WO2002014587A1 - Quartz crucible and method for producing single crystal using the same - Google Patents

Quartz crucible and method for producing single crystal using the same Download PDF

Info

Publication number
WO2002014587A1
WO2002014587A1 PCT/JP2001/006829 JP0106829W WO0214587A1 WO 2002014587 A1 WO2002014587 A1 WO 2002014587A1 JP 0106829 W JP0106829 W JP 0106829W WO 0214587 A1 WO0214587 A1 WO 0214587A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
quartz crucible
quartz
thickness
crucible
Prior art date
Application number
PCT/JP2001/006829
Other languages
French (fr)
Japanese (ja)
Inventor
Katsunobu Ogiwara
Tomohiko Karasawa
Akira Uchikawa
Shinichi Sugai
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Publication of WO2002014587A1 publication Critical patent/WO2002014587A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt

Definitions

  • the present invention relates to a quartz crucible and a method for producing a single crystal using the same. More specifically, it suppresses the deformation of the quartz crucible during single crystal pulling, suppresses the deterioration caused by the deformation of the quartz crucible inner surface, and prolongs the service life.
  • TECHNICAL FIELD The present invention relates to a quartz crucible capable of pulling a single crystal for a long time while maintaining a high value, and a method for producing a single crystal using the same. Background art
  • Quartz crucibles used to produce silicon single crystals are inevitably quartz since the contamination of impurities that hinder the quality of the single crystal must be minimized.
  • Quartz crucibles include transparent quartz glass crucibles and translucent quartz glass crucibles (hereinafter simply referred to as transparent or translucent crucibles) depending on the manufacturing method.
  • translucent crucibles contain microscopic bubbles, making it easier to manufacture quartz crucibles with high strength and large dimensions, uniform heat distribution, and uniform temperature.
  • translucent crucibles are widely used in practice.
  • the temperature of the quartz crucible during the pulling of the silicon single crystal was about 150 ° C.
  • this temperature range was the area where the crystalline material, crystal barite, was formed. Therefore, quartz is apt to generate cristobalite due to thermal transformation. It is said that the crystallization is triggered by trace impurities in quartz and bubbles in translucent glass. As the quartz crucible melts, it expands and breaks when it reaches the inner surface of the quartz crucible, and the quartz pieces enter the melt. The surface becomes rough, and this becomes a crystal nucleus to form a spot-like list pallet. Although the origin of Christonolite is not yet clear, there is a theory that first, an oxygen-deficient intermediate layer of Si02-S is formed, and at the same time it spreads, the Christobalite becomes more central. However, at high temperatures this speed is said to be faster.
  • this substance may have a melting point of 170 ° C., and will not dissolve at the temperature at which the silicon single crystal is pulled up, but will float in the melt as a solid.
  • the various inconveniences that occur when pulling up a silicon single crystal are caused by the contamination of impurities due to the dissolution of the inner surface of the quartz ruppo and the desorption from the inner surface of the quartz ruppo because the generated crystallites are microcrystals. Things. Then, it is known that the crystal pallets desorbed into the silicon melt turn dislocated single crystals into dislocations.
  • Japanese Patent Application Laid-Open No. Hei 6-72793 proposes a method in which the bubble content in the inner surface region of a translucent crucible is controlled, but it is essentially a quartz loop. It does not solve the various inconveniences associated with the formation of crystallite crystal.
  • Japanese Patent Application Laid-Open No. 8-29332 proposes to grow silicon single crystals by adding CaO or BaO to a silicon melt.
  • single crystals are grown by mixing additives in quartz crucibles or silicon melts. Therefore, even though it is difficult for the additive to be incorporated into the single crystal due to the extremely small segregation coefficient, the additive becomes highly concentrated in the remaining silicon melt. There is a concern that the additive may be taken in as an impurity in the single crystal that has been pulled up by, and the quality may be reduced.
  • the multi-plunging method means that after pulling up a single crystal, the polycrystalline raw material is added to the remaining silicon melt without turning off the heater power, the next single crystal is pulled up, and this process is repeated. Pulling up multiple single crystals.
  • a crucible having a double structure using quartz glass in which the inner surface of the crucible is made substantially bubble-free and the surface layer is smoothed, and the outer layer is made of translucent glass, and the diameter of bubbles and the density of bubbles are controlled, is a special feature. It is proposed in Kaihei 6—92 27 79.
  • This quartz crucible can transmit heat energy from an external heater uniformly to the entire inner surface of the quartz crucible when pulling a single crystal, and has extremely small surface roughness due to partial erosion of the inner surface of the quartz crucible.
  • the heat-resistant strength of the steel was remarkably increased. As a result, it is said that it was possible to maintain a higher single crystallization rate than the conventional quartz crucible.
  • the present inventors have conducted intensive research and found that there is a relationship between the dislocation-free ratio of a single crystal and the thickness of the small R portion of a quartz crucible in operation after a long time, The present invention has been completed.
  • the present invention minimizes the deformation of the quartz ruppo inner surface when pulling the single crystal by minimizing the deformation of the quartz ruppo due to the heat received from the heater and the weight and weight of the crystal material to be filled.
  • the purpose is to prevent this and extend the life of the quartz crucible.
  • the present invention provides a large-diameter quartz lumber capable of pulling a single crystal for a long time while maintaining a high dislocation-free ratio of the single crystal, and a single crystal capable of pulling a single crystal for a long time using the same.
  • the aim is to provide a method.
  • a quartz crucible 1 used for pulling a single crystal by the Chiyoku-Larski method comprises a straight cylindrical portion 3 of the quartz crucible.
  • the ratio of the wall thickness 6 in the 1/2 part 5 of the above to the wall thickness 7 of the small R part 4 which is a curved part connecting the straight body cylindrical part 3 and the bottom part 2 is
  • This is a quartz crucible characterized in that it has a thickness of 1.5 to 1.8 times the wall thickness of 6.
  • the quartz crucible of the present invention By using the quartz crucible of the present invention as described above, even in a long operation in which the time for pulling a single crystal by a long operation is 80 hours or more, for example, from the first single crystal pulled by the multi-pling method to the last single crystal.
  • the dislocation-free ratio up to the straight body portion and the rounded portion of the crystal can be maintained at 70% or more.
  • the translucent quartz glass layer is a quartz crucible composed of a transparent quartz glass layer having a thickness of not less than 0.3 mm and having a crystalline quartz component in the translucent quartz glass layer.
  • such a double-structure quartz crucible is preferable because deterioration due to erosion or the like of the crucible inner surface can be further suppressed.
  • the method is a single crystal manufacturing method in which a single crystal is pulled using the quartz crucible of the present invention.
  • the production method of the present invention is a method of producing a single crystal by the Czochralski method, wherein, when producing a plurality of single crystals by a multi-pling method, a straight cylindrical cylindrical portion of the quartz crucible is used as a quartz crucible to be used.
  • the ratio of the wall thickness of the Z portion of the first cylindrical portion to the wall thickness of the small R portion which is a curved portion connecting the straight cylindrical portion and the bottom is 1% of the thickness of the straight cylindrical portion at the center of the dimension standard.
  • a method for producing a single crystal characterized in that the operation time is 80 hours or longer and the single crystal is pulled up, using a material that is 5 to 1.8 times larger,
  • the single crystal can maintain the dislocation-free ratio at 70% or more. This is a method for producing crystals.
  • the quartz crucible of the present invention has improved heat resistance during use, suppresses deformation, prevents roughening of the quartz crucible inner surface due to deformation, maintains smoothness, and extends the life of the quartz crucible. It is possible to provide a large-diameter quartz rutupo that can be easily extended and a single crystal can be pulled for a long time of 80 hours or more while maintaining a high dislocation-free rate of the single crystal.
  • FIG. 1 is a schematic sectional view showing a quartz crucible of the present invention.
  • the problem that has conventionally arisen when pulling a silicon single crystal is that the melted cristopalite on the inner surface of the quartz crucible is generated as described above. After that, the process of filling the polycrystalline raw material to pull up the next single crystal is repeated.However, during this multi-pulling process, the silicon melt melts at the bottom of the quartz crucible and inside the small R portion. Focusing on the fact that it is always in contact with the surface, the inconvenience that has conventionally occurred is eliminated by controlling the thickness of the small R portion.
  • the present inventors have studied various measures for prolonged use of quartz loops for silicon single crystal growth by the Czochralski method, and found that the thickness of the small R portion of the quartz crucible was changed to the straight cylindrical portion. It was found that cristobalite and separation of quartz from the inner surface of the quartz crucible can be suppressed if the thickness is about 1.5 to 1.8 times the thickness of the 1Z2 part.
  • the inner surface of the quartz crucible contacts the silicon melt and reacts with and dissolves the silicon, or an external carbon heater It has the function of transferring heat from the furnace to the silicon melt.
  • the quartz crucible when a quartz crucible is used for a long time at a high temperature such as 1450 ° C, if local deformation or distortion is caused in the quartz crucible, the thermal energy to the inner surface of the quartz crucible is generated at the deformed part. Communication is different from other parts. As a result, the melt receives different thermal histories at the inner surface of the quartz crucible, and as a result, the convection of the melt is disturbed and the pulling of the single crystal becomes unstable. In addition, it is known that the deformation of the quartz crucible itself will hinder the pulling of a single crystal.
  • the quartz crucible according to the present invention can greatly reduce the problems associated with such deformation.
  • the thermal stress or thermal relaxation force has an appropriate strength.
  • the rate of expansion of bubbles near the inner wall decreases, so the probability of release to the melt side decreases. Conceivable.
  • the quartz truss is deformed due to long-term operation, and a force is generated to compress the small radius part when the straight body part sinks down due to its own weight, etc. Small The deformation of the R part itself is small. As a result, it is considered that the inside becomes difficult to peel off.
  • the life of the quartz crucible is extended, and the dislocation-free ratio of the single crystal can be improved to 70% or more even in a long-time operation of 80 hours or more, and a silicon single crystal with very few impurities that hinder quality is pulled up.
  • the thermal stress or thermal relaxation force of the small R portion will be influenced as described above, and the inner surface of the small R portion will have a rough surface. It is probable that crystallites and exfoliation proceeded easily, resulting in dislocations in the crystal.
  • the quartz powder of the present invention is put into a rotating mold, and the quartz powder is deposited in a layer along the inner surface of the mold, the small R portion is deposited thicker than the conventional one, and thereafter, It is only necessary to heat and melt the quartz powder layer from the inner surface while rotating the mold, and it can be manufactured by almost the same method as before.
  • the deformation of the quartz crucible caused by the heat received from the heater from the heater and the weight of the crystal raw material to be filled for a large diameter, and the deformation of the quartz crucible due to its own weight are minimized, and the quartz crucible inner surface is reduced Deterioration can be prevented.
  • quartz crucibles are prevented from deteriorating, eroding, christering, and exfoliating due to the silicon melt, and the life of the quartz crucible is extended, and the time required to pull up the silicon single crystal is extended, so long-term stable operation It is possible to improve productivity and solve the above problems.
  • a silicon crucible having a diameter of 22 inches was charged with 120 kg of a silicon polycrystalline material, melted, and then a 80 kg silicon single crystal was pulled as a first crystal, and the remaining silicon melt was added to the silicon melt.
  • kg of polycrystalline raw material was added and melted, 80 kg of silicon single crystal was pulled up as the second, and 50 kg of polycrystalline raw material was added to the silicon melt and melted.
  • a 0 kg silicon single crystal was pulled, and the dislocation-free ratio of the pulled silicon single crystal was investigated. With this as one patch, the operation was performed up to 20 patches.
  • Table 2 shows the results when the thickness of the small radius part of the quartz crucible used was changed.
  • the diameter of the silicon single crystal pulled here was 8 inches, and the average operation time was about 100 hours.
  • a quartz crucible was manufactured by controlling the thickness of the small radius part as described above.
  • This quartz crucible is a translucent quartz glass containing at least 20000 bubbles of 1/250 ⁇ m in diameter per cm 3 , and this is used as an outer layer.
  • the wall thickness in the 1/2 part was set to about 10 mm.
  • the thickness of the small R portion was controlled in the range of about 13 mm to about 19 mm.
  • the quartz crucible having a double structure Was used.
  • the effect of the wall thickness of the small radius portion of the quartz crucible is as follows. A value of 0 or more was recognized, and the actual life of the quartz crucible was prolonged without fail. Further, if it exceeds 1.8, the dislocation-free ratio of the single crystal decreases, so that the range of 1.50.1.8 is preferable.
  • the dislocation-free ratio decreased because the increase in the thickness of the small R portion resulted in a higher heater. Because the power had to be increased, the deterioration of the quartz crucible was accelerated, or because the thickness of the quartz crucible was not uniform, the internal pressure difference due to thermal expansion could not be alleviated. Probably because it occurred.
  • the present invention is not limited to the above embodiment.
  • the above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention. It is included in the technical scope of the invention.
  • the present invention can be applied to a so-called MCZ method in which a horizontal magnetic field, a vertical magnetic field, a cusp magnetic field, or the like is applied to a silicon melt.

Abstract

A quartz crucible for use in pulling up a single crystal, characterized in that the ratio of the thickness (6) of the 1/2 portion (5) in the straight cylindrical portion (3) of the quartz crucible (1) to the thickness (7) of a small R part (4) which is a curved part connecting the straight cylindrical portion (3) with the bottom (2) is 1.5 to 1.8; and a method for producing a single crystal by the multi-pulling method, characterized in that the single crystal is pulled up using the above quartz crucible and over an operation time of 80 hours or more. The quartz crucible has a great diameter and also is suppressed in the deformation thereof and the deterioration due to the deformation of the inner surface of a crucible, which allows prolonging the useful life of the crucible and pulling up a single crystal for a long period of time while maintaining a state of a high rate of no dislocation.

Description

明 細 書 石英ルツポおよびこれを使用する単結晶製造方法  Description Quartz rutupo and method for producing single crystal using the same
技術分野 Technical field
本発明は、 石英ルツボおよびこれを使用する単結晶製造方法に関するもので ある。 さらに詳しくは、 単結晶引き上げ中の石英ルツボの変形を抑制し、 石英ル ッボ内表面の変形に起因した劣化を抑制して、 長寿命化を図り、 また、 単結晶の 無転樣化率を高く維持した状態で長時間単結晶を引上げることができる石英ルツ ボ、 およびこれを使用する単結晶製造方法に関するものである。 背景技術  The present invention relates to a quartz crucible and a method for producing a single crystal using the same. More specifically, it suppresses the deformation of the quartz crucible during single crystal pulling, suppresses the deterioration caused by the deformation of the quartz crucible inner surface, and prolongs the service life. TECHNICAL FIELD The present invention relates to a quartz crucible capable of pulling a single crystal for a long time while maintaining a high value, and a method for producing a single crystal using the same. Background art
以下、 单锘晶としてシリコンの場合を例にとって説明する。  Hereinafter, a case where silicon is used as a crystal will be described as an example.
近年、 シリ コンゥエーハの大口径化に伴い、 大口径のシリ コン単結晶を引き上 げるために使用するルツボも大口径化の一途をたどり、 今日ではルツボの口径が 2 2 〜 2 4インチ ( 5 5 8 . 8 〜 6 0 9 . 6 m m ) のものが主流となりつつある。 近年の石英ルツポの大口径化に伴って、 石英ルツボの熱負荷が大きくなり、 例え ば 8ィンチ結晶を引き上げる時は 6ィンチ結晶の時より接湯面の温度が 5 °C以上 高くなり、石英ルツボ内表面の溶損速度は 5割増し以上となる等、溶損量が増え、 その結果、 石英ルツボ内表面が荒れ、 石英ルツボの長時間の使用が困難となって いた。  In recent years, as the diameter of silicon wafers has increased, the diameter of crucibles used to pull up large-diameter silicon single crystals has also been increasing, and today the diameter of crucibles is 22 to 24 inches ( 58.8-69.6 mm) is becoming mainstream. With the increase in diameter of quartz crucibles in recent years, the thermal load on quartz crucibles has increased.For example, when pulling an 8-inch crystal, the temperature of the contact surface becomes 5 ° C or more higher than when a 6-inch crystal is used. The amount of erosion increased, such as the erosion rate of the inner surface of the crucible increased by 50% or more. As a result, the inner surface of the quartz crucible became rough, and it was difficult to use the quartz crucible for a long time.
シリ コン単結晶を製造する為に用いられるルツボは、 単結晶の品質を阻害する 不純物の混入を極力避けなければならないので、 必然的に石英となる。 そして、 石英ルツボには、 製造方法により透明石英ガラスルツボと半透明石英ガラスルツ ボ (以下、 単に透明あるいは半透明ルツボと言う) がある。 半透明ルツポは、 透 明ルツボと比較したとき、 微小な気泡が含まれるので、 強度が高く大きな寸法の 石英ルツボの製造が容易なこと、 熱の分布を均一にして温度が均一になること等 の利点を有している。 このような理由から、 半透明ルツボが実用上広く使用され ている。 しかしながら、 シリコン単結晶の引き上げ中の石英ルツボの温度は約 1 5 0 0 °Cにもなり、 この温度域は石英の熱平衡状態図から分かるように、 結晶性物質 であるクリス トバライ トの生成領域であるため、 石英は熱変態でクリストバライ トが発生し易い。 その結晶化のきっかけは、 石英中に含まれる微量の不純物や半 透明ガラス中に存在する気泡であることが言われている。 この気泡部分について は、 石英ルツボの溶解に伴い、 内表面に達した時に膨張して割れ、 石英片が融液 に入り込み、 また、 気泡が割れた部分では微細な突起を生じ、 石英ルツボ内表面 の肌荒れとなり、 これが結晶核となり斑点状のク リ ス トパライ トを形成する。 ク リス トノ ライ トの起源はまだ明確ではないが、 まず Si02- S の酸素欠乏した中間 層が形成され、 これが広がると同時に中心部からク リ ス トバライ ト化が進むとい う説があり、 そして、 高温ではこの速度がより速いと言われている。 Crucibles used to produce silicon single crystals are inevitably quartz since the contamination of impurities that hinder the quality of the single crystal must be minimized. Quartz crucibles include transparent quartz glass crucibles and translucent quartz glass crucibles (hereinafter simply referred to as transparent or translucent crucibles) depending on the manufacturing method. Compared to transparent crucibles, translucent crucibles contain microscopic bubbles, making it easier to manufacture quartz crucibles with high strength and large dimensions, uniform heat distribution, and uniform temperature. Has the advantage of For these reasons, translucent crucibles are widely used in practice. However, the temperature of the quartz crucible during the pulling of the silicon single crystal was about 150 ° C. As can be seen from the thermal equilibrium diagram of quartz, this temperature range was the area where the crystalline material, crystal barite, was formed. Therefore, quartz is apt to generate cristobalite due to thermal transformation. It is said that the crystallization is triggered by trace impurities in quartz and bubbles in translucent glass. As the quartz crucible melts, it expands and breaks when it reaches the inner surface of the quartz crucible, and the quartz pieces enter the melt. The surface becomes rough, and this becomes a crystal nucleus to form a spot-like list pallet. Although the origin of Christonolite is not yet clear, there is a theory that first, an oxygen-deficient intermediate layer of Si02-S is formed, and at the same time it spreads, the Christobalite becomes more central. However, at high temperatures this speed is said to be faster.
また、 この物質は、 一旦生成すると融点が 1 7 2 0 °Cであることもあり、 当該 シリ コン単結晶の引き上げ温度では溶解せず、 固形物となって融液中に漂うこと になる。 シリ コン単結晶を引き上げる時に生じる種々の不都合は、 石英ルツポ内 表面の溶解に伴う不純物の混入と、 生成したク リ ス トバライ トが微結晶であるた め石英ルツポ内表面から脱離することによるものである。 そして、 シリ コン融液 中に脱離したク リ ス トパライ トが、 引き上げられる単結晶を有転位化してしまう という問題が知られている。  Also, once formed, this substance may have a melting point of 170 ° C., and will not dissolve at the temperature at which the silicon single crystal is pulled up, but will float in the melt as a solid. The various inconveniences that occur when pulling up a silicon single crystal are caused by the contamination of impurities due to the dissolution of the inner surface of the quartz ruppo and the desorption from the inner surface of the quartz ruppo because the generated crystallites are microcrystals. Things. Then, it is known that the crystal pallets desorbed into the silicon melt turn dislocated single crystals into dislocations.
前述した理由から、 石英ルツボの寿命が短命なために生産性、 コス トの両面か ら工業的に非常に大きな問題となり、 単結晶のコス ト高を招いていた。  For the reasons described above, the short life of quartz crucibles has become a very industrially significant problem in terms of both productivity and cost, and has led to high single crystal costs.
こう した問題点を解決するため、 特開平 6 - 7 2 7 9 3号公報では半透明ルツ ボ内表面領域の気泡含有率を制御したものが提案されているが、 本質的に石英ル ッポに溶解ゃクリ ス トバライ ト結晶の生成に伴う種々な不都合を解消したもので はない。  In order to solve these problems, Japanese Patent Application Laid-Open No. Hei 6-72793 proposes a method in which the bubble content in the inner surface region of a translucent crucible is controlled, but it is essentially a quartz loop. It does not solve the various inconveniences associated with the formation of crystallite crystal.
これに対し、 石英ルツボの内表面の厚さ 1 m m以内に結晶化促進剤含有塗布膜 または固溶層を形成して結晶化させた石英ルツボが特開平 8 - 2 9 3 2号公報で. また、 シリコン融液中に C a Oまたは B a Oを添加してシリ コン単結晶を育成す ることが特開平 1 1 一 2 1 1 9 6号公報で提案された。 しかしながら、 いずれも 石英ルッボあるいはシリ コン融液に添加剤を混入させて単結晶を成長させている ので、 添加剤は偏析係数が非常に小さいことにより単結晶中に取り込まれにくい とは言っても、残ったシリ コン融液中には添加剤が高濃度になっていき、例えば、 マルチプリング法によって引き上げられた後の方の単結晶では、 添加剤が不純物 として取り込まれて品質を低下させる懸念がある。 In contrast, a quartz crucible crystallized by forming a crystallization-promoting agent-containing coating film or solid solution layer within 1 mm of the inner surface of the quartz crucible and crystallizing is described in Japanese Patent Application Laid-Open No. 8-29332. Japanese Patent Application Laid-Open No. H11-112196 proposes to grow silicon single crystals by adding CaO or BaO to a silicon melt. However, in both cases, single crystals are grown by mixing additives in quartz crucibles or silicon melts. Therefore, even though it is difficult for the additive to be incorporated into the single crystal due to the extremely small segregation coefficient, the additive becomes highly concentrated in the remaining silicon melt. There is a concern that the additive may be taken in as an impurity in the single crystal that has been pulled up by, and the quality may be reduced.
ここで、 マルチプリ ング法とは、 単結晶を引き上げた後、 ヒーター電源を落と さずに残りのシリ コン融液に多結晶原料を追加投入して、次の単結晶を引き上げ、 これを繰り返して複数の単結晶を引き上げることを言う。  Here, the multi-plunging method means that after pulling up a single crystal, the polycrystalline raw material is added to the remaining silicon melt without turning off the heater power, the next single crystal is pulled up, and this process is repeated. Pulling up multiple single crystals.
さらに、 高純度石英を 1 7 5 0 °C以上の温度で溶融して凝固させて 1 0 0 %ク リストパライ ト化した石英材質とする石英ルツボが特開平 9 - 5 2 7 9 1号公報 で提案された。 しかしながら、 特殊な製造技術を必要とするということで石英ル ッボのコストが極端に上昇するという問題が生じる。  Furthermore, a quartz crucible made of high-purity quartz, which is melted and solidified at a temperature of 170 ° C. or more and made into 100% cristopalite, is disclosed in Japanese Patent Laid-Open No. 9-52791. Was suggested in. However, the need for special manufacturing technology raises the problem that the cost of quartz crucibles rises extremely.
一方、 石英ガラスを用いた二重構造のルツボとして、 ルツボ内表面を実質的に 無気泡で表層を平滑にし、 外層を半透明ガラスとして気泡の径ゃ気泡の存在密度 を制御したものが、 特開平 6— 9 2 7 7 9号公報で提案されている。 この石英ル ッボは、 単結晶引き上げ時に外部ヒーターからの熱エネルギーを石英ルツボ内面 全域に均一に伝達できるとともに、 石英ルツボ内表面の部分的な侵食による表面 粗さの発生がきわめて小さく、 石英ルツボの耐熱強度が著しく増大された。 その 結果、 従来の石英ルツボに比べ高い単結晶化率を維持できたとされている。 しか しながら、 長時間、 特に 8 0時間を超えると単結晶化率が維持できなくなるとい う問題があった。 発明の開示  On the other hand, a crucible having a double structure using quartz glass, in which the inner surface of the crucible is made substantially bubble-free and the surface layer is smoothed, and the outer layer is made of translucent glass, and the diameter of bubbles and the density of bubbles are controlled, is a special feature. It is proposed in Kaihei 6—92 27 79. This quartz crucible can transmit heat energy from an external heater uniformly to the entire inner surface of the quartz crucible when pulling a single crystal, and has extremely small surface roughness due to partial erosion of the inner surface of the quartz crucible. The heat-resistant strength of the steel was remarkably increased. As a result, it is said that it was possible to maintain a higher single crystallization rate than the conventional quartz crucible. However, there has been a problem that the single crystallization ratio cannot be maintained over a long time, especially over 80 hours. Disclosure of the invention
こうした現状に鑑み、 本発明者らは鋭意研究を重ねた結果、 長時間経過後の 操業における単結晶の無転位化率と石英ルツボの小 R部の肉厚さに関係があるこ とを見出し、 本発明を完成したものである。  In view of this situation, the present inventors have conducted intensive research and found that there is a relationship between the dislocation-free ratio of a single crystal and the thickness of the small R portion of a quartz crucible in operation after a long time, The present invention has been completed.
すなわち、 本発明は、 単結晶を引き上げる際に、 石英ルツポがヒータから受け る熱と充填される結晶原料の重量および自重による変形を極力抑えて、 石英ルツ ポ内表面が劣化してしまうのを防止し、 石英ルツボの長寿命化を図ることを目的 とする。 また、 本発明は、 単結晶の無転位化率を高く維持した状態で長時間の単結晶引 き上げができる大口径石英ルツポおよびこれを用いて長時間の単結晶引き上げが できる単結晶の製造方法を提供することを目的とする。 In other words, the present invention minimizes the deformation of the quartz ruppo inner surface when pulling the single crystal by minimizing the deformation of the quartz ruppo due to the heat received from the heater and the weight and weight of the crystal material to be filled. The purpose is to prevent this and extend the life of the quartz crucible. Further, the present invention provides a large-diameter quartz lumber capable of pulling a single crystal for a long time while maintaining a high dislocation-free ratio of the single crystal, and a single crystal capable of pulling a single crystal for a long time using the same. The aim is to provide a method.
本発明は、 前記目的を達成するために為されたもので、 図 1に示す様にチヨク ラルスキー法により単結晶を引き上げる際に使用される石英ルツボ 1において、 該石英ルツボにおける直胴円筒部 3の 1 / 2部 5にある肉厚 6 と、 該直胴円筒部 3 と底部 2を繋げる曲線部分である小 R部 4の肉厚 7 との比率が、 寸法規格中心 で直胴円筒部 3の肉厚 6の 1 . 5〜 1 . 8倍となっていることを特徴とする石英 ルッボである。  The present invention has been made to achieve the above-mentioned object. As shown in FIG. 1, a quartz crucible 1 used for pulling a single crystal by the Chiyoku-Larski method comprises a straight cylindrical portion 3 of the quartz crucible. The ratio of the wall thickness 6 in the 1/2 part 5 of the above to the wall thickness 7 of the small R part 4 which is a curved part connecting the straight body cylindrical part 3 and the bottom part 2 is This is a quartz crucible characterized in that it has a thickness of 1.5 to 1.8 times the wall thickness of 6.
このよ うな本発明の石英ルツボを用いれば、 長時間操業で単結晶を引き上げる 時間が 8 0時間以上となる長時間の操業においても、 例えばマルチプリ ング法で 引き上げられる最初の単結晶から最後の単結晶の直胴部及び丸め部までの無転位 化率を 7 0 %以上に維持することができる。  By using the quartz crucible of the present invention as described above, even in a long operation in which the time for pulling a single crystal by a long operation is 80 hours or more, for example, from the first single crystal pulled by the multi-pling method to the last single crystal. The dislocation-free ratio up to the straight body portion and the rounded portion of the crystal can be maintained at 70% or more.
この場合、 直径 1 0〜 2 5 0 // πιの気泡を 1 cm3 当たり 2 0 , 0 0 0個以上 含む半透明石英ガラス層と、 この層の内表面に一体融合的に形成された無気泡で 厚さ 0 . 3 mm以上の透明石英ガラス層とからなり、 前記半透明石英ガラス層中 に結晶質石英成分が存在する石英ルツボであることが好ましい。 In this case, a semi-transparent quartz glass layer containing at least 200,000 bubbles per 1 cm 3 of bubbles with a diameter of 10 to 250 // πι, and a non-integrally formed It is preferable that the translucent quartz glass layer is a quartz crucible composed of a transparent quartz glass layer having a thickness of not less than 0.3 mm and having a crystalline quartz component in the translucent quartz glass layer.
本発明においても、 このような二重構造の石英ルツポとすることにより、 ルツ ボ内表面の侵食等による劣化を一層抑制することができるので好ましい。  Also in the present invention, such a double-structure quartz crucible is preferable because deterioration due to erosion or the like of the crucible inner surface can be further suppressed.
さらに、 この場合、 本発明の石英ルツボを用いて単結晶を引き上げる単結晶製 造方法である。  Further, in this case, the method is a single crystal manufacturing method in which a single crystal is pulled using the quartz crucible of the present invention.
このように本発明の石英ルツボを用いることにより、 安定して単結晶を引き上 げることができる。  Thus, by using the quartz crucible of the present invention, a single crystal can be stably pulled up.
そして、 本発明の製造方法は、 チヨクラルスキー法により単結晶を製造する方 法において、 マルチプリ ング法により複数の単結晶を製造する際に、 用いる石英 ルツボとして、 該石英ルツボにおける直胴円筒部の 1 Z 2部にある肉厚と、 該直 胴円筒部と底部を繋げる曲線部分である小 R部の肉厚との比率が、 寸法規格中心 で該直胴円筒部の肉厚の 1 . 5〜 1 . 8倍となっているものを用い、 操業時間を 8 0時間以上として単結晶を引き上げることを特徴とする単結晶製造方法である, このように本発明の製造方法では、 マルチプリ ング法により単結晶を製造する 場合に、 操業時間が 8 0時間以上であっても、 単結晶の無転位化率を 7 0 %以上 に維持できる単結晶の製造方法である。 The production method of the present invention is a method of producing a single crystal by the Czochralski method, wherein, when producing a plurality of single crystals by a multi-pling method, a straight cylindrical cylindrical portion of the quartz crucible is used as a quartz crucible to be used. The ratio of the wall thickness of the Z portion of the first cylindrical portion to the wall thickness of the small R portion which is a curved portion connecting the straight cylindrical portion and the bottom is 1% of the thickness of the straight cylindrical portion at the center of the dimension standard. A method for producing a single crystal, characterized in that the operation time is 80 hours or longer and the single crystal is pulled up, using a material that is 5 to 1.8 times larger, As described above, in the production method of the present invention, when a single crystal is produced by the multi-plunging method, even if the operation time is 80 hours or more, the single crystal can maintain the dislocation-free ratio at 70% or more. This is a method for producing crystals.
以上のように、 本発明の石英ルツボは、 その使用時に耐熱性が向上して変形が 抑制され、変形による石英ルツポ内表面の荒れが防止され、平滑さが維持されて、 石英ルツボの寿命を容易に延ばすと共に、 単結晶の無転位化率を高く維持した状 態で 8 0時間以上の長時間に渡り単結晶を引き上げられる大口径石英ルツポを提 供することが可能となる。  As described above, the quartz crucible of the present invention has improved heat resistance during use, suppresses deformation, prevents roughening of the quartz crucible inner surface due to deformation, maintains smoothness, and extends the life of the quartz crucible. It is possible to provide a large-diameter quartz rutupo that can be easily extended and a single crystal can be pulled for a long time of 80 hours or more while maintaining a high dislocation-free rate of the single crystal.
さらに、 本発明の石英ルツボを用いて単結晶を製造することにより、 金属不純 物ゃ不融物の混入が起きずに、 長時間の安定操業と生産性の向上を図ることが可 能となり、 工業的に非常に有利な製造方法であると言える。 図面の簡単な説明 図 1 は、 本発明の石英ルツボを示す概略断面図である。 発明を実施するための最良の形態  Furthermore, by producing a single crystal using the quartz crucible of the present invention, it becomes possible to achieve long-term stable operation and improvement of productivity without mixing of metallic impurities and infusible materials. It can be said that this is a very industrially advantageous production method. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view showing a quartz crucible of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 従来、 シリコン単結晶の引き上げ時に生じる問題点が、 前述した 様に石英ルツボ内表面の溶解ゃクリストパライ トの生成に伴う ことにあり、 特に マルチプリ ング法では、 単結晶を引き上げた後次の単結晶を引き上げるために多 結晶原料を充填することを繰り返すことになるが、 このマルチプリング法を行つ ている間中はシリ コン融液が石英ルツボの底部と小 R部の内表面に常に接してい ることに着目し、 小 R部の肉厚を制御することにより従来生じていた不都合を解 消するものである。  In the present invention, the problem that has conventionally arisen when pulling a silicon single crystal is that the melted cristopalite on the inner surface of the quartz crucible is generated as described above. After that, the process of filling the polycrystalline raw material to pull up the next single crystal is repeated.However, during this multi-pulling process, the silicon melt melts at the bottom of the quartz crucible and inside the small R portion. Focusing on the fact that it is always in contact with the surface, the inconvenience that has conventionally occurred is eliminated by controlling the thickness of the small R portion.
本発明者らは、 チヨクラルスキー法によるシリ コン単結晶成長に関し、 石英ル ッポを長時間使用するための方策を種々検討した結果、 石英ルツボの小 R部の厚 さを直胴円筒部の 1 Z 2部にある厚さより約 1 . 5〜 1 . 8倍とすれば石英ルツ ボ内表面からの石英のクリストバライ ト化と剥離を抑制できることを見出した。 以下、 本発明についてさらに詳細に説明する。 石英ルツボの内表面は、 シリ コ ン融液に接し、 シリ コンと反応し溶解したり、 あるいは外部のカーボンヒーター からの熱をシリ コン融液に伝熱する機能を有している。 ここで、 操業中の石英ル ッボの温度分布について、 黒鉛ヒーターにより加熱された黒鉛ルツボを通じて熱 が石英ルツボへ伝達されるので、小 R部は、 シリ コン溶融から単結晶引き上げ中、 底部と比べて高温になっている。 また、 小 R部は石英ルツボ直胴円筒部と比べる と、 前述した様にシリ コン融液に接している時間が長いことに注目してみる。 The present inventors have studied various measures for prolonged use of quartz loops for silicon single crystal growth by the Czochralski method, and found that the thickness of the small R portion of the quartz crucible was changed to the straight cylindrical portion. It was found that cristobalite and separation of quartz from the inner surface of the quartz crucible can be suppressed if the thickness is about 1.5 to 1.8 times the thickness of the 1Z2 part. Hereinafter, the present invention will be described in more detail. The inner surface of the quartz crucible contacts the silicon melt and reacts with and dissolves the silicon, or an external carbon heater It has the function of transferring heat from the furnace to the silicon melt. Here, regarding the temperature distribution of the quartz crucible during operation, heat is transferred to the quartz crucible through the graphite crucible heated by the graphite heater. The temperature is higher than that. Also, note that the small R part is in contact with the silicon melt for a longer time than the quartz crucible cylindrical part as described above.
例えば、 1 4 5 0 °Cのような高温で石英ルツボを長時間使用しているとき、 石 英ルツボに局部的な変形やゆがみがもたらされると、 その変形部分で石英ルツボ 内面への熱エネルギーの伝達が他の部分と異なってく る。 そのため、 融液は石英 ルツボ内面の部分で異なった熱履歴を受けることとなり、 その結果融液の対流に 乱れを生じ、 単結晶引き上げが不安定になる。 また、 石英ルツボの変形自体単結 晶引き上げに支障を与えることが知られている。 本発明による石英ルツボでは、 このよ うな変形に伴なう問題を大巾に軽減することができる。  For example, when a quartz crucible is used for a long time at a high temperature such as 1450 ° C, if local deformation or distortion is caused in the quartz crucible, the thermal energy to the inner surface of the quartz crucible is generated at the deformed part. Communication is different from other parts. As a result, the melt receives different thermal histories at the inner surface of the quartz crucible, and as a result, the convection of the melt is disturbed and the pulling of the single crystal becomes unstable. In addition, it is known that the deformation of the quartz crucible itself will hinder the pulling of a single crystal. The quartz crucible according to the present invention can greatly reduce the problems associated with such deformation.
すなわち、 本発明の石英ルツボでは、 シリ コン融液に接している時間が長い小 In other words, in the quartz crucible of the present invention, a small amount of time in contact with the silicon melt
R部の肉厚が厚くなることにより、 熱応力あるいは熱的緩和力が適度な強度にな るため、 特に内壁近傍の気泡の膨張速度が遅くなるので、 融液側へ解放する確率 が低くなると考えられる。 また、 長時間操業により、 石英ルツポは変形し、 自重 等により直胴部が下方に沈み込もう とする際に小 R部を圧縮する力が生じるが、 小 R部の厚さが厚い為に小 R部自身の変形が小さくて済む。 その結果、 内側が剥 離しにく くなると考えられる。 そして、 石英ルツボの寿命を延ばし、 8 0時間以 上の長時間操業においても単結晶の無転位化率が 7 0 %以上に向上でき、 品質を 阻害する不純物が極めて少ないシリ コン単結晶を引き上げることに成功し、 諸条 件を確立して本発明を完成させた。 ' 従来の石英ルツボでは、 その肉厚さが上端部から底部にかけて均一に近いが、 石英ルツボの製法上、 小 R部の肉厚がやや厚くなる傾向にあり、 通常は小 R部の 比率が寸法規格中心で直胴円筒部の 1 2部にある肉厚の 1 . 3倍ほどとなって いる。 しかし、 従来の石英ルツボでは、 長時間操業をすると、 上述した様にこの 小 R部分の熱応力あるいは熱的緩和力が助長的に影響を受けることにより小 R部 分の内表面に面粗さが発生し易く、 ク リ ス トバライ ト化と剥離が進行し、 結果的 に結晶が有転位化していたと考えられる。 尚、 本発明の石英ルツポは、 石英粉末を回転している型に投入し、 型の内面に 沿って層状に堆積させる際に、 小 R部を従来のルツポより厚く堆積させておき、 その後、 型を回転させながら石英粉末層を内面から加熱 ·溶融すれば良く、 従来 とほぼ同じ方法で製造できる。 As the thickness of the R portion increases, the thermal stress or thermal relaxation force has an appropriate strength.In particular, the rate of expansion of bubbles near the inner wall decreases, so the probability of release to the melt side decreases. Conceivable. In addition, the quartz truss is deformed due to long-term operation, and a force is generated to compress the small radius part when the straight body part sinks down due to its own weight, etc. Small The deformation of the R part itself is small. As a result, it is considered that the inside becomes difficult to peel off. Then, the life of the quartz crucible is extended, and the dislocation-free ratio of the single crystal can be improved to 70% or more even in a long-time operation of 80 hours or more, and a silicon single crystal with very few impurities that hinder quality is pulled up. We succeeded and established various conditions to complete the present invention. '' In conventional quartz crucibles, the thickness is almost uniform from the top to the bottom.However, due to the method of manufacturing quartz crucibles, the thickness of the small R part tends to be slightly thicker. It is about 1.3 times as thick as the thickness of the straight cylindrical part at the center of the dimensional standard. However, in a conventional quartz crucible, if the crucible is operated for a long period of time, the thermal stress or thermal relaxation force of the small R portion will be influenced as described above, and the inner surface of the small R portion will have a rough surface. It is probable that crystallites and exfoliation proceeded easily, resulting in dislocations in the crystal. In addition, when the quartz powder of the present invention is put into a rotating mold, and the quartz powder is deposited in a layer along the inner surface of the mold, the small R portion is deposited thicker than the conventional one, and thereafter, It is only necessary to heat and melt the quartz powder layer from the inner surface while rotating the mold, and it can be manufactured by almost the same method as before.
従って、 本発明の構成を採用することにより、 石英ルツボがヒータから受ける熱 と大口径用に充填される結晶原料の重量おょぴ石英ルツボの自重による変形を極力 抑えて、 石英ルツボ内表面が劣化してしまうのを防止できる。 その結果、 シリコン 融液による石英ルツボの劣化、 侵食、 ク リス トバラィ ト化、 剥離が抑制され、 石英 ルツポの寿命が延びると共に、 シリコン単結晶を引き上げる時間も延長されるので、 長時間の安定操業おょぴ生産性の向上を図ることが可能となり、 前記問題点を解決 することになる。  Therefore, by adopting the configuration of the present invention, the deformation of the quartz crucible caused by the heat received from the heater from the heater and the weight of the crystal raw material to be filled for a large diameter, and the deformation of the quartz crucible due to its own weight are minimized, and the quartz crucible inner surface is reduced Deterioration can be prevented. As a result, quartz crucibles are prevented from deteriorating, eroding, christering, and exfoliating due to the silicon melt, and the life of the quartz crucible is extended, and the time required to pull up the silicon single crystal is extended, so long-term stable operation It is possible to improve productivity and solve the above problems.
以下、 本発明の実施形態について、 実施例を挙げて説明するが、 本発明はこれ らに限定されるものではない。  Hereinafter, embodiments of the present invention will be described with reference to Examples, but the present invention is not limited thereto.
(実施例 1 ) (Example 1)
直径 1 8ィンチの石英ルツボにシリ コンの多結晶原料 7 0 k gを仕込み、 これ を融解し、 1本目として 4 8 k gのシリ コン単結晶を引き上げ、 残ったシリ コン 融液に 4 8 k gの多結晶原料を追加して融解し、 2本目として 4 8 k gのシリ コ ン単結晶を引き上げ、 さらにシリ コン融液に 3 8 k gの多結晶原料を追加して融 解し、 3本目として 4 8 k gのシリ コン単結晶を引き上げ、 次いで引き上げられ たシリ コン単結晶の無転位化率を調査した。 これを 1パッチとして、 2 0バッ まで行った。 用いた石英ルツボの小 R部の肉厚を変化させた場合の結果を表 1に 示した。 尚、 ここで引上げられたシリ コン単結晶の直径は 6インチであり、 平均 操業時間は約 1 0 0時間であった。 (表 1 ) 70 kg of silicon polycrystalline material was charged into a 18-inch diameter quartz crucible, melted, and then 48 kg of silicon single crystal was pulled as the first crystal, and 48 kg of the remaining silicon melt was added. The polycrystalline raw material was added and melted, 48 kg of silicon single crystal was pulled as the second crystal, and 38 kg of polycrystalline raw material was added to the silicon melt and melted. An 8 kg silicon single crystal was pulled, and the dislocation-free ratio of the pulled silicon single crystal was investigated. This was used as one patch, and 20 patches were performed. Table 1 shows the results when the thickness of the small radius part of the quartz crucible used was changed. The silicon single crystal pulled here was 6 inches in diameter, and the average operating time was about 100 hours. (table 1 )
Figure imgf000010_0001
Figure imgf000010_0001
(実施例 2 ) (Example 2)
直径 2 2ィンチの石英ルツボにシリコンの多結晶原料 1 2 0 k gを仕込み、 こ れを融解し、 1本目として 8 0 k gのシリ コン単結晶を引き上げ、 残ったシリ コ ン融液に 8 0 k gの多結晶原料を追加して融解し、 2本目として 8 0 k gのシリ コン単結晶を引き上げ、 さらにシリ コン融液に 5 0 k gの多結晶原料を追加して 融解し、 3本目として 7 0 k gのシリ コン単結晶を引き上げ、 次いで引き上げら れたシリ コン単結晶の無転位化率を調査した。 これを 1パッチとして、 2 0パッ チまで行った。 用いた石英ルツボの小 R部の肉厚を変化させた場合の結果を表 2 に示した。 尚、 ここで引上げられたシリ コン単結晶の直径は 8インチであり、 平 均操業時間は約 1 0 0時間であった。 A silicon crucible having a diameter of 22 inches was charged with 120 kg of a silicon polycrystalline material, melted, and then a 80 kg silicon single crystal was pulled as a first crystal, and the remaining silicon melt was added to the silicon melt. kg of polycrystalline raw material was added and melted, 80 kg of silicon single crystal was pulled up as the second, and 50 kg of polycrystalline raw material was added to the silicon melt and melted. A 0 kg silicon single crystal was pulled, and the dislocation-free ratio of the pulled silicon single crystal was investigated. With this as one patch, the operation was performed up to 20 patches. Table 2 shows the results when the thickness of the small radius part of the quartz crucible used was changed. The diameter of the silicon single crystal pulled here was 8 inches, and the average operation time was about 100 hours.
(表 2 ) (Table 2)
Figure imgf000011_0001
Figure imgf000011_0001
ここで、 実施例 1および実施例 2で使用した石英ルツボについて説明する。 ま ず、 前述したように小 R部の肉厚を制御して石英ルツボが造られた。 この石英ル ッボは、 直径 1 0 2 5 0 μ mの気泡を 1 c m3当たり 2 0 0 0 0個以上含む 半透明石英ガラスであり、 これを外層とし、 該外層における直胴円筒部の 1 / 2 部にある肉厚を約 1 0 mmとした。 小 R部の厚さについては、 約 1 3 mm〜約 1 9 mmの範囲で制御された。 さらに、 該石英ルツボの内表面には実質的に無気泡 でかつ表面が平滑な厚さ 1 2 mmの透明石英ガラスが一体融合的に形成された c このように、 二重構造の石英ルツボのものを用いた。 Here, the quartz crucible used in Example 1 and Example 2 will be described. First, a quartz crucible was manufactured by controlling the thickness of the small radius part as described above. This quartz crucible is a translucent quartz glass containing at least 20000 bubbles of 1/250 μm in diameter per cm 3 , and this is used as an outer layer. The wall thickness in the 1/2 part was set to about 10 mm. The thickness of the small R portion was controlled in the range of about 13 mm to about 19 mm. Further, on the inner surface of the quartz crucible thus substantially c transparent quartz glass bubble-free and and a smooth surface thickness 1 2 mm are formed integrally fusion, the quartz crucible having a double structure Was used.
以上の実施例 1および実施例 2の結果から判るように、 石英ルツボの小 R部に おける肉厚の効果は、 小 R部の肉厚ノ直胴円筒部の肉厚の比率が 1 . 5 0以上で 認められ、 実質的な石英ルツボの寿命も確実に延びる結果となった。 また、 1 . 8 0を超えると単結晶の無転位化率が低下しているので、 1 . 5 0 1 . 8 0の 範囲が好ましい。  As can be seen from the results of Example 1 and Example 2 above, the effect of the wall thickness of the small radius portion of the quartz crucible is as follows. A value of 0 or more was recognized, and the actual life of the quartz crucible was prolonged without fail. Further, if it exceeds 1.8, the dislocation-free ratio of the single crystal decreases, so that the range of 1.50.1.8 is preferable.
小 R部の肉厚/直胴円筒部の肉厚の比率が 1 . 9 0のところで、 無転位化率が低 下したのは、 小 R部の肉厚が増加したことにより、 より高く ヒーターパワーを上げ る必要があつたので、 石英ルツボの劣化を早めてしまったため、 あるいは石英ルツ ポの肉厚が均一でないことから熱膨張による内圧の差を緩和しきれずにルツボ内表 面の剥離が生じたためと考えられる。 なお、 本発明は、 上記実施形態に限定されるものではない。 上記実施形態は、 例示であり、 本発明の特許請求の範囲に記載された技術的思想と実質的に同一な 構成を有し、 同様な作用効果を奏するものは、 いかなるものであっても本発明の 技術的範囲に包含される。 When the ratio of the thickness of the small R portion to the thickness of the straight cylindrical portion was 1.90, the dislocation-free ratio decreased because the increase in the thickness of the small R portion resulted in a higher heater. Because the power had to be increased, the deterioration of the quartz crucible was accelerated, or because the thickness of the quartz crucible was not uniform, the internal pressure difference due to thermal expansion could not be alleviated. Probably because it occurred. Note that the present invention is not limited to the above embodiment. The above embodiment is an exemplification, and has substantially the same configuration as the technical idea described in the claims of the present invention. It is included in the technical scope of the invention.
例えば、 上記実施形態においては、 直径 6インチと 8インチのシリ コン単結晶 を引き上げる場合について実施例を挙げて説明したが、 本発明はこれには限定さ れるものではなく、 直径 1 2〜 1 6インチあるいはそれ以上の単結晶引き上げの 場合にも適用できる。  For example, in the above embodiment, a case where silicon single crystals having a diameter of 6 inches and 8 inches were pulled was described with reference to examples. However, the present invention is not limited to this, and the present invention is not limited thereto. Applicable to pulling single crystal of 6 inches or more.
また、 本発明は、 シリ コン融液に水平磁場、 縦磁場、 カスプ磁場等を印加する いわゆる M C Z法にも適用できることは言うまでもない。  In addition, it goes without saying that the present invention can be applied to a so-called MCZ method in which a horizontal magnetic field, a vertical magnetic field, a cusp magnetic field, or the like is applied to a silicon melt.

Claims

請 求 の 範 囲 The scope of the claims
1 . 単結晶を引き上げる際に使用される石英ルツボにおいて、 該石英ルツ ボにおける直胴円筒部の 1 / 2部にある肉厚と、 該直胴円筒部と底部を繋げる曲 線部分である小 R部の肉厚との比率が、寸法規格中心で該直胴円筒部の肉厚の 1 . 5〜 1 . 8倍となっていることを特徴とする石英ルツボ。 1. In a quartz crucible used for pulling a single crystal, the thickness of the quartz crucible, which is a half of a straight cylindrical portion of the quartz crucible, and a small portion which is a curved portion connecting the straight cylindrical portion and the bottom portion. A quartz crucible characterized in that the ratio to the thickness of the R portion is 1.5 to 1.8 times the thickness of the cylindrical portion at the center of the dimensional standard.
2 . 直径 1 0 ~ 2 5 0 μ ηιの気泡を 1 cm3 当たり 2 0 , 0 0 0個以上含む 半透明石英ガラス層と、 この層の内表面に一体融合的に形成された無気泡で厚さ 0 . 3 mm以上の透明石英ガラス層とからなり、 前記半透明石英ガラス層中に結 晶質石英成分が存在する石英ルツボであることを特徴とする請求項 1記載の石英 ルッボ。 2. And diameter 1 0 ~ 2 5 0 μ 1 cm 3 per 2 0 bubbles Itaiota, 0 0 0 or more, including the semi-transparent quartz glass layer, with no bubbles formed integrally fused manner on the inner surface of the layer 2. The quartz crucible according to claim 1, comprising a transparent quartz glass layer having a thickness of 0.3 mm or more, wherein the quartz crucible has a crystalline quartz component in the translucent quartz glass layer.
3 . 請求項 1または 2記載の石英ルツポを用いて単結晶を引き上げることを 特徴とする単結晶製造方法。 3. A method for producing a single crystal, which comprises pulling a single crystal using the quartz rupture according to claim 1 or 2.
4 . チヨクラルスキー法により単結晶を製造する方法において、 マルチプリ ング法により複数の単結晶を製造する際に、 用いる石英ルツボとして、 該石英ル ッボにおける直胴円筒部の 1ノ 2部にある肉厚と、 該直胴円筒部と底部を繋げる 曲線部分である小 R部の肉厚との比率が、 寸法規格中心で該直胴円筒部の肉厚の 1 . 5〜 1 . 8倍となっているものを用い、 操業時間を 8 0時間以上として単結 晶を引き上げることを特徴とする単結晶製造方法。 4. In the method of manufacturing a single crystal by the Czochralski method, when manufacturing a plurality of single crystals by the multi-pling method, the quartz crucible used is one part or two parts of the straight cylindrical part of the quartz crucible. The ratio of a certain thickness to the thickness of the small R portion, which is a curved portion connecting the straight cylindrical portion and the bottom, is 1.5 to 1.8 times the thickness of the straight cylindrical portion at the center of the dimensional standard. A method for producing a single crystal, characterized in that the operation time is at least 80 hours and the single crystal is pulled up using the following.
PCT/JP2001/006829 2000-08-15 2001-08-08 Quartz crucible and method for producing single crystal using the same WO2002014587A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-246367 2000-08-15
JP2000246367 2000-08-15

Publications (1)

Publication Number Publication Date
WO2002014587A1 true WO2002014587A1 (en) 2002-02-21

Family

ID=18736694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006829 WO2002014587A1 (en) 2000-08-15 2001-08-08 Quartz crucible and method for producing single crystal using the same

Country Status (2)

Country Link
TW (1) TW526298B (en)
WO (1) WO2002014587A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064610A1 (en) * 2004-12-16 2006-06-22 Shin-Etsu Handotai Co., Ltd. Process for producing single crystal and process for producing annealed wafer
WO2007000864A1 (en) * 2005-06-29 2007-01-04 Shin-Etsu Handotai Co., Ltd. Quartz glass crucible for pulling up of silicon single crystal and process for producing the quartz glass crucible
JP2009143770A (en) * 2007-12-14 2009-07-02 Japan Siper Quarts Corp High-strength and high-purity quartz glass crucible used for pulling large-diameter silicon single crystal ingot
JP2009143769A (en) * 2007-12-14 2009-07-02 Japan Siper Quarts Corp High-purity quartz silica crucible for pulling large-diameter single-crystal silicon ingot enabling reduction of pinhole defect in large-diameter single-crystal silicon ingot
WO2009099084A1 (en) * 2008-02-05 2009-08-13 Japan Super Quartz Corporation Quartz glass crucible
JP2011127839A (en) * 2009-12-17 2011-06-30 Toshiba Corp Crucible made of tungsten, method of manufacturing the same and method of manufacturing sapphire single crystal
JP2013133243A (en) * 2011-12-26 2013-07-08 Siltronic Ag Method for producing single crystal silicon
JP2016223976A (en) * 2015-06-02 2016-12-28 信越半導体株式会社 Impurity analysis method, and method for evaluating silicon crystal
US9611566B2 (en) 2011-12-26 2017-04-04 Siltronic Ag Method for manufacturing single-crystal silicon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148782A (en) * 1987-12-03 1989-06-12 Shin Etsu Handotai Co Ltd Quartz crucible for pulling up single crystal
JPH03232790A (en) * 1990-02-09 1991-10-16 Nippon Steel Corp Quartz crucible for apparatus for pulling up silicon single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01148782A (en) * 1987-12-03 1989-06-12 Shin Etsu Handotai Co Ltd Quartz crucible for pulling up single crystal
JPH03232790A (en) * 1990-02-09 1991-10-16 Nippon Steel Corp Quartz crucible for apparatus for pulling up silicon single crystal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064610A1 (en) * 2004-12-16 2006-06-22 Shin-Etsu Handotai Co., Ltd. Process for producing single crystal and process for producing annealed wafer
US8211228B2 (en) 2004-12-16 2012-07-03 Shin-Etsu Handotai Co., Ltd. Method for producing single crystal and a method for producing annealed wafer
WO2007000864A1 (en) * 2005-06-29 2007-01-04 Shin-Etsu Handotai Co., Ltd. Quartz glass crucible for pulling up of silicon single crystal and process for producing the quartz glass crucible
JP2007008746A (en) * 2005-06-29 2007-01-18 Shin Etsu Handotai Co Ltd Quartz glass crucible for pulling silicon single crystal and method for manufacturing the same
JP2009143770A (en) * 2007-12-14 2009-07-02 Japan Siper Quarts Corp High-strength and high-purity quartz glass crucible used for pulling large-diameter silicon single crystal ingot
JP2009143769A (en) * 2007-12-14 2009-07-02 Japan Siper Quarts Corp High-purity quartz silica crucible for pulling large-diameter single-crystal silicon ingot enabling reduction of pinhole defect in large-diameter single-crystal silicon ingot
JP5252157B2 (en) * 2008-02-05 2013-07-31 株式会社Sumco Quartz glass crucible
WO2009099084A1 (en) * 2008-02-05 2009-08-13 Japan Super Quartz Corporation Quartz glass crucible
TWI396780B (en) * 2008-02-05 2013-05-21 Japan Super Quartz Corp Quartz glass crucible
JP2011127839A (en) * 2009-12-17 2011-06-30 Toshiba Corp Crucible made of tungsten, method of manufacturing the same and method of manufacturing sapphire single crystal
JP2013133243A (en) * 2011-12-26 2013-07-08 Siltronic Ag Method for producing single crystal silicon
US9611566B2 (en) 2011-12-26 2017-04-04 Siltronic Ag Method for manufacturing single-crystal silicon
US9702055B2 (en) 2011-12-26 2017-07-11 Siltronic Ag Method for manufacturing single-crystal silicon
JP2016223976A (en) * 2015-06-02 2016-12-28 信越半導体株式会社 Impurity analysis method, and method for evaluating silicon crystal

Also Published As

Publication number Publication date
TW526298B (en) 2003-04-01

Similar Documents

Publication Publication Date Title
JP4166241B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
EP1655270B1 (en) Quartz glass crucible for pulling up silicon single crystal
JPH01148782A (en) Quartz crucible for pulling up single crystal
JPH01148718A (en) Quartz crucible and its formation
JP3733144B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP4781020B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing quartz glass crucible for pulling silicon single crystal
WO2002014587A1 (en) Quartz crucible and method for producing single crystal using the same
JP2004521851A (en) Method for manufacturing quartz glass crucible
JP2008297154A (en) Quartz glass crucible for pulling silicon single crystal and method for manufacturing the same
JP4726138B2 (en) Quartz glass crucible
JP4428529B2 (en) Quartz crucible
JPH01148783A (en) Quartz crucible for pulling up single crystal
JPH0692779A (en) Quartz crucible for pulling up single crystal
JP4788445B2 (en) Pulling method of silicon single crystal
JP4874888B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JPH068237B2 (en) Quartz crucible for pulling silicon single crystal
JP2007254162A (en) Single crystal manufacturing device and recharge method
JP2006273672A (en) Quartz crucible for pulling silicon single crystal
JP2005306708A (en) Quartz crucible
WO2024090073A1 (en) Quartz glass crucible for silicon single-crystal pulling, and silicon single-crystal manufacturing method utilizing same
US20240035198A1 (en) Systems and methods for forming single crystal silicon ingots with crucibles having a synthetic liner
US20220005766A1 (en) Composite heat insulation structure for monocrystalline silicon growth furnace and monocrystalline silicon growth furnace
JP4693932B1 (en) Cylindrical silicon crystal manufacturing method and cylindrical silicon crystal manufactured by the manufacturing method
JP2009023867A (en) Manufacturing method of semiconductor crystal and its manufacturing apparatus
JPH0543381A (en) Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 519708

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase