A1 (fr) Procédé d'élaboration d'un matériau à cristaux liquides réfléchissant plus de 50% d'une lumière incidente non polarisée
Ho et al. Electro‐optic phenomena in gelatin‐based poled polymer
FR2780520A1 (fr) Modulateur d'intensite optique et son procede de fabrication
CN1752776A (zh) 一种反射式圆偏振光偏振片的制备方法
FR2769724A1 (fr) Dispositif optique non-lineaire de traitement d'un signal optique, comprenant un interferometre a bras multiples
JPH0675255A (ja) 有機機能性光導波路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP