WO2001089687A1 - Catalyseur pour la gazeification de la biomasse en lit fluidise, procede d'obtention et utilisations d'un tel catalyseur - Google Patents

Catalyseur pour la gazeification de la biomasse en lit fluidise, procede d'obtention et utilisations d'un tel catalyseur Download PDF

Info

Publication number
WO2001089687A1
WO2001089687A1 PCT/FR2001/001547 FR0101547W WO0189687A1 WO 2001089687 A1 WO2001089687 A1 WO 2001089687A1 FR 0101547 W FR0101547 W FR 0101547W WO 0189687 A1 WO0189687 A1 WO 0189687A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
catalyst
oxide
olivine
catalyst according
Prior art date
Application number
PCT/FR2001/001547
Other languages
English (en)
Inventor
Claire Courson
Corinne Petit
Alain Kiennemann
Pier Ugo Foscolo
Sergio Rapagna
Domenico Antonio Matera
Original Assignee
Universite Louis Pasteur
Enea - Ente Per Le Nuevo Tecnologie, L'energia E L'ambiente
Università degli Studi di L'Aquila
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Louis Pasteur, Enea - Ente Per Le Nuevo Tecnologie, L'energia E L'ambiente, Università degli Studi di L'Aquila filed Critical Universite Louis Pasteur
Priority to AU62469/01A priority Critical patent/AU6246901A/en
Publication of WO2001089687A1 publication Critical patent/WO2001089687A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/463Gasification of granular or pulverulent flues in suspension in stationary fluidised beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0986Catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • Catalyst for the gasification of biomass in a fluidized bed process for obtaining and uses of such a catalyst.
  • the present invention relates to the field of catalysis, more precisely that of heterogeneous catalysis and especially that of catalysis for gasification in a fluidized bed of biomass.
  • It relates to a catalytic device based on supported metal oxide. It also relates to a process for obtaining such catalysts as well as the use of the latter in the chemical industry, in particular for the gasification of biomass.
  • Biomass has long been used as a fuel, mainly for heating. Due to its low calorific value, this unprofitable use has, however, seen its importance decrease in favor of another equally well-known transformation: gasification.
  • Biomass gasification is a complex mermochemical process leading to the formation of permanent gases, mainly hydrogen, carbon monoxide, carbon dioxide and methane which can be used as gaseous fuels or as gas for chemical synthesis.
  • gases mainly hydrogen, carbon monoxide, carbon dioxide and methane which can be used as gaseous fuels or as gas for chemical synthesis.
  • it gives rise, in particular due to the high temperatures involved, to undesirable by-products which condense at room temperature into tars (tar) and solid residues consisting of ash and carbon (tanks).
  • thermochemical conversion methods gasification in a fluidized bed with water vapor makes it possible to optimize, thanks to the high heating temperatures involved, the yield of gaseous products obtained (in particular hydrogen), all by offering advantageous residence times as well as a reduction in the quantities of tars and solid residues produced.
  • the conversion units working in a fluidized bed are flexible enough to be able to convert a fairly wide range of solid raw materials whose compositions and physical properties can be very variable.
  • it is however essential to purify them by eliminating in particular the dust and by converting tars and solid residues into gas.
  • Cracking and reforming tars are also important insofar as they make it possible to increase the overall yield of gases obtained in the thermochemical conversion process of biomass as well as the average operating time of the fluidized bed.
  • the solution of removing impurities by simple cleaning is not economically profitable and also poses serious problems in terms of respect for the environment.
  • the gasification technique has become more and more interested in processes using catalysts which make it possible to significantly reduce the reforming temperature of tars and solid residues as well as to increase the yields in gases obtained.
  • Catalysts based on iron or nickel have also been proposed for the reforming of tars.
  • the catalysts currently on the market all undergo more or less rapidly attenuation or even a complete loss of their catalytic properties, these deactivation phenomena being mainly due to the deposits of carbon at the surface and to the sintering effects which take place at the aforementioned high temperatures.
  • a conventional catalyst consisting of nickel deposited on a conventional support such as alumina
  • the metal particles tend to migrate and form larger aggregates, thus reducing the dispersion and therefore the activity of the catalyst.
  • reaction conditions employed in the gasification of biomass can significantly reduce the specific surface area of the supported catalytic systems and therefore their activity.
  • the problem posed by the present invention consists in providing a catalyst for the gasification of biomass in a fluidized bed which is inexpensive, easy to use and whose catalytic properties are efficient (better gas yields) and stable (by reducing the attrition phenomena) while avoiding the formation of solid carbon residues and tars.
  • a catalyst for the gasification of biomass in a fluidized bed characterized in that it contains, on an olivine support (Mg, Fe) 2SiO_ ⁇ , an active dispersed metallic phase constituted by the element nickel.
  • the invention also relates to a process for manufacturing such a catalyst.
  • the catalyst for the gasification of biomass in a fluidized bed is characterized in that it contains, on an olivine support (Mg, Fe) 2SiO_ ⁇ , an active dispersed metal phase consisting of the nickel element.
  • Olivine is essentially a silicate in which the magnesium and iron cations are included in a tetrahedral silica.
  • the olivine used is natural olivine which can come, for information, from the natural olivine mines which are found in Austria or Italy.
  • the catalyst according to the present invention is characterized in that the olivine used has the general formula (Mg x Fe ⁇ _ x ) 2Si ⁇ 4, where 0 ⁇ x ⁇ l. More preferably, the catalyst according to the present invention is characterized in that x is equal to 0.92 with an excess of iron in the form of free iron oxide, the free iron content being preferably of the order 0.7% by mass of iron.
  • the olivine used contains: between 28% and 35% by weight of Mg between 1% and 10% by weight of Fe between 18% and 22% by weight of Si between 0% and 0.5% by weight of Ni, between 0% and 0.5% by weight of Ca between 0% and 0.5% by weight of Al and between 0% and 0.5% by weight of Cr, preferably, 30.5% by weight of Mg
  • the olivine used has an average particle size of between 250 ⁇ m and 600 ⁇ m, preferably of the order of 425 ⁇ m.
  • the choice of olivine as a support is essential within the meaning of the present invention and brings many important advantages to the catalytic compounds of the present invention. Indeed, olivine has a high resistance to attrition and makes it possible to include the metal catalyst as an important part of the fluidized bed of the gasifier, since the basic material constituting the support for the catalyst (olivine) is identical to the substance used. in the fluidized bed proper.
  • Nickel is incorporated into the olivine in the form of oxide and therefore in strong interaction with the structure of the olivine. It is therefore necessary to reduce the starting oxide in situ in order to observe a catalytic activity without however losing the strong interaction between nickel and olivine.
  • activation of the catalyst, through reduction of the metal oxide to the elemental metal is a second essential element of the present invention.
  • the catalyst according to the present invention is therefore also characterized in that the active dispersed metallic phase is obtained by integrating, by heating, a maximum amount of an oxide of the metallic nickel element in the olivine structure and then selectively releasing said metallic element by a appropriate reduction of said metal nickel element oxide.
  • the metal oxide is nickel oxide NiO and the heating aimed at integrating said oxide takes place at a temperature between 900 ° C and 1300 ° C, preferably at around 1100 ° C.
  • the subsequent reduction is carried out under a gas stream containing, at least hydrogen or a source generating hydrogen.
  • the gas stream also contains a gaseous hydrocarbon compound intended to react in a reaction catalyzed by said catalyst.
  • the catalysts according to the present invention contain from 2.5% to 5.5%, preferably 2.8%, by mass of NiO.
  • the present invention also relates to a process for obtaining the catalyst according to the present invention, characterized in that it comprises the steps consisting in: - washing the support olivine, drying it and then calcining it a first time,
  • the NiO oxide deposited in metallic nickel Ni by passing a gas stream containing at least hydrogen over said oxide NiO is carried out in the usual manner.
  • the washing is carried out with water and the first calcination is carried out at 900 ° C. for 5 hours.
  • the impregnation of the metal salt (s) Ni is preferably carried out by excess. In this case, use is made for obtaining NiO then Ni of Ni (N ⁇ 3) 2. 6H2O as nickel salt.
  • the nickel nitrate used as the nickel source is dissolved in distilled water at the concentration chosen according to the percentage of NiO to be deposited on the olivine. Of course, other salts can also be used.
  • the excess impregnation consists in covering the olivine grains with an excess aqueous solution and in evaporating the aqueous solution under reflux in a rotary evaporator.
  • the metal salt solution is a metal salt solution
  • Ni is in excess with respect to the support which must be impregnated, said excess being evaporated after impregnation in an oven at a temperature between 100 ° C and 150 ° C, preferably at 120 ° C, for 10 to
  • the catalyst After evaporation of most of the remaining water, the catalyst is dried in an oven before being calcined a second time at different temperatures, in order to integrate the nickel oxide into the structure of the olivine. In accordance with the present invention, this second calcination takes place, as explained below, within a very precise range of temperatures.
  • the product obtained was sieved to retain only the particles of diameter greater than
  • a catalyst was prepared by carrying out only one excess impregnation with a second calcination temperature of 1100 ° C., the nickel content of the catalyst obtained being 2.8% by weight (mass) of nickel.
  • tests to control the preparation of the catalyst were carried out in a conventional device for reduction in temperature programmed RTP or TPR (temperature programmed reduction) which allows the reduction by hydrogen of phases d '' mass or supported oxides thanks to the monitoring of the quantity of hydrogen consumed as a function of temperature and other selected conditions.
  • the inventors unexpectedly and surprisingly discovered that a certain range of temperatures for the second calcination made it possible to integrate nickel oxide more effectively into the support olivine. Indeed, for second calcination temperatures below about 1000 ° C, the oxide is not fully integrated into the structure of the olivine while for second calcination temperatures above about 1300 ° C, the oxide of nickel is too strongly bound to the support so that any subsequent reduction in metallic nickel becomes very difficult, if not impossible. For the catalysts prepared at second calcination temperatures below 1000 ° C., the proportion of free nickel oxide is too large, which means that an equally too large proportion of oxide may detach from the olivine during the operation of the fluidized bed, resulting in a significant loss of active phase.
  • the (possibly) reduced nickel oxide particles are moreover capable of constituting privileged sites for the coking reaction. This coke will then quickly develop and cover the active nickel particles by progressively deactivating the catalyst.
  • the activity of the catalysts prepared and their stability under the conditions of gasification of biomass their behavior is studied during a reforming reaction, firstly under carbon dioxide C0 2 , then, secondly time, underwater.
  • the catalytic system studied presents a grafting of nickel aggregates on the surface of the olivine capable of being reduced under the conditions of TPR and catalytic tests.
  • the characterizations of this catalyst made by X-ray (X-ray diffraction) show that the system was not modified during the course of the test, the olivine structure being preserved.
  • the disappearance of NiO and the appearance of the two most intense lines of reduced nickel are observed, which indicates that the nickel aggregates obtained by reduction are relatively large.
  • Analysis by scanning microscopy indicates that the appearance of the grainy surface is preserved and that the average size of the grains attributed to nickel has not been increased.
  • the quantity (in m) of dry gas obtained per kg of biomass at 820 ° C. increases, over a period of use of 800 minutes, from 1.8 to 2.1.
  • this value is only between 1.6 and 1.8 for the same temperature of 820 ° C.
  • the quantity of tars produced (tar) always at this same temperature is 0.7 g per standard m of dry gas produced whereas with the catalyst according to the present invention this quantity is on average only about 0.45 g, a significant reduction of more than 35%.
  • the conversion rate of the added water is close to 46%, while the maximum rate that can be achieved with olivine alone is only 40%.
  • the molar composition (volume) of the dry gas mixture obtained is 53% H 2 , 25% CO, 20% C0 2 and 6% CH 4 with the catalyst according to the present invention whereas with olivine alone gives a molar composition (volume) of 47% H 2 , 25% CO, 20% C0 2 and 8% CH 4 .
  • the catalysts proposed in the context of the present invention are therefore particularly useful in the field of gasification reactions of biomass in a fluidized bed, in particular in reactions for the synthesis of hydrogen and / or synthesis gas by methane reforming, in particular under C0 2 or water, as well as for the reforming of tars.
  • the present invention makes it possible to include the catalyst as an important part of the fluidized bed of the gasifier by taking as base material the substance already used in the fluidized bed, that is to say the olivine and in it. incorporating active nickel catalyzing the reforming reaction.
  • the presence of a few percent of nickel in no way affects the physicochemical properties of olivine, in particular its density, its specific surface and especially its resistance to attrition while providing a active and efficient catalyst for the reforming especially of methane with water, carbon dioxide, possibly oxygen and for the reforming of tars.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

La présente invention a pour objet un catalyseur pour la gazéification de la biomasse en lit fluidisé, son procédé d'obtention et les utilisations d'un tel catalyseur. Le catalyseur selon la présente invention est caractérisé en ce qu'il contient, sur un support en olivine (Mg, Fe)2SiO4, une phase métallique dispersée active constituée par l'élément nickel. Il peut avantageusement être employé dans des réactions de gazéification de la biomasse en lit fluidisé, en particulier dans des réactions de synthèse d'hydrogène et/ou de gaz de synthèse par réformage de méthane, notamment sous CO2 ou eau ainsi que pour le réformage des goudrons (tars).

Description

Catalyseur pour la gazéification de la biomasse en lit fluidisé, procédé d'obtention et utilisations d'un tel catalyseur.
La présente invention concerne le domaine de la catalyse, plus précisément celui de la catalyse hétérogène et spécialement celui de la catalyse pour la gazéification en lit fluidisé de la biomasse.
Elle a pour objet un dispositif catalytique à base d'oxyde métallique supporté. Elle a également pour objet un procédé d'obtention de tels catalyseurs ainsi que l'utilisation de ces derniers dans l'industrie chimique, en particulier pour la gazéification de la biomasse.
La biomasse est depuis longtemps utilisée comme combustible, principalement pour le chauffage. En raison de son faible pouvoir calorifique, cette utilisation peu rentable a cependant vu son importance diminuer au profit d'une autre transformation également bien connue : la gazéification.
La gazéification de la biomasse est un processus mermochimique complexe conduisant à la formation de gaz permanents, principalement de l'hydrogène, du monoxyde de carbone, du dioxyde de carbone et du méthane qui peuvent être utilisés en tant que combustibles gazeux ou comme gaz pour la synthèse chimique. Elle donne cependant naissance, notamment en raison des températures élevées mises en jeu^ à des sous-produits indésirables qui se condensent à température ambiante en des goudrons (tars) et des résidus solides constitués de cendres et de carbone (chars).
Parmi les procédés de conversion thermochimiques actuellement utilisés, la gazéification en lit fluidisé avec de la vapeur d'eau permet d'optimiser, grâce aux températures de chauffage élevées mises en jeu, le rendement en produits gazeux obtenus (en particulier en hydrogène), tout en proposant des temps de séjour avantageux ainsi qu'une réduction des quantités de goudrons et de résidus solides produits.
De plus, les unités de conversion travaillant en lit fluidisé sont suffisamment flexibles pour pouvoir convertir une gamme assez large de matières premières solides dont les compositions et les propriétés physiques peuvent être très variables. Afin de rendre les gaz obtenus par gazéification acceptables en tant que combustibles pour moteurs, turbines, piles à combustible, etc., il est est toutefois indispensable de les purifier en éliminant notamment les poussières et en convertissant les goudrons et les résidus solides en gaz. Le crackage et le réformage des goudrons sont également importants dans la mesure où ils permettent d'augmenter le rendement global en gaz obtenus dans le procédé de conversion thermochimique de la biomasse ainsi que la durée de fonctionnement moyenne du lit fluidisé. La solution consistant à éliminer des impuretés par simple nettoyage n'est économiquement pas rentable et pose aussi de sérieux problèmes en matière de respect de l' environnement.
Pour les raisons susvisées, la technique de la gazéification s'est de plus en plus intéressée aux procédés mettant en œuvre des catalyseurs qui permettent de réduire de manière significative la température de réformage des goudrons et des résidus solides ainsi que d'augmenter les rendements en gaz obtenus.
A ce jour, bon nombre d'études ont été publiées sur la conversion catalytique de la biomasse, et notamment sur sa gazéification en lit fluidisé. II est, par exemple, connu d'utiliser du sable ou de la dolomite naturelle comme catalyseurs afin de réduire les quantités de goudrons formés. Avec ces derniers, un second catalyseur séparé est cependant nécessaire à la réaction de gazéification proprement dite et au raffinage de la composition gazeuse obtenue. De plus, la dolomite s'est avérée être trop fragile pour pouvoir être utilisée de manière durable dans l'industrie. En effet, les températures de l'ordre de 850 °C régnant dans les enceintes de gazéification fragilisent la dolomite naturelle. Celle-ci devient de plus en plus poreuse et finit par s'effriter (phénomène d'attrition) donnant lieu à la production non souhaitée de fines. Outre la nécessité de devoir constamment renouveler le catalyseur, la production de fines nuit à la stabilité de fonctionnement du gazéifieur, ce qui rend le procédé de gazéification cher et compliqué à mettre en œuvre.
Des catalyseurs à base de fer ou de nickel ont également été proposés pour le réformage des goudrons. Toutefois, les catalyseurs actuellement commercialisés subissent tous plus ou moins rapidement une atténuation voire une perte complète de leurs propriétés catalytiques, ces phénomènes de désactivation étant principalement dus aux dépôts de carbone en surface et aux effets de frittage qui ont lieu aux hautes températures précitées.
Dans un catalyseur conventionnel constitué de nickel déposé sur un support conventionnel comme de l'alumine, les particules métalliques tendent à migrer et à former des agrégats plus grands, réduisant ainsi la dispersion et par conséquent l'activité du catalyseur.
Les phénomènes de frittage favorisent également la production de coke. Il en résulte que les conditions de réaction employées dans la gazéification de la biomasse peuvent réduire de façon significative la surface spécifique des systèmes catalytiques supportés et donc leur activité.
Le problème posé à la présente invention consiste à fournir un catalyseur pour la gazéification de la biomasse en lit fluidisé qui soit peu cher, facile à mettre en œuvre et dont les propriétés catalytiques sont performantes (meilleurs rendements en gaz) et stables (en réduisant les phénomènes d'attrition) tout en évitant la formation de résidus carbonés solides et de goudrons.
A cet effet, elle a pour objet un catalyseur pour la gazéification de la biomasse en lit fluidisé, caractérisé en ce qu'il contient, sur un support en olivine (Mg,Fe)2SiO_ι, une phase métallique dispersée active constituée par l'élément nickel.
L'invention a également pour objet un procédé de fabrication d'un tel catalyseur. L'invention sera mieux comprise, grâce à la description ci-après, qui se rapporte à des modes de réalisation préférés, donnés à titre d'exemples non limitatifs. Conformément à l'invention, le catalyseur pour la gazéification de la biomasse en lit fluidisé est caractérisé en ce qu'il contient, sur un support en olivine (Mg,Fe)2SiO_ι, une phase métallique dispersée active constituée par l'élément nickel.
L'olivine est essentiellement un silicate dans lequel les cations magnésium et fer sont inclus dans une silice tétraédrique. De manière avantageuse et économique l'olivine utilisée est de l'olivine naturelle qui peut provenir, à titre indicatif, des mines d' olivine naturelle qui se trouvent en Autriche ou en Italie.
Selon un mode de réalisation préféré, le catalyseur selon la présente invention est caractérisé en ce que l'olivine utilisée possède la formule générale (MgxFeι_x)2Siθ4, où 0<x≤l. De manière encore préférée, le catalyseur conforme à la présente invention est caractérisé en ce que x est égal à 0,92 avec un excès de fer sous la forme d'oxyde de fer libre, la teneur en fer libre étant préférentiellement de l'ordre de 0,7 % en masse de fer. Un mode de réalisation particulièrement préféré et avantageux prévoit que l'olivine utilisée contient : entre 28 % et 35 % en poids de Mg entre 1 % et 10 % en poids de Fe entre 18 % et 22 % en poids de Si entre 0 % et 0,5 % en poids de Ni, entre 0 % et 0,5 % en poids de Ca entre 0 % et 0,5 % en poids de Al et entre 0 % et 0,5 % en poids de Cr, de préférence, 30,5 % en poids de Mg
7,1 % en poids de Fe 19,6 % en poids de Si 0,19 % en poids de Ni 0,20 % en poids de Ca 0,07 % en poids de Al et
0,08 % en poids de Cr.
Selon une autre caractéristique, l'olivine utilisée possède une granulométrie moyenne comprise entre 250 μm et 600 μm, de préférence de l'ordre de 425 μm. Le choix de l'olivine comme support est essentiel au sens de la présente invention et apporte de nombreux avantages importants aux composés catalytiques de la présente invention. En effet, l'olivine présente une grande résistance à l'attrition et permet d'inclure le catalyseur métallique comme partie importante du lit fluidisé du gazéifieur, puisque la matière de base constituant le support du catalyseur (olivine) est identique à la substance utilisée dans le lit fluidisé proprement dit.
Le nickel est incorporé dans l'olivine sous forme d'oxyde et donc en forte interaction avec la structure de l'olivine. Il est donc nécessaire de réduire l'oxyde de départ in situ pour observer une activité catalytique sans toutefois perdre la forte interaction entre le nickel et l'olivine. Conformément à la présente invention, l'activation du catalyseur, par le biais de la réduction de l'oxyde métallique en métal élémentaire, est un second élément essentiel de la présente invention.
Le catalyseur selon la présente invention est donc également caractérisé en ce que la phase métallique dispersée active est obtenue en intégrant par chauffage une quantité maximale d'un oxyde de l'élément nickel métallique dans la structure olivine puis en libérant sélectivement ledit élément métallique par une réduction appropriée dudit oxyde d'élément nickel métallique. Selon une caractéristique de l'invention, l'oxyde métallique est l'oxyde de nickel NiO et le chauffage visant à intégrer ledit oxyde se fait à une température comprise entre 900 °C et 1300 °C, de préférence à environ 1100 °C.
La réduction subséquente se fait sous un flux gazeux contenant, au moins de l'hydrogène ou une source génératrice d'hydrogène.
Avantageusement, le flux gazeux contient en outre un composé hydrocarboné gazeux destiné à réagir dans une réaction catalysée par ledit catalyseur.
Pour obtenir les meilleurs résultats catalytiques possibles en termes de conversion, les catalyseurs conformes à la présente invention contiennent de 2,5 % à 5,5 %, de préférence 2,8 %, en masse de NiO.
La présente invention a également pour objet un procédé d'obtention du catalyseur selon la présente invention caractérisé en ce qu'il comprend les étapes consistant à : - laver l'olivine de support, la sécher puis la calciner une première fois,
- broyer le solide obtenu puis le tamiser,
- déposer l'oxyde NiO sur le support par imprégnation dudit matériau support avec une solution d'un ou plusieurs sels du métal Ni, - calciner une seconde fois, à une température comprise entre
900 °C et 1300 °C, de préférence à environ 1100 °C, le produit obtenu pour intégrer l'oxyde NiO dans la structure du support,
- tamiser à nouveau le solide obtenu, et
- réduire, à une température comprise entre 750 °C et 900 °C, de préférence à environ 865 °C, l'oxyde NiO déposé en nickel métallique Ni par passage d'un flux gazeux contenant au moins de l'hydrogène sur ledit oxyde NiO. Le lavage et la calcination de départ se font de manière habituelle. De préférence, le lavage est réalisé à l'eau et la première calcination se fait à 900 °C pendant 5 heures.
L'imprégnation du ou des sels du métal Ni est préférentiellement réalisée par excès. Dans ce cas, on utilise pour l'obtention de NiO puis Ni du Ni(Nθ3)2 . 6H2O comme sel de nickel. Le nitrate de nickel utilisé comme source de nickel est dissout dans de l'eau distillée à la concentration choisie en fonction du pourcentage de NiO à déposer sur l'olivine. Bien entendu, d'autres sels peuvent également être employés. L'imprégnation par excès consiste à recouvrir les grains d' olivine par une solution aqueuse en excès et à évaporer la solution aqueuse sous reflux dans un évaporateur rotatif.
Selon un mode de réalisation préféré, la solution de sel de métal
Ni est en excès par rapport au support qui doit être imprégné, ledit excès étant évaporé après l'imprégnation dans une étuve à une température comprise entre 100 °C et 150 °C, de préférence à 120 °C, pendant 10 à
24 heures, de préférence pendant 15 heures.
Ce procédé permet une bonne dispersion du nickel même si une partie du nitrate de nickel peut être perdue sur les parois du matériel utilisé lors de l'opération. Si nécessaire, une deuxième ou plusieurs imprégnations supplémentaires peuvent être réalisées de la même manière.
Après évaporation de la plus grande partie de l'eau restante, le catalyseur est séché à l' étuve avant d'être calciné une seconde fois à différentes températures, dans le but d'intégrer l'oxyde de nickel dans la structure de l'olivine. Conformément à la présente invention, cette seconde calcination se fait, comme expliqué ci-dessous, dans une plage bien précise de températures.
Après lesdites première et seconde calcinations, et selon une autre caractéristique avantageuse de la présente invention, le produit obtenu a été tamisé pour ne conserver que les particules de diamètre supérieur à
250 μm à l'issu desdits tamisages. Le nickel qui n'est pas lié au support est ainsi parfaitement éliminé.
Il a été préparé un catalyseur en réalisant qu'une seule imprégnation par excès avec une température de seconde calcination de 1100 °C, la teneur en nickel du catalyseur obtenu étant de 2,8 % en poids (masse) de nickel. Afin d'évaluer les performances du catalyseur synthétisé, des tests de contrôle de la préparation du catalyseur ont été effectués dans un dispositif classique de réduction en température programmée RTP ou TPR (température programmed réduction) qui permet la réduction par l'hydrogène de phases d'oxydes massiques ou supportés grâce au suivi de la quantité d'hydrogène consommée en fonction de la température et d'autres conditions choisies.
Cette analyse donne alors une mesure de la stabilité des catalyseurs à base d'oxydes dans une atmosphère réductrice et permet également de contrôler la reproductibilité des procédés de préparation.
De plus, les inventeurs ont découvert de manière inattendue et surprenante qu'une certaine plage de températures pour la seconde calcination permettait d'intégrer plus efficacement l'oxyde de nickel dans l'olivine de support. En effet, pour des températures de seconde calcination inférieures à environ 1000 °C, l'oxyde n'est pas totalement intégré à la structure de l'olivine tandis que pour des températures de seconde calcination supérieures à environ 1300 °C, l'oxyde de nickel est trop fortement lié au support de sorte que toute réduction ultérieure en nickel métallique devient très difficile, voire impossible. Pour les catalyseurs préparés à des températures de seconde calcination inférieure à 1000 °C, la proportion d'oxyde de nickel libre est trop importante, ce qui signifie qu'une part également trop importante d'oxyde pourra se détacher de l'olivine pendant le fonctionnement du lit fluidisé, d'où une perte non négligeable de phase active. Par ailleurs, les particules d'oxyde de nickel (éventuellement) réduit sont en outre susceptibles de constituer des sites privilégiés pour la réaction de cokage. Ce coke va alors rapidement se développer et recouvrir les particules actives de nickel en désactivant progressivement le catalyseur. Afin de connaître l'activité des catalyseurs préparés et leur stabilité dans les conditions de gazéification de la biomasse, on étudie leur comportement au cours d'une réaction de réformage, dans un premier temps sous dioxyde de carbone C02, puis, dans un second temps, sous eau.
Dans le cas du réformage sous dioxyde de carbone, on observe, pour le catalyseur préparé ci-dessus, une activité élevée (98 % de conversion de CH4, 90 % de conversion de C02, un rendement en CO de 94 % avec un rapport H2/CO de 1,3) pendant au moins 200 heures de test aussi bien à 800 °C (conversion en CH = 98 %) qu'à 750 °C (conversion en CH4= 95 %).
Le système catalytique étudié présente un greffage d'agrégats de nickel sur la surface de l'olivine capables d'être réduits dans les conditions de TPR et de tests catalytiques. Les caractérisations de ce catalyseur faites par DRX (diffraction de rayons X) montrent que le système n'a pas été modifié lors du déroulement du test, la structure olivine étant conservée. On observe la disparition de NiO et l'apparition des deux raies les plus intenses du nickel réduit, ce qui indique que les agrégats de nickel obtenus par réduction sont relativement importants. L'analyse par microscopie à balayage indique que l'aspect de la surface granuleuse est conservé et que la taille moyenne des grains attribués au nickel n'a pas été augmentée.
La bonne tenue de ce catalyseur est confirmée par l'étude de la quantité de carbone élémentaire déposé sur le catalyseur qui est très faible. Ainsi, la quantité de carbone déposé sur le catalyseur après 200 heures de fonctionnement est seulement de 0,13 % en masse de carbone par rapport au catalyseur.
Par ailleurs, des interruptions du flux de méthane ont été effectuées pour placer le catalyseur dans des conditions extrêmement oxydantes pendant quelques heures, puis le flux de méthane a été rétabli. Il a été constaté que ces coupures n'entraînaient pas de dommages au niveau du catalyseur qui retrouve son efficacité initiale en quelques heures seulement. La réactivité catalytique a également été évaluée dans le cadre d'une conversion, en présence d'eau, de méthane gazeux issu de la biomasse en un mélange gazeux de monoxyde de carbone et d'hydrogène. Deux tests ont été réalisés avec un catalyseur identique au précédent.
Pour le premier test, une réduction préalable à 900 °C est effectuée suivie d'un refroidissement jusqu'à 850 °C. Les performances obtenues sont stables pendant au moins 100 heures. La conversion en méthane est de 85 %, le rendement en monoxyde de carbone de 90 % et le rendement en dioxyde de carbone faible. La sélectivité en monoxyde de carbone est très bonne. Pour le second test, le système catalytique a été mis en œuvre à une température de 800 °C sans réduction préalable à 900 °C. Les résultats obtenus sont similaires à ceux du premier test. L' influence de la température de réformage sur différents paramètres (taux de conversion, rendement en monoxyde de carbone...) a également été étudiée pour le catalyseur susvisé pour trois températures différentes dans des conditions de conversion sous eau et sous dioxyde de carbone. Les résultats sont regroupés dans le tableau suivant :
Figure imgf000010_0001
Avec le catalyseur Ni/olivine de la présente invention, la quantité (en m ) de gaz sec obtenue par kg de biomasse à 820 °C augmente, sur une durée d'utilisation de 800 minutes, de 1,8 à 2,1. Pour de l'olivine utilisée seule, cette valeur est seulement comprise entre 1,6 et 1,8 pour la même température de 820 °C.
La quantité de goudrons produits (tars) toujours à cette même température est de 0,7 g par m standard de gaz sec produit alors qu'avec le catalyseur selon la présente invention cette quantité n'est en moyenne que d'environ 0,45 g, soit une réduction significative de plus de 35 %.
Le taux de conversion de l'eau ajoutée est proche de 46 %, alors que le taux maximal qui puisse être atteint avec de l'olivine seule n'est que de 40 %. De plus, la composition molaire (volumique) du mélange de gaz sec obtenu est de 53 % de H2, 25 % de CO, 20 % de C02 et 6 % de CH4 avec le catalyseur selon la présente invention alors qu'avec de l'olivine seule on obtient une composition molaire (volumique) de 47 % de H2, 25 % de CO, 20 % de C02 et 8 % de CH4. Les catalyseurs proposés dans le cadre de la présente invention sont donc particulièrement utiles dans le domaine des réactions de gazéification de la biomasse en lit fluidisé, en particulier dans des réactions de synthèse d'hydrogène et/ou de gaz de synthèse par réformage de méthane, notamment sous C02 ou eau, ainsi que pour le réformage des goudrons (tars). De manière particulièrement avantageuse, la présente invention permet d'inclure le catalyseur comme partie importante du lit fluidisé du gazéifieur en prenant comme matière de base la substance déjà utilisée dans le lit fluidisé, c'est-à-dire l'olivine et en y incorporant le nickel actif catalysant la réaction de réformage.
Le nickel étant incorporé dans l'olivine sous la forme d'oxyde de nickel, donc en forte interaction avec la structure de ladite olivine, le procédé de la présente invention permet, pour le rendre actif, de le réduire en métal tout en conservant une forte interaction nickel-olivine. Conformément à la présente invention, la présence de quelques pour-cents de nickel n'affecte en rien les propriétés physico-chimiques de l'olivine, en particulier sa densité, sa surface spécifique et surtout sa résistance à l'attrition tout en fournissant un catalyseur actif et performant pour le réformage notamment du méthane avec l'eau, le dioxyde de carbone, éventuellement l'oxygène et pour le réformage des goudrons (tars).
Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits. Des modifications restent possibles, notamment du point de vue de la constitution des divers éléments ou par substitution d'équivalents techniques, sans sortir pour autant du domaine de protection de l'invention.

Claims

R E V E N D I C A T I O N S
1. Catalyseur pour la gazéification de la biomasse en lit fluidisé, caractérisé en ce qu'il contient, sur un support en olivine (Mg,Fe)2Siθ4, une phase métallique dispersée active constituée par l'élément nickel.
2. Catalyseur selon la revendication 1, caractérisé en ce que l'olivine utilisée possède la formule générale (MgxFeι_x)2Siθ4, où 0<x≤l.
3. Catalyseur selon la revendication 2, caractérisé en ce que x est égal à 0,92 avec un excès de fer sous la forme d'oxyde de fer libre.
4. Catalyseur selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'olivine utilisée contient : entre 28 % et 35 % en poids de Mg entre 1 % et 10 % en poids de Fe entre 18 % et 22 % en poids de Si entre 0 % et 0,5 % en poids de Ni entre 0 % et 0,5 % en poids de Ca entre 0 % et 0,5 % en poids de Al, et entre 0 % et 0,5 % en poids de Cr.
5. Catalyseur selon la revendication 4, caractérisé en ce que l'olivine utilisée contient : 30,5 % en poids de Mg
7,1 % en poids de Fe
19,6 % en poids de Si
0,19 % en poids de Ni
0,20 % en poids de Ca 0,07 % en poids de Al, et
0,08 % en poids de Cr.
6. Catalyseur selon l'une quelconque des revendications 1 à 5, caractérisé en ce que l'olivine utilisée possède une granulométrie moyenne comprise entre 250 μm et 600 μm, de préférence de l'ordre de 425 μm.
7. Catalyseur selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la phase métallique dispersée active est obtenue en intégrant par chauffage une quantité maximale d'un oxyde de l'élément nickel métallique dans la structure olivine puis en libérant sélectivement ledit élément métallique par une réduction appropriée dudit oxyde d'élément nickel métallique.
8. Catalyseur selon la revendication 7, caractérisé en ce que l'oxyde métallique est l'oxyde de nickel NiO et en ce que le chauffage visant à intégrer ledit oxyde se fait à une température comprise entre 900 °C et 1300 °C, de préférence à environ 1100 °C.
9. Catalyseur selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la réduction subséquente se fait sous un flux gazeux contenant au moins de l'hydrogène ou une source génératrice d'hydrogène.
10. Catalyseur selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il contient de 2,5 % à 5,5 %, de préférence 2,8 % en masse de NiO.
11. Procédé d'obtention d'un catalyseur selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend les étapes consistant à :
- laver l'olivine de support, la sécher puis la calciner une première fois,
- broyer le solide obtenu puis le tamiser,
- déposer l'oxyde NiO sur le support par imprégnation dudit matériau support avec une solution d'un ou plusieurs sels du métal Ni,
- calciner une seconde fois, à une température comprise entre 900 °C et 1300 °C, de préférence à environ 1100 °C, le produit obtenu pour intégrer l'oxyde NiO dans la structure du support,
- tamiser à nouveau le solide obtenu, et - réduire, à une température comprise entre 750 °C et 900 °C, de préférence à environ 865 °C, l'oxyde NiO déposé en nickel métallique Ni par passage d'un flux gazeux contenant au moins de l'hydrogène sur ledit oxyde NiO.
12. Procédé selon la revendication 11, caractérisé en ce que seules les particules de diamètre supérieur à 250 μm sont conservées à l'issu du premier et second tamisage.
13. Procédé selon l'une quelconque des revendications 11 ou 12, caractérisé en ce que pour l'obtention de NiO puis Ni on utilise du Ni(Nθ3)2 • 6H2O comme sel de nickel.
14. Procédé selon l'une quelconque des revendications 11 à 13, caractérisé en ce que la solution de sel de métal Ni est en excès par rapport au support qui doit être imprégné, ledit excès étant évaporé après rimprégnation dans une étuve à une température comprise entre 100 °C et 150 °C, de préférence à 120 °C, pendant 10 à 24 heures, de préférence pendant 15 heures.
15. Utilisation d'un catalyseur selon l'une quelconque des revendications 1 à 10, éventuellement obtenu par un procédé selon l'une quelconque des revendications 11 à 14, caractérisé en ce que le catalyseur intervient dans des réactions de gazéification de la biomasse en lit fluidisé, en particulier dans des réactions de synthèse d'hydrogène et/ou de gaz de synthèse par réformage de méthane, notamment sous C02 ou eau ainsi que pour le réformage des goudrons.
PCT/FR2001/001547 2000-05-22 2001-05-18 Catalyseur pour la gazeification de la biomasse en lit fluidise, procede d'obtention et utilisations d'un tel catalyseur WO2001089687A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU62469/01A AU6246901A (en) 2000-05-22 2001-05-18 Catalyst for fluidised bed carbonation of biomass, method for obtaining same and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/06526 2000-05-22
FR0006526A FR2809030B1 (fr) 2000-05-22 2000-05-22 Catalyseur pour la gazeification de la biomasse en lit fluidise, procede d'obtention et utilisations d'un tel catalyseur

Publications (1)

Publication Number Publication Date
WO2001089687A1 true WO2001089687A1 (fr) 2001-11-29

Family

ID=8850485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001547 WO2001089687A1 (fr) 2000-05-22 2001-05-18 Catalyseur pour la gazeification de la biomasse en lit fluidise, procede d'obtention et utilisations d'un tel catalyseur

Country Status (3)

Country Link
AU (1) AU6246901A (fr)
FR (1) FR2809030B1 (fr)
WO (1) WO2001089687A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1858640A2 (fr) * 2005-03-08 2007-11-28 Gas Technology Institute Procede de production de materiaux a activite catalytique
WO2010133801A1 (fr) * 2009-05-20 2010-11-25 Centre National De La Recherche Scientifique (C.N.R.S) Catalyseur pour le réformage de goudrons utilisables dans la vapogazéification de la biomasse
WO2013068931A1 (fr) * 2011-11-08 2013-05-16 Basf Se Procédé de préparation d'un catalyseur de méthanisation et procédé de méthanisation d'un gaz de synthèse
WO2014190400A1 (fr) * 2013-05-29 2014-12-04 Petróleo Brasileiro S.A. - Petrobras Procédé de reformage à la vapeur pour la réduction de la teneur en goudron dans des courants de gaz de synthèse
WO2016011240A1 (fr) 2014-07-17 2016-01-21 Sabic Global Technologies B.V. Utilisation de catalyseurs d'olivine pour reformage de méthane à l'aide de dioxyde de carbone
US10369549B2 (en) 2015-03-20 2019-08-06 Sabic Global Technologies B.V. Use of nickel-manganese olivine and nickel-manganese spinel as bulk metal catalysts for carbon dioxide reforming of methane
WO2018162208A3 (fr) * 2017-03-06 2019-08-22 Sibelco Nederland N.V. Matières de lit pour procédés de réaction en lit fluidisé et procédés de réaction en lit fluidisé

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109761471B (zh) * 2018-12-10 2022-01-25 唐山冀油瑞丰化工有限公司 连续超声耦合临界水共处理含油污泥/污水的方法及设备
CN113666597B (zh) * 2021-08-23 2022-10-21 南京工业大学 一种用于危废污泥热解的添加剂及热解处理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2121148A5 (en) * 1970-12-30 1972-08-18 Basf Ag Methacrylic cpds prepn - by catalytic dehydration of isobutyric acid derivs with siliconoxygen cpds and iodide catalyst

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2121148A5 (en) * 1970-12-30 1972-08-18 Basf Ag Methacrylic cpds prepn - by catalytic dehydration of isobutyric acid derivs with siliconoxygen cpds and iodide catalyst

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449424B2 (en) 2004-05-14 2008-11-11 Gas Technology Institute Method for producing catalytically-active materials
EP1858640A4 (fr) * 2005-03-08 2012-08-01 Gas Technology Inst Procede de production de materiaux a activite catalytique
EP1858640A2 (fr) * 2005-03-08 2007-11-28 Gas Technology Institute Procede de production de materiaux a activite catalytique
US9221033B2 (en) 2009-05-20 2015-12-29 Centre National De La Recherche Scientifique (C.N.R.S.) Catalyst for reforming tar used in the steam gasification of biomass
WO2010133801A1 (fr) * 2009-05-20 2010-11-25 Centre National De La Recherche Scientifique (C.N.R.S) Catalyseur pour le réformage de goudrons utilisables dans la vapogazéification de la biomasse
FR2945755A1 (fr) * 2009-05-20 2010-11-26 Centre Nat Rech Scient Catalyseur pour le reformage de goudrons utilisables dans la vapogazeification de la biomasse.
JP2012527345A (ja) * 2009-05-20 2012-11-08 サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) バイオマスの蒸気ガス化に使用されるタールを改質するための触媒
WO2013068931A1 (fr) * 2011-11-08 2013-05-16 Basf Se Procédé de préparation d'un catalyseur de méthanisation et procédé de méthanisation d'un gaz de synthèse
CN104039452A (zh) * 2011-11-08 2014-09-10 巴斯夫欧洲公司 生产甲烷化催化剂的方法及合成气甲烷化的方法
WO2014190400A1 (fr) * 2013-05-29 2014-12-04 Petróleo Brasileiro S.A. - Petrobras Procédé de reformage à la vapeur pour la réduction de la teneur en goudron dans des courants de gaz de synthèse
US9365785B2 (en) 2013-05-29 2016-06-14 Petroleo Brasileiro S.A.-Petrobras Steam reforming process for reducing the tar content of synthesis gas streams
WO2016011240A1 (fr) 2014-07-17 2016-01-21 Sabic Global Technologies B.V. Utilisation de catalyseurs d'olivine pour reformage de méthane à l'aide de dioxyde de carbone
US20170120227A1 (en) * 2014-07-17 2017-05-04 Lawrence D'Souza Use of olivine catalysts for carbon dioxide reforming of methane
EP3169433A4 (fr) * 2014-07-17 2018-06-27 SABIC Global Technologies B.V. Utilisation de catalyseurs d'olivine pour reformage de méthane à l'aide de dioxyde de carbone
US10357759B2 (en) 2014-07-17 2019-07-23 Sabic Global Technologies B.V. Use of olivine catalysts for carbon dioxide reforming of methane
US10369549B2 (en) 2015-03-20 2019-08-06 Sabic Global Technologies B.V. Use of nickel-manganese olivine and nickel-manganese spinel as bulk metal catalysts for carbon dioxide reforming of methane
WO2018162208A3 (fr) * 2017-03-06 2019-08-22 Sibelco Nederland N.V. Matières de lit pour procédés de réaction en lit fluidisé et procédés de réaction en lit fluidisé

Also Published As

Publication number Publication date
FR2809030B1 (fr) 2002-08-16
FR2809030A1 (fr) 2001-11-23
AU6246901A (en) 2001-12-03

Similar Documents

Publication Publication Date Title
EP2094631B1 (fr) Deshydratation du methanol en dimethyl ether employant des catalyseurs a base d&#39;une zeolithe supportee sur du carbure de silicium
WO2009138595A2 (fr) Masse active d&#39;oxydo-reduction et procédé de combustion en boucle chimique
WO2006067285A1 (fr) Catalyseur a base de cobalt pour la synthese fischer-tropsch
WO2001062662A1 (fr) Procede de production d&#39;hydrogene par oxydation partielle d&#39;hydrocarbures
EP0098764A1 (fr) Catalyseur supporté présentant une résistance accrue aux poisons et son utilisation en particulier pour l&#39;hydrotraitement de fractions pétrolières contenant des métaux
WO2001089687A1 (fr) Catalyseur pour la gazeification de la biomasse en lit fluidise, procede d&#39;obtention et utilisations d&#39;un tel catalyseur
CA2748297C (fr) Preparation d&#39;un solide a base d&#39;oxyde de zinc utilisable pour la purification d&#39;un gaz ou d&#39;un liquide
FR2496631A1 (fr) Procede de preparation d&#39;agglomeres d&#39;alumine
FR2694013A1 (fr) Catalyseur à base de cobalt et procédé de conversion du gaz de synthèse en hydrocarbures.
FR2525493A1 (fr) Catalyseur pour le reformage autothermique et procede de reformage utilisant ce catalyseur
FR2887545A1 (fr) Procede de transformation d&#39;un gaz de synthese en hydrocarbures en presence de mousse de sic
EP1299187A2 (fr) Procede de preparation d&#39;un catalyseur acide a base de zircone sulfatee massique, catalyseur susceptible d&#39;etre obtenu par ce procede et ses utilisations
JPH09500054A (ja) 合成ガスを生成するための触媒
RU2010115273A (ru) Каталитическая композиция, пригодная для каталитического восстановления сернистого соединения, содержащегося в газовом потоке, и способ получения и применение такой композиции
CA2762832C (fr) Catalyseurs pour le reformage de goudrons utilisables dans la vapogazeificaton de la biomasse
FR2747053A1 (fr) Utilisation pour l&#39;oxydation directe des composes soufres en soufre et/ou sulfates a basse temperature d&#39;un catalyseur a base de cuivre
WO2021224576A1 (fr) Procédé de préparation d&#39;un catalyseur métallique supporté, catalyseur obtenu selon ce procédé et utilisations
CA2472916C (fr) Oxidation directe de composes soufres a moins de 200.degree.c et par catalyseur avec 2% a 5% de fer
FR3028770A1 (fr) Procede de preparation d&#39;un catalyseur fischer-tropsch avec traitement a la vapeur
CH642394A5 (fr) Matiere carbonee, son procede de fabrication et son utilisation pour la production d&#39;un gaz de haut pouvoir calorifique.
JP7280718B2 (ja) 炭素質材料のガス化方法
FR2755958A1 (fr) Zeolithe nu-86 desaluminee et son utilisation en conversion des hydrocarbures
LU84006A1 (fr) Composition catalytique agent getter d&#39;oxydes de soufre procede pour controler les emissions de sox et procede de craquage de charges d&#39;alimentation d&#39;hydrocarbures
FR2857003A1 (fr) Nouveau catalyseur pour le vaporeformage de l&#39;ethanol
FR2567866A1 (fr) Procede de preparation d&#39;un gaz riche en hydrogene

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP