WO2001079810A1 - Focused ion beam apparatus and piece sample pick-up method - Google Patents

Focused ion beam apparatus and piece sample pick-up method Download PDF

Info

Publication number
WO2001079810A1
WO2001079810A1 PCT/JP2001/003173 JP0103173W WO0179810A1 WO 2001079810 A1 WO2001079810 A1 WO 2001079810A1 JP 0103173 W JP0103173 W JP 0103173W WO 0179810 A1 WO0179810 A1 WO 0179810A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
ion beam
focused ion
small pieces
pickup
Prior art date
Application number
PCT/JP2001/003173
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiaki Fujii
Toshio Kodama
Original Assignee
Seiko Instruments Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc. filed Critical Seiko Instruments Inc.
Publication of WO2001079810A1 publication Critical patent/WO2001079810A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components

Definitions

  • the present invention relates to a focused ion beam processing apparatus, which performs a bright sputter etching process on a sample surface such as a semiconductor integrated circuit or a ceramic substrate, and a small sample from the sample surface.
  • the method relates to a method of separating a separated sample and removing a separated small sample.
  • TEM transmission electron microscope
  • the first conventional fabrication method is Microscopy of Semiconducting Material Conferenc e, Oxford, 1989, pp. 501-506.
  • a chip with a length of several mm and a width of 100 to 500 ⁇ is cut out using a dicing saw, attached to a standard mesh for TEM observation, and then focused. It is processed to a desired thickness by ion beam sputter etching.
  • dicing is used to reduce the size of the sample, but due to mechanical processing, it can only be processed from a width of about 100 to 500 Aim.
  • the width must be at least about 1 ⁇ or less, and focus to that width. It must be processed by an ion beam. Therefore, it took a long time to prepare the sample.
  • a technique for overcoming the drawback of the first conventional manufacturing method there is a technique disclosed in Japanese Patent Application Laid-Open No. 5-52721.
  • a focused ion beam 1 is irradiated from at least two different angles to sputter-etch around the TEM observation piece 3 including the observation target 2.
  • the needle 4 for picking up is brought into contact with the small piece 3 for TEM observation without separating from the sample by leaving the remaining portion 5.
  • a thin film is formed by a deposition function of the focused ion beam apparatus so that the needle 4 and the TEM observation small piece 3 are connected, and the needle 4 and the TEM observation small piece 3 are attached.
  • the remaining portion 5 is subjected to sputter etching to separate the sample from the small piece 3 for TEM observation.
  • the sputter etching process using the focused ion beam 1 to be performed to produce the small pieces 3 for TEM observation has been greatly shortened.
  • the production of small pieces for TEM observation using an actual focused ion beam system involves rough digging to separate the small pieces from the sample substrate, and finishing to make the small pieces even thinner so that a specified location can be observed by TEM.
  • Can be roughly divided into Rough digging does not require much processing precision because it is sputter-etched at a location distant from the TEM observation site, but generally requires a long processing time because the volume removed by sputter-etching is large.
  • the finishing time is shorter than that of rough digging because the volume of sputter etching is small. Therefore, rough digging, which does not require much processing precision, is performed by unmanned operation, such as at night, to devise ways to reduce the time required for human processing. In addition, with the improvement of the processing accuracy of the equipment, finishing processing has also been performed automatically.
  • an object of the present invention is to provide an apparatus and a method for removing small pieces for TEM observation that have been subjected to predetermined processing and mechanically separated from a sample substrate.
  • a sample chamber which is a vacuum vessel, a sample stage on which a sample substrate is placed and which can move at least in a horizontal direction and can be tilted,
  • a focused ion beam column comprising an ion source for generating a beam, an ion beam optical system for focusing and deflecting and scanning the ion beam generated from the ion source, and focused ions generated from the focused ion beam column on a sample substrate Detects secondary charged particles generated when irradiating a beam.
  • a focused ion beam processing device consisting of a detector and a detector that uses a focused ion beam to cut out small pieces from a sample using a sputtering ring etching function
  • the first step determining the processing positions of a plurality of small pieces to be cut out from the sample, and sequentially sputtering the periphery of each of the small pieces to be cut out.
  • a third step of cutting out the plurality of small pieces to be cut out from the sample In the first step of determining the processing positions of a plurality of small pieces to be cut out from the sample, and sequentially sputtering the periphery of each of the small pieces to be cut out.
  • a second step of performing a cutting process, and inclining the sample stage on which the sample is placed, and sequentially s
  • a sample chamber which is a vacuum vessel, a sample stage on which a sample substrate is placed and which can move at least in a horizontal direction and can be tilted, an ion source for generating a light beam, and A focused ion beam column composed of an ion beam optical system for focusing and deflecting and scanning an ion beam generated from an ion source; and a sample substrate irradiated with a focused ion beam generated from the focused ion beam column.
  • a detector that detects the secondary charged particles generated, and a focused ion beam device consisting of a pickup that picks up small pieces separated from the surface of the sample substrate by sputter etching of the focused ion beam
  • the processing positions of multiple small pieces cut out from the sample are determined.
  • the sample chamber is mounted on a sample holder consisting of a vacuum chamber and a sample holder consisting of a sample holder and a holder for holding a plurality of small pieces taken out of the sample.
  • a sample stage that can move and tilt in the direction, an ion source that generates an ion beam, and a focused ion beam column that includes an ion beam that focuses and deflects and scans the ion beam generated from the ion source.
  • the secondary generated when the sample substrate is irradiated with the focused ion beam generated from the focused ion beam column Using a focused ion beam device consisting of a detector that detects charged particles and a sputter etching process of a focused ion beam from the surface of the sample substrate that picks up small pieces separated by using a focused ion beam, sputtering using a focused ion beam.
  • a first step of determining processing positions of a plurality of small pieces to be cut out of the sample a second step of sequentially performing a sputtering process around each of the small pieces to be cut out, and an etching process
  • a third step of inclining the mounted sample stage and sequentially sputtering and etching the bottom of each of the small pieces to be cut out and the tip end position of the pickup by operating one of the small pieces to be cut out by operating the sample stage. Ij, and take out one of the small pieces to be cut out by the pickup.
  • a sample chamber which is a vacuum vessel and a sample holder including a sample holding portion for holding a sample and a plurality of small pieces taken out from the sample are attached and mounted.
  • a sample stage that can be placed and moved at least in a horizontal direction and can be tilted, a ion source that generates an ion beam, and an ion beam optical system that focuses, deflects and scans the ion beam generated from the ion source
  • the present invention proposes a focused ion beam processing apparatus characterized in that the tip of the cup is composed of two claws, and these claws move to pick up the small piece by sandwiching the small piece.
  • the pickup device is attached to a sample chamber, which is a vacuum chamber, and a sample holder including a sample holding portion and a holding portion for holding a plurality of small pieces extracted from the sample.
  • a sample stage that can be mounted and at least horizontally moved and tilted, an ion source that generates an ion beam, and an ion beam optic that focuses and scans the ion beam generated from the ion source.
  • a focused ion beam column made of a system, a detector for detecting secondary charged particles generated when the sample substrate is irradiated with the focused ion beam generated from the focused ion beam column, and a focused ion from the surface of the sample substrate.
  • the tip of the flop is composed of two claws, by sandwiching the piece is moving these claws proposes collecting beam ion beam processing apparatus characterized by taking up the pieces.
  • two of the pick-up tips are movable claws, one of which is a movable claw and is connected to the other fixed claw by a rotating shaft.
  • the present invention proposes a mode in which the movable claw moves in a rotational direction about a rotation axis, and the movable claw is controlled by a piezoelectric actuator provided between the movable claw and the fixed claw.
  • the material is a shape memory alloy
  • a heater for controlling the temperature of the shape memory alloy portion of the claw is provided, and the claw is opened and closed by the temperature control by the heater.
  • the nail is made of a conductive material, and a power source is connected between the nail and the sample held in the test holder, An embodiment is proposed in which a current flowing when the nail and the sample come into contact is detected to avoid collision between the tip of the nail and the sample. Further, the first and second embodiments may be combined with the third embodiment.
  • a sample chamber which is a vacuum vessel, and a sample holder comprising a sample holding section and a holding section ′ for holding a plurality of small pieces taken out of the sample, are mounted.
  • a sample stage capable of moving and tilting at least in a horizontal direction; a source for generating an ion beam; and an ion beam optical system for converging and scanning the ion beam generated from the ion source.
  • a focused ion beam apparatus comprising a pickup for picking up small pieces separated by using a sputtering process
  • the tip of the pick-up Has a needle shape, and picks up the small piece by attaching the small piece to the tip of the needle-shaped pick-up.
  • a tip is proposed in which the tip is a needle made of an insulator, and the small piece is attracted and picked up by static electricity generated by charging the tip of the needle. .
  • a means for rubbing against another insulator to charge ⁇ 'As a second means for charging the tip, by irradiating a focused ion beam Means for charging the needle tip is proposed.
  • an electron beam irradiation device is attached to the sample chamber, and the tip of the needle is charged by irradiating the tip of the needle with the electron beam of the electron beam irradiation device.
  • a sample chamber which is a vacuum vessel
  • a sample holder which is provided with a sample holding portion and a holding portion for holding a plurality of small pieces taken out of the sample, are mounted and placed.
  • a sample stage that can move and tilt at least in a horizontal direction, an ion source that generates an ion beam, and a focused ion beam that includes an ion beam optical system that focuses and deflects and scans the ion beam generated from the ion source
  • a pick-up for picking up small pieces separated by using a chucking process, and a deposit on the sample surface at the same time as the focused ion beam irradiation in the sample chamber.
  • a gas introduction device for depositing a conductive deposit in the focused ion beam irradiation area by spraying a gas serving as a raw material is attached, and the tip of the pickup is made of a needle made of a conductive material.
  • a power supply is connected between the sample substrates, and the needle and the small piece separated from the sample substrate are brought into close contact with each other, and a conductive substance is deposited so as to connect the needle and the small piece.
  • the output current value of the power source exceeds a certain value, the deposition of the conductive substance is terminated, and the small piece is taken out by utilizing the fact that the needle and the small piece are connected.
  • a mode is proposed in which a second operation of moving between the position and a second position that is out of the field of view for observation processing with a normal focused ion beam is possible.
  • the present invention proposes a mode in which the direction of movement of the tip of the pickup coincides with the horizontal and vertical directions on the observation image.
  • a sample chamber which is a vacuum vessel
  • a sample holder which includes a sample holding portion for holding a sample and a holding portion for holding a plurality of small pieces extracted from the sample
  • a sample stage that can be placed and moved at least in the horizontal direction and can be tilted, an ion source that generates an ion beam, and an ion beam optical system that focuses, deflects, and scans the ion beam generated from the ion source.
  • a focused ion beam column a detector for detecting secondary charged particles generated when the sample substrate is irradiated with the focused ion beam generated from the focused ion beam column, and a focused ion beam from the surface of the sample substrate.
  • a focused ion beam system consisting of a pickup that picks up small pieces separated by using a spa
  • a sample transporter for taking out a sample held in a sample container, placing the sample on the sample holder 13 of the sample holder placed outside the sample chamber, and being attached to the sample chamber.
  • a load lock chamber having a gate valve for opening and closing between the atmosphere side door and the vacuum chamber; and transferring the sample holder from outside the sample chamber to the sample stage of the sample chamber through the load lock chamber.
  • the sample holder transporter Holding the sample holder transporter, taking out the sample held in the sample container by the sample transporter, placing the sample holder in the sample holder of the sample holder placed outside the sample chamber, The sample holder holding the sample is transported to the load lock chamber at atmospheric pressure by the sample holder transporter, and the air lock side door of the load lock chamber is closed.
  • the load lock chamber is evacuated, the degree of vacuum in the ⁇ '-drop chamber is made substantially equal to the degree of vacuum in the sample chamber, the gate valve is opened, and the sample placed in the load lock chamber is opened.
  • the holder is transferred to the sample stage in the sample chamber by the sample holder transporter, and One or a plurality of small pieces are cut out from the sample by irradiating a bundle ion beam, the small pieces are picked up by the pickup, transferred to the small piece holder on the sample holder, and the sample holder is transferred to the sample holder transporter.
  • a focused ion beam application method wherein the sample held in the sample holder on the sample holder by the sample transporter is transferred to the sample container.
  • a device is proposed. BRIEF DESCRIPTION OF THE FIGURES
  • Figure 1 shows an example of processing in the second conventional manufacturing method.
  • Figure 2 shows the focused ion beam column and control power supply.
  • FIG. 3 is a conceptual diagram relating to the tilt axis of the sample stage used in the focused ion beam device of the present invention.
  • FIG. 4 shows a conceptual diagram of the 'pickup' used in the present invention.
  • FIG. 5 shows a processing example in the present invention.
  • FIG. 6 shows an embodiment of the pickup.
  • FIG. 7 shows an embodiment in addition to the pickup.
  • FIG. 8 is an explanatory view of the moving direction of the tip of the pickup.
  • FIG. 9 shows an embodiment of the sample holder.
  • FIG. 10 shows a configuration example of the device according to the present invention.
  • FIG. 2 shows an example of a focused ion beam column used in the present invention.
  • Focused ion beam column mainly consists of ion source section 11 and condenser lens 1 2, consisting of a blanking electrode 13, a movable diaphragm 14, a deflection electrode 15, and an objective lens 16.
  • a blanking electrode 13 a blanking electrode 13
  • a movable diaphragm 14 a deflection electrode 15
  • an objective lens 16 a lens for focusing a beam of light.
  • a liquid metal gallium is generally used as the ion source 11.
  • the liquid metal gallium stored in the reservoir is supplied to the needle-shaped emitter by surface tension.
  • reservoirs and emitters can be overheated by filaments.
  • An electric field is applied to the emitter section by one or more electrodes, and gallium stored in the emitter section is extracted as an ion beam.
  • the emitter is accelerated by this electric field because a high voltage of about +30 kV is applied to the ground potential.
  • FIG. 2 shows an Einzel's-type lens in which a low voltage and a ground potential are connected to three electrodes, but this is only an example, and other evening lenses may be used.
  • the objective lens 16 is arranged at the position closest to the sample, the position can be changed according to the required performance and function.
  • the movable aperture 14 has a plurality of through-holes having different diameters.
  • the aperture control section controls the position of the through-hole, and the used through-hole is switched. By passing the ion beam through each through hole, the amount of the ion beam reaching the sample, that is, the sample current can be changed. In addition, the position of the through hole can be adjusted so that the position matches the center of the ion beam.
  • the blanking electrode 13 can generate a large electric field between the two electrodes.
  • the same potential usually ground potential
  • the ion beam reaches the sample.
  • a large electric field is generated by applying a signal with a large potential difference to each of the blanking electrodes 13,
  • the on-beam is largely deflected, hits a shield such as a movable diaphragm, and the ion beam does not reach the sample.
  • the deflecting electrode 15 is composed of at least two pairs of electrodes facing each other, and the trajectory of the ion beam is two-dimensionally controlled by the electric field generated between the electrodes.
  • the ion source, each electrode, and the movable diaphragm are controlled by an ion source control power supply 18, a capacitor lens control power supply 19, a blanking signal and scanning signal generator 20, an objective lens control power supply 22, and a movable diaphragm control power supply 21. .
  • Each control power supply is controlled by a computer 17 '.
  • signals applied to the blanking electrode and the deflection electrode are generated from the scanning signal generator 20. This makes it possible to determine whether or not to irradiate the sample with the ion beam according to the sample irradiation position.
  • the output signal of the detector is input to the scanning signal generator 20 and processed. Observation of the sample surface by detecting the ion beam irradiation position and secondary charged particles generated by ion beam irradiation at the irradiation position with a detector and storing the output signal as an electric signal together Can be.
  • Figure 3 shows a conceptual diagram of the sample stage of the proposed device.
  • the sample stage 31 is movable in at least two axes, horizontal X and Y, and can tilt the sample surface. Further, it may be movable in the vertical Z-axis.
  • the mechanism for tilting is under the function of driving the horizontal and vertical axes. Therefore, when the sample is tilted, the X and Y axes move parallel to the inclined plane, and Z moves in the normal direction to the inclined plane.
  • the detector detects secondary charged particles (electrons or ions) generated by irradiating the sample with the focused ion beam.
  • the gas introduction device is not shown in detail, a container for storing gas or gas raw material, a nozzle for blowing gas onto the sample surface, and a connection between the container and nozzle
  • the gas is the raw material for the deposition film formation by the beam assisted CVD method.
  • the sample is used in the beam assisted CVD method.
  • it is a molecular gas containing the material of the thin film deposited on the surface
  • the gas blown to the sample surface is adsorbed on the sample surface
  • the molecular gas is decomposed by the kinetic energy, and the decomposed gas components are exhausted to the outside of the sample chamber by the vacuum pump, and the solid components remain as a thin film on the sample surface.
  • the sputter etching is performed, so that the deposition rate of the thin film is higher than the sputter etching rate.
  • Cormorants it is necessary to control the introduction amount of the raw material gas, the irradiation amount of the focused ion beam.
  • a plurality of gas introduction devices may be used, or a gas introduction device a having pipes and valves corresponding to a plurality of gas storage containers may be used so that gases can be properly used according to purposes.
  • the sample chamber and the focused ion beam column are evacuated by a vacuum pump.
  • the sample chamber may be provided with a load lock chamber for taking the sample in and out of the chamber without rubbing.
  • FIG. 4 shows the basic configuration of the pickup of the present invention.
  • the tip 41 of the pickup has three axes: an X axis 42 for moving the tip left and right, a Y axis 43 for moving the tip back and forth, and a Z axis 44 for moving the tip up and down.
  • Stage 45 This stage 45 is located in a vacuum chamber, and its control is performed by an actuator or knob located on the atmospheric side (not shown).
  • the case 46 on which this stage 45 is installed is attached to the sample chamber of the focused ion beam device, but the distance between the case 46 and the sample chamber can be changed by the bellows structure 47.
  • an operating position for picking up the small pieces for TEM observation and a retracting position for escaping from the irradiation area of the focused ion beam can be switched by a pickup or a pneumatic device (not shown).
  • the rod 48 connecting the pickup and the stage for moving the peak is supported by the pod support 49 of the case 46, ensuring position repeatability when returning from the retracted position to the operating position. F) and so on.
  • the case 46 and the sample chamber are connected through a large hole so that the vacuum evacuation in the case 46 can be performed without interruption.
  • the pickup tip 41 is made of a conductive material, an insulating material is used for the fixing part 50 to electrically separate the pickup tip 41.
  • the fixing portion 50 since the fixing portion 50 has a very fine shape at the tip portion 41 of the pickup, it can be easily replaced.
  • the conductive pickup tip 41 is electrically connected to a sample 53 via a power source 51 and a current source 52. When the tip 41 of the pickup contacts the surface of the sample 53, a current flows. By detecting the current with the current detector 52, the contact between the pickup end 41 and the sample 53 can be confirmed.
  • Figure 5 shows an example of rough digging by focused ion beam and sputter etching to separate a small piece for TEM observation from a sample substrate.
  • the cross section of the sample substrate is to be observed by TEM.
  • all sides are subjected to a sputtering etching process so as to surround a desired sectional observation region.
  • the sample stage is tilted, and a sputter etching process is performed to separate the small pieces for TEM observation from the sample substrate obliquely.
  • This rough digging process has a large processing volume to be sputter-etched. Therefore, unmanned driving is performed at night or on holidays.
  • the processing frame is determined so as to leave the desired TEM observation area, and a mark whose position relative to the processing frame is clear is determined. At this time, if there is no appropriate mark, It is manufactured by the processing function of the focused ion beam device. As a result, the position of the mark and the relative position of the mark and the processing frame are stored.
  • unmanned automatic processing starts. The sample stage first moves to the mark position, and confirms the mark position by the pattern recognition function.
  • a processing frame whose position relative to the mark position is clear is arranged, and processing is performed according to a predetermined order.
  • the process of separating the sample substrate and the small piece for TEM observation is the last step of manufacturing each small piece for TEM observation, but may be performed for each small piece, or only the processing for separation may be left at the end . If left at the end, the specimen for TEM observation remains with only the processing to be separated. In this state, processing to tilt and separate the sample stage is performed. In this case, since the sample stage can be tilted only once, the time required for processing can be reduced.
  • the first embodiment has a tweezer structure shown in FIG.
  • the tip of the pickup has two parts, a fixed part 61 and a movable part 62.
  • the fixing part 61 has a structure connected to the pickup body.
  • the movable part 62 is connected to the fixed part 61 via a rotating shaft 63.
  • the movable part 62 is controlled by an actuator 64. By controlling the actuator 64, a small sample can be inserted.
  • the fixing portion 61 is made of a conductive material, and the fixing portion 61 is connected to a power source different from the power source of the actuator 64. The other end of this power supply is connected to the sample
  • the surface of the sample substrate 53 is brought into contact with the tip portion 41 of the pickup at the mark processing position.
  • collision between the sample substrate 53 and the pickup distal end portion 41 is avoided by detecting a current flowing when the sample substrate 53 and the pickup distal end portion 41 are electrically connected to each other. Then, by re-confirming the three-dimensional position of the pickup distal end portion 41, it is possible to more reliably pick up the small sample for TEM observation. In addition, it can be performed automatically without using a focused ion beam observation function.
  • a needle made of an insulating material is used at the tip of the pickup.
  • a focused ion beam is applied to the needle made of an insulating material to cause a chuck.
  • the small pieces for TEM observation have high resistance because they are separated from the sample substrate, and are attracted to the needle by electrostatic force.
  • the sample stage is perpendicular to the needle or tilted at an angle suitable for operation. With the tip of the pickup and the TEM sample piece in contact, move the sample stage in the direction normal to this inclined surface. The sample is taken up. Actually, the position of the TEM sample piece does not change and the sample substrate side is separated.
  • a needle made of a conductive material is used at the tip of the pickup.
  • a conductive film is formed so as to connect the needle and the small piece for TEM observation.
  • both ends of one power supply are connected to the needle and the sample surface.
  • the load resistance of the power supply is reduced, and the output current is increased.
  • the current value exceeds a certain value it indicates that the cross-sectional area of the formed conductive film is sufficient to support a small piece for TEM observation. Therefore, the deposition is terminated.
  • the power supply may be DC or AC, but the optimum conditions are determined in consideration of the impedance between the sample substrate, the TEM observation piece, and the tip of the pickup. If the DC resistance is large, use an AC signal to handle it.
  • the tip of the pickup has a pin set portion 65 made of a shape memory alloy and a heater 66 for changing the temperature of the tweezer portion 65 and a temperature setting of the heater 66.
  • Row Control power supply 67 In the example of FIG. 7A, the pin set section 65 is closed because the control power supply 67 'is in the stopped state.
  • FIG. 7 (b) when the control power supply 67 is in a movable state, the tweezers 65 is set to a predetermined temperature by the heater 66 and is opened.
  • the method of moving the sample stage for picking up the TEM observation sample is the same as in the first and second embodiments.
  • the horizontal movement XY axis of the sample 72 is arranged along the vertical and horizontal directions of the observation image. Therefore, can the movement of the sample 72 be intuitively recognized in the observation image? ing.
  • the horizontal movement XY axis of the pickup tip 71 is different in angle from the horizontal movement axis of the sample 72. So, Pickup Tip 7
  • the observation image is rotated, and the length and width of the observation image are aligned with the horizontal movement axis of the pick-up tip 71. By doing so, the operator can intuitively move the pick-up tip position while watching the observation image.
  • FIG. 9 shows an example of a sample holder used in the present invention.
  • the sample holder 81 includes a sample holding section 83 for holding a sample 82 and a small piece holding section 85 for holding a plurality of small pieces 84.
  • the bottom surface of the sample holder 81 is flat like a semiconductor wafer.
  • the handler can be provided with an adsorption function such as an electrostatic chuck so that it can be automatically transferred.
  • the sample is held on the sample holder and placed on the sample stage, or the wafer set in the wafer cassette is taken out and transported by an e-handler or the like, and transported to the sample stage. It is common to place them on
  • the sample holder shown in Fig. 9 can be handled with a wafer handler for semiconductor wafers by setting it in a dedicated cassette.
  • the sample holding unit 83 is a TEM / sample holder for fixing a TEM sample.
  • an adhesive is prepared in advance on the holding surface.
  • a deposition film using a focused ion beam is held as a substitute for the adhesive.
  • FIG. 10 shows a configuration of a focused ion beam apparatus using the sample holder 81 shown in FIG. Place the cassette 92 on which the wafer 90 is set in the cassette holder 91 of the equipment.
  • the wafer 90 is taken out from the wafer cassette 92 by the wafer handler 93 and set in the sample holder 83 of the sample holder 81 placed on the atmosphere side. ⁇
  • the sample holder 81 set in the wafer 90 is moved to the low pressure Transfer to lock room 95. 'Open the door 96 on the atmosphere side of the lock chamber 95 and evacuate it by the evacuation system (not shown).
  • the gate valve 97 between the load lock chamber 95 and the sample chamber 98 is opened.
  • the sample holder 81 is set on the sample stage 99 by the sample transport system 94, and the gate valve 97 is closed. Subsequently, the small piece 84 is taken out from the wafer 90 by the above-described method and transferred to the small piece holding portion 85 on the sample holder 81. After the work is completed, the gate valve 97 is opened again, the sample holder 81 is moved to the load lock chamber 95 by the sample transfer system 94, and the gate valve 97 is closed. After the load lock 95 is opened to the atmosphere, the air side door 96 is opened, and the sample holder 81 is taken out of the lock chamber by the sample transfer system 94.
  • the wafer 90 set in the sample holder 83 of the sample holder 81 is picked up by the handler 18 and returned to the cassette 92. Subsequently, the small piece transferred to the small piece holding portion 85 on the sample holder 81 is observed and analyzed by an observation-analyzer such as a TEM (1).
  • an observation-analyzer such as a TEM (1).
  • the apparatus and the method according to the present invention it is possible to sequentially take out a plurality of pieces for TEM observation which have been subjected to observation processing and fence processing from a sample in advance. Since the rough digging after deposition for picking up, which is a disadvantage of the conventional method, is eliminated, the ratio of unmanned machining during the process can be increased.
  • the second conventional manufacturing method it is possible to avoid another problem in the second conventional manufacturing method, that is, the problem of consumption of the pickup.
  • the second conventional manufacturing method a small piece is taken out using a deposition as in the third embodiment of the present invention, but the tip of the needle is sputter-etched to separate it. Therefore, there was a problem that the tip of the needle was worn.
  • the methods of the first, second and fourth embodiments of the present invention there is an effect that this problem can be avoided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

An apparatus and method for picking up a piece separated from a sample substrate by sputtering etching by use of a focused ion beam. Conventionally, as a method for picking up a piece separated from a sample substrate, the piece is fixed to a pickup before the piece is completely separated from the sample substrate, and the piece is separated from the sample substrate by performing the remaining processes. Therefore it is hard to automate the rough drilling for separating the piece from the sample substrate, and the entire working process cannot be made efficient. According to the invention, a sample is placed on a sample holder, pieces are separated from the sample by using a focused ion beam, the separated pieces are picked up one by one by a pickup, and they are transferred onto a piece holding section on the sample holder.

Description

'—ム装置および小片試料取り出し方法 技術分野 , · 本発明は、 集束イオンビーム加工装置を用いて半導体集積回路やセラ ミヅクス基板などの試料表面に明スパッタエッチング加工を行って、 試料 表面から小片試料を分離させ、 分離糸さ,せた小片試料を取り出す方法に関 するものである。 背景技術  Technical Field The present invention relates to a focused ion beam processing apparatus, which performs a bright sputter etching process on a sample surface such as a semiconductor integrated circuit or a ceramic substrate, and a small sample from the sample surface. The method relates to a method of separating a separated sample and removing a separated small sample. Background art
集束イオンビーム装置のアプリケ一ションとして、 微細精密スパッタ エッチング機能を用いた透過型電ネ顕微鏡(Transmission Electron Mic roscope:略して TEM)などによる観察や分析に用いる試料片の作製があ る ο  As an application of a focused ion beam device, there is a preparation of a sample piece for observation and analysis by a transmission electron microscope (abbreviated as TEM) using a fine precision sputter etching function.
第一の従来作製方法は、 マイクロスコピー ■ ォプ■ セミコンダクティ ング 'マテリアルズ ' コンファレンズ、 オックスフ才一ド大学 ( 1989年 501'〜506頁 (Microscopy of Semiconducting Material Conferenc e, Oxford, 1989, pp501-506) に開示されている。 この文献では、 ダイ シング . ソーを用いて長さ数 mm、 幅 100から 500 ι のチップを切り出 し、 TEM観察用標準メッシュに貼り付け、 その後、 集束イオンビームの スパッタエッチングにより所望の厚さに加工する。  The first conventional fabrication method is Microscopy of Semiconducting Material Conferenc e, Oxford, 1989, pp. 501-506. In this document, a chip with a length of several mm and a width of 100 to 500 ι is cut out using a dicing saw, attached to a standard mesh for TEM observation, and then focused. It is processed to a desired thickness by ion beam sputter etching.
第一の従来作製方法では、 試料を小さくするためにダイシング . ソ一 を用いるが、機械的な加工のため、幅 100から 500 Aim程度までしか加工 する,ことができなかった。 ところ力《、 TEMによる観察や分析を行うため には、幅を少なくとも 1μικι程度以下にする必要があり、その幅まで集束 イオンビームによって加工しなければならない。 そのため、 試料を作製 するために長い時間が必要であった。 その第一の従来作製方法の欠点を 克服する方法として、 特開平 5- 52721 に開示されている技術がある。 第 二の従来作製方法では、 図 1 に示すように、 少な〈とも 2つの異なる角 度から集束イオンビーム 1 を照射して、 観察目標 2を含む TEM観察用小 片 3の周囲をスパッタエッチングし、 まだ残存部分 5を残すことにより 試料から分離しない状態で、 ピックアップするための針 4を TEM観察用 小片 3に接触させる。 そして、 針 4と TEM観察用小片 3を接続するよう に集束イオンビーム装置のデポジション機能により'薄膜を形成して、 針 4と TEM観察用小片 3を貼り付ける。 続いて、 試料と TEM観察用小片 3 を分離するため、 残存部分 5のスパッタエッチング加工を行う。 これに より、 TEM観察用小片 3を作製するために行う集束イオンビーム 1 によ るスパッタエツチング加工が大幅に短くなつた。 In the first conventional manufacturing method, dicing is used to reduce the size of the sample, but due to mechanical processing, it can only be processed from a width of about 100 to 500 Aim. However, in order to perform observation and analysis by TEM, the width must be at least about 1μικι or less, and focus to that width. It must be processed by an ion beam. Therefore, it took a long time to prepare the sample. As a method for overcoming the drawback of the first conventional manufacturing method, there is a technique disclosed in Japanese Patent Application Laid-Open No. 5-52721. In the second conventional manufacturing method, as shown in Fig. 1, a focused ion beam 1 is irradiated from at least two different angles to sputter-etch around the TEM observation piece 3 including the observation target 2. Then, the needle 4 for picking up is brought into contact with the small piece 3 for TEM observation without separating from the sample by leaving the remaining portion 5. Then, a thin film is formed by a deposition function of the focused ion beam apparatus so that the needle 4 and the TEM observation small piece 3 are connected, and the needle 4 and the TEM observation small piece 3 are attached. Subsequently, the remaining portion 5 is subjected to sputter etching to separate the sample from the small piece 3 for TEM observation. As a result, the sputter etching process using the focused ion beam 1 to be performed to produce the small pieces 3 for TEM observation has been greatly shortened.
半導体集積回路の微細化が進み、 その構造観察などでは、 従来の光学式 顕微鏡から電子走査顕微鏡が用いられるようになり、 さらに、 TEMが甩 いられるようになった。 そのため、 集束イオンピー厶装置を用いた TEM 観察用小片作製の必要性がますます高くなり、 多くのサンプル.を短い時 間で作製する必要が出てきた。 As the miniaturization of semiconductor integrated circuits has progressed, electron scanning microscopes have been used instead of conventional optical microscopes, and TEMs have been used for observing their structures. Therefore, the necessity of producing small pieces for TEM observation using a focused ion beam apparatus has become more and more necessary, and it has become necessary to produce many samples in a short time.
実際の集束イオンビーム装置を用いた TEM観察用小片作製は、 試料基 板から小片を分離するための粗掘り加工と、 小片を更に薄く して所定の 場所を TEMによって観察できるようにする仕上げ加ェに大別することが できる。 粗掘り加工は、 TEM観察箇所から適当に離れた場所をスパッタ エッチング加工するため、 加工精度は余り必要としないが、 スパッタエ ツチング加工で取り除く体積が大きいため、 一般に加工時間が長い。 そ れに対して、 仕上げ加工はスパッタエッチングする体積が小さいため、 粗掘り加工と比較して加工時間が短い。 そ.こで、 加工精度のあまり必要としない粗掘り加工を夜間などの無人 運転により行うことにより、 加工に人のかかわる時間を短縮するための 工夫がなされるようになつてきた。さらに、装置の加工精度向上に伴い、 仕上げ加工も自動で行われるようになった。 The production of small pieces for TEM observation using an actual focused ion beam system involves rough digging to separate the small pieces from the sample substrate, and finishing to make the small pieces even thinner so that a specified location can be observed by TEM. Can be roughly divided into Rough digging does not require much processing precision because it is sputter-etched at a location distant from the TEM observation site, but generally requires a long processing time because the volume removed by sputter-etching is large. On the other hand, the finishing time is shorter than that of rough digging because the volume of sputter etching is small. Therefore, rough digging, which does not require much processing precision, is performed by unmanned operation, such as at night, to devise ways to reduce the time required for human processing. In addition, with the improvement of the processing accuracy of the equipment, finishing processing has also been performed automatically.
ところが、'第二の従来作製方法でば、 TEM観察用小片を試料基板から完 全に分離しない状態で取り上げるための作業を行い、 その後、 分離する ための加工を行うため、 TEM観察用小片にピックアップを接着するとこ ろから人が介在して作.業をする必要があった。 そのため、 小片作製作業 の効率が上がらないという欠点があつた。  However, according to the second conventional manufacturing method, the work for picking up the TEM observation piece without completely separating it from the sample substrate was performed, and then the processing for separation was performed. From the moment the pickups were glued, it was necessary to work with humans. For this reason, there was a disadvantage that the efficiency of the small piece production work did not increase.
そこで、 本発明では、 所定の加工を済ませ、 機械的には試料基板から 既に分離されている TEM観察用小片を取り上げる装置および方法を提供 することを目的とする。' 発明の開示 . 本発明では、 第一の手段として、 真空容器である試料室と、 試料基板 を載置して少なくとも水平方向に移動し、 傾斜することのできる試料ス テ一ジと、 イオンビームを発生するイオン源及び前記イオン源から発生 したイオンビームを集束して偏向走査するイオンビーム光学系からなる 集束イオンビーム鏡筒と、 試料基板に前記集束イオンビーム鏡筒より発 生した集束イオンビームを照射したときに発生する二次荷電粒子を検出. する検出器とからなる集束イオンビーム加工装置を用い、 集束イオンビ —ムによるスパヅタ'リング · エッチング機能による試料からの小片を切 り出す方法において、 試料から切り出す複数の小片の加工位置を決める 第一の工程と、 前記切り出す各小片の周辺を順次スパッタリング. ' エツ チング加工する第二の工程と、 前記試料を載置した試料ステージを傾斜 させ、 前記切り出す各小片の底部を順次スパッタリング ' エツチングす る第三の工程とからなり、 前記切り出す複数の各小片を、 前記試料か,ら 切り離すことを特徴とする小片試料切り出し方法を提案する。 Therefore, an object of the present invention is to provide an apparatus and a method for removing small pieces for TEM observation that have been subjected to predetermined processing and mechanically separated from a sample substrate. 'DISCLOSURE OF THE INVENTION In the present invention, as a first means, a sample chamber which is a vacuum vessel, a sample stage on which a sample substrate is placed and which can move at least in a horizontal direction and can be tilted, A focused ion beam column comprising an ion source for generating a beam, an ion beam optical system for focusing and deflecting and scanning the ion beam generated from the ion source, and focused ions generated from the focused ion beam column on a sample substrate Detects secondary charged particles generated when irradiating a beam. Using a focused ion beam processing device consisting of a detector and a detector that uses a focused ion beam to cut out small pieces from a sample using a sputtering ring etching function In the first step of determining the processing positions of a plurality of small pieces to be cut out from the sample, and sequentially sputtering the periphery of each of the small pieces to be cut out. A second step of performing a cutting process, and inclining the sample stage on which the sample is placed, and sequentially sputtering and etching the bottom of each of the small pieces to be cut out. And a third step of cutting out the plurality of small pieces to be cut out from the sample.
第二の手段として、 真空容器である試料室と、 試料基板を載置して少 なくとも水平方向に移動し、 傾斜することのできる試料ステージと、 ィ 才ンビ ムを発生するイオン源及び前記イオン源から発生したイオンビ —厶を集束して偏向走査するイオンビーム光学系からなる集束イオンビ ーム鏡筒と、 試料基板に前記集束イオンビーム鏡筒より発生した集束ィ ' オンビームを照射したときに発生する二次荷電粒子を検出する検出器と、 試料基板表面から集束イオンビームのスパッタエッチング加工を用いて 分離した小片を取り上げるピックァツプからなる集束イオンビーム装置 を用い、 集束イオンビームによるスパヅ夕リング · エッチング機能によ る試料からの小片を取り出す方法において、 試料から切り出す複数の小 片の加工位置を決める第一の工程と、 前記切り出す各小片の周辺を順次' スパッ夕リング ' エッチング加工する第二の工程と、 前記試料を載置し た試料ステージを傾斜させ、 前記切り出す各小片の底部を順次スパッタ リング■ エッチングする第三の工程と、 前記切り出す各小片を順次前記 ピックアツプ先端位置に前記試料ステージを移動し、 前記ピックアップ , により前記小片を取り出す第四の工程からなり、 前記小片を前記試料か ら取り出すことを特徴とする小片試料取り出し方法を提案する。  As a second means, a sample chamber which is a vacuum vessel, a sample stage on which a sample substrate is placed and which can move at least in a horizontal direction and can be tilted, an ion source for generating a light beam, and A focused ion beam column composed of an ion beam optical system for focusing and deflecting and scanning an ion beam generated from an ion source; and a sample substrate irradiated with a focused ion beam generated from the focused ion beam column. Using a detector that detects the secondary charged particles generated, and a focused ion beam device consisting of a pickup that picks up small pieces separated from the surface of the sample substrate by sputter etching of the focused ion beam In the method of removing small pieces from a sample by the etching function, the processing positions of multiple small pieces cut out from the sample are determined. A second step of sequentially 'sputtering' etching the periphery of each of the small pieces to be cut out, and inclining a sample stage on which the sample is placed, and setting a bottom of each of the small pieces to be cut out. A third step of sequentially sputtering and etching, and a fourth step of sequentially moving the sample stage to the pick-up tip position of each of the small pieces to be cut out and taking out the small pieces by the pickup, and We propose a small sample removal method, which is characterized in that it is removed from the sample.
第三の手段として、 真空容器である試料室と、 試料を試料の保持部と 試料から取り出した複数の小片を保持するための保持部からなる試料ホ ルダに取り付けて載置し、 少なく とも水平方向に移動し、 傾斜すること のできる試料ステージと、 イオンビームを発生するイオン源及び前記ィ オン源から発生したイオンビームを集束して偏向走査するイオンビーム 光学系からなる集束イオンビーム鏡筒と、 試料基板に前記集束イオンビ —ム鏡筒より発生した集束イオンビームを照射したときに発生する二次 荷電粒子を検出する検出器と、 試料基板表面から集束イオンビームのス パヅタエツチング加工 ¾用いて分離した小片を取り上げるピックアップ からなる集束イオンビーム装置を用い、 集束イオンビームによるスパヅ タリング■ エッチング機能による試料からの小片を取り出す方法におい て、 試料から切り出す複数の小片の加工位置を決める第一の工程と、 前 記切り出す各小片の周辺を順次スパッ夕リング . エッチング加工する第 二の工程と、 前記試料を載置した試料ステージを傾斜させ、 前記切り出 す各小片の底部を順次スパッタリング ' エッチングする第三の工程と、 前記切り出す小片の一つを前記試料ステ一ジの操作により前記ピックァ ヅプ先端位置に移重 ijし、 前記ピックアップにより前記切り出す小片の一 つを取り出す第四の工程と、 前記試料ステージを移動して、 前記試料ホ ルダ上の前記小片保持部が前記ピックアップの位置になるようにする第 五の工程と、 前記ピックアップに取り上げられた前記小片を前記試料ホ ルダ上の前記小片保持部に移す第六の工程とからなり、 前記小片を前記 試料から取り出し: 前期試料ホルダ上の前記小片保持部に移すことを特 徴とする小片試料取り出し方法を提案する。 As a third means, the sample chamber is mounted on a sample holder consisting of a vacuum chamber and a sample holder consisting of a sample holder and a holder for holding a plurality of small pieces taken out of the sample. A sample stage that can move and tilt in the direction, an ion source that generates an ion beam, and a focused ion beam column that includes an ion beam that focuses and deflects and scans the ion beam generated from the ion source. The secondary generated when the sample substrate is irradiated with the focused ion beam generated from the focused ion beam column Using a focused ion beam device consisting of a detector that detects charged particles and a sputter etching process of a focused ion beam from the surface of the sample substrate that picks up small pieces separated by using a focused ion beam, sputtering using a focused ion beam. In the method of extracting small pieces of the above, a first step of determining processing positions of a plurality of small pieces to be cut out of the sample, a second step of sequentially performing a sputtering process around each of the small pieces to be cut out, and an etching process, A third step of inclining the mounted sample stage and sequentially sputtering and etching the bottom of each of the small pieces to be cut out, and the tip end position of the pickup by operating one of the small pieces to be cut out by operating the sample stage. Ij, and take out one of the small pieces to be cut out by the pickup. A fourth step of moving the sample stage so that the small piece holder on the sample holder is at the position of the pickup; and a fifth step of moving the small piece picked up by the pickup to the sample. A sixth step of transferring the small piece from the sample to the small-piece holding section on the holder, wherein the small-piece sample removing method is characterized in that the small piece is transferred to the small-piece holding section on the sample holder. .
また、本発明では装置の第一の形態として、真空容器である試料室と、 試料を試料の保持部と試料から取り出した複数の小片を保持するための 保持部からなる試料ホルダに取り付けて載置し、 少なくとも水平方向に 移動し、 傾斜することのできる試料ステージと、 イオンビームを発生す るィオン源及び前記イオン源から発生したイオンビームを集束して偏向 走査するイオンビーム光学系からなる集束イオンビーム鏡筒と、 試料基 板に俞記集束イオンビーム鏡筒より発生した集束イオンビームを照射し たときに発生する二次荷電粒子を検出する検出器と、 試料基板表面から 集束イオンビームのスパッタエッチング加工を用いて分離した小片を取 り上げるピックアップからなる集束イオンビーム装置において、 前記ピ ヅクアツプの先^が二つの爪からなり、 これらの爪が動いて前記小片を 挟むことにより、 前記小片を取り上げることを特徴とする集束イオンビ ーム加工装置を提案する。 In the present invention, as a first mode of the apparatus, a sample chamber which is a vacuum vessel and a sample holder including a sample holding portion for holding a sample and a plurality of small pieces taken out from the sample are attached and mounted. A sample stage that can be placed and moved at least in a horizontal direction and can be tilted, a ion source that generates an ion beam, and an ion beam optical system that focuses, deflects and scans the ion beam generated from the ion source An ion beam column, a detector for detecting secondary charged particles generated when the sample substrate is irradiated with the focused ion beam generated from the focused ion beam column, and a detector for detecting the focused ion beam from the surface of the sample substrate. In a focused ion beam apparatus comprising a pickup for picking up small pieces separated by sputter etching, The present invention proposes a focused ion beam processing apparatus characterized in that the tip of the cup is composed of two claws, and these claws move to pick up the small piece by sandwiching the small piece.
第一の装置のピックアップ先端部第一の形態として、 真空容器である 試料室と、 試料を試料の保持部と試料から取り出した複数の小片を保持 するための保持部からなる試料ホルダに取り付けて載置し、 少なく とも 水平方向に移動し、 傾斜することのできる試料ステージと、 イオンビー ムを発生するィ才ン源及び前記ィォン源から発生したイオンビームを集 束して偏向走査するイオンビーム光学系からなる集束イオンビー厶鏡筒 と、 試料基板に前記集束イオンビーム鏡筒より発生した集束イオンビー 厶を照射したときに発生する二次荷電粒子を検出する検出器と、 試料基 板表面から集束イオンビームのスパヅタエッチング加工を用いて分離し た小片を取り上げるピックアツプからなる集束イオンビーム装置におい て、 前記ピヅ ァヅプの先端が二つの爪からなり、 これらの爪が動いて 前記小片を挟むことにより、 前記小片を取り上げることを特徴とする集 束イオンビーム加工装置を提案する。  As the first form of the pickup tip of the first device, the pickup device is attached to a sample chamber, which is a vacuum chamber, and a sample holder including a sample holding portion and a holding portion for holding a plurality of small pieces extracted from the sample. A sample stage that can be mounted and at least horizontally moved and tilted, an ion source that generates an ion beam, and an ion beam optic that focuses and scans the ion beam generated from the ion source. A focused ion beam column made of a system, a detector for detecting secondary charged particles generated when the sample substrate is irradiated with the focused ion beam generated from the focused ion beam column, and a focused ion from the surface of the sample substrate. In a focused ion beam apparatus including a pick-up for picking up small pieces separated by a beam sputtering process, The tip of the flop is composed of two claws, by sandwiching the piece is moving these claws proposes collecting beam ion beam processing apparatus characterized by taking up the pieces.
また、 ピヅクアップ先端部爪の第一の形態として、 ピヅクアップ先端 の二つになっている爪は、 一方が可動爪であり、 もう一方の固定爪と回 転軸で接続され、 前記可動爪は前記回転軸を中心に回転方向に動き、 前 記可動爪は前記固定爪との間にある圧電ァクチユエ一タによって制御さ れる形態を提案する。  Further, as a first form of the pick-up tip claw, two of the pick-up tips are movable claws, one of which is a movable claw and is connected to the other fixed claw by a rotating shaft. The present invention proposes a mode in which the movable claw moves in a rotational direction about a rotation axis, and the movable claw is controlled by a piezoelectric actuator provided between the movable claw and the fixed claw.
ピックアツプ先端部爪の -第二の形態として、 材質が形状記憶合金であ り、 前記爪の形状記憶合金部分の温度制御をするヒータを持ち、 前記ヒ ータによる温度制御で前記爪が開閉される形態を提案する。  As a second mode of the pick-up tip claw, the material is a shape memory alloy, and a heater for controlling the temperature of the shape memory alloy portion of the claw is provided, and the claw is opened and closed by the temperature control by the heater. Is proposed.
ピックアツプ先端部爪の第三の形態として、爪は導電物でできており、 前記爪と前記試嵙ホルダに保持されている前記試料の間に電源を接続し、 前記爪と前記試料が接触したときに流れる電流を検出し、 前記爪先端と 前記試料との衝突を回避する形態を提案する。 また、 第一、 第二の形態 と、 第.三の形態を組合せても良い。 As a third form of the pick-up tip nail, the nail is made of a conductive material, and a power source is connected between the nail and the sample held in the test holder, An embodiment is proposed in which a current flowing when the nail and the sample come into contact is detected to avoid collision between the tip of the nail and the sample. Further, the first and second embodiments may be combined with the third embodiment.
本発明では装置の第二の形態として、 真空容器である試料室と、 試料 を試料の保持部と試料から取り出した複数の小片を保持するための保持 部'からなる試料ホルダに取り付けて載置し、 少なくとも水平方向に移動 . し、 傾斜することのできる試料ステージと、 イオンビームを発生するィ 才ン源及び前記イオン源から発生したイオンビームを集束して偏向走査 するイオンビーム光学系からなる集束イオンビーム鏡筒と、 試料基板に 前記集束イオンビーム鏡筒より発生した集束イオンビームを照射したと .きに発生する二次荷電粒子を検出する検出器と、 試料基板表面から集束 イオンビ一厶のスパヅタエツチング加工を用いて分離した小片を取り上 げるピヅクアツプからなる集束イオンビーム装置において、 前記ピック · ァップの先端が針状になっており、 前記針状のピックアツプ先端に前記 小片を付着させることにより、 前記小片を取り上げることを特徴とする 集束イオンビーム加工装置を,提案する。  In the present invention, as a second embodiment of the apparatus, a sample chamber, which is a vacuum vessel, and a sample holder comprising a sample holding section and a holding section ′ for holding a plurality of small pieces taken out of the sample, are mounted. A sample stage capable of moving and tilting at least in a horizontal direction; a source for generating an ion beam; and an ion beam optical system for converging and scanning the ion beam generated from the ion source. A focused ion beam column, a detector for detecting secondary charged particles generated when the sample substrate is irradiated with the focused ion beam generated from the focused ion beam column, and a focused ion beam from the surface of the sample substrate. In a focused ion beam apparatus comprising a pickup for picking up small pieces separated by using a sputtering process, the tip of the pick-up Has a needle shape, and picks up the small piece by attaching the small piece to the tip of the needle-shaped pick-up.
第二の装置のピックアップ先端部の第一の形態として、 先端が絶縁物 ' による針になっており、 針の先端が帯電することによる静電気で前記小 片を吸着して取り上げる形態を提案する。 .  As a first form of the pickup tip of the second device, a tip is proposed in which the tip is a needle made of an insulator, and the small piece is attracted and picked up by static electricity generated by charging the tip of the needle. .
このとき、 先端部を帯電させる第一の手段として、 別の絶縁物にこす り付けて帯電させる手段を提案する^ ' 先端部を帯電させる第二の手段として、 集束イオンビームを照射する ことにより、 前記針先端を帯電させる手段を提案する。  At this time, as a first means for charging the tip, we propose a means for rubbing against another insulator to charge ^ 'As a second means for charging the tip, by irradiating a focused ion beam Means for charging the needle tip is proposed.
先端部を帯電させる第三の手段として、 前記試料室に電子ビーム照射 装置が取付けられており、 前記電子ビーム照射装置の電子ビームを前記 .針先端に照射することにより、前記針先端を帯電させる手段を提案する。 本発明では装置の第三の形態として、 真空容器である試料室と、 試料 を試料の保持部と試料から取り出した複数の小片を保持するための保持 部からなる試料ホルダに取り付けて載置し、 少なくとも水平方向に移動 し、 傾斜することのできる試料ステージと、 イオンビームを発生するィ オン源及び前記イオン源から発生したイオンビームを集束して偏向走査 するイオンビーム光学系からなる集束イオンビーム鏡筒と、 試料基板に 前記集束イオンビーム鏡筒より発生した集束イオンビームを照射し.たと きに発生する二次荷電粒子を検出する検出器と、 試料基板表面から集束 イオンビームのスパッタエヅチング加工を用いて分離した小片を取り上 げるピックアップと、 前記試料室に、 集束イオンビーム照射と同時に試 料表面に堆積物の原料となるガスを吹付けることにより集束イオンビー 厶照射領域に導電性堆積物を堆積させるガス導入装置を取付けられてお り、 前記ピックアップ先端は導電物による針でできていて、 前記針と前 記試料基板の間に電源が接続されており、 前記針と前記試料基板から切 り離された小片をごく近い位置に瞵接させ、 前記針と前記小片を接続す るように導電性物質を堆積し、 前記電源の出力電流値が一定の値を超え たところで、 導電性物質の堆積を終了し、 前記針と前記小片が接続され たこと利用して前記小片を取り出すことを特徴とする集束イオンビーム 加工装置を提案する。 : As a third means for charging the tip, an electron beam irradiation device is attached to the sample chamber, and the tip of the needle is charged by irradiating the tip of the needle with the electron beam of the electron beam irradiation device. Suggest means. According to the third embodiment of the present invention, as a third embodiment of the apparatus, a sample chamber, which is a vacuum vessel, and a sample holder, which is provided with a sample holding portion and a holding portion for holding a plurality of small pieces taken out of the sample, are mounted and placed. A sample stage that can move and tilt at least in a horizontal direction, an ion source that generates an ion beam, and a focused ion beam that includes an ion beam optical system that focuses and deflects and scans the ion beam generated from the ion source A column, a sample substrate, and a detector for irradiating the focused ion beam generated from the focused ion beam column with a secondary charged particle generated at the time of the irradiation; and a sputter beam of the focused ion beam from the sample substrate surface. A pick-up for picking up small pieces separated by using a chucking process, and a deposit on the sample surface at the same time as the focused ion beam irradiation in the sample chamber. A gas introduction device for depositing a conductive deposit in the focused ion beam irradiation area by spraying a gas serving as a raw material is attached, and the tip of the pickup is made of a needle made of a conductive material. A power supply is connected between the sample substrates, and the needle and the small piece separated from the sample substrate are brought into close contact with each other, and a conductive substance is deposited so as to connect the needle and the small piece. When the output current value of the power source exceeds a certain value, the deposition of the conductive substance is terminated, and the small piece is taken out by utilizing the fact that the needle and the small piece are connected. We propose a beam processing device. :
また、 ピックアップの形態として、 その先端を大気側の操作により少 なくとも設定分解能 ΐ Αί ίϊΐ以下の三次元での微動を行う第一の操作と、小 片取り出しの.ための操作を行う第一の位置と、 通常の集束イオンビーム による観察加工のための視野に入らない第二の位置の間を移動する第二 の操作が可能である形態を提案する。  In addition, as the form of the pickup, the first operation of performing the fine movement in three dimensions with at least the set resolution ίϊΐ Αί ίϊΐ or less by operating the atmosphere at the tip of the pickup, and the first operation of removing the small piece. A mode is proposed in which a second operation of moving between the position and a second position that is out of the field of view for observation processing with a normal focused ion beam is possible.
さらに、 ピックアップの操作を容易にするため、 ピックアップ先端を 移動させる操作を行う際、 前記集束ィオンビーム照射による観察像が回 転され、 前記ピックアップ先端の移動方向が前記観察像上での水平およ び垂直方向に一致する形態を提案する。 Furthermore, in order to facilitate the operation of the pickup, when performing the operation of moving the tip of the pickup, the observation image by the focused ion beam irradiation is rotated. The present invention proposes a mode in which the direction of movement of the tip of the pickup coincides with the horizontal and vertical directions on the observation image.
また、本発明では装置の第四の形態として、真空容器である試料室と、 試料を試料の保持部と試料から取り出した複数の小片を保持するための 保持部からなる試料ホルダに取り付けて載置し、 少なくとも水平方向に 移動し、 傾斜することのできる試料ステージと、 イオンビームを発生す るィ才ン源及び前記イオン源から発生したイオンビームを集束して偏向 走査するイオンビーム光学系からなる集束イオンビーム鏡筒と、 試料基 板に前記集束イオンビーム鏡筒より発生した集束イオンビームを照射し たときに発生する二次荷電粒子を検出する検出器と、 試料基板表面から 集束イオンビームのスパヅ夕エッチング加工を用いて分離した小片を取 り上げるピックアップからなる集束イオンビーム装置において、 試料を 保持する試料容器と、 試料容器に保持されている試料を取り出し、 前記 試料室の外に置かれている前記試料ホルダの前記試料保持き 13に前記試料 を載置する試料搬送機と、 前記試料室に取り付けられ、 大気側扉と前記 真空室との間を開閉するゲ一 卜バルブを持つロードロック室と、 前記試 料ホルダを前記試料室の外から前記ロー ドロック室を通して前期試料室 の前記試料ステージに移送する試料ホルダ搬送機を持ち、 前記試料容器 に保持されている前記試料を、 前記試料搬送機にて取り出し、 前記試料 室の外に置かれている前記試料ホルダの前記試料保持部に設置し、 前記 試料を保持している前記試料ホルダを、 大気圧になっている前記ロード ロック室に、 前記試料ホルダ搬送機にて搬送し、 前記ロー ドロック室の 前期大気側扉を閉じ、 前記ロー ドロック室を真空排気し、 前記□'一ドロ ック室の真空度が前記試料室の真空度と同程度にし、 前記ゲ—卜バルブ を開き、 前記ロードロック室に設置されている前記試料ホルダを前記試 料ホルダ搬送機にて前記試料室の前記試料ステージ上に移設し、 前記集 束イオンビームの照射により前記試料から一つまたは複数の小片を切り 出し、 前記ピックアップにて前記小片を取り上げ、 前記試料ホルダ上の 前記小片保持部に移設し、 前記試料ホルダを前記試料ホルダ搬送機によ り前記試料ホルダを前記口—ドロック室に移設し、 前記ゲ一卜バルブを 閉じ、 前記ロー ドロック室を大気開放し、 前記大気側扉を開放し、 前記 試料ホルダ搬送機により前記試料ホルダを前記試料室の外に出し、 前記 試料搬送機にて前記試料ホルダ上の前記試料保持部に保持さ.れている前 記試料を前記試料容器に移設することを特徴とする集束イオンビーム加 ェ装置を提案する。 図面の簡単な説明 In the present invention, as a fourth embodiment of the apparatus, a sample chamber, which is a vacuum vessel, and a sample holder, which includes a sample holding portion for holding a sample and a holding portion for holding a plurality of small pieces extracted from the sample, are mounted. A sample stage that can be placed and moved at least in the horizontal direction and can be tilted, an ion source that generates an ion beam, and an ion beam optical system that focuses, deflects, and scans the ion beam generated from the ion source. A focused ion beam column, a detector for detecting secondary charged particles generated when the sample substrate is irradiated with the focused ion beam generated from the focused ion beam column, and a focused ion beam from the surface of the sample substrate. In a focused ion beam system consisting of a pickup that picks up small pieces separated by using a spa A sample transporter for taking out a sample held in a sample container, placing the sample on the sample holder 13 of the sample holder placed outside the sample chamber, and being attached to the sample chamber. A load lock chamber having a gate valve for opening and closing between the atmosphere side door and the vacuum chamber; and transferring the sample holder from outside the sample chamber to the sample stage of the sample chamber through the load lock chamber. Holding the sample holder transporter, taking out the sample held in the sample container by the sample transporter, placing the sample holder in the sample holder of the sample holder placed outside the sample chamber, The sample holder holding the sample is transported to the load lock chamber at atmospheric pressure by the sample holder transporter, and the air lock side door of the load lock chamber is closed. The load lock chamber is evacuated, the degree of vacuum in the □ '-drop chamber is made substantially equal to the degree of vacuum in the sample chamber, the gate valve is opened, and the sample placed in the load lock chamber is opened. The holder is transferred to the sample stage in the sample chamber by the sample holder transporter, and One or a plurality of small pieces are cut out from the sample by irradiating a bundle ion beam, the small pieces are picked up by the pickup, transferred to the small piece holder on the sample holder, and the sample holder is transferred to the sample holder transporter. Moving the sample holder into the mouth lock chamber, closing the gate valve, opening the load lock chamber to the atmosphere, opening the atmosphere side door, and moving the sample holder by the sample holder transporter. A focused ion beam application method, wherein the sample held in the sample holder on the sample holder by the sample transporter is transferred to the sample container. A device is proposed. BRIEF DESCRIPTION OF THE FIGURES
図 1 は第二の従来製作方法における加工例を示す。  Figure 1 shows an example of processing in the second conventional manufacturing method.
図 2は集束イオンビーム鏡筒と制御電源を示す。  Figure 2 shows the focused ion beam column and control power supply.
図 3は本発明の集束イオンビーム装置に用いる試料ステージの傾斜軸 に関する概念図を示す。  FIG. 3 is a conceptual diagram relating to the tilt axis of the sample stage used in the focused ion beam device of the present invention.
図 4は本発明に用いる'ピックアップの概念図を示す。  FIG. 4 shows a conceptual diagram of the 'pickup' used in the present invention.
図 5は本発明における加工例を示す。  FIG. 5 shows a processing example in the present invention.
図 6はピックアップの実施例を示す。  FIG. 6 shows an embodiment of the pickup.
図 7はピックアップの別に実施例を示す。  FIG. 7 shows an embodiment in addition to the pickup.
図 8はピックアップ先端部の移動方向の説明図である。  FIG. 8 is an explanatory view of the moving direction of the tip of the pickup.
図 9は試料ホルダの実施例を示す。  FIG. 9 shows an embodiment of the sample holder.
図 1 0は'本発明による装置の構成例である。 発明を実施するための最良の形態  FIG. 10 shows a configuration example of the device according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
図 2に本発明に用いる集束イオンビーム鏡筒の一例を示す。  FIG. 2 shows an example of a focused ion beam column used in the present invention.
集束イオンビーム鏡筒は、 主に、 イオン源部 11、 コンデンサレンズ 1 2、 ブランキング電極 13、 可動絞り 14、 偏向電極 15、 対物レンズ 16か ら構成される。 その他、 図示していないが、 光軸補正電極や非点補正電 極などがある。 Focused ion beam column mainly consists of ion source section 11 and condenser lens 1 2, consisting of a blanking electrode 13, a movable diaphragm 14, a deflection electrode 15, and an objective lens 16. In addition, although not shown, there are an optical axis correction electrode and an astigmatism correction electrode.
イオン源 1 1 としては、 液体金属ガリゥ厶を用いるのが一般的である。 リザ—バに溜められた液体金属ガリウムは表面張力で針状のェミッタに 供給される。 また、 リザ一バ、 ェミッタはフィラメントにより過熱でき るようになっている。 エミヅ夕部分には一つまたは複数の電極により電 界がかけられ、 ェミッタ部分に溜まっているガリウムがイオンビームと して引き出される。 ェミッタは、 グランド電位に対して一般に +30kV程 度の高電圧が印加されているため、 この電界によって加速される。  As the ion source 11, a liquid metal gallium is generally used. The liquid metal gallium stored in the reservoir is supplied to the needle-shaped emitter by surface tension. In addition, reservoirs and emitters can be overheated by filaments. An electric field is applied to the emitter section by one or more electrodes, and gallium stored in the emitter section is extracted as an ion beam. The emitter is accelerated by this electric field because a high voltage of about +30 kV is applied to the ground potential.
イオンビームは、 コンデンサレンズ 12によって集束され、対物レンズ 16によって試料表面に焦点が合わせられる。 図 2では、 3枚の電極に髙 電圧とグランド電位を接続するアインツエ'ルン型レンズを示しているが、 これは一例であり、 その他の夕イブのレンズでも良い。 また、 対物レン ズ 16を試料に最も近い位置に配置しているが、 その位置も求める性能、 機能に応じて変更することができる。  The ion beam is focused by the condenser lens 12 and focused on the sample surface by the objective lens 16. FIG. 2 shows an Einzel's-type lens in which a low voltage and a ground potential are connected to three electrodes, but this is only an example, and other evening lenses may be used. Although the objective lens 16 is arranged at the position closest to the sample, the position can be changed according to the required performance and function.
可動絞り 14には、 複数の直径の異なる貫通孔があり、 絞り制御部によ り貫通孔の位置を制御し、 使用する貫通孔が切り替えられる。 イオンビ —ムを各々の貫通孔を通過させることにより、 試料に到達するイオンビ ー厶量すなわち試料電流を変更することができる。 また、 貫通孔の位置 がイオンビームの中心と整合するように、 その位置を調整することがで きる。  The movable aperture 14 has a plurality of through-holes having different diameters. The aperture control section controls the position of the through-hole, and the used through-hole is switched. By passing the ion beam through each through hole, the amount of the ion beam reaching the sample, that is, the sample current can be changed. In addition, the position of the through hole can be adjusted so that the position matches the center of the ion beam.
プランキング電極 13は、 2枚の電極間に大きな電界を発生できるよう になっている。 各電極に同電位、 通常はグランド電位、 が印加されてい ると、 イオンビームは試料に到達す §。 しかし、 ブランキング電極 13 の各電極に電位差の大きな信号を印加して大きな電界が発生すると、 ィ オンビームは大きく偏向され、 可動絞りなどの遮蔽物に当たり、 イオン ビームは試料に到達しない。 The blanking electrode 13 can generate a large electric field between the two electrodes. When the same potential, usually ground potential, is applied to each electrode, the ion beam reaches the sample. However, when a large electric field is generated by applying a signal with a large potential difference to each of the blanking electrodes 13, The on-beam is largely deflected, hits a shield such as a movable diaphragm, and the ion beam does not reach the sample.
• 偏向電極 15は少なくとも、 対向する 1つの電極からなる 2組の電極か ら構成され、 各電極間に発生する電界により、 イオンビームの軌道は二 次元的に制御される。  • The deflecting electrode 15 is composed of at least two pairs of electrodes facing each other, and the trajectory of the ion beam is two-dimensionally controlled by the electric field generated between the electrodes.
イオン源、 各電極、 及び可動絞りなどはイオン源制御電源 18、 コンデ ンサレンズ制御電源 19、ブランキング信号及び走査信号発生部 20、対物 レンズ制御電源 22、及び可動絞り制御電源 21によって制御されている。 各制御電源はコンピュータ 17によって制御されている'。また、ブランキ ング電極と偏向電極に印加される信号は、走査信号発生部 20から発生す る。 これにより、 イオンビームの試料照射位置により、 ビームを試料に 照射するかどうかを決めることができる。 また、 図示されていないが、 検出器の出力信号は走査信号発生部 20に入力され処理される。イオンビ —ムの照射位置と、 その照射位置でイオンビーム照射によつて発生した 二次荷電粒子を検出器で検出し、 電気信号とした出力信号を合わせて記 憶することにより、 試料表面の観察をすることができる。  The ion source, each electrode, and the movable diaphragm are controlled by an ion source control power supply 18, a capacitor lens control power supply 19, a blanking signal and scanning signal generator 20, an objective lens control power supply 22, and a movable diaphragm control power supply 21. . Each control power supply is controlled by a computer 17 '. Further, signals applied to the blanking electrode and the deflection electrode are generated from the scanning signal generator 20. This makes it possible to determine whether or not to irradiate the sample with the ion beam according to the sample irradiation position. Although not shown, the output signal of the detector is input to the scanning signal generator 20 and processed. Observation of the sample surface by detecting the ion beam irradiation position and secondary charged particles generated by ion beam irradiation at the irradiation position with a detector and storing the output signal as an electric signal together Can be.
図 3に本提案装置の試料ステージの概念図を示す。 試料ステージ 31 は、 少なくとも水平 X、 Yの 2軸に移動可能であり、 さらに、 試料表面を 傾斜させることができる。また、垂直方向 Z軸に移動可能にしても良い。 このとき、 傾斜させるための機構は、 水平および垂直の軸を駆動する機 能の下にある。 そのため、 試料を傾斜したときに、 X、 Yの二軸は傾斜面 に対して平行に移動し、 Zは傾斜面に対して法線方向に移動する。  Figure 3 shows a conceptual diagram of the sample stage of the proposed device. The sample stage 31 is movable in at least two axes, horizontal X and Y, and can tilt the sample surface. Further, it may be movable in the vertical Z-axis. At this time, the mechanism for tilting is under the function of driving the horizontal and vertical axes. Therefore, when the sample is tilted, the X and Y axes move parallel to the inclined plane, and Z moves in the normal direction to the inclined plane.
検出器は集束イオンビームが試料に照射されたことにより発生する二 , 次荷電粒子 (電子またはイオン.) を検出する。  The detector detects secondary charged particles (electrons or ions) generated by irradiating the sample with the focused ion beam.
ガス導入装置は、 詳細に図示していないが、 ガスまたはガスの原料を 貯える容器、 ガスを試料表面に吹き付けるノズル、 容器とノズルを接続 するパイプ、 そしてパイプの途中 (こあってパイプの経路を開閉するバル ブからなる。 ガスは、 ビームアシステッ ド CVD法によるデポジション膜 形成の原料である。 ビームアシステツ ド CVD法では、 試料表面にデポジ ションされる薄膜の材料を含む分子ガスであるのが一般的である。 試料 表面に吹き付けられたガスは試料表面に吸着する。 この状態で集束ィ才 ンビームが照射されると、 その運動エネルギーにより分子ガスが分解す る。 このとき、 分解した気体成分は真空ポンプにより試料室外に排気さ れ、 固体成分は薄膜となって試料表面に残る。 このとき、 集束イオンビ 一厶はデポジションと同時にスパヅ夕エッチングも行っている。従って、 デポジションによる薄膜形成速度がスパッタエッチングの加工速度より 高くなるよう、 原料ガスの導入量と、 集束イオンビームの照射量を制御 する必要がある。 Although the gas introduction device is not shown in detail, a container for storing gas or gas raw material, a nozzle for blowing gas onto the sample surface, and a connection between the container and nozzle The gas is the raw material for the deposition film formation by the beam assisted CVD method. The sample is used in the beam assisted CVD method. Generally, it is a molecular gas containing the material of the thin film deposited on the surface The gas blown to the sample surface is adsorbed on the sample surface In this state, when the focused beam is irradiated, At this time, the molecular gas is decomposed by the kinetic energy, and the decomposed gas components are exhausted to the outside of the sample chamber by the vacuum pump, and the solid components remain as a thin film on the sample surface. At the same time, the sputter etching is performed, so that the deposition rate of the thin film is higher than the sputter etching rate. Cormorants, it is necessary to control the introduction amount of the raw material gas, the irradiation amount of the focused ion beam.
' なお、 目的に応じたガスを使い分けられるよう、 複数のガス導入装置 を用いたり、 複数のガス貯蔵容器と対応したパイプ及びバルブを持つガ ス導入装 aを用いても良い。  It is to be noted that a plurality of gas introduction devices may be used, or a gas introduction device a having pipes and valves corresponding to a plurality of gas storage containers may be used so that gases can be properly used according to purposes.
試料室及び集束イオンビーム鏡筒は真空ポンプによって真空排気され ている。 また、 図示していないが、 試料室を大気 (こすることなく試料の 出し入れを行うためのロードロック室を設けることもできる。  The sample chamber and the focused ion beam column are evacuated by a vacuum pump. Although not shown, the sample chamber may be provided with a load lock chamber for taking the sample in and out of the chamber without rubbing.
本発明のピックアップの基本的な構成を、 図 4に示す。 ピックアップ の先端部分 41 は、 先端部分を左右に移動させるための X軸 42と、 先端 部分を前後に移動させるための Y軸 43と、先端部分を上下に移動させる ための Z軸 44の三軸からなるステージ 45につながっている。 このステ ージ 45は真空室内にあり、その制御は図示されていない大気側にあるァ クチユエ一夕ないしつまみによって行われる。このステージ 45を設置す るケース 46は集束イオンビーム装置の試料室に取付けられるが、ケース 46と試料室の間には蛇腹構造 47によってその距離が変更可能になって いて、 図示されていないレバ一ないし圧空装置により、 ピヅクアップに よって TEM観察用小片を取り上げる操作位置と集束イオンビームの照射 領域から逃げる待避位置を切り替えることができる。 ピックアップとピ ヅクァ 'ップを移動させるステージとの間を接続するロッ ド 48はケース 4 6の□ッ ド支持部 49で支持され、待避位置から操作位置に戻したときの 位置再現性が確保され f)ようになつている。また、ケース 46内の真空排 気が滞りなく行われるよう、ケース 46と試料室は大きな穴を介して接続 している。ロヅ ド 48の先端にピヅクアップ先端部 41 を固定部 50にて固 定する。ピックアップ先端部 41 が導電性のものを使用する場合は、固定. 部 50に絶縁性物質を用い、ピックァップ先端部 41を電気的に分離する。 また、 固定部 50はピックァップ先端部 41はごく微細な形状をしている ことから、 簡単に交換できるようになつている。 導電性のピックアップ 先端部 41 は電源 51 と電流椽出器 52を介して試料 53に電気的に接続さ れている。 ピックアップ先端部 41 が試料 53の表面に接触すると、 電流 が流れる。電流を電流検出器 52により検出することで、 ピックアップ先 端部 41 と試料 53の接触を確認することができる。 FIG. 4 shows the basic configuration of the pickup of the present invention. The tip 41 of the pickup has three axes: an X axis 42 for moving the tip left and right, a Y axis 43 for moving the tip back and forth, and a Z axis 44 for moving the tip up and down. Stage 45. This stage 45 is located in a vacuum chamber, and its control is performed by an actuator or knob located on the atmospheric side (not shown). The case 46 on which this stage 45 is installed is attached to the sample chamber of the focused ion beam device, but the distance between the case 46 and the sample chamber can be changed by the bellows structure 47. In addition, an operating position for picking up the small pieces for TEM observation and a retracting position for escaping from the irradiation area of the focused ion beam can be switched by a pickup or a pneumatic device (not shown). The rod 48 connecting the pickup and the stage for moving the peak is supported by the pod support 49 of the case 46, ensuring position repeatability when returning from the retracted position to the operating position. F) and so on. The case 46 and the sample chamber are connected through a large hole so that the vacuum evacuation in the case 46 can be performed without interruption. Fix the pickup tip 41 to the tip of the load 48 with the fixing part 50. When the pickup tip 41 is made of a conductive material, an insulating material is used for the fixing part 50 to electrically separate the pickup tip 41. In addition, since the fixing portion 50 has a very fine shape at the tip portion 41 of the pickup, it can be easily replaced. The conductive pickup tip 41 is electrically connected to a sample 53 via a power source 51 and a current source 52. When the tip 41 of the pickup contacts the surface of the sample 53, a current flows. By detecting the current with the current detector 52, the contact between the pickup end 41 and the sample 53 can be confirmed.
図 5に試料基板から TEM観察用小片を分離するための集束イオンビー 厶 · スパヅタエッチングによる粗掘り加工の例を示す。 図 5の例では、 ' 試料基板の断面を TEMによって観察しようとしている。 そのため、 所望 の断两観察領域を囲むように四方をスパッ夕エッチング加工する。 そし て、 最後に試料ステージを傾斜し、 斜めから TEM観察用小片を試料基板 から分離するためのスパヅ夕エツチング加工を行う。 '  Figure 5 shows an example of rough digging by focused ion beam and sputter etching to separate a small piece for TEM observation from a sample substrate. In the example shown in Fig. 5, the cross section of the sample substrate is to be observed by TEM. For this reason, all sides are subjected to a sputtering etching process so as to surround a desired sectional observation region. Finally, the sample stage is tilted, and a sputter etching process is performed to separate the small pieces for TEM observation from the sample substrate obliquely. '
この粗掘り加工は、 スパッタエッチングする被加工体積が大きい。 そ こで、 夜間や休日などを利用して無人運転によって行う。 無人運転は、 所望の TEM観察領域を残すよう加工枠を決定し、 加工枠との相対的な位 置が明らかなマークを決める。 このとき、 適当なマークがない場合は、 集束イオンビーム装置の加工機能により作製する。 これにより、 マーク の位置とマークと加工枠の相対的な位置が記憶される。 複数の TEM観察 用小片を作製する場合は、 各々について同様の操作前処理として行う。 続いて、 無人自動加工が始まる。 試料ステージは、 まずマーク位置に栘 動し、 パターン認識機能により、 マーク位置を確認する。 続いて、 マー ク位置と相対的な位置が明らかな加工枠を配置し、 あらかじめ決められ た順序に従って加工が行われる。 試料基板と TEM観察用小片を分離する 加工は各 TEM観察用小片作製の最後の工程となるが、 各小片作製ごとに 行っても良いし、 分離するための加工のみを最後に残してもよい。 最後 に残した場合、 分離する加工のみが残された TEM観察用試料が残る。 こ の状態で、 試料ステージを傾斜し、 分'離するための加工を行う。 この場 合、 試料ステージの傾斜を 1 回で済ますことができるため、,加工に要す る時間を短縮することができる。 This rough digging process has a large processing volume to be sputter-etched. Therefore, unmanned driving is performed at night or on holidays. In unmanned operation, the processing frame is determined so as to leave the desired TEM observation area, and a mark whose position relative to the processing frame is clear is determined. At this time, if there is no appropriate mark, It is manufactured by the processing function of the focused ion beam device. As a result, the position of the mark and the relative position of the mark and the processing frame are stored. When preparing a plurality of small pieces for TEM observation, perform the same pretreatment for each. Then, unmanned automatic processing starts. The sample stage first moves to the mark position, and confirms the mark position by the pattern recognition function. Subsequently, a processing frame whose position relative to the mark position is clear is arranged, and processing is performed according to a predetermined order. The process of separating the sample substrate and the small piece for TEM observation is the last step of manufacturing each small piece for TEM observation, but may be performed for each small piece, or only the processing for separation may be left at the end . If left at the end, the specimen for TEM observation remains with only the processing to be separated. In this state, processing to tilt and separate the sample stage is performed. In this case, since the sample stage can be tilted only once, the time required for processing can be reduced.
続いて、 ピックアツプ先端部とそれらを用いた小片取り上げ方法を説 明する。  Next, the pick-up tips and how to pick up small pieces using them are explained.
第一の実施例を図 6に示すピンセッ 卜構造である。 ピックアップ先端 部は固定部 61 と可動部 62の 2つの部分からなる。固定部 61 はピックァ ップ本体につながる構造になっている。 可動部 62は回転軸 63を介して 固定部 61 に接続している。可動部 62はァクチユエ一夕 64によって制御 されている。ァクチユエ一タ 64の制御により、小片試料をはさむことが できる。 また、 図示していないが固定部 61 は導電物でできており、 固定 部 61 はァクチユエ一タ 64の電源とは別の電源に接続されている。 この 電源のもう一方は試料に接続されている  The first embodiment has a tweezer structure shown in FIG. The tip of the pickup has two parts, a fixed part 61 and a movable part 62. The fixing part 61 has a structure connected to the pickup body. The movable part 62 is connected to the fixed part 61 via a rotating shaft 63. The movable part 62 is controlled by an actuator 64. By controlling the actuator 64, a small sample can be inserted. Although not shown, the fixing portion 61 is made of a conductive material, and the fixing portion 61 is connected to a power source different from the power source of the actuator 64. The other end of this power supply is connected to the sample
図 5に示した方法で試料基板から分離された TEM観察用小片を取り上 げる場合、試料基板 53の表面がピンセッ 卜の爪に対して垂直の関係にな るよう試料ステ―ジを傾斜させる。続いて、試料ステージを試料 53の表 面法線方向に移動させることにより、 ピンセッ ト爪と TEM観察用小片を 近づける。そして引き続き、爪が TEM観察用小片を試料基板 53から取り 出すためにスパヅ夕エッチングした部分に入るように試料ステージを試 料基板法線方向に移動させる。 そして、 爪が TEM観察用小片を挟める位 置に移動した段階で試料ステージを止める。 続いてァクチユエ—タ 64 を制御して爪を閉じ、 TEM観察用小片を挟む。 続いて、 試料ステージを 試料表面法線方向で、しかもピックアツプ先'端部 41 から逃げるように移 動させることにより、 TEM観察用小片を取り上げることができる。 When picking up a small TEM observation piece separated from the sample substrate by the method shown in Fig. 5, tilt the sample stage so that the surface of the sample substrate 53 is perpendicular to the tweezers nail. Let it. Next, the sample stage is Move the tweezers claw and the TEM observation piece closer by moving them in the surface normal direction. Subsequently, the sample stage is moved in the normal direction of the sample substrate so that the nail enters the portion etched by the sputter to remove the TEM observation small piece from the sample substrate 53. The sample stage is stopped when the nail moves to a position where the small piece for TEM observation can be sandwiched. Subsequently, the actuator 64 is controlled to close the nail, and a small piece for TEM observation is sandwiched. Subsequently, the TEM observation small piece can be picked up by moving the sample stage in the normal direction of the sample surface and away from the end 41 of the pick-up tip.
これらの操作は集束イオンビームの観察機能を用いることにより、 観 察しながら行うことができる。  These operations can be performed while observing by using the observation function of the focused ion beam.
また、 上述したように、 マーク加工位置で試料基板 53表面とピックァ ップ先端部 41 を接触させる。 このとき、 試料基板 53とピックアップ先 端部 41が電気的に接続することにより流れる電流を検出することにより、 試料基板 53とピックアップ先端部 41 が衝突することを回避する。 そし て、 ピックアップ先端部 41の三次元的な位置を再,確認することにより、 TEM観察用小片試料の取り上げを、より確実に行うことができる。また、 さらに集束イオンビームの観察機能を用いることのなく、 自動的に行う ことができる。  Further, as described above, the surface of the sample substrate 53 is brought into contact with the tip portion 41 of the pickup at the mark processing position. At this time, collision between the sample substrate 53 and the pickup distal end portion 41 is avoided by detecting a current flowing when the sample substrate 53 and the pickup distal end portion 41 are electrically connected to each other. Then, by re-confirming the three-dimensional position of the pickup distal end portion 41, it is possible to more reliably pick up the small sample for TEM observation. In addition, it can be performed automatically without using a focused ion beam observation function.
第二の実施例では、 ピックアツプ先端部に絶縁物による針を用いる。 まず、 試料基板から分離された TEM観察用小片のそばに針を近づける。 この状態で絶縁物からなる針に集束ィオンビームを照射し、 チヤ一ジァ ップさせる。 TEM観察用小片は試料基板から分離されているため抵抗が 高く、 静電気力により針に吸着する。  In the second embodiment, a needle made of an insulating material is used at the tip of the pickup. First, bring the needle close to the small piece for TEM observation separated from the sample substrate. In this state, a focused ion beam is applied to the needle made of an insulating material to cause a chuck. The small pieces for TEM observation have high resistance because they are separated from the sample substrate, and are attracted to the needle by electrostatic force.
このとき、 第一の実施例と同様に、 試料ステージは針に対して垂直ま たは操作に適当な角度に傾斜される。 ピックアップ先端部と TEM試料小 片が接触した状態で、 この傾斜した面の法線方向に試料ステ一ジを移動 させることで試料を取り上げる。 実際は、 TEM試料小片の位置は変わら 'ず、 試料基板側が離れることになる。 At this time, as in the first embodiment, the sample stage is perpendicular to the needle or tilted at an angle suitable for operation. With the tip of the pickup and the TEM sample piece in contact, move the sample stage in the direction normal to this inclined surface. The sample is taken up. Actually, the position of the TEM sample piece does not change and the sample substrate side is separated.
第三の実施例では、 ピックアップ先端部に導電物による針を用いる。 まず、 試料基板から分離された TEM観察用小片のそばに針を近づける。 この状態で針と TEM観察用小片を接続するように導電膜を形成する。 こ のとき、 針と試料表面には一つの電源の両端が接続されており、 導電膜 を形成することにより、 この電源の負荷抵抗が小さくなることから出力 電流が増加する。 電流値がある一定の値を超えると、 形成している導電 膜の断面積が、 TEM観察用小片を支えるのに十分にな.つたことを示すこ とになる。 そこで、 デポジションを終了する。 このとき、 電源は直流で も交流でも良いが、 試料基板と TEM観察用小片、 ピックアップ先端部め 間のインピーダンスを考慮して最適な条件を定める。 直流抵抗が大きい 場合は、 交流信号を用いることで対応する。  In the third embodiment, a needle made of a conductive material is used at the tip of the pickup. First, bring the needle close to the small piece for TEM observation separated from the sample substrate. In this state, a conductive film is formed so as to connect the needle and the small piece for TEM observation. At this time, both ends of one power supply are connected to the needle and the sample surface. By forming a conductive film, the load resistance of the power supply is reduced, and the output current is increased. When the current value exceeds a certain value, it indicates that the cross-sectional area of the formed conductive film is sufficient to support a small piece for TEM observation. Therefore, the deposition is terminated. At this time, the power supply may be DC or AC, but the optimum conditions are determined in consideration of the impedance between the sample substrate, the TEM observation piece, and the tip of the pickup. If the DC resistance is large, use an AC signal to handle it.
第四の実施例では、 図 7に示すように、 ピックアップ先端部は形状記 憶合金で製作されているピンセヅ 卜部 65とピンセッ ト部 65の温度を変 化させるヒータ 66とヒータ 66の温度設定を行 制御電源 67から構成さ れる。 図 7(a)の例では、 ピンセヅ ト部 65は、 制御電源 67 'が停止状態で あるため閉じた状態になる。 図 7( b)に示すように、 制御電源 67が可動 状態の場合、ピンセッ ト部 65はヒータ 66により所定の温度に設定され、 開いた状態になる。 TEM観察用試料を取り上げるための試料ステ—ジの 移動方法は、 第一及び第二の実施例と同様である。  In the fourth embodiment, as shown in FIG. 7, the tip of the pickup has a pin set portion 65 made of a shape memory alloy and a heater 66 for changing the temperature of the tweezer portion 65 and a temperature setting of the heater 66. Row Control power supply 67. In the example of FIG. 7A, the pin set section 65 is closed because the control power supply 67 'is in the stopped state. As shown in FIG. 7 (b), when the control power supply 67 is in a movable state, the tweezers 65 is set to a predetermined temperature by the heater 66 and is opened. The method of moving the sample stage for picking up the TEM observation sample is the same as in the first and second embodiments.
図 8にてピックアツプ先端部の移動操作について'説明する。 一般に、 試料 72の水平方向移動 XY軸は、観察像の縦横に沿うようになっている。 そのため、試料 72の移動は観察像において才ぺレー夕に直感的にわかる ようにな?ている。 一方ピックアップ先端 71の水平方向移動 XY軸は、 試料 72の水平方向移動軸と角度が異なる。 そこで、 ピックアップ先端 7 1の位置を決定するための操作をする際には、 観察像を回転させ、 観察 像の縦横をピックアツプ先端 71 の水平方向移動軸に合せる。このように することにより、 オペレータは観察像を見ながら、 直感的にピックアツ . プ先端位置を移動操作させることができる。 The operation of moving the tip of the pick-up will be described with reference to FIG. Generally, the horizontal movement XY axis of the sample 72 is arranged along the vertical and horizontal directions of the observation image. Therefore, can the movement of the sample 72 be intuitively recognized in the observation image? ing. On the other hand, the horizontal movement XY axis of the pickup tip 71 is different in angle from the horizontal movement axis of the sample 72. So, Pickup Tip 7 When performing the operation for determining the position 1, the observation image is rotated, and the length and width of the observation image are aligned with the horizontal movement axis of the pick-up tip 71. By doing so, the operator can intuitively move the pick-up tip position while watching the observation image.
また、 図 9に本発明に用いる試料ホルダの例を示す。 試料ホルダ 81, は、試料 82を保持する試料保持部 83と複数の小片 84を保持する小片保 持部 85からなる。 本実施例では、 試料ホルダ 81 は底面が半導体ゥエー ハなどと同様に平坦になっている。 半導体ゥェ—ハ用の試料搬送装置、 ゥエーハハンドラなどで、 ハンドラ部に静電チャックなどの吸着機能を 持たせることにより、 自動搬送可能な形にすることができる。 集束ィ才 ンビーム装置では、 試料を試料ホルダに保持させて、 試料ステージに載 置するか、 ゥェ一ハカセッ 卜にセッ 卜されたゥェ一ハをゥエーハハンド ラなどで取り出して搬送して試料ステージに載置させることが一般的で ある。 図 9に示す試料ホルダの場合は、 専用のカセッ 卜にセヅ 卜するこ とにより.、 半導体ゥェ一ハ用のゥェ一ハハンドラで取り扱うことができ る  FIG. 9 shows an example of a sample holder used in the present invention. The sample holder 81 includes a sample holding section 83 for holding a sample 82 and a small piece holding section 85 for holding a plurality of small pieces 84. In this embodiment, the bottom surface of the sample holder 81 is flat like a semiconductor wafer. In a sample transfer device for semiconductor wafers, a wafer handler, etc., the handler can be provided with an adsorption function such as an electrostatic chuck so that it can be automatically transferred. In the focusing beam device, the sample is held on the sample holder and placed on the sample stage, or the wafer set in the wafer cassette is taken out and transported by an e-handler or the like, and transported to the sample stage. It is common to place them on The sample holder shown in Fig. 9 can be handled with a wafer handler for semiconductor wafers by setting it in a dedicated cassette.
試料保持部 83は、 TEM試料を固定するための TEM甩試料ホルダになつ ている。 保持方法としては、 接着剤が保持面に予め用意されている。 ま た、 集束イオンビームを用いたデポジション膜を接着剤の代用にして保 ' 持させる。  The sample holding unit 83 is a TEM / sample holder for fixing a TEM sample. As a holding method, an adhesive is prepared in advance on the holding surface. In addition, a deposition film using a focused ion beam is held as a substitute for the adhesive.
さらに、図 9に示した試料ホルダ 81 を用いた集束イオンビーム装置の 構成を図 1 0に示す。ゥェ一ハ 90.をセッ トしたゥエーハカセッ ト 92を装 置のゥェ一ハカセヅ 卜保持部 91 に置く。 ゥェ一ハカセッ ト 92からゥェ 一八ハンドラ 93にてゥェ一ハ 90を取り出し、 大気側に置かれている試 料ホルダ 81の試料保持部 83にセッ 卜する。ゥエーハ 90のセッ 卜された 試料ホルダ 81 を、 試料搬送システム 94により大気圧になっているロー ドロック室 95に移す。'口一 ドロック室 95の大気側扉 96を閉めて図示し ていない真空排気システムにより真空排気を行う。 ロードロック室 95 の真空度が所定の圧力になった段階で試料室 98との間にあるゲー トバル ブ 97を開く。試料搬送システム 94により、試料ホルダ 81 を試料ステ― ジ 99の上にセッ 卜し、 ゲ一トバルブ 97を閉じる。 続いて、 上述した方 法でゥェ一ハ 90から小片 84を取り出し、試料ホルダ 81上の小片保持部 85に移す。 作業終了後、 再びゲー トバルブ 97を開き、 試料搬送システ ム 94により試料ホルダ 81 をロードロック室 95に移して、ゲ一卜バルブ 97を閉じる。 ロー ドロック窒 95を大気開放した後に、 大気側扉 96を開 き、 試料ホルダ 81 を試料搬送システム 94により口一 ドロック室の外に 出す。試料ホルダ 81 の試料保持部 83にセッ 卜されたゥエーハ 90をゥェ 一八ハンドラ 93にて取り上げ、 ゥェ一ハカセヅ 卜 92に戻す。 続いて、 試料ホルダ 81上の小片保持部 85に移されている小片を TEMなどの観察- 分析装置で観察 ■分析する。 Further, FIG. 10 shows a configuration of a focused ion beam apparatus using the sample holder 81 shown in FIG. Place the cassette 92 on which the wafer 90 is set in the cassette holder 91 of the equipment. The wafer 90 is taken out from the wafer cassette 92 by the wafer handler 93 and set in the sample holder 83 of the sample holder 81 placed on the atmosphere side.を The sample holder 81 set in the wafer 90 is moved to the low pressure Transfer to lock room 95. 'Open the door 96 on the atmosphere side of the lock chamber 95 and evacuate it by the evacuation system (not shown). When the degree of vacuum in the load lock chamber 95 reaches a predetermined pressure, the gate valve 97 between the load lock chamber 95 and the sample chamber 98 is opened. The sample holder 81 is set on the sample stage 99 by the sample transport system 94, and the gate valve 97 is closed. Subsequently, the small piece 84 is taken out from the wafer 90 by the above-described method and transferred to the small piece holding portion 85 on the sample holder 81. After the work is completed, the gate valve 97 is opened again, the sample holder 81 is moved to the load lock chamber 95 by the sample transfer system 94, and the gate valve 97 is closed. After the load lock 95 is opened to the atmosphere, the air side door 96 is opened, and the sample holder 81 is taken out of the lock chamber by the sample transfer system 94. The wafer 90 set in the sample holder 83 of the sample holder 81 is picked up by the handler 18 and returned to the cassette 92. Subsequently, the small piece transferred to the small piece holding portion 85 on the sample holder 81 is observed and analyzed by an observation-analyzer such as a TEM (1).
以上述べてきた通り、 本発明による装置や方法を用いることにより、 あらかじめ観察用加工と試料からの分籬加工を済ませた複数の TEM観察 用小片を順次取り出すことができる。 従来方法の欠点であった、 取り上 げの めのデポジションを行った後の粗掘り加工がなくなるため、 工程 ' 中の無人加工の割合を多くすることできる。  As described above, by using the apparatus and the method according to the present invention, it is possible to sequentially take out a plurality of pieces for TEM observation which have been subjected to observation processing and fence processing from a sample in advance. Since the rough digging after deposition for picking up, which is a disadvantage of the conventional method, is eliminated, the ratio of unmanned machining during the process can be increased.
また、 本発明第一、 第二、 第四の実施例によるならば、 第二の従来製 作方法における別の問題であった、 ピックアップの消耗という問題を回 避することができる。 第二の従来製作方法では、 小片の取り出しに本発 明第三の実施例と同様にデポジシヨンを用いるが、 切り離しに針先をス パッタエッチングする。 そのため、 針の先端が消耗するという課題があ つた。 しかし、本発明の第一、第二、第四の実施例の方法によるならば、 この問題を回避できるという効果がある。 産業上の利用可能性 Further, according to the first, second, and fourth embodiments of the present invention, it is possible to avoid another problem in the second conventional manufacturing method, that is, the problem of consumption of the pickup. In the second conventional manufacturing method, a small piece is taken out using a deposition as in the third embodiment of the present invention, but the tip of the needle is sputter-etched to separate it. Therefore, there was a problem that the tip of the needle was worn. However, according to the methods of the first, second and fourth embodiments of the present invention, there is an effect that this problem can be avoided. Industrial applicability
以上述べてきお通り、 本発明による装置や方法を用いることにより、 所定の加工を済ませ、 機械的には試料基板から既に分離されている TEM 観察用小片を取り上げる装置および方法を提供することができる。  As described above, by using the apparatus and the method according to the present invention, it is possible to provide an apparatus and a method for completing a predetermined process and mechanically picking up a TEM observation piece already separated from a sample substrate. .

Claims

請 求 の 範 囲 The scope of the claims
1 . 真空容器である試料室と、試料基板を載置して少なく とも水平方向 に移動し、 傾斜することのできる試料ステージと、 イオンビームを発生 するィ才ン源及び前記イオン源から発生したイオンビームを集束して偏 向走査するイオンビ一厶光学系からなる集束イオンビーム鏡筒と、 試料 基板に前記集束イオンビ―厶鏡筒より発生した集束イオンビームを照射 したときに発生する二次荷電粒子を検出する検出器とからなる集束ィォ ンビーム加工装置を用い、 集束イオンビームによるスパッタリング■ ェ ヅチング機能による試料からの/ ^片を切り出す方法においで、 試料から切り出す複数の小片の ロェ位置を決める第一の工程と、 前記切り出す各小片の周辺を順次スパッ夕リング■ エッチング加工する 第二の工程と、 ' '1. A sample chamber, which is a vacuum vessel, a sample stage on which a sample substrate is placed and which can be moved at least horizontally and tilted, an ion source for generating an ion beam, and an ion beam generated from the ion source A focused ion beam column made up of an ion beam optical system that focuses and polarizes the ion beam, and secondary charging generated when the sample substrate is irradiated with the focused ion beam generated from the focused ion beam column. In a method of using a focused ion beam processing device consisting of a detector for detecting particles and a method of cutting out a piece from a sample by a sputtering method using a focused ion beam, the roe positions of a plurality of small pieces cut out from the sample are determined. The first step of determining, and the second step of sequentially performing sputtering and etching around the small pieces to be cut out,
■ 前記試料を載置した試料ステージを傾斜させ、 前記切り出す各小片の底 部を順次スパッ夕リング■ エッチングする第三の工程とからなり、 前記 切り出す複数の各小片を、 前記試料から切り離すことを特徴とする小片 試料切り出し方法。 ■ A sample stage on which the sample is placed is tilted, and the bottom of each of the small pieces to be cut out is sequentially sputtered. ■ A third step of etching is performed, and the plurality of small pieces to be cut out are separated from the sample. Characteristic small piece Sample cutting method.
2 . 真空容器である試料室と、試料基板を載置して少なくとも水平方向 に移動し、 傾斜することのできる試料ステージと、 イオンビームを発生 .するィ才ン源及び前記ィ才ン源から発生したイオンビームを集束して偏 向走査するイオンビーム光学系からなる集束イオンビーム鏡筒と、 試料 基板に前記集束イオンビーム鏡筒より発生した集束イオンビームを照射 したときに発生する二次荷電粒子を検出する検出器と、 試料基板表面か ら集束イオンビームのスパッタエツチング加工を用いて分離した小片を 取り上げるピックアップからなる集束イオンピー厶装置を用い、 集束ィ オンビームによるスパヅ夕リング · エッチング機能による試料からの小 片を取り出す方法において、 2. A sample chamber which is a vacuum container, a sample stage on which a sample substrate is placed and which can be moved at least horizontally and tilted, and an ion beam source for generating an ion beam, and A focused ion beam column composed of an ion beam optical system that focuses the generated ion beam and performs deflection scanning, and secondary charging generated when the sample substrate is irradiated with the focused ion beam generated from the focused ion beam column. Using a focused ion beam system consisting of a detector that detects particles and a pickup that picks up small pieces separated from the sample substrate surface by sputter etching of the focused ion beam, the sample is provided by a focused ion beam and a spur ring and etching function. Small from In the method of taking out pieces,
試料から切り出す複数の小片の加工位置を決める第一の工程と、 前記切り出す各小片の周辺を順次スパッタリング■ エッチング加工する 第二の工程と、 ' A first step of determining processing positions of a plurality of small pieces to be cut out from the sample; a second step of sequentially performing sputtering and etching around each of the small pieces to be cut out;
前記試料を載置した試料ステージを傾斜させ、 前記切り出す各小片の底 部を順次スパヅタリング■ エッチングする第三の工程と、 A third step of tilting the sample stage on which the sample is mounted, and sequentially sputtering and etching the bottom of each of the small pieces to be cut out;
前記切り出す各小片を順次前記ピックアツプ先端位置に前記試料ステ一 ジを移動し、 前記ピックァヅプにより前記小片を取り出す第四の工程と からなり、 前記小片を前記試料から取り出すことを特徴とする小片試料 取り出し方法。 A fourth step of sequentially moving the sample stage to the pick-up tip position of each of the small pieces to be cut out and removing the small pieces by the pickup, and removing the small pieces from the sample. Method.
3 . 真空容器である試料室と、試料を試料の保持部と試料から取り出し た複数の小片を保持するための保持部からなる試料ホルダに取り付けて 載置し、 少なくとも水平方向に移動し、 傾斜することのできる試料ステ —ジと、 イオンビームを発生するィ才ン源及び前記ィォン源から発生し たイオンビームを集束して偏向走査するイオンビーム光学系からなる集 束イオンビーム鏡筒と、 試料基板に前記集束イオンビ一厶鏡筒より発生 した集束イオンビームを照射したときに発生する二次荷電粒子を検出す る検出器と、 試料基板表面から集束イオンビームのスパッタエッチング 加工を用いて分離した小片を取り上げるピックアップからなる集束ィ才 ンビーム装置を用い、 集束イオンビームによるスパッタリング ' エッチ ング機能による試料からの小片を取り出す方法において、  3. Attach and mount the sample chamber, which is a vacuum chamber, and a sample holder consisting of a sample holding section and a holding section for holding a plurality of small pieces taken out of the sample, and move at least horizontally to tilt A focused ion beam column comprising an ion source for generating an ion beam, and an ion beam optical system for focusing and deflecting and scanning the ion beam generated from the ion source; A detector that detects secondary charged particles generated when the sample substrate is irradiated with the focused ion beam generated from the focused ion beam column, and is separated from the surface of the sample substrate by sputter etching of the focused ion beam. Using a focused ion beam device consisting of a pickup that picks up the small pieces, sputtering using a focused ion beam A method of taking out a small piece from,
試料から切り出す複数の小片の加工位置を決める第一の工程と、 前記切り出す各小片の周辺を順次スパッタリング · エッチング加工する 第二の工程と、 A first step of determining a processing position of a plurality of small pieces cut out from the sample, a second step of sequentially sputtering and etching the periphery of each small piece to be cut out,
前記試料を載置した試料ステージを傾斜させ、 前記切り出す各小片の底 部を順次スパヅ夕リング■ エッチングする第三の工程と、 前記切り出す小片の一つを前記試料ステージの操作により前記ピックァ ップ先端位置に移動し、 前記ピックアツプにより前記切り出す小片の一 つを取り出す第四の工程と、 A third step of tilting the sample stage on which the sample is placed, and sequentially etching the bottom of each of the small pieces to be cut out; A fourth step of moving one of the small pieces to be cut out to the tip position of the pickup by operating the sample stage, and taking out one of the small pieces to be cut out by the pick up;
前記試料ステージを移動して、 前記試料ホルダ上の前記小片保持部が前 記ピックァップの位置になるようにする第五の工程と、 A fifth step of moving the sample stage so that the small piece holding portion on the sample holder is at the position of the pickup;
前記ピックアップに取り上げられた前記小片を前記試料ホルダ上の前記 小片保持部に移す第六の工程と A sixth step of transferring the small piece picked up by the pickup to the small piece holding portion on the sample holder;
からなり、 前記小片を前記試料から取り出し、 前期試料ホルダ上の前記 小片.保持部に移すことを特徴とする小片試料取り出し方法。 And removing the small piece from the sample and transferring the small piece to the small piece holding part on the sample holder.
4 . 真空容器である試料室と、試料を試料の保持部と試料か 取り出し た複数の小片を保持するための保持部からなる試料ホルダに取り付けて 載置し、 少なく とも水平方向に移動し、 傾斜することのできる試料ステ ージと、 イオンビームを発生するィ才ン源及び前記ィ才ン源から発生し たイオンビームを集束して偏向走査するイオンビーム光学系からなる集 束イオンビーム鏡筒と、 試料基板に前記集束イオンビーム鏡筒より 生 した集束イオンビームを照射したときに発生する二次荷電粒子を検出す る検出器と、 試料基板表面から集朿イオンビームのスパッタエッチング 加工を用いて分離した小片を取り上げるピックアップからなる集束ィ才 ンビ一厶装置において、 4. Attach and place the sample chamber, which is a vacuum container, and a sample holder consisting of a sample holder and a holder for holding a plurality of small pieces taken out of the sample, and move at least horizontally. A sample stage that can be tilted; a focused ion beam mirror comprising an ion source for generating an ion beam; and an ion beam optical system for focusing and deflecting and scanning the ion beam generated from the source. A tube, a detector for detecting secondary charged particles generated when the sample substrate is irradiated with a focused ion beam generated from the focused ion beam column, and a sputter etching process of the focused ion beam from the surface of the sample substrate. In a focusing device consisting of a pickup for picking up small pieces separated by using
前記ピックアップの先端が二つの爪からなり、 これらの爪が動いて前記 小片を挟むことにより、 前記小片を取り上げることを特徴とする集束ィ オンビーム加工装置。 A focused ion beam processing apparatus, wherein the tip of the pickup comprises two claws, and the claws move to sandwich the small piece, thereby picking up the small piece.
5 . 請求項 4記載の前記ピックァップ先端の二つになっている爪は、一 方が可動爪であり、 もう一方の固定爪と回転軸で接続され、 前記可動爪 は前記回転軸を中心に回転方向に動き、 前記可動爪は前記固定爪との間 にある圧電ァクチユエ一夕によって制御されることを特徴とする集束ィ オンビーム加工装置。 5. The two claws at the tip of the pickup according to claim 4, one of which is a movable claw, is connected to the other fixed claw by a rotating shaft, and the movable claw is centered on the rotating shaft. A focusing means for moving in a rotational direction, wherein the movable claw is controlled by a piezoelectric actuator disposed between the fixed claw and the movable claw. On-beam processing equipment.
6 - 請求項 4記載の前記ピックアツプ先端の二つになっている爪は、材 質が形状記憶合金であり、 前記爪の形状記憶合金部分の温度制御をする ヒータを持ち、 前記ヒータによる温度制御で前記爪が開閉されることを 特徴とする集束ィォ.ンビーム加工装置。  6-The pick-up tip according to claim 4, wherein the two hooks are made of a shape memory alloy, and have a heater for controlling the temperature of the shape memory alloy portion of the hook, and the heater controls the temperature. Wherein the claw is opened and closed by a press.
7 . 請求項 4記載の集束イオンビーム加工装置において、前記爪は導電 物でできており、 前記爪と前記試料ホルダに保持されている前記試料の 間に電源を接続し、 前記爪と前記試料が接触したときに流れる電流を検 出し、 前記爪先端と前記試料との衝突を回避することを特徴とする集束 イオンビーム加工装置。  7. The focused ion beam processing apparatus according to claim 4, wherein the claw is made of a conductive material, and a power source is connected between the claw and the sample held in the sample holder; A focused ion beam processing apparatus, wherein a current flowing when the sample comes into contact is detected to avoid collision between the tip of the nail and the sample.
8 . 真空容器である試料室と、試料を試料の保持部と試料から取り出し た複数の小片を保持するための保持部からなる試料ホルダに取り付けて 載置し、 少なく とも水平方向に移動し、 傾斜することのできる試料ステ —ジと、 イオン,ビームを発生するィ才ン源及び前記イオン源から発生し たイオンビームを集束して偏向走査するイオンビーム光学系からなる集 束イオンビーム鏡筒と、 試料基板に前記集束イオンビーム鏡筒より発生 した集束イオンビームを照射したときに発生する二次荷電粒子を検出す る検出器と、 試料基板表面から集束イオンビームのスパッタエッチング, 加工を用いて分離した小片を取り上げるピックアップからなる集束ィ才 ンビーム装置において、  8. Attach and place the sample chamber, which is a vacuum container, and a sample holder consisting of a sample holding part and a holding part for holding a plurality of small pieces taken out of the sample, and move at least horizontally. A focused ion beam column comprising a sample stage capable of tilting, an ion source for generating ions and beams, and an ion beam optical system for focusing and deflecting and scanning the ion beam generated from the ion source. And a detector for detecting secondary charged particles generated when the sample substrate is irradiated with the focused ion beam generated from the focused ion beam column, and using sputter etching and processing of the focused ion beam from the surface of the sample substrate. Focusing device consisting of a pickup that picks up small pieces separated by
前記ピックアツプの先端が針状になつており、 前記針状のピックアップ 先端に前記小片を付着させることにより、 前記小片を取り上げることを 特徴とする集束イオンビーム加工装置。 A focused ion beam processing apparatus, wherein the pick-up has a needle-like tip, and picks up the small piece by attaching the small piece to the needle-like pickup tip.
9 . 請求項 8記載の集束イオンビーム加工装置において、前記,ピックァ ップの先端が絶縁物による針になっており、 針の先端が帯電することに よる静電気で前記小片を吸着して取り上げることを特徴とする集束ィ才 ンビーム加工装置。 9. The focused ion beam processing apparatus according to claim 8, wherein the tip of the pickup is a needle made of an insulator, and the small piece is attracted and picked up by static electricity generated by charging the tip of the needle. Focused on Beam processing equipment.
1 0 . 請求項 8記載の集束イオンビーム加工装置において、前記針先端 を、 別の絶縁物にこすり付けて帯電させることを特徴とする集束イオン ビーム加工装置。  10. The focused ion beam processing apparatus according to claim 8, wherein the tip of the needle is rubbed against another insulator to be charged.
1 1 . 請求項 8記載の集束イオンビーム加工装置において、前記針先端 に集束 'イオンビームを照射することにより、 前記針先端を帯電させるこ とを特徴とする集束イオンビーム加工装置。  11. The focused ion beam processing apparatus according to claim 8, wherein the tip of the needle is charged by irradiating a focused ion beam to the tip of the needle.
1 2 . 請求項 8記載の集束イオンビーム加工装置において、前記試料室 に電子ビーム照射装置が取付けられており、 前記電子ビ—ム照射装置の 電子ビームを前記針先端に照射することにより、 前記針先端を帯電させ ることを特徴とする集束イオンビーム加工装置。  12. The focused ion beam processing apparatus according to claim 8, wherein an electron beam irradiator is attached to the sample chamber, and the tip of the needle is irradiated with an electron beam of the electron beam irradiator. Focused ion beam processing equipment characterized by charging the needle tip.
1 3 . 請求項 8記載の集束イオンビーム加工装置において、前記試料室 に、 集束イオンビーム照射と同時に試料表面に堆積物の原料となるガス を吹付けることにより集束イオンビーム照射領域に導電性堆積物を堆積 させるガス導入装置を取付けられており、 前記ピックアップ先端は導電 ' 物による針でできていて、 前記針と前記試料基板の間に電源が接続され ており、 前記針と前記試料基板から切り離された小片をごく近い位置に 隣接させ、 前記針と前記小片を接続するように導電性物質を堆積し、 前 記電源の出力電流値が一定の値を超えたところで、 導電性物質の堆積を 終了し、 前記針と前記小片が接続されたこと利用して前記小片を取り出 すことを特徴とする集束イオンビーム加工装置。  13. The focused ion beam processing apparatus according to claim 8, wherein a gas serving as a raw material for deposits is sprayed on the surface of the sample simultaneously with the irradiation of the focused ion beam into the sample chamber, whereby conductive deposition is performed in the focused ion beam irradiation region. A gas introduction device for depositing an object is attached, the tip of the pickup is made of a needle made of a conductive material, and a power source is connected between the needle and the sample substrate. The separated small piece is placed very close to the position, a conductive substance is deposited so as to connect the needle and the small piece, and when the output current value of the power supply exceeds a certain value, the conductive substance is deposited. The focused ion beam processing apparatus is characterized in that the small piece is taken out by utilizing the fact that the needle and the small piece are connected.
1 4 . 請求項 4から 1 3記載の前記ピックアップ装置は、 その先端を 大気側の操作により少なくとも設定分解能 1 m以下の三次元での微動を 行う第一の操作と、 小片取り出しのための操作を行う第一の位置と、 通 常の集束イオンピー厶による観察加工のための視野に入らない第二の位 置の間を移動する第二の操作が可能であることを特徴とする集束イオン ビーム加工装置。 14. The pickup device according to claim 4, wherein the tip device performs a three-dimensional fine movement of at least a set resolution of 1 m or less by an operation on the atmosphere side, and an operation for removing small pieces. Characterized by being capable of performing a second operation of moving between a first position for performing observation and a second position that is out of the field of view for observation and processing by a normal focused ion beam. Beam processing equipment.
1 5 . 請求項 4から 14記載の集束イオンビーム加工装置において、 前 記ピックアツプ先端を移動させる操作を行う際、 前記集束ィオンビーム 照射による観察像が回転され、 前記ピックアップ先端の移動方向が前記 観察像上での水平および垂直方向に一致するようにしたことを特徴とす る集束イオンビーム加工装置。  15. The focused ion beam processing apparatus according to claim 4, wherein, when performing the operation of moving the tip of the pick-up, an observation image by the irradiation of the focused ion beam is rotated, and a moving direction of the tip of the pickup is the observation image. A focused ion beam processing apparatus characterized in that the horizontal and vertical directions coincide with each other.
1 6 . 真空容器である試料室と、試料を試料の保持部と試料から取り出 した複数の小片を保持するための保持部からなる試料ホルダに取り付け て載置し、 少なく とも水平方向に移動し、 傾斜することのできる試料ス テ一ジと、 イオンビームを発生するイオン源及び前記イオン源から発生 したイオンビームを集束して偏向走査するイオンビーム光学系からなる 集束イオンビーム鏡筒と、 試料基板に前記集束イオンピ―厶鏡筒より発 生した集束イオンビームを照射したときに発生する二次荷電粒子を検出 する検出器と、 試料基板表面から集束イオンビームのスパッタエヅチン グ加工を用いて分離した小片を取り上げるピックアップからなる集朿ィ オンビーム装置において、  16. Mounted on a sample chamber, which is a vacuum container, and a sample holder consisting of a sample holder and a holder for holding a plurality of small pieces taken out of the sample, and moved at least horizontally. A sample stage that can be tilted, a focused ion beam column including an ion source that generates an ion beam, and an ion beam optical system that focuses and deflects and scans the ion beam generated from the ion source; A detector that detects secondary charged particles generated when the sample substrate is irradiated with a focused ion beam generated from the focused ion beam column, and is separated from the surface of the sample substrate by sputter etching of the focused ion beam. In an on-beam device consisting of a pickup that picks up small pieces,
試料を保持する試料容器と、試料容器に保持されている試料を取り出し、 前記試料室の外に置かれている前記試料ホルダの前記試料保持部に前記 試料を載置する試料搬送機と、 前記試料室に取り付けられ、 大気側扉と 前記真空室との間を開閉するゲートバルブを持つロー ドロック室と、 前 記試料ホルダを前記試料室の外から前記ロードロック室を通して前期試 料室の前記試料ステージに移送する試料ホルダ搬送機を持ち、 前記試料容器に保持されている前記試料を、 前記試料搬送機にて取り出 し、 前記試料室の外に置かれている前記試料ホルダの前記試料保持部に 設置し、 前記試料を保持している前記試料ホルダを、 大気圧になってい る前記ロー ドロック室に、 前記試料ホルダ搬送機にて搬送し、 前記ロー - I A sample container for holding a sample, a sample carrier taken out of the sample container, and a sample carrier mounted on the sample holder of the sample holder placed outside the sample chamber; and A load lock chamber attached to the sample chamber and having a gate valve that opens and closes between the atmosphere side door and the vacuum chamber; and the sample holder is connected to the sample chamber through the load lock chamber from outside the sample chamber. Holding the sample holder transporter for transferring to the sample stage, removing the sample held in the sample container by the sample transporter, and removing the sample from the sample holder placed outside the sample chamber; The sample holder, which is placed on a holding unit and holds the sample, is transported to the load lock chamber at atmospheric pressure by the sample holder transporter, and the sample holder is transported. -I
5 27  5 27
一ロ =  Ib =
ドロック室の前期大気側扉を閉じ、 前記ロードロック、室を真空排気し、 前記ロー ドロック室の真空度が前記試料室,の真空度と同程度にし、 前記 ゲー トバルブを開き、 前記口—ドロック室に設置されている前記試料ホ ルダを前記試料ホルダ搬送機にて前記試料室の前記試料ステージ上に移 Close the atmosphere side door of the lock chamber, evacuate the load lock chamber, evacuate the chamber, make the degree of vacuum in the load lock chamber approximately equal to the degree of vacuum in the sample chamber, open the gate valve, and lock the gate lock. The sample holder installed in the sample chamber is moved onto the sample stage in the sample chamber by the sample holder transporter.
5又し、 5
前記集束イオンビームの照射により前記試料から一つまたは複数の小片 を切り出し、 前記ピックアップにて前記小片を取り上げ、 前記試料ホル ダ上の前記小片保持部に移設し、  One or a plurality of small pieces are cut out from the sample by irradiating the focused ion beam, the small pieces are picked up by the pickup, and transferred to the small piece holder on the sample holder,
前記試料ホルダを前記試料ホルダ搬送機により前記試料ホルダを前記口 The sample holder is connected to the port by the sample holder transporter.
10 ードロック室に移設し、 前記ゲ一卜バルブを閉じ、 前記ロ ードロック室 を大気開放し、 前記大気側扉を開放し、 前記試料ホルダ搬送機により前 記試料ホルダを前記試料室の外に出し、 前記試料搬送機にて前記試料ホ ルダ上の前記試料保持部に保持されている前記試料を前記試料容器に移 する 10 Move to a load lock chamber, close the gate valve, open the load lock chamber to the atmosphere, open the atmosphere side door, and take the sample holder out of the sample chamber by the sample holder transporter. Transferring the sample held in the sample holder on the sample holder by the sample transporter to the sample container
とを特徴とする集束イオンビーム加工装置 < Focused ion beam processing equipment <
図 1
Figure imgf000030_0001
Figure 1
Figure imgf000030_0001
(b)試料を傾斜した状態 (b) Sample tilted
(c) 4 (c) 4
(d) ピックアップ状態
Figure imgf000030_0002
(d) Pickup status
Figure imgf000030_0002
PCT/JP2001/003173 2000-04-13 2001-04-12 Focused ion beam apparatus and piece sample pick-up method WO2001079810A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000112483 2000-04-13
JP2000-112483 2000-04-13

Publications (1)

Publication Number Publication Date
WO2001079810A1 true WO2001079810A1 (en) 2001-10-25

Family

ID=18624641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003173 WO2001079810A1 (en) 2000-04-13 2001-04-12 Focused ion beam apparatus and piece sample pick-up method

Country Status (2)

Country Link
TW (1) TW494533B (en)
WO (1) WO2001079810A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808133B (en) * 2018-03-30 2023-07-11 日商日立高新技術科學股份有限公司 Charged Particle Beam Device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800007349A1 (en) * 2018-07-19 2020-01-19 Multistage vacuum device with stage separation controlled by a shape memory alloy actuator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023960A1 (en) * 1994-03-01 1995-09-08 Government Of The United States, Represented By The Secretary Of The Department Of Health And Human Services Isolation of cellular material under microscopic visualization
JPH10340699A (en) * 1997-06-09 1998-12-22 Jeol Ltd Holder carrying device
JPH11108813A (en) * 1997-10-03 1999-04-23 Hitachi Ltd Method and device for preparing sample
EP0927880A1 (en) * 1997-07-22 1999-07-07 Hitachi, Ltd. Method and apparatus for preparing samples

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995023960A1 (en) * 1994-03-01 1995-09-08 Government Of The United States, Represented By The Secretary Of The Department Of Health And Human Services Isolation of cellular material under microscopic visualization
JPH10340699A (en) * 1997-06-09 1998-12-22 Jeol Ltd Holder carrying device
EP0927880A1 (en) * 1997-07-22 1999-07-07 Hitachi, Ltd. Method and apparatus for preparing samples
JPH11108813A (en) * 1997-10-03 1999-04-23 Hitachi Ltd Method and device for preparing sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808133B (en) * 2018-03-30 2023-07-11 日商日立高新技術科學股份有限公司 Charged Particle Beam Device

Also Published As

Publication number Publication date
TW494533B (en) 2002-07-11

Similar Documents

Publication Publication Date Title
US10283317B2 (en) High throughput TEM preparation processes and hardware for backside thinning of cross-sectional view lamella
JP5090255B2 (en) STEM sample preparation method in situ
US7375325B2 (en) Method for preparing a sample for electron microscopic examinations, and sample supports and transport holders used therefor
JP5600371B2 (en) Sputtering coating of protective layer for charged particle beam processing
US7297965B2 (en) Method and apparatus for sample formation and microanalysis in a vacuum chamber
JP5350605B2 (en) Sample preparation
JP2008026312A (en) Plan-view sample preparation method
US20020166976A1 (en) Beam as well as method and equipment for specimen fabrication
JP2708547B2 (en) Device porting method
WO2001041181A9 (en) Gas cluster ion beam smoother apparatus
US6870161B2 (en) Apparatus for processing and observing a sample
US20120071003A1 (en) Vacuum Processing Apparatus, Vacuum Processing Method, and Micro-Machining Apparatus
JP2011124162A (en) Charged particle beam device, and sample observation method
JP2004087174A (en) Ion beam device, and working method of the same
US20230358696A1 (en) Method for cross-section sample preparation
US7951303B2 (en) Method of fabricating grabbing face of sample grabbing portion
JP3851464B2 (en) Manipulator, probe device using the same, and sample preparation device
US20150075972A1 (en) Detaching Probe from TEM Sample during Sample Preparation
JP5183912B2 (en) Charged beam apparatus and cleaning method thereof
JP3851640B2 (en) Manipulator, probe device using the same, and sample preparation device
WO2001079810A1 (en) Focused ion beam apparatus and piece sample pick-up method
JP7299812B2 (en) Systems for preparing chips, micromanipulators and micromanipulators containing multiple lift-out needles
JP2002334818A (en) Semiconductor manufacturing apparatus and method of manufacturing the same
JPH0376122A (en) Device implanting device
JP2000146780A (en) Manipulator and probe device using the same as well as sample preparation device and sample observation device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

NENP Non-entry into the national phase

Ref country code: JP