WO2002001660A1 - Composition conductrice pour separateur de pile a combustible de type a polymere solide, separateur de pile a combustible de type a polymere solide, pile a combustible de type a polymere solide et systeme de pile a combustible de type a polymere solide utilisant ce separateur - Google Patents

Composition conductrice pour separateur de pile a combustible de type a polymere solide, separateur de pile a combustible de type a polymere solide, pile a combustible de type a polymere solide et systeme de pile a combustible de type a polymere solide utilisant ce separateur Download PDF

Info

Publication number
WO2002001660A1
WO2002001660A1 PCT/JP2001/005662 JP0105662W WO0201660A1 WO 2002001660 A1 WO2002001660 A1 WO 2002001660A1 JP 0105662 W JP0105662 W JP 0105662W WO 0201660 A1 WO0201660 A1 WO 0201660A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
graphite particles
resin
polymer electrolyte
electrolyte fuel
Prior art date
Application number
PCT/JP2001/005662
Other languages
English (en)
French (fr)
Inventor
Arata Sakamoto
Hiroyuki Okazaki
Original Assignee
Osaka Gas Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Company Limited filed Critical Osaka Gas Company Limited
Priority to US10/312,665 priority Critical patent/US7049021B2/en
Priority to EP01945728A priority patent/EP1315223A4/en
Priority to CA002413146A priority patent/CA2413146C/en
Publication of WO2002001660A1 publication Critical patent/WO2002001660A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/002Agents changing electric characteristics
    • B29K2105/0023Agents changing electric characteristics improving electric conduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention provides a conductive composition useful for producing a polymer electrolyte fuel cell (PEFC) separator, a polymer electrolyte fuel cell separator, and the separator.
  • PEFC polymer electrolyte fuel cell
  • the present invention relates to a polymer electrolyte fuel cell and a polymer electrolyte fuel cell system. Background technology
  • the polymer electrolyte fuel cell is composed of a polymer electrolyte membrane (Dupont's Nafion membrane, Dow Chemical's Dow membrane, etc.) as an electrolyte membrane, and porous graphite provided on both sides of the electrolyte membrane. Paper and a platinum alloy catalyst as an electrode catalyst supported on the surface of the vapor. A porous graphite plate having a groove as a gas flow path and a plate-like separator are sequentially disposed outside the graphite base, or a flat plate having a groove as a gas flow path. The cell is constructed by arranging the state separation.
  • a polymer electrolyte membrane Duont's Nafion membrane, Dow Chemical's Dow membrane, etc.
  • porous graphite provided on both sides of the electrolyte membrane.
  • Paper and a platinum alloy catalyst as an electrode catalyst supported on the surface of the vapor.
  • a porous graphite plate having a groove as a gas flow path and a plate-like separator are sequentially
  • the plate-shaped separator is required to have gas impermeability to oxygen and hydrogen, electric conductivity, heat conductivity, mechanical strength, acid resistance and the like.
  • a grooved separator in addition to the required performance for a flat plate separator, it is required that the dimensional accuracy of the gas flow path be high.
  • the thickest part is 2 mm or less, and grooves are formed on both sides to reduce the number of bipolar separators used, and the grooves are made as deep as possible to make the thin parts as thin as possible (for example, about 0.8 mm). Must be set.
  • Such separation can be achieved by using phenolic resin, petroleum or coal-based After shaping the kneaded material of binder and carbon powder into a flat plate, it is carbonized and graphitized in a non-oxidizing atmosphere to form a carbonaceous or graphitic flat plate. It is manufactured by forming a groove.
  • Japanese Patent Application Laid-Open No. 412,072 discloses that carbonizable or graphitizable binders, carbon fibers, and carbonaceous particles are included, and the carbonaceous particles have an average particle size. 25 to 75 m powder, average particle size 75 to: 125 m powder, average particle size 125 to 175 m
  • a carbon material for a fuel cell is obtained by graphitization.
  • This gazette also discloses that 100 to 75 parts by weight of carbon fiber and 50 to 150 parts by weight of carbonaceous powder are contained with respect to 100 parts by weight of the binder. Has graphitized a 2 mm thick molded sheet.
  • W0999 / 495530 proposes that a resin composition containing a non-carbonaceous material and a conductive agent be injection-molded or compression-molded to produce a separator for fuel cells.
  • a resin composition containing a non-carbonaceous material and a conductive agent be injection-molded or compression-molded to produce a separator for fuel cells.
  • a thermosetting resin is 10 to 30% by weight and a mesocarbon small sphere having a particle size of 50 m or less is graphitized.
  • a structured carbon compact is disclosed. This document also states that a thin plate having a thickness of 0.8 mm was obtained.
  • Japanese Patent Application Laid-Open No. 60-246658 discloses a mixture of 25 to 30% by weight of a phenol resin and 70 to 75% by weight of a graphite powder at a temperature at which the resin is not graphitized.
  • a method for manufacturing a ribbed separator for a fuel cell, which forms a ribbed separator by pressure molding, is disclosed.
  • This document also describes that a 2 mm thick conductive plate was obtained using graphite powder sieved to a particle size range of 100 to 325 mesh (about 150 to 44 mm). .
  • the volume resistivity is to obtain a molded body 1 0- 2 ⁇ ⁇ cm order one.
  • Japanese Patent Application Laid-Open No. Sho 59-213136 discloses that, in a molded article composed of 10 to 25% by weight of a thermosetting resin and graphite powder, the aspect ratio of the graphite powder is 3 or less.
  • a carbon compact having a maximum particle size of 104 m or less and 10 to 80% thereof is 50 m or less, and the electrical resistivity of the compact is 0.03 ⁇ cm or less is disclosed.
  • the aspect ratio is reduced to 3 or less by grinding because flat particles have poor moldability.
  • the thickness is small (for example, the thickness is 2%). mm or less), it is difficult to obtain a uniform molded body having grooves, ribs and manifolds. In particular, it is difficult to uniformly form a thin molded body that has a thinner portion due to uneven portions and grooves, and the like.
  • an object of the present invention is to provide a conductive composition which can provide a molded article having a uniform composition and a small thickness even if it has a complicated structure such as a concave / convex portion functioning as a rib or a manifold.
  • An object of the present invention is to provide a polymer electrolyte fuel cell separator, and a polymer electrolyte fuel cell using the separator.
  • Another object of the present invention is to provide a polymer electrolyte fuel cell separator having excellent properties such as gas impermeability, electrical conductivity, thermal conductivity, mechanical strength, and acid resistance without going through a carbonization / graphitization process.
  • An object of the present invention is to provide a conductive composition which can obtain evening light at low cost.
  • Still another object of the present invention is to provide a conductive material capable of forming a groove (gas flow path) with high dimensional accuracy in addition to characteristics such as high conductivity and heat conductivity by merely performing a forming process without going through a cutting process.
  • An object of the present invention is to provide a conductive polymer composition, a polymer electrolyte fuel electron separator using the composition, and a polymer electrolyte fuel cell using the separator.
  • Still another object of the present invention is to provide a conductive composition capable of obtaining a molded article having high molding fluidity, high moldability, and high conductivity even when the content of the resin is small.
  • Another object of the present invention is to provide a polymer electrolyte fuel cell separator using the composition and a polymer electrolyte fuel cell and a cell system using the separator.
  • the present inventor has conducted intensive studies to achieve the object, and as a result of using the graphite particles having a specific average particle diameter in the conductive composition containing the revising and the graphite particles, the moldability of the composition and The fluidity can be significantly improved, and even if a molded product with a complicated structure such as a grooved plate is manufactured only through the molding process, the composition is uniform, the thickness is thin, and the conductivity is low.
  • the present inventors have found that a molded article having a high hardness can be obtained and completed the present invention.
  • the present invention relates to the following conductive composition for polymer electrolyte fuel cell separators, polymer electrolyte fuel cell separators, polymer electrolyte fuel cells including the separators, and fuel cell systems. .
  • the present specification also discloses a method of forming a conductive composition by forming a conductive composition.
  • a conductive component comprising graphite particles and, if necessary, graphite small particles, and 2) a thermoplastic shelf and / or a thermosetting dangling translation,
  • the average particle diameter D1 of the graphite particles is 55 to 65 m
  • the melt viscosity is 320.
  • Conductive composition for polymer electrolyte fuel cell separators in which the weight ratio of (graphite particles and, if necessary, small graphite particles), fiber plastic resin and / or thermosetting resin) is 95Z5 to 75Z25. .
  • thermoplastic resin is a thermoplastic engineering plastic.
  • thermoplastic resin is a polyphenylene sulfide-based resin.
  • a polymer electrolyte fuel cell using the polymer electrolyte fuel cell separator described in 6 or 7 above.
  • a conductive component consisting of 1) graphite particles and, if necessary, small graphite particles, and 2) a thermoplastic resin and / or a thermosetting resin,
  • the average particle size of the graphite particles is 55 to 65 m
  • the melt viscosity is 1 ⁇ 10 2 to 5 ⁇ 10 3 Pa ⁇ s at 320 ° C.
  • thermoplastic idiom and / or thermosetting resin
  • the average particle size of the graphite particles is 55 to 65 m
  • the melt viscosity is 1 ⁇ 10 2 to 5 ⁇ 10 3 Pa's at 320, and
  • the spread of the particle size distribution can be represented by the ratio of the particle size (D20%) at a cumulative degree of 20% to the particle size (D80%) at a cumulative degree of 80%. It is called "uniformity.” A large value of this uniformity indicates a broad particle size characteristic composed of various particles from large to small particles, and a small value indicates that the particle size characteristics are uniform. Show.
  • the melt viscosity is a value measured at a molding temperature (for example, 320 ° C) and a shear strain rate (or shear rate) of 100 OZs in accordance with the flow property test method specified in JIS K 7199.
  • the shear strain rate was calculated from the flow rate per unit time by setting the ratio D'Zd of the barrel diameter D 'and the capillary diameter d to 10.0 in accordance with JIS K 7199.
  • FIG. 1 is a diagram illustrating a measurement principle of an apparatus used for measuring a volume resistance in a thickness direction in an example.
  • the present invention is a.
  • a conductive component comprising graphite particles and, if necessary, graphite small particles
  • thermoplastic resin 1) containing thermoplastic and / or thermoplastic resin
  • the average particle diameter D1 of the graphite particles is 55 to 65 m
  • the melt viscosity is 1 ⁇ 10 2 to 5 ⁇ 10 3 Pas at 320, and 5) (graphite particles and, if necessary, small graphite particles) / (thermoplastic resin and / or thermosetting
  • the present invention relates to a conductive composition for a polymer electrolyte fuel cell separator having a weight ratio of (resin) of 95/5 to 75/25.
  • the melt viscosity of the conductive composition according to the present invention is 1 at the molding temperature, for example, 320.
  • S can be selected from the range of about X 10 2 to 5X 10 3 Pa.s, about 1 X ⁇ 2 to 4 ⁇ 10 3 Pa's (for example, about 3X 10 2 to 4X 10 3 Pa.s), and more preferably about 1 X 10 2 ⁇ 3X 10 3 P a ⁇ s ( e.g., 5 X 10 2 ⁇ 3 X 10 3 P a ⁇ s) Ru extent der.
  • Graphite particles means particles composed only of a graphite structure or carbonaceous particles partially containing a graphite structure.
  • the graphite particles preferably have high conductivity.
  • particles having a highly crystalline graphite structure are preferable.
  • the volume resistivity of the graphite particles is not particularly limited, normally less than about 10- 4 .omega..alpha, rather preferably about 10- 5 ⁇ , more preferably at most about 10 one 6 ⁇ .
  • graphite particles for example, natural graphite, artificial graphite and the like can be used. More specifically, graphite particles using a petroleum-based or coal-based needle-shaped coke as a raw material can be exemplified.
  • the shape of the graphite particles is not particularly limited, and examples thereof include an amorphous shape such as a plate shape; a spherical shape, an elliptical shape, a polygonal shape (such as a square), and a rod shape.
  • Examples of the plate-like graphite particles include a flat shape, a scale shape, a layer shape, and a flaky shape.
  • the shape of the graphite particles is usually non-spherical, and is amorphous particles (the above-mentioned flat, scale-like, layer-like, flake-like, etc. plate-like, etc.).
  • Artificial graphite usually has a crystal structure of La (110)> about 1000, Lc (004)> about 100 OA (particularly Lc (112)> about 10 OA).
  • the average particle size of the graphite particles is usually about 55 to 65 jLim, preferably about 57 to 63 x m.
  • the reasons are generally considered as follows. If the average particle size of the conductive particles in the mixed system of resin and particles is too small, the resin required to cover the particle surface increases as the specific surface area increases. The viscosity of the material increases and the moldability deteriorates. On the other hand, if the average particle size is too large, the flow resistance caused by mutual contact between the particles increases, and the Viscosity increases. On the other hand, if the average particle diameter is too large, the uniformity of the composition is reduced, and the strength and gas impermeability become uniform, and the smoothness of the surface of the formed body is deteriorated. Problems arise. In particular, there is a high possibility that these problems occur in a molded product having a thickness of 2 mm or less.
  • a conductive composition excellent in fluidity and injection moldability can be obtained. Since graphite particles form a conductive skeleton when formed into a molded product such as a separator, a molded product having high conductivity can be obtained. In addition, graphite particles increase the effective cross-sectional area contributing to conductivity and have a small specific surface area, so even if the amount of resin is greatly reduced, gas permeability is low, and the integration between graphite particles and resin is high. A molded product having high mechanical strength can be obtained.
  • the specific gravity of the graphite particles substituted with bushanol is usually about 2.1 or more (for example, about 2.1 to 2.3), and preferably about 2.2 or more (for example, about 2.2 to 2.3).
  • the BET specific surface area of the graphite particles is usually 10 m 2 Zg or less (for example, 1 to 5 m 2 Zg), and preferably about 2 to 5 m 2 Zg.
  • the oil absorption by Method A (using dibutyl phthalate (DBP)) specified in JIS K6221 is usually about 60 to 75 ml / 100 g, preferably about 65 to 73 ml / 100 g.
  • the melt viscosity is within the range of a 1 X 10 2 ⁇ 5 X 1 0 3 P a 's in the 3 2 O, graphite small particles May be included.
  • the ratio of graphite particles to small graphite particles is usually the former z the latter -loo
  • the weight ratio of graphite particles to small graphite particles is preferably about 95/5 to 75/25.
  • about 90/10 to 75/25 for example, about 85/15 to 75/25
  • a molded article having higher conductivity and higher conductivity can be obtained.
  • the content of the small graphite particles in the whole composition is usually about 30% by weight or less (for example, about 2 to 30% by weight), preferably about 25% by weight or less (for example, about 3 to 25% by weight), and more preferably. Is about 20% by weight or less (for example, about 3 to 20% by weight), particularly preferably about 5 to 20% by weight (particularly about 10 to 20% by weight).
  • the average particle diameter D2 can be appropriately set according to the value of D1, and is usually about 5 to 25, preferably about 7 to 20 m, and more preferably about 8 to 12.
  • the graphite small particles for example, natural graphite, artificial graphite, and the like can be used.
  • the shape of the graphite particles is not particularly limited, and examples thereof include an amorphous shape such as a plate shape; a spherical shape, an elliptical shape, a polygonal shape (such as a square), and a rod shape.
  • Examples of the plate-like graphite small particles include a flat shape, a scale shape, a layer shape, and a flaky shape. Among them, spherical (spheroidal graphite small particles), flaky (flaky natural graphite small particles), and flaky particles (flaky natural graphite small particles) are preferable.
  • the small graphite particles one type may be used alone, or two or more types may be used in combination.
  • Spheroidal graphite has a high filling property for the gaps between coarse particles, so that the conductivity can be efficiently improved.
  • scaly or flaky particles have a high filling property for the gaps between coarse particles like spherical graphite and are in surface contact with graphite particles (coarse particles) functioning as a conductive skeleton, so that conductivity can be efficiently improved.
  • graphite small particles having an average particle diameter of D2 crystalline graphite particles having a large Lc or La in the crystal structure (for example, highly crystalline graphite particles having a developed crystal structure) can be used.
  • Spheroidal graphite small particles include graphitized mesocarbon microbeads (hereinafter simply referred to as “MCMB”), spheroidized natural and artificial graphite, and the like.
  • MCMB is a sphere (mesophase small sphere) with highly oriented crystals and a structure similar to graphite. is there.
  • MCMB can be manufactured by a known method. For example, it can be manufactured by the method described in Japanese Patent Publication No. 1-279968, Japanese Patent Application Laid-Open No. 1-242469, and the like.
  • the flaky or flaky natural graphite small particles can be obtained, for example, by subjecting highly crystalline natural graphite to an expansion treatment by a known method (for example, using diacid) and pulverizing by a jet mill. The lamination structure of the graphite crystal is separated between the layers by the expansion treatment. By grinding such a product, very flat graphite particles (scale or flaky graphite particles) are obtained. Such particles are easily compressible by calo-pressure.
  • the average particle size of the flaky natural graphite small particles can be arbitrarily adjusted by a pulverizing operation or the like.
  • the conductive component can be filled at a high density at the time of molding, so that a molded body having higher conductivity can be obtained. Further, the internal stress of the molded body is relaxed, so that warpage or deformation of the molded body can be prevented. Furthermore, the graphite small particles can improve the fluidity of the composition, and can also improve the granulation stability and dispersibility.
  • the conductive composition of the present invention contains a thermoplastic resin and / or a thermosetting resin.
  • the thermoplastic resin and thermosetting resin used in the present invention are not particularly limited as long as they are “non-carbonaceous resins” that are not carbonized or graphitized, and are, for example, about 70 Ot or less (particularly about 50 Non-carbonaceous resin heat-treated at a temperature below 0), non-carbonaceous resin that has undergone molding history, and the like can also be used.
  • Thermosetting resins include, for example, phenolic resins (such as a shelf formed by the reaction of phenols with formaldehyde and, if necessary, co-condensation components), furfural resins, epoxy resins (bisphenol ⁇ type epoxy resins, etc.), BIEL Examples thereof include ester resins, unsaturated polyester resins, polyurethane resins, acrylic acrylic resins, diaryl phthalate resins, silicone resins, and amino resins (urea resins, melamine resins, etc.).
  • the thermosetting resins can be used alone or in combination of two or more.
  • thermoplastic resin for example, a polyolefin resin (polypropylene resin, ethylene-propylene copolymer, etc.), a polyester resin (polyalkylene Aromatic homopolyesters such as phthalate and polyalkylene naphthalate or their copolyesters, polyarylate-based resins, liquid crystalline polyester-based resins, etc.), polycarbonate resins (bisphenol A-type polycarbonate resin, etc.), polystyrene Resin (e.g., homopolymer or copolymer of styrene monomer such as styrene), acrylic resin (e.g.
  • an ion-free resin substantially free of ionic components such as heavy metals is preferable.
  • the operating temperature of polymer electrolyte fuel cells is usually around 80.
  • resins having high durability at high temperatures for example, engineering plastics, which are unlikely to cause inferiority due to hydrolysis or the like, are preferred.
  • Resins, polyarylene sulfide resins, polyaryl ether ketone resins, polyether imide resins, polyaryl sulfones, etc. are particularly preferred.
  • a resin having high chemical resistance and high degree is preferable.
  • the thermosetting resin a phenol resin (a resol type or a nopolak type resin), an epoxy resin, a diaryl phthalate resin and the like are preferable.
  • thermoplastic resin a polyphenylene sulfide resin, a fluorine resin, or the like is preferable in terms of moldability, chemical resistance, durability, and mechanical strength. Good.
  • the phenolic resins include ordinary resin resins, novolak resins, and phenolic resins formed by the reaction of phenols and aldehydes with co-condensation components (urea, guanamine, melamine, furfural, nitrogen-containing compounds, etc.). (Copolymerized phenolic resin).
  • the polyphenylene sulfide-based resin only needs to have a polyphenylene sulfide skeleton, and is a polymer of the same family as polyphenylene sulfide (for example, polyphenylene sulfide ketone PPSK, polyphenylene sulfide sulfone PPSS, polyphenylene sulfide sulfone) PBPS).
  • the polyphenylene sulfide-based resin may have a partial crosslinked structure or may not have a crosslinked structure.
  • the polyphenylene sulfide resin may be a linear type having a linear structure (usually referred to as a linear type or a semi-linear type), or may be a branched type having a branched structure. Straight-chain polyphenylene sulfide resin is preferred. Further, the polyphenylene sulfide-based resin may have a substituent (for example, a C ⁇ 4 alkyl group) on the benzene ring.
  • the molecular weight of Porifue two Rensurufuido based resin for example, a weight average molecular weight 1 X 10 4 ⁇ 10 X 10 4 or so, preferably from 1. 5X 10 4 ⁇ 5X10 about 4.
  • the melt viscosity of the resin at the molding temperature is, for example, about 1 to 50 Pa's (10 to 500 voise), preferably about 1 to 4 OPa ⁇ s (for example, 2 to 40 Pa's), and more preferably: It is in the range of about ⁇ 30 Pa ⁇ s (for example, 2-30 Pa's), and usually about 2-25 Pa ⁇ s, particularly about 2-20 Pa ⁇ s, is advantageously used.
  • a resin having a low melt viscosity at the molding temperature is used, not only can the amount of resin be reduced, but also the conductivity can be improved even with the same amount of resin.
  • the molding temperature can be appropriately selected according to the type of resin and the like, and is usually about 100 to 350, for example, a temperature higher than the melting temperature of the resin, for example, 200 to 350), preferably about 220 to 330.
  • the polyphenylene sulfide resin can be molded at a molding temperature of, for example, about 300 to 34, preferably about 310 to 330 (for example, about 320 "C).
  • the molecular weight of the resin can be appropriately selected according to the type of the resin.
  • the amount of thermosetting resin Koryou as weight average molecular weight usually 5 0 0-5 say yes 1 0 4 mm, preferably 0. 1 X 1 0 4 ⁇ 1 X 1 0 4 about.
  • the molecular weight of the thermoplastic resin is usually about 1 ⁇ 10 4 to 100 ⁇ 10 4 , preferably about 2 ⁇ 10 4 to 5 OX 10 4 as a weight average molecular weight.
  • the form of the resin is not particularly limited, and examples thereof include a liquid form and a granular form, and the resin is usually used in a granular form.
  • the average particle size of the shelf powder is not particularly limited as long as the uniformity of the composition and the formability are not impaired, and is usually about 1 to 100 m, preferably about 3 to 50 ⁇ m, more preferably. Is about 5 to 30 m.
  • graphite particles having a specific average particle diameter are used, so that the specific surface area and oil absorption of the graphite particles can be reduced. Therefore, even if the content of the resin is small, it is possible to obtain a molded product such as a separator having high fluidity and moldability, high integrity, and high mechanical strength. Further, it is possible to economically and advantageously obtain a separator exhibiting high electrical conductivity and thermal conductivity at a high productivity without going through a carbonizing or graphitizing step.
  • the ratio of the conductive component composed of ⁇ graphite particles and, if necessary, graphite small particles, and the resin component composed of a thermoplastic resin and / or a thermosetting resin is such that, when the molded product is formed, the conductive component is mechanically There is no particular limitation as long as the strength and thermal conductivity are not impaired.
  • the conductive composition of the present invention may contain a binder for granulation. Noinder is added as necessary, for example, when granulating the composition.
  • the binder include resin binders such as sodium acrylate, polypinyl alcohol, and polyvinylpyrrolidone; carboxymethyl cellulose, starch, and the like. Of these, sodium polyacrylate is preferred.
  • the binders can be used alone or in combination of two or more.
  • the amount of the binder used (in the case of emulsion, etc., the solid content *) is not particularly limited as long as the melt viscosity of the obtained resin composition is within a predetermined range. In contrast, the amount is usually about 0 to 10 parts by weight, and preferably about 0 to 5 parts by weight.
  • the conductive composition of the present invention may further contain additives such as a coupling agent, a releasing agent, a lubricant, a plasticizer, a curing agent, a curing aid, a stabilizer, and a surfactant, if necessary. May be.
  • additives such as a coupling agent, a releasing agent, a lubricant, a plasticizer, a curing agent, a curing aid, a stabilizer, and a surfactant, if necessary. May be.
  • the form of the conductive composition is not particularly limited, and may be a powdery mixture.
  • a granular composition granulated body ( Compound)
  • a granular composition for example, a compound in the form of pellets or granules
  • the above-mentioned granular composition (granulated material) is used by a conventional method, for example, a method such as a rolling granulation method, a mixing or stirring granulation method, a fluidized bed granulation method, an extrusion granulation method, and a spray granulation method. Then, it can be prepared by granulating the conductive particles, the granular resin and, if necessary, other components.
  • a simple granulation method for example, a method of adding a liquid or a binder liquid by an addition method such as dripping or spraying while mixing the conductive particles and the resin can be exemplified.
  • the granulation properties can be improved as compared with the case of using graphite particles alone. That is, the graphite small particles and the granular resin may be mixed in advance, and granulation may be performed using the resulting mixture (preliminary dispersion) and the graphite particles.
  • the use of granules can prevent the separation of the raw materials of the composition, so that a molded article having a uniform composition can be easily obtained.
  • manufacturing a molded body using the granulated composition obtained by granulation can disorder the orientation of the graphite particles. It is possible to obtain a molded article such as Separete which is isotropic in terms of conductivity or heat conductivity.
  • the pre-dispersion may be prepared by using small graphite particles and a powdery resin, and is prepared by mixing the graphite particles and the resin while applying high shearing force or crushing or crushing. May be.
  • the pre-dispersion may be prepared by either dry or wet mixing and kneading using a mixer or a kneader (Henschel mixer, super mixer, edder, extruder, etc.).
  • the ratio of the graphite small particles in the preliminary dispersion is 0.1 to 100 parts by weight of the resin. It may be about 10 parts by weight, preferably about 0.5 to 7 parts by weight, and more preferably about 1 to 5 parts by weight.
  • Granulation of the preliminary dispersion and graphite particles can be performed by a conventional granulation method in the same manner as described above.
  • granulation can be performed by adding a liquid or a single pinda liquid by an addition method such as dropping or spraying while mixing the preliminary dispersion and graphite particles.
  • an organic solvent alcohols, esters, ketones, etc.
  • water is usually used.
  • binder one liquid examples include various binder emulsions.
  • binder examples include resin binders such as sodium acrylate, polyvinyl alcohol, and polyvinylpyrrolidone; carboxymethyl cellulose, starch, and the like. Among these, sodium polyacrylate is preferred.
  • the binders can be used alone or in combination of two or more.
  • the amount of the pinda used (the amount of solid content) is not particularly limited as long as the melt viscosity of the obtained resin composition is within a predetermined range, but is usually 0 to 1 with respect to 100 parts by weight of the conductive component. It is about 0 parts by weight, preferably about 0 to 5 parts by weight.
  • the amount of the liquid (particularly water) to be added can be appropriately selected according to the granulation method. In the tumbling granulation method, mixing or stirring granulation method, for example, 100 parts by weight of the powder mixture is used. Thus, it can be selected from a range of about 100 to 100 parts by weight.
  • the shape of the granular composition (granulated body) obtained by the granulation is not particularly limited, and may be a sphere, an ellipsoid, a column, or the like.
  • the size of the granular composition (granulated material) is, for example, about 0.2 to 3 mm, preferably about 0.3 to 2 mm, and more preferably about 0.4 to 1.5 mm.
  • the conductive composition of the present invention has high moldability and can form a uniform molded body even in a thin and complicated shape. Furthermore, the amount of resin used can be greatly reduced, and a molded article having high conductivity can be obtained despite the use of unfired (uncarbonized and ungraphitized) resin. Therefore, when the conductive composition of the present invention is used, conductive molded articles of various shapes, for example, flat molded articles (conductive plates and the like), molded articles of complicated shapes and structures (ribs, manifolds, etc.) It is possible to form a plate-like molded body having a concave-convex portion, a groove, and the like, a conductive plate, and the like. Conductive composition of the present invention The molded article manufactured by using the polymer can be suitably used as a polymer electrolyte fuel cell separator.
  • the thickness of the molded body is not particularly limited, and may be about 0.2 to 3 mm (for example, 0.8 to 2.5 mm).
  • the thickness is about 2.5 mm or less, more preferably 2.0 mm or less (for example, about 0.5 to 2 mm).
  • a uniform plate having a thickness of preferably about 1.7 mm or less (for example, about 0.5 to 1.5 mm), more preferably about 0.5 to 1.3 mm, and particularly about 0.7 to 1.2 mm can be formed.
  • the volume resistivity in the thickness direction is about 5 OmQcm or less (for example, about 1 to 5 ⁇ cm), preferably about 5 to 45 ⁇ cm, more preferably about 10 to 4 cm.
  • the conductive composition of the present invention exhibits good moldability and flowability, and can obtain a molded body having high conductivity. It is useful for molding a separator (or conductive plate) for a fuel cell having a groove as a gas flow path, a through hole of a manifold, and the like.
  • the fuel cell separator may be a flat molded body having a flat surface or a flat molded body having grooves formed on at least one surface (particularly, both surfaces).
  • the thermal conductivity in the thickness direction of the molded article of the conductive composition of the present invention is 2 to 6 OW / mK (for example, 3 to 3 OW / mK). 60W mK), preferably about 5 to 6 OWZmK, and more preferably about 10 to 6 OWZmK.
  • the apparent density of the molded body is 1.1 to 2.2 can be selected from gZ cm 3 approximately ranges, for example, 1. 7 ⁇ 2. 1 gZcm 3, preferably about 1. 8 2.1 / cm 3 (eg, 1.8 to 2 gZcm 3 ).
  • molded Has a bending strength of about 30 to 200 MPa (for example, 30 to L5 OMPa), and preferably about 50 to 20 OMPa.
  • the polymer electrolyte fuel cell separator of the present invention is obtained by molding the conductive composition of the present invention by a conventional molding method, for example, injection molding, compression molding (hot press molding, etc.).
  • a conventional molding method for example, injection molding, compression molding (hot press molding, etc.).
  • a graphite particle having an average particle diameter of 55 to 65 m, a conductive component composed of small graphite particles as required, a thermoplastic resin and a thermosetting resin, and a binder if necessary, are mixed to obtain After adjusting the melt viscosity of the mixture obtained to be in the range of 1 ⁇ 10 2 to 5 ⁇ 10 3 Pa * s at 32 O :, the conductive composition is filled in a mold. It can be obtained by a molding method or the like. Injection molding is preferred as a molding method in terms of manufacturing costs and the like.
  • a conductive composition containing graphite particles having a specific particle size and a resin is melt-kneaded (if necessary, a compound such as a pellet or granule is prepared and melt-kneaded), and the molding temperature is adjusted.
  • a molded product (a flat plate) can be manufactured by injection molding into a predetermined die.
  • the injection pressure is usually 10 to 130? & Degree, preferably about 10 to 100 MPa.
  • the molding temperature is usually about 100 to 350 ° C (for example, a temperature higher than the melting temperature of the resin, for example, 200 to 35 ° C), and preferably about 220 to 330 ° C.
  • the mold temperature is usually about 180 to 320, preferably about 200 to 31.
  • the pressure is about 2 to 200 MPa (for example, about 10 to 10 OMPa) and the molding temperature is about 100 to 350 (for example, a temperature higher than the melting temperature of the resin, for example, 200 to 200 MPa).
  • a molded product (a flat plate) can be produced by heating the conductive composition in a mold at a temperature of 350 ° C., preferably about 220 to 330, and press-molding.
  • the mold can be appropriately selected according to the surface form of the separation.
  • a flat separator having a smooth surface may be formed by using a mold having a smooth surface or a flat surface, and a mold having an uneven portion (particularly, a continuous convex portion (protrusion) or groove may be formed). (Particularly grooved molds) by using a grooved mold) May be.
  • a molded article can be economically produced only by a molding step at a temperature not higher than the carbonization temperature without passing through a carbonizing or graphitizing step and a cutting step.
  • a continuous convex portion (a strip) or a mold having a groove injection molding or compression molding method, a convex portion (in particular, a core side) continuous with at least one of a cavity side and a core side (in particular, a core side).
  • a uniform and thin molded article can be molded even if it has a complicated structure such as an uneven portion or a groove. Also, it does not require a carbonization and graphitization process, and has excellent properties such as gas impermeability, electrical conductivity, thermal conductivity, mechanical strength, and acid resistance. Conductive plates such as separators) can be obtained. Furthermore, by simply passing through a molding step without passing through a cutting step, it is possible to form grooves, gas channels, and the like with high dimensional accuracy in addition to characteristics such as high conductivity and thermal conductivity.
  • the polymer obtained from the composition of the present invention can be used as a separator to produce a polymer electrolyte fuel cell.
  • the polymer electrolyte fuel cell is equipped with a polymer electrolyte membrane that functions as an electrolyte membrane, an anode, a force sword, an electrode catalyst, and the like, in addition to the separator.
  • the solid polymer membrane has an ion exchange group having a sulfonic acid group as an ion exchange group such as a perfluorocarbon sulfonic acid membrane, a polytrifluorostyrene sulfonic acid membrane, a polystyrene sulfonic acid membrane, and a phenol sulfonate membrane.
  • An ion exchange resin or the like can be used. Of these, perfluorocarbon sulfonic acid membranes are preferred.
  • porous graphite or the like can be used as the anode or the cathode.
  • a platinum alloy catalyst or the like can be used as the electrode catalyst.
  • the electrode catalyst may be supported on the electrode surface.
  • a polymer electrolyte fuel cell system By providing a hydrogen supply means, an oxygen supply means and the like to the polymer electrolyte fuel cell, a polymer electrolyte fuel cell system can be obtained.
  • the method of connecting the hydrogen supply means to the solid polymer fuel cell is particularly limited as long as hydrogen is supplied to the cell anode. Not done.
  • the method of connecting the oxygen supply means to the polymer electrolyte fuel cell is not particularly limited as long as oxygen is supplied to the cathode of the cell.
  • the hydrogen supply means means for producing hydrogen from hydrocarbon-based fuels such as methane gas, liquefied natural gas, and methanol by steam reforming or the like can be used.
  • the molded article of the conductive composition of the present invention can be suitably used as a fuel cell separator, particularly as a polymer electrolyte fuel cell separator.
  • the acicular coke as a raw material, it was graphitized at a temperature of 2800 ° C, and then subjected to pulverization and classification operations to obtain the following highly crystalline artificial graphite particles.
  • artificial graphite particles 10 (la), artificial graphite particles 70 (lb), artificial graphite particles 65 iim (lc) were added to a tumbling granulator (“Omnimixer”, manufactured by Chiyoda Giken Co., Ltd.).
  • the amount of water used was adjusted in the range of 40 to 50 parts by weight based on 100 parts by weight of the input raw material (powder mixture).
  • JIS standard sieves with different mesh diameters (mesh size 2.36mm, 1.7mm, 1.18mm, 0.85mm, 0.6mm, 0.42mm) are successively layered, and the most frequent diameter of the granulated granules is measured. As a result, the most frequent diameter was 0.85 mm to 0.42 mm, and was 60 to 95% by weight of the whole granular material.
  • Injection molding was performed using an injection molding die having an outer dimension of 20 cmX23 cmX2 mm. On both sides of the mold, 44 parallel grooves (width: 2 mm, length: 19 cm, depth: 0.5 mm, groove spacing: 2 mm) are engraved in an 18 cm X 20 cm active area. By using this mold, a molded article having predetermined grooves on both surfaces can be obtained. An injection molding machine with a maximum mold clamping pressure of 300 t and a maximum injection pressure of 1 t / cm 2 was used.
  • the obtained granular composition (granules) in the form of pellets is charged into a feeder, and a mold temperature: 300 ° C, an injection pressure: 400 to 1000 kg / cm 2 (40 to: L OMPa), Mold temperature (cylinder temperature): Molded at 320 ° C.
  • a molded product having grooves was obtained. Table 1 shows the results.
  • the grooves on both surfaces of the obtained molded body were cut and polished, and a flat plate of 10 cm ⁇ 10 cm was cut out from a region having the grooves.
  • the resistance in the thickness direction was measured by a four-terminal method using a mercury electrode method described below.
  • a resin nipple (3) having a current terminal (2) and a voltage terminal (1) is crimped on the front and back surfaces of the flat plate as the sample (4).
  • the inside was filled with mercury (5).
  • Using a voltmeter (7) measure the voltage drop generated between the voltage terminals when applying 12 OmA from the constant current generator (6) to the current terminals, and calculate the resistance in the thickness direction from the following equation. did.
  • the dispersion prepared above was charged into a tumbling granulator (“Omnimixer”, manufactured by Chiyoda Giken Co., Ltd.), and water was added by dripping or spraying while stirring at a rotation speed of 12 Orpm, and wet milling was performed. Granulated.
  • the amount of water used was adjusted in the range of 40 to 50 parts by weight based on 100 parts by weight of the input raw material (powder mixture).
  • JIS standard sieves with different mesh diameters (mesh 2.36mm, 1.7mm, 1.18mm, 0.85mm, 0.6mm, 0.42mm) are layered in order and the most frequent diameter of the granulated granules is measured. As a result, the most frequent diameter was 0.85 mm to 0.42 mm, and was 60 to 95% by weight of the whole granular material.
  • Powdered polyphenylene sulfide resin (3a) and artificial graphite particles 60 m (id) were charged into a mixer at the ratio shown in Table 3 and mixed for 10 minutes to obtain a dispersion in which the resin powder was uniformly dispersed. It was adjusted.
  • the dispersion was charged into a tumbling granulator (“Omimi Mizazai” manufactured by Chiyoda Giken Co., Ltd.), and wet granulation was carried out in the same manner as in Example 4 while stirring at a rotation speed of 120 rpm.
  • the obtained granular composition (granular body) in the form of a pellet was heated and pressed in the same manner as in Examples 4 to 6 above to obtain a plate-like molded body (20 cm ⁇ 23 cm square).
  • the thickness, bulk density, and volume resistance in the thickness direction and the surface direction of the molded body were measured.
  • the electric resistance in the thickness direction and the surface direction was measured by the same method as in Example 1. Also, the melt viscosity of the composition was controlled. Table 3 shows the results and the appearance of the obtained molded body.
  • a thin molded body having a thickness of 0.5 mm or more and less than 2 mm can be easily obtained by the same method as described above except that the amount of the raw material to be charged is reduced to a predetermined amount.
  • P P S resin (parts by weight) 1 0 1 3 1 5 1 8 2 0 2 5 3 0 (Melt viscosity at 320 ° C 30 Pa-s)
  • the artificial graphite small particles (2b) and powdered polyphenylene sulfide resin (3b) were charged into a high-speed mixer at the ratio shown in Table 4 and mixed for 10 minutes to prepare a pre-dispersion in which the resin powder was uniformly dispersed. did.
  • the preliminary dispersion prepared above and artificial graphite particles 60 m (Id) were charged into a rolling granulator (Chiyoda Giken Co., Ltd., “Omni Mixer”) at the ratio shown in Table 4 and the above Example was used.
  • the wet granulation was performed in the same manner as in 4 to 6.
  • the obtained pellet-shaped granular composition (granular body) was heated and pressed in the same manner as in Examples 4 to 6 above to obtain a plate-shaped molded body (20 cm ⁇ 23 cm square).
  • the thickness, bulk density, and volume resistance in the thickness direction and in the plane direction of the molded body were measured.
  • the volume resistance in the thickness direction and the surface direction was measured in the same manner as in Example 1. Further, the melt viscosity of the composition was measured. Table 4 shows the results and the appearance of the obtained molded body.
  • a thin molded body having a thickness of 0.5 mm or more and less than 2 mm can be easily obtained by the same method as described above, except that the amount of the raw material to be charged is reduced to a predetermined amount.
  • PPS resin (parts by weight) 20 L 2 0 1 8 20 20 2 5
  • volume resistance in the thickness direction (inQ'cin) 3 3. 8 3 5. 2 2 7. 4 3 1. 3 34.7 7 49.5

Description

明 細 書
固体高分子型燃料電池セパレー夕用導電性組成物、 固体高分子型燃料電池 セパレー夕、 該セパレー夕を用いた固体高分子型燃料電池
及び固体高分子型燃料電池システム 技 術 分 野
本発明は、固体高分子型燃料電池 (PEFC: Polymer Electrolyte Fuel Cell)用セ パレー夕を製造するのに有用な導電性組成物、固体高分子型燃料電池セパレ一夕、 該セパレー夕を用いた固体高分子型燃料電池及び固体高分子型燃料電池システム に関する。 背 景 技 術
固体高分子型燃料電池は、電解質膜としての固体高分子膜 (デュポン社のナフィ オン膜、ダウケミカル社のダウ膜など)と、 この電解質膜の両側に配設されたポ一 ラスな黒鉛質ペーパーと、このべ一パーの表面に坦持された電極触媒としての白 金合金触媒とを備えている。 前記黒鉛質べ一パ一の外側に、 ガス流路としての溝 が形成された多孔質黒鉛板と平板状セパレー夕とを順次配設するか、 又はガス流 路としての溝が形成された平板状セパレー夕を配設することにより、 セルは構成 されている。
前記平板状セパレ一夕には、 酸素、 水素に対するガス不透過性、 電気導電性、 熱伝導性、 機械強度、 耐酸性などが要求される。 また、 溝付きセパレー夕には、 平板セパレ一夕に対する要求性能に加えて、 ガス流路の寸法精度が高いことが要 求される。 さらに、 1つの燃料電池を構築するためには、 例えば、 1 0 0〜6 0 0枚程度のセパレ一夕を積層して配設する必要があるので、 セパレ一タには薄肉 化が要求される。 特に、 最も厚い部分を 2 mm以下とし、 両面に溝を形成するこ とによりバイポーラセパレー夕の使用枚数を低減するとともに、 溝部をできるだ け深くして薄肉部をできるだけ薄く (例えば、 0.8 mm程度に)設定することが 要求される。
このようなセパレー夕は、 フエノール樹脂、 炭化収率の高い石油又は石炭系ピ ツチなどのバインダ一と炭素粉末との混練物を平板に成形した後、 非酸化性雰囲 気中で炭化及び黒鉛化処理することにより炭素質又は黒鉛質平板を形成し、 さら に切削加工により溝を形成することにより製造されている。 例えば、 特開平 4一 2 1 4 0 7 2号公報には、 炭化又は黒鉛化可能なバインダーと、 炭素繊維と、 炭 素質粉粒体とを含み、 この炭素質粉粒体が、 平均粒径 2 5〜7 5 mの粉粒体、 平均粒径 7 5〜: 1 2 5 mの粉粒体、 平均粒径 1 2 5〜1 7 5 mの粉立体から なる炭素質組成物を成形し、 黒鉛化することにより燃料電池用炭素材を得ること が開示されている。 この公報には、 ノ fンダー 1 0 0重量部に対して、 炭素繊維 1 0〜7 5重量部、 炭素質粉粒体 5 0〜1 5 0重量部を含むことも開示され、 実 施例では、 厚み 2 mmの成形シートを黒鉛化している。
しカゝし、 炭質組成物の炭化又は黒鉛化に伴って、 ガスに対する不透過性が損な われるとともに、 シート状炭素材に反りや割れが生じやすくなり歩留まりが低下 する。 さらに、 薄肉化と黒鉛質炭素材との切削加工性とを両立させることが困難 であるとともに、 黒鉛質炭素材を切削加工して溝を形成すると、 非常にコスト高 となる。
そこで、 W0 9 9 /4 9 5 3 0号には、 非炭素質棚旨と導電剤とを含む樹脂組 成物を射出成形又は圧縮成形し、 燃料電池用セパレ一夕を製造することが提案さ れている。 また、 特開昭 6 2— 2 6 0 7 0 9号公報には、 熱硬化性榭脂 1 0〜3 0重量%と、 粒度が 5 0 m以下であるメソカーボン小球体の黒鉛化物とで構成 された炭素成形体が開示されている。この文献には厚み 0 . 8 mmの薄板を得たこ とも記載されている。
特開昭 6 0— 2 4 6 5 6 8号公報には、 フエノール樹脂 2 5〜3 0重量%と黒 鉛粉末 7 0〜 7 5重量%との混合物を、 樹脂が黒鉛化しない温度にて加圧成形す ることにより、 リブ付きセパレー夕を成形する燃料電池用リブ付きセパレ一夕の 製造方法が開示されている。この文献には、粒度範囲 1 0 0〜 3 2 5メッシュ(約 1 5 0〜4 4 ΠΙ) に篩い分けた黒鉛粉末を用い、 厚み 2 mmの導電性板を得た ことも記載されている。 また、 リブ付き成形体の成形においては、 成形性を向上 させるため、 樹脂量 2 5重量%を必要とし、 体積抵抗が 1 0—2 Ω · c mオーダ一 の成形体を得ている。 特開昭 5 9 - 2 1 3 6 1 0号公報には、 熱硬化性樹脂 1 0〜2 5重量%と、 黒 鉛粉末とで構成された成形体において、 黒鉛粉末のアスペクト比が 3以下、 最大 粒径が 1 0 4 m以下でかつその 1 0〜 8 0 %が 5 0 m以下であり、 前記成形 体の電気比抵抗が 0. 0 3 Ω · c m以下である炭素成形体が開示されている。 こ の文献では、 扁平な粒子では成形性が劣るため、 摩砕によりアスペクト比を 3以 下にしている。
しかし、これらの組成物は、いずれも成形性が十分でないため、樹脂量を低減し た場合 (例えば、 翻旨量 2 5重量%未満の組成) では、 厚みが薄く (例えば、 厚 みが 2 mm以下)、溝 ·リブやマ二ホールドを有する形状の均一な成形体を得るこ とが困難である。 特に、 凹凸部や溝などによりさらに薄肉な部位を有し、 かつ厚 みの薄い成形体を均一に成形することは困難である。
従って、 本発明の目的は、 リブ、 マニホ一ルドなどとして機能する凹凸部、 溝 などの複雑な構造を有していても、 組成が均一で厚みの薄い成形体を得ることの できる導電性組成物、 固体高分子型燃料電池セパレータ及び該セパレ一タを用い た固体高分子型燃料電池を提供することにある。
本発明の他の目的は、 炭化'黒鉛化工程を経ることなぐ ガス不透過性、 電気 導電性、 熱伝導性、 機械強度、 耐酸性などの諸特性に優れる固体高分子型燃料電 池用セパレー夕を低コストで得ることのできる導電性組成物を提供することにあ る。
本発明のさらに他の目的は、切削工程を経ることなぐ成形工程を経るだけで、 高い導電性、 熱伝導性などの特性に加えて、 寸法精度の高い溝 (ガス流路)を形成 できる導電性組成物、 この組成物を用いた固体高分子型燃料電子セパレー夕及び 該セパレ一夕を用いた固体高分子型燃料電池を提供することにある。
本発明のさらに別の目的は、樹脂の含有量が少量であつても成形流動性が高く、 高い成形性を有し、 且つ高い導電性を有する成形体を得ることのできる導電性組 成物、 この組成物を用いた固体高分子型燃料電池用セパレー夕、 このセパレータ を用いた固体高分子型燃料電池及び電池システムを提供することにある。 発 明 の 開 示 本発明者は、 前記目的を達成するため鋭意検討の結果、 翻旨と黒鉛粒子とを含 む導電性組成物において、 特定の平均粒子径を有する黒鉛粒子を用いると、 組成 物の成形性及び流動性を顕著に高めることができ、 成形工程を経るだけで、 溝付 きプレートなどの複雑な構造を有する成形体を製造する場合であっても、 組成が 均一で、 厚みが薄く、 導電性の高い成形体が得られることを見出し、 本発明を完 成した。
すなわち、本発明は、以下の固体高分子型燃料電池セパレ一夕用導電性組成物、 固体高分子型燃料電池セパレー夕、 該セパレー夕を含む固体高分子型燃料電池及 び燃料電池システムに係る。 また、 本明細書は、 導電性組成物を成形し、 導電性 成形体を製造する方法も開示する。
1. 1)黒鉛粒子及び必要に応じて黒鉛小粒子からなる導電性成分、 並びに 2 )熱可塑性棚旨及び/又は熱硬ィ匕性翻旨を含み、
3 )黒鉛粒子の平均粒子径 D 1が、 55〜 65 mであり、
4)溶融粘度が、 320。Cにおいて 1 X 102〜5X103Pa ' sであり、 且つ
5 ) (黒鉛粒子及び必要に応じて黒鉛小粒子),纖可塑性樹脂及び/又は熱硬 化性樹脂)の重量比が、 95Z5〜75Z25である固体高分子型燃料 電池セパレー夕用導電性組成物。
2. 黒鉛小粒子が、 平均粒子径 D2=D1 X0. 1〜D1X0. 5の黒鉛粒子 である上記 1に記載の固体高分子型燃料電池セパレー夕用導電性組成物。
3. 厚みが、 2 mm以下の成形体を得ることができる上記 1に記載の固体高分 子型燃料電池セパレー夕用導電性組成物。
4. 熱可塑性樹脂が、 熱可塑性エンジニアリングプラスチックである上記 1に 記載の固体高分子型燃料電池セパレー夕用導電性組成物。
5. 熱可塑性樹脂が、 ポリフエ二レンスルフィド系樹脂である上記 1に記載の 固体高分子型燃料電池セパレ一タ用導電性組成物。
6. 上記 1〜 5のいずれかに記載の導電性組成物を射出成形することにより 得ることができる固体高分子型燃料電池セパレ一夕。
7. 上記 1〜 5のいずれかに記載の導電性組成物を圧縮成形することにより 得ることができる固体高分子型燃料電池セパレー夕。
8. 平板状成形体である上記 6又は 7に記載の固体高分子型燃料電池セパレ 一夕。
9. 凹凸部又は溝部が形成された平板状成形体である上記 6又は 7に記載の 固体高^^型燃料電池セパレー夕。
10. 厚み方向の体積抵抗が、 5 OmQ - cm以下である上記 6又は 7に記載の 固体高分子型燃料電池セパレ一夕。
11. 上記 6又は 7に記載の固体高分子型燃料電池セパレータを用いた固体高 分子型燃料電池。
12. 請求項 6又は 7に記載の固体高分子型燃料電池セパレ一夕を用いた固体 高分子型燃料電池システム。
13. 1)黒鉛粒子及び必要に応じて黒鉛小粒子からなる導電性成分、 並びに 2 )熱可塑性樹脂及び/又は熱硬化性樹脂を含み、
3 )黒鉛粒子の平均粒子径が、 55〜 65 mであり、
4)溶融粘度が、 320°Cにおいて 1 X 102〜5X 103Pa · sであり、 且つ、
5 ) (黒鉛粒子及び必要に応じて黒鉛小粒子), (熱可塑性樹脂及び/又は熱硬 ィ匕性樹脂)の重量比が、 95ノ5〜75 25である溶融混合物を射出 成形することを特徴とする固体高分子型燃料電池セパレー夕の製造方 法。
4. 1)黒鉛粒子及び必要に応じて黒鉛小粒子からなる導電性成分、 並びに
2 )熱可塑性翩旨及び/又は熱硬化性樹脂を含み、
3 )黒鉛粒子の平均粒子径が、 55〜 65 mであり、 且つ
4)溶融粘度が、 320でにおいて 1 X 102〜5 X 1 03Pa ' sであり、 且つ、
5 ) (黒鉛粒子及び必要に応じて黒鉛小粒子)/纖可塑性樹脂及び/又は熱硬 ィ匕性樹脂)の重量比が、 95 5〜75Z25である溶融混合物を圧縮 成形することを特徴とする固体高分子型燃料電池セパレー夕の製造方 法。 本明細書において、 粉体粒子の粒度分布は、 レーザ一光回折法によって測定し た値を用いる。 特に、 測定により得られた累積粒度分布曲線から求めた累積度 2 0%、 50%、 80%点での粒子径を用いる。 ここで、 累積度 50%の粒径を記 号 D 50%で表し、平均粒子径と称す。また、粒度分布の広がりは、累積度 20% における粒度 (D20%) と、 累積度 80%における粒度 (D80%) との比で 表すことができ、 前記比 (D80%/D20%) を「均斉度」と呼ぶ。 この均斉度 の数値が大きいと、 大粒径から小粒径までさまざまな粒子からなるブロードな粒 度特性であることを示し、 この数値が小さいと、 粒径が揃った粒度特性であるこ とを示す。
溶融粘度は、 J I S K 7199に規定する流れ特性試験法に準じて、成形温 度(例えば、 320°C)、 剪断歪み率(又は剪断速度) 100 OZsで測定した値 である。なお、 剪断歪み率は、 J I S K 7199に準じて、 バレル径 D' とキ ャピラリー径 dとの割合 D' Zd = 10. 0とし、 単位時間当たりの流量から算 出した。 図面の簡単な説明
図 1は、 実施例において、 厚み方向の体積抵抗を測定するために用いた装置の 測定原理を示す図である。 発明を実施するための最良の形態
本発明は、
1)黒鉛粒子及び必要に応じて黒鉛小粒子からなる導電性成分、 並びに
2)熱可塑性及び/又は熱可塑性樹脂を含み、
3 )黒鉛粒子の平均粒子径 D 1が、 55〜 65 mであり、
4) 溶融粘度が、 320でにおいて 1 X 102〜5X 103P a · sであり、 且つ 5 ) (黒鉛粒子及び必要に応じて黒鉛小粒子)/ (熱可塑性樹脂及び/又は熱硬化性 樹脂)の重量比が、 95/5〜75/25である固体高分子型燃料電池セパレー夕 用導電性組成物に係る。
本発明の導電性組成物の溶融粘度は、 成形温度、 例えば 320 において、 1 X 102〜5X 103Pa . s程度の範囲から選択でき、 1 X θ2〜4Χ 103 Pa ' s (例えば、 3X 102〜4X 103Pa · s) 程度、 より好ましくは 1 X 102〜3X 103P a · s (例えば、 5 X 102~3 X 103 P a · s )程度であ る。
.黒鉛粒子
「黒鉛粒子」 とは、 黒鉛構造のみからなる粒子又は部分的に黒鉛構造を含んで いる炭素質粒子を意味する。 黒鉛粒子は、 高い導電性を有するものが好ましい。 黒鉛粒子としては、 結晶性の高い黒鉛構造を有する粒子が好ましい。
黒鉛粒子の体積抵抗は、 特に制限されないが、 通常約 10— 4Ωα 以下、 好まし くは約 10- 5 Ωαη以下、 より好ましくは約 10一6 Ωαη以下である。
黒鉛粒子として、 例えば、 天然黒鉛、 人造黒鉛などを用いることができる。 よ り具体的には、 石油系又は石炭系の針状コ一クスを素原料とした黒鉛粒子などを 例示できる。
黒鉛粒子の形状は、 特に制限されず、 例えば、 板状などの無定形状;球状、 楕 円形状、多角形状(方形など)、 ロッド状などを例示できる。板状黒鉛粒子として は、 例えば、 扁平状、 鱗片状、 層状、 薄片状などを例示できる。 黒鉛粒子の形状 は、 通常、 非球形であり、 無定形粒子 (前記扁平状、 鱗片状、 層状、 薄片状など の板状など) である。
人造黒鉛は、 通常、 L a (110) 〉約 1000人、 L c (004) 〉約 10 0 OA (特に Lc (112) >約 10 OA) の結晶構造を有している。
黒鉛粒子の平均粒子径は、 通常 55〜65 jLim程度、 好ましくは 57〜63 x m程度である。 このような平均粒子径の黒鉛粒子を用いることにより、 樹脂量を 低減しても、 高い導電性を維持しながら、 流動性及び射出成形性に優れた導電性 組成物を得ることができる。
その理由については、 概ね次のように考えられる。 樹脂と粒子との混合系にお いて、 導電性粒子の平均粒子径が 50 mより小さくなり過ぎると、 比表面積の 増加に伴って、 粒子表面を覆うために必要な樹脂も多くなるので、 組成物の粘性 が高くなり、 成形性が悪くなる。 一方、 平均粒子径が 65 mよりも大きくなり 過ぎると、 粒子同士の相互接触によって生じる流動抵抗が大きくなり、 組成物の 粘性が高くなる。 また、 平均粒子径が 65^mよりも大きくなり過ぎると、 組成 の均一性が低下するので、 強度、 ガス不透過性などカ坏均一となったり、 成形体 表面の平滑性が悪くなるなどの問題が生じる。 特に、 厚みが 2 mm以下の成形体 において、 これらの問題が生じる可能性が高い。 そのため、 適切な粒子径とする ことにより、 流動性及び射出成形性に優れた導電性組成物を得ることができる。 黒鉛粒子は、 セパレー夕等の成形体とした場合に、 導電骨格を形成するので、 高い導電性を有する成形体を得ることができる。 また、 黒鉛粒子は、 導電に寄与 する実効断面積を増加させるとともに、 比表面積が小さいので、 樹脂量を大きく 低減しても、 ガス透過性が小さく、 黒鉛粒子と樹脂との一体性が高く、 機械的強 度の高い成形体を得ることができる。
黒鉛粒子のブ夕ノール置換真比重は、 通常約 2.1以上 (例えば、 2.1〜2.3 程度)、 好ましくは約 2.2以上 (例えば、 2.2〜2.3程度) である。
黒鉛粒子の BET比表面積は、通常 10m2Zg以下(例えば、 l〜5m2Zg)、 好ましくは 2〜5m2Zg程度である。
また、 J I S K 622 1に規定する A法 (ジブチルフタレ一ト (DBP) を 使用) による吸油量は、 通常 60〜75ml/100 g程度、 好ましくは 6 5〜 73mlノ1 00 g程度である。
平均粒子径が 5 5〜6 5 /xm程度である黒鉛粒子の均斉度 (D 80 %/Ό 2 0%) は、例えば、 約 5以下(例えば 1〜 5程度) に調整することが有効であり、 通常 2〜5程度 (例えば、 2.2~4.8程度), 好ましくは 3〜 5程度である。 本発明の固体高分子型燃料電池セパレ一夕用導電性組成物は、 溶融粘度が、 3 2 O において 1 X 102〜5 X 1 03P a ' sとなる範囲内で、 黒鉛小粒子を含 んでいてもよい。 黒鉛小粒子としては、 平均粒子径 D 2 =D 1 X0. 1〜D 1 X 0. 5の黒鉛粒子などを用いることができる。 黒鉛小粒子を用いることにより、 燃料電池用セパレー夕の導電性を向上させることができる。
黒鉛粒子と黒鉛小粒子との割合は、 重量比として、 通常、 前者 z後者 -loo
/0〜60Z40程度、 好ましくは 100/0〜70 30程度、 より好ましく は 100Z0〜80/20程度 (例えば、 100Z0〜7 5/25程度)である。 特に、 黒鉛粒子と黒鉛小粒子との重量比が、 95/5〜75/25程度、 好まし くは 90/1 0〜75/25程度(例えば、 85/15〜75/25程度 )、より 好ましくは 90/10〜80/20程度である組成物は、 組成物の流動性又は射 出成形性がより高く、 また、 導電性のより高い成形体を得ることができる。
組成物全体に対する黒鉛小粒子の含有量は、 通常約 30重量%以下 (例えば、 2〜 30重量%程度)、好ましくは約 25重量%以下(例えば、 3〜 25重量%程 度)、 さらに好ましくは約 20重量%以下(例えば、 3〜20重量%程度)であり、 特に好ましくは 5〜20重量% (特に 1 0〜20重量%) 程度である。
黒鉛小粒子の平均粒子径 D 2は、 ®#D2=D 1X0. 1〜D 1 X 0. 5程度 であり、 好ましくは D 1 X 0. 1〜D 1 X 0. 3程度であり、 より好ましくは D 1 X 0. 1〜D 1 X0. 2程度である。
平均粒子径 D 2は、 D 1の値に応じて適宜設定することができ、 通常 5〜 25 程度であり、 好ましくは 7〜20 m程度、 さらに好ましくは 8〜12 程度である。
黒鉛小粒子として、 例えば、 天然黒鉛、 人造黒鉛などを用いることができる。 黒鉛小粒子の形状は、 特に制限されず、 例えば、 板状などの無定形状;球状、 楕 円形状、多角形状(方形など)、 ロッド状などを例示できる。板状黒鉛小粒子とし ては、 例えば、 扁平状、 鱗片状、 層状、 薄片状などを例示できる。 これらの中で は、 球状(球状黒鉛小粒子)、 鱗片状(鱗片状天然黒鉛小粒子)、 薄片状粒子 (薄片 状天然黒鉛小粒子) が好ましい。 黒鉛小粒子は、 1種を単独で用いてもよく、 2 種以上を併用してもよい。
球状黒鉛は、 粗い粒子間の間隙に対する充填性が高いので、 効率よく導電性を 向上できる。 また、 鱗片状又は薄片状粒子は、 球状黒鉛と同じく粗い粒子間の間 隙に対する充填性が高く、 導電骨格として機能する黒鉛粒子 (粗い粒子)と面接触 するので、 効率よく導電性を向上できる。 なお、 平均粒子径が D 2で示される黒 鉛小粒子としては、 結晶構造において Lcや L aが大きな結晶性黒鉛粒子 (例え ば、 結晶構造が発達した高結晶性黒鉛粒子) が使用できる。
球状黒鉛小粒子には、 メソカ一ボンマイクロビーズ (以下、 単に「MCMB」と レ う) の黒鉛化品、球状化された天然及び人造黒鉛などが含まれる。 MCMBは、 高度に結晶が配向し、 黒鉛類似の構造を有する球状体 (メソフェーズ小球体) で ある。 MCMBは、 公知の方法により製造することができる。 例えば、 特公平 1 - 2 7 9 6 8号公報、 特開平 1— 2 4 2 6 9 1号公報などに記載の方法により製 造することができる。
薄片状又は鱗片状天然黒鉛小粒子は、 例えば、 高結晶性天然黒鉛を公知の方法 により (例えば减酸を用いて) 膨張化処理し、 ジェットミルなどにより粉砕する 方法などにより得ることができる。 膨張化処理によって黒鉛結晶の積層構造が、 層間で剥離する。 このような生成物を粉碎することにより、 非常に平面的な黒鉛 小粒子 (鱗片又は薄片状黒鉛小粒子) が得られる。 このような粒子は、 カロ圧によ つて容易に圧縮可能である。 薄片状天然黒鉛小粒子の平均粒子径は、 粉砕操作な どにより任意に調整できる。
黒鉛小粒子を用いた場合には、 成形時に導電性成分を高密度で充填することが 可能となるので、 より高い導電性を示す成形体を得ることができる。 また、 成形 体の内部応力が緩和され、 成形体に反りや変形が生じるのを防止できる。 さらに は、 黒鉛小粒子は、 組成物の流動性を改善するとともに、 造粒安定性及び分散性 を向上させることができる。
本発明の導電性組成物は、熱可塑性樹脂及び/又は熱硬化性樹脂を含んでいる。 本発明において用いる熱可塑性樹脂及び熱硬化性樹脂は、 炭化又は黒鉛化され ていない「非炭素質樹脂」であれば、特に制限されず、例えば、約 7 0 O t以下(特 に約 5 0 0 以下) の温度で熱処理された非炭素質樹脂、 成形履歴を受けた非炭 素質樹脂なども用いることができる。
熱硬化性樹脂としては、 例えば、 フエノール樹脂 (フエノール類とホルムアル デヒドと必要により共縮合成分との反応により生成する棚旨など)、フルフラール 樹脂、エポキシ樹脂(ビスフエノール Α型エポキシ樹脂など)、 ビエルエステル樹 脂、 不飽和ポリエステル系樹脂、 ポリウレタン系樹脂、 簾化性アクリル樹脂、 ジァリルフタレート樹脂、 シリコーン樹脂、 ァミノ樹脂 (尿素樹脂、 メラミン樹 脂など) などが例示できる。 熱硬化性樹脂は単独で又は二種以上組み合わせて使 用できる。
熱可塑性樹脂としては、例えば、ポリオレフイン系樹脂(ポリプロピレン樹脂, エチレン一プロピレン共重合体など)、ポリエステル系樹脂(ポリアルキレンテレ フタレート, ポリアルキレンナフタレートなどの芳香族ホモポリエステル又はこ れらのコポリエステル,ポリアリレート系樹脂、液晶性ポリエステル系樹脂など)、 ポリカーボネート樹脂(ビスフエノール A型ポリ力一ポネート樹脂など)、ポリス チレン系樹脂(スチレンなどのスチレン系単量体の単独又は共重合体など)、ァク リル系樹脂 (メタクリル酸メチルなどのアクリル系単量体の単独又は共重合体な ど)、 ポリアミド樹脂(脂肪族ポリアミド (ポリアミド 6, ポリアミド 6 6, ポリ アミド 6 1 0など)、芳香族ポリアミド(メタキシリレンジァミン—アジピン酸共 重合体 MXD— 6など)など)、 ポリアリーレンエーテル系樹脂(ポリフエ二レン ェ一テフレ系樹脂)、ポリアリーレンスルフィド系樹脂(ポリフエ二レンスルフィド 系樹脂)、ポリアリールエーテルケトン系樹脂(ポリェ一テルエーテルケトン系樹 脂など)、ポリエーテルイミド系樹脂、ポリアリ一ルスルホン系樹脂(ポリスルホ ン樹脂、ポリエーテルスルホン樹脂など)、 フッ素系樹脂(ポリクロ口トリフルォ 口エチレン、 ポリビニリデンフルオライド、 ポリビニルフルオライド、 テトラフ ルォロエチレン一へキサフルォロプロピレン共重合体、 テトラフルォロエチレン 一エチレン共重合体、 テトラフルォロエチレン—パ一フルォロアルキルピニルェ —テル共重合体などのフッ素含有単量体の単独又は共重合体)などが例示できる。 これらの熱可塑性樹脂も単独で又は二種以上組合わせて使用できる。
樹脂としては、 重金属などのイオン成分を実質的に含まないイオンフリ一樹脂 が好ましい。
固体高分子型燃料電池の作動温度は、 通常 8 0 程度である。 そのため、 高温 での耐久性の高い樹脂、 例えば、 加水分解などによる劣ィ匕が生じにくいェンジ二 ァリングプラスチックが好ましく、 熱可塑 '14エンジニアリングプラスチック (ポ リアリレート系樹脂、 ポリアミド樹脂、 ポリアリーレンエーテル系樹脂、 ポリア リーレンスルフイド系樹脂、 ポリアリールエーテルケトン系樹脂、 ポリエーテル イミド系樹脂、 ポリアリールスルホン系翻旨など) が特に好ましい。 特に、 耐薬 品性及び 度の高い樹脂が好ましい。 例えば、 熱硬化性樹脂としては、 フエノー ル樹脂(レゾール型又はノポラック型樹脂)、 エポキシ樹脂、 ジァリルフタレート 樹脂などが好ましい。 熱可塑性樹脂としては、 成形性、 耐薬品性、 耐久性、 機械 的強度などの点から、 ポリフエ二レンスルフイド系樹脂、 フッ素系樹脂などが好 ましい。
フエノール樹脂には、 通常のレゾ一ル樹脂、ノボラック樹脂、及びフェノール類 とアルデヒド類と共縮合成分 (尿素、 グアナミン、 メラミン、 フルフラール、 含 窒素化合物など) との反応により生成するフエノ一ル樹脂 (共重合フエノール樹 脂)も含まれる。
ポリフエ二レンスルフィド系樹脂は、 ポリフエ二レンスルフィド骨格を有して いればよく、 ポリフエ二レンスルフイドと同族ポリマ一 (例えば、 ポリフエニレ ンスレフイドケトン PPSK, ポリフエ二レンスルフイドスルホン PPSS, ポ リビフエ二レンスルフイド PBPSなど) も含まれる。 ポリフエ二レンスルフィ ド系樹脂は、 部分的な架橋構造を有していてもよぐ 架橋構造を有していなくて もよい。 ポリフヱニレンスルフイド系樹脂は、 直鎖構造を有する直鎖型 (通常、 リニア型又はセミリニア型と称する) であってもよく、 分岐構造を有する分岐型 であってもよいが、 通常、 直鎖型ポリフエ二レンスルフイド系樹脂が好ましい。 さらに、 ポリフエ二レンスルフィド系樹脂は、 ベンゼン環に置換基 (例えば、 C ^4アルキル基など) を有していてもよい。 ポリフエ二レンスルフイド系樹脂の 分子量は、 例えば、 重量平均分子量 1 X 104〜 10 X 104程度、 好ましくは 1. 5X 104〜 5X104程度である。
樹脂の溶融粘度は、 成形温度において、 例えば、 l〜50Pa ' s (10〜 5 00ボイズ) 程度、 好ましくは 1〜4 OP a · s (例えば、 2〜40Pa ' s) 程度、 さらに好ましくは:!〜 30 P a · s (例えば、 2〜30Pa ' s) 程度の 範囲内であり、 通常 2〜25Pa · s程度、 特に 2〜20Pa · s程度の樹脂が 有利に使用される。 成形温度における溶融粘度が低い樹脂を用いると、 樹脂量を 低減できるだけでなく、 同じ樹脂量であっても導電性を改善できるようである。 なお、成形温度は、樹脂の種類などに応じて適宜選択でき、通常 100〜350 程度、 例えば、樹脂の溶融温度以上の温度、 例えば、 200〜 350 )、 好まし くは 220〜 330 程度である。ポリフエ二レンスルフィド系樹脂は、例えば、 300〜34 程度、 好ましくは 310〜330で程度 (例えば約 320"C)の 成形温度で成形できる。
樹脂の分子量は、 樹脂の種類などに応じて適宜選択できる。 熱硬化性樹脂の分 子量は、 重量平均分子量として、 通常5 0 0〜5乂 1 0 4程度、 好ましくは 0 . 1 X 1 04〜 1 X 1 04程度である。熱可塑性樹脂の分子量は、 重量平均分子量と して、通常 1 X 1 0 4〜1 0 0 X 1 0 4程度、好ましくは 2 X 1 0 4〜5 O X 1 0 4 程度である。
樹脂の形態は、 特に制限されす 液状、 粉粒状などを例示できるが、 通常、 粉 粒状の形態で使用される。 棚旨粉粒体の平均粒子径は、 組成物の均一性、 成形性 などを損なわない限り特に制限されず、 通常 1〜1 0 0 m程度、 好ましくは 3 〜5 0 ^m程度、 より好ましくは 5〜3 0 m程度である。
本発明では、 特定の平均粒子径の黒鉛粒子 (好ましくは特定の均斉度の粒度を 有する黒鉛粒子) を用いるので、 黒鉛粒子の比表面積や吸油量を低減できる。 そ のため、 樹脂の含有量が少なくても、 流動性及び成形性が高く、 一体性、 機械的 強度の高いセパレー夕などの成形体を得ることができる。 また、 炭化又は黒鉛化 工程を経ることなく、 高い導電性及び熱伝導性を示すセパレー夕を高い生産性で 経済的に有利に得ることができる。
ω黒鉛粒子及び必要に応じて黒鉛小粒子からなる導電性成分と、 )熱可塑性樹 脂及び/又は熱硬化性樹脂からなる樹脂成分との割合は、成形体とした時に、導電 性、 機械的強度、 熱伝導性などを損なわない範囲であれば特に制限されない。 (a) 導電性成分と (b)樹脂成分との重量比は、通常、 前者 Z後者 = 9 5 / 5〜 7 5/2 5程度であり、 好ましくは 8 7 / 1 3〜7 3 /2 7程度、 より好ましくは 8 2Z 1 8〜7 3ノ2 7程度である。
本発明の導電性組成物は、 造粒用のバインダーを含んでいてもよい。 ノインダ 一は、 組成物を造粒する場合などに、 必要に応じて添加する。 バインダーとして は、 アクリル酸ナトリウム、 ポリピニルアルコール、 ポリビニルピロリドン等の 樹脂バインダー;カルボキシメチルセルロース、 スターチなどを例示できる。 こ れらの中では、 ポリアクリル酸ナトリウムが好ましい。 バインダーは、 単独で又 は二種以上組み合わせて使用できる。バインダ一の使用量 (ェマルジョンなどの場 合には、固形分の *)は、得られる樹脂組成物の溶融粘度が所定の範囲内であれば 特に制限されないが、 導電性成分 1 0 0重量部に対して、 通常 0〜1 0重量部程 度であり、 好ましくは 0〜5重量部程度である。 本発明の導電性組成物には、必要に応じて、更に、 カップリング剤、離型剤、 滑 剤、 可塑剤、 硬化剤、 硬化助剤、 安定剤、 界面活性剤などの添加剤を配合しても よい。
導電性組成物の形態は、 特に制限されず、 粉末状混合物であってもよいが、 成 形体の導電性、 熱伝導性などに関する異方性を改善するため、 粒状組成物 (造粒 体(コンパウンド)) としてもよい。 このような粒状組成物(例えば、 ペレット状、 顆粒状などのコンパウンド) を用いると、 樹脂の偏析などがなぐ 均質で特性が 均一化した成形体を高い成形安定性及び再現性で製造できる。前記粒状組成物 (造 粒体) は、 慣用の方法、 例えば、 転動造粒法、 混合又は撹拌造粒法、 流動層造粒 法、 押出造粒法、 噴霧造粒法などの方法を利用して、 導電性粒子と粉粒状樹脂と 必要により他の成分とを造粒することにより調製できる。簡便な造粒方法として、 例えば、 導電性粒子と樹脂とを混合しながら、 滴下、 噴霧などの添加方法により 液体又はバインダー液を添加する方法を例示することができる。
黒鉛粒子と黒鉛小粒子とを併用することにより、 黒鉛粒子単独の場合よりも造 粒性を改善することができる。 即ち、 予め黒鉛小粒子と粉粒状樹脂とを混合し、 得られた混合物 (予備分散体)と黒鉛粒子とを用いて造粒すればよい。 予め黒鉛粒 子以外の成分を混合することにより、 均一な混合物を得やすい。 例えば、 射出成 形などにより成形する場合には、 造粒物を用いることにより、 組成物の原料分離 を防止できるので、 組成の均一な成形体を得やすい。 また、 圧縮成形する場合等 には、 黒鉛粒子が配向性の高い場合であっても、 造粒により得られた粒状組成物 を用いて成形体を製造すると、 黒鉛粒子の配向を無秩序化できるので、 導電性又 は熱伝導性の点で等方性のセパレ一夕などの成形体を得ることができる。
なお、前記予備分散体は、黒鉛小粒子と粉末状樹脂とを用いて調製してもよく、 黒鉛粒子と樹脂とに高剪断力を作用させて解砕又は粉碎しながら混合することに より調製してもよい。
予備分散体は、 混合機又は混練機 (ヘンシェルミキサー、 スーパ一ミキサー、 二一ダ一、 押出機など) を用いて、 乾式又は湿式混合'混練のいずれで調製して よい。
予備分散体における黒鉛小粒子の割合は、 樹脂 1 0 0重量部に対して 0 . 1〜 1 0重量部程度、 好ましくは 0. 5〜7重量部程度、 さらに好ましくは 1〜5重 量部程度であってもよい。
前記予備分散体と黒鉛粒子との造粒は、 前記と同様に慣用の造粒法により行う ことができる。 例えば、 予備分散体と黒鉛粒子とを混合しながら、 滴下、 噴霧な どの添加方法により液体又はパインダ一液を添加することにより造粒できる。 なお、造粒時に添加する液体としては、有機溶媒(アルコール類、エステル類、 ケトン類など) も使用できるが、 通常、 水が使用される。
バインダ一液としては、 種々のバインダ一のェマルジョンなどを例示できる。 バインダ一としては、 アクリル酸ナトリウム、 ポリビニルアルコール、 ポリビニ ルピロリドン等の樹脂バインダー;カルポキシメチルセルロース、 スターチなど を例示できる。 これらの中では、 ポリアクリル酸ナトリウムが好ましい。 バイン ダ一は、 単独で又は二種以上組み合わせて使用できる。
パインダ一の使用量 (固形分の量)は、 得られる樹脂組成物の溶融粘度が所定の 範囲内であれば特に制限されないが、 導電性成分 1 0 0重量部に対して、 通常 0 〜1 0重量部程度であり、 好ましくは 0〜5重量部程度である。 また、 液体 (特 に水) の添加量は、 造粒法に応じて適当に選択でき、 転動造粒法、 混合又は撹拌 造粒法では、 例えば、 粉体混合物 1 0 0重量部に対して、 1 0〜1 0 0重量部程 度の範囲から選択できる。
造粒により得られた粒状組成物 (造粒体) の形状は、 特に制限されず、 球状、 楕円体状、 柱状などであってもよい。粒状組成物(造粒体) のサイズは、例えば、 平均粒子径 0 . 2〜3 mm程度、 好ましくは 0. 3〜 2 mm程度、 さらに好ましく は 0 .4〜 1 . 5 mm程度である。
本発明の導電性組成物は、 成形性が高く、 厚みが薄く複雑な形状であっても均 一な成形体を成形できる。 さらに、 樹脂の使用量を大きく低減でき、 未焼成 (未 炭化及び未黒鉛化) の樹脂を使用しているにも拘わらず、 高い導電性を有する成 形体を得ることができる。 そのため、 本発明の導電性組成物を用いると、 種々の 形状の導電性成形体、例えば、平板状成形体(導電性プレートなど)、複雑な形状 や構造の成形体 (リブ、 マ二ホールドなどによる凹凸部、 溝部などが形成された 平板状成形体、 導電性プレートなど) を形成可能である。 本発明の導電性組成物 を用いて製造した成形体は、 固体高分子型燃料電池セパレー夕として好適に用い ることができる。
成形体の厚みは、 特に制限されず、 0.2〜3mm (例えば、 0.8〜2.5mm) 程度であってもよい。 本発明の導電性組成物を用いると、 導電性粒子の含有量が 多く樹脂量が少なくても、 厚みが約 2.5mm以下、 より好ましくは 2.0mm以 下(例えば、 0.5〜2mm程度)、 より好ましくは約 1.7 mm以下(例えば、 0. 5〜1.5mm程度)、 さらに好ましくは 0.5〜 1.3mm程度、 特に 0.7〜1.2 mm程度の均質なプレートを成形できる。
本発明の導電性組成物を用いると、 厚み方向の体積抵抗約 5 OmQ · cm以下 (例えば、 1〜5 ΟπιΩ · cm程度)、好ましくは 5〜45πιΩ · cm程度、 さら に好ましくは 10〜4 OmQ · cm (例えば、 20〜4 OmQ · cm) 程度の成 形体のみならず、 約 35πιΩ · cm以下 (例えば、 10〜35πιΩ · cm程度、 好ましくは 15〜35πιΩ · cm程度) の形成体を成形できる。
本発明の導電性組成物を用いると、 面方向の体積抵抗が、 約 2 ΟηιΩ · cm以 下 (例えば 1 ~ 15 πιΩ · c m程^)、 好ましくは 1〜: ί ΟπιΩ · c m程度の成形 体を形成できる。
このように、 厚みが薄く複雑な構造を有していても、 良好な成形性及び流れ性 を発揮し、 しかも導電性の高い成形体を得ることができるため、 本発明の導電性 組成物は、 ガス流路としての溝部、 マ二ホールドの貫通孔などを有する燃料電池 用セパレー夕 (又は導電性プレート) を成形するのに有用である。 燃料電池用セ パレ一夕は、表面が平坦な平板状成形体であってもよぐ少なくとも一方の面(特 に両面) に溝が形成された平板状成形体であってもよい。
本発明の導電性組成物の成形体(プレート又はセパレー夕 (特に固体高分子型燃 料電池用セパレー夕など))の厚み方向の熱伝導率は、 2〜6 OW/mK (例えば、 3〜60W mK) 程度、 好ましくは 5〜6 OWZmK程度、 さらに好ましくは 10〜6 OWZmK程度であってもよい。
さらに、 成形体の見掛け密度(嵩密度) は、 1. 1〜2. 2 gZ cm3程度の範 囲から選択でき、 例えば、 1. 7〜2. 1 gZcm3程度、 好ましくは 1. 8〜 2. 1 /cm3 (例えば、 1. 8〜2gZcm3) 離である。 さらに、 成形体 の曲げ強度は、 30〜 200 MP a (例えば、 30〜; L 5 OMP a) 程度、 好ま しくは 50〜20 OMP a程度である。
本発明の固体高分子型燃料電池セパレ一夕は、 本発明の導電性組成物を慣用の 成形法、 例えば、 射出成形、 圧縮成形 (熱プレス成形など) などにより、 成形す ることにより得ることができる。 例えば、 平均粒子径が 55〜6 5 mの黒鉛粒 子及び必要に応じて黒鉛小粒子からなる導電性成分、 並びに熱可塑性樹脂及び熱 硬化性樹脂、 更に必要に応じてバインダーを混合し、 得られた混合物の溶融粘度 を、 32 O :において 1 X 1 02〜5 X 103P a * sの範囲内となるように調整 した後、 当該導電性組成物を金型内に充填して成形する方法などにより得ること ができる。 成形方法としては、 製造コストなどの点において、 射出成形が好まし い。
例えば、 射出成形の場合、 特定の粒子径の黒鉛粒子及び樹脂を含む導電性組成 物を溶融混練し (必要により、 ペレツ卜状、 顆粒状などのコンパウンドを調製し て溶融混練し)、成形温度で所定の金型に射出成形することにより成形体(平板状 プレート) を製造できる。
射出成形の場合、 射出圧力は、 通常10〜1 30 ?&程度、 好ましくは 10 〜 1 00 MP a程度である。 成形温度 (シリンダ温度)は、 通常 100〜 3 50 °C 程度 (例えば、樹脂の溶融温度以上の温度、 例えば、 200〜35 °C), 好まし くは 220〜330°C程度 sである。 金型温度は、 通常 180〜320で程度、 好ましくは 200〜31 程度である。
圧縮成形の場合には、 例えば、 圧力 2〜200 MP a程度 (例えば、 1 0〜1 0 OMP a程度)、成形温度 100〜350 程度(例えば、樹脂の溶融温度以上 の温度、例えば、 200〜350°C)、好ましくは 220〜330 程度で、前記 導電性組成物を金型内で加熱して加圧成形することにより成形体 (平板状プレー ト) を製造できる。
金型は、 セパレ一夕の表面形態に応じて適宜選択できる。 例えば、 平滑面又は 平坦面を有する金型を用いて、 平滑面を有する平板状セパレー夕を成形してもよ く、 凹凸部を有する金型(特に連続した凸部(突条)又は溝を有する溝付き金型) を用いることにより凹凸部を有するセパレ一夕 (特に溝付きセパレ一夕) を成形 してもよい。
本発明の方法によると >炭化又は黒鉛化工程及び切削工程を経ることなく、炭ィ匕 温度以下での成形工程のみで経済的に成形体を製造できる。さらに、金型として、 連続した凸部^条)又は溝を形成した金型 (射出成形や圧縮成形法では、 キヤビ ティ側及びコァ側のうち少なくとも一方 (特にコア側)に連続した凸部 (突条)又は 溝を形成した金型) を用いることにより、 溝付きセパレー夕を低コストでありな がら高い精度で得ることができる。
本発明では、 特定の導電性組成物を用いるので、 凹凸部や溝などの複雑な構造 を有していても、 均一で厚みの薄い成形体を成形できる。 また、 炭化'黒鉛化工 程を必要とすることなく、 ガス不透過性、 電気導電性、 熱伝導性、 機械強度、 耐 酸性などの諸特性に優れる導電性成形体 (固体高分子型燃料電池用セパレー夕な どの導電性プレートなど)を得ることができる。さらに、切削工程を経ることなく、 成形工程を経るだけで、高い導電性、 熱伝導性などの特性に加えて、寸法精度の高 い溝、 ガス流路などを形成できる。
本発明の組成物から得られる成形体を、 セパレ一夕として用いて、 固体高分子 型燃料電池を製造することができる。 固体高分子型燃料電池は、 セパレ一夕の他 に、 電解質膜として機能する固体高分子膜、 アノード、 力ソード、 電極触媒など を備えている。
固体高分子膜としては、 パーフルォロカーポンスルホン酸膜、 ポリトリフルォ ロスチレンスルフォン酸膜、 ポリスチレンスルフォン酸膜、 フエノ一ルスルフォ ン酸膜などのイオン交換基としてスルフォン酸基を有するイオン交換基を有する イオン交換樹脂などを用いることができる。 これらの中では、 パーフルォロカ一 ポンスルホン酸膜が好ましい。
アノード又はカソ一ドとしては、 多孔質黒鉛などを用いることができる。
電極触媒としては、 白金合金触媒などを用いることができる。 電極触媒は、 電 極表面に担持されていてもよい。
固体高分子型燃料電池に、 水素供給手段、 酸素供給手段などを設けることによ り固体高分子型燃料電池システムとすることができる。 水素供給手段と固体高分 子型燃料電池との接続方法は、 電池のアノードに水素が供給される限り特に制限 されない。 酸素供給手段と固体高分子型燃料電池との接続方法は、 電池のカソー ドに酸素が供給される限り特に制限されない。
水素供給手段としては、 メタンガス、 液化天然ガス、 メタノール等の炭化水素 系燃料から水蒸気改質などにより水素を製造する手段などを用いることができる。 産業上の利用可能性
本発明の導電性組成物の成形体は、 燃料電池セパレ一夕、 特に固体高分子型燃 料電池セパレ一夕として、 好適に用いることができる。 実施例
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実 施例により限定されるものではない。なお、 実施例及び比較例において、下記の材 料を用いた。
(1) 黒鉛粒子
針状コ一クスを素原料とし、 温度 2800°Cで黒鉛化を施した後、 粉碎及び分 級操作を行い、 下記の高結晶性人造黒鉛粒子を得た。
(la) 平均粒子径 100 mの黒鉛粒子(比較例) は、 D 20 %= 70 m、 D80%=15 であり、 均斉度 D 80 %ZD 20 %= 2. 1であり、 BE T比表面積は 2m2Zg、 ジブチルフタレ一ト (DBP) を用いた吸油量 65m lZl O Ogであった。 この黒鉛粒子の J I S—R—7222によるブタノ一ル 置換真比重は 2. 24であった。
(lb) 平均粒子径 70 xmの黒鉛粒子 (比較例) は、 D20 =28 ΠΙ D 80%=118 urnであり、 均斉度 D80 % D 20 = 4. 2であり、 BET 比表面積は 3m2/g、 ジブチルフタレ一ト (DBP) を用いた吸油量 70ml /100 であった。 この黒鉛粒子の J I S—R— 7222によるブタノ一ノレ置 換真比重は 2. 24であった。
(lc)平均粒子径が 65 の黒鉛小粒子(実施例) は、 D20%=27 rn, D80 =115 mであり、均斉度 D 80%/D20%= 4.3であり、 BET 比表面積は Sn^Zg, ジブチルフ夕レート (DBP) を用いた吸油量は 70m 1/100 gであった。 この黒鉛粗粒の J I S— R— 7222によるブ夕ノール 置換真比重は、 2.24であった。
(Id) 平均粒子径 60 mの黒鉛粒子 (実施例) は、 D20%=24 m、 D 80%=11 O mであり、 均斉度 D80%ZD20%=4. 6であり、 BET 比表面積は 4m2/g、 ジブチルフタレート (DBP) を用いた吸油量 7 Oml /100 gであった。 この黒鉛粒子の J I S-R- 7222によるブ夕ノール置 換真比重は 2. 24であった。
(le) 平均粒子径が 55 mの黒鉛小粒子 (実施例) は、 D 20 % = 23 m、 D80%= 1 0 3 mであり、均斉度 D80%ZD20%= 4.5であり、 BET 比表面積は 4m2Zg、 ジブチルフタレート (DBP) を用いた吸油量 7 Oml /100 であった。 この黒鉛粗粒の J I S-R-7222によるブ夕ノール置 換真比重は、 2.24であった。
(If) 平均粒子径 50 mの黒鉛粒子 (比較例) は、 D20%=20 m、 D 80 %=9 Ο ΠΙであり、 均斉度 D 80%ZD 20 %=4. 5であり、 BET比 表面積は 5m2Zg、 ジブチルフタレート (DBP) を用いた吸油量 70mlZ 10 Ogであった。 この黒鉛粒子の J I S-R-7222によるブ夕ノール置換 真比重は 2. 24であった。
(lg) 平均粒子径が 25 mの黒鉛小粒子 (比較例) は、 D 20%=10 m、 D80%=42 mであり、 均斉度 D 80 %/D 20 %=4. 2であり、 BET 比表面積は 8m2Zg、 ジブチルフタレート (DBP) を用いた吸油量 8 Oml /100 であった。 この黒鉛粗粒の J I S-R-7222によるブタノ一ル置 換真比重は 2. 24であった。
(lh) 平均粒子径が 15 mの黒鉛小粒子 (比較例) は、 D 20 % = 7 m、 D80%=34 mであり、 均斉度 D 80 %/D 20 % = 4. 8であり、 BET 比表面積は 10m2Zg、 ジブチルフタレート (DBP) を用いた吸油量 85m 1/100 gであった。 この黒鉛粗粒の J I S-R-7222によるブタノー^/ 置換真比重は 2. 24であった。 ·
(2) 予備分散体を調整するための黒鉛小粒子
(2a) 樹脂粉末を含む予備分散体を調整するための黒鉛小粒子として、 鱗片状 天然黒鉛をジエツトミルにて微粉砕し平均粒子径 10 mの天然黒鉛の粉末を得 た。
(2b) 樹脂粉末を含む予備分散体を調整するための黒鉛小粒子として、 人造黒 鉛をジエツトミルにて微粉砕し平均粒子径 10 mの黒鉛粉末を得た。
(3) 樹脂
(3a) セミリニア型ポリフエ二レンスルフィド系樹脂 (320 での溶融粘度 30 P a · s (300p s)、重量平均分子量 28, 000〜 35, 000) を用 いた。 この樹脂粉末の平均粒子径は 20 /imである。
(3b) セミリニア型ポリフエ二レンスルフィド系樹脂 (320 での溶融粘度 5 P a · s (50 p s)、 重量平均分子量 18, 000〜25, 000) を用いた。 この樹脂粉末の平均粒子径は 20 mである。
実施例 1〜 3及び比較例 1〜 4
(樹脂予備分散体)
表 1に示す割合で天然黒鉛小粒子 (2a)、 粉末状ポリフエ二レンスルフィド樹脂 (3b) を高速回転ミキサ一中に仕込み 10分間解砕混合を行い、 樹脂粉末が均一 に分散した予備分散体を調整した。
(造粒)
転動造粒装置 (千代田技研 (株) 製、 「ォムニミキサー」) に、 上記で調製した 予備分散体、 人造黒鉛粒子 10 (la), 人造黒鉛粒子 70 (lb), 人造 黒鉛粒子 65 iim (lc)、人造黒鉛粒子 60 m (id),人造黒鉛粒子 55 am (le)、 人造黒鉛粒子 50 iim (If) 又は人造黒鉛小粒子 25 m(lg)を表 1に示す割合 で仕込み、 回転速度 12 Orpmで撹拌しながら、 水を滴下又は噴霧して添加し、 湿式造粒した。 なお、 水の使用量は、 投入原料 (粉体混合物) 全体 100重量部 に対して 40〜50重量部の範囲で調整した。 メッシュ径の異なる J I S標準篩 (目開き 2. 36mm, 1. 7mm, 1. 18mm, 0. 85mm, 0. 6mm, 0. 42mm) を順次重ね、 造粒された粒状体の最頻度径を測定したところ、 最 頻度径は 0. 85mm〜0. 42 mmであり、 粒状体全体の 60〜95重量%で あった。
(«) 外寸 20 cmX23 cmX 2 mmの射出成型用金型を用いて、 射出成形を行つ た。 金型の両面には、 18 cmX 20 cmの領域 (active area)に 44本の平行し た溝 (幅: 2mm、 長さ: 19 cm、 深さ: 0.5mm、 溝間隔: 2 mm)が刻んで あり、 この金型を用いることにより両面に所定の溝を有する成形体が得られる。 最大型締圧力: 300 t、 最大射出圧力: 1 t/cm2の射出成形機を用いた。 得られたペレット形態の粒状組成物 (粒状体) をフィーダ一に投入し、 金型温 度: 300°C、射出圧力: 400〜 1000k g/cm2(40〜: L 0 OMP a)、成 形温度 (シリンダ温度): 320°Cの条件で成形した。成形できたものについては、 冷却後、 溝が形成された状成形体を得た。 結果を表 1に示す。
(体積抵抗)
得られた成形体の両面の溝を切削研磨し、 溝を有する領域から 10 cmX 10 cmの平板を切り出した。 この平板を用いて、 以下に示す水銀電極法を用いた 4 端子法により、厚み方向の抵抗を測定した。図 1に示すように、各々電流端子 (2) 及び電圧端子 ( 1 )を備えた樹脂製の力ップ ( 3)をサンプル (4)である上記平板の表 裏面に圧着し、両カップの内部を水銀 (5)で満たした。定電流発生装置 (6)から電 流端子へ 12 OmAを通電した時に電圧端子間に生ずる電位差 (voltage drop)を 電圧計 (7)を用いて測定し、 以下の式から厚み方向の抵抗を算出した。
R = (V X S) / (I X t)
[式中、 Rは厚み方向の抵抗 ½cm)、 Vは電圧端子間に生じる電位差 (V)、 Sは 水銀の接触面積 (cm2)、 Iは電流値 (A)及び tはサンプルの厚み (cm)を示す。 ] 面方向の体積抵抗は、 J I S— K— 6911に従って測定した。
表 1
Figure imgf000025_0001
注)成形不能とは、 成形圧力が 1 2 0 O kgZcm2を越えても射出成形できなかったことを示す c
実施例 4〜 6及び比較例 5〜 8 (導電性粒子の粒子径)
(造粒)
粉末状ポリフエ二レンスルフィド觀旨(3a) と、人造黒鉛粒子 100 m (la), 人造黒鉛粒子 70 (lb), 人造黒鉛粒子 65輝 (lc)、 人造黒鉛粒子 60 a m (Id), 人造黒鉛粒子 55 m (le)、 人造黒鉛粒子 50 (if) 又は人造黒 鉛小粒子 15 m (lh) とを表 2に示す割合でミキサーに仕込み、 10分間混合 を行い、 樹脂粉末が均一に分散した分散体を調整した。
転動造粒装置 (千代田技研 (株) 製、 「ォムニミキサー」) に、 上記で調製した 分散体を仕込み、 回転速度 12 Orpmで撹拌しながら、 水を滴下又は噴霧して添 加し、 湿式造粒した。 なお、 水の使用量は、 投入原料 (粉体混合物) 全体 100 重量部に対して 40〜50重量部の範囲で調整した。 メッシュ径の異なる J I S 標準篩 (目開き 2. 36mm, 1. 7mm, 1. 18mm, 0. 85mm, 0. 6mm, 0. 42mm) を順次重ね、 造粒された粒状体の最頻度径を測定したと ころ、 最頻度径は 0. 85mm〜0. 42mmであり、 粒状体全体の 60〜95 重量%であった。
(成形) '
金型 (外寸 20 cmX 23 cm) を用いて、 両面に溝が形成されたプレートを 圧縮成形により製造した。 金型の両面には、 44本の平行した溝 (幅: 2mm、 長さ: 19 cm、 深さ: 0. 5mm、 溝間隔: 2 mm) が刻んであり、 この金型 を用いることにより、 両面に所定の溝を有する成形体が得られる。 上記で得られ たペレツト形態の粒状組成物 (粒状体) 100 gを金型に投入し、 成形圧力 50 0 kg/cm2 (50. 0MPa)、 32 O X 10分間の条件で成形し、 冷却後、 プレート状成形体 (20 cmX 23 cm角) の厚さ、 嵩密度及び 方向と厚み方 向の電気抵抗 (体積固有抵抗) を測定した。 厚み方向及び面方向の電気抵抗は、 実施例 1と同様の方法で測定した。 また、 組成物の溶融粘度を測定した。 結果及 び得られた成形体の外観を表 2に示す。
なお、厚みが、 0.5 mm以上 2 mm未満の薄い成形体は、 投入する原料を所定 量まで減ずる以外は、 上記と同様の方法により、 容易に得られる。 表 2 比較例 5 比較例 6 実施例 4 実施例 5 実施例 6 比較例 7 比較例 8 黒鉛粒子 1 00 m (重量部) 80
黒鉛粒子 7 0 μ m (重量部) 8 0
黒鉛粒子 65 μ m (重量部) 80
黒鉛粒子 60 m (重量部) 8 0
黒鉛粒子 5 5 μ m (重量部) 8 0
黒鉛粒子 50 μ m (重量部) 8 0
黒鉛粒子 1 5 μ m (重量部) 80
- - P P S樹脂(重量部) 2 0 20 20 20 20 2 0 2 0 組成物の溶融粘度
4. 00 3. 9 5 4. 9 0 3. 8 3 3. 9 1 5. 1 1 2 6. 1 (320。C, X103Pa-s)
厚み (mm) 2. 0 2. 1 2. 0 2. 0 2. 0 2. 0 2. 0 嵩密度 (gZc m3) 1 . 94 1 . 9 6 1 . 9 6 1 . 9 6 1 . 9 7 1 . 94 1 . 9 6 厚み方向の体 抵抗(πιΩ 'cm) 2 5. 4 2 5. 7 3 0. 0 3 3. 4 3 5. 2 50. 1 5.4. 5 面方向の体積抵抗 (inQ'cm) 5. 50 5. 5 3 6. 3 3 6. 3 7 6. 2 1 8. 74 9. 4 6 カスレ カスレ
成井体の外観 良好 良好 良好 カスレ カスレ 溝の欠け 溝の欠け
実施例 7〜 9及び比較例 9〜 1 1 (導電性粒子と樹脂との割合)
粉末状ポリフエ二レンスルフィド樹脂 (3a) と、 人造黒鉛粒子 6 0 m (id) とを表 3に示す割合でミキサーに仕込み、 1 0分間混合を行い、 樹脂粉末が均一 に分散した分散体を調整した。転動造粒装置(千代田技研(株)製、 「ォムニミキ ザ一」) に分散体を仕込み、 回転速度 1 2 0 rpmで撹拌しながら、 上記実施例 4 と同様にして、 湿式造粒した。 得られたペレット形態の粒状組成物 (粒状体) を 上記実施例 4〜6と同様にして加熱加圧成形し、 プレート状成形体 (2 0 c mx 2 3 c m角) の成形体を得た。 この成形体の厚み、 嵩密度及び厚み方向と面方向 の体積抵抗を測定した。 厚み方向及び面方向の電気抵抗は、 実施例 1と同様の方 法で測定した。 また、 組成物の溶融粘度を御 i定した。 結果及び得られた成形体の 外観を表 3に示す。
なお、 厚みが、 0.5 mm以上 2 mm未満の薄い成形体は、投入する原料を所定 量まで減ずる以外は、 上記と同様の方法により、 容易に得られる。
表 3 比較例 9 比較例 10 実施例 7 実施例 8 実施例 5 実施例 9 比較例 11 黒鉛粒子 60 /im (重量部) 90 8 7 8 5 8 2 80 7 5 7 0
P P S樹脂(重量部) 1 0 1 3 1 5 1 8 2 0 2 5 3 0 (320°Cでの溶融粘度 30Pa-s)
組成物の溶融粘度 7. 5 0 5. 6 2 5. 00 4. 4 2 3. 8 3 2. 40 1 . 3 8 厚み (mm) 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 1 嵩密度 (gZcm3) 2. 0 2 2. 0 1 2. 0 0 1 . 9 8 1 . 9 6 1 . 9 5 1 . 8 5 厚み方向の体積抵抗 (mQ'cin) 2 6. 0 2 9. 5 3 0. 8 3 2. 3 3 3. 4 48. Ί 8 7. 7 面方向の体積抵抗 (mQ'cm) 4. 6 3 5. 0 3 5. 9 8 6. 3 9 6. 3 7 9. 2 2 1 . 6 カスレ カスレ
成形体の外観 良好 良好 良好 良好 良好 溝の欠け 溝の欠け
実施例 1 0〜 1 5
(樹脂予備分散体)
表 4に示す割合で人造黒鉛小粒子 (2b)、 粉末状ポリフエ二レンスルフィド樹脂 (3b) を高速回転ミキサー中に仕込み 1 0分間混合し、 樹脂粉末が均一に分散し た予備分散体を調製した。
転動造粒装置 (千代田技研 (株) 製、 「ォムニミキサー」) に、 上記で調製した 予備分散体と、 人造黒鉛粒子 6 0 m (Id) とを表 4に示す割合で仕込み、 上記 実施例 4〜 6と同様にして湿式造粒した。得られたペレツト形態の粒状組成物 (粒 状体) を上記実施例 4〜 6と同様にして加熱加圧成形し、 プレート状成形体 ( 2 0 c mX 2 3 c m角) の成形体を得た。 この成形体の厚み、 嵩密度及び厚み方向 と面方向の体積抵抗を測定した。 厚み方向および面方向の体積抵抗は、 実施例 1 と同様の方法で測定した。 また、 組成物の溶融粘度を測定した。 結果及び得られ た成形体の外観を表 4に示す。
なお、 厚みが、 0. 5 mm以上 2 mm未満の薄い成形体は、 投入する原料を所定 量まで減ずる以外は、 上記と同様の方法により、 容易に得られる。
表 4 実施例 10 実施例 11 実施例 12 実施例 13 実施例 14 実施例 15
黒鉛粒子 60 /xm (重量部) 7 5 7 0 6 7 6 5 6 0 6 0
人造黒鉛細粒子 1 0 m (重量部) 5 1 0 1 5 1 5 2 0 1 5
P P S樹脂(重量部) 20 L 20 1 8 20 20 2 5
組成物の溶融粘度 1 . 5 0 1 . 4 7 1 . 2 1 0. 84 1 . 6 8 1 . 0 7 C (320°C, X103Pa-s)
厚み (mm) 2. 0 2. 0 2. 0 2. 1 2. 00 2. 1
嵩密度 (gZcm3) 1 . 9 6 1 . 9 7 1 . 9 7 1 . 9 6 2. 00 1 . 9 0
厚み方向の体積抵抗 (inQ'cin) 3 3. 8 3 5. 2 2 7. 4 3 1 . 3 34. 7 4 9. 5
面方向の体積抵抗 (mQ'cni) 7. 1 1 7. 5 5. 9 9 6. 9 5 6. 8 6 1 3. 9
成形体の外観 良好 良好 良好 良好 良好 良好

Claims

請求の範囲
I . 1 )黒鉛粒子及び必要に応じて黒鉛小粒子からなる導電性成分、 並びに 2 )熱可塑性樹脂及び/又は熱硬ィ匕性樹脂を含み、
3 )黒鉛粒子の平均粒子径 D 1が、 55〜 65 ^ mであり、
4)溶融粘度が、 320 において 1 X 102〜5 X 103Pa · sであり、 且つ
5 ) (黒鉛粒子及び必要に応じて黒鉛小粒子)/ (熱可塑性樹脂及び/又は熱硬 化性樹脂)の重量比が、 95Z5〜75/25である固体高分子型燃料 電池セパレー夕用導電性組成物。
2. 黒鉛小粒子が、 平均粒子径 D2=D1 XO. 1〜D1X0. 5の黒鉛粒子 である請求項 1に記載の固体高分子型燃料電池セパレー夕用導電性組成 物。
3. 厚みが 2mm以下の成形体を得ることができる請求項 1に記載の固体高 分子型燃料電池セパレー夕用導電性組成物。
4. 熱可塑性樹脂が、 熱可塑性エンジニアリングプラスチックである請求項 1 に記載の固体高分子型燃料電池セパレー夕用導電性組成物。
5. 熱可塑性樹脂が、 ポリフエ二レンスリレフィド系樹脂である請求項 1に記載 の固体高分子型燃料電池セパレータ用導電性組成物。
6. 請求項 1〜5のいずれかに記載の導電性組成物を射出成形することによ り得ることができる固体高分子型燃料電池セパレー夕。
7. 請求項 1〜 5のいずれかに記載の導電性組成物を圧縮成形することによ り得ることができる固体高分子型燃料電池セパレ一夕。
8. 平板状成形体である請求項 6又は 7に記載の固体高分子型燃料電池セパ レ一夕。
9. 凹凸部又は溝部が形成された平板状成形体である請求項 6又は Ίに記載 の固体高分子型燃料電池セパレ一タ。
10. 厚み方向の体積抵抗が、 5 ΟπιΩ · cm以下である請求項 6又は 7に記載 の固体高分子型燃料電池セパレー夕。
I I. 請求項 6又は 7に記載の固体高分子型燃料電池セパレー夕を用いた固体 高分子型燃料電池。
12. 請求項 6又は 7に記載の固体高分子型燃料電池セパレー夕を用いた固体 高分子型燃料電池システム。
13. 1)黒鉛粒子及び必要に応じて黒鉛小粒子からなる導電性成分、 並びに
2 )熱可塑性樹脂及び/又は熱硬化性翩旨を含み、
3)黒鉛粒子の平均粒子径が、 55〜65 imであり、
4)溶融粘度が、 320°Cにおいて 1 X 102〜5 X 103Pa · sであり、 且つ
5 ) (黒鉛粒子及び必要に応じて黒鉛小粒子), (熱可塑性樹脂及び/又は熱硬 化性樹脂)の重量比が、 95Z5〜75/25である溶融混合物を射出 成形することを特徴とする固体高分子型燃料電池セパレー夕の製造方
14. 1)黒鉛粒子及び必要に応じて黒鉛小粒子からなる導電性成分、 並びに 2 )熱可塑性樹脂及び/又は熱硬化性樹脂を含み、
3)黒鉛粒子の平均粒子径が、 55〜65 mであり、 且つ
4)溶融粘度が、 320°Cにおいて 1 X 102〜5X 103Pa · sであり、 且つ
5 ) (黒鉛粒子及び必要に応じて黒鉛小粒子)/ (熱可塑性樹脂及び/又は熱硬 化性樹脂)の重量比が、 95/5-75/25である溶融混合物を圧縮 成形することを特徴とする固体高分子型燃料電池セパレー夕の製造方 法。
PCT/JP2001/005662 2000-06-29 2001-06-29 Composition conductrice pour separateur de pile a combustible de type a polymere solide, separateur de pile a combustible de type a polymere solide, pile a combustible de type a polymere solide et systeme de pile a combustible de type a polymere solide utilisant ce separateur WO2002001660A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/312,665 US7049021B2 (en) 2000-06-29 2001-06-29 Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator
EP01945728A EP1315223A4 (en) 2000-06-29 2001-06-29 CONDUCTIVE COMPOSITION FOR A FIXED POLYMER TYPE FUEL CELL SEPARATOR, FIXED POLYMER TYPE FUEL CELL SEPARATOR, FIXED POLYMER TYPE FUEL CELL AND FIXED POLYMER TYPE FUEL CELL SYSTEM WITH SEPARATING DEVICE
CA002413146A CA2413146C (en) 2000-06-29 2001-06-29 Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000196860 2000-06-29
JP2000-196860 2000-06-29

Publications (1)

Publication Number Publication Date
WO2002001660A1 true WO2002001660A1 (fr) 2002-01-03

Family

ID=18695290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005662 WO2002001660A1 (fr) 2000-06-29 2001-06-29 Composition conductrice pour separateur de pile a combustible de type a polymere solide, separateur de pile a combustible de type a polymere solide, pile a combustible de type a polymere solide et systeme de pile a combustible de type a polymere solide utilisant ce separateur

Country Status (4)

Country Link
US (1) US7049021B2 (ja)
EP (1) EP1315223A4 (ja)
CA (1) CA2413146C (ja)
WO (1) WO2002001660A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004045820A1 (en) * 2002-11-19 2004-06-03 3M Innovative Properties Company Highly filled composite containing resin and filler
JP2004259497A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Works Ltd 固体高分子型燃料電池用セパレータの製造方法、及び、固体高分子型燃料電池用セパレータ
JP2004263026A (ja) * 2003-02-28 2004-09-24 Dainippon Ink & Chem Inc 導電性ポリアリーレンスルフィド樹脂組成物及び燃料電池用セパレータ
EP1553651A1 (en) * 2002-08-23 2005-07-13 Honda Giken Kogyo Kabushiki Kaisha Fuel cell separator and its manufacturing method
JP2007103282A (ja) * 2005-10-07 2007-04-19 Tokai Carbon Co Ltd 燃料電池用セパレータ材およびその製造方法
WO2007072745A1 (ja) * 2005-12-21 2007-06-28 Tokai Carbon Co., Ltd. 固体高分子形燃料電池用セパレータ材及びその製造方法
US7691314B2 (en) 2004-11-02 2010-04-06 Idemitsu Kosan Co., Ltd. Method of injection compression molding
US8735489B2 (en) 2011-12-06 2014-05-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material
US9096736B2 (en) 2010-06-07 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
US9728294B2 (en) 2010-06-07 2017-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0200253D0 (en) * 2002-01-08 2002-02-20 Johnson Matthey Plc Improved material for electrode manufacture
JP4253166B2 (ja) * 2002-06-24 2009-04-08 日清紡績株式会社 燃料電池セパレータ
DE10255240A1 (de) * 2002-11-26 2004-06-09 Basf Ag Verfahren zur Entfernung von Quecksilber aus mit Quecksilber verunreinigten Lösungen
WO2004100296A1 (ja) * 2003-05-08 2004-11-18 Dainippon Ink And Chemicals, Inc. 燃料電池用セパレータの製造方法、燃料電池用セパレータ及び燃料電池
CN1802603A (zh) 2003-07-17 2006-07-12 霍尼韦尔国际公司 用于高级微电子应用的平面化薄膜及其生产装置和方法
AU2003283799A1 (en) * 2003-10-21 2005-05-05 Compotec S.P.A. Material for manufacturing bipolar plates for fuel cells, bipolar plate made of said material and fuel sell comprising said plate
JP2005174821A (ja) * 2003-12-12 2005-06-30 Nissan Motor Co Ltd 燃料電池用セパレータの製造方法および燃料電池用セパレータ
KR20050120515A (ko) * 2004-06-19 2005-12-22 한국타이어 주식회사 연료전지 분리판용 탄소복합재, 그의 제조방법 및 이를적용한 연료전지 분리판
JP4918984B2 (ja) * 2005-11-15 2012-04-18 日清紡ホールディングス株式会社 多孔質燃料電池セパレータ用導電性樹脂組成物およびその製造方法
JPWO2007148729A1 (ja) * 2006-06-21 2009-11-19 日立化成ポリマー株式会社 熱伝導性熱可塑性粘着剤組成物
JP5068051B2 (ja) 2006-09-29 2012-11-07 昭和電工株式会社 燃料電池用セパレータおよびその製造方法
US20090142645A1 (en) * 2007-11-30 2009-06-04 Valtion Teknillinen Tutkimuskeskus Bipolar plate, method for producing bipolar plate and PEM fuel cell
AT513501B1 (de) * 2013-09-02 2014-05-15 Abatec Group Ag IR-Strahler mit Doppelverglasung
PL3066047T3 (pl) * 2013-11-05 2021-05-17 Neograf Solutions, Llc Wyrób z grafitu
WO2015130281A1 (en) * 2014-02-27 2015-09-03 Clearedge Power, Llc Fuel cell component including flake graphite
JP5880649B1 (ja) * 2014-09-08 2016-03-09 日清紡ケミカル株式会社 燃料電池セパレータ
US20170345734A1 (en) * 2014-12-25 2017-11-30 Polymatech Japan Co., Ltd. Thermally Conductive Sheet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334927A (ja) * 1997-05-30 1998-12-18 Oowada Carbon Kogyo Kk 固体高分子型燃料電池のセパレーターおよびその製造方法
JPH1153943A (ja) * 1997-08-01 1999-02-26 Kureha Chem Ind Co Ltd ケーブル用部品
WO1999049530A1 (fr) * 1998-03-20 1999-09-30 Osaka Gas Company Limited Separateur pour element a combustible et son procede de production
JPH11354137A (ja) * 1998-04-07 1999-12-24 Hitachi Chem Co Ltd 燃料電池、燃料電池用セパレ―タ及びその製造方法
JP2000017179A (ja) * 1998-06-30 2000-01-18 Nichias Corp 導電性樹脂組成物、燃料電池用セパレータ及びシール材料
JP2000040517A (ja) * 1998-07-24 2000-02-08 Tokai Carbon Co Ltd 固体高分子型燃料電池用炭素質セパレータ部材及びその製造方法
JP2000090941A (ja) * 1998-07-13 2000-03-31 Nisshinbo Ind Inc 燃料電池用セパレ―タ基体及び該基体による燃料電池用セパレ―タ
JP2001052721A (ja) * 1999-08-12 2001-02-23 Osaka Gas Co Ltd 燃料電池用セパレータおよびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716609A (en) * 1970-10-05 1973-02-13 United Aircraft Corp Process for preparing molded structure from polyphenylene sulfide resin and filler
US3971748A (en) * 1975-10-07 1976-07-27 Standard Oil Company Graphite powder-polyphenylene mixtures and composites
US4301222A (en) * 1980-08-25 1981-11-17 United Technologies Corporation Separator plate for electrochemical cells
US4360485A (en) * 1980-08-25 1982-11-23 United Technologies Corporation Method for making improved separator plates for electrochemical cells
JPS59213610A (ja) 1983-05-18 1984-12-03 Showa Denko Kk 炭素成形体及びその製造法
JPS60246568A (ja) 1984-05-22 1985-12-06 Fuji Electric Corp Res & Dev Ltd 燃料電池用リブ付セパレ−タの製造方法
JPS62260709A (ja) 1986-05-07 1987-11-13 Kawasaki Steel Corp 炭素成形体及びその製造方法
US4913706A (en) * 1988-09-19 1990-04-03 International Fuel Cells Corporation Method for making a seal structure for an electrochemical cell assembly
JP3142587B2 (ja) 1990-12-12 2001-03-07 大阪瓦斯株式会社 炭素質組成物、燃料電池用炭素材およびその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334927A (ja) * 1997-05-30 1998-12-18 Oowada Carbon Kogyo Kk 固体高分子型燃料電池のセパレーターおよびその製造方法
JPH1153943A (ja) * 1997-08-01 1999-02-26 Kureha Chem Ind Co Ltd ケーブル用部品
WO1999049530A1 (fr) * 1998-03-20 1999-09-30 Osaka Gas Company Limited Separateur pour element a combustible et son procede de production
JPH11354137A (ja) * 1998-04-07 1999-12-24 Hitachi Chem Co Ltd 燃料電池、燃料電池用セパレ―タ及びその製造方法
JP2000017179A (ja) * 1998-06-30 2000-01-18 Nichias Corp 導電性樹脂組成物、燃料電池用セパレータ及びシール材料
JP2000090941A (ja) * 1998-07-13 2000-03-31 Nisshinbo Ind Inc 燃料電池用セパレ―タ基体及び該基体による燃料電池用セパレ―タ
JP2000040517A (ja) * 1998-07-24 2000-02-08 Tokai Carbon Co Ltd 固体高分子型燃料電池用炭素質セパレータ部材及びその製造方法
JP2001052721A (ja) * 1999-08-12 2001-02-23 Osaka Gas Co Ltd 燃料電池用セパレータおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1315223A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553651A1 (en) * 2002-08-23 2005-07-13 Honda Giken Kogyo Kabushiki Kaisha Fuel cell separator and its manufacturing method
EP1553651A4 (en) * 2002-08-23 2008-01-23 Honda Motor Co Ltd FUEL CELL SEPARATOR AND METHOD FOR MANUFACTURING THE SAME
WO2004045820A1 (en) * 2002-11-19 2004-06-03 3M Innovative Properties Company Highly filled composite containing resin and filler
JP2004259497A (ja) * 2003-02-25 2004-09-16 Matsushita Electric Works Ltd 固体高分子型燃料電池用セパレータの製造方法、及び、固体高分子型燃料電池用セパレータ
JP2004263026A (ja) * 2003-02-28 2004-09-24 Dainippon Ink & Chem Inc 導電性ポリアリーレンスルフィド樹脂組成物及び燃料電池用セパレータ
US7691314B2 (en) 2004-11-02 2010-04-06 Idemitsu Kosan Co., Ltd. Method of injection compression molding
JP2007103282A (ja) * 2005-10-07 2007-04-19 Tokai Carbon Co Ltd 燃料電池用セパレータ材およびその製造方法
WO2007072745A1 (ja) * 2005-12-21 2007-06-28 Tokai Carbon Co., Ltd. 固体高分子形燃料電池用セパレータ材及びその製造方法
US9096736B2 (en) 2010-06-07 2015-08-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Fine graphite particles, graphite particle-dispersed liquid containing the same, and method for producing fine graphite particles
US9728294B2 (en) 2010-06-07 2017-08-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material
US8735489B2 (en) 2011-12-06 2014-05-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Resin composite material

Also Published As

Publication number Publication date
EP1315223A4 (en) 2005-10-12
US20030180597A1 (en) 2003-09-25
CA2413146A1 (en) 2002-01-03
EP1315223A1 (en) 2003-05-28
US7049021B2 (en) 2006-05-23
CA2413146C (en) 2007-08-21

Similar Documents

Publication Publication Date Title
WO2002001660A1 (fr) Composition conductrice pour separateur de pile a combustible de type a polymere solide, separateur de pile a combustible de type a polymere solide, pile a combustible de type a polymere solide et systeme de pile a combustible de type a polymere solide utilisant ce separateur
JP2001126744A (ja) 燃料電池用セパレータおよびその製造方法
US6544680B1 (en) Fuel cell separator, a fuel cell using the fuel cell separator, and a method for making the fuel cell separator
US8691129B2 (en) Method of producing exfoliated graphite composite compositions for fuel cell flow field plates
WO2010116674A1 (ja) シートプレス成形方法および燃料電池用セパレータの製造方法
EP1968143B1 (en) Process for producing separator material for polymer electrolyte fuel cells
JP2000182630A (ja) 燃料電池セパレータ、その製造方法及び当該燃料電池セパレータを使用した固体高分子型燃料電池
JP2001122677A (ja) 燃料電池用セパレータの製造方法
JP3978429B2 (ja) 導電性樹脂成形体
JP2001052721A (ja) 燃料電池用セパレータおよびその製造方法
JP2001325967A (ja) 燃料電池セパレータの製造方法、燃料電池セパレータ及び固体高分子型燃料電池
US20080277628A1 (en) Exfoliated graphite composite compositions for fuel cell flow field plates
JP2000040517A (ja) 固体高分子型燃料電池用炭素質セパレータ部材及びその製造方法
JPH04214072A (ja) 炭素質組成物、燃料電池用炭素材およびその製造方法
JP4067317B2 (ja) 導電性組成物およびその成形体
JP2004269567A (ja) 導電性組成物およびその成形体
JP4733008B2 (ja) 導電性樹脂成形体およびその製造方法
JP2002083608A (ja) 燃料電池用セパレータ及びその製造方法
KR100485285B1 (ko) 연료전지용 세퍼레이터 및 그 제조방법
JP2001236966A (ja) 燃料電池用セパレータおよび燃料電池
JP2000331690A (ja) 燃料電池用セパレータの製造方法
JP2005190846A (ja) 導電性成形体およびその抵抗値の低減方法
JP2005116282A (ja) 導電性組成物およびその成形体
JP2007145023A (ja) 導電性樹脂成形体およびその製造方法
JP2002100377A (ja) 燃料電池用セパレータおよび燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2413146

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10312665

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001945728

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001945728

Country of ref document: EP