WO2001073159A1 - Procede et appareil permettant de former un film metallique - Google Patents

Procede et appareil permettant de former un film metallique Download PDF

Info

Publication number
WO2001073159A1
WO2001073159A1 PCT/JP2001/002392 JP0102392W WO0173159A1 WO 2001073159 A1 WO2001073159 A1 WO 2001073159A1 JP 0102392 W JP0102392 W JP 0102392W WO 0173159 A1 WO0173159 A1 WO 0173159A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
plasma
gas
metal
substrate
Prior art date
Application number
PCT/JP2001/002392
Other languages
English (en)
French (fr)
Inventor
Hitoshi Sakamoto
Toshihiko Nishimori
Saneyuki Goya
Takao Abe
Noriaki Ueda
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000108120A external-priority patent/JP2001295046A/ja
Priority claimed from JP2000161507A external-priority patent/JP2001335933A/ja
Priority claimed from JP2000320136A external-priority patent/JP3776710B2/ja
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to EP01917496A priority Critical patent/EP1199378A4/en
Priority to US09/926,624 priority patent/US6656540B2/en
Publication of WO2001073159A1 publication Critical patent/WO2001073159A1/ja
Priority to US11/391,241 priority patent/US20060191481A1/en
Priority to US11/391,242 priority patent/US20060177583A1/en
Priority to US11/391,251 priority patent/US20060191477A1/en
Priority to US12/247,432 priority patent/US20090095425A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4488Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by in situ generation of reactive gas by chemical or electrochemical reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD

Definitions

  • the present invention relates to a method for producing a noble metal thin film by a plasma vapor deposition method and an apparatus for producing the same.
  • the present invention relates to a metal film forming apparatus and a metal film forming method for forming a metal film on the surface of a substrate by a vapor phase growth method.
  • the present invention relates to an apparatus for vapor-phase growth of a copper thin film applied to formation of a wiring material film of a semiconductor device. Background technique
  • copper copper'hexafluoroacetylacetonatotrimethylvinylsilane
  • FIG. 22 is a schematic view showing a conventional noble metal thin film vapor phase growth apparatus 500.
  • a method of forming a noble metal thin film 541 on a substrate 515 using this apparatus 500 will be described.
  • Cu (hfac) (tmvs) is sealed as a liquid raw material 5222 in a raw material container 521, and bubbling is performed using He gas as a transport gas.
  • the flow rate of the raw material vaporized by this publishing and the H2 for the reduction reaction are controlled by flow controllers 503 and 506, respectively, and the feed is completely contained in the introduction vessel 511 having the vaporizer 520.
  • the precursor 513 is introduced into the inside of the reaction vessel 501 through the perforated plate 512.
  • the substrate 5 15 is placed immediately below the perforated plate 5 12 with the substrate 5 You.
  • the growth rate and film quality are improved by controlling the flow rate and the growth temperature of the raw material 522 and the H2 for the reduction reaction.
  • a metal film for example, a copper thin film is produced by a vapor phase growth method
  • a liquid organometallic complex such as copper'hexafluoroacetylacetonatotrimethylvinylsilane
  • the raw material is dissolved in a solvent and vaporized using a thermal reaction to form a film on the substrate.
  • the film is formed using a thermal reaction, the film forming speed is reduced. It was difficult to improve.
  • the metal complex used as a raw material is expensive, and hexafluoroacetyl acetate and trimethylvinylsilane, which accompany copper, remain as impurities in the copper thin film, thereby improving the film quality. It was difficult to achieve.
  • Cu copper
  • CVD chemical vapor deposition
  • a copper thin film is formed by a CVD method using a liquid organic copper complex such as copper, hexafluoroacetyl acetate, trimethylvinylsilane (hereinafter referred to as Cu (hfac) (tmvs)) as a raw material.
  • a liquid organic copper complex such as copper, hexafluoroacetyl acetate, trimethylvinylsilane (hereinafter referred to as Cu (hfac) (tmvs))
  • Cu (hfac) (tmvs) trimethylvinylsilane
  • the substrate to be processed 603 is set on the plate-shaped substrate 602 in the reaction vessel 601, and the gas in the reaction vessel 601 is evacuated through the exhaust pipe 604 to a predetermined level. Vacuum.
  • a transport gas such as He is supplied into the raw material container 606 containing the raw material 605 of Cu (& 0 at h) (1113) through the pipe 607a to publish it.
  • the raw material gas and reducing gas, e.g., hydrogen, vaporized by this packing are passed through pipes 607b and 607c respectively into a vaporizer 608 mounted on the upper part of the reaction vessel 601. Supply.
  • the flow rates of the raw material gas and hydrogen are controlled by flow rate controllers 609 and 610 interposed in the pipes 607b and 607c, respectively.
  • the gas 613 is jetted toward the substrate 603 to be processed on the substrate 602.
  • the above-mentioned raw material Cu (hfac) (tmvs) is thermally decomposed on the surface of the substrate to be processed 603 heated to a predetermined temperature by the flat plate heater 62.
  • a copper thin film 6 14 is formed.
  • the oxidation of copper is prevented by the reducing action of hydrogen.
  • the copper deposition rate is adjusted and the film quality is improved.
  • the above-mentioned conventional method of forming a copper thin film has the following three problems.
  • the first is a method of thermally decomposing Cu (hfac) (tmvs) that has been vaporized in the formation of the copper thin film, and it is difficult to improve the film formation rate.
  • the cost of the copper thin film to be formed increases because the organic copper complex as a raw material, for example, Cu (hfac) (tmvs) is expensive.
  • the third is that hexafluoroacetyl acetate (hfac) and trimethylvinylsilane (tmvs) are incorporated into the copper thin film and remain as impurities as a result of copper deposition. There is a possibility that the film quality is deteriorated.
  • the present invention has been made in view of the above-described situation, and provides a method and an apparatus for producing a noble metal thin film having a high film forming rate, using an inexpensive raw material, and leaving no impurities in the thin film.
  • the purpose is to provide.
  • Another object of the present invention is to provide a metal film manufacturing apparatus and a metal film manufacturing method which can use a low-cost raw material with a high film forming speed and in which no impurities remain in the film.
  • the present invention is to form a copper film having a desired film thickness with a high film formation rate, a low film quality, and a low film thickness, by using chlorine or hydrogen chloride as a source gas at low cost. It is intended to provide a vapor deposition apparatus for a copper thin film capable of performing the above. Disclosure of the invention
  • a method for producing a metal film includes the steps of: supplying a source gas containing a halogen element into an introduction container having a metal perforated plate; And forming a raw material gas plasma by etching the perforated plate with the raw material gas plasma, thereby forming a metal component contained in the perforated plate and a halogen source in the raw material gas.
  • a step of generating a precursor with the element a step of generating a reducing gas plasma by converting the reducing gas into a plasma, and a step of discharging the precursor from the introduction container and passing the precursor through a rotating magnetic field.
  • the metal ion is one in which a metal atom emits an electron and is ionized, and a neutral metal is a metal atom in a non-ionized state.
  • the perforated plate is preferably made of a noble metal such as Cu or Ag, Au, or Pt.For example, when a perforated plate made of Cu is used, CUxCly is generated as the precursor, so that Cu is used. The ions hit the substrate and a Cu thin film is formed on the substrate.
  • the reaction efficiency is greatly improved, and the film formation rate is increased.
  • the cost is greatly reduced because a gas containing chlorine is used as the source gas and a gas containing hydrogen is used as the reducing gas.
  • the reduction reaction can be independently enhanced, impurities such as chlorine in the thin film are reduced, and a high-quality thin film can be formed.
  • the perforated plate is preferably made of a noble metal such as Cu or Ag, Au, or Pt.
  • a perforated plate made of Cu is used, CUxCly is generated as the precursor, so that Cu The ions hit the substrate and a Cu thin film is formed on the substrate.
  • a method for generating the reducing gas plasma there is a method in which high-frequency power is applied to an electrode. For example, by generating plasma over the entire surface of the electrode provided facing the substrate, the precursor diffused in the substrate can be reduced.
  • the reaction efficiency is greatly improved and the deposition rate is increased.
  • a gas containing a halogen element is used as a raw material gas and a gas containing hydrogen is used as a reducing gas, the cost is greatly reduced.
  • the reduction reaction can be independently increased. However, impurities such as chlorine are less left in the thin film, and a high-quality thin film can be produced.
  • Another embodiment of the method for producing a metal film according to the present invention includes a step of supplying a source gas containing a halogen element into an introduction container having a metal perforated plate, and a step of converting the source gas into plasma.
  • To remove the halogen element from the precursor to form metal ions or neutral metal Forming a metal thin film on the substrate by applying the thin film.
  • the reaction efficiency is greatly improved, and the deposition rate is increased.
  • the cost is greatly reduced because a gas containing a halogen element is used as a source gas and a gas containing hydrogen is used as a reducing gas.
  • the reduction reaction can be independently enhanced, the amount of impurities such as chlorine remaining in the thin film is reduced, and a high-quality thin film can be formed.
  • another aspect of the method for producing a metal film according to the present invention is that a raw material gas containing a halogen element is brought into contact with a high-temperature metal filament, and the filament is etched with the raw material gas.
  • the reaction efficiency is greatly improved, and the film forming speed is increased.
  • the cost is greatly reduced because a gas containing a halogen element is used as a source gas and a gas containing hydrogen is used as a reducing gas.
  • the reduction reaction can be independently enhanced, the amount of impurities such as chlorine remaining in the thin film is reduced, and a high-quality thin film can be formed.
  • another aspect of the method for producing a metal film according to the present invention is that a raw material gas containing a halogen element is brought into contact with a high-temperature metal filament, and the filament is etched with the raw material gas.
  • the reaction efficiency is greatly improved, and the film forming speed is increased. Further, since a gas containing a halogen element is used as a source gas and a gas containing hydrogen is used as a reducing gas, the cost is greatly reduced. Furthermore, since the reduction reaction can be independently increased, impurities such as chlorine remain in the thin film, and a high-quality thin film can be formed.
  • a halogen gas, a hydrogen halide gas, or a mixed gas thereof is used as the source gas.
  • a fluorine gas, a chlorine gas, a bromine gas, an iodine gas, or a hydrogen halide gas obtained by combining these halogens with hydrogen can be used.
  • hydrogen chloride gas has a higher reaction efficiency than chlorine gas, so that the amount of reducing gas can be reduced and cost can be reduced.
  • the reducing gas plasma decomposes impurities such as a halogen compound and a carbon compound contained in the source gas, the amount of impurities remaining in the metal thin film is reduced.
  • the apparatus for producing a metal film according to the present invention includes a metal perforated plate having an injection hole formed therein, and an introduction container for supplying a raw material gas to the inside thereof.
  • a first plasma generator for generating a source gas plasma by converting the source gas contained in the introduction container into plasma, a reaction container containing the introduction container and the substrate, and a rotation between the perforated plate and the substrate The apparatus includes a rotating magnetic field generator for generating a magnetic field, and a second plasma generator for converting the reducing gas supplied into the reaction vessel into plasma.
  • the rotating magnetic field generating device for example, a device in which a rotating magnetic field coil is provided on a side portion of a reaction vessel and a high current flows through the rotating magnetic field coil can be used.
  • Another embodiment of the metal film manufacturing apparatus includes a metal perforated plate having an injection hole formed therein, and an introduction container for supplying a raw material gas into the perforated plate;
  • a first plasma generator for generating a source gas plasma by converting the source gas contained in the reactor into plasma, a reaction container containing the introduction container and the substrate, and a reducing gas supplied to the reaction container with a plasma.
  • Mesh-type, ladder-shaped, and comb-shaped electrodes for applying high-frequency power for forming the electrodes.
  • another aspect of the apparatus for producing a metal film according to the present invention includes a metal perforated plate having an injection hole formed therein, an introduction container for supplying a raw material gas therein, and the introduction container.
  • a gas heating device for heating a gas supplied into the reaction container.
  • a filament made of Nungsten which is heated to a high temperature by passing a high current can be suitably used.
  • a reducing gas is flowed through the filament, an atomic reducing gas is generated.
  • another embodiment of the metal film production apparatus according to the present invention includes a precursor supply apparatus for contacting a raw material gas with a high-temperature metal filament to form a precursor and then supplying the precursor into a reaction vessel; And a reducing gas heating device for heating the reducing gas supplied into the reaction container.
  • another aspect of the apparatus for producing a metal film according to the present invention is a precursor supply apparatus that vaporizes a liquid organometallic complex by bubbling a transport gas to form a precursor, and then supplies the precursor into a reaction vessel.
  • another aspect of the apparatus for producing a metal film according to the present invention is a precursor supply apparatus that vaporizes a liquid organic metal complex by bubbling a transport gas to form a precursor, and then supplies the precursor into a reaction vessel; It has a reaction vessel containing a substrate, and a mesh-shaped, ladder-shaped, and comb-shaped electrode for applying high-frequency power to convert the reducing gas supplied into the reaction vessel into plasma.
  • ADVANTAGE OF THE INVENTION According to the manufacturing method and manufacturing apparatus of the metal film which concerns on this invention, a high quality metal thin film without precipitation of an impurity can be produced at low cost and at high speed.
  • Another embodiment of the apparatus for producing a metal film of the present invention for achieving the above object has a metal injection plate having a large number of injection holes, and a chlorine-containing source gas is supplied inside the metal injection plate.
  • First plasma generation means for generating a precursor of hydrogen and chlorine in the raw material gas, and reducing gas containing hydrogen converted into plasma in the chamber
  • a second plasma generating means for generating a reducing gas plasma by heating the chamber to a predetermined temperature, and a chamber heated by passing a precursor through the reducing gas plasma in the chamber.
  • the method is characterized in that chlorine is reduced and removed from the precursor in a state where the precursor does not adhere to the inner wall, and only metal ions are applied to the substrate to form a metal film on the substrate.
  • Another embodiment of the apparatus for producing a metal film of the present invention for achieving the above object has a metal injection plate having a large number of injection holes, and a source gas containing chlorine therein.
  • An injection plate heating means for heating the injection plate to a predetermined temperature, a chamber for accommodating the introduction container and the substrate, a source gas in the introduction container being plasmatized to generate a source gas plasma, and First plasma generating means for generating a precursor of a metal component contained in the spray plate and chlorine in the raw material gas by etching the spray plate with the plasma, and converting the reducing gas containing hydrogen into plasma in the chamber.
  • Another embodiment of the apparatus for producing a metal film of the present invention for achieving the above object has a metal injection plate having a large number of injection holes, and a source gas containing chlorine therein.
  • An injection plate heating means for heating the injection plate to a predetermined temperature, a chamber for accommodating the introduction container and the substrate, a source gas in the introduction container being plasmatized to generate a source gas plasma, and
  • a first plasma generating means for generating a precursor of a metal component contained in the injection plate and chlorine in a source gas by etching the injection plate with the plasma.
  • a second plasma generating means for generating a reducing gas plasma by converting a reducing gas containing hydrogen into plasma in the chamber; and a chamber heating means for heating the chamber to a predetermined temperature, and etching the heated spray plate.
  • the precursor generated and easily reduced is passed through the reducing gas plasma, whereby chlorine is reduced and removed from the precursor in a state where the precursor does not adhere to the heated inner wall of the chamber, and metal ions are removed. It is characterized in that a metal film is formed on the substrate by being applied only to the substrate.
  • Another embodiment of the apparatus for producing a metal film of the present invention for achieving the above object has a metal injection plate having a large number of injection holes, and a source gas containing chlorine therein.
  • Container for supplying the gas a chamber for accommodating the introduction container and the substrate, a source gas in the introduction container is turned into plasma to generate a source gas plasma, and the injection plate is etched by the source gas plasma.
  • a chamber heating means for heating the chamber to a predetermined temperature, wherein the precursor is passed through the atomic reducing gas in the chamber, so that the precursor does not adhere to the heated inner wall of the chamber and the chlorine is removed from the precursor. Is reduced and removed to only metal ions and applied to the substrate to form a metal film on the substrate.
  • Another embodiment of the apparatus for producing a metal film of the present invention for achieving the above object has a metal injection plate having a large number of injection holes, and a source gas containing chlorine therein.
  • An injection plate heating means for heating the injection plate to a predetermined temperature, a chamber for accommodating the introduction container and the substrate, a source gas in the introduction container being plasmatized to generate a source gas plasma, and First plasma generating means for generating a precursor of a metal component contained in the spray plate and chlorine in the source gas by etching the spray plate with plasma, and heating the reducing gas containing hydrogen to a high temperature.
  • a reducing gas heating means for generating an atom-like reducing gas between the substrate in the chamber and the spray plate, wherein a precursor which is generated by etching the heated spray plate and which is easily reduced is atomized.
  • a precursor which is generated by etching the heated spray plate and which is easily reduced is atomized.
  • Another embodiment of the apparatus for producing a metal film of the present invention for achieving the above object has a metal injection plate having a large number of injection holes, and a source gas containing chlorine therein.
  • An injection plate heating means for heating the injection plate to a predetermined temperature, a chamber for accommodating the introduction container and the substrate, a source gas in the introduction container being plasmatized to generate a source gas plasma, and
  • a first plasma generating means for generating a precursor of a metal component contained in the spray plate and chlorine in the raw material gas by etching the spray plate with plasma, and reducing the reducing gas containing hydrogen to a high temperature.
  • Equipped with heating means for generating a reducing gas between the substrate in the chamber and the spray plate by heating, and chamber heating means for heating the chamber to a predetermined temperature, and etching the heated spray plate Do By passing the precursor, which has been generated and reduced easily, through the reducing gas plasma, chlorine is reduced and removed from the precursor in a state where the precursor does not adhere to the heated inner wall of the chamber and the metal is reduced. It is characterized in that a metal film is formed on the substrate by being converted into ions only and applied to the substrate.
  • Another embodiment of the apparatus for producing a metal film of the present invention for achieving the object described above includes a method in which a raw material gas containing chlorine is brought into contact with a high-temperature metal filament and is contained in the metal filament.
  • Precursor of metal component and chlorine in source gas Precursor supply means generated in a chamber for accommodating a substrate, and reducing gas heating for heating a reducing gas containing hydrogen to a high temperature to generate an atomic reducing gas between the substrate and a spray plate in the chamber Means, and a chamber heating means for heating the chamber to a predetermined temperature, wherein the precursor is passed through the atomic reduction gas in the chamber so that the precursor does not adhere to the inner wall of the heated chamber.
  • the chlorine is reduced and removed from the precursor to form only a metal ion, and is applied to the substrate to form a metal film on the substrate.
  • the injection plate or the metal filament is made of copper, thereby producing CuxCly as the precursor. Further, the spray plate is made of copper, and the predetermined temperature of the spray plate heated by the spray plate heating means is set to 200 ° C to 800 ° C.
  • the injection plate heating means introduces a rare gas into the introduction container, generates a rare gas plasma by the first plasma generation means, and applies a voltage to cause the rare gas component ion to collide with the injection plate. It is a means for heating the plate.
  • the injection plate is heated at a predetermined temperature of 600 ° C. Further, when CuxCly is generated as the precursor, it is preferable that the predetermined temperature of the chamber heated by the chamber heating means be approximately 200 ° C.
  • a spray plate or metal filament besides Cu,, 11 ,? C, 1 ⁇ , etc. are used, and a chlorine gas, a hydrogen chloride gas or a mixed gas thereof is used as a raw material gas.
  • a method for producing a metal film according to the present invention comprises the steps of: generating a precursor of a metal component and chlorine by chlorine and a metal plate in a chamber; reducing and removing chlorine from the precursor to form a metal ion.
  • the chamber is heated to a predetermined temperature so that the precursor does not adhere to the inner wall of the chamber.
  • the method for producing a metal film of the present invention for achieving the above object is characterized in that In the chamber, a precursor of the metal component and chlorine is generated by the chlorine and metal plate, and the chlorine is reduced and removed from the precursor to form a metal ion, which is applied to the substrate in the chamber to form a metal film on the substrate.
  • the precursor is easily reduced by heating the metal plate to a predetermined temperature.
  • Another embodiment of the method for manufacturing a metal film of the present invention for achieving the above object is to generate a precursor of a metal component and chlorine in a chamber using chlorine and a metal plate, and form the precursor from the precursor.
  • the chamber is heated to a predetermined temperature to prevent the precursor from adhering to the inner wall of the chamber.
  • the present invention is characterized in that the metal plate is heated to a predetermined temperature to reduce the precursor easily, and that the metal plate is made of copper, thereby generating CuxCly as the precursor.
  • an introduction container having a metal injection plate in which a large number of injection holes are drilled, in which a raw material gas containing chlorine is supplied. And a chamber for accommodating the substrate, and the source gas in the introduction container is turned into plasma to generate a source gas plasma, and the injection plate is etched with the source gas plasma, thereby forming a metal component contained in the injection plate and chlorine in the source gas.
  • First plasma generating means for generating a precursor for generating a precursor
  • second plasma generating means for generating a reducing gas plasma by converting a hydrogen-containing reducing gas into plasma in the chamber
  • chamber heating means for heating the chamber to a predetermined temperature
  • chlorine is removed from the precursor in a state where the precursor does not adhere to the heated inner wall of the chamber. Is reduced and removed to form only metal ions and is applied to the substrate to form a metal film on the substrate, thereby preventing the precursor from adhering to the side wall of the chamber.
  • the deposition rate is high and inexpensive raw materials are used.
  • a metal film forming apparatus in which impurities do not remain in the film can be obtained.
  • the periodic cleaning process in the chamber is not required, and the raw material yield is improved and the running cost is reduced. It becomes possible.
  • an introduction container having a metal injection plate having a large number of injection holes formed therein and supplying a source gas containing chlorine therein.
  • An injection plate heating means for heating the injection plate to a predetermined temperature; a chamber for accommodating the introduction container and the substrate; a plasma of the source gas in the introduction container to generate a source gas plasma;
  • First plasma generation means for generating a precursor of the metal component contained in the injection plate and chlorine in the raw material gas by tuning, and reducing gas plasma generated by converting the hydrogen-containing reducing gas into plasma in the chamber
  • a second plasma generating means for causing the precursor, which is generated by etching the heated spray plate and is easily reduced, to pass through the reducing gas plasma, Since chlorine is reduced and removed from the precursor and only the metal ions are applied to the substrate to form a metal film on the substrate, a monomer precursor that is easily reduced is easily generated.
  • an introduction container having a metal injection plate having a large number of injection holes formed therein and supplying a source gas containing chlorine therein.
  • An injection plate heating means for heating the injection plate to a predetermined temperature; a chamber for accommodating the introduction container and the substrate; and a plasma of the source gas in the introduction container to generate a source gas plasma, and the injection plate is heated with the source gas plasma.
  • Metal components contained in the injection plate by tuning and salts in the source gas
  • First plasma generating means for generating a precursor with hydrogen
  • second plasma generating means for generating a reducing gas plasma by converting a reducing gas containing hydrogen into plasma in a chamber, and chamber heating for heating the chamber to a predetermined temperature.
  • Means in which the precursor generated by etching the heated spray plate and easily reduced is passed through the reducing gas plasma so that the precursor does not adhere to the inner wall of the heated chamber.
  • the chlorine is reduced and removed from the precursor, leaving only the metal ion, which is applied to the substrate to form a metal film on the substrate, so that the precursor is prevented from adhering to the side wall of the chamber and easily reduced.
  • a monomer precursor is easily generated.
  • the raw material yield is improved, the running cost can be reduced, and the chlorine is reduced and removed in a short time, so that the film forming rate can be further improved.
  • an introduction container having a metal injection plate having a large number of injection holes formed therein and supplying a source gas containing chlorine therein.
  • a chamber for accommodating the introduction container and the substrate; and a source gas in the introduction container is turned into plasma to generate a source gas plasma, and the injection plate is etched by the source gas plasma, thereby allowing metal components contained in the injection plate and the source gas to be removed.
  • a chamber heating means for heating the chamber to a predetermined temperature, wherein the precursor is not attached to the heated inner wall of the chamber by passing the precursor through the atomic reducing gas in the chamber.
  • chlorine is reduced and removed from the precursor to form only metal ions, which is then applied to the substrate to form a metal film on the substrate. Adherence to the side walls of the chamber is prevented.
  • an introduction container having a metal injection plate having a large number of injection holes formed therein and supplying a source gas containing chlorine therein.
  • An injection plate heating means for heating the injection plate to a predetermined temperature; a chamber for accommodating the introduction container and the substrate; and a plasma of the source gas in the introduction container to generate a source gas plasma, and the injection plate is heated with the source gas plasma.
  • First plasma generating means for generating a precursor of the metal component contained in the injection plate and chlorine in the raw material gas by performing tuning, and heating the hydrogen-containing reducing gas to a high temperature to convert the atomic reducing gas into a chamber.
  • Reducing gas heating means for generating between the substrate and the injection plate in the inside, the precursor generated by etching the heated injection plate and easily reduced passes through the atomic reduction gas. Be done As a result, chlorine is reduced and removed from the precursor to form only a metal ion, which is applied to the substrate to form a metal film on the substrate, thereby easily generating a monomer precursor which is easily reduced. . As a result, it is possible to use an inexpensive raw material with a high film forming speed, to provide a metal film forming apparatus in which no impurities remain in the film, and to form a film by reducing and removing chlorine in a short time. Speed can be further improved.
  • an introduction container having a metal injection plate having a large number of injection holes formed therein and supplying a source gas containing chlorine therein.
  • An injection plate heating means for heating the injection plate to a predetermined temperature; a chamber for accommodating the introduction container and the substrate;
  • the source gas in the introduction vessel is turned into plasma to generate source gas plasma
  • Plasma generating means for generating a precursor of the metal component contained in the injection plate and chlorine in the source gas by etching the injection plate with the source gas plasma, and reducing the temperature of the reducing gas containing hydrogen to a high temperature.
  • the metal film is formed on the substrate by being applied only to the substrate, so that the precursor is prevented from adhering to the side wall of the chamber and the precursor of the monomer which is easily reduced is reduced. There is likely to be generated.
  • the raw material yield can be improved, the running cost can be reduced, and the chlorine can be reduced and removed in a short time, so that the film formation rate can be further improved.
  • a raw material gas containing chlorine is brought into contact with a high-temperature metal filament so that a metal component contained in the metal filament and chlorine contained in the raw material gas are removed.
  • a precursor supply means for generating a precursor of the above in the chamber in which the substrate is accommodated, and heating the reducing gas containing hydrogen to a high temperature to cause the atomic reducing gas to flow between the substrate and the injection plate in the chamber.
  • a heating means for heating the chamber to a predetermined temperature, wherein the precursor is passed through the atomic reducing gas in the chamber, so that the precursor is placed on the inner wall of the heated chamber.
  • Precursor is prevented from adhering to the side wall of the chamber because chlorine is reduced and removed from the precursor in a state where it does not adhere to it, leaving only metal ions and being applied to the substrate to form a metal film on the substrate. Is done.
  • a precursor of a metal component and chlorine is generated by a chlorine and metal plate in a chamber, and the precursor is reduced and removed to form a metal ion to form a metal ion and a chamber.
  • the chamber is heated to a predetermined temperature to prevent the precursor from adhering to the inner wall of the chamber, preventing the precursor from adhering to the side wall of the chamber. Is done.
  • chlorine and a metal plate are used in a chamber to form a precursor of a metal component and chlorine.
  • the metal plate is heated to a predetermined temperature to reduce the precursor.
  • the precursor of a monomer that can be easily reduced is easily generated.
  • a film forming speed is high, an inexpensive raw material can be used, and a metal film forming apparatus in which impurities do not remain in the film can be obtained.
  • chlorine can be reduced and removed in a short time to increase the film forming speed.
  • a precursor of a metal component and chlorine is generated by chlorine and a metal plate in a chamber, and chlorine is produced from the precursor.
  • chlorine is produced from the precursor.
  • reaction vessel in which a substrate to be processed is disposed
  • An introduction container having a copper injection plate disposed in the reaction container and having a plurality of injection holes
  • Plasma generating means for generating a plasma of chlorine or hydrogen chloride in the introduction container
  • An atomic reducing gas generating means for generating an atomic reducing gas at least in the vicinity of the substrate to be processed in the reaction vessel;
  • Vacuum exhaust means for evacuating the gas in the reaction vessel and the introduction vessel
  • a reaction vessel in which a substrate to be processed is disposed, A raw gas supply pipe inserted into the reaction vessel for supplying chlorine or hydrogen chloride;
  • a spiral tube attached to the tip of the source gas supply pipe, the inner surface of the source gas flow hole is made of copper, and a heating member is provided;
  • An atomic reducing gas generating means for generating an atomic reducing gas at least in the vicinity of the substrate to be processed in the reaction vessel;
  • Vacuum evacuation means for evacuating the gas in the reaction vessel and the flow hole of the source gas
  • a film is formed at a high rate using inexpensive chlorine or hydrogen chloride as a source gas, and has good film quality in which impurities hardly remain and has a desired film thickness.
  • a copper thin film can be formed with good reproducibility, and a vapor deposition apparatus for a copper thin film useful for forming a wiring material film of a semiconductor device or a liquid crystal display device can be provided.
  • FIG. 1 is a schematic diagram showing a plasma-enhanced vapor phase epitaxy apparatus used in the first embodiment.
  • FIG. 2 is a schematic diagram showing a plasma-enhanced vapor phase epitaxy apparatus used in the second embodiment.
  • FIG. 3 is a schematic view showing a plasma-enhanced vapor phase epitaxy apparatus used in the third embodiment.
  • FIG. 4 is a schematic diagram showing a plasma-enhanced vapor phase epitaxy apparatus used in the fourth embodiment.
  • FIG. 5 is a plan view showing a mesh electrode used in the fourth embodiment.
  • FIG. 6 is a plan view showing a ladder-like electrode used in the fourth embodiment.
  • FIG. 5 is a plan view showing a comb electrode used in the fourth embodiment.
  • FIG. 8 is a plan view showing a punching board electrode used in the fourth embodiment.
  • FIG. 9 is a schematic diagram showing a plasma-enhanced vapor phase epitaxy apparatus used in the fifth embodiment.
  • FIG. 10 is a schematic side view of a metal film manufacturing apparatus according to a sixth embodiment of the present invention.
  • FIG. 11 is a schematic side view of a metal film manufacturing apparatus according to a seventh embodiment of the present invention.
  • FIG. 12 is a schematic side view of a metal film manufacturing apparatus according to an eighth embodiment of the present invention.
  • FIG. 13 is a schematic side view of a metal film manufacturing apparatus according to a ninth embodiment of the present invention.
  • FIG. 14 is a schematic side view of an apparatus for producing a metal film according to the tenth embodiment of the present invention.
  • FIG. 15 is a schematic side view of a metal film manufacturing apparatus according to the eleventh embodiment of the present invention.
  • FIG. 16 is a schematic side view of a metal film manufacturing apparatus according to the 12th embodiment of the present invention.
  • FIG. 17 is a schematic sectional view showing an apparatus for vapor-phase growth of a copper thin film according to the thirteenth embodiment.
  • FIG. 18 is a plan view showing a copper injection plate incorporated in the vapor phase growth apparatus of FIG.
  • FIG. 19 is a schematic sectional view showing an apparatus for vapor-phase growth of a copper thin film according to the fourteenth embodiment.
  • FIG. 20 is a diagram showing one embodiment of a spiral tube incorporated in the vapor phase growth apparatus of FIG.
  • FIG. 21 is a view showing another embodiment of the spiral tube incorporated in the vapor phase growth apparatus of FIG.
  • FIG. 22 is a schematic view showing a conventional noble metal thin film vapor deposition apparatus.
  • FIG. 23 is a schematic cross-sectional view showing a conventional copper thin film vapor phase growth apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic diagram showing a plasma-induced vapor deposition apparatus used for producing a noble metal thin film according to the first embodiment.
  • the plasma-excited vapor deposition apparatus 51 includes a reaction vessel 1 formed in a box shape, first and second plasma generators 52, 53 disposed above and below the reaction vessel 1, and a reaction vessel 1. And a rotating magnetic field coil 4, 4 arranged on the side of the first magnetic field.
  • an introduction container 11 for accommodating a raw material gas 55 is provided above the reaction container 1.
  • a flow controller 3 and a nozzle 2 are connected to the side of the introduction container 11, and a perforated plate 12 made of Cu having a plurality of holes 12a is provided at the bottom.
  • a rotating magnetic field is formed below the inside of the reaction vessel 1 by the rotating magnetic field coils 4, 4 arranged on the side of the reaction vessel 1, and the metal such as Cu is deposited on the substrate 15 side by the rotating magnetic field.
  • the vehicle is accelerated when a force is applied to the vehicle.
  • a heater 16 is provided at the bottom of the reaction vessel 1 at a distance from the perforated plate 12, and a substrate 15 is placed on the top of the heater 16. .
  • the reaction vessel 1 At the lower end of the reaction vessel 1 and below the rotating magnetic field coil 4, hydrogen gas as a reducing gas 60 is reacted.
  • a reducing gas flow controller 6 for feeding the inside of the container 1 and a reducing gas introduction nozzle 5 are provided.
  • the first plasma generator 52 is provided by an insulating plate 9 disposed on the upper surface 58 of the reaction vessel 1, a first plasma antenna 8 provided on the insulating plate 9, and a first plasma power source 7.
  • the second plasma generator 53 has the same structure as the first plasma generator 52.
  • An exhaust port 57 is formed in the bottom surface 56 of the reaction vessel 1. The operation of the plasma-excited vapor deposition apparatus 51 having the above configuration will be described below.
  • the C12 gas which is the raw material gas 55
  • the flow controller 3 is controlled by the flow controller 3 and then introduced into the introduction container 11 via the nozzle 2.
  • C12 plasma which is the source gas plasma 10
  • the perforated plate 12 contains Cu in its material
  • the etching reaction of the perforated plate 12 made of Cu is positively caused by the C12 plasma, so that the precursor (CuxCly) is produced.
  • ) 13 is generated. This precursor (CuxCly) 13 is injected downward from the perforated plate 12 through a plurality of holes 12a.
  • the precursor 13 is accelerated and sent toward the substrate 15 placed on the substrate 16 by the rotating magnetic field formed by the rotating magnetic field coils 4, 4.
  • the precursor 13 passes through the H 2 plasma, which is the reducing gas plasma 14 generated by the second plasma power supply 19 via the second plasma antenna 18, the precursor
  • the body 13 undergoes a reduction reaction with atomic hydrogen to form a Cu thin film 62 on the substrate 15.
  • the range in which the Cu thin film 62 is formed depends on the uniformity of the rotating magnetic field.
  • HC 1 gas may be used as the source gas 55.
  • the source gas plasma 10 generates HC 1 plasma, but the Cu perforated plate 1
  • the precursor 13 produced by the etching reaction of 2 is CuxCly. Therefore, the source gas 55 may be any gas containing chlorine, and a mixed gas of HC 1 gas and C 12 gas can be used. The range in which a stable thin film can be formed depends on the uniformity of the rotating magnetic field.
  • FIG. 2 is a schematic diagram of a plasma-excited vapor deposition apparatus 65 for producing a noble metal thin film according to the second embodiment.
  • This apparatus 65 has a portion having the same structure as that of the plasma-excited vapor phase growth device 51 of the first embodiment, and therefore, the same portions are denoted by the same reference numerals and description thereof is omitted.
  • a plasma-excited vapor phase epitaxy apparatus 65 includes a reaction vessel 1 formed in a box shape, a first plasma generation apparatus 52 disposed above the reaction vessel 1, and hydrogen A reducing gas heating device 66 for heating a reducing gas 55 such as a gas into an atomic gas.
  • This plasma-excited vapor phase epitaxy apparatus 65 differs from the plasma-excited vapor phase epitaxy apparatus 51 of the first embodiment in that a reducing gas heating apparatus 66 is provided.
  • This reducing gas heating device 66 is provided with a reducing gas introduction nozzle 5 in a reducing gas flow controller 6, a tungsten filament is provided inside the reducing gas introduction nozzle 5, and the end thereof is connected to a DC power supply 24. Connected.
  • the flow rate of the H 2 gas which is the reducing gas 60
  • the reduction reaction flow rate controller 6 controls the tungsten filament 23 to turn on by the DC power supply 24.
  • the mixture is heated to 800 ° C. to generate atomic hydrogen, which is an atomic reducing gas 25, and irradiates the inside of the reaction vessel 1 from the reducing gas introducing nozzle 5.
  • the precursor 13 is caused to undergo a reduction reaction by atomic hydrogen to generate a Cu thin film 62 on the substrate 15.
  • HC 1 gas may be used as the source gas 55.
  • HC 1 plasma is generated as the source gas plasma 10, but the etching reaction of the perforated plate 12 made of Cu
  • the precursor 13 produced is CuxCly. Therefore, the source gas 55 may be a gas containing chlorine, and a mixed gas of HC 1 gas and Ch gas may be used.
  • atomic hydrogen which is an atomic reducing gas 25
  • the reducing gas introduction nozzle 5 that can be arranged relatively flexibly, stable film formation with an area of up to about 50 mm ⁇ 50 mni can be supported.
  • FIG. 3 is a schematic diagram of a plasma-excited vapor deposition apparatus 70 for producing a noble metal thin film according to the third embodiment.
  • This device 70 has the same structure as the plasma-excited vapor phase growth devices 51 and 65 in the first and second embodiments, and therefore, the same portions are denoted by the same reference numerals. Description is omitted.
  • the plasma-excited vapor phase epitaxy apparatus 70 includes a reaction vessel 1 formed in a box shape, a raw material gas heating apparatus 71 disposed above the reaction vessel 1, and a reaction vessel 1 and a reducing gas heating device 66 arranged below.
  • This plasma-enhanced vapor phase epitaxy apparatus 70 and the second embodiment It is different from the plasma-excited vapor growth apparatus 65 in the embodiment in that a source gas heating apparatus # 1 is provided.
  • This raw material gas heating device 71 is provided with a nozzle 2 in a flow controller 3, a copper filament 26 wound in a plurality of turns inside the nozzle 2, and an end portion of the copper filament 26. Is connected to the DC power supply 27.
  • the flow rate of C 12 gas which is the raw material gas 55, is controlled by the flow controller 3 and is sent to the raw material gas introduction nozzle 2.
  • a copper filament 26 heated to 300 to 600 ° C. by flowing a current from a DC power supply 27, and the copper filament 26 is provided.
  • the precursor 13 is generated by efficiently bringing the Cl 2 gas into contact with the substrate 26.
  • the precursor 13 moves downward.
  • the flow rate of the H 2 gas which is the reducing gas 60
  • the reducing gas flow controller 6 is controlled by the reducing gas flow controller 6, and is sent to the reducing gas introduction nozzle 5.
  • a tungsten filament 23 is provided inside the reducing gas introduction nozzle 5, and a current is supplied from the DC power supply 24 to the tungsten filament 23 to heat it to about 180 ° C.
  • atomic hydrogen which is an atomic reducing gas 25, is generated from the reducing gas 60.
  • the atomic hydrogen is irradiated into the reaction vessel 1 from the reducing gas introduction nozzle 5 to cause the precursor 13 to undergo a reduction reaction with atomic hydrogen.
  • a Cu thin film 62 is formed on the substrate 15.
  • the raw material gas 55 may be any gas containing chlorine, and may be, for example, HC1 gas or a mixed gas of HC1 gas and C12 gas.
  • the precursor 13 and the atomic hydrogen can be relatively flexibly arranged. Since the gas can be supplied only by the gas nozzle 5 that can be used, it is possible to cope with a stable film formation with an area of about 100 mm x 100 mm.
  • FIG. 4 is a schematic diagram of a plasma-excited vapor deposition apparatus 85 for producing a noble metal thin film according to the fourth embodiment.
  • This device 85 has a portion having the same structure as that of the plasma-excited vapor deposition device 51 in the first embodiment, and the same portion is denoted by the same reference numeral and description thereof is omitted.
  • the plasma-excited vapor phase epitaxy apparatus 85 uses the high-frequency power to generate the reduction plasma in the plasma-excited vapor phase epitaxy apparatus 51 according to the first embodiment. More specifically, the high-frequency power source is removed from the plasma-excited vapor phase growth device 51 shown in FIG. 1 except for the rotating magnetic field coil 4, the insulating plate 17, the second plasma antenna 18, and the second plasma power source 19.
  • the electrode connected to the substrate is additionally provided, and there is no change in the configuration of each part where the precursor 13 is generated, the hydrogen gas which is the reducing gas 60 is supplied, and the substrate 15 is disposed. .
  • the plasma-enhanced vapor phase epitaxy apparatus 85 includes an electrode 71 for generating reduced plasma between the perforated plate 12 and the heater plate 16 inside the reaction vessel 1, Externally, a high-frequency power supply 76, a matching device 75, and a current introduction terminal 73 are provided.
  • the high-frequency power source 76, the matching box 75, and the current introduction terminal 73 are connected to each other by a coaxial cable 74, and the current introduction terminal 73 and the reduced plasma generation electrode 71 are connected to a power supply line 73. Connected by two.
  • a plate-like electrode having a large number of holes is used so as not to obstruct the path of the flux of the precursor 13 toward the substrate 15.
  • the mesh-shaped electrode 77 is formed by meshing a metal wire on the inner peripheral side.
  • a metal mesh 77a is provided, and the outer periphery of the metal mesh 77a is fixed by a mesh holding jig 77b so that the periphery thereof cannot be unraveled.
  • the mesh holding jig 77 b is, for example, a ring of the same material as the metal mesh 77 a, and the metal mesh ⁇ 7 a is sandwiched and fixed from above and below in a sandwich shape. .
  • the reduced plasma generating electrode 71 is not limited to the mesh electrode 77 as long as it does not hinder the flux of the precursor 13 toward the substrate 15, and various electrodes can be used. .
  • a ladder-like electrode 79 shown in FIG. 6, a comb-like electrode 80 shown in FIG. 7, and a punching board-like electrode 81 shown in FIG. 8 can be preferably used.
  • the ladder-like electrode 79 has a structure in which a vertical wire 79a is provided on both sides, and a plurality of horizontal wires 79b are provided between the vertical wires 79a, 79a. is there.
  • the comb-shaped electrode 80 is formed by arranging a plurality of horizontal wires 80b on one vertical wire 80a. Two such wires are produced alternately. It is arranged so that it becomes.
  • the punched board-like electrode 81 is obtained by forming a plurality of small holes 83 in a circular metal board 82.
  • the diameter of the wire constituting the metal mesh 77a in the mesh electrode 77 the pitch between the meshes, the diameter, the number and the interval of the ladder steps in the ladder electrode 79, the comb shape Number of vertical and horizontal wires 80a, 80b in electrode 80, number of combinations of spacing and comb shape, diameter and number of holes in board 82 forming punching board electrode 81
  • the arrangement of the holes, the arrangement of the holes, and the aperture ratio of the electrodes so that the shape may be appropriately selected depending on what kind of reducing action is desired to occur.
  • conductive materials are used for these electrodes, but since the inside of the reaction vessel is in a chlorine atmosphere, it is desirable to use stainless steel or the like to prevent corrosion. New
  • the process until the precursor 13 is injected from the hole 12a of the perforated plate 12 is the same as in the first embodiment.
  • high-frequency power is applied from the high-frequency power source 76 to the reducing plasma generating electrode 71 through the matching device 75 and the current introducing terminal 73
  • the reducing gas is applied to the entire surface of the reducing plasma generating electrode 71.
  • Hydrogen plasma which is plasma 14, is generated.
  • the precursor 13 passes through the hydrogen plasma, the precursor 13 undergoes a reduction reaction by atomic hydrogen, and a Cu thin film 62 is formed on the substrate 15.
  • FIG. 9 is a schematic diagram of a plasma-excited vapor phase epitaxy apparatus 90 for producing a noble metal thin film according to the fifth embodiment.
  • This apparatus 90 is a combination of the plasma-excited vapor phase epitaxy apparatus 85 (see FIG. 4) of the fourth embodiment and a conventional source gas supply method (see FIG. 10).
  • the portions having the same structure are denoted by the same reference numerals and description thereof will be omitted.
  • the raw material container 122 is connected to the vaporizer 120 via the flow rate controller 103, and the liquid raw material contained in the raw material container 122 is connected. Bubbling piping is also provided to generate 122 steam. Further, a device for causing a reduction reaction of the precursor 13 by the reducing gas plasma 14 using high frequency power as shown in FIG. 4 is provided.
  • a liquid raw material 122 in a raw material container 122 for example, copper Lorocetylacetonato / trimethylvinylsilane Cu (hfacKtmvs) is sealed and bubbling is performed using He as a transport gas.
  • the liquid raw material 122 is not limited to this and may be a liquid organometallic complex.
  • the flow rate of the raw material vaporized by the bubbling is controlled by the flow rate controller 103 and introduced into the vaporizer 120. After the above-mentioned raw material is completely vaporized in the vaporizer 120, it is introduced into the reaction vessel 1 as a precursor 113 through a perforated plate 112.
  • the precursor 113 passes through the hydrogen plasma.
  • a Cu thin film 62 is formed on the substrate 15.
  • FIG. 10 shows a schematic side view of an apparatus for producing a metal film according to the sixth embodiment of the present invention.
  • a box-shaped, for example, stainless steel channel 201 has an upper portion provided with first plasma generating means 202, and a lower portion of the chamber 201 has a second plasma generating means.
  • Generating means 203 is provided.
  • a magnetic field coil 204 is provided on the side of the chamber 201.
  • the first plasma generating means 202 includes a first insulating plate 221 provided on the upper surface of the chamber 201, a first plasma antenna 222 provided on the first insulating plate 222, and
  • the first plasma antenna 222 includes a first power supply 222 that supplies power to the first plasma antenna 222.
  • the second plasma generating means 203 includes a second insulating plate 224 provided on the lower surface of the chamber 201 and a second plasma antenna 225 provided on the second insulating plate 224. And a second power source 226 for supplying power to the second plasma antenna 225.
  • An introduction container 206 is arranged below the first insulating plate 222 in the inside of the chamber 201, and a chlorine gas (C12 gas) as a source gas 205 is provided in the introduction container 206. Is supplied.
  • a flow controller 207 and a nozzle 208 are connected to the side of the introduction container 206, and a copper (Cu) injection plate (metal plate) 209 is provided at the bottom of the introduction container 206. Is provided.
  • a large number of injection holes 210 are formed in the injection plate 209.
  • a support 211 is provided near the bottom of the chamber 201, and the substrate 211 is placed on the support 211. The support base 211 is heated to a predetermined temperature by heating means (not shown).
  • a reducing gas flow controller for supplying hydrogen gas (H2 gas) as a reducing gas 212 to the inside of the chamber 201 is provided.
  • H2 gas hydrogen gas
  • 2 14 and a reducing gas nozzle 2 15 are provided.
  • an exhaust port 227 is formed at the bottom of the chamber 201.
  • a filament-shaped heating heater 228 as a chamber heating means is provided, and the heating heater 228 is energized by a power source 229.
  • the side wall of the chamber 201 is heated to a predetermined temperature, for example, 200 ° C to 600 ° C.
  • the upper limit of the predetermined temperature is preferably equal to or lower than the endurance temperature of the chamber 201.
  • the upper limit temperature is set to 600 ° C. For this reason, the upper limit of the predetermined temperature is appropriately determined depending on the material of the chamber 201.
  • the lower limit of the predetermined temperature is set to 200 ° based on the relationship between the vapor pressure of the precursor (CuxCly) and the temperature. C. For this reason, the lower limit of the predetermined temperature is appropriately set by the precursor generated according to the material of the injection plate 209.
  • C12 gas is introduced into the introduction vessel 206, and electromagnetic waves are incident on the introduction vessel 206 from the first plasma antenna 222 of the first plasma generating means 202. Then, the C12 gas in the introduction vessel 206 is ionized, and C12 gas plasma (raw material gas plasma) 231 is generated. Due to the C12 gas plasma 231, an etching reaction occurs in the Cu injection plate 209, and a precursor (CuxCly) 230 is generated. The precursor (CuxCly) 230 is injected downward through the injection hole 210.
  • H2 gas is introduced into the chamber 201, and an electromagnetic wave is injected into the chamber 201 from the second plasma antenna 225 of the second plasma generating means 203, whereby the inside of the chamber 201 is formed.
  • H2 gas is ionized and H2 gas plasma (reducing gas plasma) 232 is generated.
  • the H2 gas plasma 232 is uniformly and densely distributed near the surface of the substrate 212 by the rotating magnetic field formed by the magnetic field coil 204.
  • the precursor (CuxCly) 230 injected downward through the injection hole 210 passes through the H2 gas plasma 230 just before reaching the substrate 212.
  • the precursor (CuxCly) 230 passing through the H2 gas plasma 232 which is a reducing gas plasma, is reduced to chlorine by the reduction reaction with atomic hydrogen, converted into only Cu ions, and applied to the substrate 211. As a result, a Cu thin film 233 is generated on the surface of the substrate 211.
  • the precursor (CuxCly) 230 is attached to the side wall of the chamber 201. Also, the vapor pressure is increased and the gas is easily vaporized, so that the precursor (CuxCly) 230 is prevented from adhering to the side wall of the chamber 201.
  • the temperature of the side wall of the chamber 201 is lower than the predetermined temperature, for example, about 180 ° C., the vapor pressure of the precursor (CuxCly) 230 is not sufficiently high and the precursor (CuxCly) 2 30 sticking to the side wall of chamber 201 Has been confirmed.
  • chlorine gas (C12 gas) is described as an example of the source gas 205, but HC1 gas can be applied.
  • HC1 gas plasma is generated as the source gas plasma
  • the precursor 230 generated by etching the Cu injection plate 209 is CuxCly. Therefore, the source gas 205 may be any gas containing chlorine, and a mixed gas of HC1 gas and C12 gas may be used.
  • the material of the spray plate 209 is not limited to Cu, and Ag, Au, Pt, Ti, W, or the like can be used.
  • the precursor 230 is,! ! ⁇ Chloride and the substrate 21? The thin film formed on the surface of ! ,? ⁇ ⁇ And so on.
  • the metal film fabrication system with the above configuration uses two plasmas, C12 gas plasma (raw material gas plasma) 231 and H2 gas plasma (reducing gas plasma) 232, which greatly improves the reaction efficiency. As a result, the film forming speed increases. Further, since a chlorine gas (C12 gas) is used as the source gas 205 and a gas containing hydrogen is used as the reducing gas 213, the cost can be significantly reduced. In addition, since the reduction reaction can be independently increased, the residual of impurities such as chlorine in the Cu thin film 233 can be reduced, and a high-quality Cu thin film 233 can be produced.
  • C12 gas plasma raw material gas plasma
  • H2 gas plasma reducing gas plasma
  • FIG. 11 shows the gold according to the seventh embodiment of the invention.
  • 1 shows a schematic side view of an apparatus for producing a metal film. Note that the same members as those shown in FIG. 10 are denoted by the same reference numerals, and redundant description is omitted.
  • the metal film manufacturing apparatus is different from the metal film manufacturing apparatus shown in FIG. 10 in that a filament-shaped heating heater as a chamber heating means is provided. And a power source 229 is not provided, and an injection plate heating means for heating the injection plate 209 is provided. That is, an injection plate (metal plate) 209 made of copper (Cu) is provided at the bottom of the introduction container 206 via the insulating portion 241. An auxiliary nozzle 242 for supplying the rare gas He gas is connected to the side of the introduction container 206, and the introduction container 206 is provided with a chlorine gas (C12 gas) as the raw material gas 205. ) Is supplied along with He gas. The C12 gas and the He gas supplied to the introduction container 206 are supplied at a ratio of approximately one to one. A bias power source 243 is connected to the spray plate 209, and a DC voltage is applied to the spray plate 209 by the bias power source 243.
  • a bias power source 243 is connected to the spray plate 209, and a DC voltage is applied to the
  • the electromagnetic wave is incident on the introduction vessel 206 from the first plasma antenna 222 of the first plasma generation means 202 so that the C12 gas in the introduction vessel 206 is formed.
  • He gas are ionized, and C 12 ⁇ He gas plasma 244 is generated.
  • C 12 ⁇ He gas plasma 244 He ion collides with the injection plate 209 to which the bias voltage is applied, and the injection plate 9 is uniformly heated.
  • a heating means of the injection plate 209 a means of directly providing a heater or the like to the injection plate 209 and heating the same in addition to a means of colliding He ions can be applied.
  • the heating temperature of the spray plate 209 is, for example, in the range of 200 ° C. to 800 ° C., preferably, 600 ° C.
  • the lower limit of the heating temperature is preferably such that when the precursor (CuxCly) 230 passes through the injection hole 210, it becomes a precursor close to a monomer instead of a polymer, and is heated to 600 ° C. And the precursor 230 are likely to become monomeric CuCl, which facilitates the reduction reaction described below.
  • the heating temperature The upper limit of the value depends on the material of the spray plate 209. In the case of the spray plate made of copper (Cu) 209, the upper limit is 800 ° C. Becomes unusable. By controlling the voltage applied to the ejection plate 209, the ejection plate 209 is controlled to a desired temperature.
  • the generation of C 12 ′ He gas plasma 244 in the introduction vessel 206 causes an etching reaction on the heated injection plate 209 made of Cu by the C 12 gas plasma, and the monomer precursor (CuCl) 2 30 is likely to be generated.
  • the precursor (CuCl) 230 is injected downward through the injection holes 210 of the injection plate 209.
  • the precursor (CuCl 2) 230 injected downward through the injection hole 210 passes through the H 2 gas plasma 230 just before reaching the substrate 212, and undergoes a reduction reaction by atomic hydrogen.
  • the chlorine is reduced and removed to form only Cu ions and is applied to the substrate 212, whereby a Cu thin film 233 is formed on the surface of the substrate 212.
  • the precursor 230 injected downward is monomeric CuCl, it is easily reduced by atomic hydrogen, and chlorine is reduced and removed in a short time to form only Cu ions and the substrate 2 Then, a thin Cu film 233 is formed on the surface of the substrate 212 in a short time. Therefore, since the injection plate 209 is uniformly heated to the desired temperature by the collision of He ion, a monomer precursor (Cu (U) 230) that is easily reduced is generated, and chlorine is generated. Is reduced and removed in a short time, and the film formation rate can be improved.
  • FIG. 12 shows a schematic side view of a metal film production apparatus according to an eighth embodiment of the present invention. Note that the same members as those shown in FIGS. 10 and 11 are denoted by the same reference numerals, and redundant description is omitted.
  • the metal film manufacturing apparatus according to the eighth embodiment shown in FIG. 12 is different from the metal film manufacturing apparatus shown in FIG. 11 in that a filament-shaped heating heater as a chamber heating means is used. And a power source 229. That is, Chan It has a configuration in which a heating means and a jet plate heating means are provided.
  • the precursor (CuCl) 230 is deposited on the side wall of the chamber 201.
  • the vapor pressure is increased and the gas is easily vaporized, and the precursor (CuCl 2) 230 is prevented from adhering to the side wall of the chamber 201.
  • the precursor 230 injected downward is monomeric CuCl, it is easily reduced by atomic hydrogen, and chlorine is reduced and removed in a short time to form only Cu ions. Then, it is applied to the substrate 212, and a Cu thin film 233 is generated on the surface of the substrate 212 in a short time.
  • the side wall of the chamber 201 is heated to a predetermined temperature by the heating heater 228, the vapor pressure increases even if the precursor (CuCl) 230 adheres to the side wall of the chamber 201. It is easy to vaporize, and the precursor (CuCl 2) 230 is prevented from adhering to the side wall of the chamber 201. This eliminates the need for periodic cleaning in the chamber 201, thereby improving the raw material yield and reducing the running cost. Further, since the injection plate 209 is uniformly heated to a desired temperature by the collision of He ions, a monomer precursor (CuCl) 230 that is easily reduced is generated, and chlorine is reduced in a short time. It is possible to improve the film forming speed by being reduced and removed.
  • FIG. 13 shows a schematic side view of a metal film manufacturing apparatus according to a ninth embodiment of the invention. Note that the same members as those shown in FIG. 10 are denoted by the same reference numerals, and redundant description is omitted.
  • the metal film manufacturing apparatus according to the ninth embodiment shown in FIG. 13 is different from the metal film manufacturing apparatus shown in FIG. 10 in that atomic reduction is performed instead of H2 gas plasma 232 as a reducing gas plasma. It is designed to generate gas 25 1. Therefore, instead of the second plasma generating means 203, reduction of H2 gas etc.
  • the apparatus is provided with a reducing gas heating means 252 which heats the gas 213 to produce the atomic reduction gas 251.
  • the reducing gas heating means 25 2 is provided with a reducing gas nozzle 2 15 in the reducing gas flow controller 2 14, a tungsten filament 25 3 in the reducing gas nozzle 21 5, and a tungsten filament 25 The end of 3 is connected to a DC power supply 2 54.
  • C12 gas is introduced into the introduction vessel 206, and electromagnetic waves are incident on the introduction vessel 206 from the first plasma antenna 222 of the first plasma generating means 202. Then, a C12 gas plasma (source gas plasma) 231 in which the C12 gas in the introduction container 206 is ionized is generated. Due to the C12 gas plasma 231, an etching reaction occurs in the Cu injection plate 209, and a precursor (CuxCly) 230 is generated. The precursor (CuxCly) 230 is injected downward through the injection hole 210.
  • the flow rate of the H2 gas which is the reducing gas, is controlled by the reducing gas flow controller 214, and the tungsten gas is supplied by the DC power source 254.
  • Atomic filament 25 3 is heated to generate atomic reducing gas 25 1 (atomic hydrogen), and the atomic reducing gas 25 1 is injected into the chamber 201 from the reducing gas nozzle 21 5. .
  • the precursor (CuxCly) 230 injected downward through the injection hole 210 passes through the atomic reducing gas 251 just before reaching the substrate 212, and The body (CuxCly) 230 is reduced to chlorine by a reduction reaction with atomic hydrogen, turned into Cu ions only, and applied to the substrate 212, and the Cu thin film 230 on the surface of the substrate 211 is formed. Is generated.
  • the precursor (CuxCly) 230 is attached to the side wall of the chamber 201.
  • the precursor (CuxCly) 230 is prevented from adhering to the side wall of the chamber 201 because the vapor pressure increases and the gas is easily vaporized. You.
  • the metal film manufacturing apparatus having the above configuration uses chlorine gas (C12 gas) as the raw material gas 205 and hydrogen-containing gas as the reducing gas 213, so that the cost is greatly reduced. Can be reduced.
  • the reduction reaction can be independently increased, impurities such as chlorine in the Cu thin film 233 can be reduced, and a high-quality Cu thin film 233 can be produced. become .
  • atomic hydrogen which is an atomic reducing gas 251
  • a film having a stable area for example, 50 mm ⁇ 50 mm
  • FIG. 14 shows a schematic side view of a metal film manufacturing apparatus according to the tenth embodiment of the present invention.
  • the same members as those shown in FIGS. 13A and 13B are denoted by the same reference numerals, and redundant description is omitted.
  • the metal film manufacturing apparatus is different from the metal film manufacturing apparatus shown in FIG. 13 in that a filament-shaped heating heater as a chamber heating means is used. And a power source 229 is not provided, and an injection plate heating means for heating the injection plate 209 is provided. That is, an injection plate (metal plate) 209 made of copper (Cu) is provided at the bottom of the introduction container 206 via the insulating portion 241. An auxiliary nozzle 242 for supplying the rare gas He gas is connected to the side of the introduction container 206, and the raw material gas is connected to the introduction container 206. He gas is supplied together with the chlorine gas (C12 gas), which is 205. The C12 gas and the He gas supplied to the introduction container 206 are supplied at a ratio of approximately one to one. A bias power supply 243 is connected to the injection plate 209, and a DC voltage is applied to the injection plate 209 by the bias power supply 243.
  • a bias power supply 243 is connected to the injection plate 209, and a DC voltage is applied to the injection plate 20
  • the electromagnetic wave is incident on the introduction vessel 206 from the first plasma antenna 222 of the first plasma generation means 202, whereby the C 12 gas in the introduction vessel 206 is formed.
  • He gas are ionized to generate C12 ⁇ He gas plasma 244.
  • C 12 ⁇ He gas plasma 244 He ions collide with the injection plate 209 to which the bias voltage is applied, and the injection plate 209 is uniformly heated.
  • the heating means for the injection plate 209 a means for directly heating the injection plate 209 or the like and heating the injection plate 209 can be applied in addition to the means for colliding the ion. .
  • the heating temperature of the spray plate 209 is, for example, in the range of 200 ° C. to 800 ° C., preferably, 600 ° C.
  • the lower limit of the heating temperature is preferably such that when the precursor (CuxCly) 230 passes through the injection hole 210, it becomes a precursor close to a monomer instead of a polymer, and is heated to 600 ° C. And the precursor 230 are likely to become monomeric CuCl, which facilitates the reduction reaction described below.
  • the upper limit of the heating temperature depends on the material of the spray plate 209. In the case of the spray plate 209 made of copper (Cu), the upper limit is 800 ° C. Plate 209 becomes unusable. By controlling the voltage applied to the ejection plate 209, the ejection plate 209 is controlled to a desired temperature.
  • the generation of C 12 ⁇ He gas plasma 244 in the introduction vessel 206 causes an etching reaction on the heated injection plate 209 made of Cu by the C 12 gas plasma, and the monomer precursor ( Cu (M) 2 30 is easily generated, and the precursor (CuCl) 230 is injected downward through the injection plate 210 of the injection plate 209. Injection hole 210 The precursor (CuCl) 230 injected downward through the substrate 21 Immediately before arriving at 2, the precursor (CuCl 2) 230 passes through the atomic reducing gas 25 1, and the precursor (CuCl 2) 230 is reduced and removed by the atomic hydrogen reduction reaction to form only the Cu ion and the substrate 2 1 Then, a Cu thin film 2 33 is formed on the surface of the substrate 2 12.
  • the precursor 230 injected downward is monomeric CuCl, it is easily reduced by atomic hydrogen, and the chlorine is reduced and removed in a short time, leaving only Cu ion and the substrate 2 Then, a Cu thin film 233 is generated on the surface of the substrate 212 in a short time. Therefore, since the injection plate 209 is uniformly heated to the desired temperature by the collision of He ions, a monomer precursor (CuCl) 230 that is easily reduced is generated, and chlorine is reduced in a short time. It is possible to increase the film formation rate by being reduced and removed.
  • FIG. 15 shows a schematic side view of a metal film production apparatus according to the eleventh embodiment of the present invention. Note that the same members as those shown in FIGS. 13 and 14 are denoted by the same reference numerals, and redundant description is omitted.
  • the metal film manufacturing apparatus according to the first embodiment shown in FIG. 15 is different from the metal film manufacturing apparatus shown in FIG. 14 in that a filament-shaped heating heater as a chamber heating means is used.
  • the configuration is such that the chamber heating means and the injection plate heating means are provided.
  • the precursor (CuCl) 230 is attached to the side wall of the chamber 201.
  • the vapor pressure is increased and the gas is easily vaporized, and the precursor (CuCl 2) 230 is prevented from adhering to the side wall of the chamber 201.
  • the precursor 230 injected downward is monomeric CuCl, it is easily reduced by atomic hydrogen, and chlorine is reduced and removed in a short time. Then, only the Cu ion is formed and applied to the substrate 212, and a Cu thin film 233 is generated on the surface of the substrate 212 in a short time.
  • the side wall of the chamber 201 is heated to a predetermined temperature by the heating heater 228, even if the precursor (CuCl) 230 adheres to the side wall of the chamber 201, the vapor pressure increases and the vapor pressure increases. This prevents the precursor (CuCl) 230 from adhering to the side wall of the chamber 201. This eliminates the need for periodic cleaning in the chamber 201, thereby improving the raw material yield and reducing the running cost.
  • the injection plate 209 is uniformly heated to a desired temperature by the collision of He ions, a monomer precursor (CuCl) 230 that is easily reduced is generated, and chlorine is reduced and removed in a short time. As a result, the film forming speed can be improved.
  • FIG. 16 shows a schematic side view of an apparatus for producing a metal film according to the 12th embodiment of the present invention.
  • the same members as those shown in FIGS. 13A and 13B are denoted by the same reference numerals, and redundant description is omitted.
  • the metal film manufacturing apparatus according to the 12th embodiment shown in FIG. 16 is different from the metal film manufacturing apparatus shown in FIG. 13 in that a C12 gas plasma 231 is generated in an introduction container 206. Instead of generating the precursor (CuxCly) 230, the precursor (CuxCly) 230 is injected into the chamber 201 from the nozzle 8 of the raw material gas heating means 26 1. .
  • the raw material gas heating means 261 is provided with a nozzle 208 in the flow rate controller 207, a copper filament 262 wound in a plurality of turns inside the nozzle 208, and a copper filament.
  • the end of 262 is connected to a DC power supply 263.
  • the DC filament 262 heats the copper filament 262 to 300 ° C to 600 ° C.
  • the flow rate of C12 gas which is a raw material gas, is controlled by the flow rate controller 207 and introduced into the nozzle 208.
  • Nozzle 208 inside Since the copper filament 262 heated to 300 to 600 ° C by the DC power supply 263 is provided, the C12 gas contacts the heated copper filament 262. This produces a precursor (CuxCly).
  • the precursor (CuxCly) 230 is introduced into the chamber 201 from the nozzle 208, the precursor (CuxCly) 230 moves downward.
  • the flow rate of H2 gas which is the reducing gas
  • the reducing gas flow rate controller 214 controls the tungsten filter 255.
  • an atomic reducing gas 25 1 (atomic hydrogen) is generated, and the atomic reducing gas 25 1 is injected into the chamber 1 from the reducing gas nozzle 2 15.
  • the precursor (CuxCly) 230 injected downward through the injection hole 210 passes through the atomic reducing gas 250 just before reaching the substrate 211, and the precursor (CuxCly) 230 is subjected to a reduction reaction with atomic hydrogen to reduce and remove chlorine to form only Cu ions, which is applied to the substrate 212, and a Cu thin film 233 is formed on the surface of the substrate 212. Generated.
  • the precursor (CuxCly) 230 is placed in the chamber 201.
  • the vapor pressure is also high on the side wall, which makes it easy to vaporize, preventing the precursor (CuxCly) 230 from adhering to the side wall of the chamber 201.
  • the apparatus for producing a metal film having the above configuration supplies a precursor (CuxCly) 230 only through a nozzle 208 that can be arranged relatively flexibly, and a reducing gas nozzle that can arrange atomic hydrogen relatively flexibly. Since it can be supplied only with 215, it is possible to cope with film formation with extremely stable area (for example, lOOmmxlOOmm).
  • FIG. 17 is a schematic cross-sectional view showing a copper thin film vapor phase growth apparatus according to the thirteenth embodiment.
  • FIG. 18 is a plan view showing a copper spray plate incorporated in the vapor phase growth apparatus of FIG. is there.
  • a flat plate 303 on which a substrate to be processed is placed is arranged in a box-shaped reaction vessel 302 having an exhaust pipe 301 at the bottom.
  • Exhaust means such as a vacuum pump is connected to the other end of the exhaust pipe 301.
  • a cylindrical bottomed introduction container 300 having a copper injection plate 304 with a plurality of injection holes 304 drilled at the bottom is suspended above the reaction container 302.
  • a circulation pipe 300 as a temperature control means through which a heating medium (for example, heating air) or a cooling medium (for example, cooling air) flows is provided in the copper spray plate 300 as shown in FIG.
  • the injection plate is inserted in a meandering manner so as to be parallel to the surface of the plate.
  • a source gas supply pipe 308 for introducing chlorine or hydrogen chloride is inserted into the introduction vessel 306 through the side walls of the reaction vessel 302 and the introduction vessel 306 from outside. Have been.
  • the flow controller 309 is interposed in the raw material gas supply pipe 8 located outside the reaction vessel 302.
  • the first plasma generator 310 is arranged on the upper surface of the reaction vessel 302 where the introduction vessel 6 is located.
  • the first plasma generator 310 is provided on an insulating plate 311 disposed on the upper surface of the reaction container 302 so as to cover the introduction container 310, and on the insulating plate 311. Connected to the first plasma antenna 3 1 2 and the first plasma antenna 3 1 2 And the first plasma power supply 3 13.
  • a moisture pressure gauge 315 having two detection terminals 314a and 314b is arranged outside the reaction vessel 302.
  • One of the detection terminals 3 14 a is inserted into the introduction container 310 through the side wall of the reaction container 302 and the side wall of the introduction container 303, and the other detection terminal 3 14 b is inserted into the reaction vessel 302 through the side wall of the reaction vessel 302.
  • the moisture pressure gauge 315 measures the moisture pressure when the inside of the reaction vessel 302 and the inside of the introduction vessel 306 are evacuated before film formation.
  • a hydrogen supply pipe 316 for supplying a reducing gas, for example, an element, is inserted into the reaction vessel 302 from the outside through the lower side wall of the reaction vessel 302.
  • the flow controller 317 is interposed in the hydrogen supply pipe 316 located outside the reaction vessel 302.
  • the second plasma generator 318 is arranged at the bottom of the reaction vessel 302.
  • the second plasma generator 3 18 includes an insulator 3 19 disposed on the bottom of the reaction vessel 302 and a second plasma antenna 3 20 provided on the lower surface of the insulating plate 3 19. And a second plasma power source 3 21 connected to the bottom surface of the second plasma antenna 3 20.
  • the rotating magnetic field coil 32 2 is wound around the outer surface of the side wall near the lower part of the reaction vessel 302 at a desired distance.
  • the rotating magnetic field coil 32 2 transmits hydrogen plasma, which will be described later, generated above the heater 303 of the reaction vessel 2 at a high density near the surface of the substrate to be processed installed on the heater 303. It acts to distribute.
  • the substrate to be processed 323 is placed on a flat plate 303 in a reaction vessel 302.
  • the gas (air) in the reaction vessel 302 and the introduction vessel 303 is evacuated through an exhaust pipe 1 by operating an exhaust means (not shown) to a predetermined gas. Apply vacuum.
  • the water pressure in the reaction vessel 302 and the introduction vessel 303 is measured by a water pressure gauge 315 to confirm that the water pressure is constant.
  • hydrogen is supplied into the reaction vessel 302 through the hydrogen supply pipe 316.
  • the flow rate of the hydrogen is controlled by a flow controller 317 provided in the hydrogen supply pipe 316.
  • a raw material gas for example, chlorine (C 12) is supplied into the introduction container 310 through a raw gas supply pipe 308.
  • the flow rate of the chlorine is controlled by a flow controller 309 interposed in the source gas supply pipe 308.
  • a heating medium for example, heated air
  • the first plasma power supply 313 of the first plasma generator 310 is turned on to apply, for example, high-frequency power to the first plasma antenna 321.
  • chlorine plasma 25 is generated in the introduction vessel 30.
  • a cooling medium is supplied to the circulation pipe 307 instead of the heating medium. Then, the spray plate 2005 is controlled to a target temperature.
  • the activated chlorine in the plasma 324 and the heating medium are supplied and circulated to the circulation pipe 307.
  • the copper spray plate 305 heated to a predetermined temperature reacts to generate a precursor of copper chloride (CuxCly).
  • the generated precursor (CuxCly) is injected into the reaction vessel 302 through a plurality of injection holes 304 of the copper injection plate 305 as shown by arrows in FIG.
  • the injected precursor passes through the hydrogen plasma 324 just before reaching the substrate to be processed 32 3 placed on the flat plate 303, so that the hydrogen plasma 3 24
  • the reduction reaction is performed by the atomic hydrogen therein.
  • copper generated by the reduction reaction of the precursor (CuXC1y) and the atomic hydrogen grows on the substrate to be processed 323 to form a copper thin film.
  • inexpensive chlorine is supplied through the raw material supply pipe 308 into the introduction vessel 306 having the copper spray plate 305 at the bottom, and the first plasma generator A chlorine plasma 325 is generated in the introduction vessel 6 by 310, and the activated chlorine in the plasma 325 reacts with the copper spray plate 305 to produce a copper vapor growth material.
  • an inexpensive copper chloride precursor (CuxCly).
  • a plasma 325 can be obtained. Since the reaction between the activated chlorine in the inside and the copper spray plate 305 can be promoted, the production amount of the precursor (CuxCly) can be increased.
  • Such a precursor is injected into the reaction vessel 302 through a plurality of injection holes 304 of the injection plate 305, and passes through the hydrogen plasma 324 generated in advance in the reaction vessel 302.
  • a reduction reaction with atomic hydrogen during the formation copper can be grown on the substrate 323 at a relatively high speed as compared with thermal decomposition to form a copper thin film.
  • a heating medium is supplied to a circulation pipe 307 built in the copper injection plate 305, circulated and heated, and the copper injection plate 305 reaches a certain temperature.
  • the reaction with the activated chlorine in the chlorine plasma 325 proceeds, so that the pressure (injection pressure) of the precursor injected from the plurality of injection holes 304 of the copper injection plate is reduced.
  • the kind of precursor (CuxC1y) generated is the same.
  • the copper deposition rate on the substrate to be processed 3 23 can be stabilized, so that a copper thin film having a desired thickness can be formed on the substrate to be processed 3 23 with good reproducibility. .
  • the precursor (CuxC 1 y) undergoes a reduction reaction with atomic hydrogen while passing through the hydrogen plasma 324 to vapor-deposit copper on the surface of the substrate 3 23, and
  • the atomic hydrogen in the hydrogen plasma 324 also performs a reducing action on copper in the film forming process, a copper thin film having good film quality with little residual impurities such as chlorine is formed.
  • the temperature control means of the copper injection plate is not limited to a circulation pipe through which a heating medium or a cooling medium is circulated, and the copper injection plate is heated and cooled.
  • chlorine is used as a raw material gas, but a precursor of copper chloride (CuxCly) may be similarly used even when hydrogen chloride is used. Can be generated.
  • hydrogen is converted into plasma to generate atomic hydrogen.
  • an atom for example, tungsten filament or the like for heating the hydrogen supplied into the reaction vessel is provided. Hydrogen may be generated.
  • FIG. 19 is a schematic cross-sectional view showing a vapor deposition apparatus for a copper thin film according to the fourteenth embodiment.
  • FIG. 20 (A) shows a spiral tube incorporated in the vapor deposition apparatus of FIG. The vertical section shown in the figure, (B) shows the spiral tube
  • FIG. 21 (A) is a longitudinal sectional view showing another form of spiral tube incorporated in the vapor phase growth apparatus of FIG. 19, and
  • FIG. 21 (B) is a transverse sectional view showing the spiral tube.
  • a flat plate 333 on which a substrate to be processed is placed is arranged inside a box-shaped reaction vessel 332 having an exhaust pipe 331 at the bottom.
  • Exhaust means such as a vacuum pump is connected to the other end of the exhaust pipe 33.
  • a source gas supply pipe 334 for introducing chlorine or hydrogen chloride is inserted into the upper portion of the reaction vessel 332 from the outside through the side wall of the reaction vessel 332.
  • the flow controller 335 is interposed in the source gas supply pipe 334 located outside the reaction vessel 332.
  • a spiral tube 3336 having a material gas flowing inner surface made of copper and having a heating member attached thereto has an upper end connected to the tip of the source gas supply pipe 3334 located in the reaction vessel 3332. Have been.
  • the spiral tube 33 36 is inserted into the outer tube 33 7 and the outer tube 33 37, and is connected to the raw material gas supply tube 33 4 to be connected to the copper inner tube 33.
  • the raw material gas is circulated in the copper inner pipe 338, and the annular space between the outer pipe 337 and the copper inner pipe 338 is heated.
  • Medium eg, heated air
  • the heating medium supply pipe (not shown) penetrates the wall of the reaction vessel 32 and is connected to the source gas supply pipe 33 4 in the vicinity of the connection portion with the outer pipe 33 of the spiral tube 33.
  • the heating medium is supplied to the annular space between the outer tube 33 7 and the copper inner tube 33 8.
  • a heating medium discharge pipe penetrates the wall of the reaction vessel 33, is connected to an outer pipe 3337 near the lower end of the spiral tube 33, and is supplied to the annular space.
  • the heating medium is discharged to the outside.
  • the precursor injection member 339 is arranged in the reaction vessel 332 below the spiral tube 336 so that the spiral tube 336 is connected to the upper part thereof.
  • a water pressure gauge 341 having two detection terminals 340a and 340b is arranged outside the reaction vessel 332.
  • One of the detection terminals 340a is inserted into the inner tube 338 through the side wall of the reaction vessel 332 and the outer tube 337 and the inner tube 338 of the spiral tube 336.
  • the other detection terminal 340b is inserted into the reaction vessel 332 through the side wall of the reaction vessel 332.
  • the water pressure gauge 341 measures the water pressure when the inside of the reaction vessel 332 and the inside tube 338 of the spiral tube 336 are evacuated before film formation.
  • a hydrogen supply pipe 342 for supplying a reducing gas, for example, hydrogen, is inserted into the reaction vessel 332 from the outside through the lower side wall of the reaction vessel 332.
  • the flow controller 343 is interposed in the hydrogen supply pipe 342 located outside the reaction vessel 332.
  • the plasma generator 344 is arranged at the bottom of the reaction vessel 332.
  • the plasma generator 344 includes an insulating plate 345 disposed on the bottom surface of the reaction vessel 332, a plasma antenna 364 provided on the lower surface of the insulating plate 345, And a plasma power supply 347 connected to the bottom of the antenna 346.
  • the rotating magnetic field coil 348 is wound around the outer surface of the side wall near the lower part of the reaction vessel 332 at a desired distance.
  • the rotating magnetic field coil 348 causes a hydrogen plasma, which will be described later, generated above the reaction vessel 3332 above the heater 3333 to be high in the vicinity of the surface of the substrate to be processed installed on the heater 3333. It acts to distribute by density.
  • the substrate 349 to be processed is placed on the flat plate 333 in the reaction vessel 332.
  • the gas (air) in the reaction vessel 3 32 and the inner tube 3 38 of the spiral tube 3 36 is evacuated through the exhaust pipe 3 3 1 by operating the exhaust means (not shown) to a predetermined degree of vacuum. .
  • the water pressure in the reaction vessel 3332 and the inner tube 3338 of the spiral tube 3336 was measured with a water pressure gauge 341, and it was confirmed that the water pressure was constant. I do.
  • hydrogen is supplied into the reaction vessel 332 through a hydrogen supply pipe 342.
  • the flow rate of the hydrogen is controlled by a flow rate controller 343 provided in the hydrogen supply pipe 342.
  • the plasma power source 347 of the plasma generator 344 is turned on, and, for example, high frequency power is applied to the plasma antenna 346 to generate a hydrogen plasma 350 near the substrate 349 to be processed.
  • the hydrogen plasma 350 is distributed at a high density near the surface of the substrate 349 due to the rotating magnetic field from the rotating magnetic field coil 348 disposed outside the reaction vessel 332. Is done.
  • a raw material gas for example, chlorine (C 12) is supplied into the copper inner tube 338 of the spiral tube 3336 through the raw material gas supply tube 3334.
  • the flow rate of the chlorine is controlled by a flow controller 335 provided in the source gas supply pipe 334.
  • a heating medium (for example, heated air) heated to a predetermined temperature is passed from the outside of the reaction vessel 33 to a heating medium supply pipe (not shown), and the outer pipe 337 and the inner pipe 3 of the spiral tube 33 , And is discharged to the outside through a heating medium discharge pipe (not shown), and by heating the copper inner pipe 338 of the spiral tube 336 to a predetermined temperature,
  • the pipe 338 reacts with chlorine (C 12) flowing through the inner pipe 338 to form a copper chloride precursor (CuxC 1 y).
  • the generated precursor (CuxCly) is injected from the precursor injection member 339 into the reaction vessel 3332 as shown by an arrow in FIG.
  • the injected precursor passes through the hydrogen plasma 350 just before reaching the substrate 349 to be processed, which is set on the plate-shaped heater 33, so that the hydrogen plasma 350 A reduction reaction is caused by the atomic hydrogen of As a result, copper generated by a reduction reaction of the precursor (CuxCly) and atomic hydrogen grows on the substrate 349 to form a copper thin film.
  • inexpensive chlorine is supplied through the raw material gas supply pipe 3 3 4 into the copper inner pipe 3 3 8 of the spiral tube 3 3 6 and the outer pipe 3 of the spiral tube 3 3 6
  • a heating medium through the annular space between 37 and the inner tube 338 to heat the copper inner tube 338, and reacting chlorine with the copper inner tube 338, copper is produced.
  • Inexpensive copper chloride precursor (Cux Cly) can be produced as a raw material for vapor phase growth of.
  • Such a precursor is injected from the precursor injection member 33 9 into the reaction vessel 33 2, and the atomic hydrogen is passed while passing through the hydrogen plasma 350 generated in the reaction vessel 33 2 in advance.
  • the reduction reaction copper can be grown on the substrate 349 at a relatively high speed as compared with the thermal decomposition to form a copper thin film.
  • a heating medium is passed through the annular space between the outer tube 337 and the inner tube 338 of the spiral tube 336 to heat the copper inner tube 338.
  • the temperature of 8 reaches a certain temperature
  • the reaction between the copper inner pipe 338 and the chlorine flowing through the inner pipe 338 proceeds, so that the precursor injected from the precursor injection member 33 9 Can stabilize body pressure (injection pressure).
  • the type of precursor (CuxCly) generated is the same.
  • the precursor (CuXC1y) undergoes a reduction reaction by atomic hydrogen while passing through a hydrogen plasma 350 to vapor-grow copper on the surface of the substrate 349 to be processed.
  • the reducing action of atomic hydrogen in the hydrogen plasma 350 is performed on copper in the film forming process, so that a copper thin film having good film quality with less residual impurities such as chlorine is produced.
  • the spiral tube has a double-tube structure in the 14th embodiment, and a heating medium is supplied to the annular space between the outer tube and the copper inner tube of the spiral tube to form the spiral tube.
  • the copper inner tube was heated, it is not limited to such a structure. For example, as shown in FIG.
  • the spiral tube 3336 has a structure in which a tubular tube 353 is disposed on the outer peripheral surface of a copper tube 351 via a tubular insulating material 352, The copper tube 35 1 may be heated to a predetermined temperature by the use of 35 3.
  • chlorine is used as a source gas.
  • a precursor of copper chloride (CuxCly) can be similarly generated by using hydrogen chloride.
  • hydrogen is converted into plasma to generate atomic hydrogen.
  • a heater or the like for heating the hydrogen supplied into the reaction vessel to generate atomic hydrogen. It may be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrochemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Description

明 細 書 金属膜の作製方法及びその作製装置 技術分野
本発明は、 プラズマ気相成長法による貴金属薄膜の作製方法及びその 作製装置に関する。
また、 本発明は、 気相成長法により基板の表面に金属膜を作製する金 属膜作製装置及び金属膜作製方法に関する。
さらに、 本発明は、 半導体装置の配線材料膜の形成等に適用される銅 薄膜の気相成長装置に関する。 背景技俯
従来、 気相成長法により貴金属薄膜を作製する場合、 例えば、 銅 ' へ キサフロロァセチルァセ トナ ト · ト リメチルビニルシラン (以下、
Cu( hfac ) ( tmvs )という。;)などの液体の有機金属錯体を原料として用い、 熱的な反応を利用して成膜している。
図 2 2は従来の貴金属薄膜気相成長装置 5 0 0を示す概略図である。 この装置 5 0 0を用いて基板 5 1 5の上に貴金属の薄膜 5 4 1を生成す る方法を説明する。 まず、 原料容器 5 2 1内に液体原料 5 2 2 として Cu( hfac ) ( tmvs )を封入し、 Heガスを輸送用ガスとしてバブリングを行な う。 このパブリングによつて蒸気化した原料と還元反応用 H2を流量制御 器 5 0 3, 5 0 6によってそれそれ流量を制御し、 気化器 5 2 0を有す る導入容器 5 1 1内で完全に気化した後に、 反応容器 5 0 1の内部に穴 開き板 5 1 2を通して前駆体 5 1 3として導入する。 基板 5 1 5は、 ヒ 一夕一 5 1 6に載置された状態で穴開き板 5 1 2の直下に配設されてい る。 このとき、 原料 5 2 2及び還元反応用 H2の流量と成長温度を制御す ることにより、 成長速度と膜質の改善を図っている。
しかしながら、 上述した従来の技術においては、 以下の 3つの問題点 があった。
第 1に、 基板 5 1 5を加熱することによって起こる、 基板表面上での 熱的反応を利用した成膜方法のため、 成膜速度の向上を図ることが困難 であった。
第 2に、 原料となる有機金属錯体、 例えば Cu(hfac)(tmvs)のコス トが 高かった。
第 3に、 Cu(hfac)(tmvs)のうち、 Cuに付随しているへキサフロロァセ チルァセ トナ ト (hfac) 及びト リメチルビニルシラン (tmvs) が薄膜 5 4 1である Cu薄膜中に不純物として残留するため、膜質の向上を図るこ とが困難であった。
また、 従来、 気相成長法により金属膜、 例えば、 銅の薄膜を作製する 場合、 例えば、 銅 ' へキサフ ロロァセチルァセ トナ ト · ト リメチルビ二 ルシラン等の液体の有機金属錯体を原料として用い、 固体状の原料を溶 媒に溶かし、 熱的な反応を利用して気化して基板に成膜を実施している しかしながら、 従来の技術では、 熱的反応を利用した成膜のため、 成 膜速度の向上を図ることが困難であった。 また、 原料となる金属錯体が 高価であり、 しかも、 銅に付随しているへキサフロロァセチルァセ トナ ト及びト リメチルビ二ルシランが銅の薄膜中に不純物として残留するた め、 膜質の向上を図ることが困難であった。
さらに、 従来は、 銅 ( C u) 薄膜は、 真空蒸着法、 イオンプレーティ ング法、 及びスパッタ リ ング等の物理的成膜法と、 化学的気相成長法 ( CVD法) とにより形成されている。 特に、 CVD法は表面の被覆性に 優れていることから、 一般的に広く用いられる。
CVD法による銅薄膜の形成方法としては、 従来、 銅 · へキサフロロ ァセチルァセ トナ ト · ト リメチルビニルシラン 「以下、 C u ( h f a c ) ( t m v s ) と称す」 などの液体の有機銅錯体を原料として用い、 この 原料を蒸発させて所定の被処理基板表面に輸送し、 これを熱的に分解し て銅薄膜を前記基板表面に成膜する方法が知られている。
前記銅薄膜の形成方法を図 2 3に示す銅薄膜の気相成長装置 6 0 0を 参照して具体的に説明する。 まず、 反応容器 6 0 1内の平板状ヒ一夕 6 0 2上に被処理基板 6 0 3を設置し、 排気管 6 0 4を通して前記反応容 器 6 0 1内のガスを排気して所定の真空度にする。 つづいて、 C u ( h で & 0 ) ( 111 3 )の原料 6 0 5が収容された原料容器 6 0 6内に H e のような輸送用ガスを配管 6 0 7 aを通して供給してパブリ ングを行う 。 このパプリ ングによって蒸気化された原料ガスおよび還元ガス、 例え ば水素をそれそれ配管 6 0 7 b , 6 0 7 cを通して前記反応容器 6 0 1 の上部に取付けられた気化器 6 0 8内に供給する。 この時、 前記各配管 6 0 7 b , 6 0 7 cに介装された流量制御器 6 0 9, 6 1 0によ り前記 原料ガスおよび水素の流量を制御する。 前記気化器 6 0 8内で前記原料 ガスを完全に気化した後、 この気化器 6 0 8底部に配置された噴射板 6 1 1の複数の噴射孔 6 1 2から前記原料ガスと水素の混合ガス 6 1 3を 前記ヒ一夕 6 0 2上の被処理基板 6 0 3に向けて噴射する。 この時、 前 記原料である C u ( h f a c ) ( t mv s )は前記平板状ヒ一夕 6 0 2に より所定の温度に加熱された前記被処理基板 6 0 3表面で熱分解されて 銅薄膜 6 1 4が成膜される。 また、 この成膜に際し、 水素の還元作用に より銅の酸化が防止される。 なお、 前記原料および水素の流量とヒー夕 6 0 2による加熱温度とを制御することにより銅の成膜速度の調節およ び膜質の改善がなされる。 しかしながら、 前述した従来の銅薄膜の形成方法は次のような 3つの 問題がある。
第 1は、 前記銅薄膜の成膜が蒸気化された C u (h f a c ) ( t mv s ) を熱的に分解する方法であるため、 成膜速度の向上を図ることが困難 である。 第 2は、 原料となる有機銅錯体、 例えば C u (h f a c ) ( t m v s ) が高価であるため、 成膜される銅薄膜のコス トが高くなる。 第 3 は、 銅の成膜に付随してへキサフロロァセチルァセ トナ ト (h f a c ) やト リメチルビニルシラン ( t mv s ) が銅薄膜中に取り込まれて不純 物として残留として残留するため膜質が低下する虞がある。
本発明は、 以上説明したような状況に鑑みてされたもので、 成膜速度 が速く、 安価な原料を用いることができ、 薄膜に不純物が残留しない貴 金属薄膜の作製方法及びその作製装置を提供することを目的とする。
また、 本発明は、 成膜速度が速く、 安価な原料を用いることができ、 膜中に不純物が残留しない金属膜作製装置及び金属膜作製方法を提供す ることを目的とする。
さらに、 本発明は、 安価は塩素または塩化水素を原料ガスとして用い て成膜速度が速く、 かつ不純物が残留し難い膜質が良好でかつ目的とす る膜厚を有する銅数膜を形成することが可能な銅薄膜の気相成長装置を 提供するものである。 発明の開示
本発明に係る金属膜の作製方法は、 上記目的を達成するため、 ハロゲ ン元素を含有する原料ガスを金属製の穴開き板を有する導入容器内に供 給するステップと、 該原料ガスをプラズマ化して原料ガスプラズマを生 成するステップと、 該原料ガスプラズマで穴開き板をエッチングするこ とによって、 該穴開き板に含まれる金属成分と原料ガス中のハロゲン元 素との前駆体を生成するステツプと、 還元性ガスをプラズマ化して還元 性ガスプラズマを発生させるステツプと、 上記前駆体を導入容器から排 出したのち回転磁場中を通すことによって、 前駆体を基板に向けて加速 させて走行させるステツプと、 上記前駆体を還元性ガスプラズマ中に通 すことによって、 前駆体からハロゲン元素を除去し、 金属イオン又は中 性金属にして基板に当てることにより、 基板上に金属薄膜を生成するス テツプとを含んでなる方法である。
上記金属イオンは、 金属原子が電子を放出してイオン化されているも のであり、中性金属とは、イオン化されていない状態の金属原子をいう。 上記穴開き板としては、 Cuや、 Ag, Au, Ptなどの貴金属から成るものが 好ましく、 例えば Cu製の穴開き板を用いた場合は、 上記前駆体として CUxC lyが生成されるため、 Cuイオンが基板に当たって基板上に Cu薄膜が 形成される。
この方法によれば、 原料ガスプラズマと還元性ガスプラズマという 2 つのプラズマを用いるため、 反応効率が大幅に向上して、 成膜速度が大 きくなる。 また、 原料ガスには塩素を含有したガスを、 還元性ガスには 水素を含有したガスを用いているため、 コス トが大幅に減少する。 さら に、 還元反応を独立に高めることができるため、 薄膜中に塩素等の不純 物の残留が少なくなり、 高品質な薄膜を生成することができる。
本発明に係る金属膜の作製方法の別の態様は、 上記目的を達成するた め、 ハロゲン元素を含有する原料ガスを金属製の穴開き板を有する導入 容器内に供給するステツプと、 該原料ガスをプラズマ化して原料ガスプ ラズマを生成するステップと、 該原料ガスプラズマで穴開き板をエッチ ングすることによって、 該穴開き板に含まれる金属成分と原料ガス中の ハロゲン元素との前駆体を生成するステップと、 還元性ガスをプラズマ 化して還元性ガスプラズマを発生させるステップと、 上記前駆体を還元 性ガスプラズマ中に通すことによって、 前駆体からハロゲン元素を除去 し、 金属イオン又は中性金属にして基板に当てることにより、 基板上に 金属薄膜を生成するステツプとを含んでなる方法である。
上記穴開き板としては、 Cuや、 Ag,Au, Ptなどの貴金属から成るものが 好ましく、 例えば Cu製の穴開き板を用いた場合は、 上記前駆体として CUxC lyが生成されるため、 Cuイオンが基板に当たって基板上に Cu薄膜が 形成される。
また上記還元性ガスプラズマを発生させる方法としては、 高周波電力 を電極に印加することによって行なう方法がある。 例えば、 基板に対向 して配設された電極の全面にプラズマを発生させることによって、 上記 基板に拡散している前駆体を還元することができる。
この方法によれば、 原料ガスプラズマと還元性ガスプラズマという 2 つのプラズマを用いるため、 反応効率が大幅に向上して成膜速度が大き くなる。 また、 原料ガスにはハロゲン元素を含有したガスを、 還元性ガ スには水素を含有したガスを用いているため、コス トが大幅に減少する さらに、 還元反応を独立に高めることができるため、 薄膜中に塩素等の 不純物の残留が少なくなり、 高品質な薄膜を生成することができる。
また、 本発明に係る金属膜の作製方法の別の態様は、 ハロゲン元素を 含有する原料ガスを金属製の穴開き板を有する導入容器内に供給するス テツプと、 該原料ガスをプラズマ化して原料ガスプラズマを生成するス テツプと、 該原料ガスプラズマで穴開き板をエッチングすることによつ て、 該穴開き板に含まれる金属成分と原料ガス中のハロゲン元素との前 駆体を生成するステップと、 穴開き板と基板との間に、 還元性ガスを高 温に加熱して原子状還元ガスを発生させるステツプと、 上記前駆体を導 入容器から排出したのち原子状還元ガス中に通すことによって、 前駆体 からハロゲン元素を除去して金属イオン又は中性金属にしてから基板に 当てることにより、 基板上に金属薄膜を生成するステップとを含んでな る方法である。
この方法によれば、 反応効率が大幅に向上して、 成膜速度が大きくな る。 また、 原料ガスにはハロゲン元素を含有したガスを、 還元性ガスに は水素を含有したガスを用いているため、 コス トが大幅に減少する。 さ らに、 還元反応を独立に高めることができるため、 薄膜中に塩素等の不 純物の残留が少なくなり、 高品質な薄膜を生成することができる。
さらに、 本発明に係る金属膜の作製方法の別の態様は、 ハロゲン元素 を含有する原料ガスを高温の金属製フィラメン トに接触させ、 該フイラ メン トを原料ガスでエッチングさせることによって、 該フィラメン トに 含まれる金属成分と原料ガス中のハロゲン元素との前駆体を生成させる ステツプと、 還元性ガスを高温に加熱して原子状還元性ガスにするステ ップと、 この原子状還元ガス中に上記前駆体を通すことによって、 前駆 体からハロゲン元素を除去して金属イオン又は中性金属にしてから基板 に当てることによって、 基板上に金属薄膜を生成するステップとを含ん でなる方法である。
上記方法によれば、 反応効率が大幅に向上して、 成膜速度が大きくな る。 また、 原料ガスにはハロゲン元素を含有したガスを、 還元性ガスに は水素を含有したガスを用いているため、 コス トが大幅に減少する。 さ らに、 還元反応を独立に高めることができるため、 薄膜中に塩素等の不 純物の残留が少なくなり、 高品質な薄膜を生成することができる。
さらに、 本発明に係る金属膜の作製方法の別の態様は、 ハロゲン元 素を含有する原料ガスを高温の金属製フイラメン トに接触させ、 該フィ ラメン 卜を原料ガスでエッチングさせることによって、 該フイラメン ト に含まれる金属成分と原料ガス中のハロゲン元素との前駆体を生成する ステップと、 還元性ガスをプラズマ化して還元性ガスプラズマを発生さ せる方法として高周波電力を利用するステツプと、 上記前駆体を還元性 ガスプラズマ中に通すことによつて、前駆体からハロゲン元素を除去し、 金属イオン又は中性金属にして基板に当てることにより、 基板上に金属 薄膜を生成するステツプとを含んでなる方法である。
上記方法によれば、 反応効率が大幅に向上して、 成膜速度が大きく なる。 また、 原料ガスにはハロゲン元素を含有したガスを、 還元性ガス には水素を含有したガスを用いているため、 コス 卜が大幅に減少する。 さらに、 還元反応を独立に高めることができるため、 薄膜中に塩素等の 不純物の残留が少なくなり、 高品質な薄膜を生成することができる。
そして、 本発明に係る金属膜の作製方法では、 上記原料ガスとして、 ハロゲンガス、 ハロゲン化水素ガス、 又はこれらの混合ガスを用いてい る。 例えば、 フッソガス、 塩素ガス、 臭素ガス、 ヨウ素ガスや、 これら のハロゲンが水素に化合したハロゲン化水素ガスなどを用いることがで きる。 また、 これらのガスのうち、 塩化水素ガスのほうが塩素ガスより も反応効率が大きいので、 還元性ガスの量が少なくてすみ、 コス ト低減 が図れる。
さらに、上述した原料ガスの供給から前駆体の生成までのステツプを. 液体の有機金属錯体を He等の輸送用ガスによってパブリングし蒸気化さ せるステップと、 この蒸気化した有機金属錯体を気化器等により気化さ せた後に反応容器に導入するステツプとを含んでなる方法に置き換える ことも可能である。
この方法によれば、 還元性ガスプラズマが原料ガスに含まれるハロゲ ン化合物や炭素化合物等の不純物を分解するため、 金属薄膜中への不純 物の残留が少なくなる。
また、 本発明に係る金属膜の作製装置は、 噴射穴が穿設された金属製 の穴開き板を有すると共に、その内部に原料ガスを供給する導入容器と. 該導入容器の内部に収容された原料ガスをプラズマ化して原料ガスブラ ズマを生成する第 1プラズマ発生装置と、 上記導入容器及び基板を収容 した反応容器と、 上記穴開き板及び基板の間に回転磁場を発生させる回 転磁場発生装置と、 反応容器内に供給する還元性ガスをプラズマ化する 第 2プラズマ発生装置とを備えている。
上記回転磁場発生装置としては、 例えば反応容器の側部に回転磁場コ ィルを配設し、 該回転磁場コィルに高い電流を流す装置を用いることが できる。
また、 本発明に係る金属膜の作製装置の別の態様は、 噴射穴が穿設さ れた金属製の穴開き板を有すると共に、 その内部に原料ガスを供給する 導入容器と、 該導入容器の内部に収容された原料ガスをプラズマ化して 原料ガスプラズマを生成する第 1プラズマ発生装置と、 上記導入容器及 び基板を収容した反応容器と、 反応容器内に供給する還元性ガスをブラ ズマ化するための高周波電力を印加するメッシュ形状、 梯子形状、 櫛形 形状の電極とを備えている。
このように電極面に孔ゃ隙間を設けることによって、 基板に向かう前 駆体の行路を妨げることなく、 前駆体フラックスに均等に還元反応を起 こさせることができる。
さらに、 本発明に係る金属膜の作製装置の別の態様は、 噴射穴が穿設 された金属製の穴開き板を有すると共に、 その内部に原料ガスを供給す る導入容器と、 該導入容器の内部に収容された原料ガスをプラズマ化し て原料ガスプラズマを生成するプラズマ発生装置と、 上記導入容器及び 基板を収容した反応容器と、 反応容器内に供給する還元性ガスを加熱す る還元性ガス加熱装置とを備えている。
上記還元性ガス加熱装置としては、 例えば、 高い電流を流して高温に 加熱した夕ングステン製フィ ラメン トを好適に用いることができ、 この フイラメン ト中に還元性ガスを流すと、 原子状還元ガスが生成される。 更に、 本発明に係る金属膜の作製装置の別の態様は、 原料ガスを高温 の金属製フィラメン トに接触させて前駆体にしてから反応容器内に供給 する前駆体供給装置と、 基板を収容した反応容器と、 反応容器内に供給 する還元性ガスを加熱する還元性ガス加熱装置とを備えている。
更に、 本発明に係る金属膜の作製装置の別の態様は、 液体の有機金属 錯体を輸送用ガスのバブリングによつて蒸気化させ前駆体にしてから反 応容器内に供給する前駆体供給装置と、 基板を収容した反応容器と、 基 板上部の空間に回転磁を発生させる回転磁場発生装置と、 反応容器内に 供給する還元性ガスをプラズマ化する第 2プラズマ発生装置とを備えて いる。
更に、 本発明に係る金属膜の作製装置の別の態様は、 液体の有機金 属錯体を輸送用ガスのバブリングによって蒸気化させ前駆体にしてから 反応容器内に供給する前駆体供給装置と、 基板を収容した反応容器と、 反応容器内に供給する還元性ガスをプラズマ化するために高周波電力を 印加するメ ッシュ形状、 梯子形状、 櫛型形状の電極とを備えている。 本発明に係る金属膜の作製方法及び作製装置によれば、 不純物の析出 がない高品質の金属薄膜を安価なコス トでかつ高速で生成させることが できる。
上記目的を達成するための本発明の金属膜の作製装置の別の態様は、 多数の噴射穴が穿設された金属製の噴射板を有しその内部に塩素を含有 する原料ガスが供給される導入容器と、 導入容器及び基板を収容するチ ヤンバと、 導入容器内の原料ガスをプラズマ化して原料ガスプラズマを 発生させ原料ガスプラズマで噴射板をエッチングすることによって噴射 板に含まれる金属成分と原料ガス中の塩素との前駆体を生成する第 1 プ ラズマ発生手段と、 チャンバ内で水素を含有する還元ガスをプラズマ化 して還元ガスプラズマを発生させる第 2プラズマ発生手段と、 チャンバ を所定温度に加熱するチヤンバ加熱手段とを備え、 チヤンバ内で前駆体 が還元ガスプラズマ中に通されることにより、 加熱されたチャンバ内壁 に前駆体が付着しない状態で前駆体から塩素が還元除去され金属イオン のみにされて基板に当てられて基板上に金属膜が生成されることを特徴 とする。
また、 上記目的を達成するための本発明の金属膜の作製装置の別の態 様は、 多数の噴射穴が穿設された金属製の噴射板を有しその内部に塩素 を含有する原料ガスが供給される導入容器と、 噴射板を所定温度に加熱 する噴射板加熱手段と、 導入容器及び基板を収容するチャンバと、 導入 容器内の原料ガスをプラズマ化して原料ガスプラズマを発生させ原料ガ スプラズマで噴射板をエッチングすることによって噴射板に含まれる金 属成分と原料ガス中の塩素との前駆体を生成する第 1 プラズマ発生手段 と、 チヤンバ内で水素を含有する還元ガスをプラズマ化して還元ガスプ ラズマを発生させる第 2プラズマ発生手段とを備え、 加熱された噴射板 をエッチングすることによ り生成されて還元されやすくなった前駆体が 還元ガスプラズマ中に通されることにより、 前駆体から塩素が還元除去 され金属イオンのみにされて基板に当てられて基板上に金属膜が生成さ れることを特徴とする。
また、 上記目的を達成するための本発明の金属膜の作製装置の別の態 様は、 多数の噴射穴が穿設された金属製の噴射板を有しその内部に塩素 を含有する原料ガスが供給される導入容器と、 噴射板を所定温度に加熱 する噴射板加熱手段と、 導入容器及び基板を収容するチャンバと、 導入 容器内の原料ガスをプラズマ化して原料ガスプラズマを発生させ原料ガ スプラズマで噴射板をエッチングすることによって噴射板に含まれる金 属成分と原料ガス中の塩素との前駆体を生成する第 1 プラズマ発生手段 と、 チヤンバ内で水素を含有する還元ガスをプラズマ化して還元ガスプ ラズマを発生させる第 2プラズマ発生手段と、 チャンバを所定温度に加 熱するチャンバ加熱手段とを備え、 加熱された噴射板をエッチングする ことにより生成されて還元されやすく なった前駆体が還元ガスプラズマ 中に通されることにより、 加熱されたチャンバ内壁に前駆体が付着しな い状態で前駆体から塩素が還元除去され金属イオンのみにされて基板に 当てられて基板上に金属膜が生成されることを特徴とする。
また、 上記目的を達成するための本発明の金属膜の作製装置の別の態 様は、 多数の噴射穴が穿設された金属製の噴射板を有しその内部に塩素 を含有する原料ガスが供給される導入容器と、 導入容器及び基板を収容 するチャンバと、 導入容器内の原料ガスをプラズマ化して原料ガスプラ ズマを発生させ原料ガスプラズマで噴射板をエッチングすることによつ て噴射板に含まれる金属成分と原料ガス中の塩素との前駆体を生成する 第 1 プラズマ発生手段と、 水素を含有する還元ガスを高温に加熱して原 子状還元ガスをチヤンバ内の基板と噴射板との間に発生させる還元ガス 加熱手段と、
チヤンバを所定温度に加熱するチヤンバ加熱手段とを備え、 チャンバ内 で前駆体が原子状還元ガス中に通されることにより、 加熱されたチャン バ内壁に前駆体が付着しない状態で前駆体から塩素が還元除去され金属 イオンのみにされて基板に当てられて基板上に金属膜が生成されること を特徴とする。
また、 上記目的を達成するための本発明の金属膜の作製装置の別の態 様は、 多数の噴射穴が穿設された金属製の噴射板を有しその内部に塩素 を含有する原料ガスが供給される導入容器と、 噴射板を所定温度に加熱 する噴射板加熱手段と、 導入容器及び基板を収容するチャンバと、 導入 容器内の原料ガスをプラズマ化して原料ガスプラズマを発生させ原料ガ スプラズマで噴射板をエッチングすることによって噴射板に含まれる金 属成分と原料ガス中の塩素との前駆体を生成する第 1 プラズマ発生手段 と、 水素を含有する還元ガスを高温に加熱して原子状還元ガスをチヤン バ内の基板と噴射板との間に発生させる還元ガス加熱手段とを備え、 加 熱された噴射板をエツチングすることにより生成されて還元されやすく なった前駆体が原子状還元ガス中に通されることによ り、 前駆体から塩 素が還元除去され金属ィオンのみにされて基板に当てられて基板上に金 属膜が生成されることを特徴とする。
また、 上記目的を達成するための本発明の金属膜の作製装置の別の態 様は、 多数の噴射穴が穿設された金属製の噴射板を有しその内部に塩素 を含有する原料ガスが供給される導入容器と、 噴射板を所定温度に加熱 する噴射板加熱手段と、 導入容器及び基板を収容するチャンバと、 導入 容器内の原料ガスをプラズマ化して原料ガスプラズマを発生させ原料ガ スプラズマで噴射板をエッチングすることによつて噴射板に含まれる金 属成分と原料ガス中の塩素との前駆体を生成する第 1 プラズマ発生手段' と、 水素を含有する還元ガスを高温に加熱して原子状還元ガスをチヤン バ内の基板と噴射板との間に発生させる還元ガス加熱手段と、 チャンバ を所定温度に加熱するチヤ ンバ加熱手段とを備え、 加熱された噴射板を エッチングすることにより生成されて還元されやすくなつた前駆体が還 元ガスプラズマ中に通されることによ り、 加熱されたチャンバ内壁に前 駆体が付着しない状態で前駆体から塩素が還元除去され金属イオンのみ にされて基板に当てられて基板上に金属膜が生成されることを特徴とす る。
また、 上記目的を達成するための本発明の金属膜の作製装置の別の態 様は、 塩素を含有する原料ガスを高温の金属フ ィ ラメ ン トに接触させて 金属フィ ラメン 卜に含まれる金属成分と原料ガス中の塩素との前駆体を 基板が収容されるチャンバ内に生成する前駆体供給手段と、 水素を含有 する還元ガスを高温に加熱して原子状還元ガスをチャンバ内の基板と噴 射板との間に発生させる還元ガス加熱手段と、 チヤンバを所定温度に加 熱するチヤンバ加熱手段とを備え、 チヤンバ内で前駆体が原子状還元ガ ス中に通されることにより、 加熱されたチャンバ内壁に前駆体が付着し ない状態で前駆体から塩素が還元除去され金属ィオンのみにされて基板 に当てられて基板上に金属膜が生成されることを特徴とする。
そして、 噴射板または金属フ ィ ラメ ン トを銅製とすることにより、 前 記前駆体として CuxClyを生成することを特徴とする。 また、 噴射板を銅 製とし、噴射板加熱手段により加熱される噴射板の所定温度を 200°C乃至 800°Cにしたことを特徴とする。 また、 噴射板加熱手段は、 導入容器内に 希ガスを導入し、 第 1 プラズマ発生手段で希ガスプラズマを発生させて 電圧の印加によ り希ガス成分ィオンを噴射板に衝突させることで噴射板 を加熱する手段であることを特徴とする。
この時、 噴射板は、 所定温度を 600°Cにして加熱することが好ましい。 また、 前記前駆体として CuxC lyを生成した場合、 チャンバ加熱手段によ り加熱されるチヤンバの所定温度を略 200°Cにすることが好ましい。噴射 板または金属フイ ラメン ト として、 Cuの他に、 , 11,?セ,1^ ^等が用ぃら れ、 原料ガスとしては、 塩素ガス、 塩化水素ガスあるいはこれらの混合 ガスが用いられる。
上記目的を達成するための本発明の金属膜作製方法は、 チャンバ内で 塩素と金属板により金属成分と塩素との前駆体を生成し、 前駆体から塩 素を還元除去して金属ィォンにしてチヤンバ内の基板に当てることで基 板上に金属膜を生成するに際し、 チヤンバを所定温度に加熱してチヤン バ内壁に前駆体が付着しないようにしたことを特徴とする。
また、 上記目的を達成するための本発明の金属膜作製方法は、 チャ ン バ内で塩素と金属板により金属成分と塩素との前駆体を生成し、 前駆体 から塩素を還元除去して金属ィオンにしてチヤンバ内の基板に当てるこ とで基板上に金属膜を生成するに際し、 金属板を所定温度に加熱して前 駆体を還元しやすく したことを特徴とする。
また、 上記目的を達成するための本発明の金属膜の作製方法の別の態 様は、 チャンバ内で塩素と金属板によ り金属成分と塩素との前駆体を生 成し、 前駆体から塩素を還元除去して金属イオンにしてチャンバ内の基 板に当てることで基板上に金属膜を生成するに際し、 チヤンバを所定温 度に加熱してチヤンバ内壁に前駆体が付着しないようにすると共に、 金 属板を所定温度に加熱して前駆体を還元しやすく したことを特徴とする そして、 金属板を銅製とすることにより、 前記前駆体として CuxClyを 生成することを特徴とする。
本発明の金属膜の作製装置の別の態様では、 多数の噴射穴が穿設され た金属製の噴射板を有しその内部に塩素を含有する原料ガスが供給され る導入容器と、 導入容器及び基板を収容するチャンバと、 導入容器内の 原料ガスをプラズマ化して原料ガスプラズマを発生させ原料ガスプラズ マで噴射板をエツチングすることによって噴射板に含まれる金属成分と 原料ガス中の塩素との前駆体を生成する第 1 プラズマ発生手段と、 チヤ ンバ内で水素を含有する還元ガスをプラズマ化して還元ガスプラズマを 発生させる第 2プラズマ発生手段と、 チヤンバを所定温度に加熱するチ ャンバ加熱手段とを備え、 チャンバ内で前駆体が還元ガスプラズマ中に 通されることにより、 加熱されたチヤンバ内壁に前駆体が付着しない状 態で前駆体から塩素が還元除去され金属イオンのみにされて基板に当て られて基板上に金属膜が生成されるので、 前駆体がチヤンバの側壁に付 着することが防止される。 この結果、 成膜速度が速く、 安価な原料を用 いることができ、 膜中に不純物が残留しない金属膜作製装置とすること ができ、 しかも、 チャンバ内の定期的なク リーニング処理が不要になり 、 原料歩留りが向上すると共にランニングコス トを低減することが可能 になる。
また、 本発明の金属膜の作製装置の別の態様では、 多数の噴射穴が穿 設された金属製の噴射板を有しその内部に塩素が含有する原料ガスが供 給される導入容器と、 噴射板を所定温度に加熱する噴射板加熱手段と、 導入容器及び基板を収容するチャンバと、 導入容器内の原料ガスをブラ ズマ化して原料ガスプラズマを発生させ原料ガスプラズマで噴射板をェ ツチングすることによって噴射板に含まれる金属成分と原料ガス中の塩 素との前駆体を生成する第 1 プラズマ発生手段と、 チヤンバ内で水素を 含有する還元ガスをプラズマ化して還元ガスプラズマを発生させる第 2 プラズマ発生手段とを備え、 加熱された噴射板をエッチングすることに より生成されて還元されやすくなった前駆体が還元ガスプラズマ中に通 されることによ り、 前駆体から塩素が還元除去され金属イオンのみにさ れて基板に当てられて基板上に金属膜が生成されるので、 還元されやす い単量体の前駆体が生成されやすくなる。 この結果、 成膜速度が速く、 安価な原料を用いることができ、 膜中に不純物が残留しない金属膜作製 装置とすることができ、 しかも、 塩素が短時間に還元除去されて成膜速 度をより向上させることが可能になる。
また、 本発明の金属膜の作製装置の別の態様では、 多数の噴射穴が穿 設された金属製の噴射板を有しその内部に塩素を含有する原料ガスが供 給される導入容器と、 噴射板を所定温度に加熱する噴射板加熱手段と、 導入容器及び基板を収容するチヤンバと、 導入容器内の原料ガスをブラ ズマ化して原料ガスプラズマを発生させ原料ガスプラズマで噴射板をェ ツチングすることによって噴射板に含まれる金属成分と原料ガス中の塩 素との前駆体を生成する第 1 プラズマ発生手段と、 チャンバ内で水素を 含有する還元ガスをプラズマ化して還元ガスプラズマを発生させる第 2 プラズマ発生手段と、 チヤンバを所定温度に加熱するチヤンバ加熱手段 とを備え、 加熱された噴射板をエッチングすることにより生成されて還 元されやすくなつた前駆体が還元ガスプラズマ中に通されることにより 、 加熱されたチヤンバ内壁に前駆体が付着しない状態で前駆体から塩素 が還元除去され金属ィオンのみにされて基板に当てられて基板上に金属 膜が生成されるので、 前駆体がチヤンバの側壁に付着することが防止さ れると共に、 還元されやすい単量体の前駆体が生成されやすくなる。 こ の結果、 成膜速度が速く、 安価な原料を用いることができ、 膜中に不純 物が残留しない金属膜作製装置とすることができ、 しかも、 チャンバ内 の定期的なク リーニング処理が不要になり、 原料歩留りが向上すると共 にランニングコス トを低減することが可能になると共に、 塩素が短時間 に還元除去されて成膜速度をより向上させることが可能になる。
また、 本発明の金属膜の作製装置の別の態様では、 多数の噴射穴が穿 設された金属製の噴射板を有しその内部に塩素を含有する原料ガスが供 給される導入容器と、 導入容器及び基板を収容するチャンバと、 導入容 器内の原料ガスをプラズマ化して原料ガスプラズマを発生させ原料ガス プラズマで噴射板をエッチングすることによって噴射板に含まれる金属 成分と原料ガス中の塩素との前駆体を生成する第 1 プラズマ発生手段と 、 水素を含有する還元ガスを高温に加熱して原子状還元ガスをチヤンバ 内の基板と噴射板との間に発生させる還元ガス加熱手段と、 チャンバを 所定温度に加熱するチャンバ加熱手段とを備え、 チヤンバ内で前駆体が 原子状還元ガス中に通されることによ り、 加熱されたチャンバ内壁に前 駆体が付着しない状態で前駆体から塩素が還元除去され金属イオンのみ にされて基板に当てられて基板上に金属膜が生成されるので、 前駆体が チャンバの側壁に付着することが防止される。 この結果、 成膜速度が速 く、 安価な原料を用いることができ、 膜中に不純物が残留しない金属膜 作製装置とすることができ、 しかも、 チャンバ内の定期的なク リーニン グ処理が不要になり、 原料歩留りが向上すると友井ランニングコス トを 低減することが可能になる。
また、 本発明の金属膜の作製装置の別の態様では、 多数の噴射穴が穿 設された金属製の噴射板を有しその内部に塩素を含有する原料ガスが供 給される導入容器と、 噴射板を所定温度に加熱する噴射板加熱手段と、 導入容器及び基板を収容するチヤンバと、 導入容器内の原料ガスをブラ ズマ化して原料ガスプラズマを発生させ原料ガスプラズマで噴射板をェ ツチングすることによって噴射板に含まれる金属成分と原料ガス中の塩 素との前駆体を生成する第 1 プラズマ発生手段と、 水素を含有する還元 ガスを高温に加熱して原子状還元ガスをチヤンバ内の基板と噴射板との 間に発生させる還元ガス加熱手段とを備え、 加熱された噴射板をエッチ ングすることにより生成されて還元されやすくなつた前駆体が原子状還 元ガス中に通されることによ り、 前駆体から塩素が還元除去され金属ィ オンのみにされて基板に当てられて基板上に金属膜が生成されるので、 還元されやすい単量体の前駆体が生成されやすくなる。 この結果、 成膜 速度が速く、 安価な原料を用いることができ、 膜中に不純物が残留しな い金属膜作製装置とすることができ、 しかも、 塩素が短時間に還元除去 されて成膜速度をより向上させることが可能になる。
また、 本発明の金属膜の作製装置の別の態様では、 多数の噴射穴が穿 設された金属製の噴射板を有しその内部に塩素を含有する原料ガスが供 給される導入容器と、 噴射板を所定温度に加熱する噴射板加熱手段と、 導入容器及び基板を収容するチャンバと、
導入容器内の原料ガスをプラズマ化して原料ガスプラズマを発生させ原 料ガスプラズマで噴射板をエツチングすることによつて噴射板に含まれ る金属成分と原料ガス中の塩素との前駆体を生成する第 1 プラズマ発生 手段と、 水素を含有する還元ガスを高温に加熱して原子状還元ガスをチ ャンバ内の基板と噴射板との間に発生させる還元ガス加熱手段と、 チヤ ンバを所定温度に加熱するチャンバ加熱手段とを備え、 加熱された噴射 板をエッチングすることによ り生成されて還元されやすくなった前駆体 が還元ガスプラズマ中に通されることにより、 加熱されたチャンバ内壁 に前駆体が付着しない状態で前駆体から塩素が還元除去され金属イオン のみにされて基板に当てられて基板上に金属膜が生成されるので、 前駆 体がチャンバの側壁に付着することが防止されると共に、 還元されやす い単量体の前駆体が生成されやすくなる。 この結果、 成膜速度が速く、 安価な原料を用いることができ、 膜中に不純物が残留しない金属膜作製 装置とすることができ、 しかも、 チャンバ内の定期的なク リーニング処 理が不要になり、 原料歩留りが向上すると共にランニングコス トを低減 することが可能になると共に、 塩素が短時間に還元除去されて成膜速度 をより向上させることが可能になる。
また、 本発明の金属膜の作製装置の別の態様では、 塩素を含有する原 料ガスを高温の金属フイ ラメ ン トに接触させて金属フイ ラメン トに含ま れる金属成分と原料ガス中の塩素との前駆体を基板が収容されるチヤン バ内に生成する前駆体供給手段と、 水素を含有する還元ガスを高温に加 熱して原子状還元ガスをチャンバ内の基板と噴射板との間に発生させる 還元ガス加熱手段と、 チヤンバを所定温度に加熱するチヤンバ加熱手段 とを備え、 チヤンバ内で前駆体が原子状還元ガス中に通されることによ り、 加熱されたチヤンバ内壁に前駆体が付着しない状態で前駆体から塩 素が還元除去され金属イオンのみにされて基板に当てられて基板上に金 属膜が生成されるので、 前駆体がチヤンバの側壁に付着することが防止 される。 この結果、 成膜速度が速く、 安価な原料を用いることができ、 膜中に不純物が残留しない金属膜作製装置とすることができ、 しかも、 チャンバ内の定期的なク リーニング処理が不要になり、 原料歩留りが向 上すると共にランニングコス トを低減することが可能になる。
本発明の金属膜の作製方法の別の態様では、 チャンバ内で塩素と金属 板により金属成分と塩素との前駆体を生成し、 前駆体から塩素を還元除 去して金属ィオンにしてチヤンバ内の基板に当てることで基板上に金属 膜を生成するに際し、 チヤンバを所定温度に加熱してチヤンバ内壁に前 駆体が付着しないようにしたので、 前駆体がチヤンバの側壁に付着する ことが防止される。 この結果、 成膜速度が速く、 安価な原料を用いるこ とができ、 膜中に不純物が残留しない金属膜作製装置とすることができ 、 しかも、 チャンバ内の定期的なク リーニング処理が不要になり、 原料 歩留りが向上すると共にランニングコス トを低減することが可能になる また、 本発明の金属膜の作製方法の別の態様では、 チャンバ内で塩素 と金属板により金属成分と塩素との前駆体を生成し、 前駆体から塩素を 還元除去して金属ィオンにしてチヤンバ内の基板に当てることで基板上 に金属膜を生成するに際し、 金属板を所定温度に加熱して前駆体を還元 しゃすく したので、 還元されやすい単量体の前駆体が生成されやすくな る。 この結果、 成膜速度が速く、 安価な原料を用いることができ、 膜中 に不純物が残留しない金属膜作製装置とすることができ、 しかも、 塩素 が短時間で還元除去されて成膜速度をよ り向上させることが可能になる また、 本発明の金属膜の作製方法の別の態様では、 チャンバ内で塩素 と金属板により金属成分と塩素との前駆体を生成し、 前駆体から塩素を 還元除去して金属イオンにしてチヤンバ内の基板に当てることで基板上 に金属膜を生成するに際し、 チヤンバを所定温度に加熱してチヤンバ内 壁に前駆体が付着しないようにすると共に、 金属板を所定温度に加熱し て前駆体を還元しやすく したので、 前駆体がチャンバの側壁に付着する ことが防止されると共に、 還元されやすい単量体の前駆体が生成されや すくなる。 この結果、 成膜速度が速く、 安価な原料を用いることができ 、 膜中に不純物が残留しない金属膜作製装置とすることができ、 しかも 、 チャンバ内の定期的なク リーニング処理が不要になり、 原料歩留りが 向上すると共にランニングコス トを低減することが可能になると共に、 塩素が短時間に還元除去されて成膜速度をより向上させることが可能に なる。
そして、 本発明に係る金属膜の作製装置の別の態様では、 内部に被処 理基板が配置される反応容器と、
前記反応容器内に配置され、 複数の噴射孔が穿設された銅製噴射板を 有する導入容器と、
前記銅製噴射板に設けられた温度制御手段と、
前記導入容器内に挿入され、 塩素または塩化水素を供給するための原 料ガス供給管と、
前記導入容器内に塩素または塩化水素のプラズマを発生するためのプ ラズマ発生手段と、
前記反応容器内の少なく とも前記被処理基板近傍に原子状還元ガスを 生成するための原子状還元ガス生成手段と、
前記反応容器内および前記導入容器内のガスを真空排気するための真 空排気手段と
を具備したことを特徴とするものである。
本発明に係る金属膜の作製装置の別の態様では、 内部に被処理基板が 配置される反応容器と、 前記反応容器内に挿入され、 塩素または塩化水素を供給するための原 料ガス供給管と、
前記原料ガス供給管の先端に取付けられ、 原料ガスの流通穴内面が銅 からなり、 かつ加熱部材が付設されたスパイラルチューブと、
前記反応容器内の少なく とも前記被処理基板近傍に原子状還元ガスを 生成するための原子状還元ガス生成手段と、
前記反応容器内および前記原料ガスの流通穴内のガスを真空排気する ための真空排気手段と
を具備したことを特徴とするものである。
以上詳述したように本発明によれば、 安価な塩素または塩化水素を原 料ガスとして用いて成膜速度が速く、 かつ不純物が残留し難い膜質が良 好でかつ目的とする膜厚を有する銅薄膜を再現性よく形成することが可 能で、 半導体装置、 液晶表示装置の配線材料膜の形成等に有用な銅薄膜 の気相成長装置を提供することができる。 図面の簡単な説明
図 1は、 第 1の実施の形態に用いるプラズマ励起気相成長装置を示す 概略図である。
図 2は、 第 2の実施の形態に用いるプラズマ励起気相成長装置を示す 概略図である。
図 3は、 第 3の実施の形態に用いるプラズマ励起気相成長装置を示す 概略図である。
図 4は、 第 4の実施の形態に用いるプラズマ励起気相成長装置を示す 概略図である。
図 5は、 第 4の実施の形態に用いるメ ッシュ状電極を示す平面図であ る。 図 6は、 第 4の実施の形態に用いる梯子状電極を示す平面図である。 図 Ίは、 第 4の実施の形態に用いる櫛形電極を示す平面図である。 図 8は、 第 4の実施の形態に用いるパンチングボ一ド状電極を示す平 面図である。
図 9は、 第 5の実施の形態に用いるプラズマ励起気相成長装置を示す 概略図である。
図 1 0は、 本発明の第 6実施形態例に係る金属膜作製装置の概略側面 図である。
図 1 1は、 本発明の第 7実施形態例に係る金属膜作製装置の概略側面 図である。
図 1 2は、 本発明の第 8実施形態例に係る金属膜作製装置の概略側面 図である。
図 1 3は、 本発明の第 9実施形態例に係る金属膜作製装置の概略側面 図である。
図 1 4は、 本発明の第 1 0実施形態例に係る金属膜作製装置の概略側 面図である。
図 1 5は、 本発明の第 1 1実施形態例に係る金属膜作製装置の概略側 面図である。
図 1 6は、 本発明の第 1 2実施形態例に係る金属膜作製装置の概略側 面図である。
図 1 7は、 第 1 3の実施形態に係る銅薄膜の気相成長装置を示す概略 断面図。
図 1 8は、 図 1 7の気相成長装置に組み込まれる銅製噴射板を示す平 面図である。
図 1 9は、 第 1 4の実施形態に係る銅薄膜の気相成長装置を示す概略 断面図である。 図 2 0は、 図 1 9の気相成長装置に組み込まれるスパイラルチューブ の一形態を示す図である。
図 2 1は、 図 1 9の気相成長装置に組み込まれるスパイ ラルチューブ の他の形態を示す図である。
図 2 2は、 従来の貴金属薄膜気相成長装置を示す概略図である。
図 2 3は、 従来の銅薄膜の気相成長装置を示す概略断面図である。 発明を実施するための最良の形態
以下に、本発明の実施の形態について、図面を用いて詳細に説明する。
[第 1の実施の形態]
図 1は、 第 1の実施の形態に係る貴金属薄膜作製に用いるプラズマ励 起気相成長装置を示す概略図である。
このプラズマ励起気相成長装置 5 1は、 箱形に形成された反応容器 1 と、 該反応容器 1の上下に配設された第 1及び第 2プラズマ発生装置 5 2 , 5 3 と、 反応容器 1の側部に配設された回転磁場コイル 4 , 4とを 備えている。
また、 上記反応容器 1の上部には、 原料ガス 5 5を収容する導入容器 1 1が配設されている。 この導入容器 1 1の側部には流量制御器 3及び ノズル 2が接続され、 底部には複数の穴 1 2 aが穿設された C u製の穴 開き板 1 2が配設されている。 さらに、 反応容器 1の側部に配設された 回転磁場コイル 4, 4によって反応容器 1内部の下方には回転磁場が形 成されており、 この回転磁場によって Cuなどの金属は基板 1 5側に向い た力が加わり、 加速されて走行する。 上記反応容器 1の底部には、 穴開 き板 1 2から間隔を隔ててヒーター 1 6が配設されており、 該ヒ一夕一 1 6の上部には基板 1 5が載置されている。 そして、 反応容器 1の下端 部で回転磁場コイル 4の下部には、 還元ガス 6 0である水素ガスを反応 容器 1の内部に送給する還元ガス流量制御器 6及び還元ガス導入ノズル 5が配設されている。 また、 第 1 プラズマ発生装置 5 2は、 反応容器 1 の上面 5 8に配設された絶縁板 9、 該絶縁板 9に設けられた第 1プラズ マ用アンテナ 8及び第 1プラズマ用電源 7によって構成されており、 第 2プラズマ発生装置 5 3も第 1 プラズマ発生装置 5 2 と同一構造を有す る。 そして、 反応容器 1の底面 5 6には排気口 5 7が穿設されている。 上記構成を有するプラズマ励起気相成長装置 5 1による作用を以下に 説明する。
まず、原料ガス 5 5である C 12ガスを流量制御器 3において流量制御し たのち、 ノズル 2を介して導入容器 1 1内に導入する。 次いで、 第 1プ ラズマ用電源 7で第 1プラズマ用アンテナ 8を介して原料ガスである Chガスをプラズマ化すると、 原料ガスプラズマ 1 0である C12プラズマ が導入容器 1 1の内部に発生する。 ここで、 穴開き板 1 2はその材質に Cuを含んでいるため、 この C 12プラズマによつて Cu製の穴開き板 1 2のェ ツチング反応が積極的に起こる結果、 前駆体 (CuxC ly) 1 3が生成され る。 この前駆体 (CuxC ly) 1 3は穴開き板 1 2から複数の穴 1 2 aを通 して下方に噴射される。 こののち、 回転磁場コイル 4, 4で形成された 回転磁場によって、 前駆体 1 3がヒ一夕一 1 6上に設置した基板 1 5に 向けて加速して送られる。 前駆体 1 3が基板 1 5に到達する直前に、 第 2プラズマ用電源 1 9で第 2プラズマ用アンテナ 1 8を介して発生させ た還元ガスブラズマ 1 4である H2プラズマ中を通過すると、 上記前駆体 1 3が原子状水素による還元反応を起こして基板 1 5上に Cu薄膜 6 2が 生成される。 この Cu薄膜 6 2が成膜される範囲は回転磁場の均一さに依 存する。
なお、 上記原料ガス 5 5 として HC 1ガスを用いても良く、 この場合は、 原料ガスプラズマ 1 0は HC 1プラズマが生成されるが、 Cu製の穴開き板 1 2のエッチング反応によって生成される前駆体 1 3は、 CuxC lyである。 従って、 原料ガス 5 5は、 塩素を含有するガスであれば良く、 HC 1 ガス と C 12 ガスとの混合ガスを用いることができる。 また、 安定した薄膜が 生成できる範囲は回転磁場の均一さに依存している。
[第 2の実施の形態]
図 2は、 第 2の実施の形態に係る貴金属薄膜を作製するためのプラズ マ励起気相成長装置 6 5の概略図である。 この装置 6 5には、 上記第 1 の実施の形態におけるプラズマ励起気相成長装置 5 1 と構造が同じ部位 があるため、 その同一部位については、 同一符号を付して説明を省略す る。
第 2の実施の形態におけるプラズマ励起気相成長装置 6 5は、 箱形に 形成された反応容器 1 と、 該反応容器 1の上部に配設された第 1プラズ マ発生装置 5 2 と、 水素ガス等の還元ガス 5 5を加熱して原子状ガスに する還元ガス加熱装置 6 6 とを備えている。 このプラズマ励起気相成長 装置 6 5 と上記第 1の実施の形態におけるプラズマ励起気相成長装置 5 1 とは、 還元ガス加熱装置 6 6を設けた点において異なっている。
この還元ガス加熱装置 6 6は、 還元ガス流量制御器 6に還元ガス導入 ノズル 5を設け、 該還元ガス導入ノズル 5の内部にタングステンフイラ メン トを設け、 その端部を直流電源 2 4に接続している。
上記構成を有するプラズマ励起気相成長装置 6 5による作用を以下に 説明する。
まず、原料ガス 5 5である C l 2ガスを流量制御器 3により流量制御して ノズル 2を通して導入容器 1 1内に導入すると、該 C l2ガスはプラズマ用 電源 7でプラズマ用アンテナ 8を介して原料ガスプラズマ 1 0である C 12プラズマとなる。 この C 12プラズマによって Cu製の穴開き板 1 2のェ ツチング反応が積極的に起こる結果、 導入容器 1 1内部において前駆体 ( CuxC ly) 1 3が生成される。 この前駆体 (CuxC ly) 1 3は穴開き板 1 2 から複数の穴 1 2 aを通して下方に噴射される。 ここで、 前駆体 1 3が 基板 1 5に到達する直前に、 還元ガス 6 0である H2ガスを還元反応流量 制御器 6により流量制御し、 直流電源 2 4でタングステンフィ ラメン ト 2 3を 1 8 0 0 °Cに加熱し、 原子状還元ガス 2 5である原子状水素を発 生させ、 還元ガス導入ノズル 5より反応容器 1内に照射する。 これによ り、 前駆体 1 3に原子状水素による還元反応を起こさせて基板 1 5上に Cu薄膜 6 2を生成する。
なお、 上記原料ガス 5 5 として HC 1ガスを用いても良く、 この場合は、 原料ガスプラズマ 1 0 としては HC 1プラズマが生成されるが、 Cu製の穴開 き板 1 2のエッチング反応によって生成される前駆体 1 3は、 CuxClyで ある。 従って、 原料ガス 5 5は、 塩素を含有するガスであれば良く、 HC 1 ガスと C h ガスとの混合ガスを用いることもできる。
また、 原子状還元ガス 2 5である原子状水素を比較的柔軟な配置が可 能な還元ガス導入ノズル 5のみで供給できるため、 50mm x 50mni程度まで の面積の安定した成膜に対応できる。
[第 3の実施の形態]
図 3は、 第 3の実施の形態に係る貴金属薄膜を作製するためのプラズ マ励起気相成長装置 7 0の概略図である。 この装置 7 0は、 上記第 1及 び第 2の実施の形態におけるプラズマ励起気相成長装置 5 1 , 6 5 と構 造が同じ部位があるため、 その同一部位については、 同一符号を付して 説明を省略する。
第 3の実施の形態におけるプラズマ励起気相成長装置 7 0は、 箱形に 形成された反応容器 1 と、 該反応容器 1の上部に配設された原料ガス加 熱装置 7 1 と、 反応容器 1の下部に配設された還元ガス加熱装置 6 6 と を備えている。 このプラズマ励起気相成長装置 7 0 と上記第 2の実施の 形態におけるプラズマ励起気相成長装置 6 5 とは、 原料ガス加熱装置 Ί 1を設けた点において異なっている。
この原料ガス加熱装置 7 1は、 流量制御器 3にノズル 2を設け、 該ノ ズル 2の内部に複数回巻いた状態の銅フィラメン ト 2 6を設け、 該銅フ イラメン ト 2 6の端部を直流電源 2 7に接続している。
上記構成を有するプラズマ励起気相成長装置 7 0による作用を以下に 説明する。
まず、原料ガス 5 5である C 12ガスを流量制御器 3により流量制御して 原料ガス導入ノズル 2に送り込む。 この原料ガス導入ノズル 2の内部に は、 直流電源 2 7から電流を流して 3 0 0〜 6 0 0 °Cに加熱された銅フ イ ラメン ト 2 6が設けられており、該銅フイ ラメン ト 2 6に上記 C l2ガス を効率良く接触させることによって、 前駆体 1 3を発生させる。 この前 駆体 1 3を原料ガス導入ノズル 2を介して反応容器 1内に導入すると、 該前駆体 1 3は下方に移動する。
ここで、 還元ガス 6 0である H2ガスを還元ガス流量制御器 6により流 量制御し、 還元ガス導入ノズル 5に送る。 この還元ガス導入ノズル 5の 内部にはタングステンフィラメン ト 2 3が設けられており、 該夕ングス テンフィラメン ト 2 3に直流電源 2 4から電流を流して約 1 8 0 0 °Cに 加熱することによって、 還元ガス 6 0から原子状還元ガス 2 5である原 子状水素を発生させる。 前駆体 1 3が基板 1 5に到達する直前に、 該原 子状水素を還元ガス導入ノズル 5から反応容器 1内に照射し、 上記前駆 体 1 3に原子状水素による還元反応を起こさせることによって、 基板 1 5上に Cu薄膜 6 2を生成する。
なお、 上記原料ガス 5 5 として塩素を含有するガスであれば良く、 例 えば HC 1ガスや HC 1 ガスと C 12 ガスとの混合ガスであっても良い。
上記方法により、 前駆体 1 3及び原子状水素を、 比較的柔軟な配置が 可能なガスノズル 5のみで供給できるため、 lOOmm x 100mm程度までの面 積の安定した成膜に対応できる。
[第 4の実施の形態]
図 4は、 第 4の実施の形態に係る貴金属薄膜を作製するためのプラズ マ励起気相成長装置 8 5の概略図である。 この装置 8 5は、 上記第 1の 実施の形態におけるプラズマ励起気相成長装置 5 1 と構造が同じ部位が あるため、その同一部位については、同一符号を付して説明を省略する。 上記プラズマ励起気相成長装置 8 5は、 第 1の実施の形態に係るプラズ マ励起気相成長装置 5 1において、 還元プラズマを発生させるために高 周波電力を利用したものである。 具体的には、 図 1のプラズマ励起気相 成長装置 5 1から、 回転磁場コイル 4、 絶縁板 1 7、 第 2プラズマ用ァ ンテナ 1 8、 第 2プラズマ用電源 1 9を除く一方、 高周波電源に接続さ れた電極を追加して配設したものであり、 前駆体 1 3の発生、 還元ガス 6 0である水素ガスの供給、 基板 1 5を配設する各部分の構成に変更は ない。
上記プラズマ励起気相成長装置 8 5は、 反応容器 1の内部において、 穴開き板 1 2 とヒー夕一 1 6 との間に還元プラズマ発生用電極 7 1を配 設すると共に、 反応容器 1の外部において、 高周波電源 7 6、 整合器 7 5、 電流導入端子 7 3を配設している。 これらの高周波電源 7 6、 整合 器 7 5及び電流導入端子 7 3 とは、 互いに同軸ケーブル 7 4によって接 続されており、 電流導入端子 7 3 と還元プラズマ発生用電極 7 1 とは給 電線 7 2によって接続されている。
ここで、 上記還元プラズマ発生用電極 7 1 としては、 基板 1 5へ向か う前駆体 1 3のフラックスの行路を妨げないように、 多数の孔を有する 平板状の電極を用いる。 例えば、 図 5に示すような円形のメ ッシュ状電 極 7 7である。 該メ ッシュ状電極 7 7は、 内周側に金属ワイヤーを網状 にした金属メ ッシュ 7 7 aを配設し、 該金属メ ッシュ 7 7 aの外周をメ ッシュ押さえ治具 7 7 bで周囲が解れないように固定したものである。 このメ ッシュ押さえ治具 7 7 bは、 例えば金属メ ッシュ 7 7 aと同じ材 質の円環であり、 該金属メ ッシュ Ί 7 aを上下からサン ドィ ツチ状に挟 み込んで固定する。
また、 上記還元プラズマ発生用電極 7 1は、 基板 1 5へ向かう前駆体 1 3のフラ ックスを妨げない形状であればメ ッシュ状電極 7 7に限定さ れず、 種々のものを用いることができる。
例えば、 図 6に示す梯子状電極 7 9、 図 7に示す櫛形電極 8 0、 図 8 に示すパンチングボード状電極 8 1などを好適に用いることができる。 上記梯子状電極 7 9は、 両側に縦状ワイヤー 7 9 aを配設し、 該縦状 ワイヤー 7 9 a, 7 9 aの間に、 横状ワイヤ一 7 9 bを複数配設したも のである。 上記櫛形電極 8 0は、 1本の縦状ワイヤ一 8 0 aに横状ワイ ヤー 8 0 bを複数配設したもの 2つ作製し、 それらの複数の横状ワイヤ — 8 0 bが互い違いになるように配置させたものである。 そして、 上記 パンチングボード状電極 8 1は、 円形の金属製ボード 8 2に小さい穴 8 3を複数穿設したものである。
なお、 上述した電極においては、 メ ッシュ状電極 7 7における金属メ ッシュ 7 7 aを構成するワイヤーの径ゃ数、 メッシュ間のピツチ、 梯子 状電極 7 9における梯子段の径、 数及び間隔、 櫛形電極 8 0における縦 状及び横状ワイヤー 8 0 a, 8 O bの径ゃ数、 間隔及び櫛形を組み合せ る数、 パンチングボード状電極 8 1を構成するボ一ド 8 2の孔の径、 数 及び孔の配置、 そして、 電極の開口率に特別な制限はないので、 どのよ うな還元作用を起こさせたいかによって形状を適宜に選択すればよい。 また、 これら電極の材料は導電性材料を用いるが、 反応容器内は塩素 雰囲気であるため、 腐食防止のためにステンレス等を用いることが望ま しい。
上記構成を有するプラズマ励起気相成長装置 8 5による作用を以下に 説明する。
まず、 前駆体 1 3が穴開き板 1 2の穴 1 2 aから噴射されるまでの過 程は、 第 1の実施の形態と同様である。 ここで、 還元プラズマ発生用電 極 7 1に高周波電源 7 6から整合器 7 5、 電流導入端子 7 3を介して高 周波電力を印加すると、 上記還元プラズマ発生用電極 7 1の全面に還元 ガスプラズマ 1 4である水素プラズマが発生する。 該水素プラズマ中を 前駆体 1 3が通過すると、 該前駆体 1 3が原子状水素によって還元反応 を起こし、 基板 1 5上に Cu薄膜 6 2が形成される。
[第 5の実施の形態]
図 9は、 第 5の実施の形態に係る貴金属薄膜を作製するためのプラズ マ励起気相成長装置 9 0の概略図である。 この装置 9 0は、 上記第 4の 実施の形態におけるプラズマ励起気相成長装置 8 5 (図 4を参照) と、 従来の原料ガス供給方法 (図 1 0を参照) とを組み合わせた形態のもの であり、 構造が同一の部位については、 同一符号を付して説明を省略す る。
上記プラズマ励起気相成長装置 9 0においては、 原料容器 1 2 1を流 量制御器 1 0 3を介して気化器 1 2 0に接続しており、 上記原料容器 1 2 1に収容する液体原料 1 2 2の蒸気を発生させるためにバブリング用 の配管も設けている。 また、 図 4に示すような高周波電力を利用して前 駆体 1 3を還元ガスプラズマ 1 4によって還元反応を起こす装置を配設 している。
上記構成を有するプラズマ励起気相成長装置 9 0による作用を以下に 説明する。
まず、 原料容器 1 2 1内に液体原料 1 2 2 として例えば銅 · へキサフ ロロァセチルァセ トナト · ト リメチルビニルシラン Cu(hfacKtmvs)を封 入し、 Heを輸送用ガスとしてバブリ ングを行なう。 液体原料 1 2 2はこ れに限らず液体の有機金属錯体で構わない。 このバブリ ングによって蒸 気化した原料の流量を流量制御器 1 0 3によって制御し、 気化器 1 2 0 内に導入する。 該気化器 1 2 0内において上記の原料を完全に気化した 後に、 反応容器 1の内部に穴開き板 1 1 2を通して前駆体 1 1 3 として 導入する。 ここで、 第 4の実施の形態の場合と同様に、 高周波電力によ つて還元ガスプラズマ 1 4である水素プラズマが発生するため、 該水素 プラズマ中を上記前駆体 1 1 3が通過すると、 前駆体 1 1 3に還元反応 を起こさせることによって、 基板 1 5上に Cu薄膜 6 2を形成する。
次いで、 図 1 0に基づいて本発明の金属膜作製装置及び金属膜作製方 法の第 6実施形態例を説明する。 図 1 0には本発明の第 6実施形態例に 係る金属膜の作製装置の概略側面を示してある。
図に示すように、 箱形に形成された、 例えば、 ステンレス製のチャン ノ 2 0 1の上部には第 1 プラズマ発生手段 2 0 2が備えられ、 チヤンバ 2 0 1の下部には第 2プラズマ発生手段 2 0 3が備えられている。 また 、 チャンバ 2 0 1の側部には磁場コィル 2 0 4が備えられている。 第 1 プラズマ発生手段 2 0 2は、 チヤンバ 2 0 1の上面に設けられた第 1絶 縁板 2 2 1 と、 第 1絶縁板 2 2 1 に設けられた第 1 プラズマアンテナ 2 2 2 と、 第 1 プラズマアンテナ 2 2 2 に給電を行う第 1電源 2 2 3によ つて構成されている。 また、 第 2プラズマ発生手段 2 0 3は、 チャンバ 2 0 1の下面に設けられた第 2絶縁板 2 2 4 と、 第 2絶縁板 2 2 4に設 けられた第 2プラズマアンテナ 2 2 5 と、 第 2プラズマアンテナ 2 2 5 に給電を行う第 2電源 2 2 6によって構成されている。
チャンバ 2 0 1の内部の第 1絶縁板 2 2 1 に下部には導入容器 2 0 6 が配置され、 導入容器 2 0 6 には原料ガス 2 0 5である塩素ガス(C 12ガ ス)が供給される。導入容器 2 0 6の側部には流量制御器 2 0 7及びノズ ル 2 0 8が接続され、 導入容器 2 0 6の底部には銅 (Cu) 製の噴射板 ( 金属板) 2 0 9が設けられている。 噴射板 2 0 9には多数の噴射穴 2 1 0が穿孔されている。 チャンバ 2 0 1の底部近傍には支持台 2 1 1が設 けられ、 支持台 2 1 1 には基板 2 1 2が載置される。 支持台 2 1 1は、 図示しないヒー夕手段により所定温度に昇温されている。 また、 磁場コ ィル 2 0 4の下方におけるチャンバ 2 0 1の下端部には還元ガス 2 1 3 である水素ガス(H2ガス)をチャンバ 2 0 1の内部に供給する還元ガス流 量制御器 2 1 4及び還元ガスノズル 2 1 5が設けられている。 更に、 チ ヤンバ 2 0 1の底部には排気口 2 2 7が穿設されている。
一方、 チャンバ 2 0 1の側壁にはチヤンバ加熱手段としてのフィ ラメ ン ト状の加熱ヒー夕 2 2 8が設けれ、 電源 2 2 9によ り加熱ヒー夕 2 2 8が通電されることで、 チヤンバ 2 0 1の側壁が所定温度、 例えば、 200 °C〜600°Cに加熱される。 尚、 所定温度の上限温度は、 チャ ンバ 2 0 1の 耐久温度以下が好ましい。 本実施形態例では、 チャ ンバ 2 0 1がステン レス製である場合について説明しているので、上限温度を 600°Cとしてい る。 このため、 所定温度の上限温度はチャンバ 2 0 1の材質により適宜
ΠΧ Λ£ れ ο
チャ ンバ 2 0 1 の側壁を加熱する こ とによ り、 後述する前駆体 ( CuxC ly )がチヤ ンバ 2 0 1 の側壁に付いても蒸気圧力が高くなり気化し やすくなり、 前駆体(CuxC ly )がチヤ ンバ 2 0 1 の側壁に付着することを 防止できることができる。 本実施形態例では、 噴射板 2 0 9が Cu製であ る場合について説明しているので、 前駆体(CuxC ly )の蒸気圧力と温度と の関係によ り所定温度の下限値を 200°Cとしている。 このため、 所定温度 の下限値は、 噴射板 2 0 9の材質に応じて生成される前駆体により適宜 設定される。 上述した金属膜作製装置では、 導入容器 2 0 6に C12ガスを導入し、 第 1プラズマ発生手段 2 0 2の第 1プラズマアンテナ 2 2 2から電磁波を 導入容器 2 0 6内に入射することで、導入容器 2 0 6内の C12ガスがィォ ン化されて C12ガスプラズマ (原料ガスプラズマ) 2 3 1が発生する。 こ の C12ガスプラズマプラズマ 2 3 1によ り、Cu製の噴射板 2 0 9にエッチ ング反応が生じ、 前駆体(CuxCly) 2 3 0が生成される。 前駆体(CuxCly) 2 3 0は、 噴射穴 2 1 0を通って下方に噴射される。
一方、 チャンバ 2 0 1内に H2ガスを導入し、 第 2プラズマ発生手段 2 0 3の第 2ブラズマアンテナ 2 2 5から電磁波をチヤンバ 2 0 1内に入 射することで、 チャンバ 2 0 1内の H2ガスがイオン化されて H2ガスブラ ズマ (還元ガスプラズマ) 2 3 2が発生する。 H2ガスプラズマ 2 3 2は 、 磁場コイル 2 04によって形成された回転磁場によって基板 2 1 2の 表面近傍に高密度で均一に分布する。
噴射穴 2 1 0を通って下方に噴射された前駆体(CuxCly) 2 3 0は、 基 板 2 1 2に到達する直前に H2ガスプラズマ 2 3 2を通過する。 還元ガス プラズマである H2ガスプラズマ 2 3 2を通過する前駆体(CuxCly) 2 3 0 は、 原子状水素による還元反応により塩素が還元除去されて Cuイオンの みにされて基板 2 1 2に当てられ、 基板 2 1 2の表面に Cu薄膜 2 3 3が 生成される。
この時、 チャンバ 2 0 1の側壁が加熱ヒー夕 2 2 8により所定温度、 例えば、 200°Cに加熱されているため、 前駆体(CuxCly) 2 3 0がチヤンバ 2 0 1の側壁に付いても蒸気圧力が高くなり気化しやすくなり、 前駆体 (CuxCly) 2 3 0がチャンバ 2 0 1の側壁に付着することが防止されてい る。 尚、 チャンバ 2 0 1の側壁が所定温度よりも低い温度、 例えば、 180 °C程度の場合には、 前駆体(CuxCly) 2 3 0の蒸気圧力が十分に高くなら ず前駆体(CuxCly) 2 3 0がチャンバ 2 0 1の側壁に付着してしまうこと が確認されている。
尚、 上記構成の金属膜作製装置では、 原料ガス 2 0 5 として塩素ガス ( C12ガス) を例に挙げて説明してあるが、 HC 1ガスを適用することも可 能であり、 この場合、 原料ガスプラズマは HC 1ガスプラズマが生成される が、 Cu製の噴射板 2 0 9のエッチングによ り生成される前駆体 2 3 0は CuxC lyである。 従って、 原料ガス 2 0 5は塩素を含有するガスであれば よく、 HC 1ガスと C 12ガスとの混合ガスを用いることも可能である。 また 、 噴射板 2 0 9の材質は、 Cuに限らず、 Ag, Au, Pt , T i,W等を用いることが 可能である。 この場合、 前駆体 2 3 0は , !! ^等の塩化物となり 、 基板 2 1 ?の表面に生成される薄膜は , !!,?^ ^等になる。
上記構成の金属膜作製装置は、 C 12ガスプラズマ (原料ガスプラズマ) 2 3 1 と H2ガスプラズマ (還元ガスプラズマ) 2 3 2の 2つのプラズマ を用いているため、 反応効率が大幅に向上して成膜速度が大きくなる。 また、 原料ガス 2 0 5 として塩素ガス(C 12ガス)を用い、 還元ガス 2 1 3 として水素を含有したガスを用いているため、 コス トを大幅に減少させ ることができる。 また、 還元反応を独立に高めることができるので、 Cu 薄膜 2 3 3中に塩素等の不純物の残留を少なくすることができ、 高品質 な Cu薄膜 2 3 3を生成することが可能になる。
そして、 チャンバ 2 0 1の側壁が加熱ヒ一夕 2 2 8により所定温度に 加熱されているため、 前駆体(CuxC ly ) 2 3 0がチャンバ 2 0 1の側壁に 付いても蒸気圧力が高くなり気化しやすくなり、 前駆体(CuxC ly ) 2 3 0 がチヤンバ 2 0 1の側壁に付着することが防止されている。 このため、 チャンバ 2 0 1 内の定期的なク リ一ニング処理が不要になり、 原料歩留 まりが向上すると共にランニングコス トを低減することが可能になる。 図 1 1 に基づいて本発明の第 7実施形態例に係る金属膜作製装置及び 金属膜作製方法を説明する。 図 1 1 には発明の第 7実施形態例に係る金 属膜作製装置の概略側面を示してある。 尚、 図 1 0に示した部材と同一 部材には同一符号を付して重複する説明は省略してある。
図 1 1 に示した第 7実施形態例に係る金属膜作製装置は、 図 1 0に示 した金属膜作製装置に対して、 チャンバ加熱手段としてのフィ ラメ ン ト 状の加熱ヒー夕 2 2 8及び電源 2 2 9が設けられておらず、 噴射板 2 0 9を加熱する噴射板加熱手段が設けられている。 即ち、 導入容器 2 0 6 の底部には絶縁部 2 4 1 を介して銅(Cu )製の噴射板 (金属板) 2 0 9が 設けられている。 導入容器 2 0 6の側部には希ガスである Heガスを供給 するための補助ノズル 2 4 2が接続され、 導入容器 2 0 6には原料ガス 2 0 5である塩素ガス(C 12ガス)と共に Heガスが供給される。導入容器 2 0 6に供給される C 12ガスと Heガスは、 略 1対 1の割合で供給される。 噴 射板 2 0 9にはバイァス電源 2 4 3が接続され、 バイァス電源 2 4 3に より直流電圧が噴射板 2 0 9に印加される。
上述した金属膜の作製装置では、 第 1 プラズマ発生手段 2 0 2の第 1 プラズマアンテナ 2 2 2から電磁波を導入容器 2 0 6 内に入射すること で、 導入容器 2 0 6内の C 12ガス及び Heガスがイオン化されて C 12 · Heガ スプラズマ 2 4 4が発生する。 この C 12 · Heガスプラズマ 2 4 4によ り、 バイァス電圧が印加された噴射板 2 0 9に Heィオンが衝突して噴射板 9 が均一に加熱される。 尚、 噴射板 2 0 9の加熱手段としては、 Heイオン を衝突させる手段の他に、 ヒー夕等を噴射板 2 0 9に直接設けて加熱す る手段を適用することも可能である。
噴射板 2 0 9の加熱温度は、 例えば、 200°C乃至 800°Cの範囲に加熱さ れ、好ましくは、 600°Cに加熱される。加熱温度の下限は、前駆体(CuxC ly ) 2 3 0が噴射穴 2 1 0を通る時に、 重合体ではなく単量体に近い前駆体 となる温度が好ましく、600°Cに加熱されていると前駆体 2 3 0は単量体 の CuC lとなりやすく、 後述する還元反応が容易となる。 また、 加熱温度 の上限は、 噴射板 2 0 9の材質に依存され、 銅(Cu )製の噴射板 2 0 9の 場合は 800°Cが上限となり、 800°Cを越えると軟化して噴射板 2 0 9が使 用不可能になる。 噴射板 2 0 9に印加する電圧を制御することによ り、 噴射板 2 0 9は所望の温度に制御される。
導入容器 2 0 6内に C 12 'Heガスプラズマ 2 4 4が発生することで、 C 12 ガスプラズマにより Cu製の加熱された噴射板 2 0 9にエッチング反応が 生じ、単量体の前駆体(CuC l ) 2 3 0が生成されやすくなる。前駆体(CuC l ) 2 3 0は、 噴射板 2 0 9の噴射穴 2 1 0を通って下方に噴射される。 噴 射穴 2 1 0を通って下方に噴射された前駆体(CuC l ) 2 3 0は、 基板 2 1 2に到達する直前に H2ガスプラズマ 2 3 2を通過し、 原子状水素による 還元反応により塩素が還元除去されて Cuイオンのみにされて基板 2 1 2 に当てられ、 基板 2 1 2の表面に Cu薄膜 2 3 3が生成される。
下方に噴射された前駆体 2 3 0は、 単量体の CuC lであるため、 原子状 水素により還元されやすくなつており、 塩素が短時間に還元除去されて Cuイオンのみにされて基板 2 1 2に当たられ、 基板 2 1 2の表面に Cu薄 膜 2 3 3が短時間に生成される。 従って、 また、 噴射板 2 0 9が Heィォ ンの衝突により均一に所望温度に加熱されているので、 還元されやすい 単量体の前駆体(Cu(U ) 2 3 0が生成され、 塩素が短時間に還元除去され て成膜速度を向上させることが可能になる。
図 1 2に基づいて本発明の第 8実施形態例に係る金属膜作製装置及び 金属膜作製方法を説明する。 図 1 2には発明の第 8実施形態例に係る金 属膜作製装置の概略側面を示してある。 尚、 図 1 0、 図 1 1 に示した部 材と同一部材には同一符号を付して重複する説明は省略してある。
図 1 2に示した第 8実施形態例に係る金属膜作製装置は、 図 1 1 に示 した金属膜作製装置に対して、 チャンバ加熱手段としてのフィ ラメ ン ト 状の加熱ヒー夕 2 2 8及び電源 2 2 9が設けられている。 即ち、 チャン バ加熱手段及び噴射板加熱手段が設けられた構成になっている。
このため、 チャンバ 2 0 1の側壁が加熱ヒー夕 2 2 8によ り所定温度 、 例えば、 200°Cに加熱されているため、 前駆体(CuC l ) 2 3 0がチヤンバ 2 0 1の側壁に付いても蒸気圧力が高くなり気化しやすくなり、 前駆体 ( CuC l ) 2 3 0がチヤンバ 2 0 1の側壁に付着することが防止されている 。 また、 下方に噴射された前駆体 2 3 0は、 単量体の CuC lであるため、 原子状水素によ り還元されやすくなつており、 塩素が短時間に還元除去 されて Cuイオンのみにされて基板 2 1 2に当てられ、 基板 2 1 2の表面 に Cu薄膜 2 3 3が短時間に生成される。
従って、 チャンバ 2 0 1の側壁が加熱ヒー夕 2 2 8により所定温度に 加熱されているため、 前駆体(CuC l ) 2 3 0がチヤンバ 2 0 1の側壁に付 いても蒸気圧力が高くなり気化しやすくなり、 前駆体(CuC l ) 2 3 0がチ ヤンバ 2 0 1の側壁に付着することが防止されている。 このため、 チヤ ンバ 2 0 1内の定期的なク リーニング処理が不要になり、 原料歩留ま り が向上すると共にランニングコス トを低減することが可能になる。 また 、 噴射板 2 0 9が Heイオンの衝突によ り均一に所望温度に加熱されてい るので、 還元されやすい単量体の前駆体(CuCl ) 2 3 0が生成され、 塩素 が短時間に還元除去されて成膜速度を向上させることが可能になる。 図 1 3に基づいて本発明の第 9実施形態例に係る金属膜作製装置及び 金属膜作製方法を説明する。 図 1 3には発明の第 9実施形態例に係る金 属膜作製装置の概略側面を示してある。 尚、 図 1 0に示した部材と同一 部材には同一符号を付して重複する説明は省略してある。
図 1 3に示した第 9実施形態例に係る金属膜作製装置は、 図 1 0に示 した金属膜作製装置に対して、 還元ガスプラズマである H2ガスプラズマ 2 3 2に代えて原子状還元ガス 2 5 1 を発生させるようにしたものであ る。 このため、 第 2 プラズマ発生手段 2 0 3に代えて、 H2ガス等の還元 ガス 2 1 3を加熱して原子状還元ガス 2 5 1にする還元ガス加熱手段 2 5 2を備えた構成になっている。 還元ガス加熱手段 2 5 2は、 還元ガス 流量制御器 2 1 4に還元ガスノズル 2 1 5を設け、 還元ガスノズル 2 1 5の内部にタングステンフィ ラメン ト 2 5 3を設け、 タングステンフィ ラメン ト 2 5 3の端部を直流電源 2 5 4に接続したものである。
上述した金属膜作製装置では、 導入容器 2 0 6に C12ガスを導入し、 第 1プラズマ発生手段 2 0 2の第 1プラズマアンテナ 2 2 2から電磁波を 導入容器 2 0 6内に入射することで、導入容器 2 0 6内の C12ガスがィォ ン化された C12ガスプラズマ (原料ガスプラズマ) 2 3 1が発生する。 こ の C12ガスプラズマプラズマ 2 3 1 によ り、 Cu製の噴射板 2 0 9にエッチ ング反応が生じ、 前駆体(CuxCly) 2 3 0が生成される。 前駆体(CuxCly) 2 3 0は、 噴射穴 2 1 0を通って下方に噴射される。
前駆体(CuxCly) 2 3 0が基板 2 1 2に到達する直前に、 還元ガス 2 1 3である H2ガスを還元ガス流量制御器 2 1 4により流量制御し、 直流電 源 2 5 4でタングステンフィ ラメン ト 2 5 3を 1800°Cに加熱する。 夕ン グステンフィ ラメン ト 2 5 3の加熱により原子状還元ガス 2 5 1 (原子 状水素) を発生させ、 原子状還元ガス 2 5 1を還元ガスノズル 2 1 5か らチャンバ 2 0 1内に噴射する。 これによ り、 噴射穴 2 1 0を通って下 方に噴射された前駆体(CuxCly) 2 3 0は、 基板 2 1 2に到達する直前に 原子状還元ガス 2 5 1を通過し、 前駆体(CuxCly) 2 3 0は、 原子状水素 による還元反応によ り塩素が還元除去されて Cuィオンのみにされて基板 2 1 2に当てられ、 基板 2 1 2の表面に Cu薄膜 2 3 3が生成される。
この時、 チャンバ 2 0 1の側壁が加熱ヒー夕 2 2 8により所定温度、 例えば、 200°Cに加熱されているため、 前駆体(CuxCly) 2 3 0がチヤンバ 2 0 1の側壁に付いても蒸気圧力が高くなり気化しやすくなり、 前駆体 (CuxCly) 2 3 0がチャンバ 2 0 1の側壁に付着することが防止されてい る。
上記構成の金属膜作製装置は、 原料ガス 2 0 5 として塩素ガス(C 12ガ ス)を用レ、、還元ガス 2 1 3 として水素を含有したガスを用いているため 、 コス トを大幅に減少させることができる。 また、 還元反応を独立に高 めることができるので、 Cu薄膜 2 3 3中に塩素等の不純物の残留を少な くすることができ、 高品質な Cu薄膜 2 3 3を生成することが可能になる 。 また、 原子状還元ガス 2 5 1である原子状水素を比較的柔軟な配置が 可能な還元ガスノズル 2 1 5のみで供給することができるので、 面積の 安定した (例えば、 50mm X 50mm) 成膜に対応することができる。
そして、 チャンバ 2 0 1の側壁が加熱ヒー夕 2 2 8により所定温度に 加熱されているため、 前駆体(CuxC ly ) 2 3 0がチヤンバ 2 0 1の側壁に 付いても蒸気圧力が高くなり気化しやすくなり、 前駆体(CuxC ly ) 2 3 0 がチヤンバ 2 0 1の側壁に付着することが防止されている。 このため、 チャンバ 2 0 1内の定期的なク リ一ニング処理が不要になり、 原料歩留 ま りが向上すると共にランニングコス トを低減することが可能になる。 図 1 4に基づいて本発明の第 1 0実施形態例に係る金属膜作製装置及 び金属膜作製方法を説明する。 図 1 4には発明の第 1 0実施形態例に係 る金属膜作製装置の概略側面を示してある。 尚、 図 1 3に示した部材と 同一部材には同一符号を付して重複する説明は省略してある。
図 1 4に示した第 1 0実施形態例に係る金属膜作製装置は、 図 1 3に 示した金属膜作製装置に対して、 チヤンバ加熱手段としてのフィ ラメン ト状の加熱ヒー夕 2 2 8及び電源 2 2 9が設けられておらず、 噴射板 2 0 9を加熱する噴射板加熱手段が設けられている。 即ち、 導入容器 2 0 6の底部には絶縁部 2 4 1 を介して銅(Cu )製の噴射板 (金属板) 2 0 9 が設けられている。 導入容器 2 0 6の側部には希ガスである Heガスを供 給するための補助ノズル 2 4 2が接続され、 導入容器 2 0 6には原料ガ ス 2 0 5である塩素ガス(C 12ガス)と共に Heガスが供給される。導入容器 2 0 6に供給される C 12ガスと Heガスは、 略 1対 1の割合で供給される。 噴射板 2 0 9にはバイァス電源 2 4 3が接続され、 バイァス電源 2 4 3 により直流電圧が噴射板 2 0 9に印加される。
上述した金属膜の作製装置では、 第 1 プラズマ発生手段 2 0 2の第 1 プラズマアンテナ 2 2 2から電磁波を導入容器 2 0 6内に入射すること で、 導入容器 2 0 6内の C 12ガス及び Heガスがィオン化されて C 12 · Heガ スプラズマ 2 4 4が発生する。 この C 12 · Heガスプラズマ 2 4 4によ り、 バイァス電圧が印加された噴射板 2 0 9に Heイオンが衝突して噴射板 2 0 9が均一に加熱される。 尚、 噴射板 2 0 9の加熱手段としては、 Heィ オンを衝突させる手段の他に、 ヒ一夕等を噴射板 2 0 9に直接設けて加 熱する手段を適用することも可能である。
噴射板 2 0 9の加熱温度は、 例えば、 200°C乃至 800°Cの範囲に加熱さ れ、好ましくは、 600°Cに加熱される。加熱温度の下限は、前駆体(CuxC ly ) 2 3 0が噴射穴 2 1 0を通る時に、 重合体ではなく単量体に近い前駆体 となる温度が好ましく、600°Cに加熱されていると前駆体 2 3 0は単量体 の CuC lとなりやすく、 後述する還元反応が容易となる。 また、 加熱温度 の上限は、 噴射板 2 0 9の材質に依存され、 銅(Cu )製の噴射板 2 0 9の 場合は 800°Cが上限となり、 800°Cを越えると軟化して噴射板 2 0 9が使 用不可能になる。 噴射板 2 0 9に印加する電圧を制御することによ り、 噴射板 2 0 9は所望の温度に制御される。
導入容器 2 0 6内 C 12 · Heガスプラズマ 2 4 4が発生することで、 C 12 ガスプラズマにより Cu製の加熱された噴射板 2 0 9にエッチング反応が 生じ、単量体の前駆体(Cu(M ) 2 3 0が生成されやすくなる。前駆体(CuC l ) 2 3 0は、 噴射板 2 0 9の噴射板 2 1 0を通って下方に噴射される。 噴 射穴 2 1 0を通って下方に噴射された前駆体(CuC l ) 2 3 0は、 基板 2 1 2に到達する直前に原子状還元ガス 2 5 1 を通過し、 前駆体(CuC l ) 2 3 0は、 原子状水素による還元反応により塩素が還元除去されて Cuィォン のみにされて基板 2 1 2に当てられ、 基板 2 1 2の表面に Cu薄膜 2 3 3 が生成される。
下方に噴射された前駆体 2 3 0は、 単量体の CuC lであるため、 原子状 水素により還元されやすくなつており、 塩素が短時間に還元除去されて Cuィオンのみにされて基板 2 1 2に当てられ、 基板 2 1 2の表面に Cu薄 膜 2 3 3が短時間に生成される。 従って、 噴射板 2 0 9が Heイオンの衝 突により均一に所望温度に加熱されているので、 還元されやすい単量体 の前駆体(CuC l ) 2 3 0が生成され、 塩素が短時間に還元除去されて成膜 速度を向上させることが可能になる。
図 1 5に基づいて本発明の第 1 1実施形態例に係る金属膜作製装置及 び金属膜作製方法を説明する。 図 1 5 には発明の第 1 1実施形態例に係 る金属膜作製装置の概略側面を示してある。 尚、 図 1 3、 図 1 4に示し た部材と同一部材には同一符号を付して重複する説明は省略してある。 図 1 5に示した第 1 1実施形態例に係る金属膜作製装置は、 図 1 4に 示した金属膜作製装置に対して、 チヤンバ加熱手段としてのフィ ラメン ト状の加熱ヒー夕
2 2 8及び電源 2 2 9が設けられている。 即ち、 チヤンバ加熱手段及び 噴射板加熱手段が設けられた構成になっている。
このため、 チャンバ 1の側壁が加熱ヒ一夕 2 2 8により所定温度、 例 えば、 200°Cに加熱されているため、 前駆体(CuC l ) 2 3 0がチヤンバ 2 0 1 の側壁に付いても蒸気圧力が高く な り気化しやすく な り、 前駆体 ( CuC l ) 2 3 0がチャンバ 2 0 1の側壁に付着することが防止されている 。 また、 下方に噴射された前駆体 2 3 0は、 単量体の CuC lであるため、 原子状水素によ り還元されやすくなつており、 塩素が短時間に還元除去 されて Cuィオンのみにされて基板 2 1 2に当てられ、 基板 2 1 2の表面 に Cu薄膜 2 3 3が短時間に生成される。
従って、 チヤンバ 2 0 1の側壁が加熱ヒー夕 2 2 8により所定温度に 加熱されているため、 前駆体(CuCl) 2 3 0がチヤンバ 2 0 1の側壁に付 いても蒸気圧力が高くなり気化しやすくなり、 前駆体(CuCl) 2 3 0がチ ヤンバ 2 0 1の側壁に付着することが防止されている。 このため、 チヤ ンバ 2 0 1内の定期的なク リ一ニング処理が不要になり、 原料歩留りが 向上すると共にランニングコス トを低減することが可能になる。 また、 噴射板 2 0 9が Heイオンの衝突により均一に所望温度に加熱されている ので、 還元されやすい単量体の前駆体(CuCl) 2 3 0が生成され、 塩素が 短時間に還元除去されて成膜速度を向上させることが可能になる。
図 1 6に基づいて本発明の第 1 2実施形態例に係る金属膜作製装置及 び金属膜作製方法を説明する。 図 1 6には発明の第 1 2実施形態例に係 る金属膜作製装置の概略側面を示してある。 尚、 図 1 3に示した部材と 同一部材には同一符号を付して重複する説明は省略してある。
図 1 6に示した第 1 2実施形態例に係る金属膜作製装置は、 図 1 3に 示した金属膜作製装置に対して、導入容器 2 0 6内で C12ガスプラズマ 2 3 1を発生させて前駆体(CuxCly) 2 3 0を生成させる代わりに、 原料ガ ス加熱手段 2 6 1のノズル 8から前駆体(CuxCly) 2 3 0をチャンバ 2 0 1内に噴射させるようにしたものである。 原料ガス加熱手段 2 6 1は、 流量制御器 2 0 7にノズル 2 0 8を設け、 ノズル 2 0 8の内部に複数回 卷いた状態の銅フイ ラメン ト 2 6 2を設け、 銅フィ ラメン ト 2 6 2の端 部を直流電源 2 6 3に接続したものである。 直流電源 2 6 3により銅フ イラメン ト 2 6 2は 300°C〜600°Cに加熱される。
上述した金属膜作製装置では、原料ガスである C12ガスを流量制御器 2 0 7で流量制御してノズル 2 0 8に導入する。 ノズル 2 0 8の内部には 直流電源 2 6 3によ り 300°C〜600°Cに加熱された銅フイ ラメン ト 2 6 2 が設けられているため、 C12ガスを加熱された銅フイ ラメ ン ト 2 6 2 に接 触させることにより前駆体(CuxCly)を生成させる。 ノズル 2 0 8からチ ャンバ 2 0 1内に前駆体(CuxCly) 2 3 0を導入すると、 前駆体(CuxCly) 2 3 0は下方に移動する。
前駆体(CuxCly) 2 3 0が基板 2 1 2 に到達する直前に、 還元ガス 2 1 3である H2ガスを還元ガス流量制御器 2 1 4により流量制御し、 直流電 源 2 5 4でタングステンフィ ラメン ト 2 5 3を 1800°Cに加熱する。 夕ン グステンフィラメン ト 2 5 3の加熱により原子状還元ガス 2 5 1 (原子 状水素) を発生させ、 原子状還元ガス 2 5 1 を還元ガスノズル 2 1 5か らチャンバ 1内に噴射する。 これによ り、 噴射穴 2 1 0を通って下方に 噴射された前駆体(CuxCly) 2 3 0は、 基板 2 1 2に到達する直前に原子 状還元ガス 2 5 1 を通過し、 前駆体(CuxCly) 2 3 0は、 原子状水素によ る還元反応により塩素が還元除去されて Cuイオンのみにされて基板 2 1 2に当てられ、 基板 2 1 2の表面に Cu薄膜 2 3 3が生成される。
この時、 チャンバ 2 0 1の側壁が前述同様に加熱ヒ一夕 2 2 8により 所定温度、 例えば、 200°Cに加熱されているため、 前駆体(CuxCly) 2 3 0 がチャンバ 2 0 1の側壁に付いても蒸気圧力が高くなり気化しやすくな り、 前駆体(CuxCly) 2 3 0がチャンバ 2 0 1の側壁に付着することが防 止されている。
上記構成の金属膜の作製装置は、 前駆体(CuxCly) 2 3 0を比較的柔軟 な配置が可能なノズル 2 0 8のみで供給し、 原子状水素を比較的柔軟な 配置が可能な還元ガスノズル 2 1 5のみで供給することができるので、 面積の極めて安定した (例えば、 lOOmmxlOOmm) 成膜に対応することが できる。
そして、 チャンバ 2 0 1の側壁が加熱ヒー夕 2 2 8によ り所定温度に 加熱されているため、 前駆体(CuxC ly ) 2 3 0がチャンバ 2 0 1の側壁に 付いても蒸気圧力が高くなり気化しやすくなり、 前駆体(CuxCly ) 2 3 0 がチャンバ 2 0 1の側壁に付着することが防止されている。 このため、 チャンバ 2 0 1 内の定期的なク リ一ニング処理が不要になり、 原料歩留 りが向上すると共にランニングコス トを低減することが可能になる。 図 1 7は、 第 1 3の実施形態に係る銅薄膜の気相成長装置を示す概略 断面図、 図 1 8は図 1 7の気相成長装置に組み込まれる銅製噴射板を示 す平面図である。
底部に排気管 3 0 1 を有する箱形をなす反応容器 3 0 2内には、 被処 理基板が載置される平板状ヒ一夕 3 0 3が配置されている。 真空ポンプ 等の排気手段 (図示せず) は、 前記排気管 3 0 1の他端に接続されてい る。 底部に複数の噴射孔 3 0 4が穿設された銅製噴射板 3 0 5を有する 有底円筒形の導入容器 3 0 6は、 前記反応容器 3 0 2の上部に吊下され ている。 加熱用媒体 (例えば加熱空気) または冷却用媒体 (例えば冷却 空気) が流通される温度制御手段としての循環パイプ 3 0 7は、 図 1 8 に示すように前記銅製噴射板 3 0 5内にその噴射板 3 0 5表面と平行に なるように蛇行して挿着されている。
塩素または塩化水素を導入するための原料ガス供給管 3 0 8は、 外部 から前記反応容器 3 0 2の側壁および前記導入容器 3 0 6の側壁を貫通 して前記導入容器 3 0 6内に挿入されている。 流量制御器 3 0 9は、 前 記反応容器 3 0 2の外部に位置する前記原料ガス供給管 8部分に介装さ れている。 第 1 プラズマ発生器 3 1 0は、 前記導入容器 6が位置された 前記反応容器 3 0 2の上面に配置されている。 この第 1 プラズマ発生器 3 1 0は、 前記反応容器 3 0 2の上面に前記導入容器 3 0 6を覆うよう に配置された絶縁板 3 1 1 と、 この絶縁板 3 1 1上に設けられた第 1 プ ラズマ用アンテナ 3 1 2 と、 この第 1 プラズマ用アンテナ 3 1 2 に接続 された第 1 プラズマ用電源 3 1 3 とから構成されている。
2本の検出端子 3 1 4 a, 3 1 4 bを有する水分圧計 3 1 5は、 前記 反応容器 3 0 2の外部に配置されている。 一方の検出端子 3 1 4 aは、 前記反応容器 3 0 2の側壁および前記導入容器 3 0 6の側壁を貫通して 前記導入容器 3 0 6内に挿入され、 かつ他方の検出端子 3 1 4 bは前記 反応容器 3 0 2の側壁を貫通して前記反応容器 3 0 2内に挿入されてい る。 前記水分圧計 3 1 5は、 成膜前に前記反応容器 3 0 2内および前記 導入容器 3 0 6内を真空排気した際の水分圧を測定する。
還元ガス、 例えば元素を供給するための水素供給管 3 1 6は、 外部か ら前記反応容器 3 0 2の下部側壁を貫通して前記反応容器 3 0 2内に揷 入されている。 流量制御器 3 1 7は、 前記反応容器 3 0 2の外部に位置 する前記水素供給管 3 1 6部分に介装されている。 第 2プラズマ発生器 3 1 8は、 前記反応容器 3 0 2の底部に配置されている。 この第 2ブラ ズマ発生器 3 1 8は、 前記反応容器 3 0 2の底面に配置された絶縁体 3 1 9 と、 この絶縁板 3 1 9下面に設けられた第 2プラズマ用アンテナ 3 2 0 と、 この第 2プラズマ用アンテナ 3 2 0の底面に接続された第 2プ ラズマ用電源 3 2 1 とから構成されている。 回転磁場コイル 3 2 2は、 前記反応容器 3 0 2の下部付近の側壁外面に所望の距離をあけて巻装さ れている。 この回転磁場コイル 3 2 2は、 前記反応容器 2の前記ヒー夕 3 0 3上方に生成された後述する水素プラズマを前記ヒー夕 3 0 3上に 設置される被処理基板表面近傍に高密度で分布させる作用をなす。
次に、 前述した図 1 7および図 1 8に示す銅薄膜の気相成長装置によ る銅薄膜の形成方法を説明する。
まず、 被処理基板 3 2 3を反応容器 3 0 2内の平板状ヒ一夕 3 0 3上 に設置する。 図示しない排気手段を作動して排気管 1 を通して前記反応 容器 3 0 2内および導入容器 3 0 6内のガス (空気) を排気して所定の 真空度にする。
このような真空排気において、 前記反応容器 3 0 2 と導入容器 3 0 6 内の水分圧を水分圧計 3 1 5により測定し、 水分圧が一定であることを 確認する。 この水分圧の確認後に水素を水素供給管 3 1 6を通して前記 反応容器 3 0 2内に供給する。 この時、 前記水素供給管 3 1 6に介装さ れた流量制御器 3 1 7によ り前記水素の流量を制御する。 第 2プラズマ 発生器 3 1 8の第 2プラズマ用電源 3 2 1 をオンして例えば高周波電力 を前記第 2プラズマ用アンテナ 3 2 0に印加することによ り前記被処理 基板 3 2 3上方近傍に水素プラズマ 3 2 4を生成する。 この時、 前記反 応容器 3 0 2の外部に配置された回転磁場コイル 3 2 2からの回転磁場 作用により前記水素プラズマ 3 2 4は前記被処理基板 3 2 3表面近傍に 高密度で分布される。
次いで、 原料ガス、 例えば塩素 ( C 1 2 ) を原料ガス供給管 3 0 8を 通して前記導入容器 3 0 6内に供給する。 この時、 前記原料ガス供給管 3 0 8に介装された流量制御器 3 0 9によ り前記塩素の流量を制御する 。 所定の温度に加熱した加熱用媒体 (例えば加熱空気) を銅製噴射板 3 0 5の循環パイプ 3 0 7に供給、 循環させてその銅製噴射板 3 0 5を所 定の温度に加熱する。 銅製噴射板 3 0 5の加熱後に、 第 1 プラズマ発生 器 3 1 0の第 1 プラズマ用電源 3 1 3をオンして例えば高周波電力を前 記第 1 プラズマ用アンテナ 3 1 2に印加することによ り前記導入容器 3 0 6内に塩素プラズマ 2 5 を発生する。 なお、 塩素プラズマ 3 2 5の生 成に伴って前記噴射板 3 0 5の温度が過度に上昇した場合には、 前記加 熱用媒体に代えて冷却用媒体を前記循環パイプ 3 0 7に供給して前記噴 射板 3 0 5を目的とする温度に制御する。
前述した塩素プラズマ 3 2 4の生成によ りそのプラズマ 3 2 4中の活 性化塩素と前記循環パイプ 3 0 7に加熱用媒体を供給循環させることに よ り所定の温度に加熱された銅製噴射板 3 0 5とが反応して塩化銅の前 駆体 ( C ux C l y) が生成される。 生成された前駆体 ( C u x C l y ) は、 図 1 7の矢印に示すように前記銅製噴射板 3 0 5の複数の噴射孔 3 04を通して前記反応容器 3 0 2内に噴射される。 噴射された前駆体 は、 平板状ヒ一夕 3 0 3上に設置された被処理基板 3 2 3に到達する直 前に前記水素プラズマ 3 2 4中を通過するため、 この水素プラズマ 3 2 4中の原子状水素により還元反応がなされる。 その結果、 前駆体 ( C u X C 1 y ) と原子状水素の還元反応により生成された銅が前記被処理基 板 3 2 3上に成長して銅薄膜が成膜される。
以上、 第 1 3の実施形態によれば安価な塩素を原料供給管 3 0 8を通 して底部に銅製噴射板 3 0 5を有する導入容器 3 0 6内に供給し、 第 1 プラズマ発生器 3 1 0により前記導入容器 6内に塩素プラズマ 3 2 5を 発生させ、 このプラズマ 3 2 5中の活性化塩素と前記銅製噴射板 3 0 5 とを反応させることによって、 銅の気相成長原料としての安価な塩化銅 の前駆体 ( C ux C l y) を生成できる。 また、 前記銅製噴射板 3 0 5 に内蔵された循環パイプ 3 0 7に加熱用媒体を供給、 循環させて前記銅 製噴射板 3 0 5を所定の温度に加熱することによって、 プラズマ 3 2 5 中の活性化塩素と前記銅製噴射板 3 0 5とを反応を促進できるため、 前 記前駆体 (C ux C l y) の生成量を増大できる。
このような前駆体を前記噴射板 3 0 5の複数の噴射孔 3 0 4を通して 反応容器 3 0 2内に噴射させ、 予め前記反応容器 3 0 2内に発生させた 水素プラズマ 3 2 4を通過させる間に原子状水素によ り還元反応させる ことによって、 熱分解に比べて比較的速い速度で銅を前記被処理基板 3 2 3上に成長して銅薄膜を成膜することができる。
また、 銅製噴射板 3 0 5内に内蔵された循環パイプ 3 0 7に加熱用媒 体を供給、 循環させて加熱し、 その銅製噴射板 3 0 5が一定の温度に達 した時点で、 前記塩素プラズマ 3 2 5中の活性化塩素との反応が進行す るため、 前記銅噴射板の複数の噴射孔 3 0 4から噴射される前駆体の圧 力 (噴射圧力) を安定できる。 また、 生成される前駆体 ( C u x C 1 y ) の種類も同一種になる。 その結果、 前記被処理基板 3 2 3上での銅の 成膜速度を安定化できるため、 前記被処理基板 3 2 3上に目的とした厚 さの銅薄膜を再現性よく形成することができる。
さらに、 前記前駆体 ( C u x C 1 y ) は水素プラズマ 3 2 4を通過さ せる間に原子状水素により還元反応がなされて前記被処理基板 3 2 3表 面に銅を気相成長するとともに、 この成膜過程の銅に対しても水素ブラ ズマ 3 2 4中の原子状水素により還元作用がなされるため、 塩素等の不 純物の残留が少ない良好な膜質を有する銅薄膜を形成することができる なお、 前記第 1 3の実施形態において前記銅製噴射板の温度制御手段 は加熱用媒体または冷却用媒体が循環される循環パイ プに限定されず、 前記銅製噴射板にヒー夕と冷却用媒体の循環パイプとを併設してもよい 前記第 1 3の実施形態において、 原料ガスとして塩素を用いたが、 塩 化水素を用いても同様に塩化銅の前駆体 ( C u x C l y ) を生成するこ とが可能である。
前記第 1 3の実施形態において、 水素をプラズマ化して原子状水素を 生成したが、 前記反応容器内に供給された水素を加熱するためのヒー夕 (例えばタングステンフィ ラメン ト等) を設けて原子状水素を生成する ようにしてもよい。
図 1 9は、 この第 1 4の実施形態に係る銅薄膜の気相成長装置を示す 概略断面図、 図 2 0の (A ) は図 1 9の気相成長装置に組み込まれるス パイラルチューブを示す縦断面図、 同図 (B ) はスパイラルチューブを 示す横断面図、 図 2 1の (A ) は図 1 9の気相成長装置に組み込まれる 他の形態のスパイラルチューブを示す縦断面図、 同図 ( B ) は同スパイ ラルチューブを示す横断面図である。
底部に排気管 3 3 1 を有する箱形をなす反応容器 3 3 2内には、 被処 理基板が載置される平板状ヒ一夕 3 3 3が配置されている。 真空ポンプ 等の排気手段 (図示せず) は、 前記排気管 3 3 1の他端に接続されてい る。
塩素または塩化水素を導入するための原料ガス供給管 3 3 4は、 外部 から前記反応容器 3 3 2の側壁を貫通して前記反応容器 3 3 2内の上部 に挿入されている。 流量制御器 3 3 5は、 前記反応容器 3 3 2の外部に 位置する前記原料ガス供給管 3 3 4部分に介装されている。 原料ガスの 流通内面が銅からなり、 かつ加熱部材が付設されたスパイラルチューブ 3 3 6は、 その上端が前記反応容器 3 3 2内に位置する前記原料ガス供 給管 3 3 4の先端に接続されている。 このスパイラルチューブ 3 3 6は 、 例えば図 2 0に示すように外管 3 3 7 とこの外管 3 3 7内に挿入され 、 前記原料ガス供給管 3 3 4 と接続される銅製内管 3 3 8 との二重管構 造を有し、 前記銅製内管 3 3 8内に前記原料ガスが流通され、 かつ前記 外管 3 3 7 と前記銅製内管 3 3 8の間の環状空間に加熱用媒体 (例えば 加熱空気) が流通される。 なお、 図示しない加熱用媒体供給管は、 前記 反応容器 3 2の壁部を貫通して前記原料ガス供給管 3 3 4 との接続部近 傍に位置するスパイラルチューブ 3 3 6の外管 3 3 7部分に接続され、 加熱用媒体を前記外管 3 3 7 と前記銅製内管 3 3 8の間の環状空間に供 給するようになっている。 また、 図示しない加熱用媒体排出管は、 前記 反応容器 3 3 2の壁部を貫通して前記スパイラルチューブ 3 3 6の下端 付近の外管 3 3 7部分に接続され、 前記環状空間に供給された加熱用媒 体を外部に排出するようになっている。 前駆体噴射部材 3 3 9は、 前記スパイラルチューブ 3 3 6の下方の前 記反応容器 3 3 2内にその上部に前記スパイラルチューブ 3 3 6が接続 されるように配置されている。
2本の検出端子 3 4 0 a , 3 4 0 bを有する水分圧計 3 4 1は、 前記 反応容器 3 3 2の外部に配置されている。 一方の検出端子 3 4 0 aは、 前記反応容器 3 3 2の側壁および前記スパイラルチューブ 3 3 6の外管 3 3 7および内管 3 3 8を貫通して前記内管 3 3 8内に挿入され、 かつ 他方の検出端子 3 4 0 bは前記反応容器 3 3 2の側壁を貫通して前記反 応容器 3 3 2内に挿入されている。 前記水分圧計 3 4 1は、 成膜前に前 記反応容器 3 3 2内および前記スパイラルチューブ 3 3 6の内管 3 3 8 内を真空排気した際の水分圧を測定する。
還元ガス、 例えば水素を供給するための水素供給管 3 4 2は、 外部か ら前記反応容器 3 3 2の下部側壁を貫通して前記反応容器 3 3 2内に揷 入されている。 流量制御器 3 4 3は、 前記反応容器 3 3 2の外部に位置 する前記水素供給管 3 4 2部分に介装されている。 プラズマ発生器 3 4 4は、 前記反応容器 3 3 2の底部に配置されている。 このプラズマ発生 器 3 4 4は、 前記反応容器 3 3 2の底面に配置された絶縁板 3 4 5 と、 この絶縁板 3 4 5下面に設けられたプラズマ用アンテナ 3 4 6 と、 この プラズマ用アンテナ 3 4 6の底面に接続されたプラズマ用電源 3 4 7 と から構成されている。 回転磁場コイル 3 4 8は、 前記反応容器 3 3 2の 下部付近の側壁外面に所望の距離をあけて卷装されている。 この回転磁 場コイル 3 4 8は、 前記反応容器 3 3 2の前記ヒー夕 3 3 3上方に生成 された後述する水素プラズマを前記ヒータ 3 3 3上に設置される被処理 基板表面近傍に高密度で分布させる作用をなす。
次に、 前述した図 1 9および図 2 0に示す銅薄膜の気相成長装置によ る銅薄膜の形成方法を説明する。 先ず、 被処理基板 3 4 9 を反応容器 3 3 2内の平板状ヒー夕 3 3 3上 に設置する。 図示しない排気手段を作動して排気管 3 3 1 を通して前記 反応容器 3 3 2内およびスパイラルチューブ 3 3 6の内管 3 3 8内のガ ス (空気) を排気して所定の真空度にする。
このような真空排気において、 前記反応容器 3 3 2内と前記スパイラ ルチューブ 3 3 6の内管 3 3 8内の水分圧を水分圧計 3 4 1 により測定 し、 水分圧が一定であることを確認する。 この水分圧の確認後に水素を 水素供給管 3 4 2を通して前記反応容器 3 3 2内に供給する。 この時、 前記水素供給管 3 4 2に介装された流量制御器 3 4 3によ り前記水素の 流量を制御する。 プラズマ発生器 3 4 4のプラズマ用電源 3 4 7をオン して例えば高周波電力を前記プラズマ用アンテナ 3 4 6に印加すること により前記被処理基板 3 4 9上方近傍に水素プラズマ 3 5 0を生成する 。 この時、 前記反応容器 3 3 2の外部に配置された回転磁場コイル 3 4 8からの回転磁場作用によ り前記水素プラズマ 3 5 0は前記被処理基板 3 4 9表面近傍に高密度で分布される。
次いで、 原料ガス、 例えば塩素 ( C 1 2 ) を原料ガス供給管 3 3 4を 通して前記スパイラルチューブ 3 3 6の銅製内管 3 3 8内に供給する。 この時、 前記原料ガス供給管 3 3 4に介装された流量制御器 3 3 5によ り前記塩素の流量を制御する。 所定の温度に加熱した加熱用媒体 (例え ば加熱空気) を前記反応容器 3 3 2の外部から図示しない加熱用媒体供 給管を通して前記スパイラルチューブ 3 3 6の外管 3 3 7 と内管 3 3 8 の間の環状空間に供給し、 図示しない加熱用媒体排出管を通して外部に 排出し、 前記スパイラルチューブ 3 3 6の銅製内管 3 3 8を所定の温度 に加熱することにより、 前記銅製内管 3 3 8 とこの内管 3 3 8を流通す る塩素 ( C 12 ) とが反応して塩化銅の前駆体 ( C u x C 1 y ) が生成さ れる。 生成された前駆体 ( C u x C l y) は、 図 1 9の矢印に示すように前 駆体噴射部材 3 3 9から前記反応容器 3 3 2内に噴射される。 噴射され た前駆体は、 平板状ヒー夕 3 3 3上に設置された被処理基板 3 4 9に到 達する直前に前記水素ブラズマ 3 5 0中を通過するため、 この水素ブラ ズマ 3 5 0中の原子状水素により還元反応がなされる。 その結果、 前駆 体 ( C ux C l y) と原子状水素の還元反応によ り生成された銅が前記 被処理基板 34 9上に成長して銅薄膜が成膜される。
以上、 第 1 4の実施形態によれば安価な塩素を原料ガス供給管 3 3 4 を通してスパイラルチューブ 3 3 6の銅製内管 3 3 8内に供給し、 前記 スパイラルチューブ 3 3 6の外管 3 3 7と内管 3 3 8の間の環状空間に 加熱用媒体を流通させて前記銅製内管 3 3 8を加熱させ、 塩素と前記銅 製内管 3 3 8とを反応させることによって、 銅の気相成長原料としての 安価な塩化銅の前駆体 ( Cux C l y) を生成できる。
このような前駆体を前駆体噴射部材 3 3 9から反応容器 3 3 2内に噴 射させ、 予め前記反応容器 3 3 2内に発生させた水素プラズマ 3 5 0を 通過させる間に原子状水素により還元反応させることによって、 熱分解 に比べて比較的速い速度で銅を前記被処理基板 3 4 9上に成長して銅薄 膜を成膜させることができる。
また、 前記スパイラルチューブ 3 3 6の外管 3 3 7 と内管 3 3 8の間 の環状空間に加熱用媒体を流通させて前記銅製内管 3 3 8を加熱させ、 その銅製内管 3 3 8が一定の温度に達した時点で、 この銅製内管 3 3 8 とこの内管 3 3 8を流通する塩素との反応が進行するため、 前記前駆体 噴射部材 3 3 9から噴射される前駆体の圧力 (噴射圧力) を安定できる 。 また、 生成される前駆体 ( C ux C l y) の種類も同一種になる。 そ の結果、 前記被処理基板 3 4 9上での銅の成膜速度を安定化できるため 、 前記基板 3 4 9上に目的とした厚さの銅薄膜を再現性よく形成するこ とができる。
さらに、 前記前駆体 ( C u X C 1 y ) は水素プラズマ 3 5 0を通過さ せる間に原子状水素によ り還元反応がなされて前記被処理基板 3 4 9表 面に銅を気相成長するとともに、 この成膜過程の銅に対しても水素ブラ ズマ 3 5 0中の原子状水素による還元作用がなされるため、 塩素等の不 純物の残留が少ない良好な膜質を有する銅薄膜を形成することができる なお、 前記第 1 4の実施形態においてスパイラルチューブを二重管構 造にし、 加熱用媒体を記スパイラルチューブの外管と銅製内管の間の環 状空間に供給して前記銅製内管を加熱したが、 かかる構造に限定されな い。 例えば、 図 2 1 に示すようにスパイラルチューブ 3 3 6を銅管 3 5 1の外周面に管状絶縁材 3 5 2を介して管状ヒー夕 3 5 3を配置した構 造にし、 前記管状ヒー夕 3 5 3により前記銅管 3 5 1 を所定の温度に加 熱するようにしてもよい。
前記第 1 4の実施形態において、 原料ガスとして塩素を用いたが、 塩 化水素を用いても同様に塩化銅の前駆体 ( C u x C l y ) を生成するこ とが可能である。
前記第 1 4実施形態において、 水素をプラズマ化して原子状水素を生 成したが、 前記反応容器内に供給された水素を加熱するためのヒ一夕等 を設けて原子状水素を生成するようにしてもよい。

Claims

請 求 の 範 囲
1 . ハロゲン元素を含有する原料ガスを金属製の穴開き板を有する導 入容器内に供給するステツプと、 該原料ガスをプラズマ化して原料ガス プラズマを生成するステップと、 該原料ガスプラズマで穴開き板をエツ チングすることによって、 該穴開き板に含まれる金属成分と原料ガス中 のハロゲン元素との前駆体を生成するステップと、 還元性ガスをプラズ マ化して還元性ガスプラズマを発生させるステップと、 上記前駆体を導 入容器から排出したのち回転磁場中を通すことによって、 前駆体を基板 に向けて加速させて走行させるステップと、 上記前駆体を還元性ガスプ ラズマ中に通すことによって、 前駆体からハロゲン元素を除去し、 金属 イオン又は中性金属にして基板に当てることにより、 基板上に金属薄膜 を生成するステツプとを含んでなる金属膜の作製方法。
2 . ハロゲン元素を含有する原料ガスを金属製の穴開き板を有する導 入容器内に供給するステップと、 該原料ガスをプラズマ化して原料ガス プラズマを生成するステツプと、 該原料ガスプラズマで上記穴開き板を エッチングすることによって、 該穴開き板に含まれる金属成分と原料ガ ス中のハロゲン元素との前駆体を生成するステツプと、 前駆体が揷通可 能な開口を有する電極に高周波電流を通すことにより、 還元性ガスをプ ラズマ化して還元性ガスプラズマを発生させるステップと、 該還元性ガ スプラズマ中に前駆体を通すことによって、 該前駆体からハロゲン元素 を除去し、 金属イオン又は中性金属にして基板に当て、 該基板上に金属 薄膜を生成するステツプとを含んでなる金属膜の作製方法。
3 . ハロゲン元素を含有する原料ガスを金属製の穴開き板を有する導 入容器内に供給するステップと、 該原料ガスをプラズマ化して原料ガス プラズマを生成するステップと、 該原料ガスプラズマで穴開き板をエツ チングすることによって、 該穴開き板に含まれる金属成分と原料ガス中 のハロゲン元素との前駆体を生成するステツプと、 穴開き板と基板との 間に、 還元性ガスを高温に加熱して原子状還元ガスを発生させるステツ プと、 上記前駆体を導入容器から排出したのち原子状還元ガス中に通す ことによって、 前駆体からハロゲン元素を除去し、 金属イオン又は中性 金属にして基板に当てることにより、 基板上に金属薄膜を生成するステ ップとを含んでなる金属膜の作製方法。
4 . ハロゲン元素を含有する原料ガスを高温の金属製フイ ラメン トに 接触させ、該フィ ラメ ン トを原料ガスでエッチングさせることによって 該フィ ラメ ン トに含まれる金属成分と原料ガス中のハロゲン元素との前 駆体を生成するステツプと、 還元性ガスを高温に加熱して原子状還元ガ スにするステップと、 この原子状還元ガス中に上記前駆体を通すことに よって、 前駆体からハロゲン元素を除去し、 金属イオン又は中性金属に して基板に当てることにより、 基板上に金属薄膜を生成するステツプと を含んでなる金属膜の作製方法。
5 . ハロゲン元素を含有する原料ガスを高温の金属製フイラメン トに 接触させ、該フィ ラメ ン トを原料ガスでエッチングさせることによって 該フィ ラメ ン トに含まれる金属成分と原料ガス中のハロゲン元素との前 駆体を生成するステツプと、 前駆体が挿通可能な開口を有する電極に高 周波電流を通すことにより、 還元ガスをプラスマ化して還元性ガスブラ ズマを発生させるステツプと、 該還元性ガスプラズマ中に前駆体を通す ことによって、 該前駆体からハロゲン元素を除去し、 金属イオン又は中 性金属にして基板に当て、 該基板上に金属薄膜を生成するステツプとを 含んでなる金属膜の作製方法。
6 . 上記穴開き板又はフィ ラメ ン トを銅元素を含み、 上記前駆体が CUxC lyであることを特徴とする請求項 1〜 5のいずれかに記載の金属膜 の作製方法。
7 . 上記原料ガスを導入容器内に供給するステップと、 原料ガスブラ ズマを生成するステップと、 前駆体を生成するステップとが、
液体の有機金属錯体を輸送用ガスによってバプリ ングしたのち、 気化 させるステップと、 この気化した有機金属錯体で穴開き板をエッチング することによって、 該穴開き板に含まれる金属成分と有機金属錯体中の ハロゲン元素との前駆体を生成するステツプとであることを特徴とする 請求項 1〜 6のいずれかに記載の金属膜の作製方法。
8 . 噴射穴が穿設された金属製の穴開き板を有すると共に、 その内部 に原料ガスを供給する導入容器と、 該導入容器の内部に収容された原料 ガスをプラズマ化して原料ガスプラズマを生成する第 1 プラズマ発生装 置と、 上記導入容器及び基板を収容した反応容器と、 上記穴開き板及び 基板の間に回転磁場を発生させる回転磁場発生装置と、 反応容器内に供 給する還元性ガスをプラズマ化する第 2プラズマ発生装置とを備えたこ とを特徴とする金属膜の作製装置。
9 . 噴射穴が穿設された金属製の穴開き板を有すると共に、 その内部 に原料ガスを供給する導入容器と、 該導入容器の内部に収容された原料 ガスをプラズマ化して原料ガスプラズマを生成する第 1プラズマ発生装 置と、 上記導入容器及び基板を収容した反応容器と、 反応容器内に供給 する還元性ガスをプラズマ化するために高周波電力を印加する電極とを 備えたことを特徴とする金属膜の作製装置。
1 0 . 噴射穴が穿設された金属製の穴開き板を有すると共に、 その内 部に原料ガスを供給する導入容器と、 該導入容器の内部に収容された原 料ガスをプラズマ化して原料ガスプラズマを生成するプラズマ発生装置 と、 上記導入容器及び基板を収容した反応容器と、 反応容器内に供給す る還元性ガスを加熱する還元性ガス加熱装置とを備えたことを特徴とす る金属膜の作製装置。
1 1 . 原料ガスを高温の金属製フイ ラメン トに接触させて前駆体にし てから反応容器内に供給する前駆体供給装置と、 基板を収容した反応容 器と、 反応容器内に供給する還元性ガスを加熱する還元性ガス加熱装置 とを備えたことを特徴とする金属膜の作製装置。
1 2 .液体の有機金属錯体を輸送用ガスのバブリ ングののち気化させ、 この気化した有機金属錯体から前駆体を生成して反応容器内に供給する 前駆体供給装置と、 基板を収容した反応容器と、 基板上部の空間に回転 磁場を発生させる回転磁場発生装置と、 反応容器内に供給する還元性ガ スをプラズマ化する第 2プラズマ発生装置とを備えたことを特徴とする 金属膜の作製装置。
1 3 .液体の有機金属錯体を輸送用ガスのバブリ ングののち気化させ、 この気化した有機金属錯体から前駆体を生成して反応容器内に供給する 前駆体供給装置と、 基板を収容した反応容器と、 反応容器内に供給する 還元性ガスをプラズマ化するために高周波電力を印加する電極とを備え たことを特徴とする金属膜の作製装置。
1 4 . 多数の噴射穴が穿設された金属製の噴射板を有しその内部に塩 素を含有する原料ガスが供給される導入容器と、
導入容器及び基板を収容するチャンバと、
導入容器内の原料ガスをプラズマ化して原料ガスプラズマを発生させ原 料ガスプラズマで噴射板をエッチングすることによって噴射板に含まれ る金属成分と原料ガス中の塩素との前駆体を生成する第 1 プラズマ発生 手段と、
チャンバ内で水素を含有する還元ガスをプラズマ化して還元ガスプラズ マを発生させる第 2プラズマ発生手段と、
チャンバを所定温度に加熱するチヤンバ加熱手段とを備え、 チヤンバ内で前駆体が還元ガスプラズマ中に通されることにより、 加熱 されたチャンバ内壁に前駆体が付着しない状態で前駆体から塩素が還元 除去され金属ィオンのみにされて基板に当てられて基板上に金属膜が生 成される
ことを特徴とする金属膜の作製装置。
1 5 . 多数の噴射穴が穿設された金属製の噴射板を有しその内部に塩 素を含有する原料ガスが供給される導入容器と、
噴射板を所定温度に加熱する噴射板加熱手段と、
導入容器及び基板を収容するチャンバと、
導入容器内の原料ガスをプラズマ化して原料ガスプラズマを発生させ原 料ガスプラズマで噴射板をエッチングすることによって噴射板に含まれ る金属成分と原料ガス中の塩素との前駆体を生成する第 1 プラズマ発生 手段と、
チャンバ内で水素を含有する還元ガスをプラズマ化して還元ガスプラズ マを発生させる第 2プラズマ発生手段とを備え、
加熱された噴射板をエッチングすることにより生成されて還元されやす くなった前駆体が還元ガスプラズマ中に通されることによ り、 前駆体か ら塩素が還元除去され金属ィオンのみにされて基板に当てられて基板上 に金属膜が生成される
ことを特徴とする金属膜の作製装置。
1 6 . 多数の噴射穴が穿設された金属製の噴射板を有しその内部に塩 素を含有する原料ガスが供給される導入容器と、
噴射板を所定温度に加熱する噴射板加熱手段と、
導入容器及び基板を収容するチャンバと、
導入容器内の原料ガスをプラズマ化して原料ガスプラズマを発生させ原 料ガスプラズマで噴射板をエッチングすることによって噴射板に含まれ る金属成分と原料ガス中の塩素との前駆体を生成する第 1 プラズマ発生 手段と、
チャンバ内で水素を含有する還元ガスをプラズマ化して還元ガスプラズ マを発生させる第 2プラズマ発生手段と、
チャンバを所定温度に加熱するチヤンバ加熱手段とを備え、
加熱された噴射板をエッチングすることにより生成されて還元されやす くなった前駆体が還元ガスプラズマ中に通されることにより、 加熱され たチャンバ内壁に前駆体が付着しない状態で前駆体から塩素が還元除去 され金属イオンのみにされて基板に当てられて基板上に金属膜が生成さ れる
ことを特徴とする金属膜の作製装置。
1 7 . 多数の噴射穴が穿設された金属製の噴射板を有しその内部に塩 素を含有する原料ガスが供給される導入容器と、
導入容器及び基板を収容するチャンバと、
導入容器内の原料ガスをプラズマ化して原料ガスプラズマを発生させ原 料ガスプラズマで噴射板をエッチングすることによって噴射板に含まれ る金属成分と原料ガス中の塩素との前駆体を生成する第 1 プラズマ発生 手段と、
水素を含有する還元ガスを高温に加熱して原子状還元ガスをチヤンバ内 の基板と噴射板との間に発生させる還元ガス加熱手段と、
チャンバを所定温度に加熱するチャンバ加熱手段とを備え、
チヤンバ内で前駆体が原子状還元ガス中に通されることにより、 加熱さ れたチャンバ内壁に前駆体が付着しない状態で前駆体から塩素が還元除 去され金属イオンのみにされて基板に当てられて基板上に金属膜が生成 される
ことを特徴とする金属膜の作製装置。
1 8 . 多数の噴射穴が穿設された金属製の噴射板を有しその内部に塩 素を含有する原料ガスが供給される導入容器と、
噴射板を所定温度に加熱する噴射板加熱手段と、
導入容器及び基板を収容するチャンバと、
導入容器内の原料ガスをブラズマ化して原料ガスプラズマを発生させ原 料ガスプラズマで噴射板をエッチングすることによって噴射板に含まれ る金属成分と原料ガス中の塩素との前駆体を生成する第 1 プラズマ発生 手段と、
水素を含有する還元ガスを高温に加熱して原子状還元ガスをチヤンバ内 の基板と噴射板との間に発生させる還元ガス加熱手段とを備え、 加熱された噴射板をエッチングすることにより生成されて還元されやす くなつた前駆体が原子状還元ガス中に通されることにより、 前駆体から 塩素が還元除去され金属イオンのみにされて基板に当てられて基板上に 金属膜が生成される
ことを特徴とする金属膜の作製装置。
1 9 . 多数の噴射穴が穿設された金属製の噴射板を有しその内部に塩 素を含有する原料ガスが供給される導入容器と、
噴射板を所定温度に加熱する噴射板加熱手段と、
導入容器及び基板を収容するチャンバと、
導入容器内の原料ガスをプラズマ化して原料ガスプラズマを発生させ原 料ガスプラズマで噴射板をエッチングすることによって噴射板に含まれ る金属成分と原料ガス中の塩素との前駆体を生成する第 1 プラズマ発生 手段と、
水素を含有する還元ガスを高温に加熱して原子状還元ガスをチヤンバ内 の基板と噴射板との間に発生させる還元ガス加熱手段と、
チャンバを所定温度に加熱するチヤンバ加熱手段とを備え、 加熱された噴射板をエッチングすることによ り生成されて還元されやす くなった前駆体が還元ガスプラズマ中に通されることにより、 加熱され たチャンバ内壁に前駆体が付着しない状態で前駆体から塩素が還元除去 され金属イオンのみにされて基板に当てられて基板上に金属膜が生成さ れる
ことを特徴とする金属膜の作製装置。
2 0 . 塩素を含有する原料ガスを高温の金属フィ ラメン トに接触させ て金属フィラメ ン トに含まれる金属成分と原料ガス中の塩素との前駆体 を基板が収容されるチャンバ内に生成する前駆体供給手段と、
水素を含有する還元ガスを高温に加熱して原子状還元ガスをチヤンバ内 の基板と噴射板との間に発生させる還元ガス加熱手段と、
チャンバを所定温度に加熱するチャンバ加熱手段とを備え、
チヤンバ内で前駆体が原子状還元ガス中に通されることにより、 加熱さ れたチャンバ内壁に前駆体が付着しない状態で前駆体から塩素が還元除 去され金属イオンのみにされて基板に当てられて基板上に金属膜が生成 される
ことを特徴とする金属膜作製装置。
2 1 . 請求項 1 4乃至請求項 2 0のいずれか一項において、 噴射板ま たは金属フ ィ ラメ ン ト を銅製とする こ とによ り、 前記前駆体と して CuxClyを生成することを特徴とする金属膜作製装置。
2 2 . 請求項 1 5、 請求項 1 6、 請求項 1 8及び請求項 1 9のいずれ か一項において、 噴射板を銅製とし、 噴射板加熱手段により加熱される 噴射板の所定温度を 200°C乃至 800°Cにしたことを特徴とする金属膜作製
2 3 . 請求項 1 5、 請求項 1 6、 請求項 1 8、 請求項 1 9及び請求項 2 2のいずれか一項において、 噴射板加熱手段は、 導入容器内に希ガス を導入し、 第 1 プラズマ発生手段で希ガスプラズマを発生させて電圧の 印加により希ガス成分イオンを噴射板に衝突させることで噴射板を加熱 する手段であることを特徴とする金属膜の作製装置。
2 4 . チャンバ内で塩素と金属板により金属成分と塩素との前駆体を 生成し、 前駆体から塩素を還元除去して金属イオンにしてチャンバ内の 基板に当てることで基板上に金属膜を生成するに際し、 チャンバを所定 温度に加熱してチヤンバ内壁に前駆体が付着しないようにしたことを特 徴とする金属膜の作製方法。
2 5 . チャンバ内で塩素と金属板により金属成分と塩素との前駆体を 生成し、 前駆体から塩素を還元除去して金属イオンにしてチャンバ内の 基板に当てることで基板上に金属膜を生成するに際し、 金属板を所定温 度に加熱して前駆体を還元しやすく したことを特徴とする金属膜の作製 方法。
2 6 . チャンバ内で塩素と金属板によ り金属成分と塩素との前駆体を 生成し、 前駆体から塩素を還元除去して金属イオンにしてチャンバ内の 基板に当てることで基板上に金属膜を生成するに際し、 チャンバを所定 温度に加熱してチヤンバ内壁に前駆体が付着しないようにすると共に、 金属板を所定温度に加熱して前駆体を還元しやすく したことを特徴とす る金属膜の作製方法。
2 7 . 請求項 2 4乃至請求項 2 6のいずれか一項において、 金属部材 を銅製とすることにより、 前記前駆体として CuxC lyを生成することを特 徴とする金属膜の作製方法。
2 8 . 請求項 2 7において、 加熱される金属板の所定温度を 200°C乃 至 800°Cにしたことを特徴とする金属膜作製方法。
2 9 . 内部に被処理基板が配置される反応容器と、
前記反応容器内に配置され、 複数の噴射孔が穿設された銅製噴射板を 有する導入容器と、
前記銅製噴射板に設けられた温度制御手段と、
前記導入容器内に挿入され、 塩素または塩化水素を供給するための原 料ガス供給管と、
前記導入容器内に塩素または塩化水素のプラズマを発生するためのプ ラズマ発生手段と、
前記反応容器内の少なく とも前記被処理基板近傍に原子状還元ガスを 生成するための原子状還元ガス生成手段と、
前記反応容器内および前記導入容器内のガスを真空排気するための真 空排気手段と
を具備したことを特徴とする金属膜の作製装置。
3 0 . 前記温度制御手段は、 前記銅製噴射板に内蔵された加熱用媒体 または冷却用媒体が流通される循環パイプであることを特徴とする請求 項 2 9記載の銅薄膜の気相成長装置。
3 1 . 前記原子状還元ガス生成手段は、 前記反応容器内に還元ガスを 供給するための還元ガス供給管と、 この還元ガスをプラズマ化して少な く とも前記被処理基板近傍に原子状還元ガスとするためのプラズマ発生 器とを備えることを特徴とする請求項 2 9記載の金属膜の作製装置。
3 2 . 前記原子状還元ガス生成手段は、 前記反応容器内に還元ガスを 供給するための還元ガス供給管と、 この還元ガスを加熱して少なく とも 前記被処理基板近傍に原子状還元ガスを生成するための加熱部材とを備 えることを特徴とする請求項 2 9記載の金属膜の作製装置。
3 3 . 内部に被処理基板が配置される反応容器と、
前記反応容器内に挿入され、 塩素または塩化水素を供給するための原 料ガス供給管と、
前記原料ガス供給管の先端に取付けられ、 原料ガスの流通穴内面が銅 からなり、 かつ加熱部材が付設されたスパイ ラルチューブと、
前記反応容器内の少なく とも前記被処理基板近傍に原子状還元ガスを 生成するための原子状還元ガス生成手段と、
前記反応容器内および前記原料ガスの流通穴内のガスを真空排気する ための真空排気手段と
を具備したことを特徴とする金属膜の作製装置。
3 4 . 前記加熱手段が付設されたスパイ ラルチューブは、 外管とこの 外管内に挿入された前記原料ガスが流通される銅製内管との二重管構造 を有し、 かつ前記外管と前記内管の間に加熱用媒体が流通されることを 特徴とする請求項 3 3記載の金属膜の作製装置。
3 5 . 前記加熱手段が付設されたスパイ ラルチューブは、 銅管の外周 面に管状絶縁材を介して管状ヒー夕を配置した構造を有することを特徴 とする請求項 3 3記載の金属膜の作製装置。
PCT/JP2001/002392 2000-03-27 2001-03-26 Procede et appareil permettant de former un film metallique WO2001073159A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP01917496A EP1199378A4 (en) 2000-03-27 2001-03-26 METHOD AND DEVICE FOR PRODUCING A METAL FILM
US09/926,624 US6656540B2 (en) 2000-03-27 2001-05-26 Method for forming metallic film and apparatus for forming the same
US11/391,241 US20060191481A1 (en) 2000-03-27 2006-03-29 Apparatus for the formation of a metal film
US11/391,242 US20060177583A1 (en) 2000-03-27 2006-03-29 Method for the formation of a metal film
US11/391,251 US20060191477A1 (en) 2000-03-27 2006-03-29 Apparatus for the formation of a metal film
US12/247,432 US20090095425A1 (en) 2000-03-27 2008-10-08 Apparatus for the formation of a metal film

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2000-85511 2000-03-27
JP2000085511 2000-03-27
JP2000-108120 2000-04-10
JP2000108120A JP2001295046A (ja) 2000-04-10 2000-04-10 銅薄膜の気相成長装置
JP2000161507A JP2001335933A (ja) 2000-05-31 2000-05-31 金属膜作製装置及び金属膜作製方法
JP2000-161507 2000-05-31
JP2000-320136 2000-10-20
JP2000320136A JP3776710B2 (ja) 2000-03-27 2000-10-20 金属薄膜の作製方法及びその作製装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/926,624 A-371-Of-International US6656540B2 (en) 2000-03-27 2001-05-26 Method for forming metallic film and apparatus for forming the same
US10/684,503 Division US20040091636A1 (en) 2000-03-27 2003-10-15 Methods and apparatus for the formation of a metal film

Publications (1)

Publication Number Publication Date
WO2001073159A1 true WO2001073159A1 (fr) 2001-10-04

Family

ID=27481142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002392 WO2001073159A1 (fr) 2000-03-27 2001-03-26 Procede et appareil permettant de former un film metallique

Country Status (5)

Country Link
US (6) US6656540B2 (ja)
EP (1) EP1199378A4 (ja)
KR (1) KR100458779B1 (ja)
TW (1) TW517287B (ja)
WO (1) WO2001073159A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1338674A1 (en) * 2002-02-05 2003-08-27 Mitsubishi Heavy Industries, Ltd. Metal film production apparatus and method
EP1344842A2 (en) * 2002-03-08 2003-09-17 Mitsubishi Heavy Industries, Ltd. Method and apparatus for production of metal film
EP1473380A2 (en) * 2001-11-14 2004-11-03 Mitsubishi Heavy Industries, Ltd. Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
US7588799B2 (en) * 2001-11-14 2009-09-15 Canon Anelva Corporation Metal film production apparatus

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680029B2 (ja) * 2001-08-08 2005-08-10 三菱重工業株式会社 金属薄膜の気相成長方法およびその気相成長装置
US7659209B2 (en) 2001-11-14 2010-02-09 Canon Anelva Corporation Barrier metal film production method
GB0130870D0 (en) * 2001-12-21 2002-02-06 Accentus Plc Solid-state antenna
JP4338355B2 (ja) * 2002-05-10 2009-10-07 東京エレクトロン株式会社 プラズマ処理装置
KR100921844B1 (ko) * 2002-08-26 2009-10-13 파나소닉 주식회사 플라즈마 처리 방법 및 장치
JP3643580B2 (ja) * 2002-11-20 2005-04-27 株式会社東芝 プラズマ処理装置及び半導体製造装置
US20040129223A1 (en) * 2002-12-24 2004-07-08 Park Jong Hyurk Apparatus and method for manufacturing silicon nanodot film for light emission
US7387738B2 (en) * 2003-04-28 2008-06-17 Air Products And Chemicals, Inc. Removal of surface oxides by electron attachment for wafer bumping applications
US7897029B2 (en) * 2008-03-04 2011-03-01 Air Products And Chemicals, Inc. Removal of surface oxides by electron attachment
US8361340B2 (en) * 2003-04-28 2013-01-29 Air Products And Chemicals, Inc. Removal of surface oxides by electron attachment
JP2005101454A (ja) * 2003-09-26 2005-04-14 Watanabe Shoko:Kk 気化器
US7581511B2 (en) * 2003-10-10 2009-09-01 Micron Technology, Inc. Apparatus and methods for manufacturing microfeatures on workpieces using plasma vapor processes
KR100519778B1 (ko) * 2004-01-30 2005-10-07 삼성전자주식회사 양면 코팅용 플라즈마 cvd 장치 및 플라즈마 cvd 방법
US7695590B2 (en) * 2004-03-26 2010-04-13 Applied Materials, Inc. Chemical vapor deposition plasma reactor having plural ion shower grids
EP1586674A1 (en) * 2004-04-14 2005-10-19 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Coatings, and methods and devices for the manufacture thereof
US7699932B2 (en) 2004-06-02 2010-04-20 Micron Technology, Inc. Reactors, systems and methods for depositing thin films onto microfeature workpieces
US7396431B2 (en) * 2004-09-30 2008-07-08 Tokyo Electron Limited Plasma processing system for treating a substrate
JP4405973B2 (ja) * 2006-01-17 2010-01-27 キヤノンアネルバ株式会社 薄膜作製装置
WO2007106076A2 (en) * 2006-03-03 2007-09-20 Prasad Gadgil Apparatus and method for large area multi-layer atomic layer chemical vapor processing of thin films
US7605063B2 (en) * 2006-05-10 2009-10-20 Lam Research Corporation Photoresist stripping chamber and methods of etching photoresist on substrates
US20070281106A1 (en) * 2006-05-30 2007-12-06 Applied Materials, Inc. Process chamber for dielectric gapfill
US7998307B2 (en) * 2006-09-12 2011-08-16 Tokyo Electron Limited Electron beam enhanced surface wave plasma source
JP2008243937A (ja) * 2007-03-26 2008-10-09 Tokyo Electron Ltd 基板処理装置及び基板処理方法
US9157152B2 (en) * 2007-03-29 2015-10-13 Tokyo Electron Limited Vapor deposition system
US7964040B2 (en) * 2007-11-08 2011-06-21 Applied Materials, Inc. Multi-port pumping system for substrate processing chambers
JP4723678B2 (ja) 2008-02-15 2011-07-13 キヤノンアネルバ株式会社 金属埋め込み方法及び凹部に金属を堆積させるための装置
US20090277587A1 (en) * 2008-05-09 2009-11-12 Applied Materials, Inc. Flowable dielectric equipment and processes
US8809195B2 (en) * 2008-10-20 2014-08-19 Asm America, Inc. Etching high-k materials
JP2010192738A (ja) * 2009-02-19 2010-09-02 Tokyo Electron Ltd Cu膜の成膜方法および記憶媒体
ES2513866T3 (es) 2009-05-13 2014-10-27 Sio2 Medical Products, Inc. Revestimiento e inspección de recipientes
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
KR101598332B1 (ko) 2009-07-15 2016-03-14 어플라이드 머티어리얼스, 인코포레이티드 Cvd 챔버의 유동 제어 피쳐
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US20120180954A1 (en) 2011-01-18 2012-07-19 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
US9177756B2 (en) * 2011-04-11 2015-11-03 Lam Research Corporation E-beam enhanced decoupled source for semiconductor processing
US8900403B2 (en) 2011-05-10 2014-12-02 Lam Research Corporation Semiconductor processing system having multiple decoupled plasma sources
US20130034666A1 (en) * 2011-08-01 2013-02-07 Applied Materials, Inc. Inductive plasma sources for wafer processing and chamber cleaning
AU2012318242A1 (en) 2011-11-11 2013-05-30 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
CA2887352A1 (en) 2012-05-09 2013-11-14 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
US9416450B2 (en) * 2012-10-24 2016-08-16 Applied Materials, Inc. Showerhead designs of a hot wire chemical vapor deposition (HWCVD) chamber
WO2014071061A1 (en) 2012-11-01 2014-05-08 Sio2 Medical Products, Inc. Coating inspection method
WO2014078666A1 (en) 2012-11-16 2014-05-22 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
JP6382830B2 (ja) 2012-11-30 2018-08-29 エスアイオーツー・メディカル・プロダクツ・インコーポレイテッド 医療シリンジ、カートリッジ等上でのpecvd堆積の均一性制御
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
CN105392916B (zh) 2013-03-11 2019-03-08 Sio2医药产品公司 涂布包装材料
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
WO2014144926A1 (en) 2013-03-15 2014-09-18 Sio2 Medical Products, Inc. Coating method
US20150020974A1 (en) * 2013-07-19 2015-01-22 Psk Inc. Baffle and apparatus for treating surface of baffle, and substrate treating apparatus
WO2015148471A1 (en) 2014-03-28 2015-10-01 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
JP2017022343A (ja) * 2015-07-15 2017-01-26 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体製造装置、ウエハリフトピン穴清掃治具
CN116982977A (zh) 2015-08-18 2023-11-03 Sio2医药产品公司 具有低氧气传输速率的药物和其他包装
WO2017189234A1 (en) * 2016-04-29 2017-11-02 Retro-Semi Technologies, Llc Vhf z-coil plasma source
JP6916537B2 (ja) * 2016-11-28 2021-08-11 大学共同利用機関法人 高エネルギー加速器研究機構 非蒸発型ゲッタコーティング部品、容器、製法、装置
CN111837221B (zh) * 2019-02-14 2024-03-05 株式会社日立高新技术 半导体制造装置
TWI756117B (zh) * 2021-04-23 2022-02-21 財團法人國家實驗研究院 晶圓級二維材料沉積裝置
KR102668527B1 (ko) * 2022-03-24 2024-05-23 성균관대학교산학협력단 소모성 금속 부재를 포함하는 식각용 플라즈마 처리 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186942A (ja) * 1984-10-03 1986-05-02 Anelva Corp 回転磁界を用いた放電反応装置
US4626448A (en) * 1985-07-18 1986-12-02 The United States Of America As Represented By The United States Department Of Energy Plasma deposition of amorphous metal alloys
EP0482265A1 (en) * 1989-10-12 1992-04-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of forming a thin copper film by low temperature CVD
JPH0585890A (ja) * 1991-09-25 1993-04-06 Matsushita Electric Ind Co Ltd 薄膜形成装置
JPH05198520A (ja) * 1991-11-18 1993-08-06 Mitsubishi Electric Corp 薄膜形成装置
JPH11238698A (ja) * 1997-12-31 1999-08-31 Samsung Electronics Co Ltd 原子層蒸着工程を用いた金属層形成方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1159012A (en) * 1980-05-02 1983-12-20 Seitaro Matsuo Plasma deposition apparatus
JPS6126774A (ja) * 1984-07-16 1986-02-06 Canon Inc 非晶質シリコン膜形成装置
KR910000508B1 (ko) 1984-08-31 1991-01-26 니찌덴 아넬바 가부시끼가이샤 동적자계를 이용한 방전 반응장치
US4796562A (en) * 1985-12-03 1989-01-10 Varian Associates, Inc. Rapid thermal cvd apparatus
US4878989A (en) * 1986-11-26 1989-11-07 Texas Instruments Incorporated Chemical beam epitaxy system
WO1989001988A1 (en) * 1987-08-31 1989-03-09 Santa Barbara Research Center In-situ generation of volatile compounds for chemical vapor deposition
EP0322466A1 (en) * 1987-12-24 1989-07-05 Ibm Deutschland Gmbh PECVD (plasma enhanced chemical vapor deposition) method for deposition of tungsten or layers containing tungsten by in situ formation of tungsten fluorides
US5059292A (en) * 1989-02-28 1991-10-22 Collins George J Single-chamber apparatus for in-situ generation of dangerous polyatomic gases and radicals from a source material contained within a porous foamed structure
US6004885A (en) * 1991-12-26 1999-12-21 Canon Kabushiki Kaisha Thin film formation on semiconductor wafer
FR2691984B1 (fr) * 1992-06-03 1995-03-24 France Telecom Procédé de dépôt de métal sur un substrat et dispositif pour sa mise en Óoeuvre.
US5273588A (en) * 1992-06-15 1993-12-28 Materials Research Corporation Semiconductor wafer processing CVD reactor apparatus comprising contoured electrode gas directing means
US5292370A (en) * 1992-08-14 1994-03-08 Martin Marietta Energy Systems, Inc. Coupled microwave ECR and radio-frequency plasma source for plasma processing
US5531834A (en) * 1993-07-13 1996-07-02 Tokyo Electron Kabushiki Kaisha Plasma film forming method and apparatus and plasma processing apparatus
KR100290813B1 (ko) * 1995-08-17 2001-06-01 히가시 데쓰로 플라스마 처리장치
JPH10237662A (ja) * 1996-12-24 1998-09-08 Sony Corp 金属膜のプラズマcvd方法、および金属窒化物膜の形成方法ならびに半導体装置
JP3645682B2 (ja) * 1997-03-18 2005-05-11 三菱電機株式会社 Cu成膜用CVD装置
JP3343200B2 (ja) * 1997-05-20 2002-11-11 東京エレクトロン株式会社 プラズマ処理装置
US6409839B1 (en) * 1997-06-02 2002-06-25 Msp Corporation Method and apparatus for vapor generation and film deposition
US6161499A (en) * 1997-07-07 2000-12-19 Cvd Diamond Corporation Apparatus and method for nucleation and deposition of diamond using hot-filament DC plasma
US6001172A (en) * 1997-08-05 1999-12-14 Advanced Technology Materials, Inc. Apparatus and method for the in-situ generation of dopants
FR2767841B1 (fr) * 1997-08-29 1999-10-01 Commissariat Energie Atomique PROCEDE DE PREPARATION PAR DEPOT CHIMIQUE EN PHASE VAPEUR (CVD) D'UN REVETEMENT MULTICOUCHE A BASE DE Ti-Al-N
US6171661B1 (en) * 1998-02-25 2001-01-09 Applied Materials, Inc. Deposition of copper with increased adhesion
US6390019B1 (en) * 1998-06-11 2002-05-21 Applied Materials, Inc. Chamber having improved process monitoring window
JP2000100790A (ja) * 1998-09-22 2000-04-07 Canon Inc プラズマ処理装置及びそれを用いた処理方法
US6440494B1 (en) * 2000-04-05 2002-08-27 Tokyo Electron Limited In-situ source synthesis for metal CVD
US20040112863A1 (en) * 2002-12-16 2004-06-17 International Business Machines Corporation Method of enhancing surface reactions by local resonant heating

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186942A (ja) * 1984-10-03 1986-05-02 Anelva Corp 回転磁界を用いた放電反応装置
US4626448A (en) * 1985-07-18 1986-12-02 The United States Of America As Represented By The United States Department Of Energy Plasma deposition of amorphous metal alloys
EP0482265A1 (en) * 1989-10-12 1992-04-29 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of forming a thin copper film by low temperature CVD
JPH0585890A (ja) * 1991-09-25 1993-04-06 Matsushita Electric Ind Co Ltd 薄膜形成装置
JPH05198520A (ja) * 1991-11-18 1993-08-06 Mitsubishi Electric Corp 薄膜形成装置
JPH11238698A (ja) * 1997-12-31 1999-08-31 Samsung Electronics Co Ltd 原子層蒸着工程を用いた金属層形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1199378A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1475457A3 (en) * 2001-11-14 2006-01-11 Mitsubishi Heavy Industries, Ltd. Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
EP1475454A3 (en) * 2001-11-14 2006-01-11 Mitsubishi Heavy Industries, Ltd. Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
EP1473379A3 (en) * 2001-11-14 2006-01-11 Mitsubishi Heavy Industries, Ltd. Metal film production apparatus and method
EP1473380A2 (en) * 2001-11-14 2004-11-03 Mitsubishi Heavy Industries, Ltd. Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
EP1473379A2 (en) * 2001-11-14 2004-11-03 Mitsubishi Heavy Industries, Ltd. Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
EP1475456A2 (en) * 2001-11-14 2004-11-10 Mitsubishi Heavy Industries, Ltd. Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
EP1475454A2 (en) * 2001-11-14 2004-11-10 Mitsubishi Heavy Industries, Ltd. Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
EP1475457A2 (en) * 2001-11-14 2004-11-10 Mitsubishi Heavy Industries, Ltd. Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
EP1475456A3 (en) * 2001-11-14 2006-01-11 Mitsubishi Heavy Industries, Ltd. Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
EP1475455A2 (en) * 2001-11-14 2004-11-10 Mitsubishi Heavy Industries, Ltd. Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
US7588799B2 (en) * 2001-11-14 2009-09-15 Canon Anelva Corporation Metal film production apparatus
EP1475455A3 (en) * 2001-11-14 2006-01-11 Mitsubishi Heavy Industries, Ltd. Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
EP1475453A2 (en) * 2001-11-14 2004-11-10 Mitsubishi Heavy Industries, Ltd. Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
EP1475453A3 (en) * 2001-11-14 2006-01-11 Mitsubishi Heavy Industries, Ltd. Metal film production apparatus and method
EP1473380A3 (en) * 2001-11-14 2006-01-11 Mitsubishi Heavy Industries, Ltd. Metal barrier film production apparatus and method
EP2128304A1 (en) * 2002-02-05 2009-12-02 Canon Anelva Corporation Metal film production apparatus and method
EP1338674A1 (en) * 2002-02-05 2003-08-27 Mitsubishi Heavy Industries, Ltd. Metal film production apparatus and method
EP1344842A3 (en) * 2002-03-08 2004-03-10 Mitsubishi Heavy Industries, Ltd. Method and apparatus for production of metal film
EP1344842A2 (en) * 2002-03-08 2003-09-17 Mitsubishi Heavy Industries, Ltd. Method and apparatus for production of metal film
US7208421B2 (en) 2002-03-08 2007-04-24 Mitsubishi Heavy Industries, Ltd. Method and apparatus for production of metal film or the like
US7262500B2 (en) 2002-03-08 2007-08-28 Phyzchemix Corporation Interconnection structure
US7923374B2 (en) 2002-03-08 2011-04-12 Canon Anelva Corporation Method and apparatus for production of metal film or the like

Also Published As

Publication number Publication date
US6656540B2 (en) 2003-12-02
US20020142572A1 (en) 2002-10-03
TW517287B (en) 2003-01-11
KR20020028882A (ko) 2002-04-17
EP1199378A4 (en) 2006-09-20
EP1199378A1 (en) 2002-04-24
US20040091636A1 (en) 2004-05-13
US20090095425A1 (en) 2009-04-16
US20060191477A1 (en) 2006-08-31
US20060177583A1 (en) 2006-08-10
KR100458779B1 (ko) 2004-12-03
US20060191481A1 (en) 2006-08-31

Similar Documents

Publication Publication Date Title
WO2001073159A1 (fr) Procede et appareil permettant de former un film metallique
EP1475456B1 (en) Metal barrier film production apparatus, metal barrier film production method, metal film production method, and metal film production apparatus
TWI803603B (zh) 形成石墨烯構造體的方法及裝置
CN110959186A (zh) 在互连金属化中沉积钌层
US20090133623A1 (en) Metal film production apparatus and metal film production method
TW201234407A (en) Plasma processing apparatus
JPS63203772A (ja) 銅薄膜の気相成長方法
WO2001077407A1 (en) In-situ generation of precursors for cvd
CN111378960B (zh) 一种微波辅助原子层沉积方法及反应器
JP2009206312A (ja) 成膜方法および成膜装置
JP4426632B2 (ja) プラズマ処理装置
JP2000144421A (ja) 成膜装置および成膜方法
KR20210136093A (ko) 그래핀 구조체를 형성하는 방법 및 장치
JP2001295046A (ja) 銅薄膜の気相成長装置
JP3771882B2 (ja) 金属膜作製装置及び金属膜作製方法
JP2001342564A (ja) 金属薄膜の作製方法及びその作製装置
JP5290841B2 (ja) 金属膜作製装置及び金属膜作製方法
US20240191350A1 (en) Minimizing tin oxide chamber clean time
JP2009149998A (ja) 銅薄膜の気相成長装置
US7279201B2 (en) Methods and apparatus for forming precursors
JPH06158320A (ja) 金属配線の形成方法およびその装置
WO2023229953A1 (en) In situ treatment of molybdenum oxyhalide byproducts in semiconductor processing equipment
JPH08199362A (ja) マイクロ波プラズマcvd装置
JP2008230896A (ja) リモートプラズマcvd装置及びこの装置を用いたカーボンナノチューブの作製方法
JP2003328128A (ja) 金属膜作製方法及び金属膜作製装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 2001917496

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017015143

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09926624

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020017015143

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001917496

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017015143

Country of ref document: KR