WO2002006671A1 - Variable displacement swash plate type clutchless compressor - Google Patents

Variable displacement swash plate type clutchless compressor Download PDF

Info

Publication number
WO2002006671A1
WO2002006671A1 PCT/JP2001/003929 JP0103929W WO0206671A1 WO 2002006671 A1 WO2002006671 A1 WO 2002006671A1 JP 0103929 W JP0103929 W JP 0103929W WO 0206671 A1 WO0206671 A1 WO 0206671A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
refrigerant gas
chamber
swash plate
suction
Prior art date
Application number
PCT/JP2001/003929
Other languages
French (fr)
Japanese (ja)
Inventor
Yukio Kazahaya
Keiichi Matsuda
Original Assignee
Zexel Valeo Climate Control Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corporation filed Critical Zexel Valeo Climate Control Corporation
Publication of WO2002006671A1 publication Critical patent/WO2002006671A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/225Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves with throttling valves or valves varying the pump inlet opening or the outlet opening

Definitions

  • the present invention relates to a variable displacement swash plate type clutchless compressor, and more particularly to a variable displacement type swash plate type clutchless compressor to which engine driving force is constantly transmitted.
  • a variable displacement swash plate type clutchless compressor is one such clutchless compressor.
  • variable displacement swash plate type clutchless compressor includes a cylinder block, a shaft, a discharge chamber, a suction passage, a spool valve, and a control valve. ing.
  • the shaft is rotatably supported in the center of the cylinder block.
  • the discharge chamber is provided in the lid head, and stores the refrigerant gas discharged from the compression chamber in the cylinder pore.
  • the suction passage conducts refrigerant gas from the suction port to the suction chamber (P s).
  • the spool valve is slidably housed in the valve housing space in the middle of the suction passage.
  • the valve housing space is divided into a valve opening chamber and a valve closing chamber with the spool valve interposed.
  • the three control valve is installed between the discharge chamber and the crank chamber.
  • the refrigerant gas in the discharge chamber (Pd) is supplied to the valve opening chamber.
  • the high-pressure (P k) refrigerant gas downstream of the control valve is supplied to the valve closing chamber.
  • This valve closing chamber contains a spring that biases the spool valve in the valve direction.
  • the pressure in the valve closing chamber increases and the pressure difference between the valve closing chamber and the valve opening chamber increases.
  • the spool valve is disposed on the lid head so as to be slidable in parallel with the central axis of the shaft. And since the dimension of the shaft of the head in the central axis direction is small, it is not possible to increase the dimension of the spool valve in the sliding direction.
  • the present invention suppresses the leakage of refrigerant gas to the suction passage to improve the performance, and at the same time, improves the operating characteristics of the spool valve.
  • the purpose is to provide a compressor. Disclosure of the invention
  • the present invention provides a cylinder block having a plurality of cylinder bores, and a cylinder rotatably supported at the center of the cylinder block.
  • a discharge chamber for accommodating the refrigerant gas discharged from the foot and the compression chamber in the cylinder bore; a suction passage for guiding the refrigerant gas from the suction port to the suction chamber; and a pressure of the refrigerant gas downstream of the pressure control valve.
  • the urging force of the urging member acts in the valve closing direction, and the pressure of the refrigerant gas in the discharge chamber acts in the valve opening direction, and the suction is performed only when the pressure difference between the two drops below a predetermined value.
  • the suction control valve is a spool valve
  • the spool valve is a central shaft of the shaft. They are arranged in a direction orthogonal to.
  • the overall length can be longer than that of the conventional spool valve, the sliding part of the spool valve that seals between the valve opening chamber and the suction passage and between the valve closing chamber and the suction passage is made longer. be able to. Therefore, it is possible to improve the performance by suppressing the leakage of the refrigerant gas to the suction passage and to improve the operating characteristics of the spool valve.
  • the spool valve has a pair of cylindrical portions and the circular portion.
  • a bridge portion connects the cylindrical portions to each other in the axial direction.
  • the bridge portion is divided into two by the bridge portion.
  • each cylindrical part can slide independently in the valve housing space. Therefore, a predetermined slidability can be secured without strictly controlling the cylindricity of the valve accommodating space.
  • At least the outer peripheral surfaces of the pair of cylindrical portions are provided at least.
  • the gap between the outer peripheral surface of the cylindrical portion and the inner peripheral surface of the valve accommodating space can be maintained at a substantially constant interval to prevent the sticking phenomenon of the spool valve.
  • FIG. 1 is a longitudinal sectional view showing a variable displacement type swash plate type clutchless compressor according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line II-II of FIG.
  • FIG. 3 is a view taken in the direction of arrow A in FIG.
  • Figure 4 is a side view of the spool valve. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a longitudinal sectional view showing a variable displacement type swash plate type clutchless compressor according to an embodiment of the present invention
  • FIG. 2 is FIG. Fig. 3 is a cross-sectional view taken along the line II-II
  • Fig. 3 is a view along arrow A in Fig. 2
  • Fig. 4 is a side view of the spool valve.
  • one end of cylinder block 1 has a lid head 3 via a valve plate 2 and the other end has a front. Head 4 is fixed.
  • the cylinder block 1 is provided with a plurality of cylinder bores 6 at predetermined intervals in the circumferential direction around the shaft 5.
  • a piston 7 is slidably accommodated in each of the cylinder pores 6.
  • a crank chamber 8 is formed in the front head 4, and a swash plate 10 is accommodated in the crank chamber 8.
  • the swash plate 10 is mounted on the shaft 5 via the hinge pole 9 so as to slide and tilt.
  • a hinge pole receiving surface 10d corresponding to the spherical portion 9a of the hinge pole 9 is provided.
  • the spherical portion 9a of the hinge pole 9 is slidably fitted on the hinge pole receiving surface 10d.
  • the swash plate 10 is connected to the piston 7 via the shower 50.
  • the shower 50 is supported by supporting recesses 7 a and 7 b of the piston 7 so as to be rotatable relative to both end faces 10 a and 10 b of the swash plate 10.
  • a discharge chamber 12 and a suction chamber 13 are formed in the lid 3.
  • the discharge chamber 12 is arranged so as to surround the suction chamber 13 (see Fig. 2).
  • the inlet 3a is provided with a suction port 3a leading to an evaporator (not shown).
  • the refrigerant gas in the suction port 3 a is guided to the suction chamber 13 via a suction passage 39 formed in the head 3.
  • a valve housing space 134 is provided in the middle of the suction passage 39, and a spool valve (suction control valve) 30 is provided in this valve storage space i34 in a direction perpendicular to the center axis of the shaft 5. It is slidably housed in.
  • the spool valve 30 includes cylindrical portions 13 1 and 13 2, and a bridge portion 13 3 connecting the cylindrical portion 13 1 and the cylindrical portion 13 2.
  • annular groove 13a is formed on the outer peripheral surface of the cylindrical portion 131, and an annular groove 13a is formed on the outer peripheral surface of the cylindrical portion 13 (see Fig. 4).
  • the valve accommodating space 13 4 is divided into a valve opening chamber 13 3 a and a valve closing chamber 13 3 b with the spool valve 30 interposed therebetween.
  • a spring (biasing member) 32 and a spring guide 35 are accommodated in the cylindrical portion 132.
  • One end of the spring 32 contacts the bottom surface of the cylindrical portion 132, and the other end of the spring 32 contacts the flange portion 35a of the spring guide 35.
  • a lid member 36 for closing the opening portion 134a of the valve accommodating space 134 is provided, and the lid member 37 is prevented from falling off by a snap ring 37.
  • An O-ring is provided on the outer peripheral surface of the lid member 36.
  • the other end of the spring guide 35 is in contact with the bottom surface of the cylindrical portion 132.
  • Refrigerant gas is supplied from the discharge chamber 12 to the valve opening chamber 13 3 a through the through hole 12 a.
  • a high-pressure (P k) refrigerant gas upstream of the crank chamber 8 from the control valve (pressure control valve) 81 through the passage 60 is provided in the valve closing chamber 13 3 b. Is supplied.
  • the pressure (P d) of the refrigerant gas in the valve opening chamber 133 a acts on the cylindrical portion 13 1 of the spool valve 30 in the valve opening direction (the direction in which the valve opening increases).
  • the resultant force of the pressure (P k) of the refrigerant gas in the valve closing chamber 13 3 b and the urging force of the spring 32 is in the valve closing direction (valve opening degree). In the direction of decreasing).
  • the spool valve 30 is fully closed according to the difference between the internal pressure of the valve-opening chamber 13a and the internal pressure of the valve-closing chamber 13b. Displaced between the fully open position shown in the figure (the position where the suction passage 39 opens).
  • the spool valve 30 moves to the fully closed position when the difference between the internal pressure of the valve-opening chamber 133a and the internal pressure of the valve-closing chamber 133b falls below a predetermined value, and the pressure difference becomes the predetermined value. When it exceeds P, it moves to the fully open position side.
  • the control valve 81 is provided in the passage 57 connecting the discharge chamber 12 and the crank chamber 8 to control the power supply to a solenoid (not shown). Thus, the sectional area of the passage 57 is adjusted.
  • the control valve 81 opens the passage 57 when the heat load is small, and shuts off the passage 57 when the heat load is large.
  • the suction 3 and the crank chamber 8 communicate with each other via a passage 58.
  • the valve plate 2 is provided with a discharge port 16 for communicating the compression chamber 6a with the discharge chamber 12 and a suction port 15 for communicating the compression chamber 6a with the suction chamber 13 respectively. It is provided at predetermined intervals in the direction.
  • Discharge port h 16 is opened and closed by discharge valve 17 and discharge valve
  • Reference numeral 17 is fixed to the rear end surface of the valve plate 2 by a port 19.
  • the suction port 15 is opened and closed by a suction valve 21, and the suction valve 21 is disposed between the valve plate 2 and the cylinder block 1.
  • the radial bearing 25 and the thrust bearing 24 support the rear side of the shaft 5, and the front side of the shaft 5 is rotatably supported by the radial bearing 26.
  • a thrust flange 40 for transmitting the rotation of the shaft 5 to the swash plate 10 is fixed to the shaft 5, and this thrust flange 40 is a thrust flange. It is supported on the inner wall surface of the front head 4 via a bearing 33.
  • the thrust flange 40 and the swash plate 10 are connected via a link mechanism 41, and the swash plate 10 can be inclined with respect to a virtual plane orthogonal to the shaft 5.
  • a winding spring 93 is mounted between the thrust flange 40 and the hinge pole 9 on the outer peripheral surface of the shaft 5.
  • variable capacity swash plate type clutchless compressor The rotational power of the vehicle engine (not shown) is constantly transmitted to the pulley (not shown) and the shaft 5 via a belt (not shown), and the rotating power of the shaft 5 is thrust flat.
  • the swash plate 10 is transmitted to the swash plate 10 via the link 40 and the link mechanism 41, and the swash plate 10 rotates quickly.
  • the rotation of the swash plate 10 causes the shaft 50 to relatively rotate on the end faces 10 a and 10 b of the swash plate 10, so that the rotation force from the swash plate 10 is applied to the piston 7. Converted to linear reciprocation.
  • the piston 7 reciprocates in the cylinder pore 6, and as a result, the volume of the compression chamber 6a in the cylinder pore 6 changes, and the suction, compression and discharge of the refrigerant gas are caused by the volume change.
  • the operation is sequentially performed, and a refrigerant gas having a capacity corresponding to the inclination angle of the swash plate 10 is discharged.
  • the suction valve 21 is opened, and low-pressure refrigerant gas is sucked from the suction chamber 13 into the compression chamber 6a in the cylinder pore 6, and at the time of discharge, the discharge valve 17 is opened, and the compression chamber 6a is opened. High-pressure refrigerant gas is discharged from the discharge chamber 12 to the discharge chamber 12.
  • the control knob 81 When the control knob 81 is opened, the high-pressure (P k) refrigerant gas downstream of the control valve 81 is supplied to the valve closing chamber 133 b via the passage 60. Is done.
  • the pressure (P k) of the valve closing chamber 13 3 b increases and the pressure difference between the valve closing chamber 13 3 b and the valve opening chamber 13 3 a falls below a predetermined value P, the spring 3 2
  • the spool valve 30 is moved in the valve closing direction by the urging force, and the suction passage 39 is shut off.
  • the refrigerant gas returns to the suction chamber 13 through the suction chamber 13, the compression chamber 6 a, the discharge chamber 12, the passage 57, the crank chamber 8, and the passage 58 sequentially.
  • the pressure difference between the valve-closing chamber 13 3 b and the valve-opening chamber 13 33 a exceeds the predetermined value P, and acts on the spool valve 30.
  • P k refrigerant gas pressure
  • variable displacement type swash plate type clutchless compressor of this embodiment has the following effects.
  • Leakage of refrigerant gas from the valve-opening chamber 13 3a to the suction passage 39 can be suppressed as compared with the conventional spool valve, so that a reduction in volumetric efficiency is suppressed and performance is prevented. can do.
  • the pressure in the valve closing chamber 13 3 b can be sufficiently reduced.
  • the spool valve 30 can be moved quickly and surely by raising it, thereby preventing the operation delay and malfunction of the spool valve 30.
  • the outer peripheral surfaces of the cylindrical portions 13 1 and 13 2 and the valve housing space 13 3 are formed by refrigerant gas flowing through the annular grooves 13 1 a and 13 2 a. Since the gap between the inner peripheral surface of the spool 4 and the inner peripheral surface of the spool 4 is maintained at a substantially constant interval, the phenomenon of sticking of the spool valve 30 (the outer peripheral surface of the cylindrical portions 13 1 and 13 2 is not The outer peripheral surface of the cylindrical portions 13 1 and 13 2 is pressed against the inner peripheral surface of the valve housing space 13 4 due to uneven pressure generated between the inner peripheral surface of the space 13 4 and the inner peripheral surface of the space 13 4. And) are prevented.
  • the spool valve is formed integrally.
  • the spool valve may be divided into two at the bridge portion 133. When divided into two, the circle of the valve accommodation space 1 3 4 Predetermined slidability can be ensured without having to control the cylindricity so strictly.
  • the spool valve 30 is arranged horizontally. However, if the spool valve 30 is arranged so as to be substantially perpendicular to the center axis of the shaft 5, it is not always necessary to arrange the spool valve horizontally.
  • the pressure of the valve-opening chamber 133a is set as the pressure downstream of the control valve 81, but the pressure of the crank chamber 8 may be used.
  • variable displacement swash plate type clutchless compressor is useful as a refrigerant compressor of an air-con mounted on vehicles such as passenger cars, buses, and trucks.
  • it is suitable as a compressor used for an air conditioner that controls the amount of refrigerant gas discharged according to the required cooling capacity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

A variable displacement swash plate type clutchless compressor, comprising a cylinder block (1) allowing a plurality of cylinder bores (6) to be formed therein, a shaft (5) supported rotatably on the cylinder block (1) at the center part thereof, a discharge chamber (12) for storing the refrigerant gas discharged from compression chambers (6a) in the cylinder bores (6), an intake path (39) for leading the refrigerant gas from an intake port (3a) to the intake chamber (13), and a spool valve (30) allowing the pressure of the refrigerant gas on the downstream side of a control valve (81) and the energizing force of a spring (32) to act in the valve closing direction and the pressure of the refrigerant gas in the discharge chamber (12) to act in the valve opening direction and, only when a pressure difference therebetween is reduced to less than a specified value, cutting out the intake path (39), wherein the spool valve (30) is disposed in the direction crossed perpendicular to the center axis of the shaft (5).

Description

明細 可変容量型斜板式ク ラ ッ チレス圧縮機 技術分野  Description Variable capacity swash plate type clutchless compressor Technical field
この発明は可変容量型斜板式ク ラ ッ チレス圧縮機に関 し、 特にエンジンの駆動力が常時伝達される可変容量型 斜板式ク ラ ッ チレス圧縮機に関する。 背景技術  The present invention relates to a variable displacement swash plate type clutchless compressor, and more particularly to a variable displacement type swash plate type clutchless compressor to which engine driving force is constantly transmitted. Background art
ク ラ ッチレス圧縮 には電磁ク ラ ッ チがないため、 電 磁ク ラ ッチのオン - オフ時のシ ョ ッ ク がな く 、 しか も構 造が簡素であ るため、 軽量化やコス ト の低減を図る こ と ができる  Since the clutchless compression does not have an electromagnetic clutch, there is no shock when the electromagnetic clutch is turned on and off, and the structure is simple, so that the weight and cost can be reduced. Can be reduced
こ のク ラ ッ チレス圧縮機と して可変容量型斜板式ク ラ ツ チレス圧縮機がある。  A variable displacement swash plate type clutchless compressor is one such clutchless compressor.
可変容量型斜板式ク ラ ッ チ レス圧縮機は、 シ リ ンダブ ロ ッ ク と、 シ ャ フ ト と、 吐出室と、 吸入通路と、 ス プー ル弁と、 コ ン ト ロ ールバルブと を備えてい る。  The variable displacement swash plate type clutchless compressor includes a cylinder block, a shaft, a discharge chamber, a suction passage, a spool valve, and a control valve. ing.
シ リ ンダブロ ッ ク には複数のシリ ンダポアが形成され ている。  Multiple cylinder pores are formed in the cylinder block.
シャ フ ト はシ リ ンダブロ ッ ク の中心部に回転可能に支 持されている。  The shaft is rotatably supported in the center of the cylinder block.
吐出室は リ ャへ ッ ド に設け られ、 シ リ ンダポア内の圧 縮室か ら 吐出された冷媒ガス を収容する。  The discharge chamber is provided in the lid head, and stores the refrigerant gas discharged from the compression chamber in the cylinder pore.
吸入通路は吸入口か ら吸入室 ( P s ) へ冷媒ガス を導 < The suction passage conducts refrigerant gas from the suction port to the suction chamber (P s). <
ス プール弁は吸入通路の途中の弁収容空間に摺動可能 収容されてレゝる。 弁収容空間はスプール弁を挟んで開 弁室と閉弁室と に区画される。  The spool valve is slidably housed in the valve housing space in the middle of the suction passage. The valve housing space is divided into a valve opening chamber and a valve closing chamber with the spool valve interposed.
3 ン 卜 ロールバルブは吐出室と ク ラ ンク室と の間に設 け られている。  The three control valve is installed between the discharge chamber and the crank chamber.
開弁室には吐出室 ( P d ) の冷媒ガスが供給される。 閉弁室にはコ ン ト ロールバルブの下流の高圧 ( P k ) の冷媒ガスが供給される。 こ の閉弁室にはス プール弁を 弁方向へ付勢する ばねが収容されている。  The refrigerant gas in the discharge chamber (Pd) is supplied to the valve opening chamber. The high-pressure (P k) refrigerant gas downstream of the control valve is supplied to the valve closing chamber. This valve closing chamber contains a spring that biases the spool valve in the valve direction.
閉弁室の圧力が高 く な り 、 閉弁室と開弁室と の圧力差 The pressure in the valve closing chamber increases and the pressure difference between the valve closing chamber and the valve opening chamber increases.
( P d - P k ) が所定値を下回る と、 ばねの付勢力 によ り ス プ一ル弁が閉弁方向へ移動して吸入通路が遮断され る When (Pd-Pk) falls below a predetermined value, the spring valve moves in the valve closing direction due to the biasing force of the spring, and the suction passage is shut off.
その結果、 吸入口か ら吸入室への冷媒ガス の流入が阻 止される。  As a result, the flow of the refrigerant gas from the suction port to the suction chamber is prevented.
と こ ろで、 スプール弁はリ ャへッ ド にシャ フ ト の中心 軸 と平行に摺動可能なよ う に配置されている。 そして、 ャへ ッ ド のシャ フ ト の中心軸方向の寸法は小さ いので ス プール弁の摺動方向の寸法を大き く する こ とができな い  At this time, the spool valve is disposed on the lid head so as to be slidable in parallel with the central axis of the shaft. And since the dimension of the shaft of the head in the central axis direction is small, it is not possible to increase the dimension of the spool valve in the sliding direction.
そのため、開弁室か ら吸入通路へ冷媒ガスが リ ーク し、 体積効率が低下して性能が低下する。  As a result, the refrigerant gas leaks from the valve opening chamber to the suction passage, and the volumetric efficiency is reduced and the performance is reduced.
また、 閉弁室か ら吸入通路へ冷媒ガスが リ ーク し、 閉 弁室の圧力が十分に上昇できず、 スプール弁の作動遅れ や作動不良が発生していた。 こ の発明は、 吸入通路への冷媒ガスの リ ーク を抑制し て性能を向上させる と と も に、 ス プール弁の作動特性を 向上させる こ とができ る可変容量型斜板式ク ラ ッチレス 圧縮機を提供する こ と を 目的とする。 発明の開示 In addition, refrigerant gas leaked from the valve-closing chamber to the suction passage, and the pressure in the valve-closing chamber could not be sufficiently increased, resulting in a delay in operating the spool valve or malfunction. The present invention suppresses the leakage of refrigerant gas to the suction passage to improve the performance, and at the same time, improves the operating characteristics of the spool valve. The purpose is to provide a compressor. Disclosure of the invention
前述の 目 的を解決するために こ の発明は、 複数のシ リ ンダボアが形成された シ リ ンダブロ ッ ク と、 前記シ リ ン ダブ口 ッ ク の中心部に回転可能に支持されたシ ャ フ 卜 と 前記シ リ ンダボア内の圧縮室か ら吐出された冷媒ガス を 収容する吐出室と、 吸入口か ら吸入室に冷媒ガス を導く 吸入通路と、 圧力制御弁の下流の冷媒ガス の圧力及び付 勢部材の付勢力が閉弁方向へ作用する と と も に、 前記吐 出室の冷媒ガスの圧力が開弁方向へ作用 し、 両方の圧力 差が所定値を下回っ た ときだけ前記吸入通路を遮断する 吸入制御弁と を備えている可変容量型斜板式ク ラ ッ チレ ス圧縮機において、前記吸入制御弁がス プール弁であ り 、 前記ス プール弁が前記シャ フ ト の中心軸と直交する方向 に配置されている。  In order to solve the above-mentioned object, the present invention provides a cylinder block having a plurality of cylinder bores, and a cylinder rotatably supported at the center of the cylinder block. A discharge chamber for accommodating the refrigerant gas discharged from the foot and the compression chamber in the cylinder bore; a suction passage for guiding the refrigerant gas from the suction port to the suction chamber; and a pressure of the refrigerant gas downstream of the pressure control valve. And the urging force of the urging member acts in the valve closing direction, and the pressure of the refrigerant gas in the discharge chamber acts in the valve opening direction, and the suction is performed only when the pressure difference between the two drops below a predetermined value. In a variable displacement type swash plate type clutchless compressor having a suction control valve that shuts off a passage, the suction control valve is a spool valve, and the spool valve is a central shaft of the shaft. They are arranged in a direction orthogonal to.
従来のス プール弁よ り 全長を長く する こ とができるの で、 開弁室と吸入通路との間及び閉弁室と吸入通路との 間をシールするス プール弁の摺動部を長く する こ とがで きる。 したがっ て、 吸入通路への冷媒ガスの リ ーク を抑 制 して性能を向上させる と と も に、 ス プール弁の作動特 性を向上させる こ とができる。  Since the overall length can be longer than that of the conventional spool valve, the sliding part of the spool valve that seals between the valve opening chamber and the suction passage and between the valve closing chamber and the suction passage is made longer. be able to. Therefore, it is possible to improve the performance by suppressing the leakage of the refrigerant gas to the suction passage and to improve the operating characteristics of the spool valve.
好ま し く は、 前記スプール弁は一対の円筒部と前記円 筒部同士を軸方向に連結するブリ ッ ジ部とで構成され、 前記ブリ ッ ジ部で 2 つに分割されている。 Preferably, the spool valve has a pair of cylindrical portions and the circular portion. A bridge portion connects the cylindrical portions to each other in the axial direction. The bridge portion is divided into two by the bridge portion.
ブリ ッ ジ部で 2 つに分割されている ので、 各円筒部が 弁収容空間を独立して摺動する こ とができる。 したがつ て、 弁収容空間の円筒度をそれほ ど厳密に管理する こ と な く 所定の摺動性を確保する こ とができる。  Since the bridge is divided into two parts, each cylindrical part can slide independently in the valve housing space. Therefore, a predetermined slidability can be secured without strictly controlling the cylindricity of the valve accommodating space.
好ま し く は、 刖記一対の円筒部の外周面に少な く と も Preferably, at least the outer peripheral surfaces of the pair of cylindrical portions are provided at least.
1 つ の環状溝が形成されている。 One annular groove is formed.
ス プール弁が摺動した とき 、 環状溝を通 して冷媒ガス が流れ、 円筒部周囲の圧力勾配の不均衡を補正する。 し たがっ て、 円筒部の外周面と弁収容空間の内周面と の隙 間をほぼ一定間隔に保持して、 ス プ一ル弁の固着現象を 防止できる 図面の簡単な説明  When the spool valve slides, refrigerant gas flows through the annular groove to correct the imbalance in the pressure gradient around the cylindrical portion. Therefore, the gap between the outer peripheral surface of the cylindrical portion and the inner peripheral surface of the valve accommodating space can be maintained at a substantially constant interval to prevent the sticking phenomenon of the spool valve.
第 1 図は こ の発明の一実施形態に係る可変容量型斜板 式ク ラ ッチ レス圧縮機を示す縦断面図であ る。  FIG. 1 is a longitudinal sectional view showing a variable displacement type swash plate type clutchless compressor according to one embodiment of the present invention.
第 2 図は第 1 図の I I— I I 線に沿う 断面図である。 第 3 図は第 2 図の A矢視図であ る。  FIG. 2 is a cross-sectional view taken along line II-II of FIG. FIG. 3 is a view taken in the direction of arrow A in FIG.
第 4 図はス プール弁の側面図である。 発明を実施するための最良の形態  Figure 4 is a side view of the spool valve. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 こ の発明の実施の形態を図面に基づいて説明す る。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1 図は こ の発明の一実施形態に係る可変容量型斜板 式ク ラ ッチ レス圧縮機を示す縦断面図、 第 2 図は第 1 図 の I I一 I I 線に沿う 断面図、第 3 図は第 2 図の A矢視図、 第 4 図 はス プール弁の側面図である。 FIG. 1 is a longitudinal sectional view showing a variable displacement type swash plate type clutchless compressor according to an embodiment of the present invention, and FIG. 2 is FIG. Fig. 3 is a cross-sectional view taken along the line II-II, Fig. 3 is a view along arrow A in Fig. 2, and Fig. 4 is a side view of the spool valve.
こ の可変容量型斜板式ク ラ ッ チレス圧縮機のシリ ンダ ブロ ッ ク 1 の一端面にはバルブプレー ト 2 を介 して リ ャ へッ ド 3 が、 他端面にはフ ロ ン トへ ッ ド 4 がそれぞれ固 定されてい る。  In this variable displacement swash plate type clutchless compressor, one end of cylinder block 1 has a lid head 3 via a valve plate 2 and the other end has a front. Head 4 is fixed.
シ リ ンダブロ ッ ク 1 には、 シャ フ ト 5 を中心に して周 方向に所定間隔おきに複数のシ リ ンダボア 6 が配設され ている。 各シ リ ンダポア 6 内にはピス ト ン 7 が摺動可能 に収容されている。  The cylinder block 1 is provided with a plurality of cylinder bores 6 at predetermined intervals in the circumferential direction around the shaft 5. A piston 7 is slidably accommodated in each of the cylinder pores 6.
フ ロ ン ト へ ッ ド 4 内にはク ラ ンク室 8 が形成され、 ク ラ ンク 室 8 内には斜板 1 0 が収容されている。  A crank chamber 8 is formed in the front head 4, and a swash plate 10 is accommodated in the crank chamber 8.
斜板 1 0 はヒ ンジポール 9 を介してシャ フ ト 5 に摺動 かつ傾斜可能に装着されている。  The swash plate 10 is mounted on the shaft 5 via the hinge pole 9 so as to slide and tilt.
斜板 1 0 のボス部 1 0 c の中心孔には、 ヒ ンジポール 9 の球面部 9 a と対応する ヒ ンジポール受面 1 0 d が設 けられてレ る。  In the center hole of the boss 10c of the swash plate 10, a hinge pole receiving surface 10d corresponding to the spherical portion 9a of the hinge pole 9 is provided.
こ の ヒ ンジポール受面 1 0 d には、 ヒ ンジポール 9 の 球面部 9 a が摺動可能に嵌合している。  The spherical portion 9a of the hinge pole 9 is slidably fitted on the hinge pole receiving surface 10d.
また、 斜板 1 0 はシユ ー 5 0 を介してピス ト ン 7 に連 結されてい る。 シユ ー 5 0 は、 斜板 1 0 の両端面 1 0 a , 1 0 b に対 して相対回転可能に、 ピス ト ン 7 の支持凹部 7 a , 7 b によっ て支持されている。  Further, the swash plate 10 is connected to the piston 7 via the shower 50. The shower 50 is supported by supporting recesses 7 a and 7 b of the piston 7 so as to be rotatable relative to both end faces 10 a and 10 b of the swash plate 10.
リ ャヘッ ド 3 には、 吐出室 1 2 と吸入室 1 3 とが形成 されている 。 吐出室 1 2 は吸入室 1 3 を包囲するよ う に 配置されてい る (第 2 図参照)。 また、 リ ャヘッ ド 3 にはエバポ レー夕 (図示せず) へ 通じる吸入口 3 a が設け られている。 A discharge chamber 12 and a suction chamber 13 are formed in the lid 3. The discharge chamber 12 is arranged so as to surround the suction chamber 13 (see Fig. 2). In addition, the inlet 3a is provided with a suction port 3a leading to an evaporator (not shown).
吸入口 3 a の冷媒ガス はリ ャヘッ ド 3 に形成された吸 入通路 3 9 を介して吸入室 1 3 に案内される。 吸入通路 3 9 の途中 には弁収容空間 1 3 4 が設け られ、 こ の弁収 容空間 i 3 4 にはスプール弁 (吸入制御弁) 3 0 がシャ フ ト 5 の中心軸と直交する方向に摺動可能に収容されて いる。  The refrigerant gas in the suction port 3 a is guided to the suction chamber 13 via a suction passage 39 formed in the head 3. A valve housing space 134 is provided in the middle of the suction passage 39, and a spool valve (suction control valve) 30 is provided in this valve storage space i34 in a direction perpendicular to the center axis of the shaft 5. It is slidably housed in.
こ のス プール弁 3 0 は、 円筒部 1 3 1 , 1 3 2 と、 円 筒部 1 3 1 と 円筒部 1 3 2 と を連結する ブリ ッ ジ部 1 3 3 と を備えている。  The spool valve 30 includes cylindrical portions 13 1 and 13 2, and a bridge portion 13 3 connecting the cylindrical portion 13 1 and the cylindrical portion 13 2.
円筒部 1 3 1 の外周面には環状溝 1 3 1 a が、 円筒部 1 3 2 の外周面には環状溝 1 3 2 a がそれぞれ形成され ている (第 4 図参照)。  An annular groove 13a is formed on the outer peripheral surface of the cylindrical portion 131, and an annular groove 13a is formed on the outer peripheral surface of the cylindrical portion 13 (see Fig. 4).
弁収容空間 1 3 4 はス プール弁 3 0 を挟んで開弁室 1 3 3 a と閉弁室 1 3 3 b と に区画される。 円筒部 1 3 2 内にはばね (付勢部材) 3 2 とスプリ ングガイ ド 3 5 と が収容されている。 ばね 3 2 の一端は円筒部 1 3 2 の底 面に当接し、 ばね 3 2 の他端はスプリ ングガイ ド 3 5 の フ ラ ンジ部 3 5 a に当接している。  The valve accommodating space 13 4 is divided into a valve opening chamber 13 3 a and a valve closing chamber 13 3 b with the spool valve 30 interposed therebetween. A spring (biasing member) 32 and a spring guide 35 are accommodated in the cylindrical portion 132. One end of the spring 32 contacts the bottom surface of the cylindrical portion 132, and the other end of the spring 32 contacts the flange portion 35a of the spring guide 35.
ス プリ ングガイ ド 3 5 の一端には弁収容空間 1 3 4 の 開 口部 1 3 4 a を塞ぐ蓋部材 3 6 が設け られ、 スナッ プ リ ング 3 7 で抜け止め されてい る。 蓋部材 3 6 の外周面 には O リ ングが設けられてい る。  At one end of the spring guide 35, a lid member 36 for closing the opening portion 134a of the valve accommodating space 134 is provided, and the lid member 37 is prevented from falling off by a snap ring 37. An O-ring is provided on the outer peripheral surface of the lid member 36.
一方、 スプリ ングガイ ド 3 5 の他端は円筒部 1 3 2 の 底面に当接している。 開弁室 1 3 3 a には吐出室 1 2 カゝ ら通し孔 1 2 a を介 して冷媒ガスが供給される。 また、 閉弁室 1 3 3 b には コ ン ト ロールバルブ (圧力制御弁) 8 1 か ら通路 6 0 を 介してク ラ ンク室 8 よ り 上流側の高圧 ( P k ) の冷媒ガ スが供給される。 On the other hand, the other end of the spring guide 35 is in contact with the bottom surface of the cylindrical portion 132. Refrigerant gas is supplied from the discharge chamber 12 to the valve opening chamber 13 3 a through the through hole 12 a. A high-pressure (P k) refrigerant gas upstream of the crank chamber 8 from the control valve (pressure control valve) 81 through the passage 60 is provided in the valve closing chamber 13 3 b. Is supplied.
ス プール弁 3 0 の円筒部 1 3 1 には開弁室 1 3 3 a の 冷媒ガスの圧力 ( P d ) が開弁方向 (弁開度が大き く な る方向) へ作用する。 ス プール弁 3 0 の円筒部 1 3 2 の 底面には閉弁室 1 3 3 b の冷媒ガスの圧力 ( P k ) と ば ね 3 2 の付勢力 と の合力が閉弁方向 (弁開度が小さ く な る方向) へ作用する。  The pressure (P d) of the refrigerant gas in the valve opening chamber 133 a acts on the cylindrical portion 13 1 of the spool valve 30 in the valve opening direction (the direction in which the valve opening increases). On the bottom of the cylindrical portion 13 2 of the spool valve 30, the resultant force of the pressure (P k) of the refrigerant gas in the valve closing chamber 13 3 b and the urging force of the spring 32 is in the valve closing direction (valve opening degree). In the direction of decreasing).
スプール弁 3 0 は開弁室 1 3 3 a の内部圧力 と閉弁室 1 3 3 b の内部圧力 との差に応じて全.閉位置 (吸入通路 3 9 が遮断される位置) と第 2 図に示す全開位置 (吸入 通路 3 9 が開 く 位置) との間を変位する。  The spool valve 30 is fully closed according to the difference between the internal pressure of the valve-opening chamber 13a and the internal pressure of the valve-closing chamber 13b. Displaced between the fully open position shown in the figure (the position where the suction passage 39 opens).
スプール弁 3 0 は開弁室 1 3 3 a の内部圧力 と閉弁室 1 3 3 b の内部圧力 との差が所定値を下回っ た とき全閉 位置側へ移動し、 その圧力差が所定値 P を上回っ た と き 全開位置側へ移動する。  The spool valve 30 moves to the fully closed position when the difference between the internal pressure of the valve-opening chamber 133a and the internal pressure of the valve-closing chamber 133b falls below a predetermined value, and the pressure difference becomes the predetermined value. When it exceeds P, it moves to the fully open position side.
コ ン ト 口一ルバルブ 8 1 は吐出室 1 2 と ク ラ ンク 室 8 と を連通させる通路 5 7 の途中に設け られ、 ソ レノ イ ド (図示せず) への通電を制御する こ と によっ て通路 5 7 の断面積を調整する。  The control valve 81 is provided in the passage 57 connecting the discharge chamber 12 and the crank chamber 8 to control the power supply to a solenoid (not shown). Thus, the sectional area of the passage 57 is adjusted.
熱負荷が小さ い とき、 コ ン ト ロールバルブ 8 1 は通路 5 7 を開放し、 熱負荷が大きい とき、 通路 5 7 を遮断す る。 吸入 3 とク ラ ンク 室 8 とは通路 5 8 を介 して連通 してい る。 The control valve 81 opens the passage 57 when the heat load is small, and shuts off the passage 57 when the heat load is large. The suction 3 and the crank chamber 8 communicate with each other via a passage 58.
バルブプレー 卜 2 には、 圧縮室 6 a と吐出室 1 2 と を 連通させる吐出ポー ト 1 6 と、 圧縮室 6 a と吸入室 1 3 と を 通させる吸入ポー ト 1 5 とが、 それぞれ周方向に 所定間隔おきに設け られている。  The valve plate 2 is provided with a discharge port 16 for communicating the compression chamber 6a with the discharge chamber 12 and a suction port 15 for communicating the compression chamber 6a with the suction chamber 13 respectively. It is provided at predetermined intervals in the direction.
吐出ポ一 h 1 6 は吐出弁 1 7 によ り 開閉され、 吐出弁 Discharge port h 16 is opened and closed by discharge valve 17 and discharge valve
1 7 はバルブプレー ト 2 の リ ャヘッ ド側端面にポル ト 1 9 によ り 固定されている。 Reference numeral 17 is fixed to the rear end surface of the valve plate 2 by a port 19.
吸入ポ一 卜 1 5 は吸入弁 2 1 によ り 開閉 され、 吸入弁 2 1 はバルブプレ一 卜 2 と シ リ ンダブロ ッ ク 1 との間に 配設されている。  The suction port 15 is opened and closed by a suction valve 21, and the suction valve 21 is disposed between the valve plate 2 and the cylinder block 1.
ラジァル軸受 2 5 及びス ラス ト軸受 2 4 はシャ フ ト 5 の リ ャ側を支持し、 シ ャ フ 卜 5 のフ ロ ン ト側はラ ジアル 軸受 2 6 によって回転可能に支持されている  The radial bearing 25 and the thrust bearing 24 support the rear side of the shaft 5, and the front side of the shaft 5 is rotatably supported by the radial bearing 26.
シ ャ フ 卜 5 にはシャ フ 卜 5 の回転を斜板 1 0 に伝達す るためのス ラス 卜 フ ラ ンジ 4 0 が固定され、 こ のス ラス 卜 フ ラ ンジ 4 0 はス ラス 卜軸受 3 3 を介してフ ロ ン ト へ ッ ド 4 の内壁面に支持されている。  A thrust flange 40 for transmitting the rotation of the shaft 5 to the swash plate 10 is fixed to the shaft 5, and this thrust flange 40 is a thrust flange. It is supported on the inner wall surface of the front head 4 via a bearing 33.
ス ラス 卜 フ ラ ンジ 4 0 と斜板 1 0 とはリ ンク機構 4 1 を介して連結され、 斜板 1 0 はシャ フ ト 5 と直交する仮 想面に対して傾斜可能である。  The thrust flange 40 and the swash plate 10 are connected via a link mechanism 41, and the swash plate 10 can be inclined with respect to a virtual plane orthogonal to the shaft 5.
ス ラス 卜 フ ラ ンジ 4 0 と ヒ ンジポール 9 と の間には、 巻きばね 9 3 がシャ フ 卜 5 の外周面に装着されている。  A winding spring 93 is mounted between the thrust flange 40 and the hinge pole 9 on the outer peripheral surface of the shaft 5.
次に の可変容量型斜板式ク ラ ッ チレス コ ンプレ ツ サの作動を説明する。 図示しない車載エンジ ンの回転動力はベル ト (図示せ ず) を介してプー リ (図示せず)、 シ ャ フ ト 5 に常時伝達 され、 シャ フ ト 5 の回転カはス ラス ト フ ラ ンジ 4 0 、 リ ンク機構 4 1 を経て斜板 1 0 に伝達され、 斜板 1 0 が回 早 sする。 Next, the operation of the variable capacity swash plate type clutchless compressor will be described. The rotational power of the vehicle engine (not shown) is constantly transmitted to the pulley (not shown) and the shaft 5 via a belt (not shown), and the rotating power of the shaft 5 is thrust flat. The swash plate 10 is transmitted to the swash plate 10 via the link 40 and the link mechanism 41, and the swash plate 10 rotates quickly.
斜板 1 0 の回転によ り シユ ー 5 0 が斜板 1 0 の端面 1 0 a , 1 0 b 上を相対回転するので、 斜板 1 0 か ら の回 転力はピス ト ン 7 の直線往復運動に変換される。  The rotation of the swash plate 10 causes the shaft 50 to relatively rotate on the end faces 10 a and 10 b of the swash plate 10, so that the rotation force from the swash plate 10 is applied to the piston 7. Converted to linear reciprocation.
ピス ト ン 7 はシ リ ンダポア 6 内を往復運動し、 その結 果シ リ ンダポア 6 内の圧縮室 6 a の容積が変化 し、 こ の 容積変化によっ て冷媒ガスの吸入、 圧縮及び吐出が順次 行なわれ、 斜板 1 0 の傾斜角度に応じた容量の冷媒ガス が吐出される。  The piston 7 reciprocates in the cylinder pore 6, and as a result, the volume of the compression chamber 6a in the cylinder pore 6 changes, and the suction, compression and discharge of the refrigerant gas are caused by the volume change. The operation is sequentially performed, and a refrigerant gas having a capacity corresponding to the inclination angle of the swash plate 10 is discharged.
吸入時、 吸入弁 2 1 が開き、 吸入室 1 3 か ら シリ ンダ ポア 6 内の圧縮室 6 a へ低圧の冷媒ガスが吸入され、 吐 出時、 吐出弁 1 7 が開き、 圧縮室 6 a か ら 吐出室 1 2 へ 高圧の冷媒ガスが吐出さ れる。  At the time of suction, the suction valve 21 is opened, and low-pressure refrigerant gas is sucked from the suction chamber 13 into the compression chamber 6a in the cylinder pore 6, and at the time of discharge, the discharge valve 17 is opened, and the compression chamber 6a is opened. High-pressure refrigerant gas is discharged from the discharge chamber 12 to the discharge chamber 12.
熱負荷が小さ く なる と (ク ラ ッ チ付きコ ンプレ ッサの ク ラ ッ チオフ相当時)、コ ン ト ロールバルブ 8 1 のソ レ ノ ィ ドへの通電が停止されて通路 5 7 が開 く 。  When the heat load is reduced (when the clutch-equipped compressor is equivalent to the clutch-off condition), the power supply to the solenoid of the control valve 81 is stopped and the passage 57 is closed. Open.
そのため、 通路 5 7 を介して吐出室 1 2 か ら ク ラ ンク 室 8 へ高圧の冷媒ガスが流出 し、ク ラ ンク室 8 の圧力( P c ) は高く な り 、 斜板 1 0 の傾斜角度が小さ く なる。  Therefore, high-pressure refrigerant gas flows from the discharge chamber 12 to the crank chamber 8 through the passage 57, and the pressure (P c) in the crank chamber 8 increases, and the inclination of the swash plate 10 increases. The angle becomes smaller.
また、 コ ン ト ロールノ ルブ 8 1 が開いた とき、 コ ン ト ロールバルブ 8 1 の下流の高圧 ( P k ) の冷媒ガスが通 路 6 0 を介 して閉弁室 1 3 3 b に供給される。 閉弁室 1 3 3 b の圧力 ( P k ) が高 く な り 、 閉弁室 1 3 3 b と開弁室 1 3 3 a との圧力差が所定値 P を下回る と、 ばね 3 2 の付勢力 によ り スプール弁 3 0 が閉弁方向 へ移動して吸入通路 3 9 が遮断される。 When the control knob 81 is opened, the high-pressure (P k) refrigerant gas downstream of the control valve 81 is supplied to the valve closing chamber 133 b via the passage 60. Is done. When the pressure (P k) of the valve closing chamber 13 3 b increases and the pressure difference between the valve closing chamber 13 3 b and the valve opening chamber 13 3 a falls below a predetermined value P, the spring 3 2 The spool valve 30 is moved in the valve closing direction by the urging force, and the suction passage 39 is shut off.
その結果、 吸入口 3 a か ら吸入室 1 3 への冷媒ガスの 流入が阻止される。  As a result, the flow of the refrigerant gas from the suction port 3a to the suction chamber 13 is prevented.
最小ピス ト ンス ト ローク時、 冷媒ガスが吸入室 1 3 、 圧縮室 6 a 、 吐出室 1 2 、 通路 5 7 、 ク ラ ンク室 8 及び 通路 5 8 を順次経て再び吸入室 1 3 に戻る。  During the minimum piston stroke, the refrigerant gas returns to the suction chamber 13 through the suction chamber 13, the compression chamber 6 a, the discharge chamber 12, the passage 57, the crank chamber 8, and the passage 58 sequentially.
これに対し、 熱負荷が大き く なる と、 コ ン 卜 口一ルバ ルブ 8 1 のソ レノ ィ ドへの通電によ り 通路 5 7 が閉 じる そのため、 吐出室 1 2 力、 ら ク ラ ンク室 8 への高圧の冷 媒ガスの流入が阻止される。 ク ラ ンク室 8 内の冷媒ガス は通路 5 8 を通じて吸入室 1 3 に徐々 に流出する。 した がっ て、 ク ラ ンク室 8 の圧力 ( P c ) は次第 ί::低く な り 、 ヒ ンジポール 9 力 s、フ ロ ン 卜側へ移動して、 斜板 1 0 の傾 斜角度が大き く なる (第 1 図参照)。  On the other hand, when the heat load increases, the passage 57 is closed by energizing the solenoid of the inlet port valve 81, so that the discharge chamber 12 The inflow of high-pressure refrigerant gas into the tank 8 is prevented. The refrigerant gas in the crank chamber 8 gradually flows out to the suction chamber 13 through the passage 58. Therefore, the pressure (P c) in the crank chamber 8 gradually decreases. Ί :: decreases, the hinge pole 9 s moves to the front side, and the inclination angle of the swash plate 10 decreases. (See Fig. 1).
また、 通路 5 7 が閉 じる と、 高圧 ( P k ) の冷媒ガス が閉弁室 1 3 3 b に供給されなく なる ので、 閉弁室 1 3 3 b の圧力が次第に低く なる。  Further, when the passage 57 is closed, the high-pressure (P k) refrigerant gas is not supplied to the valve-closing chamber 1333b, so that the pressure in the valve-closing chamber 133b gradually decreases.
閉弁室 1 3 3 b と開弁室 1 3 3 a との圧力差が所定値 P を上回 り 、 スプール弁 3 0 に作用する 開弁室 1 3 3 a の冷媒ガス の圧力 ( P d ) が閉弁室 1 3 3 b の冷媒ガス の圧力 ( P k ) と ばね 3 2 の付勢力 と の合力 に打ち勝つ と、 スプール弁 3 0 が開弁方向へ移動して吸入通路 3 9 が開放される (第 2 図参照)。 その結果、 吸入口 3 a か ら吸入室 1 3 へ冷媒ガスが流 入する。 The pressure difference between the valve-closing chamber 13 3 b and the valve-opening chamber 13 33 a exceeds the predetermined value P, and acts on the spool valve 30. ) Overcomes the resultant force of the refrigerant gas pressure (P k) in the valve-closing chamber 13 3 b and the biasing force of the spring 32, the spool valve 30 moves in the valve-opening direction and the suction passage 39 opens. (See Figure 2). As a result, refrigerant gas flows into the suction chamber 13 from the suction port 3a.
こ の実施形態の可変容量型斜板式ク ラ ツ チ レス圧縮機 は次のよ う な効果を奏する。  The variable displacement type swash plate type clutchless compressor of this embodiment has the following effects.
開弁室 1 3 3 a か ら吸入通路 3 9 への冷媒ガスの リ ー ク を従来のス プール弁よ り 抑制する こ とができるので、 体積効率の低下が抑え られ、 性能の低下を防止する こ と ができ る。  Leakage of refrigerant gas from the valve-opening chamber 13 3a to the suction passage 39 can be suppressed as compared with the conventional spool valve, so that a reduction in volumetric efficiency is suppressed and performance is prevented. can do.
また、 閉弁室 1 3 3 b か ら吸入通路 3 9 への冷媒ガス の リ ーク を従来のスプール弁よ り 抑制する こ とができる ので、 閉弁室 1 3 3 b の圧力 を十分に上昇させてス プ一 ル弁 3 0 を迅速且つ確実に移動させる こ とができ、 スプ —ル弁 3 0 の作動遅れ、 作動不具合を防止する こ とがで きる。  In addition, since leakage of the refrigerant gas from the valve closing chamber 13 3 b to the suction passage 39 can be suppressed as compared with the conventional spool valve, the pressure in the valve closing chamber 13 3 b can be sufficiently reduced. The spool valve 30 can be moved quickly and surely by raising it, thereby preventing the operation delay and malfunction of the spool valve 30.
また、 ス プール弁 3 0 が摺動した と き、 環状溝 1 3 1 a , 1 3 2 a を通して流れる冷媒ガス によっ て円筒部 1 3 1 , 1 3 2 の外周面と弁収容空間 1 3 4 の内周面 との 隙間がほぼ一定間隔に保持される ので、 ス プール弁 3 0 の固着現象 (ノ リ ゃゴミ によ っ て円筒部 1 3 1 , 1 3 2 の外周面と弁収容空間 1 3 4 の内周面との間に生じた圧 力不均等によ って円筒部 1 3 1 , 1 3 2 の外周面が弁収 容空間 1 3 4 の内周面に押し付け られる こ と) が防止さ れる。  Further, when the spool valve 30 slides, the outer peripheral surfaces of the cylindrical portions 13 1 and 13 2 and the valve housing space 13 3 are formed by refrigerant gas flowing through the annular grooves 13 1 a and 13 2 a. Since the gap between the inner peripheral surface of the spool 4 and the inner peripheral surface of the spool 4 is maintained at a substantially constant interval, the phenomenon of sticking of the spool valve 30 (the outer peripheral surface of the cylindrical portions 13 1 and 13 2 is not The outer peripheral surface of the cylindrical portions 13 1 and 13 2 is pressed against the inner peripheral surface of the valve housing space 13 4 due to uneven pressure generated between the inner peripheral surface of the space 13 4 and the inner peripheral surface of the space 13 4. And) are prevented.
なお、 上記実施形態ではス プール弁を一体に形成した が、 ス プール弁をブリ ッ ジ部 1 3 3 で 2 つに分割しても よい。 2 つ に分割した ときには、 弁収容空間 1 3 4 の円 筒度をそれほど厳密に管理する こ とな く 所定の摺動性を 確保する こ とができる。 In the above embodiment, the spool valve is formed integrally. However, the spool valve may be divided into two at the bridge portion 133. When divided into two, the circle of the valve accommodation space 1 3 4 Predetermined slidability can be ensured without having to control the cylindricity so strictly.
また、 上記実施形態ではスプール弁 3 0 を水平に配置 したが、 シャ フ ト 5 の中心軸に対してほぼ直交するよ う に配置さ れていれば必ずし も水平に配置する必要はない なお、 上記実施形態では開弁室 1 3 3 a の圧力 をコ ン ト ロールバルブ 8 1 の下流の圧力 と したが、 ク ラ ンク 室 8 の圧力 を利用 してもよい。 産業上の利用可能性  In the above embodiment, the spool valve 30 is arranged horizontally. However, if the spool valve 30 is arranged so as to be substantially perpendicular to the center axis of the shaft 5, it is not always necessary to arrange the spool valve horizontally. In the above embodiment, the pressure of the valve-opening chamber 133a is set as the pressure downstream of the control valve 81, but the pressure of the crank chamber 8 may be used. Industrial applicability
以上のよ う に、 本発明に係る可変容量型斜板式ク ラ ッ チ レス圧縮機は乗用車、 バス、 ト ラ ッ ク等の車両に搭載 される エアコ ンの冷媒圧縮機と して有用であ り 、 特に冷 房能力の必要量に応じて冷媒ガス の吐出量をコ ン ト ロ ー ルするエアコ ンに用いる圧縮機と して適している。  As described above, the variable displacement swash plate type clutchless compressor according to the present invention is useful as a refrigerant compressor of an air-con mounted on vehicles such as passenger cars, buses, and trucks. In particular, it is suitable as a compressor used for an air conditioner that controls the amount of refrigerant gas discharged according to the required cooling capacity.

Claims

請求の範囲 The scope of the claims
1 . 複数のシ リ ンダポアが形成されたシ リ ンダブロ ッ ク と、 1. A cylinder block having a plurality of cylinder pores,
前記シ リ ンダブロ ッ ク の中心部に回転可能に支持され たシャ フ 卜 と、  A shaft rotatably supported at the center of the cylinder block,
前記シ リ ンダポア内の圧縮室か ら吐出された冷媒ガス を収容する吐出室と、  A discharge chamber containing refrigerant gas discharged from a compression chamber in the cylinder pore,
吸入口か ら吸入室に冷媒ガス を導く 吸入通路と、 圧力制御弁の下流の冷媒ガスの圧力及び付勢部材の付 勢力が閉弁方向へ作用する と と も に、 前記吐出室の冷媒 ガス の圧力が開弁方向へ作用 し、 両方の圧力差が所定値 を下回っ た ときだけ前記吸入通路を遮断する吸入制御弁 と を備えている可変容量型斜板式ク ラ ッ チレス圧縮機に おいて、  A suction passage for guiding the refrigerant gas from the suction port to the suction chamber; a pressure of the refrigerant gas downstream of the pressure control valve and a biasing force of the biasing member acting in a valve closing direction; and a refrigerant gas in the discharge chamber. And a suction control valve that shuts off the suction passage only when the pressure difference between both pressures falls below a predetermined value in the variable displacement swash plate type clutchless compressor. ,
前記吸入制御弁がスプール弁であ り 、 前記スプール弁 が前記シャ フ ト の中心軸 と直交する方向に配置されてい る こ と を特徴とする可変容量型斜板式ク.ラ ツ チレス圧縮 機。  A variable displacement type swash plate type clutchless compressor, wherein the suction control valve is a spool valve, and the spool valve is arranged in a direction orthogonal to a center axis of the shaft.
2 . 前記ス プール弁は一対の円筒部と前記円筒部同士を 軸方向に連結する ブリ ッ ジ部とで構成され、 前記ブ リ ツ ジ部で 2 つ に分割されている こ と を特徴とする請求の範 囲第 1 項記載の可変容量型斜板式ク ラ ッ チレス圧縮機。 2. The spool valve includes a pair of cylindrical portions and a bridge portion that connects the cylindrical portions to each other in the axial direction, and is divided into two by the bridge portion. The variable displacement type swash plate type clutchless compressor according to claim 1, wherein
3 . 前記一対の円筒部の外周面に少な く と も 1 つの環状 溝が形成されている こ と を特徴とする請求の範囲第 2 項 記載の可変容量型斜板式ク ラ ツチレス圧縮機。 3. The variable displacement swash plate type clutchless compressor according to claim 2, wherein at least one annular groove is formed on the outer peripheral surfaces of the pair of cylindrical portions.
PCT/JP2001/003929 2000-07-19 2001-05-11 Variable displacement swash plate type clutchless compressor WO2002006671A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-219039 2000-07-19
JP2000219039A JP2002031049A (en) 2000-07-19 2000-07-19 Variable displacement type swash plate clutchless compressor

Publications (1)

Publication Number Publication Date
WO2002006671A1 true WO2002006671A1 (en) 2002-01-24

Family

ID=18713892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003929 WO2002006671A1 (en) 2000-07-19 2001-05-11 Variable displacement swash plate type clutchless compressor

Country Status (2)

Country Link
JP (1) JP2002031049A (en)
WO (1) WO2002006671A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023098A2 (en) 2002-09-06 2004-03-18 Promega Corporation Method for detecting transferase enzymatic activity
DE10319110A1 (en) * 2003-04-10 2004-11-04 Zexel Valeo Compressor Europe Gmbh Axial flow compressor for use in vehicle air conditioning, has each magnetic valve partially arranged in cold suction gas flow path or thermally decoupled from high temperature cylinder head via low heat conductivity member e.g. bush

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086907A2 (en) 2010-01-12 2011-07-21 Valeo Thermal Systems Japan Corporation Compressor
JP5612402B2 (en) * 2010-09-09 2014-10-22 株式会社ヴァレオジャパン Compressor
JP5584476B2 (en) * 2010-01-12 2014-09-03 株式会社ヴァレオジャパン Compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488065A (en) * 1987-06-30 1989-04-03 Sanden Corp Refrigeration circuit with refrigerant flow control mechanism
JPH109131A (en) * 1996-06-19 1998-01-13 Toyota Autom Loom Works Ltd Variable displacement compressor
JP2000136776A (en) * 1998-08-24 2000-05-16 Sanden Corp Compressor
JP2000145629A (en) * 1998-11-11 2000-05-26 Tgk Co Ltd Variable displacement compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6488065A (en) * 1987-06-30 1989-04-03 Sanden Corp Refrigeration circuit with refrigerant flow control mechanism
JPH109131A (en) * 1996-06-19 1998-01-13 Toyota Autom Loom Works Ltd Variable displacement compressor
JP2000136776A (en) * 1998-08-24 2000-05-16 Sanden Corp Compressor
JP2000145629A (en) * 1998-11-11 2000-05-26 Tgk Co Ltd Variable displacement compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004023098A2 (en) 2002-09-06 2004-03-18 Promega Corporation Method for detecting transferase enzymatic activity
DE10319110A1 (en) * 2003-04-10 2004-11-04 Zexel Valeo Compressor Europe Gmbh Axial flow compressor for use in vehicle air conditioning, has each magnetic valve partially arranged in cold suction gas flow path or thermally decoupled from high temperature cylinder head via low heat conductivity member e.g. bush

Also Published As

Publication number Publication date
JP2002031049A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP3254853B2 (en) Clutchless one-sided piston type variable displacement compressor
JPH0861269A (en) Scroll type compressor
JPS62674A (en) Capacity controller for variable angle swing swash type variable capacity compressor
JPH10325393A (en) Variable displacement swash plate type clutchless compressor
JPH09324758A (en) Cam plate compressor
JP3254871B2 (en) Clutchless one-sided piston type variable displacement compressor
WO2005095796A1 (en) Control device and pressure control valve for variable displacement compressor
WO1994011636A1 (en) Rocking swash plate type variable capacity compressor
JP2002054561A (en) Control valve of variable displacement compressor, and variable displacement compressor
JP2000009045A (en) Control valve for variable displacement type compressor, variable displacement type compressor, and variable setting method for set suction pressure
WO1995025225A1 (en) Variable displacement type compressor
JPH07189895A (en) Clutchless one side piston type variable displacement compressor
WO2002006671A1 (en) Variable displacement swash plate type clutchless compressor
JPH10205446A (en) Clutchless compressor
JPH10148177A (en) Variable displacement compressor
JPH09228957A (en) Clutchless variable displacement compressor
JP3924713B2 (en) Control valve for variable displacement compressor
JP2000120912A (en) Control valve for variable displacement compressor
WO2004061304A1 (en) Control device for variable capacity compressor
WO2007086261A1 (en) Variable displacement-type clutchless compressor
WO2019151191A1 (en) Variable capacity compressor
JPH06288348A (en) Oscillating swash plate type variable displacement compressor
JP3182950B2 (en) Clutchless structure in one-side piston type variable displacement compressor.
WO1999025977A1 (en) Variable displacement swash plate type clutchless compressor
JPH0474548B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
ENP Entry into the national phase

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F