WO2002025138A1 - Vibration isolator - Google Patents

Vibration isolator Download PDF

Info

Publication number
WO2002025138A1
WO2002025138A1 PCT/JP2001/007621 JP0107621W WO0225138A1 WO 2002025138 A1 WO2002025138 A1 WO 2002025138A1 JP 0107621 W JP0107621 W JP 0107621W WO 0225138 A1 WO0225138 A1 WO 0225138A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
cross
rubber elastic
outer cylinder
elastic body
Prior art date
Application number
PCT/JP2001/007621
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshio Ihara
Masashi Takaoka
Hironori Kato
Original Assignee
Toyo Tire & Rubber Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire & Rubber Co., Ltd. filed Critical Toyo Tire & Rubber Co., Ltd.
Priority to JP2002528706A priority Critical patent/JP3661060B2/en
Publication of WO2002025138A1 publication Critical patent/WO2002025138A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/387Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions
    • F16F1/3873Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type comprising means for modifying the rigidity in particular directions having holes or openings

Definitions

  • the present invention relates to an anti-vibration device mainly used as an engine mount, a suspension bush or the like of an automobile.
  • a device in which an inner cylinder and an outer cylinder are connected by a rubber elastic body interposed between the two brackets has been known.
  • the inner cylinder is attached to one of the support members having a substantially U-shape via a shaft member to be fitted into the inner cylinder, and the outer cylinder is attached to the other support member such as a bracket. Pressed and fixed.
  • These support members are provided on a vibration source such as an engine and a support side such as a vehicle body, respectively.
  • FIG. 21 shows a conventional example of such a vibration isolator.
  • the rubber elastic body 103 interposed between the inner cylinder fitting 101 and the outer cylinder fitting 102 has hollow portions 10 above and below the inner cylinder fitting 101, respectively. 4, 105, and the lower cavity portion 105 has an upper portion 106 protruding upward.
  • the convex portion 106 is abutted against the ceiling surface 151 of the lower hollow portion 105 in a state of receiving a load while supporting an engine or the like. Therefore, the rubber elastic body 103 supports the inner cylinder fitting 101 from both the left and right sides when the axial direction is the front-rear direction. Supports the bracket 101. That is, the convex portion 106 shares a certain load.
  • the inner cylinder fitting 101 is disposed substantially at the center of the cross-sectional shape of the outer cylinder fitting 102.
  • the outer cylinder 102 has a substantially elliptical or oval cross section, and its major axis is oriented in the horizontal direction (Y direction).
  • Y direction the horizontal direction
  • the outer cylinder fitting 102 when used with the axial direction of the cylindrical vibration isolator set to the front and rear directions (X direction) with respect to the vehicle, a substantially elliptical cross section that is long in the left-right direction (Y direction). Having. This is because the inner cylinder fitting 101 needs to be supported by a sufficient amount of rubber elastic material from the left and right, and the stability of the vibration-proofing properties and the like.
  • the above-mentioned vibration isolator is usually designed such that the convex portion comes into contact with the ceiling surface of the lower cavity portion at the time of a basic load in which the engine is supported and stood still from the vehicle body.
  • the dynamic spring constant in the vertical direction (Z direction) tends to be high. If the dynamic panel constant becomes too high, problems such as insufficient vibration isolation characteristics for relatively small amplitude vibrations will occur.
  • the width of the convex portion 106 (dimension in the Y direction in Fig. 12) is entirely reduced in order to reduce the dynamic panel constant appropriately, the dynamic panel in the vertical direction (Z direction) of the entire vibration isolator
  • the contribution ratio (sharing ratio) of the convex portion 106 in the constant changes.
  • the position of the inner cylinder fitting 101 at the time of the basic load that is, the position for supporting the engine changes.
  • the panel force when the convex portion 106 acts as a stopper panel for restricting large deformation is reduced, the stroke when receiving vibration becomes excessive.
  • the deflection value corresponding to the load at a given vibration peak shifts to the side of large deformation when viewed from the load-deflection curve.
  • the present invention has been made in view of the above-mentioned problems, and has an inner cylindrical member and an outer cylindrical member.
  • the rubber elastic body is an anti-vibration mount having cavities above and below the inner cylindrical metal fitting, and projects downward into the lower cavity part under load.
  • a device provided with a convex portion with which a ceiling surface of a hollow portion abuts, and capable of appropriately reducing a dynamic panel constant in a vertical direction without deteriorating durability.
  • An anti-vibration device is characterized in that an inner cylinder and an outer cylinder arranged to surround the outer cylinder are connected by a rubber elastic body interposed between the inner and outer brackets.
  • the rubber elastic body has an upper cavity portion and a lower cavity portion above and below the inner cylinder, and protrudes from the side of the outer cylinder toward the upper inner cylinder in the lower cavity.
  • a vibration isolator wherein a convex portion is provided, and a ceiling surface of the lower cavity portion abuts on a distal end surface of the convex portion under a load of a predetermined value or more, wherein a small cavity is provided in the convex portion. It is characterized by.
  • the convex portion is more likely to be elastically deformed than a convex portion having no small cavity in a certain amplitude range due to the existence of the small cavity, thereby reducing the vertical dynamic panel constant.
  • the small cavity is crushed and the wall is brought into close contact with each other, so that the spring force of the stopper spring for regulating large deformation is increased, and a good stopper action is achieved. Therefore, the dynamic panel constant in the vertical direction can be reduced without lowering the durability, and good and sufficient anti-vibration characteristics can be maintained even when the vibration has a small amplitude.
  • the outer cylinder has an approximately elliptical cross section that is long horizontally, and the inner cylinder is eccentrically arranged upward with respect to the outer cylinder in a no-load state, and the rubber elasticity is provided. It is preferable that the body supports the inner cylinder from both left and right sides in the cross section of the outer cylinder. Accordingly, when the axial direction of the vibration isolator is the front-back direction, the inner cylinder fitting is supported by a sufficient amount of rubber elastic body from the left and right by having a substantially elliptical cross section that is long in the left-right direction. Characteristics become stable.
  • the small cavity in the projection may be a through hole in the axial direction or a non-through hole in the axial direction. Also, a plurality of small cavities can be provided in the projection.
  • the rigidity of the convex portion can be appropriately set according to the diameter, shape, number and the like of these holes.
  • FIG. 1 is a cross-sectional view (cross-sectional view taken along line C--C1 in FIG. 3) of the cylindrical anti-vibration mount 10 of the first embodiment cut along the axial center at a no-load state.
  • FIG. 2 is a cross-sectional view (a cross-sectional view taken along line Bl-B1 in FIG. 1) of the anti-vibration mount 10 of Example 1 so as to be equally divided into left and right when viewed from the axial direction. In particular, it shows a state where it is attached to the support member from above and below.
  • FIG. 3 is a cross-sectional view of the anti-vibration mount 10 according to the first embodiment cut along the left and right sides of the small cavity 61 in the convex portion 6 (cross-sectional view taken along the line A1-A1 in FIG. 1). ).
  • FIG. 4 is a front view (as viewed from the left side in FIGS. 2 and 3) of the anti-vibration mount 10 of the first embodiment when pressed into the support member 30.
  • FIG. 5 is a cross-sectional view corresponding to FIG. 1 showing a state under a standard load with respect to the vibration isolating mount 10 of the first embodiment.
  • FIG. 6 is a cross-sectional view corresponding to FIG. 1 of the anti-vibration mount of the second embodiment.
  • FIG. 7 is a cross-sectional view corresponding to FIG. 2 of the anti-vibration mount of the second embodiment.
  • FIG. 8 is a sectional view corresponding to FIG. 3 of the anti-vibration mount of the third embodiment. is there.
  • FIG. 9 is a cross-sectional view corresponding to FIG. 1 of the anti-vibration mount of the fourth embodiment.
  • FIG. 10 is a sectional view corresponding to FIG. 1 of the anti-vibration mount of the fifth embodiment.
  • FIG. 11 is a cross-sectional view corresponding to FIG. 1 of the anti-vibration mount of the sixth embodiment.
  • FIG. 12 is a cross-sectional view of the circular anti-vibration mount 10 according to the seventh embodiment, which is cut at the center in the axial direction. Shows the state without load.
  • FIG. 13 is a cross-sectional view of the vibration isolator in which small cavities are provided on both sides of the rubber elastic body, taken along line A2-A2 in FIG. 14 in a no-load state.
  • FIG. 14 is a cross-sectional view taken along the line B2-B2 in the previous figure.
  • FIG. 15 is a cross-sectional view taken along line C2-C2 in FIG.
  • FIG. 16 is a sectional view taken along the same line as FIG. 3 showing another embodiment.
  • FIG. 17 is a partial cross-sectional view showing another example of the small cavity.
  • FIG. 18 is a partial cross-sectional view showing still another example of the small cavity.
  • FIG. 19 is a partial cross-sectional view showing still another example of the small cavity.
  • FIG. 20 is a cross-sectional view showing another embodiment of the vibration isolator in which the outer metal fitting is substantially elliptical.
  • Fig. 21 is a cross-sectional view corresponding to Fig. 1 of the conventional anti-vibration mount.
  • the anti-vibration device is an anti-vibration mount for an engine that supports an engine by suspending the engine from a support member on a vehicle body side of an automobile.
  • Figure 1 shows a cylindrical protection
  • FIG. 4 is a cross-sectional view (a cross-sectional view taken along line C 1 -C 1 in FIG. 3) of the vibration mount 10 cut at a central portion in the axial direction.
  • Fig. 2 is a cross-sectional view of the anti-vibration mount 10 that is cut equally to the left and right when viewed from the axial direction (a cross-sectional view taken along the line B1-B1 in Fig. 1). It is sectional drawing cut
  • FIG. 2 particularly shows the anti-vibration mount 10 mounted on the support members 30 and 40 from above and below.
  • Fig. 3 is a cross-sectional view similar to Fig. 2 (a cross-sectional view taken along the line A1-A1 in Fig. 1) when cut slightly off the left and right symmetry lines
  • Fig. 4 is a cross-sectional view of Figs. 5 is a front view of the anti-vibration mount 10 viewed from the left side of FIG.
  • FIG. 5 is a cross-sectional view similar to FIG. 1 showing a deformed state under a standard load.
  • the anti-vibration mount 10 is composed of an inner cylinder 1 having a relatively thick cylindrical shape and an outer cylinder 2 arranged so as to surround the outer cylinder 1. And are connected by a rubber elastic body 3.
  • the rubber elastic body 3 is integrally formed by rubber vulcanization molding and is adhered to the inner cylinder 1 and the outer cylinder 2.
  • the outer surface of the inner cylindrical member 1 has a rectangular shape slightly longer in the transverse direction near the axial center of the anti-vibration mount 10 in a cross section perpendicular to the axial direction, but has a circular shape in other places. That is, the inner cylinder 1 has a “bulge” that protrudes outward in a square shape near the center in the axial direction. Meanwhile, the inner tube fitting
  • the inner surface of 1 is a cylinder having a uniform diameter as a whole so as to receive the cylindrical shaft member 41.
  • the columnar shaft member 41 is supported from the upper vehicle body side by a U-shaped support member 40 having a cross section that is inclined sideways.
  • the outer tube 2 has a slightly smaller axial (X direction) dimension than the inner tube 1 as shown in Figs. 2-3, and as shown in Fig. 1, the cross section perpendicular to the axial direction (Y direction) as the major axis. are doing.
  • the outer cylinder fitting 2 is press-fitted into a horizontal mounting hole provided in the lower support member 30.
  • the lower support member 30 suspends the engine when the anti-vibration mount 10 is used.
  • the anti-vibration mount 10 When the anti-vibration mount 10 is not loaded, that is, when no load is applied between the inner cylinder 1 and the outer cylinder 2, as shown in Fig. 1 etc., the inner cylinder 1 is attached to the outer cylinder. It is arranged eccentrically upward with respect to 2.
  • the rubber elastic body 3 that fills the space between the inner cylinder 1 and the outer cylinder 2 has cavities 4 and 5 formed with through holes in the axial direction above and below the inner cylinder 1.
  • both side portions 3 a and 3 b as support arms of the rubber elastic body 3 are in a state of supporting the inner cylindrical member 1 from both left and right sides in a cross section of the outer cylindrical member 2.
  • These cavities 4 and 5 have a bow shape bulging upward in a cross section perpendicular to the axial direction (the cross section in the left-right direction in FIG. 1), and are wide at both ends.
  • the upper cavity 4 extends slightly from the inner surface of the outer tube fitting 2, and the lower cavity 5 has an upper end slightly above the lower surface of the inner tube 1. They are placed apart.
  • the lower surface of the lower cavity 5 protrudes from the side of the outer cylinder 2 toward the upper inner cylinder 1, thereby forming a convex portion 6 as a stopper 1 for restricting downward displacement. It is formed integrally with the elastic body 3.
  • the convex portion 6 has a substantially trapezoidal shape in both the left-right direction (Y direction) cross section and the axial direction (X direction, front-rear direction) cross section. Therefore, the upper end surface 6a of the convex portion 6 forms a horizontal flat surface at the central portion in the axial direction.
  • the upper end surface 6a of the convex portion is separated from the ceiling surface 51 of the lower cavity portion 5 at a slight interval when the load is not applied, by the entire surface being flat and horizontal.
  • the tip end surface of the projection 6, that is, the upper end surface 6 a comes into contact with the ceiling surface 51 of the lower cavity 5.
  • a plurality of grooves 6 b extending in the axial direction are provided on the outer surface of the convex portion 6 and are provided along the symmetry line of the convex portion 6.
  • the upper end surface 6a of the convex portion is not a completely flat surface but has some irregularities. Even if the upper end surface 6a of the convex portion has another uneven shape, for example, a wavy shape as a whole, or the width and depth dimensions of the groove 6b are larger, it will be described later. The effect is almost the same.
  • the small cavity 61 is a cylindrical through-hole having a uniform diameter in the axial direction, as can be seen from the cross-sectional views of FIGS. 1 and 3 (cross-section taken along line A 1 -A 1 in FIG. 1).
  • the dynamic panel constant in the up-down direction (Z direction) of the anti-vibration mount 10 could be easily reduced.
  • the convex portion 6 Due to the existence of the small cavities 61, elastic deformation is more likely to occur up to a certain deformation range compared to the convex portion 6 having no small cavities, which can lower the vertical dynamic panel constant. it can. Moreover, at the time of vibration having a large amplitude, the small cavity 61 is crushed and its wall surface comes into close contact with each other, so that the panel force as a stopper panel for controlling large deformation is increased, and a good stopper effect is achieved. Therefore, without lowering durability, The dynamic panel constant in the direction can be reduced.
  • Kd15 the dynamic panel constant in the vertical direction (Z direction) at 15 Hz
  • the load shared by the protrusions 6 is maintained at 157 ON, which is the same as that of the conventional example, by slightly increasing the width (the dimension in the left-right direction) of the protrusions 6.
  • the shared load of the convex portion 6 can be maintained, even if the dynamic panel constant is reduced, the relative position between the inner cylindrical member 1 and the outer cylindrical member 2 at the time of load is changed, and the stroke due to vibration is reduced. It does not increase. Therefore, even if the dynamic panel constant is reduced, the durability of the anti-vibration mount 10 is not impaired.
  • the load of the convex portion 6 decreased from 1570 N to 1250 N, although the load was reduced from 1570 N to 1250 N.
  • the lowering of the dynamic spring constant in the vertical direction at 5 Hz and 100 Hz was 11% and 10%, respectively.
  • rubber stoppers 7, 8 projecting in the axial direction.
  • the rubber stoppers 7 and 8 each have outer edges 7 a and 8 a which protrude outward in the axial direction and then extend downward, and abutment surfaces 7 b and 8 b against the upper support member 40. 8b.
  • the rubber stopper portions 7 and 8 play a role of preventing interference between metals.
  • the dynamic spring constant in the vertical direction of the anti-vibration mount can be maintained without changing the shared load of the convex portion 6 only by providing the small cavity 61 in the convex portion 6. Can be greatly reduced.
  • the shape, size, number, arrangement, and the like of the small cavities 61 provided in the convex portions 6 can be variously changed according to the required dynamic panel constant, vibration-proof characteristics, and the like.
  • the small cavity 61 in this modified example has a circular cross-sectional shape whose center is located on the line of symmetry with respect to the left-right direction (the line D-D in FIG. 6). The diameter gradually decreases toward.
  • Example 3 shown in FIG. 8 in the same configuration as that of Example, the small cavity 61 in the convex portion 6 is formed by a non-through hole. That is, the structure is such that the two through holes in the embodiment are closed at the axial center.
  • the cross section of the two small cavities 61 as the through holes has a triangular shape with rounded corners.
  • the small cavity 61 provided as a through-hole has a single, long, right and left, flat elliptical cross section.
  • a small cavity 61 is provided as one through hole 61a that is located on the left-right symmetry line and has a substantially elliptical cross section that is long in the vertical direction, and is provided symmetrically below it.
  • two through holes 61b having a circular cross section.
  • the outer metal fitting 2 has a case where the cross section has a substantially oval shape or an oval shape having a horizontally long cross section. As shown in Embodiment 7, the same can be applied to a case where the cross-section of the outer cylinder 2 is circular.
  • the upper elastic portion 4 and the lower concave portion 5 are provided in the rubber elastic body 3 interposed between the outer cylindrical fitting 2 and the inner cylindrical fitting 1, and the lower cavity portion is provided.
  • 5 is provided with a convex portion 6 projecting upward from the side of the outer metal fitting 2 and contacting the ceiling surface 51 of the lower cavity portion 5 under a constant load.
  • the small cavities 61 similar to those in the above-described embodiment are provided in the convex portions 6.
  • the shape, size, number, arrangement, and the like of the small cavities 61 can be variously changed. In this case, the same effect as above can be exerted.
  • the inner cylinder and the outer cylinder are both mounted.
  • the inner cylinder 1 is supported on the left and right sides with respect to the outer cylinder 2 in order to reduce the dynamic panel constant in the horizontal direction perpendicular to the axis.
  • small cavities 3 la,. 3 b are provided on both sides 3 a, 3 b of the rubber elastic body 3.
  • substantially the same components as those in Embodiments 1 to 7 described above are denoted by the same reference numerals. .
  • the basic structure of the vibration isolator of these embodiments is also substantially the same as that of the above-described embodiment, and has the following structure.
  • a relatively thick cylindrical inner cylinder 1 and an outer cylinder 2 surrounding the outer cylinder are formed by a rubber elastic body 3 interposed between the inner and outer cylinders.
  • the rubber elastic body 3 is integrally formed by vulcanization molding and is adhered to the inner cylinder 1 and the outer cylinder 2.
  • the rubber elastic body 3 is provided with cavities 4 and 5 which are vertically opposed to each other with the inner cylindrical fitting 1 therebetween and have a required width in the circumferential direction.
  • the upper and lower cavities 4, 5 are each formed in a cross section perpendicular to the axial direction.
  • the upper and lower cavities 4, 5 are circumferentially wider than the outer diameter of the inner cylindrical fitting 1, and both side portions 3 a, 3 b of the rubber elastic body 3, which are elongated in a direction perpendicular to the axis, between the upper and lower cavities 4, 5 serve as support arms.
  • the inner tube 1 is provided so as to be supported at a substantially central portion with respect to the outer tube 2.
  • the upper cavity 4 is formed slightly wider than the lower cavity 5, and the rubber elastic body 3 has both sides 3 a, 3 b as supporting arms formed of outer cylinder fittings 2. It is bonded to the inner surfaces of the front and rear sides of the front and rear sides slightly downward from the middle in the vertical direction, and has a mountain shape with the center bulging upward.
  • the inner cylindrical member 1 fixed to the central portion of the rubber elastic body 3 is disposed eccentrically upward with respect to the outer cylindrical member 2 in a no-load state, so that a predetermined load such as a power unit is applied. In the loaded state, it is supported substantially coaxially with the outer tube fitting 2 as shown by the chain line in FIG. 13 so as to maintain a predetermined clearance up and down.
  • a convex part 1 for stopper having a predetermined thickness is provided on the side of the outer tube fitting 2 of the upper and lower cavities 4, 5, that is, on the upper surface of the upper cavity 4 and the lower surface of the lower cavity 5, a convex part 1 for stopper having a predetermined thickness is provided.
  • 6 and 17 are integrally formed by vulcanization using the same rubber as the rubber elastic body 3, and when the vertical vibration is input by the amplitude of the inner cylinder 1 being larger than a certain level, the upper and lower surfaces of the inner cylinder 1 are input.
  • the rubber elastic body 3 is provided so as to contact the stopper projections 16 and 17 to restrict the movement.
  • Each of the side portions 3a and 3b of the rubber elastic body 3 has a position slightly inward from the outer cylinder 2 and preferably an intermediate position between the inner cylinder 1 and the outer cylinder 2. Small cavities 18 and 18 are provided near the point.
  • the small cavities 18, 18 are formed of circular holes in the axial direction, and in particular, as shown in FIG. 15, formed of non-through holes in the axial direction formed while leaving the non-penetrated portion 18 a.
  • it may consist of an axial through hole.
  • the position of the unpenetrated portion 18 a is set at a substantially central portion in the axial direction, and is formed at one end in the axial direction or at one end thereof. It can also be formed so as to leave an unpenetrated portion 18a in the vicinity.
  • the diameter, cross-sectional shape, size, depth and number of the small cavities 18 can be variously changed according to the required rigidity and dynamic spring constant in both cases of non-through holes and through holes. It is.
  • small cavities 18 consisting of multiple holes (two holes in the figure) as shown in Fig. 17 can be arranged side by side at required intervals, or a round cross section as shown in Fig. 18
  • the hole may be a substantially triangular hole or a hole having a flat cross section as shown in FIG. 19, and these holes may be arranged in combination. In both the case of the non-through hole and the case of the through hole, it is not necessary to have the same diameter and the same shape inward in the axial direction from the opening end. .
  • the small elastic cavity 18 has no small cavity in both sides 3 a and 3 b as the supporting arms of the rubber elastic body 3. Tuning of rigidity is easily possible. In particular, when the small cavities 18 are non-through holes, the rigidity is set higher than that of the case where the small cavities 18 are non-through holes due to the presence of the non-through holes 18a. By adjusting or changing the hole depth, that is, the wall thickness of the unpenetrated portion 18a, the tuning of the rigidity can be easily performed. As a result, the degree of freedom in design is expanded.
  • the upper cavity 4 and the lower cavity 4 are formed.
  • the side cavity 5 it can be made of a core.
  • a portion corresponding to the small cavity may be hollowed out. In any case, it can be provided by a simple work process O
  • the inner cylinder 1 is attached to one of the support members on the power unit side and the vehicle body side via a shaft member inserted therein, and the outer cylinder 2 is Press-fit into the mounting hole of the other support member, such as a bracket, or the like, and fix it.
  • the axial direction (X direction) is set to the left and right direction with respect to the vehicle, and the power unit is used so as to regulate the vibration in the longitudinal direction.
  • the small cavities 8 are crushed by providing the axial small cavities 8 on both sides 3 a and 3 b as the support arms of the rubber elastic body 3.
  • the panel in the left and right direction becomes softer against vibrations below a certain amplitude up to the shape of the upper and lower cavities 4 and 5 without changing the outer shape of the side portions 3a and 3b, and the dynamic panel constant in the vertical direction
  • the dynamic spring constant in the front-rear direction which is the horizontal direction perpendicular to the axis, can be reduced without greatly affecting the vibration isolation characteristics, and the vibration isolation characteristics in the front-rear direction can be improved.
  • the small cavity 8 is provided at a position distant from the outer cylinder 2, particularly near an intermediate point between the inner and outer metal fittings 1 and 2, compression due to input of a vibration load in the front-rear direction.
  • heat generation in the vicinity of the intermediate point where heat is most likely to occur due to a large tensile movement can be effectively suppressed by the heat radiation effect of the small cavity 8.
  • the effect of heat dissipation is increased. As a result, a decrease in durability can be prevented.
  • the outer tube 2 is substantially circular in front.
  • the outer tube 2 is substantially elliptical in cross section, that is, It can be substantially elliptical with the longitudinal axis in the front-rear direction (Y direction).
  • the rubber elastic body 3 between the inner cylinder 1 and the outer cylinder 2 is used.
  • Both side portions 3 a and 3 b as support arms of 3 are provided so as to support the inner cylinder 1 with respect to the outer cylinder 2.
  • the upper cavity 4 is formed slightly wider than the lower cavity 5, and the center of the rubber elastic body 3 has a mountain shape bulging upward. ing.
  • the inner cylindrical member 1 fixed to the central portion of the rubber elastic body 3 is disposed eccentrically upward with respect to the outer cylindrical member 2 in a no-load state, so that a predetermined load such as a power unit is applied. In this state, it is supported substantially coaxially with the outer tube fitting 2 as shown by a chain line in FIG.
  • the lower cavity 5 is provided on the lower cylindrical portion 5 with respect to the convex stopper projection 17 provided on the outer cylinder fitting 2 side.
  • Ceiling surface 51 can be provided so as to abut.
  • small cavities can be provided in the convex portion 1 as in Examples 1 to 7.
  • Each of the side portions 3a and 3b as the supporting arms of the rubber elastic body 3 is located at a position slightly away from the outer cylinder 2 inward, preferably, the inner cylinder 1 and the outer cylinder 2. Near the midpoint between the small holes, small cavities 18 and 18 are provided which are formed of non-through holes or through holes in the axial direction. Various changes can be made to the small cavity 8 as in the above embodiment.
  • the shape of the upper and lower cavities 4 and 5 ⁇ without changing the outer shape of the side portions 3 a and 3 b and without significantly affecting the dynamic panel constant and the vibration isolation characteristics in the vertical direction.
  • the dynamic panel constant in the horizontal direction perpendicular to the axis can be reduced. Therefore, for example, when used with the axial direction set to the left-right direction, the anti-vibration characteristics in the front-rear direction can be improved.
  • horizontal vibration perpendicular to the axis Heat generation in the vicinity of the intermediate point where heat is most likely to be generated due to large compression and tension movements due to input of a dynamic load can be effectively suppressed by the heat radiation effect of the small cavity 18.
  • this anti-vibration device with the axial direction set to the front-rear direction of the vehicle, in which case the dynamic panel constant in the left-right direction can be reduced.
  • the anti-vibration device of the present invention can appropriately reduce the upward and downward dynamic spring constant without deteriorating durability, and thus is suitably used mainly as an engine mount for automobiles, suspension bushes, and the like. Can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Springs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

A vibration isolating mount (10), comprising inner and outer cylindrical metal bars (1) and (2) connected to each other through a rubber elastic body (3) having hollow parts (4) and (5) on the upper and lower sides of the inner cylindrical metal bar, wherein a projected part (6) projected upward and allowing the ceiling surface (51) of the hollow part (5) to abut thereon under load is provided in the lower side hollow part (5), and small hollows (61) comprising axial through holes are provided in the projected part (6), whereby a dynamic spring constant in vertical direction can be lowered properly without impairing the durability of the vibration isolating mount (10).

Description

明 細 書 防 振 装 置 〔技術分野〕  Description Anti-vibration device [Technical field]
本発明は、 主として自動車のエンジンマウントゃサスペンションブヅ シュ等として使用される防振装置に関する。  The present invention relates to an anti-vibration device mainly used as an engine mount, a suspension bush or the like of an automobile.
〔背景技術〕 (Background technology)
従前より、 自動車のエンジンマウン トゃサスペンションブッシュ等に 用いられる防振装置として、 内筒金具と外筒金具とを両金具間に介設し たゴム弾性体により結合したものが知られている。 通常、 内筒金具がこ れに揷嵌される軸部材を介して略コの字状をなす、 一方の支持部材に取 り付けられ、 外筒金具が、 ブラケッ ト等の他方の支持部材に圧入されて 固定される。 これら支持部材は、 エンジン等の振動源と、 車体等の支持 側とにそれそれ設けられる。  BACKGROUND ART Conventionally, as an anti-vibration device used for an engine mount of a vehicle, a suspension bush, or the like, a device in which an inner cylinder and an outer cylinder are connected by a rubber elastic body interposed between the two brackets has been known. Usually, the inner cylinder is attached to one of the support members having a substantially U-shape via a shaft member to be fitted into the inner cylinder, and the outer cylinder is attached to the other support member such as a bracket. Pressed and fixed. These support members are provided on a vibration source such as an engine and a support side such as a vehicle body, respectively.
図 2 1に、 このような防振装置の一従来例を示す。  FIG. 21 shows a conventional example of such a vibration isolator.
図に示すように、 内筒金具 1 0 1 と外筒金具 1 0 2 との間に介設され るゴム弾性体 1 0 3は、内筒金具 1 0 1の上下にそれそれ空洞部 1 0 4 , 1 0 5を有し、 下側の空洞部 1 0 5に、 上方へと突出する ¾部 1 0 6を 有する。 該凸部 1 0 6は、 エンジン等を支持し荷重を受けた状態で、 該 下側空洞部 1 0 5の天井面 1 5 1に突き当てられる。 したがって、 ゴム 弾性体 1 0 3は、 軸方向を前後方向とした場合において左右両側から.内 筒金具 1 0 1を支持するとともに、 荷重を受けた状態では凸部 1 0 6に よっても内筒金具 1 0 1の個所を支持する。 すなわち、 凸部 1 0 6があ る程度の荷重を分担するのである。そして、好適な使用状態においては、 荷重下において内筒金具 1 0 1が、 外筒金具 1 0 2のなす断面形状の略 中心に配置される。 As shown in the figure, the rubber elastic body 103 interposed between the inner cylinder fitting 101 and the outer cylinder fitting 102 has hollow portions 10 above and below the inner cylinder fitting 101, respectively. 4, 105, and the lower cavity portion 105 has an upper portion 106 protruding upward. The convex portion 106 is abutted against the ceiling surface 151 of the lower hollow portion 105 in a state of receiving a load while supporting an engine or the like. Therefore, the rubber elastic body 103 supports the inner cylinder fitting 101 from both the left and right sides when the axial direction is the front-rear direction. Supports the bracket 101. That is, the convex portion 106 shares a certain load. And, in a suitable use state, Under the load, the inner cylinder fitting 101 is disposed substantially at the center of the cross-sectional shape of the outer cylinder fitting 102.
また、 図に示すように、 外筒金具 1 0 2は、 主として略楕円形ないし は小判形の断面を有し、 その長軸が横方向(Y方向) に向けられている。 すなわち、 外筒金具 1 0 2は、 筒型の防振装置の軸方向を車両に対し前 後方向 (X方向) にして使用する場合において、 左右方向 (Y方向) に 長い略楕円形の断面を有する。 これは、 内筒金具 1 0 1が左右から充分 な量のゴム弾性体により支持される必要や防振特性の安定性等のためで ある。  Further, as shown in the figure, the outer cylinder 102 has a substantially elliptical or oval cross section, and its major axis is oriented in the horizontal direction (Y direction). In other words, when the outer cylinder fitting 102 is used with the axial direction of the cylindrical vibration isolator set to the front and rear directions (X direction) with respect to the vehicle, a substantially elliptical cross section that is long in the left-right direction (Y direction). Having. This is because the inner cylinder fitting 101 needs to be supported by a sufficient amount of rubber elastic material from the left and right, and the stability of the vibration-proofing properties and the like.
上記の防振装置は、 通常、 自動車の車体からエンジンを支持して静置 するような基本負荷時において、 凸部が下側空洞部の天井面に当接する ように設計される。  The above-mentioned vibration isolator is usually designed such that the convex portion comes into contact with the ceiling surface of the lower cavity portion at the time of a basic load in which the engine is supported and stood still from the vehicle body.
そのため、 上下方向 ( Z方向) の動バネ定数が高くなりがちである。 動パネ定数が高くなりすぎた場合、 比較的振幅の小さい振動に対する防 振特性が不充分になる等の問題が生じる。  Therefore, the dynamic spring constant in the vertical direction (Z direction) tends to be high. If the dynamic panel constant becomes too high, problems such as insufficient vibration isolation characteristics for relatively small amplitude vibrations will occur.
動パネ定数を適宜に小さく しょうとして、 凸部 1 0 6の幅寸法 (図 1 2における Y方向寸法) を全体に削った場合には、 防振装置全体の上下 方向 ( Z方向)の動パネ定数における凸部 1 0 6の寄与比率(分担割合) が変化してしまう。そして、基本荷重時における内筒金具 1 0 1の位置、 すなわちエンジンを支持する位置が変化してしまう。 また、 凸部 1 0 6 が大変形を規制するス トッパーパネとして作用する際のパネ力が低下す ることにより、 振動を受けた際のス トロークが過大なものになってしま う。 パネ力が低下すると、 荷重一たわみ曲線で見た場合に、 所定の振動 ピークでの荷重に対応するたわみの値は、 大変形の側へとシフ トするの である。 したがって、 防振装置の耐久性が低下してしまうこととなる。 本発明は、 上記問題点に鑑みなされたものであり、 内筒金具と外筒金 具がゴム弾性体により結合されてなり、 ゴム弾性体が内筒金具の上下に 空洞部を有する防振マウン トであって、 下側の空洞部には上方へと突き 出して荷重下において該空洞部の天井面が当接する凸部が備えられるも のにおいて、 耐久性を損なうことなく、 上下方向の動パネ定数を適宜低 下させることができるものを提供する。 If the width of the convex portion 106 (dimension in the Y direction in Fig. 12) is entirely reduced in order to reduce the dynamic panel constant appropriately, the dynamic panel in the vertical direction (Z direction) of the entire vibration isolator The contribution ratio (sharing ratio) of the convex portion 106 in the constant changes. Then, the position of the inner cylinder fitting 101 at the time of the basic load, that is, the position for supporting the engine changes. In addition, since the panel force when the convex portion 106 acts as a stopper panel for restricting large deformation is reduced, the stroke when receiving vibration becomes excessive. When the panel force decreases, the deflection value corresponding to the load at a given vibration peak shifts to the side of large deformation when viewed from the load-deflection curve. Therefore, the durability of the vibration isolator is reduced. The present invention has been made in view of the above-mentioned problems, and has an inner cylindrical member and an outer cylindrical member. The rubber elastic body is an anti-vibration mount having cavities above and below the inner cylindrical metal fitting, and projects downward into the lower cavity part under load. Provided is a device provided with a convex portion with which a ceiling surface of a hollow portion abuts, and capable of appropriately reducing a dynamic panel constant in a vertical direction without deteriorating durability.
〔発明の開示〕 [Disclosure of the Invention]
本発明の防振装置は、 内筒金具と、 この外方を囲むように配された外 筒金具とが、 これら内外の金具間に介設されたゴム弾性体により結合さ れてなり、 前記ゴム弾性体は、 前記内筒金具の上下にそれそれ上側空洞 部及び下側空洞部を有し、 前記下側空洞部には、 外筒金具の側から上方 の内筒金具に向かって突出する凸部が設けられ、 所定値以上の荷重下に おいて前記下側空洞部の天井面が前記凸部の先端面に当接する防振装置 において、 前記凸部中に小空洞が設けられたことを特徴とする。  An anti-vibration device according to the present invention is characterized in that an inner cylinder and an outer cylinder arranged to surround the outer cylinder are connected by a rubber elastic body interposed between the inner and outer brackets. The rubber elastic body has an upper cavity portion and a lower cavity portion above and below the inner cylinder, and protrudes from the side of the outer cylinder toward the upper inner cylinder in the lower cavity. In a vibration isolator, wherein a convex portion is provided, and a ceiling surface of the lower cavity portion abuts on a distal end surface of the convex portion under a load of a predetermined value or more, wherein a small cavity is provided in the convex portion. It is characterized by.
上記構成により、 前記凸部は前記小空洞の存在のために、 ある振幅範 囲までは小空洞を有さない凸部に比して弾性変形し易くて、 上下方向の 動パネ定数を低下させることができる。 しかも、 振幅の大きい振動時に は、 前記小空洞が潰れて壁面が密着することで、 大変形を規制するス ト ッパ一バネとしてのバネ力が大きくなり、良好なス トッパ作用を果たす。 したがって、 耐久性を低下させることなく、 上下方向の動パネ定数を下 げることができ、 小振幅の振動時においても良好かつ充分な防振特性を 保持できる。  According to the above configuration, the convex portion is more likely to be elastically deformed than a convex portion having no small cavity in a certain amplitude range due to the existence of the small cavity, thereby reducing the vertical dynamic panel constant. Can be. In addition, at the time of vibration having a large amplitude, the small cavity is crushed and the wall is brought into close contact with each other, so that the spring force of the stopper spring for regulating large deformation is increased, and a good stopper action is achieved. Therefore, the dynamic panel constant in the vertical direction can be reduced without lowering the durability, and good and sufficient anti-vibration characteristics can be maintained even when the vibration has a small amplitude.
前記の防振装置において、 前記外筒金具が横に長い略楕円形の断面を 有し、 前記内筒金具が無荷重状態において前記外筒金具に対して上方に 偏心して配置され、 前記ゴム弾性体が前記外筒金具の断面における左右 両側から前記内筒金具を支持しているものが好ましい。 これにより、 前記防振装置の軸方向を前後方向とした場合、 左右方向 に長い略楕円形の断面を有することで、 内筒金具が左右から充分な量の ゴム弾性体により支持され、 防振特性が安定する。 In the vibration damping device, the outer cylinder has an approximately elliptical cross section that is long horizontally, and the inner cylinder is eccentrically arranged upward with respect to the outer cylinder in a no-load state, and the rubber elasticity is provided. It is preferable that the body supports the inner cylinder from both left and right sides in the cross section of the outer cylinder. Accordingly, when the axial direction of the vibration isolator is the front-back direction, the inner cylinder fitting is supported by a sufficient amount of rubber elastic body from the left and right by having a substantially elliptical cross section that is long in the left-right direction. Characteristics become stable.
前記凸部中の小空洞として、 軸方向の貫通孔である場合、 軸方向の非 貫通孔である場合のいずれでもよい。 また前記凸部中に、 複数の小空洞 を設けることもできる。 これらの孔の径、 形状、 数等により、 凸部の剛 性を適宜設定できる。  The small cavity in the projection may be a through hole in the axial direction or a non-through hole in the axial direction. Also, a plurality of small cavities can be provided in the projection. The rigidity of the convex portion can be appropriately set according to the diameter, shape, number and the like of these holes.
〔図面の簡単な説明〕 [Brief description of drawings]
図 1は、 実施例 1の筒状の防振マウント 1 0を軸方向中央部にて切断 した無荷重状態での断面図 (図 3の C I— C 1線の断面図) である。 図 2は、 実施例 1の防振マウント 1 0を軸方向から見て左右に等分す るように切断した断面図 (図 1の B l— B 1線の断面図) である。 特に は、 上下からの支持部材に取り付けられた状態を示す。  FIG. 1 is a cross-sectional view (cross-sectional view taken along line C--C1 in FIG. 3) of the cylindrical anti-vibration mount 10 of the first embodiment cut along the axial center at a no-load state. FIG. 2 is a cross-sectional view (a cross-sectional view taken along line Bl-B1 in FIG. 1) of the anti-vibration mount 10 of Example 1 so as to be equally divided into left and right when viewed from the axial direction. In particular, it shows a state where it is attached to the support member from above and below.
図 3は、 実施例 1の防振マウン ト 1 0について、 凸部 6中の小空洞 6 1を左右に等分するように切断した断面図 (図 1の A l— A 1線の断面 図) である。  FIG. 3 is a cross-sectional view of the anti-vibration mount 10 according to the first embodiment cut along the left and right sides of the small cavity 61 in the convex portion 6 (cross-sectional view taken along the line A1-A1 in FIG. 1). ).
図 4は、 実施例 1の防振マウン ト 1 0について、 支持部材 3 0へ圧入 する際の後方から見た (図 2〜 3の左側から見た) 正面図である。  FIG. 4 is a front view (as viewed from the left side in FIGS. 2 and 3) of the anti-vibration mount 10 of the first embodiment when pressed into the support member 30.
図 5は、 実施例 1の防振マウン ト 1 0について、 標準荷重下での状態 を示す図 1に対応する断面図である。  FIG. 5 is a cross-sectional view corresponding to FIG. 1 showing a state under a standard load with respect to the vibration isolating mount 10 of the first embodiment.
図 6は、 実施例 2の防振マウントについての図 1に対応する断面図で ある。  FIG. 6 is a cross-sectional view corresponding to FIG. 1 of the anti-vibration mount of the second embodiment.
図 7は、 実施例 2の防振マウン トについての図 2に対応する断面図で ある。  FIG. 7 is a cross-sectional view corresponding to FIG. 2 of the anti-vibration mount of the second embodiment.
図 8は、 実施例 3の防振マウントについての図 3に対応する断面図で ある。 FIG. 8 is a sectional view corresponding to FIG. 3 of the anti-vibration mount of the third embodiment. is there.
図 9は、 実施例 4の防振マウントについての図 1に対応する断面図で める。  FIG. 9 is a cross-sectional view corresponding to FIG. 1 of the anti-vibration mount of the fourth embodiment.
図 1 0は、 実施例 5の防振マウン 卜についての図 1に対応する断面図 である。  FIG. 10 is a sectional view corresponding to FIG. 1 of the anti-vibration mount of the fifth embodiment.
図 1 1は、 実施例 6の防振マウントについての図 1 に対応する断面図 である。  FIG. 11 is a cross-sectional view corresponding to FIG. 1 of the anti-vibration mount of the sixth embodiment.
図 1 2は、 実施例 7の円形の防振マウン ト 1 0を軸方向中央部にて切 断した断面図である。 無荷重での状態を示す。  FIG. 12 is a cross-sectional view of the circular anti-vibration mount 10 according to the seventh embodiment, which is cut at the center in the axial direction. Shows the state without load.
図 1 3は、 ゴム弾性体の両側部分に小空洞を設けた防振装置の実施例 を示す図 1 4の A 2— A 2線の無荷重状態での断面図である。  FIG. 13 is a cross-sectional view of the vibration isolator in which small cavities are provided on both sides of the rubber elastic body, taken along line A2-A2 in FIG. 14 in a no-load state.
図 1 4は、 前図の B 2—B 2線の断面図である。  FIG. 14 is a cross-sectional view taken along the line B2-B2 in the previous figure.
図 1 5は、 図 1 3の C 2— C 2線の断面図である。  FIG. 15 is a cross-sectional view taken along line C2-C2 in FIG.
図 1 6は、 他の実施例を示す図 3と同線での断面図である。  FIG. 16 is a sectional view taken along the same line as FIG. 3 showing another embodiment.
図 1 7は、 小空洞の他の例を示す一部の断面図である。  FIG. 17 is a partial cross-sectional view showing another example of the small cavity.
図 1 8は、 小空洞のさらに他の例を示す一部の断面図である。  FIG. 18 is a partial cross-sectional view showing still another example of the small cavity.
図 1 9は、 小空洞のさらに他の例を示す一部の断面図である。  FIG. 19 is a partial cross-sectional view showing still another example of the small cavity.
図 2 0は、 防振装置の他の実施例で外筒金具を略楕円形にした場合の 実施例を示す断面図である。  FIG. 20 is a cross-sectional view showing another embodiment of the vibration isolator in which the outer metal fitting is substantially elliptical.
図 2 1は、 従来例の防振マウントについての図 1に対応する断面図で め o  Fig. 21 is a cross-sectional view corresponding to Fig. 1 of the conventional anti-vibration mount.
〔発明を実施するための最良の形態〕 本発明の実施例 1について、 図 1 ~ 5を用いて説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 of the present invention will be described with reference to FIGS.
実施例の防振装置は、 エンジンを自動車の車体側の支持部材から吊り 下げて支持する、 エンジン用の防振マウン トである。 図 1は、 筒状の防 振マウン ト 1 0を軸方向中央部にて切断した断面図 (図 3の C 1— C 1 線の断面図) である。 図 2は、 防振マウン ト 1 0を軸方向から見て左右 に等分するように切断した断面図 (図 1の B 1— B 1線の断面図)、 す なわち左右の対称線に沿って切断した断面図である。 図 2では、 '特に、 上下からの支持部材 3 0 , 4 0に取り付けられた状態での防振マウント 1 0を示している。 一方、 図 3は、 左右の対称線から少しずらして切断 した場合の図 2 と同様の断面図(図 1の A l— A 1線の断面図)であり、 図 4は、 図 2〜 3の左側から見た防振マウント 1 0の正面図である。 ま た、 図 5は、 標準荷重を受けて変形した状態を示す図 1 と同様の断面図 である。 The anti-vibration device according to the embodiment is an anti-vibration mount for an engine that supports an engine by suspending the engine from a support member on a vehicle body side of an automobile. Figure 1 shows a cylindrical protection FIG. 4 is a cross-sectional view (a cross-sectional view taken along line C 1 -C 1 in FIG. 3) of the vibration mount 10 cut at a central portion in the axial direction. Fig. 2 is a cross-sectional view of the anti-vibration mount 10 that is cut equally to the left and right when viewed from the axial direction (a cross-sectional view taken along the line B1-B1 in Fig. 1). It is sectional drawing cut | disconnected along. FIG. 2 particularly shows the anti-vibration mount 10 mounted on the support members 30 and 40 from above and below. On the other hand, Fig. 3 is a cross-sectional view similar to Fig. 2 (a cross-sectional view taken along the line A1-A1 in Fig. 1) when cut slightly off the left and right symmetry lines, and Fig. 4 is a cross-sectional view of Figs. 5 is a front view of the anti-vibration mount 10 viewed from the left side of FIG. FIG. 5 is a cross-sectional view similar to FIG. 1 showing a deformed state under a standard load.
この防振マウン ト 1 0は、 比較的厚肉の筒状をなす内筒金具 1 と、 そ の外方を囲むように配された外筒金具 2 とが、 これら金具 1 , 2間に介 設されてゴム弾性体 3により結合されてなる。 このゴム弾性体 3は、 ゴ ム加硫成形により、 一体に成形されるとともに、 内筒金具 1及び外筒金 具 2に接着される。  The anti-vibration mount 10 is composed of an inner cylinder 1 having a relatively thick cylindrical shape and an outer cylinder 2 arranged so as to surround the outer cylinder 1. And are connected by a rubber elastic body 3. The rubber elastic body 3 is integrally formed by rubber vulcanization molding and is adhered to the inner cylinder 1 and the outer cylinder 2.
内筒金具 1の外面は、 軸方向に垂直な断面において、 防振マウン ト 1 0の軸方向中央部付近では若干横方向に長い矩形状をなすが、 その他の 個所では円形をなす。 すなわち、 内筒金具 1は、 軸方向中央部近傍にお いて、 角状に外側へ突き出す 「バルジ」 を備えている。 一方、 内筒金具 The outer surface of the inner cylindrical member 1 has a rectangular shape slightly longer in the transverse direction near the axial center of the anti-vibration mount 10 in a cross section perpendicular to the axial direction, but has a circular shape in other places. That is, the inner cylinder 1 has a “bulge” that protrudes outward in a square shape near the center in the axial direction. Meanwhile, the inner tube fitting
1の内面は、 円柱状の軸部材 4 1を受け入れるように、 全体が径の均一 な円筒をなしている。 円柱状の軸部材 4 1は、 図 2に示すように、 断面 が横に倒れたコの字状をなす支持部材 4 0により、 上方の車体側から支 持される。 The inner surface of 1 is a cylinder having a uniform diameter as a whole so as to receive the cylindrical shaft member 41. As shown in FIG. 2, the columnar shaft member 41 is supported from the upper vehicle body side by a U-shaped support member 40 having a cross section that is inclined sideways.
外筒金具 2は、 図 2〜 3に示すように内筒金具 1よりも軸方向 (X方 向) 寸法がやや小さく、 図 1に示すように、 軸方向に垂直な断面におい て、 左右方向 (Y方向) を長軸とする略楕円状ないし小判状の形状をな している。 外筒金具 2は、 図 2に示すように、 下側の支持部材 3 0に設 けられた水平の取り付け孔に圧入されている。 下側の支持部材 3 0は、 防振マウント 1 0の使用状態において、 エンジンを吊り下げるものであ る。 The outer tube 2 has a slightly smaller axial (X direction) dimension than the inner tube 1 as shown in Figs. 2-3, and as shown in Fig. 1, the cross section perpendicular to the axial direction (Y direction) as the major axis. are doing. As shown in FIG. 2, the outer cylinder fitting 2 is press-fitted into a horizontal mounting hole provided in the lower support member 30. The lower support member 30 suspends the engine when the anti-vibration mount 10 is used.
防振マウン ト 1 0の非荷重時、 すなわち、 内筒金具 1 と外筒金具 2 と の間に荷重がかかっていない状態では、 図 1等に示すように、 内筒金具 1が外筒金具 2に対して上方に偏心して配置される。  When the anti-vibration mount 10 is not loaded, that is, when no load is applied between the inner cylinder 1 and the outer cylinder 2, as shown in Fig. 1 etc., the inner cylinder 1 is attached to the outer cylinder. It is arranged eccentrically upward with respect to 2.
内筒金具 1 と外筒金具 2 との間を埋めるゴム弾性体 3は、 内筒金具 1 の上下に、 軸方向の貫通孔よりなる空洞部 4 , 5を有している。 これに より、 前記ゴム弾性体 3の支持腕としての両側部分 3 a , 3 bが前記外 筒金具 2の断面における左右両側から前記内筒金具 1を支持した状態に なっている。 これら空洞部 4 , 5は、 軸方向に対して垂直な断面 (図 1 の左右方向断面) において、 上方に向かって膨出する弓状をなし、 両端 部で幅広となっている。 図 1に示すように、 上側空洞部 4は、 外筒金具 2の内面からわずかな間隔を保持するように延びており、 下側空洞部 5 は、 上端部が内筒金具 1の下面から少し離されて配置される。  The rubber elastic body 3 that fills the space between the inner cylinder 1 and the outer cylinder 2 has cavities 4 and 5 formed with through holes in the axial direction above and below the inner cylinder 1. As a result, both side portions 3 a and 3 b as support arms of the rubber elastic body 3 are in a state of supporting the inner cylindrical member 1 from both left and right sides in a cross section of the outer cylindrical member 2. These cavities 4 and 5 have a bow shape bulging upward in a cross section perpendicular to the axial direction (the cross section in the left-right direction in FIG. 1), and are wide at both ends. As shown in FIG. 1, the upper cavity 4 extends slightly from the inner surface of the outer tube fitting 2, and the lower cavity 5 has an upper end slightly above the lower surface of the inner tube 1. They are placed apart.
下側空洞部 5の下面は、 外筒金具 2の側から上方の内筒金具 1へと向 かって突き出しており、 これにより、 下方への変位を規制するス トッパ 一としての凸部 6がゴム弾性体 3と一体に形成されている。 凸部 6は、 図 1〜 2に示すように、 左右方向 (Y方向) 断面及び軸方向 (X方向、 前後方向) 断面のいずれにおいても、 略台形状をなしている。 したがつ て、 凸部 6の上端面 6 aは、軸方向中央部において水平な平坦面をなす。 この凸部上端面 6 aは、 非荷重時に、 全体が平坦で水平な、 下側空洞部 5の天井面 5 1からわずかな間隔を置いて離間されている。 荷重時にお いては、 図 5に示すように、 凸部 6の先端面つまり上端面 6 aが、 下側 空洞部 5の天井面 5 1に当接される。 なお、 詳細には、 図 4に示すように、 凸部 6の外面に、 軸方向に延び る溝 6 bが複数設けられており、 凸部 6の対称線に沿って設けられてい るので、 凸部上端面 6 aは、 完全な平坦面ではなくある程度の凹凸があ る。 凸部上端面 6 aが、 他の凹凸形状、 例えば、 全体に波状の形状を有 する場合や、 溝 6 bの幅及び深さ寸法が、 より大きい場合であっても、 後述するような得られる効果において、 ほぼ同様である。 The lower surface of the lower cavity 5 protrudes from the side of the outer cylinder 2 toward the upper inner cylinder 1, thereby forming a convex portion 6 as a stopper 1 for restricting downward displacement. It is formed integrally with the elastic body 3. As shown in FIGS. 1 and 2, the convex portion 6 has a substantially trapezoidal shape in both the left-right direction (Y direction) cross section and the axial direction (X direction, front-rear direction) cross section. Therefore, the upper end surface 6a of the convex portion 6 forms a horizontal flat surface at the central portion in the axial direction. The upper end surface 6a of the convex portion is separated from the ceiling surface 51 of the lower cavity portion 5 at a slight interval when the load is not applied, by the entire surface being flat and horizontal. At the time of load, as shown in FIG. 5, the tip end surface of the projection 6, that is, the upper end surface 6 a, comes into contact with the ceiling surface 51 of the lower cavity 5. In detail, as shown in FIG. 4, a plurality of grooves 6 b extending in the axial direction are provided on the outer surface of the convex portion 6 and are provided along the symmetry line of the convex portion 6. The upper end surface 6a of the convex portion is not a completely flat surface but has some irregularities. Even if the upper end surface 6a of the convex portion has another uneven shape, for example, a wavy shape as a whole, or the width and depth dimensions of the groove 6b are larger, it will be described later. The effect is almost the same.
一方、 凸部 6の根元付近には、 左右対称に、 軸方向の貫通孔からなる 2つの小空洞 6 1が設けられる。 小空洞 6 1は、 図 1、 及び図 3の断面 図 (図 1の A 1— A 1線の断面) から知られるように、 軸方向に径が均 一な円筒形の貫通孔である。  On the other hand, two small cavities 61 each having an axial through hole are provided symmetrically in the vicinity of the root of the convex portion 6. The small cavity 61 is a cylindrical through-hole having a uniform diameter in the axial direction, as can be seen from the cross-sectional views of FIGS. 1 and 3 (cross-section taken along line A 1 -A 1 in FIG. 1).
小空洞 6 1を設けるためには、 例えば、 ゴム弾性体 3を内筒金具 1 と 外筒金具 2に介挿された状態で加硫する加硫成形時に、 上側及び下側空 洞部 4, 5 と同様に、 中子により作製することができる。 または、 加硫 成形の後にく り抜くことも可能である。 いずれにしても簡単な操作によ り設けることができる。  In order to provide the small cavities 61, for example, during vulcanization molding in which the rubber elastic body 3 is vulcanized while being inserted between the inner cylinder 1 and the outer cylinder 2, the upper and lower cavities 4, As with 5, it can be made with a core. Alternatively, it can be hollowed out after vulcanization. In any case, it can be provided by a simple operation.
このように、 凸部 6中に小空洞 6 1が設けられることにより、 防振マ ゥン ト 1 0における上下方向 ( Z方向) の動パネ定数を容易に低減する ことができた。  By providing the small cavities 61 in the protrusions 6 as described above, the dynamic panel constant in the up-down direction (Z direction) of the anti-vibration mount 10 could be easily reduced.
すなわち、 エンジン等を支持した荷重状態下で、 前記凸部 6が前記下 側空洞部 5の天井面 5 1 に当接して内筒金具 1を支持した状態におい て、 前記凸部 6は、 前記小空洞 6 1の存在のために、 ある変形範囲まで は小空洞を有さない凸部 6に比して弾性変形し易くなつており、 それだ け上下方向の動パネ定数を低下させることができる。 しかも、 振幅の大 きい振動時には、 前記小空洞 6 1が潰れてその壁面が密着することで、 大変形を規制するス トッパーパネとしてのパネ力が大きくなり、 良好な ス トッパ作用を果たす。 それゆえ、 耐久性を低下させることなく、 上下 方向の動パネ定数を下げることができる。 That is, in a state where the convex portion 6 abuts on the ceiling surface 51 of the lower cavity portion 5 and supports the inner cylinder 1 under a load state supporting an engine or the like, the convex portion 6 Due to the existence of the small cavities 61, elastic deformation is more likely to occur up to a certain deformation range compared to the convex portion 6 having no small cavities, which can lower the vertical dynamic panel constant. it can. Moreover, at the time of vibration having a large amplitude, the small cavity 61 is crushed and its wall surface comes into close contact with each other, so that the panel force as a stopper panel for controlling large deformation is increased, and a good stopper effect is achieved. Therefore, without lowering durability, The dynamic panel constant in the direction can be reduced.
具体的な試験例について述べるならば、 図 1 2の従来例.を基準とした 場合、 1 5 H zにおける上下方向 ( Z方向)'の動パネ定数 (K d 1 5 ) を 500 N/mmから 4 1 0 N/mmへと i 8 %低減し、 100 H zに おける上下方向の動パネ定数 (Kd l O O ) を δ θ Ο ΝΖπιπιから 47 0 N/mmへと 1 6 %低減することができた。  To describe a specific test example, the dynamic panel constant (Kd15) in the vertical direction (Z direction) at 15 Hz is 500 N / mm based on the conventional example in Fig. 12. I = 8% to 4100 N / mm, and the vertical dynamic panel constant (Kd l OO) at 100 Hz is reduced by 16% from δθ ΝΖ ΝΖπιπι to 470 N / mm. Was completed.
このとき、 凸部 6による分担荷重は、 凸部 6の幅 (左右方向寸法) を わずかに増加させることによ り、 従来例と同じ 1 57 O Nに維持されて いる。 このように、 凸部 6の分担荷重を維持できるため、 動パネ定数を 低減させても、 荷重時における内筒金具 1と外筒金具 2との相対位置を 変化させたり、 振動によるス トロークを増大させることがない。 したが つて、 動パネ定数を低減させても、 防振マウン ト 1 0の耐久性を損なう ことがない。  At this time, the load shared by the protrusions 6 is maintained at 157 ON, which is the same as that of the conventional example, by slightly increasing the width (the dimension in the left-right direction) of the protrusions 6. As described above, since the shared load of the convex portion 6 can be maintained, even if the dynamic panel constant is reduced, the relative position between the inner cylindrical member 1 and the outer cylindrical member 2 at the time of load is changed, and the stroke due to vibration is reduced. It does not increase. Therefore, even if the dynamic panel constant is reduced, the durability of the anti-vibration mount 10 is not impaired.
一方、 凸部 6の左右幅寸法を削って同様に試験を行った比較例におい ては、 凸部 6の分担荷重が 1 5 70Nから 1 2 5 0 Nに低下したにも拘 わらず、 1 5 H z及び 1 00 H zにおける上下方向の動バネ定数の低下 は、 それそれ、 1 1 %及び 1 0 %にとどまった。  On the other hand, in a comparative example in which the left and right width dimensions of the convex portion 6 were cut and the same test was performed, the load of the convex portion 6 decreased from 1570 N to 1250 N, although the load was reduced from 1570 N to 1250 N. The lowering of the dynamic spring constant in the vertical direction at 5 Hz and 100 Hz was 11% and 10%, respectively.
なお、 図 2〜 3及び図 4に示すように、 凸部 6の軸方向両端には、 軸 方向に突出するス ト ヅパゴム部 7, 8が設けられている。 ス ト ヅパゴム 部 7 , 8は、 それそれが、 軸方向に外側に突出してから下方に延在され てなる外縁部 7 a, 8 aを備え、 上方の支持部材 40に対する突き当て 面 7 b, 8 bを形成している。 これにより、 ス ト ヅ パゴム部 7 , 8は、 金属同士の干渉を防止する役割を果たす。  As shown in FIGS. 2 to 3 and FIG. 4, at both ends in the axial direction of the projection 6, there are provided rubber stoppers 7, 8 projecting in the axial direction. The rubber stoppers 7 and 8 each have outer edges 7 a and 8 a which protrude outward in the axial direction and then extend downward, and abutment surfaces 7 b and 8 b against the upper support member 40. 8b. Thereby, the rubber stopper portions 7 and 8 play a role of preventing interference between metals.
以上に説明したように、 本実施例によると、 凸部 6中に小空洞 6 1を 設けるだけで、 凸部 6の分担荷重を変化させることなく、 防振マウン ト の上下方向における動バネ定数を大幅に低減することができる。 なお、 前記凸部 6に設ける小空洞 6 1の形状、 大きさ、 数、 配置等は、 求める動パネ定数や防振特性等に応じて種々の変更が可能である。 As described above, according to the present embodiment, the dynamic spring constant in the vertical direction of the anti-vibration mount can be maintained without changing the shared load of the convex portion 6 only by providing the small cavity 61 in the convex portion 6. Can be greatly reduced. The shape, size, number, arrangement, and the like of the small cavities 61 provided in the convex portions 6 can be variously changed according to the required dynamic panel constant, vibration-proof characteristics, and the like.
以下、 図 6〜 1 1を用いて実施例 2〜 6について説明する。  Hereinafter, Examples 2 to 6 will be described with reference to FIGS.
図 6〜 7に示す実施例 2では、 実施例 1 と同様の構成において、 凸部 6中の小空洞 6 1 として、 一つの貫通孔のみが設けられている。 この変 形例における小空洞 6 1は、左右方向に対する対称線(図 6の D— D線) 上に中心が位置する円形の断面形状を有し、 貫通孔の両端開口から軸方 向中央部に向かって径が徐々に小さくなつている。  In the second embodiment shown in FIGS. 6 and 7, only one through hole is provided as the small cavity 61 in the convex portion 6 in the same configuration as the first embodiment. The small cavity 61 in this modified example has a circular cross-sectional shape whose center is located on the line of symmetry with respect to the left-right direction (the line D-D in FIG. 6). The diameter gradually decreases toward.
図 8に示す実施例 3では、 実施例と同様の構成において、 凸部 6中の 小空洞 6 1が非貫通孔により形成されている。 すなわち、 実施例におけ る 2つの貫通孔が軸方向中央部において塞がれたような構造となってい る。  In Example 3 shown in FIG. 8, in the same configuration as that of Example, the small cavity 61 in the convex portion 6 is formed by a non-through hole. That is, the structure is such that the two through holes in the embodiment are closed at the axial center.
これら実施例 2〜 3の構成によっても、 実施例と同様の効果を得るこ とができる。  The same effects as those of the embodiment can be obtained by the configurations of the second and third embodiments.
図 9に示す実施例 4においては、 実施例 1 と同様の構成において、 貫 通孔である 2つの小空洞 6 1の断面が、 角のとれた三角形の形状を有す る。 また、 図 1 0に示す実施例 5においては、 貫通孔として設けられる 小空洞 6 1が、 一つの、 左右に長い、 扁平な楕円状の断面を有する。 一 方、 図 1 1においては、 小空洞 6 1 として、 左右対称線上に位置し上下 方向に長い略楕円状の断面を有する一つの貫通孔 6 1 aと、 これより下 方に左右対称に設けられる断面円形の 2つの貫通孔 6 1 bとが設けられ ている。  In the fourth embodiment shown in FIG. 9, in the same configuration as in the first embodiment, the cross section of the two small cavities 61 as the through holes has a triangular shape with rounded corners. In Example 5 shown in FIG. 10, the small cavity 61 provided as a through-hole has a single, long, right and left, flat elliptical cross section. On the other hand, in Fig. 11, a small cavity 61 is provided as one through hole 61a that is located on the left-right symmetry line and has a substantially elliptical cross section that is long in the vertical direction, and is provided symmetrically below it. And two through holes 61b having a circular cross section.
これら実施例 4〜 6の構成によっても、 実施例 1 とほぼ同様の効果を 得ることができる。  With the configurations of the fourth to sixth embodiments, substantially the same effects as in the first embodiment can be obtained.
上記のいずれの実施例においても、 外筒金具 2については、 断面が横 長の略楕円状ないし小判状をなす場合を示したが、 本発明は、 図 1 2に 示す実施例 7のように、 外筒金具 2の断面が円形をなすものにおいても 同様に実施できる。 In each of the above embodiments, the outer metal fitting 2 has a case where the cross section has a substantially oval shape or an oval shape having a horizontally long cross section. As shown in Embodiment 7, the same can be applied to a case where the cross-section of the outer cylinder 2 is circular.
すなわち、 この実施例 7の場合、 外筒金具 2 と内筒金具 1との間に介 設したゴム弾性体 3に、 上側空洞部 4と下側空洞部 5 とを設け、 下側空 洞部 5に外側金具 2の側から上方に突出しかつ一定の荷重下で下側空洞 部 5の天井面 5 1が当接する凸部 6を設けている。 そして、 前記凸部 6 に上記した実施例と同様の小空洞 6 1を設ける。この小空洞 6 1の形状、 大きさ、 数、 配置等については、 種々の変更が可能である。 この場合も、 上記と同様の効果を発揮できる。  That is, in the case of the seventh embodiment, the upper elastic portion 4 and the lower concave portion 5 are provided in the rubber elastic body 3 interposed between the outer cylindrical fitting 2 and the inner cylindrical fitting 1, and the lower cavity portion is provided. 5 is provided with a convex portion 6 projecting upward from the side of the outer metal fitting 2 and contacting the ceiling surface 51 of the lower cavity portion 5 under a constant load. Then, the small cavities 61 similar to those in the above-described embodiment are provided in the convex portions 6. The shape, size, number, arrangement, and the like of the small cavities 61 can be variously changed. In this case, the same effect as above can be exerted.
図 1 3〜 1 5の実施例、 図 1 6の実施例、 図 1 7〜 1 9の各実施例、 及び図 2 0の実施例は、 それそれ内筒金具と外筒金具とを両金具間に介 設したゴム弾性体により結合したタイプの防振装置において、 軸直角横 方向の動パネ定数を下げることを目的として、 内筒金具 1を外筒金具 2 に対して左右両側から支持するゴム弾性体 3の両側部分 3 a , 3 bに小 空洞 3 l a ,. 3 1 bを設けた場合の例を示している。 これらの各実施例 において、 上記した実施例 1〜7と実質的に同じ構成部位には同じ符合 を付している。 .  In the embodiments of FIGS. 13 to 15, the embodiment of FIG. 16, the embodiments of FIGS. 17 to 19, and the embodiment of FIG. 20, the inner cylinder and the outer cylinder are both mounted. In a vibration isolator of the type connected by a rubber elastic body interposed between them, the inner cylinder 1 is supported on the left and right sides with respect to the outer cylinder 2 in order to reduce the dynamic panel constant in the horizontal direction perpendicular to the axis. An example is shown in which small cavities 3 la,. 3 b are provided on both sides 3 a, 3 b of the rubber elastic body 3. In each of these embodiments, substantially the same components as those in Embodiments 1 to 7 described above are denoted by the same reference numerals. .
これらの実施例の防振装置においても、 その基本構成は上記した実施 例と略同様であり、 概ね次のような構成を有している。  The basic structure of the vibration isolator of these embodiments is also substantially the same as that of the above-described embodiment, and has the following structure.
比較的厚肉の円筒状をなす内筒金具 1 と、 その外方を囲むように配さ れた外筒金具 2 とが、 内外の両筒金具間に介設されたゴム弾性体 3によ り一体的に結合されている。 このゴム弾性体 3は、 加硫成形により一体 に成形されるとともに、 前記内筒金具 1および外筒金具 2に接着されて いる。 前記ゴム弾性体 3には、 前記内筒金具 1を挟んで上下に相対向し てそれそれ周方向に所要の幅を持った空洞部 4 , 5が設けられている。 前記上下の空洞部 4, 5は、 それそれ軸方向に対して直角の断面にお いて周方向に内筒金具 1の外径より広幅とされ、 この上下の空洞部 4 , 5間において軸直角方向に長くなつた前記ゴム弾性体 3の両側部分 3 a, 3 bが支持腕として、 前記内筒金具 1を外筒金具 2に対して略中央 部に支持するように設けられている。 A relatively thick cylindrical inner cylinder 1 and an outer cylinder 2 surrounding the outer cylinder are formed by a rubber elastic body 3 interposed between the inner and outer cylinders. Are integrally connected. The rubber elastic body 3 is integrally formed by vulcanization molding and is adhered to the inner cylinder 1 and the outer cylinder 2. The rubber elastic body 3 is provided with cavities 4 and 5 which are vertically opposed to each other with the inner cylindrical fitting 1 therebetween and have a required width in the circumferential direction. The upper and lower cavities 4, 5 are each formed in a cross section perpendicular to the axial direction. The upper and lower cavities 4, 5 are circumferentially wider than the outer diameter of the inner cylindrical fitting 1, and both side portions 3 a, 3 b of the rubber elastic body 3, which are elongated in a direction perpendicular to the axis, between the upper and lower cavities 4, 5 serve as support arms. The inner tube 1 is provided so as to be supported at a substantially central portion with respect to the outer tube 2.
図 1 3に示すように、 上側の空洞部 4が下側の空洞部 5よりやや広く 形成され、 また前記ゴム弾性体 3は、 支持腕としての両側部分 3 a , 3 bが外筒金具 2の前後両側部内面に対して上下方向の中間よりやや下方 側に偏倚して接着されるとともに、 中央部が上方に向かって膨出した山 形状をなしている。 そして、 ゴム弾性体 3の前記中央部に固定された内 筒金具 1が、 無荷重状態において前記外筒金具 2に対して上方に偏心し て配置されており、 パワーュニッ ト等の所定の荷重が負荷された状態に おいて、 図 1 3の鎖線のように外筒金具 2 と略同軸心に支持され、 上下 に所定のクリアランスを保持するようになつている。  As shown in FIG. 13, the upper cavity 4 is formed slightly wider than the lower cavity 5, and the rubber elastic body 3 has both sides 3 a, 3 b as supporting arms formed of outer cylinder fittings 2. It is bonded to the inner surfaces of the front and rear sides of the front and rear sides slightly downward from the middle in the vertical direction, and has a mountain shape with the center bulging upward. The inner cylindrical member 1 fixed to the central portion of the rubber elastic body 3 is disposed eccentrically upward with respect to the outer cylindrical member 2 in a no-load state, so that a predetermined load such as a power unit is applied. In the loaded state, it is supported substantially coaxially with the outer tube fitting 2 as shown by the chain line in FIG. 13 so as to maintain a predetermined clearance up and down.
前記上下の空洞部 4 , 5の外筒金具 2の側、 つまり上側の空洞部 4の 上面及び下側の ¾洞部 5の下面には、 所定の厚みを持ったス トッパ用の 凸部 1 6 , 1 7が、 前記ゴム弾性体 3と同じゴムにより一体に加硫成形 されており、 内筒金具 1の一定以上の大きい振幅による上下方向の振動 入力時に、 該内筒金具 1の上下面のゴム弾性体 3が前記ス トッパ用の凸 部 1 6 , 1 7に当接して、 動きを規制するように設けられている。  On the side of the outer tube fitting 2 of the upper and lower cavities 4, 5, that is, on the upper surface of the upper cavity 4 and the lower surface of the lower cavity 5, a convex part 1 for stopper having a predetermined thickness is provided. 6 and 17 are integrally formed by vulcanization using the same rubber as the rubber elastic body 3, and when the vertical vibration is input by the amplitude of the inner cylinder 1 being larger than a certain level, the upper and lower surfaces of the inner cylinder 1 are input. The rubber elastic body 3 is provided so as to contact the stopper projections 16 and 17 to restrict the movement.
そして、 前記ゴム弾性体 3の両側部分 3 a , 3 bには、 それそれ外筒 金具 2から内方へ僅かに離れた位置、 好ましくは内筒金具 1 と外筒金具 2との間の中間点付近に小空洞 1 8 , 1 8が設けられている。  Each of the side portions 3a and 3b of the rubber elastic body 3 has a position slightly inward from the outer cylinder 2 and preferably an intermediate position between the inner cylinder 1 and the outer cylinder 2. Small cavities 18 and 18 are provided near the point.
前記小空洞 1 8 , 1 8は、 軸方向の円形の孔からなるもので、 特に図 1 5に示すように、 未貫通部分 1 8 aを残して形成した軸方向の非貫通 孔よりなる場合のほか、 図 1 6に示すように軸方向の貫通孔からなる場 合もある。 非貫通孔による小空洞 1 8の場合、 図 1 5のように前記未貫通部分 1 8 aの位置を軸方向の略中央部に設定して形成するほか、 軸方向の一方 の端部もしくはその近傍に未貫通部分 1 8 aを残すように形成すること もできる。 The small cavities 18, 18 are formed of circular holes in the axial direction, and in particular, as shown in FIG. 15, formed of non-through holes in the axial direction formed while leaving the non-penetrated portion 18 a. In addition, as shown in Fig. 16, it may consist of an axial through hole. In the case of a small cavity 18 with a non-through hole, as shown in FIG. 15, the position of the unpenetrated portion 18 a is set at a substantially central portion in the axial direction, and is formed at one end in the axial direction or at one end thereof. It can also be formed so as to leave an unpenetrated portion 18a in the vicinity.
前記小空洞 1 8は、 非貫通孔および貫通孔のいずれの場合も、 その径 や断面形状、 大きさ、 深さや数については、 求められる剛性や動バネ定 数等に応じて種々変更が可能である。 例えば、 図 1 7のように複数の孔 (図の場合は二つの孔) による小空洞 1 8を所要の間隔をおいて並設す ることも、 図 1 8のように丸みを付けた断面略三角形の孔、 あるいは図 1 9のように断面が扁平な孔にすることもでき、 さらにこれらを組み合 わせて配置することもできる。 また非貫通孔および貫通孔の場合のいず れも、開口端から軸方向内方に向かって同径、 同形状である必要はなく、 軸方向で径ゃ形状を変化させることも可能である。  The diameter, cross-sectional shape, size, depth and number of the small cavities 18 can be variously changed according to the required rigidity and dynamic spring constant in both cases of non-through holes and through holes. It is. For example, small cavities 18 consisting of multiple holes (two holes in the figure) as shown in Fig. 17 can be arranged side by side at required intervals, or a round cross section as shown in Fig. 18 The hole may be a substantially triangular hole or a hole having a flat cross section as shown in FIG. 19, and these holes may be arranged in combination. In both the case of the non-through hole and the case of the through hole, it is not necessary to have the same diameter and the same shape inward in the axial direction from the opening end. .
前記小空洞 1 8が軸方向の非貫通孔あるいは軸方向の貫通孔のいずれ でも、 ゴム弾性体 3の支持腕としての両側部分 3 a, 3 bに小空洞を有 さない場合に比して、 剛性のチューニングが容易に可能である。 特に、 前記小空洞 1 8が非貫通孔の場合は、 未貫通部分 1 8 aの存在により、 貫通孔よりなる場合に比して、 剛性が高く設定され、 この未貫通孔の径 等のほか、 その孔深さ、 つまりは未貫通部分 1 8 aの壁厚の調整、 変更 により、 剛性のチューニングが容易に可能になる。 そのため設計の自由 度が広がることになる。  Regardless of whether the small cavity 18 is a non-through hole in the axial direction or a through hole in the axial direction, the small elastic cavity 18 has no small cavity in both sides 3 a and 3 b as the supporting arms of the rubber elastic body 3. Tuning of rigidity is easily possible. In particular, when the small cavities 18 are non-through holes, the rigidity is set higher than that of the case where the small cavities 18 are non-through holes due to the presence of the non-through holes 18a. By adjusting or changing the hole depth, that is, the wall thickness of the unpenetrated portion 18a, the tuning of the rigidity can be easily performed. As a result, the degree of freedom in design is expanded.
前記の小空洞 8を設けるためには、 例えば、 ゴム弾性体 3を内筒金具 1と外筒金具 2に介挿された状態でゴムを加硫する加硫成形時に、 上側 空洞部 4および下側空洞部 5 と同様に、 中子により作製することができ る。 または、 加硫成形の後に前記小空洞に相当する部分をく り抜くこと も可能である。 いずれにしても簡単な作業過程により設けることができ る o In order to provide the small cavity 8, for example, at the time of vulcanization molding in which the rubber elastic body 3 is vulcanized while the rubber elastic body 3 is inserted between the inner cylinder 1 and the outer cylinder 2, the upper cavity 4 and the lower cavity 4 are formed. Like the side cavity 5, it can be made of a core. Alternatively, after vulcanization molding, a portion corresponding to the small cavity may be hollowed out. In any case, it can be provided by a simple work process O
この実施例の防振装置は、 例えば、 内筒金具 1を、 これに嵌挿した軸 部材を介してパワーュニッ ト側と車体側との一方の支持部材に取り付 け、 また外筒金具 2を、 ブラケッ ト等の他方の支持部材に有する取付用 孔に圧入して固定して使用する。  In the vibration isolator of this embodiment, for example, the inner cylinder 1 is attached to one of the support members on the power unit side and the vehicle body side via a shaft member inserted therein, and the outer cylinder 2 is Press-fit into the mounting hole of the other support member, such as a bracket, or the like, and fix it.
こうして、 その軸方向 (X方向) を車両に対し左右方向にして、 パヮ —ュニッ トの前後方向の振動を規制するように使用する。 この使用にお いて、 前記のようにゴム弾性体 3の支持腕としての両側部分 3 a, 3 b に、 軸方向の小空洞 8を設けたことにより、 該小空洞 8が潰されてしま うまでの一定振幅以下の振動に対して左右方向のパネが柔らかくなり、 上下の空洞部 4, 5の形状ゃ該両側部分 3 a, 3 bの外形を変えずに、 しかも上下方向の動パネ定数や防振特性に大きな影響を与えることな く、 軸直角横方向である前後方向の動バネ定数を下げることができ、 前 後方向の防振特性を改善できる。  In this way, the axial direction (X direction) is set to the left and right direction with respect to the vehicle, and the power unit is used so as to regulate the vibration in the longitudinal direction. In this use, as described above, the small cavities 8 are crushed by providing the axial small cavities 8 on both sides 3 a and 3 b as the support arms of the rubber elastic body 3. The panel in the left and right direction becomes softer against vibrations below a certain amplitude up to the shape of the upper and lower cavities 4 and 5 without changing the outer shape of the side portions 3a and 3b, and the dynamic panel constant in the vertical direction The dynamic spring constant in the front-rear direction, which is the horizontal direction perpendicular to the axis, can be reduced without greatly affecting the vibration isolation characteristics, and the vibration isolation characteristics in the front-rear direction can be improved.
また、 前記小空洞 8が外筒金具 2から離れた位置、 特に内外の両金具 1 , 2間の中間点付近に小空洞 8が設けられているため、 前後方向の振 動荷重の入力による圧縮、 引張の動きが大きくて最も発熱が生じ易い前 記中間点付近における発熱を、 小空洞 8による放熱効果で効果的に抑制 することができる。 図 1 7のように複数の孔、 図 1 9のような断面が扁 平な孔の場合、 その放熱の効果は大きくなる。 これにより耐久性の低下 を防止でぎる。  In addition, since the small cavity 8 is provided at a position distant from the outer cylinder 2, particularly near an intermediate point between the inner and outer metal fittings 1 and 2, compression due to input of a vibration load in the front-rear direction. However, heat generation in the vicinity of the intermediate point where heat is most likely to occur due to a large tensile movement can be effectively suppressed by the heat radiation effect of the small cavity 8. In the case of a plurality of holes as shown in FIG. 17 and a hole having a flat cross section as shown in FIG. 19, the effect of heat dissipation is increased. As a result, a decrease in durability can be prevented.
なお、 上記の実施例においては、 外筒金具 2を正面略円形とした場合 を示したが、 図 2 0に示す実施例のように、 外筒金具 2を断面が横長の 略楕円形、 つまり前後方向 (Y方向) を長軸とする略楕円形をなすもの とすることができる。  In the above embodiment, the case where the outer tube 2 is substantially circular in front is shown. However, as in the embodiment shown in FIG. 20, the outer tube 2 is substantially elliptical in cross section, that is, It can be substantially elliptical with the longitudinal axis in the front-rear direction (Y direction).
この実施例の場合も、 内筒金具 1 と外筒金具 2 との間のゴム弾性体 3 には、 前記内筒金具 1を挟んで上下に相対向してそれそれ周方向に所要 の幅を持った空洞部 4 , 5が設けられ、 上下の空洞部 4 , 5間のゴム弾 性体 3の支持腕としての両側部分 3 a , 3 bが、 前記内筒金具 1を前記 外筒金具 2に対して支持するように設けられている。 Also in this embodiment, the rubber elastic body 3 between the inner cylinder 1 and the outer cylinder 2 is used. Are provided with cavities 4 and 5 having a required width in the circumferential direction, facing each other up and down with the inner cylindrical fitting 1 interposed therebetween, and a rubber elastic body between the upper and lower cavities 4 and 5 is provided. Both side portions 3 a and 3 b as support arms of 3 are provided so as to support the inner cylinder 1 with respect to the outer cylinder 2.
また、 図 2 0のように、 上側の空洞部 4が下側の空洞部 5よりやや広 く形成されるとともに、 前記ゴム弾性体 3の中央部が上方に向かって膨 出した山形状をなしている。 そして、 ゴム弾性体 3の前記中央部に固定 された内筒金具 1が、 無荷重状態において前記外筒金具 2に対して上方 に偏心して配置されており、 パワーュニッ ト等の所定の荷重が負荷され た状態において、 同図の鎖線のように外筒金具 2 と略同軸心に支持され るようになっている。  Further, as shown in FIG. 20, the upper cavity 4 is formed slightly wider than the lower cavity 5, and the center of the rubber elastic body 3 has a mountain shape bulging upward. ing. The inner cylindrical member 1 fixed to the central portion of the rubber elastic body 3 is disposed eccentrically upward with respect to the outer cylindrical member 2 in a no-load state, so that a predetermined load such as a power unit is applied. In this state, it is supported substantially coaxially with the outer tube fitting 2 as shown by a chain line in FIG.
特に、 図示していないが、 前記の支持状態において、 下側の空洞部 5 の外筒金具 2側に設けた凸状のス トッパ用凸部 1 7に対して、 下側の空 洞部 5の天井面 5 1が当接するように設けることもできる。 この場合、 前記凸部 1 Ί に実施例 1〜 7のように小空洞を設けておく こともでき る。  In particular, although not shown, in the above-described supporting state, the lower cavity 5 is provided on the lower cylindrical portion 5 with respect to the convex stopper projection 17 provided on the outer cylinder fitting 2 side. Ceiling surface 51 can be provided so as to abut. In this case, small cavities can be provided in the convex portion 1 as in Examples 1 to 7.
そして、前記ゴム弾性体 3の支持腕としての両側部分 3 a, 3 bには、 それそれ外筒金具 2から内方へ僅かに離れた位置、 好ましくは内筒金具 1 と外筒金具 2 との間の中間点付近に、 軸方向の非貫通孔あるいは貫通 孔よりなる小空洞 1 8 , 1 8が設けられている。 この小空洞 8について は、 上記実施例と同様に種々の変更が可能である。  Each of the side portions 3a and 3b as the supporting arms of the rubber elastic body 3 is located at a position slightly away from the outer cylinder 2 inward, preferably, the inner cylinder 1 and the outer cylinder 2. Near the midpoint between the small holes, small cavities 18 and 18 are provided which are formed of non-through holes or through holes in the axial direction. Various changes can be made to the small cavity 8 as in the above embodiment.
この実施例においても、上下の空洞部 4 , 5の形状ゃ該両側部分 3 a , 3 bの外形を変えずに、 かつ上下方向の動パネ定数や防振特性に大きな 影響を与えることなく、 軸直角横方向の動パネ定数を下げることができ る。 そのため、 例えば軸方向を左右方向にして使用した場合において、 前後方向の防振特性を改善できることになる。 また、 軸直角横方向の振 動荷重の入力による圧縮、 引張の動きが大きくて最も発熱が生じ易い前 記中間点付近における発熱を、 小空洞 1 8による放熱効果で効果的に抑 制することができる。 Also in this embodiment, the shape of the upper and lower cavities 4 and 5 ゃ without changing the outer shape of the side portions 3 a and 3 b and without significantly affecting the dynamic panel constant and the vibration isolation characteristics in the vertical direction. The dynamic panel constant in the horizontal direction perpendicular to the axis can be reduced. Therefore, for example, when used with the axial direction set to the left-right direction, the anti-vibration characteristics in the front-rear direction can be improved. In addition, horizontal vibration perpendicular to the axis Heat generation in the vicinity of the intermediate point where heat is most likely to be generated due to large compression and tension movements due to input of a dynamic load can be effectively suppressed by the heat radiation effect of the small cavity 18.
なお、 この防振装置は、 軸方向を車両の前後方向にして使用すること も可能であり、 その場合、 左右方向の動パネ定数を下げることができる とにな O o  It is also possible to use this anti-vibration device with the axial direction set to the front-rear direction of the vehicle, in which case the dynamic panel constant in the left-right direction can be reduced.
〔産業上の利用可能性〕 [Industrial applicability]
上記のように本発明の防振装置は、 耐久性を損なうことなく、 上下方 向の動バネ定数を適宜低下させることができるので、 主に自動車のェン ジンマウン トゃサスペンションブッシュ等として好適に使用できる。  As described above, the anti-vibration device of the present invention can appropriately reduce the upward and downward dynamic spring constant without deteriorating durability, and thus is suitably used mainly as an engine mount for automobiles, suspension bushes, and the like. Can be used.

Claims

請 求 の 範 囲 . 内筒金具と、 この外方を囲むように配された外筒金具とが、 これら 内外の金具間に介設されたゴム弾性体により結合されてなり、 前記ゴ ム弾性体は、 前記内筒金具を挟んで上下にそれそれ上側空洞部及び下 側空洞部を有し、 前記下側空洞部には、 外筒金具の側から上方の内筒 金具に向かって突出する凸部が設けられ、 所定値以上の荷重下におい て前記下側空洞部の天井面が前記凸部の先端面に当接する防振装置に おいて、 The inner cylindrical member and the outer cylindrical member arranged so as to surround the outer portion are connected by a rubber elastic body interposed between the inner and outer metallic members, and the rubber elastic member is provided. The body has an upper cavity portion and a lower cavity portion vertically above and below the inner cylinder, and the lower cavity protrudes from the outer cylinder to the upper inner cylinder. In a vibration isolator, wherein a convex portion is provided, and a ceiling surface of the lower cavity portion abuts on a tip end surface of the convex portion under a load equal to or more than a predetermined value.
前記凸部中に、 軸方向の小空洞が設けられてなることを特徴とする 防振装置。 ' An axial vibration is provided in said convex part, The vibration isolator characterized by the above-mentioned. '
. 前記外筒金具が横に長い略楕円形の断面を有し、 前記内筒金具が無 荷重状態において前記外筒金具に対して上方に偏心して配置され、 前 記ゴム弾性体が前記外筒金具の断面における左右両側から前記内筒金 具を支持している請求項 1に記載の防振装置。The outer cylinder has an approximately elliptical cross section that is long horizontally, and the inner cylinder is disposed eccentrically upward with respect to the outer cylinder in a no-load state, and the rubber elastic body is formed of the outer cylinder. 2. The vibration isolator according to claim 1, wherein the inner cylindrical fitting is supported from both left and right sides in a cross section of the fitting.
. 前記凸部中の小空洞が、 軸方向の貫通孔であることを特徴とする請 求項 1または 2に記載の防振装置。3. The vibration damping device according to claim 1, wherein the small cavity in the projection is an axial through hole.
. 前記凸部中の小空洞が、 軸方向の非貫通孔であることを特徴とする 請求項 1または 2に記載の防振装置。3. The vibration damping device according to claim 1, wherein the small cavity in the projection is a non-through hole in an axial direction.
. 前記凸部中に、 複数の小空洞が設けられてなる請求項 1または 2に 記載の防振装置。 The anti-vibration device according to claim 1 or 2, wherein a plurality of small cavities are provided in the convex portion.
PCT/JP2001/007621 2000-09-20 2001-09-03 Vibration isolator WO2002025138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002528706A JP3661060B2 (en) 2000-09-20 2001-09-03 Vibration isolator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000285580 2000-09-20
JP2000-285580 2000-09-20

Publications (1)

Publication Number Publication Date
WO2002025138A1 true WO2002025138A1 (en) 2002-03-28

Family

ID=18769626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007621 WO2002025138A1 (en) 2000-09-20 2001-09-03 Vibration isolator

Country Status (2)

Country Link
JP (1) JP3661060B2 (en)
WO (1) WO2002025138A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070440A1 (en) * 2004-12-27 2006-07-06 Toyo Tire & Rubber Co., Ltd. Link device
WO2006077622A1 (en) * 2005-01-18 2006-07-27 Toyo Tire & Rubber Co., Ltd. Vibration damper
JP2010096277A (en) * 2008-10-16 2010-04-30 Toyo Tire & Rubber Co Ltd Anti-vibration connecting rod
EP3203108A4 (en) * 2014-10-03 2017-12-06 Bridgestone Corporation Vibration isolation device
CN113844223A (en) * 2021-10-15 2021-12-28 安徽江淮汽车集团股份有限公司 Vehicle swing arm bush

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125430A (en) * 1983-12-09 1985-07-04 Kinugawa Rubber Ind Co Ltd Bush for engine mound
JPS6327733U (en) * 1986-08-08 1988-02-23
JPH0167342U (en) * 1987-10-26 1989-04-28
JPH0248629U (en) * 1988-09-30 1990-04-04
JPH09257075A (en) * 1996-03-25 1997-09-30 Daihatsu Motor Co Ltd Bracket for vibration control mount made of synthetic resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125430A (en) * 1983-12-09 1985-07-04 Kinugawa Rubber Ind Co Ltd Bush for engine mound
JPS6327733U (en) * 1986-08-08 1988-02-23
JPH0167342U (en) * 1987-10-26 1989-04-28
JPH0248629U (en) * 1988-09-30 1990-04-04
JPH09257075A (en) * 1996-03-25 1997-09-30 Daihatsu Motor Co Ltd Bracket for vibration control mount made of synthetic resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070440A1 (en) * 2004-12-27 2006-07-06 Toyo Tire & Rubber Co., Ltd. Link device
WO2006077622A1 (en) * 2005-01-18 2006-07-27 Toyo Tire & Rubber Co., Ltd. Vibration damper
JP2010096277A (en) * 2008-10-16 2010-04-30 Toyo Tire & Rubber Co Ltd Anti-vibration connecting rod
EP3203108A4 (en) * 2014-10-03 2017-12-06 Bridgestone Corporation Vibration isolation device
US10337585B2 (en) 2014-10-03 2019-07-02 Bridgestone Corporation Vibration isolation device
CN113844223A (en) * 2021-10-15 2021-12-28 安徽江淮汽车集团股份有限公司 Vehicle swing arm bush

Also Published As

Publication number Publication date
JPWO2002025138A1 (en) 2004-01-29
JP3661060B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
JP2002168288A (en) Vibration resistant device
JP2006273156A (en) Engine mount, and power unit vibration-isolating supporting structure using the same
JP2004150537A (en) Vertical type suspension rubber bush
JP6768395B2 (en) Cylindrical anti-vibration device
JP6538231B1 (en) Tubular vibration control device
WO2021085029A1 (en) Vehicle body damper brace
WO2002025138A1 (en) Vibration isolator
JP4757133B2 (en) Torque rod
KR101927745B1 (en) Muffler hanger for vehicle
JP4283853B2 (en) Link device
JP2005188575A (en) Vibration-proofing support device and mounting structure for vibration-proofing support device
JP2005172242A (en) Vibration control device
JP2007064353A (en) Swing damping device
JP4304054B2 (en) Cylindrical bush
JP2005180706A (en) Vibration isolating device
JP4885770B2 (en) Vibration isolator
JP2004205050A (en) Vibration isolating device
CN114623190B (en) Cylindrical vibration isolator
CN219866011U (en) bushing assembly
JP2005180704A (en) Vibration isolating device
JP7432455B2 (en) Cylindrical vibration isolator
JP2008240987A (en) Vibration control device
US20240198780A1 (en) Vibration damping device
JP2000065138A (en) Suspendible supporting device
KR101927739B1 (en) Muffler hanger for vehicle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 528706

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase