WO2002024587A1 - Quartz glass for short wave length ultraviolet ray, discharge lamp using the same, container therefor and ultraviolet irradiation apparatus - Google Patents

Quartz glass for short wave length ultraviolet ray, discharge lamp using the same, container therefor and ultraviolet irradiation apparatus Download PDF

Info

Publication number
WO2002024587A1
WO2002024587A1 PCT/JP2001/008197 JP0108197W WO0224587A1 WO 2002024587 A1 WO2002024587 A1 WO 2002024587A1 JP 0108197 W JP0108197 W JP 0108197W WO 0224587 A1 WO0224587 A1 WO 0224587A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge lamp
quartz glass
ultraviolet
less
ultraviolet light
Prior art date
Application number
PCT/JP2001/008197
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Nakano
Original Assignee
Photoscience Japan Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photoscience Japan Corporation filed Critical Photoscience Japan Corporation
Publication of WO2002024587A1 publication Critical patent/WO2002024587A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/302Vessels; Containers characterised by the material of the vessel
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals

Definitions

  • the present invention relates to an improvement of quartz glass used for an apparatus for decomposing organic substances by emitting ultraviolet energy in a wavelength range of 200 nm or less, and further relates to a discharge lamp, an ultraviolet irradiation apparatus and a method using the quartz glass.
  • a discharge lamp an ultraviolet irradiation apparatus and a method using the quartz glass.
  • FIG. 4 shows an example of a conventionally known closed type ultraviolet irradiation bath for liquid treatment.
  • the discharge lamp 30 is housed in an outer tube (protective tube) 20.
  • the discharge lamp 30 is housed in a stainless steel cylinder 1 and the liquid to be treated is introduced into the cylinder 1 and irradiated with ultraviolet rays emitted from the discharge lamp 30.
  • the discharge lamp 30 for example, a low-pressure mercury vapor discharge lamp that efficiently emits ultraviolet rays in a wavelength range of 185 nm is used.
  • the arc tube 10 of the discharge lamp 30 is also made of quartz glass having excellent ultraviolet transmittance.
  • the discharge lamp 30 is housed inside an outer tube (protective tube) 20 that transmits ultraviolet light, and the discharge lamp 30 is liquid-tightly isolated from the liquid to be treated.
  • the powerful outer tube 20 is also made of quartz glass with excellent ultraviolet transmittance! Both ends of the cylinder 1 are closed by flanges la and lb, and the liquid to be treated taken in from the water inlet lc is irradiated with ultraviolet rays while passing through the cylinder 11 and discharged from the water outlet Id.
  • the liquid to be treated flows in the cylinder 1 from the water inlet lc toward the water outlet Id.
  • Several pieces (five in the figure) of the liquid to be treated Flow plate le ⁇ Li is arranged. For the sake of convenience, FIG.
  • FIG. 5 illustrates a device equipped with only one discharge lamp 30, but in practice, a multi-lamp type large-capacity device is often used.
  • Ultraviolet light emitted from the discharge lamp 30 passes through the outer tube 20 and irradiates the liquid to be treated. Irradiated ultraviolet rays, for example, the organic matter present in the water in Succoth action decomposes were result into harmless CO, C0 2, H 2 0 as follows.
  • CnHmOk + OH radio cane ⁇ CO, C ⁇ 2 , H 2 O
  • FIG. 5 shows a configuration example of the discharge lamp 30.
  • Both ends of the quartz glass arc tube 10 are hermetically closed by glass stems 2a and 2b.
  • a pair of filaments 21a and 21b are coated with a barium oxide (BaO) emitter for the purpose of smooth discharge.
  • the filaments 21a and 21b are held on the glass stems 2a and 2b, respectively, and are connected to the terminals 31a to 31d of the bases 3a and 3b via inner leads 22a to 22d, molybdenum foils 24a to 24d, and outer leads 25a to 25d. It is electrically connected. Also, an appropriate amount of mercury and argon gas are sealed in the valve.
  • the electric discharge lamp 30 When the electric discharge lamp 30 is connected to a predetermined power supply (not shown) and power is applied, a discharge occurs between the filaments 21a and 21b, mercury is evaporated by the discharge heat, and ultraviolet rays are emitted by excitation of the mercury nuclear power. become.
  • the present inventor has sought to determine the causes of various viewpoints and to devise a solution to solve the powerful problem. And found that there was a cause. Then, they came up with a clear measure to improve the aging of the transparent quartz glass. Therefore, the present invention has been made in view of the above points, and provides quartz glass with improved aging of ultraviolet transmittance in a short wavelength range, and maintains ultraviolet intensity by using strong quartz glass. It is an object of the present invention to provide a high-density discharge lamp having a significantly improved efficiency, and to provide an energy-saving ultraviolet irradiation apparatus and method by using such a quartz glass or a discharge lamp.
  • the inventor of the present invention has found that the short-wavelength ultraviolet light emitted by the discharge lamp itself alters the quartz glass forming the tube of the discharge lamp, lowers the transmittance, and reduces the ultraviolet intensity. It was concluded that the cause was that the retention rate decreased over time. In other words, while the conventionally known low-density light source has a small absolute amount of ultraviolet light and thus does not cause significant deterioration, the high-density discharge lamp causes the deterioration with time. It is understood that it appeared as a phenomena. The present inventor has found a quartz glass composition that can significantly improve the ultraviolet intensity maintenance rate. That is, the facts discovered by the present inventors are mainly the following three points.
  • the first point is, in the silicon dioxide of the main component constituting the essence of silica glass (Si0 2), sodium (Na), potassium (K), when many impurities exist titanium (Ti) and iron (Fe) Short Absorption of ultraviolet light of a wavelength, causing a decrease in the transmittance of quartz glass. Numerous glass samples were investigated and analyzed in terms of short-wavelength UV transmittance, and the fact that the decrease in transmittance over time of quartz glass due to these impurities was identified using statistical methods. The second point is that, even if the transmittance is slightly reduced at the beginning, the quartz glass is degraded with time during use of the discharge lamp, and the force gradually leads to a significant decrease in transmittance. .
  • the above-mentioned alteration of quartz glass can be reduced by the presence of OH groups.
  • Alteration is a phenomenon that occurs because the “Si—O” bond of quartz glass is decomposed by ultraviolet energy and free silicon (Si) is generated, accompanied by a decrease in transmittance.
  • the dissociation energy of “Si— ⁇ ” is 145 kCal / mol, which corresponds to 200 nm ultraviolet energy. Therefore, when the quartz glass is exposed to ultraviolet light having a wavelength of 200 nm or less, dissociation of “Si-0” which causes a decrease in transmittance occurs. It is considered that the alteration relaxation is effective in suppressing the presence of free Si by free silicon (Si) being recombined with OH groups to form “Si—OHJ”.
  • the quartz glass for short-wavelength ultraviolet light is a quartz glass that is used by being exposed to ultraviolet light having a wavelength range of 200 nm or less.
  • the total content of the four elements, sodium (Na), potassium (K), titanium (Ti), and iron (Fe) is 2.5 ppm or less and OH groups of 10 ppm or more It is characterized by including.
  • the dissociation of “Si-0” in quartz glass hardly occurs with respect to ultraviolet rays in a wavelength range longer than 200 nm, and thus was excluded from the present invention.
  • the reason for setting the boundary value of the total content of the above four elements to “2.5 ppm or less” was set based on the experience of repeated experiments. For example, a total content of “4. Oppm” is clearly better than a total content of “3.06 ppm”. On the other hand, it was confirmed that those with a total content of “1.56 ppm” were good, and those with a total content of “1.20 ppm” were also good.
  • the discharge lamp according to the present invention is characterized in that a substance that emits ultraviolet light in a wavelength range of 200 nm or less is enclosed in a container made of quartz glass configured as described above, It is. With this structure, it is possible to provide a discharge lamp with significantly improved ultraviolet intensity maintenance rate. It becomes possible.
  • An ultraviolet irradiation device is provided with the discharge lamp configured as described above. This makes it possible to provide an ultraviolet irradiation device capable of maintaining a high ultraviolet transmittance for a long period of time, and to provide an energy-saving ultraviolet irradiation device with low running cost.
  • the quartz glass according to the present invention is not limited to the container (bulb) itself of the ultraviolet discharge lamp as described above, but can be used as a material for protecting the discharge lamp, that is, as a material of an outer tube or a protective tube. In this case, the same operation and effect as described above can be expected. Further, the quartz glass according to the present invention may be used not only for the container (bulb) of the ultraviolet discharge lamp itself but also as a material for protecting the discharge lamp, that is, as a material of an outer tube or a protective tube. Then, it is possible to provide an energy-saving ultraviolet irradiating apparatus with further lower running cost.
  • the ultraviolet irradiation method according to the present invention emits ultraviolet light in a wavelength range of 200 nm or less from a discharge lamp using a discharge tube made of quartz glass as a material as described above, and irradiates the object to be treated. By doing so, processing such as sterilization, disinfection, and decomposition of organic substances is performed.
  • a discharge lamp that emits ultraviolet light having a wavelength range of 200 nm or less is housed in a container made of quartz glass having the above-described structure, and the discharge lamp in the container is used.
  • treatment such as sterilization, disinfection, or decomposition of organic substances is performed.
  • FIG. 1 is a schematic partial cross-sectional view showing one embodiment of a discharge lamp according to the present invention
  • FIG. 2 shows various discharge lamps manufactured using the total content of sodium (Na), potassium (K), titanium (Ti), iron (Fe) and the content of OH groups as parameters of the composition of quartz glass.
  • FIG. 3 is a graph showing an ultraviolet intensity maintenance rate curve obtained by performing a lighting experiment over a long period of time. A graph showing the experimental results comparing the possible processing capacity with the processing flow rate per unit of power,
  • FIG. 4 is a diagram showing an example of a conventional liquid ultraviolet irradiation apparatus
  • FIG. 5 is a schematic partial sectional view showing an example of a conventional discharge lamp.
  • FIG. 1 shows an example of a discharge lamp L according to one embodiment of the present invention.
  • the discharge lamp L according to one embodiment of the present invention has a material strength of the arc tube bulb 11 and a discharge lamp L of the conventional discharge lamp 30. It differs from the material of the arc tube 10 only in that it is different. Other configurations may be the same as those in the related art, and thus detailed description thereof will be omitted.
  • the quartz glass constituting the material of the arc tube 11 of the discharge lamp L is made of natural quartz or quartz sand as a starting material, and includes sodium (Na), potassium), titanium, i) and iron.
  • the total content of the four elements of (Fe) is less than 2.5 ppm, and some contain OH groups of more than 10 ppm.
  • the inner diameter of the arc tube bulb 11 is 22 mm
  • the wall pressure is 1 mm
  • a pair of filaments 21 a and 21 b coated with a barium oxide emitter are arranged at both ends at intervals of 150 cm.
  • the discharge lamp L is configured to emit ultraviolet light in a wavelength range of 200 nm or less.
  • the quartz glass constituting the material of the arc tube 11 of the discharge lamp L there are four types of elements, namely, sodium (Na), potassium (K), titanium (Ti), and iron (Fe). Is not more than 2.5 ppm and contains not less than 10 ppm of OH groups, so that the aging of the quartz glass of the arc tube bulb 11 due to the short wavelength ultraviolet light emitted by the discharge lamp L is deteriorated. Can be considerably improved.
  • Figure 2 shows various types of quartz glass manufactured using the total content of sodium (Na), potassium (K), titanium (Ti), and iron (Fe) and the content of the base group as parameters. It is an ultraviolet intensity maintenance rate curve obtained by performing a lighting experiment for a long period of time. The shape and dimensions of the discharge lamp are the same, the horizontal axis represents the lighting time, and the vertical axis represents the ultraviolet intensity of 185 nm wavelength when the initial value of the intensity of the discharge lamp according to the present invention is 100%.
  • the composition conditions of quartz glass in each discharge lamp corresponding to each song, B, C, D are as shown in the table below. [table 1]
  • Curve A is sodium (Na), potassium (K), titanium (Ti) and iron (Fe) as defined in the present invention
  • the total content of the four kinds of elements is 2.5 ppm
  • the following satisfies the condition that an OH group contains 10 ppm or more, and the curves B, C, and D do not satisfy the condition.
  • the curve HA it is clear from the curve HA that the best result is obtained, and it is clear that the impurities in quartz glass are sodium (Na), potassium (K), titanium (Ti), and iron (Fe).
  • ozone is generated by the reaction to ultraviolet light in the atmosphere, and if the generated ozone is interposed between the discharge lamp and the ultraviolet intensity meter, the measured value varies.
  • the measurement was performed by directly attaching to the outer surface of the lamp.
  • the system is generally designed assuming that the UV maintenance rate after use for one year is 70%. From that point of view, it is clear that quartz glass with a composition that gives the result of the curve in Fig. 2 is effective, and quartz glass with a composition that gives the result of curves B, C, and D is clearly not effective. As described above, the total content of the four elements of sodium (Na), potassium (K), titanium (Ti), and iron (Fe), which are impurities in quartz glass, is 2.5 ppm or less. For example, the UV maintenance rate after one year of use can be maintained at 70% or more. If we comment on the OH group content, less than 10 PPm is insufficient for the Si-OH recombination effect.
  • the present invention is also applied to a discharge lamp or the like in which a substance capable of emitting excimer light such as xenon (Xe), chlorine (C1), bromine (Br), and fluorine (F) is sealed.
  • a substance capable of emitting excimer light such as xenon (Xe), chlorine (C1), bromine (Br), and fluorine (F) is sealed.
  • the quartz glass made of the material according to the present invention is used not only in the arc tube of the discharge lamp itself, but also in any part or component used when exposed to ultraviolet rays in a wavelength range of 200 nm or less. be able to.
  • the quartz glass according to the present invention can be used as the material of the ultraviolet-transparent glass wall in the outer tube (protective tube) 20 as shown in FIG.
  • the shape of such an outer tube (protective tube) for accommodating the discharge lamp, that is, the container is not limited to a cylindrical shape, but may be any shape.
  • the discharge lamp L according to the embodiment of the present invention shown in FIG. 1 (the arc tube bulb 11 has an inner diameter of 22 mm, a wall thickness of lmm, a filament interval of 150 cm, and contains about 20 mg of mercury and 130 Pa of argon gas. )
  • a quartz glass outer tube made of a raw material according to the present invention hereinafter referred to as the device of the present invention
  • a conventional discharge lamp in a quartz glass outer tube according to the prior art a quartz glass outer tube made of a raw material according to the present invention
  • Fig. 3 shows the results of an experiment comparing the ability of a stored ultraviolet irradiation device (hereinafter referred to as a conventional device and a laser) to process over time.
  • FIG. 3 shows a comparison of the processing capacity per unit of electric power between the apparatus of the present invention and the conventional apparatus, which can reduce the raw water having a TOC concentration of lOppb to lppb or less. / kWH), and the horizontal axis indicates time.
  • the apparatus of the present invention and the conventional apparatus had the same configuration and dimensions except that the quartz glass used for the discharge lamp and the outer tube were different in material. From this figure, it can be seen that the capacity of the conventional device is reduced to about 40% after 8500 hours, which is a guideline for one year of use, while the device of the present invention maintains a capacity of nearly 80%. .
  • the object to be processed by the ultraviolet irradiation apparatus according to the present invention is not limited to a liquid, but may be a solid or a gas.
  • quartz glass having a good transmittance of ultraviolet rays artificial quartz glass called so-called synthetic quartz, which is manufactured using tetrachlorosilane silicon (SiC14) as a starting material, is known.
  • British glass is not limited to the four types of sodium (Na), potassium), titanium (Ti), and iron (Fe) described in the present invention.
  • the feature is that it is extremely small. However, their high cost makes them impractical in the field of the present invention. Therefore, they are out of the scope of the present invention.
  • natural quartz or quartz sand is used as a starting material in quartz glass used by being exposed to ultraviolet light in a wavelength range of 200 nm or less, and sodium quartz, titanium, titanium, and iron are used.
  • the total content of these elements is 2.5 ppm or less, and the composition is such that they contain OH groups of 10 ppm or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Glass Compositions (AREA)

Abstract

A quartz glass to be used through exposure to an ultraviolet ray having a wave length of 200 nm or less, characterized in that it is produced from natural rock-crystal or silica sand, has a total content of sodium, potassium, titanium and iron of 2.5 ppm or less and contains an OH group in an amount of 10 ppm or more; and an ultraviolet irradiation apparatus wherein the quartz glass is used as the material of a bulb (11) of a light emitting tube of an ultraviolet discharge lamp (L), and as the material of an ultraviolet-transmittable outer tube or protecting tube (20) housing the ultraviolet discharge lamp. The quartz glass is improved with respect to the lowering of the transmittance of an ultraviolet ray in a shorter wave length region with the elapse of time, which leads to the provision of a discharge lump and an ultraviolet irradiation apparatus which are greatly improved in the degree of retention of ultraviolet ray strength, and thus can be operated at a reduced cost and with saving energy.

Description

明 細 書 短波長紫外線用石英ガラス、それを使用した放電灯、その収納容器および 紫外線照射装置 技術分野  Description Quartz glass for short wavelength ultraviolet light, discharge lamp using it, its container, and ultraviolet irradiation device
本発明は、 200nm以下の波長域の紫外線エネルギーを放射して有機物の分解処理 等を行う装置等に使用される石英ガラスの改良に関し、更に該石英ガラスを使用した放 電灯および紫外線照射装置ならびに方法に関する。 背景技術  The present invention relates to an improvement of quartz glass used for an apparatus for decomposing organic substances by emitting ultraviolet energy in a wavelength range of 200 nm or less, and further relates to a discharge lamp, an ultraviolet irradiation apparatus and a method using the quartz glass. About. Background art
短波長域の紫外線は強レヽエネルギーを有することから、有害物や有機物の分解など 多岐にわたって利用されている。図 4は、従来知られた閉鎖型の液体処理用紫外線照 射衾置の一例を示す。放電灯 30を外管 (保護管) 20内に収納したもの力 ステンレス製 のシリンダー 1内に収容され、被処理液体が該シリンダー 1内に導入されて放電灯 30か ら発光した紫外線が照射される。放電灯 30としては、例えば 185nmの波長域の紫外線 を効率よく放射する低圧水銀蒸気放電灯が使用される。放電灯 30の発光管バルブ 10 は紫外線透過性に優れた石英ガラス力もできてレ、る。放電灯 30は紫外線透過性の外 管 (保護管) 20の内部に収納され、該放電灯 30が被処理液体から液密に隔離される。 力かる外管 20も紫外線透過性に優れた石英ガラスでできて!/、る。シリンダー 1の両端は フランジ la, lbで閉じられており、入水口 lcから取り入れられた被処理液体が、シリンダ 一 1内を通過する過程で紫外線照射され、出水口 Idから排出される。被処理液体は、 入水口 lcから出水口 Idに向力 てシリンダー 1内を流れることになる力 被処理液体が ショートパスしなレ、ように、途中に複数枚 (図では 5枚)の緩流板 le〜: Liを配置した構造 になっている。なお、便宜上、図 5には放電灯 30を 1灯だけ搭載した装置を図解したが、 実用的には多灯式の大容量装置が使用される場合が多い。放電灯 30から発せられた 紫外線は、外管 20を透過し、被処理液体に照射される。照射された紫外線は、例えば 水中に存在する有機物を次式のように無害な CO、 C02、 H20に分解する作用を果た すことになる。 H20 + h v( 185nm)→ H + OHラジカル Ultraviolet light in the short wavelength region has a high level of energy, and is therefore widely used for decomposing harmful substances and organic substances. FIG. 4 shows an example of a conventionally known closed type ultraviolet irradiation bath for liquid treatment. The discharge lamp 30 is housed in an outer tube (protective tube) 20. The discharge lamp 30 is housed in a stainless steel cylinder 1 and the liquid to be treated is introduced into the cylinder 1 and irradiated with ultraviolet rays emitted from the discharge lamp 30. You. As the discharge lamp 30, for example, a low-pressure mercury vapor discharge lamp that efficiently emits ultraviolet rays in a wavelength range of 185 nm is used. The arc tube 10 of the discharge lamp 30 is also made of quartz glass having excellent ultraviolet transmittance. The discharge lamp 30 is housed inside an outer tube (protective tube) 20 that transmits ultraviolet light, and the discharge lamp 30 is liquid-tightly isolated from the liquid to be treated. The powerful outer tube 20 is also made of quartz glass with excellent ultraviolet transmittance! Both ends of the cylinder 1 are closed by flanges la and lb, and the liquid to be treated taken in from the water inlet lc is irradiated with ultraviolet rays while passing through the cylinder 11 and discharged from the water outlet Id. The liquid to be treated flows in the cylinder 1 from the water inlet lc toward the water outlet Id.Several pieces (five in the figure) of the liquid to be treated Flow plate le ~: Li is arranged. For the sake of convenience, FIG. 5 illustrates a device equipped with only one discharge lamp 30, but in practice, a multi-lamp type large-capacity device is often used. Ultraviolet light emitted from the discharge lamp 30 passes through the outer tube 20 and irradiates the liquid to be treated. Irradiated ultraviolet rays, for example, the organic matter present in the water in Succoth action decomposes were result into harmless CO, C0 2, H 2 0 as follows. H 20 + hv (185 nm) → H + OH radical
CnHmOk + OHラジカノレ→ CO、 C〇2、 H2O CnHmOk + OH radio cane → CO, C〇 2 , H 2 O
(n, m, k, は 1, 2, 3,…… ) 図 5は、放電灯 30の一構成例を示すものである。石英ガラス製の発光管バルブ 10の 両端はガラスステム 2a, 2bで気密に閉塞されている。 21a, 21bは一対のフィラメントで、 放電をスムースに行わせる目的で酸化バリウム (BaO)系のェミッタ一が塗布されている。 フィラメント 21a, 21bはそれぞれ、ガラスステム 2a, 2b上に保持され、インナーリード 22 a〜22d、モリブデン箔 24a〜24d、アウターリード 25a〜25dを介して、口金部 3a, 3bの 端子 31a〜31dに電気的に通じている。また、バルブ内には適量の水銀とアルゴンガス が封入されている。カゝかる放電灯 30を所定の電源 (図示せず)に接続して電力を投じる とフィラメント 21a, 21b間で放電し、放電熱で水銀が蒸発すると共に水銀原子力励起さ れて紫外線を発することになる。  (n, m, k, are 1, 2, 3,...) FIG. 5 shows a configuration example of the discharge lamp 30. Both ends of the quartz glass arc tube 10 are hermetically closed by glass stems 2a and 2b. A pair of filaments 21a and 21b are coated with a barium oxide (BaO) emitter for the purpose of smooth discharge. The filaments 21a and 21b are held on the glass stems 2a and 2b, respectively, and are connected to the terminals 31a to 31d of the bases 3a and 3b via inner leads 22a to 22d, molybdenum foils 24a to 24d, and outer leads 25a to 25d. It is electrically connected. Also, an appropriate amount of mercury and argon gas are sealed in the valve. When the electric discharge lamp 30 is connected to a predetermined power supply (not shown) and power is applied, a discharge occurs between the filaments 21a and 21b, mercury is evaporated by the discharge heat, and ultraviolet rays are emitted by excitation of the mercury nuclear power. become.
ところで、近年は処理能力を高める目的力 紫外線光源の高密度化が図られてレ、る。 高密度化とは、放電灯の電力を高め、紫外線の総量を増大させるものである。ところが、 本発明者はこの高密度化に伴って、放電灯の点灯時間が進むにつれて処理能力が大 幅に低下するという新たな問題が生じることを見いだした。具体的には、例えば TOC (有機物)濃度 lOppbの原水を lPPb以下に分解するのに必要な放電灯の消費電力で 表現すると、処理能力が初期には 0. 3kWh/トンであつたのに対して、約 1年後には 0. 7kWhZトンと 2倍以上の電力量を要してしまレヽ、処理能力が半減することに気付レヽた。 従来はこのような問題に気付かれることはなく、漫然と放置されていた。よって、カゝかる問 題を適切に改善する必要がある。 発明の開示 By the way, in recent years, the density of ultraviolet light sources has been increased in order to increase the processing capacity. The densification is to increase the power of the discharge lamp and increase the total amount of ultraviolet rays. However, the present inventor has found that with this increase in density, a new problem arises in that the processing capacity is significantly reduced as the lighting time of the discharge lamp advances. Specifically, for example, TOC when raw water (organic matter) concentration lOppb expressed in power consumption of the discharge lamp needs to be decomposed into the following l PP b, processing capacity of the initial Atsuta at 0. 3 kWh / ton On the other hand, about a year later, it was 0.7kWhZ tons, which required twice or more the amount of electricity, and noticed that the processing capacity was reduced by half. In the past, such a problem was not noticed and was neglected. Therefore, it is necessary to appropriately improve such problems. Disclosure of the invention
本発明者は、力かる問題を解決するために、様々な観点力もその原因との究明とその 解決策の案出を試み、このたび、紫外線を透過させる石英ガラスの紫外線透過性の経 時劣化に原因があることをつきとめた。そして、力かる石英ガラスの紫外線透過性の経 時劣ィ匕を改善する明確な方策を案出するに至った。 よって、本発明は上述の点に鑑みてなされたもので、短波長域の紫外線透過率の経 時劣化を改善した石英ガラスを提供すると共に、力かる石英ガラスを使用することで紫 外線強度維持率を大幅に改善した高密度放電灯を提供し、更にはかかる石英ガラスあ るいは放電灯を使用することで省エネルギー型の紫外線照射装置及び方法を提供しよ うとするものである。 The present inventor has sought to determine the causes of various viewpoints and to devise a solution to solve the powerful problem. And found that there was a cause. Then, they came up with a clear measure to improve the aging of the transparent quartz glass. Therefore, the present invention has been made in view of the above points, and provides quartz glass with improved aging of ultraviolet transmittance in a short wavelength range, and maintains ultraviolet intensity by using strong quartz glass. It is an object of the present invention to provide a high-density discharge lamp having a significantly improved efficiency, and to provide an energy-saving ultraviolet irradiation apparatus and method by using such a quartz glass or a discharge lamp.
本発明者は、上記の問題について、実験と解析を繰り返した結果、放電灯自身が放 射する短波長紫外線によって放電灯の管体を成す石英ガラスが変質し、透過率を低下 させ、紫外線強度維持率が経時的に低下することが原因であるとの結論を得た。 つま り、従来知られた低密度光源では、紫外線の絶対量が少なレ、ために著しい変質が生じ な力 たのに対して、放電灯の高密度ィヒによってかかる変質が顕著な経時劣ィヒ現象と なって現れたものと理解される。そして、本発明者は、紫外線強度維持率を大幅に改善 し得る石英ガラス組成の存在を見出した。すなわち、本発明者が発見した事実は主に 以下の三点である。一点目は、石英ガラスの本質を成す主成分の二酸化珪素 (Si02) の中に、ナトリウム (Na)、カリウム (K)、チタニウム (Ti)および鉄 (Fe)の不純物が多く存 在すると短波長紫外線を吸収し、石英ガラスの透過率低下をきたすこと。石英ガラスの 経時的透過率低下がこれらの不純物に起因することは、数多くのガラスサンプルを短波 長紫外線透過率の観点で調査分析し、統計的手法を用いて特定した。二点目は、初期 におレ、ては若干の透過率低下であっても放電灯の使用中に石英ガラスを経時的に変 質させ、次第に大幅な透過率低下につな力 Sること。三点目は、 OH基の存在によって上 述した石英ガラスの変質を緩和させ得ること。石英ガラスの変質及び変質緩和のメカ二 ズムについて考察した結果を述べると次のようになる。変質は、石英ガラスの「Si—O」 の結合が紫外線エネルギーによって分解しフリーの珪素 (Si)が生成されるために生ず る現象であって透過率低下を伴う。ここで、「Si—〇」の解離エネルギーは 145kCal/m olであることから、 200nmの紫外線エネルギーに相当する。よって、石英ガラスが 200n m以下の波長の紫外線に晒されたとき透過率低下の原因となる「Si— 0」の解離が生じ ることになる。そして、変質緩和とは、フリーの珪素 (Si)が OH基と再結合して「Si— O HJになることで、フリーの Siの存在を抑制する効能を持つと考えられる。 As a result of repeating experiments and analysis on the above problem, the inventor of the present invention has found that the short-wavelength ultraviolet light emitted by the discharge lamp itself alters the quartz glass forming the tube of the discharge lamp, lowers the transmittance, and reduces the ultraviolet intensity. It was concluded that the cause was that the retention rate decreased over time. In other words, while the conventionally known low-density light source has a small absolute amount of ultraviolet light and thus does not cause significant deterioration, the high-density discharge lamp causes the deterioration with time. It is understood that it appeared as a phenomena. The present inventor has found a quartz glass composition that can significantly improve the ultraviolet intensity maintenance rate. That is, the facts discovered by the present inventors are mainly the following three points. The first point is, in the silicon dioxide of the main component constituting the essence of silica glass (Si0 2), sodium (Na), potassium (K), when many impurities exist titanium (Ti) and iron (Fe) Short Absorption of ultraviolet light of a wavelength, causing a decrease in the transmittance of quartz glass. Numerous glass samples were investigated and analyzed in terms of short-wavelength UV transmittance, and the fact that the decrease in transmittance over time of quartz glass due to these impurities was identified using statistical methods. The second point is that, even if the transmittance is slightly reduced at the beginning, the quartz glass is degraded with time during use of the discharge lamp, and the force gradually leads to a significant decrease in transmittance. . Third, the above-mentioned alteration of quartz glass can be reduced by the presence of OH groups. The following is the result of examining the mechanism of alteration and alteration mitigation of quartz glass. Alteration is a phenomenon that occurs because the “Si—O” bond of quartz glass is decomposed by ultraviolet energy and free silicon (Si) is generated, accompanied by a decrease in transmittance. Here, the dissociation energy of “Si—〇” is 145 kCal / mol, which corresponds to 200 nm ultraviolet energy. Therefore, when the quartz glass is exposed to ultraviolet light having a wavelength of 200 nm or less, dissociation of “Si-0” which causes a decrease in transmittance occurs. It is considered that the alteration relaxation is effective in suppressing the presence of free Si by free silicon (Si) being recombined with OH groups to form “Si—OHJ”.
力べして、以上を考慮して、本発明に係る短波長紫外線用石英ガラスは、 200nm以下 の波長域の紫外線に晒されて使用される石英ガラスにおいて、天然の水晶もしくは珪 砂を出発原料とし、ナトリウム (Na)、カリウム (K)、チタニウム (Ti)および鉄 (Fe)の 4種 からなる元素の総含有量が 2. 5ppm以下であって、 lOppm以上の OH基を含むことを 特徴とするものである。 In view of the above, the quartz glass for short-wavelength ultraviolet light according to the present invention is a quartz glass that is used by being exposed to ultraviolet light having a wavelength range of 200 nm or less. Using sand as a starting material, the total content of the four elements, sodium (Na), potassium (K), titanium (Ti), and iron (Fe), is 2.5 ppm or less and OH groups of 10 ppm or more It is characterized by including.
天然の水晶もしくは珪砂を出発原料とする石英ガラスにあっては、各種の物質が不純 物として含まれている。上記のように、これらの不純物の中でも、ナトリウム ば、力リウ ム (K)、チタニウム (Ti)およぴ鉄 (Fe)の 4種の元素が多く存在すると、石英ガラスの透 過率低下をきたす原因となる。その一方で、 OH基の存在が石英ガラスの変質を緩和さ せ得る。すなわち、石英ガラスの主成分である二酸化珪素(Si〇2)の「Si— 0」の結合が 紫外線エネルギーによって分解されて透過率低下の原因となるフリーの Siが生成され るのを、 OH基がフリーの Siと再結合して「Si—OH」になることで抑制することができる。 発明者による実験'研究の結果、これらの 4種の元素の総含有量が 2. 5ppm以下であ つて、 lOppm以上の OH基を含むようにすると、短波長域紫外線による石英ガラスの経 時劣化をかなり改善できることが判明した。よって、石英ガラスの材質をそのように選定 若しくは設定することにより、短波長域紫外線による経時劣化をかなり改善した (すなわ ち、良好な紫外線透過率を長期間維持することのできる)石英ガラスを提供することがで きる。 Various substances are contained as impurities in quartz glass starting from natural quartz or quartz sand. As described above, among these impurities, the presence of a large amount of the four elements of sodium, lithium (K), titanium (Ti), and iron (Fe) can reduce the transmittance of quartz glass. It can cause damage. On the other hand, the presence of OH groups can mitigate the alteration of quartz glass. In other words, the generation of free Si, which causes the transmittance to decrease due to the decomposition of the “Si-0” bond of silicon dioxide (Si〇 2 ), which is the main component of quartz glass, by the OH group Can be suppressed by recombining with free Si to form “Si—OH”. As a result of experiments conducted by the inventor, if the total content of these four elements is less than 2.5 ppm and OH groups are more than 10 ppm, the aging of quartz glass due to short-wavelength ultraviolet rays will occur. It has been found that can be improved considerably. Therefore, by selecting or setting the material of the quartz glass in such a manner, it is possible to obtain a quartz glass which has considerably improved the deterioration with time due to ultraviolet rays in a short wavelength region (that is, can maintain a good ultraviolet transmittance for a long period of time). Can be provided.
なお、 200應よりも長い波長域の紫外線に対しては、上記のように石英ガラスにおけ る「Si— 0」の解離が起こりにくいので、本発明の対象外とした。また、上記 4種の元素の 総含有量の境界値を「2. 5ppm以下」と設定した理由は、実験を重ねた結果の経験に 基づき設定した。例えば、 Γ4. Oppm」の総含有量のものでは明らかに良くなぐ「3. 06 ppm」の総含有量のものでもあまり良くなレ、。一方、「1. 56ppm」の総含有量のものは 良好であり、また、「1. 20ppm」の総含有量のものも良好であることが確認できた。よつ て、これらの経験的データのほぼ中間をとつて、「2. 5ppm以下」の総含有量に境界設 定をすれば、良好な結果を得ることができることが確認された。また、 OH基の含有量の 境界値を「10PPm以上」と設定した理由は、フリーの Siを捕捉するだけの量が存在して レ、ればよレ、ことから、最低ラインをそのように設定した。 Note that, as described above, the dissociation of “Si-0” in quartz glass hardly occurs with respect to ultraviolet rays in a wavelength range longer than 200 nm, and thus was excluded from the present invention. The reason for setting the boundary value of the total content of the above four elements to “2.5 ppm or less” was set based on the experience of repeated experiments. For example, a total content of “4. Oppm” is clearly better than a total content of “3.06 ppm”. On the other hand, it was confirmed that those with a total content of “1.56 ppm” were good, and those with a total content of “1.20 ppm” were also good. Therefore, it was confirmed that good results could be obtained by setting a boundary at a total content of “2.5 ppm or less” by taking about halfway between these empirical data. Also, the reason why the boundary value of the OH group content was set to `` 10 PP m or more '' was that there was an amount sufficient to capture free Si, Was set as follows.
本発明に係る放電灯は、上記のように構成した石英ガラスを素材とした容器の中に、 2 OOnm以下の波長域の紫外線を発光する物質を封入して構成したことを特徴とする放 電灯である。この構造によって、紫外線強度維持率を大幅に改善した放電灯を提供す ることが可能となる。 The discharge lamp according to the present invention is characterized in that a substance that emits ultraviolet light in a wavelength range of 200 nm or less is enclosed in a container made of quartz glass configured as described above, It is. With this structure, it is possible to provide a discharge lamp with significantly improved ultraviolet intensity maintenance rate. It becomes possible.
本発明に係る紫外線照射装置は、上記のように構成した放電灯を搭載したことを特徴 とするものである。これにより、長期間にわたって高い紫外線透過率を維持することので きる紫外線照射装置を提供することができ、ランニングコストの安い、省エネルギー型の 紫外線照射装置を提供することが可能となる。  An ultraviolet irradiation device according to the present invention is provided with the discharge lamp configured as described above. This makes it possible to provide an ultraviolet irradiation device capable of maintaining a high ultraviolet transmittance for a long period of time, and to provide an energy-saving ultraviolet irradiation device with low running cost.
本発明に係る石英ガラスは、上記のように紫外線放電灯の容器 (バルブ)そのものに 限らず、該放電灯を保護するための容器つまり外管若しくは保護管の素材としても利用 するこができる。この場合も、上述と同様の作用効果が期待できる。また、本発明に係る 石英ガラスを、紫外線放電灯の容器 (バルブ)そのものに使用すると同時に、該放電灯 を保護するための容器つまり外管若しくは保護管の素材としても利用するようにしてよく、 そうすると、より一層ランニングコストの安い、省エネルギー型の紫外線照射装置を提供 できる。  The quartz glass according to the present invention is not limited to the container (bulb) itself of the ultraviolet discharge lamp as described above, but can be used as a material for protecting the discharge lamp, that is, as a material of an outer tube or a protective tube. In this case, the same operation and effect as described above can be expected. Further, the quartz glass according to the present invention may be used not only for the container (bulb) of the ultraviolet discharge lamp itself but also as a material for protecting the discharge lamp, that is, as a material of an outer tube or a protective tube. Then, it is possible to provide an energy-saving ultraviolet irradiating apparatus with further lower running cost.
さらに、本発明に係る紫外線照射方法は、上記のように構成した石英ガラスを素材とし た発光管を使用する放電灯カゝら 200nm以下の波長域の紫外線を発光し、これを処理 対象に照射することで、殺菌、消毒あるレ、は有機物分解等の処理を行う。  Furthermore, the ultraviolet irradiation method according to the present invention emits ultraviolet light in a wavelength range of 200 nm or less from a discharge lamp using a discharge tube made of quartz glass as a material as described above, and irradiates the object to be treated. By doing so, processing such as sterilization, disinfection, and decomposition of organic substances is performed.
また、本発明に係る別の紫外線照射方法は、上記のように構成した石英ガラスを素 材とした容器内に 200nm以下の波長域の紫外線を発光する放電灯を収納し、該容器 内の放電灯から発光される 200nm以下の波長域の紫外線を処理対象に照射すること で、殺菌、消毒あるいは有機物分解等の処理を行う。 図面の簡単な説明  In another ultraviolet irradiation method according to the present invention, a discharge lamp that emits ultraviolet light having a wavelength range of 200 nm or less is housed in a container made of quartz glass having the above-described structure, and the discharge lamp in the container is used. By irradiating the object to be treated with ultraviolet light having a wavelength range of 200 nm or less emitted from an electric lamp, treatment such as sterilization, disinfection, or decomposition of organic substances is performed. BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明に係る放電灯の一実施例を示す一部断面略図、  FIG. 1 is a schematic partial cross-sectional view showing one embodiment of a discharge lamp according to the present invention,
図 2は、石英ガラスの組成として、ナトリウム (Na)、カリウム (K)、チタニウム (Ti)、鉄 (F e)の総含有量および OH基の含有量をパラメータとして製作した各種の放電灯を長期 間にわたって点灯実験することに得られた紫外線強度維持率曲線を示すグラフ、 図 3は、本発明に従う紫外線照射装置と従来技術の紫外線照射装置とについて、 TO C濃度 lOppbの原水を lppb以下にできる処理能力を、単位電力量当たりの処理流量 で比較した実験結果を示すグラフ、  Figure 2 shows various discharge lamps manufactured using the total content of sodium (Na), potassium (K), titanium (Ti), iron (Fe) and the content of OH groups as parameters of the composition of quartz glass. FIG. 3 is a graph showing an ultraviolet intensity maintenance rate curve obtained by performing a lighting experiment over a long period of time. A graph showing the experimental results comparing the possible processing capacity with the processing flow rate per unit of power,
図 4は、従来技術による液体の紫外線照射装置の一例を示す図、 図 5は、従来技術による放電灯の一例を示す一部断面略図、である。 発明を実施するための最良の形態 FIG. 4 is a diagram showing an example of a conventional liquid ultraviolet irradiation apparatus, FIG. 5 is a schematic partial sectional view showing an example of a conventional discharge lamp. BEST MODE FOR CARRYING OUT THE INVENTION
図 1に本発明の一実施例に係る放電灯 Lの一例を示す。図 1に示す放電灯 Lが、図 5 に示した従来の放電灯 30と異なる点は、本発明の一実施例に係る放電灯 Lの発光管 バルブ 11の材質力、従来の放電灯 30の発光管バルブ 10の材質と異なってレ、る点のみ である。他の構成は、従来同様のものを用いてよいので、それらについての詳細説明は 省略する。放電灯 Lの発光管バルブ 11の材質を構成する石英ガラスは、天然の水晶も しくは珪砂を出発原料とするものであって、ナトリウム (Na)、カリウム )、チタニウムお i)およぴ鉄 (Fe)の 4種類からなる元素の総含有量が 2. 5ppm以下であって、 lOppm以 上の OH基を含むもの力もなつている。例えば、発光管バルブ 11の内径は 22mm、肉 圧は lmmで、その両端には 150cmの間隔で酸化バリウム系のェミッタ一を塗布した一 対のフィラメント 21a, 21bが配置してあり、また、管内には約 20mgの水銀と 130Paのァ ルゴンガスを封入してある。また、放電灯 Lは、 200應以下の波長域の紫外線を発光 するように構成される。  FIG. 1 shows an example of a discharge lamp L according to one embodiment of the present invention. The difference between the discharge lamp L shown in FIG. 1 and the conventional discharge lamp 30 shown in FIG. 5 is that the discharge lamp L according to one embodiment of the present invention has a material strength of the arc tube bulb 11 and a discharge lamp L of the conventional discharge lamp 30. It differs from the material of the arc tube 10 only in that it is different. Other configurations may be the same as those in the related art, and thus detailed description thereof will be omitted. The quartz glass constituting the material of the arc tube 11 of the discharge lamp L is made of natural quartz or quartz sand as a starting material, and includes sodium (Na), potassium), titanium, i) and iron. The total content of the four elements of (Fe) is less than 2.5 ppm, and some contain OH groups of more than 10 ppm. For example, the inner diameter of the arc tube bulb 11 is 22 mm, the wall pressure is 1 mm, and a pair of filaments 21 a and 21 b coated with a barium oxide emitter are arranged at both ends at intervals of 150 cm. Contains about 20 mg of mercury and 130 Pa of argon gas. Further, the discharge lamp L is configured to emit ultraviolet light in a wavelength range of 200 nm or less.
このように、放電灯 Lの発光管バルブ 11の材質を構成する石英ガラスにおいて、ナトリ ゥム (Na)、カリウム (K)、チタニウム (Ti)およぴ鉄 (Fe)の 4種類からなる元素の総含有 量が 2. 5ppm以下であって、 lOppm以上の OH基を含むようにしたことにより、該放電 灯 Lによって発光される短波長域紫外線による発光管バルブ 11の石英ガラスの経時劣 化をかなり改善できる。  As described above, in the quartz glass constituting the material of the arc tube 11 of the discharge lamp L, there are four types of elements, namely, sodium (Na), potassium (K), titanium (Ti), and iron (Fe). Is not more than 2.5 ppm and contains not less than 10 ppm of OH groups, so that the aging of the quartz glass of the arc tube bulb 11 due to the short wavelength ultraviolet light emitted by the discharge lamp L is deteriorated. Can be considerably improved.
図 2は、石英ガラスの組成として、ナトリウム (Na)、カリウム (K)、チタニウム (Ti)、鉄 (F e)の総含有量およひ ΌΗ基の含有量をパラメータとして製作した各種の放電灯を長期 間にわたって点灯実験することに得られた紫外線強度維持率曲線である。放電灯の形 状 ·寸法はいずれも同じで、横軸は点灯時間、たて軸は本発明による放電灯の強度の 初期値を 100%とした時の 185nm波長の紫外線強度である。各曲, B, C, Dに対 応する各放電灯における石英ガラスの組成条件は下記表の通りである。 [表 1] Figure 2 shows various types of quartz glass manufactured using the total content of sodium (Na), potassium (K), titanium (Ti), and iron (Fe) and the content of the base group as parameters. It is an ultraviolet intensity maintenance rate curve obtained by performing a lighting experiment for a long period of time. The shape and dimensions of the discharge lamp are the same, the horizontal axis represents the lighting time, and the vertical axis represents the ultraviolet intensity of 185 nm wavelength when the initial value of the intensity of the discharge lamp according to the present invention is 100%. The composition conditions of quartz glass in each discharge lamp corresponding to each song, B, C, D are as shown in the table below. [table 1]
曲線 Na, K, Ti, Feの総含有量 —OH基の含有量  Curve Total content of Na, K, Ti, Fe —OH group content
A 2. 5ppm以下 lOOppm  A2.5ppm or less lOOppm
B 4. 2ppm lOOppm  B4.2 ppm lOOppm
C 4. 5ppm lOppm未満  C4.5 Less than 5ppm lOppm
D 6. 4ppm lOppm未満 曲線 Aが、本発明で定義するナトリウム (Na)、カリウム (K)、チタニウム (Ti)および鉄 (Fe)の 4種類カゝらなる元素の総含有量が 2. 5ppm以下であって、 lOppm以上の OH 基を含む、という条件を満たすものであり、曲線 B, C, Dはこの条件を満たさなレヽもので ある。図 2において、曲 HAが一番良い結果を示してレ、ることから明らかなように、石英 ガラス中の不純物であるナトリウム (Na)、カリウム (K)、チタニウム (Ti)、鉄 (Fe)の 4種 の元素の総含有量おょぴ OH基の含有量を本発明に従って設定することで、経時的な 紫外線強度維持率を大きく向上させることができる。なお、図 2の実験に際しては、大気 中での紫外線に対する反応によりオゾンが発生し、その発生したオゾンが放電灯と紫外 線強度計の間に介在すると測定値がばらつくので、紫外線強度計を放電灯外面に直 付けして測定した。  D6.4 Less than lOppm Curve A is sodium (Na), potassium (K), titanium (Ti) and iron (Fe) as defined in the present invention, the total content of the four kinds of elements is 2.5 ppm The following satisfies the condition that an OH group contains 10 ppm or more, and the curves B, C, and D do not satisfy the condition. In Fig. 2, it is clear from the curve HA that the best result is obtained, and it is clear that the impurities in quartz glass are sodium (Na), potassium (K), titanium (Ti), and iron (Fe). By setting the total content of the four elements and the content of the OH group in accordance with the present invention, it is possible to greatly improve the ultraviolet light intensity maintenance rate over time. In the experiment shown in Fig. 2, ozone is generated by the reaction to ultraviolet light in the atmosphere, and if the generated ozone is interposed between the discharge lamp and the ultraviolet intensity meter, the measured value varies. The measurement was performed by directly attaching to the outer surface of the lamp.
本発明が適用される紫外線殺菌 '消毒の技術分野にあっては、放電灯の入力密度の 大小にかかわらず、一般に 1年間使用後の紫外線維持率を 70%とみなして装置を設計 するので、その観点に立つと、図 2の曲 の結果をもたらす組成の石英ガラスが有効 であり、曲線 B, C, Dの結果をもたらす組成の石英ガラスは明らかに有効ではないこと がわ力る。このように、石英ガラスの不純物であるナトリウム (Na)、カリウム (K)、チタ-ゥ ム (Ti)、鉄 (Fe)の 4種の元素の総含有量が「2. 5ppm以下」であれば、 1年間使用後 の紫外線維持率を 70%以上に確保することができる。なお、 OH基の含有量に関して 注釈するならば、 10PPm未満は Si— OHの再結合効果に対して不十分である。 In the technical field of UV sterilization and disinfection to which the present invention is applied, regardless of the magnitude of the input density of the discharge lamp, the system is generally designed assuming that the UV maintenance rate after use for one year is 70%. From that point of view, it is clear that quartz glass with a composition that gives the result of the curve in Fig. 2 is effective, and quartz glass with a composition that gives the result of curves B, C, and D is clearly not effective. As described above, the total content of the four elements of sodium (Na), potassium (K), titanium (Ti), and iron (Fe), which are impurities in quartz glass, is 2.5 ppm or less. For example, the UV maintenance rate after one year of use can be maintained at 70% or more. If we comment on the OH group content, less than 10 PPm is insufficient for the Si-OH recombination effect.
上記実施例では本発明に係る石英ガラスを使用した例として、水銀を発光物質とした 水銀蒸気放電灯について述べた力 水銀蒸気放電灯のみならず、 200nm以下の波長 域に発光する放電灯であれば、例えばクセノン (Xe)、塩素 (C1)、臭素 (Br)、フッ素 (F) 等、エキシマ発光を放射し得る物質を封入した放電灯等についても、本発明を適用す ることで、同様の作用効果を得ることができる。また、上記実施例ではフィラメントを備え た放電灯を用いて説明したが、有電極、無電極等の構造に関係なぐいずれの点灯方 式からなる放電灯に対しても本発明を適用することができ、同様の作用効果を得ること ができる。 In the above embodiment, as an example of using the quartz glass according to the present invention, not only the mercury vapor discharge lamp described for the mercury vapor discharge lamp using mercury as a luminescent substance but also a discharge lamp emitting light in a wavelength region of 200 nm or less. For example, the present invention is also applied to a discharge lamp or the like in which a substance capable of emitting excimer light such as xenon (Xe), chlorine (C1), bromine (Br), and fluorine (F) is sealed. By doing so, a similar function and effect can be obtained. Further, in the above embodiment, the description has been made using the discharge lamp having the filament. However, the present invention can be applied to a discharge lamp having any lighting method irrespective of the structure of the electrode, the electrode and the like. The same effect can be obtained.
また、本発明に係る素材からなる石英ガラスは、放電灯それ自体の発光管バルブに 限らず、 200nm以下の波長域の紫外線に晒されて使用される如何なる部分'部品 ·装 置においても使用することができる。例えば、図 4に示されたような外管 (保護管) 20に おける紫外線透過性ガラス壁の材質として本発明に係る石英ガラスを使用することがで きる。このような放電灯収納用の外管 (保護管)つまり容器の形状は、円筒形に限らず、 どのような形状であってもよい。  Further, the quartz glass made of the material according to the present invention is used not only in the arc tube of the discharge lamp itself, but also in any part or component used when exposed to ultraviolet rays in a wavelength range of 200 nm or less. be able to. For example, the quartz glass according to the present invention can be used as the material of the ultraviolet-transparent glass wall in the outer tube (protective tube) 20 as shown in FIG. The shape of such an outer tube (protective tube) for accommodating the discharge lamp, that is, the container is not limited to a cylindrical shape, but may be any shape.
図 1に示した本発明の実施例に係る放電灯 L (発光管バルブ 11の内径が 22mm、肉 厚が lmm、フィラメント間隔が 150cmで、約 20mgの水銀と 130Paのアルゴンガスを封 入したもの)を本発明に係る素材カゝらなる石英ガラス製の外管内に収納してなる紫外線 照射装置 (以下、本発明装置という)と、従来技術による放電灯を従来技術による石英 ガラス製外管内に収納してなる紫外線照射装置 (以下、従来装置とレヽぅ)との経時的処 理能力を対比した実験結果を図 3に示す。図 3は、本発明装置と従来装置につき、 TO C濃度 lOppbの原水を lppb以下にできる処理能力を単位電力量当たりの処理流量で 比較した図であり、たて軸力 S該処理流量 (トン/ kWH)を示し、横軸が時間を示す。ここ で、本発明装置と従来装置とでは、放電灯および外管に使用する石英ガラスの材質が 異なる点以外は全く同一の構成 '寸法の装置を使用した。この図より、従来装置は、 1年 間の使用目安となる 8500時間後には約 40%に能力低下するのに対して、本発明装置 は 80%近い能力を維持してレ、ることが分かる。つまり、両者の処理能力は、初期には僅 力な差ではあるものの、使用時間が進むにつれて著しい差が生じることが明らかである。 ここで、力かる紫外線照射装置は、殺菌'消毒等の目的で各種プラントや工場などで長 期にわたって使用されるものであるため、一般に装置の規模は 1年後の能力を考慮して 設計している。よって、従来装置では、 1年後の大きな能力低下を考慮に入れてそれに 耐えうるよう放電灯数を増しておくなど初期設備投資が嵩むのに対して、本発明装置で は、そのような能力低下がないので、初期設備投資を圧縮することができる。従って、本 発明によれば、単に省エネルギーであるのみならず、設備投資の削減に役立つので有 利である。なお、本発明に係る紫外線照射装置が対象とする被処理物体は、液体に限 らず、固体あるいは気体であってもよい。 The discharge lamp L according to the embodiment of the present invention shown in FIG. 1 (the arc tube bulb 11 has an inner diameter of 22 mm, a wall thickness of lmm, a filament interval of 150 cm, and contains about 20 mg of mercury and 130 Pa of argon gas. ) In a quartz glass outer tube made of a raw material according to the present invention (hereinafter referred to as the device of the present invention), and a conventional discharge lamp in a quartz glass outer tube according to the prior art. Fig. 3 shows the results of an experiment comparing the ability of a stored ultraviolet irradiation device (hereinafter referred to as a conventional device and a laser) to process over time. Fig. 3 shows a comparison of the processing capacity per unit of electric power between the apparatus of the present invention and the conventional apparatus, which can reduce the raw water having a TOC concentration of lOppb to lppb or less. / kWH), and the horizontal axis indicates time. Here, the apparatus of the present invention and the conventional apparatus had the same configuration and dimensions except that the quartz glass used for the discharge lamp and the outer tube were different in material. From this figure, it can be seen that the capacity of the conventional device is reduced to about 40% after 8500 hours, which is a guideline for one year of use, while the device of the present invention maintains a capacity of nearly 80%. . In other words, it is clear that although the processing capacity of the two is small at the beginning, there is a significant difference as the usage time advances. Here, powerful UV irradiation equipment is used for a long time in various plants and factories for the purpose of sterilization and disinfection, etc., so the scale of the equipment is generally designed in consideration of the capacity after one year. ing. Therefore, in the conventional apparatus, initial equipment investment is increased, for example, by increasing the number of discharge lamps so as to be able to withstand a large capacity drop after one year, while the apparatus of the present invention requires such capacity. Since there is no reduction, initial capital investment can be reduced. Therefore, according to the present invention, not only energy saving but also reduction of capital investment is useful. It is profitable. The object to be processed by the ultraviolet irradiation apparatus according to the present invention is not limited to a liquid, but may be a solid or a gas.
なお、紫外線の透過率が良好な石英ガラスとして、四塩ィ匕珪素 (SiC14)を出発原料と して製造される、いわゆる合成石英と称される人造の石英ガラスが知られており、この石 英ガラスは、本発明で述べた、ナトリウム (Na) ,カリウム ),チタニウム (Ti),鉄 (Fe) の 4種類のみならず、本発明で問題視してレ、なレ、アルミニウム (A1) ,リチウム (Li) ,マグ ネシゥム (Mg) ,カルシウム(Ca),クローム(Cr),ニッケル (Ni) ,銅(Cu),亜鉛 (Zn), 鉛 (Pb)等のほとんどの不純物に対する含有量が極めて少なレ、ことが特徴である。しか しながら、著しく高価であるため、本発明の分野における実用性には乏しい。よって、本 発明の対象外である。  As quartz glass having a good transmittance of ultraviolet rays, artificial quartz glass called so-called synthetic quartz, which is manufactured using tetrachlorosilane silicon (SiC14) as a starting material, is known. British glass is not limited to the four types of sodium (Na), potassium), titanium (Ti), and iron (Fe) described in the present invention. , Lithium (Li), magnesium (Mg), calcium (Ca), chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), lead (Pb), etc. The feature is that it is extremely small. However, their high cost makes them impractical in the field of the present invention. Therefore, they are out of the scope of the present invention.
以上の通り、本発明によれば、 200nm以下の波長域の紫外線に晒されて使用される 石英ガラスにおいて、天然の水晶もしくは珪砂を出発原料とし、ナトリウム、カリウム、チ タニゥムおよび鉄の 4種からなる元素の総含有量が 2. 5ppm以下であって、 lOppm以 上の OH基を含むように構成したので、 200ran以下の短波長域紫外線による石英ガラ スの経時劣化を改善することができ、低コスト及び省エネルギー型の紫外線照射装置を 提供することができる、という優れた効果を奏する。  As described above, according to the present invention, natural quartz or quartz sand is used as a starting material in quartz glass used by being exposed to ultraviolet light in a wavelength range of 200 nm or less, and sodium quartz, titanium, titanium, and iron are used. The total content of these elements is 2.5 ppm or less, and the composition is such that they contain OH groups of 10 ppm or less. An excellent effect of being able to provide a low-cost and energy-saving ultraviolet irradiation device is achieved.

Claims

請 求 の 範 囲 The scope of the claims
1. 200nm以下の波長域の紫外線に晒されて使用される石英ガラスにおいて、天然 の水晶もしくは珪砂を出発原料とし、ナトリウム、カリウム、チタニウムおよび鉄の 4種から なる元素の総含有量が 2. 5ppm以下であって、 lOppm以上の OH基を含むことを特徴 とする短波長紫外線用石英ガラス。 1.Quartz glass that is used by being exposed to ultraviolet rays in the wavelength range of 200 nm or less, using natural quartz or quartz sand as the starting material and having a total content of four elements of sodium, potassium, titanium, and iron 2. A quartz glass for short-wavelength ultraviolet light, characterized in that the OH group is not more than 5 ppm and not less than 10 ppm.
2. 請求項 1に記載の石英ガラスを素材とした容器の中に、 200nm以下の波長域の紫 外線を発光する物質を封入して構成したことを特徴とする放電灯。 2. A discharge lamp characterized in that a substance that emits ultraviolet light in a wavelength range of 200 nm or less is sealed in the container made of quartz glass according to claim 1.
3. 請求項 2に記載の放電灯と、 3. the discharge lamp according to claim 2;
処理対象に対して該放電灯カゝら発せられる紫外線を照射することで該処理対象を処 理する手段と  Means for processing the processing object by irradiating the processing object with ultraviolet light emitted from the discharge lamp
を具備する紫外線照射装置。 An ultraviolet irradiation device comprising:
4. 請求項 1に記載の石英ガラスを素材とした容器であって、 200nm以下の波長域の 紫外線を発光する放電灯を内部に収納する目的で使用される放電灯収納容器。 4. A container made of the quartz glass according to claim 1, wherein the container is used for housing a discharge lamp that emits ultraviolet light having a wavelength range of 200 nm or less.
5. 請求項 1に記載の石英ガラスを素材とした容器の中に、 200nm以下の波長域の紫 外線を発光する物質を封入して構成してなる放電灯と、 5. A discharge lamp comprising a container made of quartz glass according to claim 1 and containing a substance that emits ultraviolet light in a wavelength range of 200 nm or less,
請求項 1に記載の石英ガラスを素材とした容器であって、前記放電灯を内部に収納し てなるものと  A container made of quartz glass according to claim 1, wherein the discharge lamp is housed inside.
を具備する紫外線照射装置。 'An ultraviolet irradiation device comprising: '
6. 天然の水晶もしくは珪砂を出発原料とし、ナトリウム、カリウム、チタニウムおよぴ鉄 の 4種からなる元素の総含有量が 2. 5ppm以下であって、 lOppm以上の OH基を含む ことを特徴とする短波長紫外線用石英ガラスを発光管として使用し、その内部に 200η m以下の波長域の紫外線を発光する物質を封入して構成された放電灯により、前記 20 Onm以下の波長域の紫外線を発光するステップと、 処理対象に対して前記放電灯力 発せられた紫外線を照射することで該処理対象を 処理するステップと 6. Using natural quartz or quartz sand as the starting material, the total content of the four elements of sodium, potassium, titanium and iron is 2.5 ppm or less, and it contains OH groups of 10 ppm or more. A quartz lamp for short wavelength ultraviolet light is used as an arc tube, and a substance that emits ultraviolet light in a wavelength range of 200 ηm or less is sealed inside the discharge tube. Emitting a light, Irradiating the object to be treated with the ultraviolet light generated by the discharge lamp power, and treating the object to be treated;
を具備する紫外線照射方法。 An ultraviolet irradiation method comprising:
7. 天然の水晶もしくは珪砂を出発原料とし、ナトリウム、カリウム、チタニウムおよび鉄 の 4種力 なる元素の総含有量が 2. 5ppm以下であって、 lOppm以上の OH基を含む ことを特徴とする短波長紫外線用石英ガラスを素材とした容器内に、 200nm以下の波 長域の紫外線を発光する放電灯を収納し、該放電灯により前記 200nm以下の波長域 の紫外線を発光するステップと、 7. Using natural quartz or quartz sand as the starting material, the total content of the four elements, sodium, potassium, titanium and iron, is 2.5 ppm or less and contains OH groups of 10 ppm or more. A step of storing a discharge lamp that emits ultraviolet light having a wavelength range of 200 nm or less in a container made of quartz glass for short wavelength ultraviolet light, and emitting ultraviolet light having a wavelength range of 200 nm or less with the discharge lamp;
処理対象に対して前記容器内の前記放電灯カゝら発せられた紫外線を照射することで 該処理対象を処理するステップと  Irradiating the object to be treated with ultraviolet light emitted from the discharge lamp cap in the container, and treating the object to be treated;
を具備する紫外線照射方法。 An ultraviolet irradiation method comprising:
PCT/JP2001/008197 2000-09-21 2001-09-20 Quartz glass for short wave length ultraviolet ray, discharge lamp using the same, container therefor and ultraviolet irradiation apparatus WO2002024587A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-287260 2000-09-21
JP2000287260A JP2002097036A (en) 2000-09-21 2000-09-21 Vitreous silica for short wavelength ultraviolet ray, discharge lamp using it, the container, and ultraviolet ray radiation device

Publications (1)

Publication Number Publication Date
WO2002024587A1 true WO2002024587A1 (en) 2002-03-28

Family

ID=18771035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008197 WO2002024587A1 (en) 2000-09-21 2001-09-20 Quartz glass for short wave length ultraviolet ray, discharge lamp using the same, container therefor and ultraviolet irradiation apparatus

Country Status (2)

Country Link
JP (1) JP2002097036A (en)
WO (1) WO2002024587A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102950A2 (en) * 2004-04-15 2005-11-03 Heraeus Quarzglas Gmbh & Co. Kg Quartz glass component for a uv radiation source and method for producing and testing the aptitude

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100391858C (en) * 2002-11-27 2008-06-04 株式会社日本光电科技 Ultraviolet ray device for treating liquid and method thereof
CN1864239A (en) * 2003-04-10 2006-11-15 皇家飞利浦电子股份有限公司 Lamp assembly
JP6250920B2 (en) * 2012-08-21 2017-12-20 岩崎電気株式会社 Water treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230632A (en) * 1985-08-01 1987-02-09 Shinetsu Sekiei Kk Production of high-purity quartz glass
JPH06305767A (en) * 1993-04-26 1994-11-01 Shinetsu Quartz Prod Co Ltd Silica glass for devitrification resistant discharge lamp
US5572091A (en) * 1992-09-15 1996-11-05 Patent-Treuhand-Gesellschaft f ur elektrische Gl uhlampen mbH Quartz glass with reduced ultraviolet radiation transmissivity, and electrical discharge lamp using such glass
JPH1160264A (en) * 1997-08-07 1999-03-02 Shinetsu Quartz Prod Co Ltd Large-sized synthetic silica glass plate material for high-power vacuum ultraviolet radiation and its production
JP2000086259A (en) * 1998-09-07 2000-03-28 Tosoh Corp Optical material for vacuum ultraviolet ray

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230632A (en) * 1985-08-01 1987-02-09 Shinetsu Sekiei Kk Production of high-purity quartz glass
US5572091A (en) * 1992-09-15 1996-11-05 Patent-Treuhand-Gesellschaft f ur elektrische Gl uhlampen mbH Quartz glass with reduced ultraviolet radiation transmissivity, and electrical discharge lamp using such glass
JPH06305767A (en) * 1993-04-26 1994-11-01 Shinetsu Quartz Prod Co Ltd Silica glass for devitrification resistant discharge lamp
JPH1160264A (en) * 1997-08-07 1999-03-02 Shinetsu Quartz Prod Co Ltd Large-sized synthetic silica glass plate material for high-power vacuum ultraviolet radiation and its production
JP2000086259A (en) * 1998-09-07 2000-03-28 Tosoh Corp Optical material for vacuum ultraviolet ray

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005102950A2 (en) * 2004-04-15 2005-11-03 Heraeus Quarzglas Gmbh & Co. Kg Quartz glass component for a uv radiation source and method for producing and testing the aptitude
WO2005102950A3 (en) * 2004-04-15 2006-03-02 Heraeus Quarzglas Quartz glass component for a uv radiation source and method for producing and testing the aptitude

Also Published As

Publication number Publication date
JP2002097036A (en) 2002-04-02

Similar Documents

Publication Publication Date Title
JP2001332216A (en) Discharge lamp, light irradiating apparatus, sterilization equipment, liquid processor and air cleaning apparatus
KR100854564B1 (en) Discharge lamp and ultraviolet irradiation system and operation method therefor
Sosnin et al. A bactericidal barrier-discharge KrBr excilamp
WO2002005311A1 (en) Treating apparatus utilizing ultraviolet ray
WO2002024587A1 (en) Quartz glass for short wave length ultraviolet ray, discharge lamp using the same, container therefor and ultraviolet irradiation apparatus
CN101585574A (en) Method and device for removing bromate in water
TW570816B (en) Ultraviolet ray irradiation device and operation method thereof
JP4865965B2 (en) Liquid treatment apparatus and method using ultraviolet rays
JPH11339716A (en) Ultraviolet lamp
JP6728962B2 (en) Water treatment equipment
KR100723124B1 (en) Liquid treatment apparatus and method with ultraviolet light
CN100391858C (en) Ultraviolet ray device for treating liquid and method thereof
JPH1021880A (en) Discharge lamp, irradiation device, sterilizing device, and water treatment equipment
JP4959072B2 (en) Photochemical reaction processing apparatus and photochemical reaction processing method
WO2023243288A1 (en) Ozone-containing gas generating method and ozone-containing gas generating system
JP4432321B2 (en) Initial adjustment method of excimer irradiation equipment
JP2018167167A (en) Water treatment apparatus
JPH08115705A (en) Mercury lamp and substance treatment method using the mercury lamp
JP4603991B2 (en) Lamp-filled gas and method for manufacturing gas-filled lamp
KR100764332B1 (en) Photochemical reaction treatment apparatus and photochemical reaction treatment method
JPH1190370A (en) Surface treating device and its treatment
JPH08243553A (en) Water treating process using ultraviolet ray irradiation device
JPH05198283A (en) Ultraviolet lamp
JPH11300344A (en) Bactericidal lamp and bactericidal lamp device
JP2022071472A (en) Liquid treatment apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE KR SG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642