WO2001073038A2 - Verfahren zur biotechnologischen herstellung von l-alaninol - Google Patents

Verfahren zur biotechnologischen herstellung von l-alaninol Download PDF

Info

Publication number
WO2001073038A2
WO2001073038A2 PCT/EP2001/003651 EP0103651W WO0173038A2 WO 2001073038 A2 WO2001073038 A2 WO 2001073038A2 EP 0103651 W EP0103651 W EP 0103651W WO 0173038 A2 WO0173038 A2 WO 0173038A2
Authority
WO
WIPO (PCT)
Prior art keywords
microorganisms
alaninol
dsm
genes
pseudomonas
Prior art date
Application number
PCT/EP2001/003651
Other languages
English (en)
French (fr)
Other versions
WO2001073038A3 (de
Inventor
Thomas Leisinger
Jan Van Der Ploeg
Andreas M. Kiener
Susana Ivone DE AZEVEDO WÄSCH
Tere Maire
Original Assignee
Lonza Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lonza Ag filed Critical Lonza Ag
Priority to AU46521/01A priority Critical patent/AU4652101A/en
Publication of WO2001073038A2 publication Critical patent/WO2001073038A2/de
Publication of WO2001073038A3 publication Critical patent/WO2001073038A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/21Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Pseudomonadaceae (F)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/38Pseudomonas

Definitions

  • the invention relates to new microorganisms which are capable of converting isopropylamine to L-alaninol and their genes ipuH and ipul which code for enzymes which are involved in the metabolism of L-alaninol (S - (+) - 2-amino-l -propanol) are involved, are inactivated.
  • the invention also relates to the genes required for biosynthesis, or DNA fragments and vectors relating thereto, and polypeptides capable of biosynthesis of ⁇ -glutamylamides.
  • the new microorganisms or the related DNA fragments or polypeptides are used for a new process for the production of L-alaninol based on isopropylamine (IPA) and for a new process for the production of ⁇ -glutamylamides, in particular also for the production of theanine based on ethylamine ,
  • IPA isopropylamine
  • L-alaninol is an important intermediate for the production of pharmaceuticals, for example for the production of ofioxacin (J. Med. Chem 1997, 30, 2883-2286).
  • a biotechnological process for the production of L-alaninol is described in WO 99/07199.
  • the mutants Pseudomonas sp. KIE171-B and -BI are capable of producing L-alaninol from IPA.
  • both mutants break down the resulting L-alaninol, which is disadvantageous for an industrial application of this process.
  • the object of the present invention was to provide an industrially viable process for the production of L-alaninol and, as a sub-step, for the production of N-5-substituted ⁇ -L-glutamylamides, with the high yields of L-alaninol or N -5-substituted ⁇ -L-glutamylamides can be achieved.
  • the present invention accordingly relates to microorganisms which are capable of transforming IPA to L-alaninol and in which the genes ipuH and ipul which code for enzymes which are involved in the metabolism of L-alaninol are inactivated, and cell-free enzyme extracts it.
  • Genes that are in inactive form are understood to mean genes that e.g. have been changed by insertion, mutation or deletion in such a way that either no product is formed or the product formed is no longer functionally active.
  • the ipuH and ipul genes which code for enzymes which are involved in the metabolism of L-alaninol, can be inactivated by known methods.
  • Appropriate methods for inactivation so-called “knock out” methods, are, for example, mutation methods such as the point mutation method, frame shift method, deletion method or the transposon insertion method.
  • methods for site-specific recombination of the corresponding genes with a previously inactivated gene can be used, as described, for example, in Hoang et al., 1998, Gene 212, 77-86, which are preferably used.
  • the invention is illustrated by the following figures.
  • the numbers in brackets show the position of the nucleotides within the sequence shown in SEQ ID No. 1 described nucleotide sequence of the ipul gene.
  • the numbers in brackets show the position of the nucleotides within the nucleotide sequence of the ipu operon (FIG. 3).
  • Figure 1 shows the enzymes involved in the metabolism of IPA and L-alaninol and a new pathway for IPA.
  • 3A to 3N show the nucleotide and amino acid sequence of the genes ipuA, ipuB, ipuC, ipuD, ipuE, ipuF, ipuG and ipuH of the ipu operon.
  • Figure 4 shows plasmid pME4254.
  • Figure 5 shows plasmid ⁇ ME4255.
  • Figure 6 shows plasmid pME4256
  • Figure 7 shows plasmid pME4257.
  • Figure 8 shows plasmid pME4259.
  • Figure 9 shows plasmid pME4267.
  • Figure 10 shows plasmid pME4275.
  • Figure 11 shows plasmid pME4277.
  • Figure 12 shows the production of L-alaninol by Pseudomonas sp. KIE171-BI (DSM
  • Microorganisms which are capable of converting IPA to L-alaninol and which contain the genes ipuH and ipul, which code for enzymes of the metabolism of L-alaninol, in active form can be used as starting microorganisms for the production of the microorganisms according to the invention which have one of these genes in inactive form.
  • the starting microorganisms are expediently cultivated in an aqueous nutrient medium which contains a carbon and nitrogen source, mineral salts and a vitamin source, and at a temperature of 20 to 40 ° C., preferably 30 to 37 ° C. , and cultivated at a pH of 5 to 9, preferably at a pH of 6 to 8.
  • Preferred starting microorganisms are microorganisms of the genus Pseudomonas, particularly preferably the Pseudomonas sp. Described in WO 99/07199 by the same applicant. KIE171-BI (DSM 11629), KIE171-B (DSM 11521) or KIE171 (DSM 12360).
  • these microorganisms are advantageously grown from soil samples, sludge or waste water with the aid of customary microbiological techniques and selected with regard to the transformation of IPA to L-alaninol.
  • the genes involved in the metabolism of IPA and L-alaninol can be labeled using conventional techniques such as, for example, the transposon insertion method and then identified, isolated, sequenced and cloned by the so-called "transposon rescue" technique as described, for example, in De Lorenzo V., Timmis KN, Methods Enzymol., 1994, 235, 386-405
  • DNA fragments are isolated from the starting microorganisms and the enzymes encoded by the DNA fragments can be assigned to the metabolism of IPA and L-alaninol in the usual way.
  • the genes ipuH and ipul which code for enzymes involved in the metabolism of L-alaninol, either contain both in an active form or one of these genes is in an inactive form, one or both are expediently the ipuH and ipul genes into a suitable vector, for example a plasmid, cloned and inactivated, e.g. by inserting a marker gene cassette, such as a gene coding for antibiotic resistance.
  • the construct obtained is conveniently placed in a Velctor, e.g. cloned a plasmid which is in a suitable host organism such as e.g. E. coli, but cannot be replicated in the starting microorganism.
  • a Velctor e.g. cloned a plasmid which is in a suitable host organism such as e.g. E. coli, but cannot be replicated in the starting microorganism.
  • selection for the product of the corresponding marker gene and subsequent deletion of the plasmid integrated into the chromosome and of the active ipuH and / or ipul gene can be carried out according to the invention
  • Microorganism are obtained in which the genes ipuH and ipul, which code for enzymes of the metabolism of L-alaninol, are inactivated.
  • the microorganisms according to the invention in which the ipuH and ipul genes coding for enzymes for the metabolism of L-alaninol are inactivated preferably belong to the genus Pseudomonas, particularly preferably to the species Pseudomonas citronellolis, Pseudomonas azalaica, Pseudomonas nitroreducens, Pseudomonas alcaligenes, Pseudomonas aeruginosa or Pseudomonas putida, most preferred to the species Pseudomonas sp. corresponding to the species of the deposited strain Pseudomonas sp. KIE171-BIII (DSM 13177). The functionally equivalent variants or mutants are also included.
  • the deposited strain DSM 13177 represents such a preferred embodiment of the present invention.
  • the microorganism Pseudomonas sp. KIE171-BIII (DSM 13177) was deposited on December 3, 1999, with the German Collection for Microorganisms and Cell Cultures GmbH, Mascheroderweg lb, D-38124 Braunschweig, in accordance with the Budapest Treaty.
  • the strain KIE171-B (DSMl 1521), from which the strain mutants of the B series are derived, was examined taxonomically.
  • the phylogenetic analysis showed the classification as a separate new species of the genus Pseudomonas, with the greatest similarity to the known species Pseudomonas citronellolis.
  • Chemotaxonomic analyzes (detailed in WO 99/07199) confirmed the belonging of the new species to the RNA group I of the Pseudomonas (including, inter alia, Pseudomonas citronellolis and Pseudomonas aeruginosa).
  • “Functionally equivalent mutants” are understood to mean microorganisms which have essentially the same properties and functions of the original microorganisms. Such genetic variants or mutants can be obtained by sufficiently known methods, including random mutagenesis, for example with UV radiation or alkylating reagents (described in Miller, J., Experiments in Molecular Genetics, Cold Spring Harbor Laboratory 1972), 'error prone' PCR or gene 'shuffling' of polymorphic DNA sequences in vitro and subsequent retransfer of these gene fragments into an organism, or spontaneously through the natural mutation rate of microorganisms be generated.
  • random mutagenesis for example with UV radiation or alkylating reagents (described in Miller, J., Experiments in Molecular Genetics, Cold Spring Harbor Laboratory 1972), 'error prone' PCR or gene 'shuffling' of polymorphic DNA sequences in vitro and subsequent retransfer of these gene fragments into an organism, or spontaneously through the natural mutation rate of microorganis
  • the enzymes or enzyme extracts according to the invention for the cell-free system can be obtained by disrupting the microorganisms by customary methods. For example, the ultrasonic, French press or lysozyme method can be used for this.
  • the cell-free enzymes can also be immobilized on a suitable carrier material, as is well known to the person skilled in the art.
  • the microorganisms according to the invention are expediently cultivated in an aqueous nutrient medium which contains a carbon, nitrogen source, mineral salts and a vitamin source in a customary manner, advantageously as described in WO 99/07199.
  • the invention further relates to isolated DNA fragments which comprise one or more of the genes ipuA, ipuB, ipuC, ipuD, ipuE, ipuF, ipuG, ipuH, ipul, which code for enzymes which are involved in the metabolism of IPA to L- Alaninol and the metabolism of L-Alaninol are involved.
  • These DNA fragments according to the invention are preferably derived from microorganisms of the genus Pseudomonas such as e.g.
  • Pseudomonas putida Pseudomonasas citronellolis, Pseudomonas aeruginosa, Pseuodomonas alcaligenes, Pseudomonas nitroreducens, Pseudomonas azalaica isolated, particularly preferably from microorganisms of the species Pseudomonas citronellolis or the species Pseudomonas sp. corresponding to the species of one of the deposited strains or mutants Pseudomonas sp.
  • KIE171 (DSM 12360), KIE171-B (DSM 11521), KIE171-BI (DSM 11629), Pseudomonas sp. KIE171-BII (DSM 13389) and / or Pseudomonas sp. KIE171-BIII (DSM 13177), most preferably from Pseudomonas sp. KIE171 (DSM 12360), Pseudomonas sp. KIE171-BI (DSM 11629) and / or Pseudomonas sp. KIE171-BII (DSM 13389).
  • microorganism Pseudomonas sp. KIE171-BII (DSM 13389) was deposited on March 27, 2000 with the German Collection for Microorganisms and Cell Cultures GmbH (DSMZ), Mascheroderweg lb, D-38124 Braunschweig, in accordance with the Budapest Treaty.
  • DSMZ German Collection for Microorganisms and Cell Cultures GmbH
  • the other strains mentioned were deposited in the context of the present application or WO 99/07199 by the same applicant, in accordance with the Budapest Treaty and form part of the present description.
  • the genes ipuA, ipuB, ipuC, ipuD, ipuE, ipuF, ipuG, without or together with ipuH, are useful, which code for enzymes which are involved in the metabolism of IPA to L-alaninol or the catabolism of L-alaninol, arranged in a preferred embodiment in the order ipuA, ipuB, ipuC, ipuD, ipuE, ipuF, ipuG, and optionally ipuH, and are available as a single transcription unit (operon).
  • the gene Ipul is preferred by the in SEQ ID No. 1 includes nucleotide sequence shown.
  • the genes ipuA, ipuB, ipuC, ipuD, ipuE, ipuF, ipuG, ipuH are preferably encompassed by the nucleotide sequence shown in FIG. 3.
  • the nucleotide sequence from 1314 to 2339 includes the protein coding region of the ipuA gene, the nucleotide sequence from 2342 to 2677 the protein coding region of the ipuB gene, the nucleotide sequence from 2743 to 4119 the protein coding region of the ipuC gene, the nucleotide sequence from 4194 to 5351 the protein coding region of the ipuD gene, the nucleotide sequence from 5371 to 5562 the protein coding region of the ipuE gene, the nucleotide sequence from 5589 to 6473 the protein coding region of the ipuF gene, the nucleotide sequence from
  • the ipuA and ipuB genes are particularly preferred by the genes in SEQ ID no. 3 comprises nucleotide sequence shown.
  • the ipuC gene is particularly preferred by the gene described in SEQ ID no. 6 nucleotide sequence shown comprises.
  • genes ipuD, ipuE, ipuF, ipuG and ipuH are particularly preferred by the genes in SEQ ID No. 8 includes nucleotide sequence shown.
  • nucleotide sequences according to the present invention also include functionally equivalent genetic variants, also referred to as alleles or mutants, i.e. H. non-identical genes whose base sequence is derived from the genes of the organisms from which the genes were isolated and whose gene products (proteins) can have the same enzymatic function.
  • the functionally equivalent genetic variants or mutants thus include, for example, base exchanges in the context of the known degeneration of the genetic code, for example in order to adapt the gene sequence to the preferred codon use of a particular microorganism in which artificial expression is to take place.
  • the genetic variants and mutants also include deletions,
  • These equivalent genetic variants or mutants preferably include gene sequences which have a high sequence homology to the sequences isolated from the organisms, for example higher than 70%, preferably higher than 80%, particularly preferably higher than 90%, and under stringent hybridization conditions, z. B. at temperatures between 60 and 70 ° C and at 0.5 to 1.5 M salt content, in particular at a temperature of 62 - 66 ° C and at 0.8 - 1.2 M salt content for hybridization with the complement of the isolated Sequences are capable.
  • the homology is preferably 95%.
  • DNA fragments according to the invention can be isolated, for example, as described above with the aid of customary techniques, e.g. by means of the transposon insertion method and subsequent use of the "transposon rescue" technique, or by using a suitable gene probe together with a suitable gene library.
  • the present invention furthermore relates to vectors which contain these DNA fragments and recombinant microorganisms which contain these vectors.
  • Autonomous and self-replicating plasmids or integration vectors can be used as vectors.
  • the ipu genes can be introduced into various microorganisms. Both vectors with a specific host spectrum and vectors with a broad host spectrum (“broad host ranks”) are suitable as vectors.
  • vectors with a specific host spectrum for example for E. coli, are the commercially available pBLUESCRIPT II KS + ®, pBLUESCRIPT SK + ® (Stratagene), pPDl 11 or its derivatives (described in Dersch et al., FEMS Microbiol Lett. 15, 123, 19-26, 1994), pET24a (+) (Novagen) or pET28a (+) (Novagen).
  • Examples of such “broad host rank” vectors are pRK290 (described in Ditta et al., PNAS, 77, 7347-7351, 1980) or its derivatives, pKT240 (described in Bagdasarian et al., Gene, 26, 273-282, 1983) or its derivatives, pVKIOO (described in Knauf and Nester, Plasmid, 8, 45-54, 1982) or its derivatives, pBBRIMCS (described in Kovach et al, Biotechniques 16: 800-802, 1994) or its derivatives
  • the vectors mentioned, in particular the expression vector pBBRIMCS simultaneously represent preferred embodiments of the present invention.
  • the plasmid pME4755 was obtained.
  • a vector with a specific host spectrum is preferably used, particularly preferably pPDl 11, pBLUESCRIPT II KS + ® or pET28a (+).
  • the plasmids pME4254, pME4255, pME4256, pME4257, pME4259, pME4267, pME4275 and pME4277 were obtained.
  • microorganisms which contain the vectors mentioned are microorganisms of the genus Escherichia, preferably of the species Escherichia coli, particularly preferably of the species Escherichia coli DH5 ⁇ and Escherichia coli XLl-Blue®.
  • vectors such as plasmid pME4255 as deposited in E. coli DH5 ⁇ (DSM 13178), plasmid pME4755 as deposited in E. coli XLl-Blue (DSM T3388), plasmid pME4267 as deposited in E. coli XLl-Blue (DSM 13179 ), and plasmid pME4259 as deposited in E. coli XLl-Blue (DSM13417).
  • vectors such as plasmid pME4255 as deposited in E. coli DH5 ⁇ (DSM 13178), plasmid pME4755 as deposited in E. coli XLl-Blue (DSM T3388), plasmid pME4267 as deposited in E. coli XLl-Blue (DSM 13179 ), and plasmid pME4259 as deposited in E. coli XLl-Blue (DSM13417).
  • microorganism of the species Escherichia XLl-Blue (DSM 13388), containing plasmid pME4755, was deposited on March 24, 2000 with the German Collection for Microorganisms and Cell Cultures GmbH, Mascheroderweg lb, D-38124 Braunschweig, in accordance with the Budapest Treaty.
  • the process according to the invention for producing L-alaninol comprises the conversion of isopropylamine (IPA) to L-alaninol by means of the microorganisms according to the invention already described above, in which the ipuH and ipul genes are responsible for enzymes encode which are involved in the metabolism of L-alaninol, are inactivated, or by means of enzyme extracts from these microorganisms.
  • L-alaninol in the sense of the present invention is L-2-amino-l-propanol.
  • the biotransformation can be L-alaninol metabolize, but have the necessary biosynthetic genes, as already described in WO 99/07199.
  • the relevant information in WO 99/07199 on the bio-formation process, the isolation of L-alaninol and the cultivation of the microorganisms according to the invention is an integral part of the present application.
  • a first analysis of the mel-stage biosynthetic pathway and the enzyme activities involved therein, as already mentioned above, is given in FIG. 1.
  • microorganisms according to the invention described above either have the necessary biosynthesis genes as a wild type, or have been recombinantly equipped with the corresponding DNA fragments or protein expression vectors according to the invention such as, for example, pME4755 in E. coli. It is also possible, in the microorganisms according to the invention which are capable of L-alaninol biosynthesis, to additionally recombinantly express individual or multiple ipu genes in a recombinant manner.
  • the biotransformation can be carried out with resting cells (non-growing cells which no longer need a C and energy source or which is no longer available) or with growing cells.
  • a cell suspension with a cell density of OD650 40-60 is preferably used.
  • Suitable media for the biotransformation are the commercially customary, for example low-molecular phosphate buffers, Hepes buffers and full media such as "Nutrient Yeast Broth” (NYB) or mineral salt media as described, for example, by Kulla et al, (Arch. Microbiol. 135, 1 (1983)) , or in WO99 / 07199 (Table 1), preferably mineral salt media as described for example in Kulla et al., (Arch. Microbiol. 135, 1 (1983)), or in WO99 / 07199 (Table 1).
  • the biotransformation is preferably carried out with a single or continuous addition of IPA in such a way that the concentration of IPA does not exceed 10% by weight, preferably 1% by weight.
  • the pH can range from 4 to 10, preferably from 5 to 9.
  • the biotransformation is expediently carried out at a temperature of 10 to 50 ° C., preferably 20 to 40 ° C., most preferably 25-35 ° C.
  • the biotransformation preferably takes place in the presence of 5 to 100 mM glutamate, preferably 10 to 30 mM glutamate.
  • L-alaninol can be isolated by customary work-up methods, such as, for example, by extraction or distillation of the basic, cell-free fermentation broth.
  • the present invention furthermore relates to a polypeptide with ⁇ -glutamylamide synthetase activity which is capable of ⁇ -glutamylamides of the general formula or the general formula
  • R 1 is an optionally substituted alkyl group, an optionally substituted
  • Aralkyl group an optionally substituted alkoxyalkyl group or an optionally substituted aryl group
  • R 2 is hydrogen or an optionally substituted alkyl group and n is one to five.
  • R 1 is substituted or unsubstituted alkyl or aryl group, more preferably a substituted or unsubstituted alkyl group.
  • Optionally substituted is to be understood as being substituted or unsubstituted.
  • alkyl group is to be understood as a straight-chain or branched alkyl group, preferably with 1 to 6 carbon atoms. Mention should be made of methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl,
  • Pentyl and its isomers and hexyl and its isomers are, for example, hydroxy, oxo, cyano or amino. preferred
  • Hydroxy is a substituent.
  • An aryl group means phenyl or naphthyl, aralkyl, for example, benzyl.
  • the appropriate substituent for the aryl group is nitro.
  • alkoxyalkyl examples include methoxy-ethyl, ethoxy-ethyl.
  • R 1 preferably has the meaning of methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, 2-hydroxypropyl, 3-hydroxypropyl, 2-hydroxyethyl, 1-hydroxybutyl, 2,2- dihydroxyisopropyl.
  • R 1 particularly preferably has the meaning of 2-hydroxypropyl, 3-hydroxypropyl, 2-hydroxyethyl, 1-hydroxybutyl.
  • R 2 preferably has the meaning of methyl, n preferably has the meaning of one or two.
  • the polypeptide according to the invention can be obtained by using conventional methods for disrupting microorganisms which naturally contain this polypeptide or the ipuC gene coding for the polypeptide.
  • the ipuC gene encoding the polypeptide can be isolated from microorganisms containing an ipuC gene encoding the polypeptide as described above, cloned as described above and e.g. in E. coli BL21 using a suitable expression vector as described above.
  • the polypeptide or the ipuC gene coding for the polypeptide is preferably isolated from microorganisms which are capable of transforming IPA into L-alaninol.
  • Microorganisms of the genus Pseudomonas are preferred, particularly preferably the Pseudomonas sp. Described in WO 99/07199. KIE171 (DSM 12360), KIE171-B (DSM 11521), KIE171-BI (DSM 11629), or the KIE171-BIII (DSM 13177) according to the invention.
  • the ipuC gene obtained is preferably amplified after isolation by customary methods and converted into a vector e.g. Vector pET 28a (+) (Novagen) or pET24a (+)
  • E. coli e.g. E. coli BL21 (DE3).
  • Competent cells are understood to be cells that are able to take up free, even alien DNA.
  • the transformed cells obtained in this way are cultivated in the usual nutrient media which contain a carbon and nitrogen source, mineral salts and a vitamin source, for example in LB medium, the polypeptide according to the invention having ⁇ -glutamylamide synthetase activity as already mentioned above by unlocking the Microorganisms can be obtained using methods familiar to the person skilled in the art, or the whole cells as such, optionally after pretreatment with permeabilizing agents, can be used for the biotransformation with the recombinant protein expressed therein.
  • the polypeptide according to the invention is preferably a protein tagged for simplified purification, in particular His 6- day ⁇ -glutamylamide synthetase, as expressible by pME4275.
  • Plasmid pME4277 was obtained by incorporating the ipuC gene into vector pET24a (+).
  • the ipuC gene is advantageously incorporated into Velctor pET 28a (+), which is transformed into E. coli BL21 (DE3).
  • plasmid pME4275 was obtained which contains the ipuC gene adjacent to a DNA sequence which codes for six histidines and which for the polypeptide ⁇ -glutamylamide synthetase to which six histidine residues are attached (His 6 day - ⁇ - Glutamylamide synthetase).
  • the histidine tag enables simple, rapid purification or purification of the tagged protein, for example for use in an enzyme reactor. It is also possible to use other tag sequences, as is well known to the person skilled in the art, for example protein A fusions or the FLAG tag.
  • polypeptide according to the invention with ⁇ -glutamylamide synthetase activity which is capable of synthesizing ⁇ -glutamylamides of the general formula I or II is preferably characterized by the following properties:
  • Another object of the invention is a process for the preparation of ⁇ -glutamylamides of the general formula I or II, which is carried out in such a way that L-glutamate with an amine of the general formula
  • R 1 and R 2 have the meaning given above, by means of a microorganism according to the invention or by means of a microorganism expressing the IpuC gene according to the invention recombinantly or by means of a polypeptide according to the invention, as described above, to the product of the general formula I or II.
  • the reaction can also be carried out with essentially cell-free enzyme extract from the corresponding microorganisms or with purified polypeptide.
  • Methods for producing an enzyme extract are well known to the person skilled in the art and include, for example, cell disruption by means of French Press, the lysozyme method and ultrasound treatment.
  • the reaction can be carried out, for example, in a buffer such as Tris-HCl together with imidazole with the addition of ATP and magnesium ions.
  • the pH can range from 4 to 9, preferably from 5 to 8.
  • the reaction is conveniently carried out at a temperature of 10 to 50 ° C, preferably 20 to 40 ° C, most preferably 25 to 35 ° C.
  • Suitable amines for the present process are e.g. listed in section 'Other glutamyl compounds formed' on page 23, example 4.
  • the glutamate concentration is preferably 1 to 100 mM, more preferably 10-30 mM.
  • Suitable substrate concentrations for the amine are, for example, 1-200 mM, preferably 10-100 mM.
  • the amine is a primary amine of the general formula III.
  • examples are benzylamine, ethylamine, isopropylamine, butylamine, isobutylamine, hydroxy-butylamine.
  • the definitions and preferred forms of completion of R 1 given above apply accordingly.
  • ⁇ -glutamylisopropylamides of the general formula I or II can be isolated by customary working-up methods, for example by isoelectrical focusing or extraction.
  • the process is preferably carried out with whole cells, analogously to the production of L-alaninol.
  • the information given there on the implementation of the procedure applies accordingly.
  • preference is given, in addition to the amine serving as the substrate molecule of the formula III or IV, to a further primary low molecular weight C1-C4 alkyl amine, for example methyl, ethyl , Isopropylamine, was added as an enzyme inducer.
  • IPA suitably in a concentration of 1-20 mM, preferably in a concentration of 1-10 mM.
  • This embodiment is particularly advantageous when using a microorganism according to the invention of the genus Pseudomonas, in particular of the strain KIE-171-BIII (DSM 13177).
  • the process according to the invention is used for the production of theanine starting from ethylamine.
  • the method can be carried out with microorganisms according to the invention, purified polypeptide or enzyme extracts as mentioned above.
  • the concentration of ethylamine is 5-60 mM and is kept approximately constant during the biotransformation by repeated or continuous addition of ethylamine.
  • theanine is N-5-ethyl-L-glutamine corresponding to formula I.
  • transposon mutants BI Pseudomonas sp. KIE171-BI (DSM 11629)
  • BII Pseudomonas sp. KIE171-BII
  • the production of transposon mutants was described in WO 99/07199 (Example 2b) for the production of mutant BI.
  • the mutant BI can produce L-alaninol from IPA, but degrades it again in a biotransformation with a high OD 650 (> 5).
  • Mutant BII was also produced in accordance with this method.
  • the mutant BII grew neither on IPA nor on L-alaninol, but was still able to utilize L-alanine, L-lactate and L-alanine, and L-glutamate.
  • the mutant BII does not produce L-alaninol.
  • the DNA fragments containing the inactivated gene were cloned into a suitable vector.
  • DNA sequences and the derived protein sequences were analyzed with the GCG software package. Based on these results, a new degradation route for IPA was postulated.
  • the DNA fragments of the mutants BI and BII were ligated into the vectors pBluescript or pPDl 11.
  • the ligation mixture was competent for transformation
  • E.coli DH5 ⁇ or competent E.coli XL-I blue cells are used.
  • the transformed cells were on LB plates with Km (50 ug / ml) or ampicillin
  • the DNA fragment of the kanamycin resistance gene which had been introduced by the mini-Tn5 was removed by digestion with the enzyme Sfil and subsequent ligation in the plasmid pME4255.
  • the plasmid pME4256 was formed.
  • the ipuABCDEFG genes were cloned into pBBRIMCS (Kovach et al., Ibid.).
  • pBBRIMCS Kovach et al., Ibid.
  • a 3.8 leb Xhol-Sacl fragment from pME4259 was cloned into the Xhol-Sacl restriction sites of pBluescript II KS (+).
  • the 3 live BglII-Sacl transposon insert in ipuC which still contained this plasmid was replaced by the 0.95 kb BglII-Sacl fragment of the native ipuC sequence; the resulting plasmid comprises ipuB and ipuC.
  • a 1.6 leb Xhol-Pvull fragment was cut out of this vector and cloned together with a further 4.4 kb PvwII-Pstl fragment comprising ipu gons contained in pME4257 in pBBRl-MCS, which had previously been linearized with Xhol-Pstl.
  • the resulting intermediate plasmid comprised the ipuBCDEFG genes.
  • an Xbal interface was created immediately upstream of the ipuA-Gvo with PCR and the primers GCCTTCTAGAATTCTTGTAGG and CACCCAGCCTAATCGTGTCG.
  • the PCR fragment was digested in iXXbal and Xhol and cloned in pBBRIMCS. The absence of an unintended mutation generated by the PCR in the ipuA sequence was confirmed by sequencing.
  • the 11.6 leb plasmid pME4755 was generated by cloning the 0.9 kb Xbal-Xhol ipuA fragment into the intermediate plasmid that had been linearized with Xbal-Xhol.
  • the sequencing was carried out by the company Microsynth.
  • the DNA sequences were double-stranded according to the 'dideoxy chain termination method' according to Sanger et al., Proc. Natl. Acad. Be. USA, 74, 1977, 5463-5467.
  • the plasmids pME4254, pME4256, pME4259, pME4267 and pME4275 were used for sequencing.
  • the plasmid pME4259 was digested with the restriction enzyme Smal and the fragments separated by agarose gel electrophoresis. The 7 kb fragment was isolated and purified. The 7 leb fragment was then digested a second time with Saä and the DNA fragments were separated again. The 2.7 leb Sall / Smal fragment was isolated and purified and cloned into the low copy vector pPDl 11, also digested by Sall / Smal.
  • the newly formed plasmid pME4268 contains the ipuH gene as a 2.7 kb insert. The ipuH gene was interrupted by inserting a gentamycin resistance gene.
  • pME4268 was digested with the restriction enzyme B ⁇ mHl and the 5 'overhanging restriction ends were converted into blunt ends by the Klenow fragment of DNA polymerase I in a' fill-in 'reaction with the addition of the four deoxynucleotides.
  • the gentamycin resistance gene was obtained from the plasmid pUCGM by digestion with Sm ⁇ l as a 855 bp fragment with blunt ends. The gentamycin resistance gene was then ligated into the linear pME4268 so that the S ⁇ lVSm ⁇ l insert has a length of 3.55 kb.
  • the newly created plasmid is pME4269.
  • the newly created plasmid pME4270 carries the resistance genes for Gm and tetracycline (Tc).
  • the plasmid pME4270 was transformed into E. coli S17- ⁇ pir according to the CaCl 2 method. S17- ⁇ pir are E.coli cells that are suitable for conjugation with the mutant BI.
  • E.coli S17- ⁇ pir which contains the plasmid pME4270 with the gentamycin and tetracycline resistance gene, was conjugated with the mutant BI.
  • the mutant BI was raised in 25 ml MM with L-glutamate (20 mM) and Km (50 ⁇ g / ml) at 30 ° C.
  • Antibiotics Gm (25 ⁇ g / ml), Tc (35 ⁇ g / ml) and Km (50 ⁇ g / ml) were grown overnight at 30 ° C at 150 rpm. 300 ⁇ l of each were plated out on a fresh LB plate with sucrose (5%) and incubated at 30 ° C. overnight. The colonies subsequently obtained were tested for growth on MM plates with L-glutamate (20 mM) and Tc (35 ⁇ g / ml).
  • the mutant BIII Pseudomonas sp.
  • KIE171-BIII, strain DSM 13177 which arose from this procedure, has the phenotype on MM plates with L-glutamate (20 mM) and Gm (25 ⁇ g / ml) or Km (50 ⁇ g / ml) but not with Tc (35 ⁇ g / ml).
  • a second 'crossover' took place at her. In doing so, she deleted the plasmid integrated into the chromosome with the active ipuH gene. This allows sucrose to be tolerated.
  • Mutant BIII now only has the ipuHGen inactivated by inserting the Gm resistance cassette.
  • mutant BIII strain DSM 13177
  • IPA 10 mM
  • OD 650 of the culture 1-1.3 at 4000 rpm was 15 min. centrifuged and the sediment washed twice with half the amount of culture medium without a C source. The cells could then be taken up in the desired volume of MM medium with L-glutamate (25 mM), so that 3 ml of concentrated cell suspension (OD 650 ⁇ 50) were obtained.
  • the culture was stored at 4 ° C for 16 hours. After adding IPA (20, 50 or 100 mM), this culture was shaken at 150 rpm at 30 ° C. The samples were taken at different times (1 h, 3 h, 5 h, 7 h, 23 h and 58 h).
  • the digested 1.4 leb PCR product was ligated into the vector pET28a (+) (Novagen), which had also been digested with the enzymes Ndel and Hindlll.
  • the newly formed plasmid was named pME4275 and transformed into competent cells from E. coli BL21 (DE3) according to the CaCl 2 method.
  • the digested 1.4 kb PCR product was ligated into the vector pET24a (+) (Novagen), which gave plasmid ⁇ ME4277.
  • Plasmid pME4275 contains the ipuC gene adjacent to a DNA sequence which codes for six histidines. This fusion took place by cloning ipuC into the vector pET28a (+).
  • the newly created DNA sequence codes for the polypeptide Tag- ⁇ -Glutamylamid synthetase.
  • the protein Tag- ⁇ -glutamylamide synthetase was then purified using chelate affinity chromography using 'His * Bind Resin'.
  • the N-terminal histidine end of the recombinant protein interacts with the carrier material 'His »Bind Resin'.
  • E. coli BL21 (DE3) (DSM 13180) containing pME4275 was used for the production of pure day ⁇ -glutamylamide synthetase. This was grown on 5 ml LB medium at 37 ° C with Km (50 ⁇ g / ml) and used to inoculate a culture of 100 ml in a 500 ml bottle of the same medium. After an OD 650 of 1.0 was reached, the culture was induced with 0.4 mM IPTG at 30 ° for 3 hours. The culture was then cooled on ice for 5 minutes and then centrifuged at 4 ° C. and 5000 g. The sediment was washed with cold 50 mM Tris-HC1 with 2 mM EDTA at pH 8.0 and centrifuged again under the same conditions. The sediment could then be stored at -20 ° C.
  • the frozen sediment was resuspended in 4 ml binding buffer (containing 10 ⁇ g / ml DNase I).
  • the cell extract was obtained after two passages through the French press at 5.5 Mpa and subsequent centrifugation at 39000 g for 20 minutes. The supernatant was filtered through a 0.2 ⁇ m filter.
  • Tag- ⁇ -glutamylamide synthetase was purified at 4 ° C. using "His # Bind Resin".
  • the solutions used for the chromatography were as follows:
  • Binding buffer 5 mM imidazole, 0.5 mM NaCl, 20 mM Tris-HCl, pH 7.9
  • Elution buffer 1 M imidazole, 0.5 M NaCl, 20 mM Tris-HCl pH 7.9
  • NiSO 4 solution 50 mM NiSO 4 wash buffer: 60 mM imidazole, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9
  • the bound day ⁇ -glutamylamide synthetase could then be eluted with 15 ml of elution buffer and stored at 4 ° C.
  • the molecular weight of the monomer of day ⁇ -glutamylamide synthetase is 52478 Da.
  • Theanine which had been produced by the biotransformation of the enzyme IpuC, could be detected by HPLC and its identity confirmed by cochromatography with the pure compound.
  • the sample was previously derivatized by HPLC with phenyl isothiocyanate.
  • a Nucleosil-C18 'reverse phase' column at 25 ° C was used for the analysis. The detection took place at 254 nm.
  • Theanine could also be detected using GC-MS.
  • the fragmentation pattern was identical to that of the reference compound.
  • ethylamine other compounds could be used: methylamine, ethanolamine, glycine methyl ester, propylamine, l-amino-2-propanol, 3-amino-l-propanol, isopropylamine, L-alaninol, D-alaninol, 2-amino-l, 3 propanediol, butylamine, 4-aminobutyrate methyl ester, isobutylamine, sec-butylamine, S-2-amino-1-butanol, R-2-amino-1-butanol, tert-butylamine and pentylamine.
  • DSM 13177 KLEI 71 -Bill strain
  • 31.8 mM theanine Yield 63%) were obtained after 24 h with 50 mM ethylamine as substrate.
  • the product yield was determined by HPLC. A low cell density turned out to be essential for achieving high volume yields.
  • the reaction could also be carried out with resting cells with the same cell density, albeit with poorer yields (max. 45% with 20 mM ethylamine as starting material and 18 h reaction time). Higher initial concentrations of ethylamines and higher cell densities reduced the volume yield.
  • E.coli BL21 (DE3) transformed with the expression vector pME4755 were composed of 64 mM potassium phosphate (pH 7.2), 33 mM NH 4 C1 2 , 1 mM MgCl 2 up to the stationary phase at 37 ° C. and 180 rpm in 25 ml medium. 10 mM glucose, 0.5 ⁇ M (NH 4 ) 2 SO 4 , 1% trace elements (Thurnheer et al., J. Gen. Microbiol. 132: 1215 ff, 1986) and 20 ⁇ g / ml chloramphenicol.
  • the preculture was used to inoculate 100 ml of medium with an OD 650 of 0.15 and then to grow to 0.4. After induction with 400 ⁇ M IPTG (thio-beta-D-1-galactoside), the culture was further grown up to an OD 650 of 0.8. The cells were centrifuged at 6000 g / 10 min. at
  • the mioroorganism identified under I. above was accompanied by:
  • This International Depositary Authority accepts the microorganism identified under I. above, which was received by it on 2 000 - 03 - 31 (Date of the original deposit) 1 .
  • microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).
  • the microorganism identified under I. above was accompanied by:
  • This International Depositary Authority accepts the microorganism identified under I. above, which was received by it on 2000 - 03 - 24 (Date of the original deposit) 1 .
  • the mioroorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).
  • the mioroorganism identified under I. above was accompanied by:
  • This International Depositary Authority accepts the microorganism identified under I. above, which was received by it on 2000 - 03 - 24 (Date of the original deposit) 1 .
  • microorganism identified under I above was received by this International Depositaiy Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).
  • the microorganism identified under I. above was accompanied by:
  • This International Depositary Authority accepts the microorganism identified under I. above, which was received b it on 199 9 - 12 - 03 (Date of the original deposit) '.
  • microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).
  • microorganism identified under I above was accompamed by
  • microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion)
  • the microorganism identified under I. above was accompanied by:
  • This International Depositaiy Authority accepts the microorganism identified under I. above, which was received by it on 1999 - 12 - 03 (Date of the original deposit) 1 .
  • microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).
  • Access to the deposited biological material should only be within the scope of the expert solutions, as provided for in R. 28 (4) EPUe or Regulation 3.25 (3) Australian Patents Act, i.e. be made by handing out a sample to an expert.
  • Access to the deposited biological material should only be within the scope of the expert solutions, as provided for in R. 28 (4) EPUe or Regulation 3.25 (3) Australian Patents Act, i.e. be made by handing out a sample to an expert.
  • Access to the deposited biological material should only be within the scope of the expert solutions, as provided for in R. 28 (4) EPUe or Regulation 3.25 (3) Australian Patents Act, i.e. be made by handing out a sample to an expert.
  • Access to the deposited biological material should only be within the scope of the expert solutions, as provided for in R. 28 (4) EPUe or Regulation 3.25 (3) Australian Patents Act, i.e. be made by giving a sample to an expert.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Beschrieben werden neue Mikroorganismen, die befähigt sind, Isopropylamin in L-Alaninol zu transformieren, und bei denen die Gene ipuH und ipuI, die für Enzyme codieren, welche an der Verstoffwechselung von L-Alaninol beteiligt sind, inaktiviert sind. Des weiteren wird ein Verfahren zur Herstellung von L-Alaninol oder Theanin unter Verwendung der neuen Mikroorganismen beschrieben.

Description

Verfahren zur biotechnologischen Herstellung von L-Alaninol
Die Erfindung betrifft neue Mikroorganismen, die befähigt sind, Isopropylamin in L- Alaninol zu überführen, und deren Gene ipuH und ipul, die für Enzyme codieren, welche an der Verstoffwechselung von L-Alaninol (S-(+)-2-Amino-l-propanol) beteiligt sind, inaktiviert sind. Die Erfindung betrifft auch die für die Biosynthese benötigten Gene bzw. diesbezügliche DNA-Fragmente und Vektoren sowie zur Biosynthese von γ- Gluta ylamiden befähigte Polypeptide.
Die neuen Mikroorganismen bzw. die diesbezüglichen DNA Fragemente oder Polypeptide werden für ein neues Verfahren zur Herstellung von L-Alaninol ausgehend von Isopropylamin (IPA) eingesetzt und für ein neues Verfahren zur Herstellung von γ- Glutamylamiden, insbesondere auch zur Herstellung von Theanin ausgehend von Ethylamin.
L-Alaninol ist ein wichtiges Zwischenprodukt zur Herstellung von Pharmazeutika wie beispielsweise zur Herstellung von Ofioxacin (J. Med. Chem 1997,30,2283-2286).
Ein biotechnologisches Verfahren für die Herstellung von L-Alaninol ist in WO 99/07199 beschrieben. Die dort beschriebenen Mutanten Pseudomonas sp. KIE171-B und -BI sind befähigt, L-Alaninol aus IPA herzustellen. Allerdings bauen beide Mutanten das enstandenene L-Alaninol wieder ab, was nachteilig für eine industrielle Anwendung dieses Verfahrens ist.
Aufgabe der vorliegenden Erfindung war, ein industriell gangbares Verfahren zur Herstellung von L-Alaninol und, als Teilschritt, zur Herstellung von N-5-substituierten γ- L-Glutamylamiden zur Verfügung zu stellen, mit dem hohe Ausbeuten an L-Alaninol bzw. N-5-substituierten γ-L-Glutamylamiden erzielt werden können.
Diese Aufgabe wird mit den erfmdungsgemässen Mikroorganismen, Nukleinsäuren sowie Polypeptiden gemäss den Ansprüchen 1, 4, 10, 11, 12, 13 und 17 und mit den Verfahren gemäss den Ansprüchen 16 und 20 gelöst. Gegenstand der vorliegenden Erfindung sind demnach Mikroorganismen, die befähigt sind, IPA zu L-Alaninol zu transformieren und bei denen die Gene ipuH und ipul, die für Enzyme codieren, welche an der Verstoffwechselung von L-Alaninol beteiligt sind, inaktiviert sind, sowie zellfreie Enzymextrakte daraus.
Unter Genen, die in inaktiver Form vorliegen, werden Gene verstanden, die z.B. durch Insertion, Mutation oder Deletion auf solche Weise verändert wurden, dass entweder kein Produkt mehr gebildet wird, oder das gebildete Produkt funktionell nicht mehr aktiv ist.
Die Gene ipuH und ipul, die für Enzyme codieren, welche an der Verstoffwechselung von L-Alaninol beteiligt sind, können nach bekannten Methoden inaktiviert werden. Zweckmässige Methoden zur Inaktivierung, sogenannte „knock out"- Methoden, sind beispielsweise Mutationsmethoden wie die Punktmutations-Methode, Frameshift-Methode, Deletionsmethode oder die Transposon-Insertionsmethode. Weiter können Methoden zur ortsspezifischen Rekombination der entsprechenden Gene mit einem vorher inaktivierten Gen eingesetzt werden, wie z. B. in Hoang et al., 1998, Gene 212, 77-86 beschrieben, welche bevorzugt eingesetzt werden.
Die Erfindung wird durch die nachfolgenden Abbildungen näher erläutert. Bei den in Figuren 4, 5 und 6 dargestellten Plasmiden zeigen die Zahlen in Klammern die Position der Nukleotide innerhalb der in SEQ ID No. 1 beschriebenen Nukleotidsequenz des ipul-Gens. Bei den in Figuren 7, 8 und 9 dargestellten Plasmiden zeigen die Zahlen in Klammern die Position der Nukleotide innerhalb der Nukleotidsequenz des ipu-operons (Fig. 3).
Fig. 1 zeigt die Enzyme, die an der Verstoffwechselung von IPA und L-Alaninol beteiligt sind und einen neuen Abbauweg für IPA.
Fig. 2 zeigt die Transposoninsertionen und die Anordnung der ipu-Gene von Pseudomonas sp. KIE171-BI (DSM 11629) und Pseudomonas sp. KIE171-BII (DSM 13389).
Fig. 3 A bis 3N zeigen die Nukleotid- und die Aminosäuresequenz der Gene ipuA, ipuB, ipuC, ipuD, ipuE, ipuF, ipuG und ipuH des ipu-operons.
Fig. 4 zeigt Plasmid pME4254.
Fig. 5 zeigt Plasmid ρME4255. Fig. 6 zeigt Plasmid pME4256
Fig 7 zeigt Plasmid pME4257.
Fig 8 zeigt Plasmid pME4259.
Fig 9 zeigt Plasmid pME4267.
Fig 10 zeigt Plasmid pME4275.
Fig 11 zeigt Plasmid pME4277.
Fig 12 zeigt die Produktion von L-Alaninol durch Pseudomonas sp. KIE171-BI (DSM
11629) und Pseudomonas sp. KIE171-BIII (DSM 13177).
Fig. 13 zeigt die Substratspezifität der γ-Glutamylamid-Synthethase.
Als Ausgangs-Mikroorganismen für die Herstellung der erfindungsgemässen Mikroorganismen können Mikroorganismen dienen, die befähigt sind IPA zu L-Alaninol zu überführen und die die Gene ipuH und ipul, die für Enzyme der Verstoffwechselung von L-Alaninol codieren, in aktiver Form enthalten bzw. bei denen eines dieser Gene in inaktiver Form vorliegt.
Zweckmässig werden die Ausgangs-Mikroorganismen, in einem wässrigen Nährmedium, das eine Kohlenstoff- und Stickstoffquelle, Mineralsalze und eine Vitaminquelle enthält, auf übliche Weise gezüchtet (kultiviert) und bei einer Temperatur von 20 bis 40 °C, bevorzugt von 30 bis 37 °C, und bei einem pH- Wert von 5 bis 9, bevorzugt bei einem pH- Wert von 6 bis 8, kultiviert. Bevorzugt werden als Ausgangs-Mikroorganismen Mikroorganismen der Gattung Pseudomonas, besonders bevorzugt die in der WO 99/07199 des gleichen Anmelders beschriebenen Pseudomonas sp. KIE171-BI (DSM 11629), KIE171-B (DSM 11521) bzw. KIE171 (DSM 12360), eingesetzt.
Vorteilhaft werden diese Mikroorganismen, wie in WO 99/07199 des gleichen Anmelders beschrieben, aus Bodenproben, Schlamm oder Abwasser unter Zuhilfenahme üblicher mikrobiologischer Techniken angezogen und bzgl. der Transformation von IPA zu L- Alaninol selektioniert.
Die an der Verstoffwechselung von IPA und L-Alaninol beteiligten Gene können unter Zuliilfenahme üblicher Techniken wie z.B. durch Transposon-Insertionsmethode markiert und anschliessend durch die sogenannte „transposon rescue" Technik wie z.B. in De Lorenzo V., Timmis K.N., Methods Enzymol., 1994, 235, 386 - 405 beschrieben, identifiziert, isoliert, sequenziert und kloniert werden. Hierbei können die weiter unten beschriebenen erfindungsgemässen DNA-Fragmente aus den Ausgangs-Mikroorganismen isoliert werden. Die durch die DNA-Fragmente codierten Enzyme der Verstoffwechselung von IPA und L-Alaninol können in üblicher Weise zugeordnet werden. Die Gene ipuA, ipuB, ipuC, ipuD, ipuE, ipuF, ipuG, ipuH, ipul wurden hierbei isoliert. Diesen wurden nach üblichen Vergleichsmethoden mit bekannten Sequenzen die entsprechenden möglichen Enzymfunktionen zugeordnet. Aus diesen möglichen Funktionen der an der Verstoffwechselung von IPA und L-Alaninol beteiligten Enzyme wird (s. Tab. 2) ein neuer Abbauweg für IPA vorgeschlagen (Figur 1).
Je nachdem, ob die Ausgangs-MilαOorganismen wie oben beschrieben die Gene ipuH und ipul, die für an der Verstoffwechselung von L-Alaninol beteiligte Enzyme codieren, entweder beide in alctiver Form enthalten oder eines dieser Gene in inaktiver Form vorliegt, werden zweckmässig eines oder beide der Gene ipuH und ipul in einen geeigneten Vektor, z.B. ein Plasmid, kloniert und inaktiviert, z.B. durch Insertion einer Markergenkassette wie beispielsweise eines für Antibiotika-Resistenz kodierenden Gens.
Das erhaltene Konstrukt wird zweckmässig in einen Velctor, z.B. ein Plasmid, kloniert, der in einem geeigneten Wirtsorganismus wie z.B. E. coli, nicht aber in dem Ausgangs- Mikroorganismus repliziert werden kann. Nach Übertragung des Vektors z.B. durch Konjugation in den Ausgangsmikroorganismus, Selektion auf das Produkt des entsprechenden Markergens und anschliessender Deletion des ins Chromosom integrierten Plasmids sowie des aktiven ipuH und/oder ipul Gens kann der erfmdungsgemässe
Mikroorganismus erhalten werden, bei dem die Gene ipuH und ipul, die für Enzyme der Verstoffwechselung von L-Alaninol codieren, inaktiviert sind.
Die erfindungsgemässen Mikroorganismen, bei denen die für Enzyme der Verstoffwechselung von L-Alaninol codierenden Gene ipuH und ipul inaktiviert sind, gehören bevorzugt zur Gattung Pseudomonas, besonders bevorzugt zur Spezies Pseudomonas citronellolis, Pseudomonas azalaica, Pseudomonas nitroreducens, Pseudomonas alcaligenes, Pseudomonas aeruginosa oder Pseudomonas putida, am bevorzugtesten zur Species Pseudomonas sp. entsprechend der Species des hinterlegten Stammes Pseudomonas sp. KIE171-BIII (DSM 13177). Mitumfasst sind auch die funktionell äquivalente Varianten bzw. Mutanten . Der hinterlegte Stamm DSM 13177 stellt eine solche bevorzugte Ausfuhrungsform der vorliegenden Erfindung dar.
Der Mikroorganismus Pseudomonas sp. KIE171-BIII (DSM 13177) wurde am 03.12.1999, bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen GmbH, Mascheroderweg lb, D-38124 Braunschweig, gemäss Budapester Vertrag hinterlegt. Der Stamm KIE171-B (DSMl 1521), von dem sich die Stammmutanten der B-Serie ableiten, wurde taxonomisch untersucht. Die phylogenetische Analyse ergab die Einordnung als eine eigene neue Spezies der Gattung Pseudomonas, mit der grössten Ähnlichkeit zur bekannten Spezies Pseudomonas citronellolis. Chemotaxonomische Analysen (ausführlich dargestellt in der WO 99/07199) bestätigten die Zugehörigkeit der neuen Spezies zur RNA- Gruppe I der Pseudomonaden (umfassend u.a. Pseudomonas citronellolis und Pseudomonas aeruginosa).
Unter „funktionell äquivalenten Mutanten" werden Mikroorganismen verstanden, die im wesentlichen dieselben Eigenschaften und Funktionen der Ursprungsmikroorganismen besitzen. Solche genetischen Varianten oder Mutanten können durch hinreichend bekannte Methoden, u.a. Zufallsmutagenese z.B. mit UV-Strahlung oder alkylierende Reagentien (beschrieben in Miller, J., Experiments in Molecular Genetics, Cold Spring Harbor Laboratory 1972), 'error prone'-PCR oder Gene-'shuffling' von von polymorphen DNA- Sequenzen in vitro und anschliessender Rückübertragung dieser Genfragmente in einen Organismus, oder aber spontan durch die natürliche Mutationsrate von Mikroorganismen erzeugt werden.
Die erfindungsgemässen Enzyme bzw. Enzymextrakte für das zellfreie System können durch Aufschliessen der Mikroorganismen nach üblichen Methoden gewonnen werden. Hierzu kann beispielsweise die Ultraschall-, French-Press- oder Lysozym-Methode verwendet werden. Die zellfreien Enzyme können auch auf einem geeigneten Trägermaterial immobilisiert werden, wie dem Fachmann hinreichend bekannt. Zweckmässig werden die erfindungsgemässen Mikroorganismen in einem wässrigen Nährmedium, das eine Kohlenstoff-, Stickstoffquelle, Mineralsalze und eine Vitaminquelle enthält, auf übliche Weise, vorteilhaft wie in WO 99/07199 beschrieben, angezüchtet.
Ein weiterer Gegenstand der Erfindung sind isolierte DNA-Fragmente, die eines oder mehrere der Gene ipuA, ipuB, ipuC, ipuD, ipuE, ipuF, ipuG, ipuH, ipul umfassen, die für Enzyme codieren, welche an der Verstoffwechselung von IPA zu L-Alaninol und der Verstoffwechselung von L-Alaninol beteiligt sind. Diese erfindungsgemässen DNA- Fragmente werden vorzugsweise aus Mikroorganismen der Gattung Pseudomonas wie z.B. Pseudomonas putida, Pseudomonasas citronellolis, Pseudomonas aeruginosa, Pseuodomonas alcaligenes, Pseudomonas nitroreducens, Pseudomonas azalaica isoliert, besonders bevorzugt aus Mikroorganismen der Spezies Pseudomonas citronellolis oder der Spezies Pseudomonas sp. entsprechend der Species eines der hinterlegten Stämme bzw. Stammmutanten Pseudomonas sp. KIE171 (DSM 12360), KIE171-B (DSM 11521) , KIE171-BI (DSM 11629), Pseudomonas sp. KIE171-BII (DSM 13389) und/oder Pseudomonas sp. KIE171-BIII (DSM 13177), am bevorzugtesten aus Pseudomonas sp. KIE171 (DSM 12360), Pseudomonas sp. KIE171-BI (DSM 11629) und/oder Pseudomonas sp. KIE171-BII (DSM 13389).
Der Mikroorganismus Pseudomonas sp. KIE171-BII (DSM 13389) wurde am 27.03.2000 bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen GmbH (DSMZ), Mascheroderweg lb, D-38124 Braunschweig, gemäss Budapester Vertrag hinterlegt. Die anderen genannten Stämme wurden, wie vorstehend bereits beschrieben, im Rahmen der vorliegenden Anmeldung oder der WO 99/07199 des gleichen Anmelders, gemäss Budapester Vertrag hinterlegt und sind Bestandteil der vorliegenden Beschreibung.
Zweckmässig sind die Gene ipuA, ipuB, ipuC, ipuD, ipuE, ipuF, ipuG, ohne oder zusammen mit ipuH, die für Enzyme codieren, welche an der Verstoffwechselung von IPA zu L-Alaninol bzw. dem Katabolismus von L-Alaninol beteiligt sind, in einer bevorzugten Ausfuhrungsform in der Reihenfolge ipuA, ipuB, ipuC, ipuD, ipuE, ipuF, ipuG, und optional ipuH, angeordnet und liegen als eine einzige Transkriptionseinheit (Operon) vor. Das Gen Ipul wird bevorzugt durch die in der SEQ ID No. 1 dargestellte Nukleotidsequenz umfasst.
Die Gene ipuA, ipuB, ipuC, ipuD, ipuE, ipuF, ipuG, ipuH werden bevorzugt durch die in Figur 3 dargestellte Nukleotid-Sequenz umfasst. Hierin umfasst die Nukleotidsequenz von 1314 bis 2339 die Protein codierende Region des Gens ipuA, die Nukleotidsequenz von 2342 bis 2677 die Protein codierende Region des Gens ipuB, die Nukleotidsequenz von 2743 bis 4119 die Protein codierende Region des Gens ipuC, die Nukleotidsequenz von 4194 bis 5351 die Protein codierende Region des Gens ipuD, die Nukleotidsequenz von 5371 bis 5562 die Protein codierende Region des Gens ipuE, die Nukleotidsequenz von 5589 bis 6473 die Protein codierende Region des Gens ipuF, die Nukleotidsequenz von
6533 bis 7960 die Protein codierende Region des Gens ipuG und die Nukleotidsequenz von 8051 bis 9571 die Protein codierende Region des Gens ipuH.
Die Gene ipuA und ipuB werden besonders bevorzugt durch die in der SEQ ID No. 3 dargestellte Nukleotidsequenz umfasst.
Das Gen ipuC wird besonders bevorzugt durch die in der SEQ ID No. 6 dargestellte Nukleotidsequenz umfasst.
Die Gene ipuD, ipuE, ipuF, ipuG und ipuH werden besonders bevorzugt durch die in der SEQ ID No. 8 dargestellte Nukleotidsequenz umfasst.
Diese Nukleotid-Sequenzen gemäss der vorliegenden Erfindung umfassen auch funktionell aequivalente genetische Varianten, auch als Allele oder Mutanten bezeichnet, d. h. nichtidentische Gene, die sich in ihrer Basensequenz von den Genen der Organismen, aus denen die Gene isoliert wurden, ableiten und deren Genprodukte (Proteine) die gleiche enzymatischen Funktion ausüben können.
Die funktionell aequivalenten genetischen Varianten bzw. Mutanten umfassen somit beispielsweise Basenaustausche im Rahmen der bekannten Degeneration des genetischen Codes, beipielsweise um die Gensequenz an die bevorzugte Codon-Verwendung eines bestimmten Mikroorganismus, in dem eine künstliche Expression erfolgen soll, anzupassen. Die genetischen Varianten und Mutanten umfassen auch Deletionen,
Insertionen und Substitutionen von Basen oder Codons, soweit die Genprodukte derart veränderter Gene in ihrer biologischen Funktion im wesentlichen unverändert bleiben. Umfasst werden von diesen aequivalenten genetischen Varianten bzw. Mutanten bevorzugt Gensequenzen, die zu den aus den Organismen isolierten Sequenzen eine hohe Sequenzhomologie, beispielsweise höher als 70%, bevorzugt höher als 80%, besonders bevorzugt höher als 90%, aufweisen und unter stringenten Hybridisierungsbedingungen, z. B. bei Temperaturen zwischen 60 und 70 °C und bei 0,5 bis 1,5 M Salzanteil, insbesondere bei einer Temperatur von 62 - 66 °C und bei 0,8 - 1,2 M Salzanteil zur Hybridisierung mit dem Komplement der isolierten Sequenzen befähigt sind.
Auf der Ebene des Translationsproduktes, d.h. des Polypeptides oder Proteins, beträgt die Homologie bevorzugt 95%.
Die Isolierung der erfindungsgemässen DNA-Fragmente kann beispielsweise wie oben beschrieben unter Zuhilfenahme üblicher Techniken wie z.B. durch Transposon- Insertionsmethode und anschliessenden Einsatz der „transposon rescue" Technik, oder durch Verwendung einer geeigneten Gensonde zusammen mit einer geeigneten Genbanlc durchgeführt werden.
Gegenstand der vorliegenden Erfindung sind ferner Vektoren, die diese DNA-Fragmente enthalten und rekombinante Mikroorganismen, die diese Vektoren enthalten.
Als Vektoren können autonom- und selbstreplizierende Plasmide oder Integrationsvektoren verwendet werden.
Abhängig von der Art der gewählten Vektoren können die ipu-Gene in verschiedene Mikroorganismen eingebracht werden. Als Vektoren eignen sich sowohl Vektoren mit spezifischem Wirtsspektrum als auch Vektoren mit breitem Wirtsspektrum („broad host ränge"). Beispiele für Vektoren mit spezifischem Wirtsspektrum z.B. für E. coli sind der handelsübliche pBLUESCRIPT II KS+®, pBLUESCRIPT SK+® (Stratagene), pPDl 11 oder dessen Derivate (beschrieben in Dersch et al., FEMS Microbiol Lett. 15, 123, 19 - 26, 1994), pET24a(+) (Novagen) oder pET28a(+) (Novagen). Vorzugsweise wird pBLUESCRIPT II KS+®, pPDl 11 oder dessen Derivate oder pET28a(+) angewendet. Als „broad host ränge" Vektoren können alle Vektoren eingesetzt werden, die für Gramnegative Bakterien geeignet sind.
Beispiele für solche „broad host ränge" Vektoren sind pRK290 (beschrieben in Ditta et al., PNAS, 77, 7347 - 7351, 1980) oder dessen Derivate, pKT240 (beschrieben in Bagdasarian et al., Gene, 26, 273 - 282, 1983) oder dessen Derivate, pVKIOO (beschrieben in Knauf und Nester, Plasmid, 8, 45 - 54, 1982) bzw. dessen Derivate, pBBRIMCS (beschrieben in Kovach et al, Biotechniques 16:800 - 802, 1994) bzw. dessen Derivate. Die genannten Vektoren, insbesondere der Expressionsvektor pBBRIMCS, stellen gleichzeitig bevorzugte Ausfuhrungsformen der vorliegenden Erfindung dar.
Basierend auf einem solchen Vektor wurde beispielsweise das Plasmid pME4755 erhalten.
Vorzugsweise wird ein Vektor mit spezifischem Wirtsspektrum, insbesondere bevorzugt pPDl 11, pBLUESCRIPT II KS+® oder pET28a(+) eingesetzt.
Auf diese Weise wurden beispielsweise die Plasmide pME4254, pME4255, pME4256, pME4257, pME4259, pME4267, pME4275 und pME4277 erhalten.
Zweckmässige Mikroorganismen, die die genannten Vektoren enthalten, sind Mikroorganismen der Gattung Escherichia, bevorzugt der Spezies Escherichia coli, besonders bevorzugt der Spezies Escherichia coli DH5α und Escherichia coli XLl-Blue®.
Insbesonders bevorzugte Vektoren sind Vektoren wie Plasmid pME4255 wie hinterlegt in E. coli DH5α (DSM 13178), Plasmid pME4755 wie hinterlegt in E.coli XLl-Blue (DSM T3388), Plasmid pME4267 wie hinterlegt in E. coli XLl-Blue (DSM 13179), und Plasmid pME4259 wie hinterlegt in E. coli XLl-Blue (DSM13417).
Die Mikroorganismen der Spezies Escherichia coli DH5α (DSM 13178) und Escherichia coli XLl-Blue (DSM 13179), jeweils enthaltend Plasmid pME4255 bzw. pME4267, wurden am 03.12.1999 bei der Deutschen Sammlung für Mikroorganismen und
Zellkulturen GmbH, Mascheroderweg lb, D-38124 Braunschweig, gemäss Budapester Vertrag hinterlegt. Der Mikroorganismus der Spezies Escherichia XLl-Blue (DSM 13417), enthaltend Plasmid pME4259, wurde am 31.3.2000 bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen GmbH, Mascheroderweg lb, D-38124 Braunschweig, gemäss Budapester Vertrag hinterlegt. Der Mikroorganismus der Spezies Escherichia XLl- Blue (DSM 13388), enthaltend Plasmid pME4755, wurde am 24.3.2000 bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen GmbH, Mascheroderweg lb, D-38124 Braunschweig, gemäss Budapester Vertrag hinterlegt.
Das erfindungsgemässe Verfahren zur Herstellung von L-Alaninol, das einen weiteren Gegenstand der vorliegenden Anmeldung darstellt, umfasst die Umsetzung von Isopropylamin (IPA) zu L-Alaninol mittels den bereits oben beschriebenen erfindungsgemässen Milcroorganismen , bei denen die Gene ipuH und ipul, die für Enzyme codieren, welche an der Verstoffwechselung von L-Alaninol beteiligt sind, inaktiviert sind, oder mittels Enzymextrakten aus diesen Milcroorganismen. L-Alaninol im Sinne der vorliegenden Erfindung ist L-2-Amino-l-propanol.
Die Biotransformation kann im Falle der Verwendung der oben beschriebenen erfindungsgemässen Milcroorganismen , bei denen die Gene ipuH und ipul, die für Enzyme codieren, welche an der Verstoffwechselung von L-Alaninol beteiligt sind, inaktiviert sind oder die generell nicht befähigt sind, L-Alaninol zu verstoffwechseln, aber über die notwendigen Biosynthesegene verfügen, wie bereits in WO 99/07199 beschrieben durchgeführt werden. Die diesbezüglichen Angaben der WO 99/07199 zum Biotranformationsverfahren, der Isolation des L-Alaninols und zur Anzucht der erfindungsgemässen Mikroorganismen ist integraler Bestandteil der vorliegenden Anmeldung. Eine erste Analyse des mel rstufigen Biosyntheseweges und der darin beteiligten Enzymaktivitäten ist, wie bereits oben gesagt, in Fig. 1 gegeben. Die oben beschriebenen erfindungsgemässen Mikroorganismen verfugen entweder als Wildtyp über die notwendigen Biosynthesegene, oder aber sind rekombinant mit den entsprechenden erfindungsgemässen DNA-Fragmenten bzw. Proteinexpressionsvektoren wie z.B. pME4755 in E.coli, ausgestattet worden. Es ist auch möglich, in den erfindungsgemässen, zur L-Alaninol Biosynthese befähigten Mikroorganismen rekombinant einzelne oder mehrer ipu-Gene, zusätzlich rekombiant zu exprimieren. Die Biotransformation kann mit ruhenden Zellen (nicht wachsenden Zellen, die keine C- und Energiequelle mehr benötigen bzw. diese nicht zur Verfügung steht) oder mit wachsenden Zellen durchgeführt werden. Vorzugsweise wird mit einer Zellsuspension mit einer Zelldichte von OD650 = 40-60 gearbeitet.
Als Medien für die Biotransformation können die fachmännisch üblichen, beispielsweise niedermolare Phosphatpuffer, Hepes-Puffer und Vollmedien wie „Nutrient Yeast Broth" (NYB) oder Mineralsalzmedien wie beispielsweise beschrieben bei Kulla et al, (Arch. Microbiol. 135, 1 (1983)), oder in WO99/07199 (Tabelle 1) verwendet werden. Bevorzugt werden Mineralsalzmedien wie beispielsweise beschrieben bei Kulla et al., (Arch. Microbiol. 135, 1 (1983)), oder in WO99/07199 (Tabelle 1) verwendet.
Bevorzugt wird die Biotransformation unter einmaliger oder kontinuierlicher Zugabe von IPA so durchgeführt, dass die Konzentration an IPA 10 Gew.%, vorzugsweise 1 Gew.% nicht übersteigt.
Der pH- Wert kann in einem Bereich von 4 bis 10 vorzugsweise von 5 bis 9 liegen. Die Biotransformation wird zweckmässig bei einer Temperatur von 10 bis 50 °C, vorzugsweise von 20 bis 40 °C, am bevorzugtesten von 25-35 °C, durchgeführt.
Vorzugsweise findet die Biotransformation in Gegenwart von von 5 bis 100 mM Glutamat, vorzugsweise 10 bis 30 mM Glutamat statt.
Nach einer üblichen Umsetzungszeit von 1 bis 100 h, vorzugsweise höchstens 30 h, kann L-Alaninol durch übliche Aufarbeitungsmethoden wie beispielsweise durch Extraktion oder Destillation der basischen, zellfreien Fermentationsbrühe isoliert werden.
Gegenstand der vorliegenden Erfindung ist ferner ein Polypeptid mit γ-Glutamylamid- Synthetase- Aktivität, das befähigt ist γ-Glutamylamide der allgemeinen Formel
Figure imgf000013_0001
oder der allgemeinen Formel
Figure imgf000013_0002
worin R1 eine gegebenenfalls substituierte Alkylgruppe, eine gegebenenfalls substituierte
Aralkylgruppe, eine gegebenenfalls substituierte Alkoxyalkylgruppe oder eine gegebenenfalls substituierte Arylgruppe, R2 Wasserstoff oder eine gegebenenfalls substituierte Alkylgruppe und n eins bis fünf bedeuten, zu synthetisieren. Vorzugsweise ist R1 substituierte oder unsubstituierte Alkyl- oder Arylgruppe, bevorzugter eine substituierte oder unsubstituierte Alkylgruppe. Unter gegebenenfalls substituiert' ist substituiert oder unsubstituiert zu verstehen.
Unter einer Alkylgruppe ist eine geradlcettige oder verzweigte Alkylgruppe, vorzugsweise mit 1 bis 6 C- Atomen zu verstehen. Namentlich erwähnt seien Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, tert-Butyl,
Pentyl und seine Isomeren sowie Hexyl und seine Isomeren. Zweckmässige Substituenten der Alkylgruppe sind beispielsweise Hydroxy, Oxo, Cyano oder Amino. Bevorzugter
Substituent ist Hydroxy.
Unter einer Arylgruppe ist Phenyl oder Napthyl, unter Aralkyl beispielsweise Benzyl zu verstehen. Zweckmässiger Substituent der Arylgruppe ist Nitro.
Beipiele für Alkoxyalkyl sind z.B. Methoxy-ethyl, Ethoxy-ethyl. Bevorzugt hat R1 die Bedeutung von Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec- Butyl, tert-Butyl, Pentyl, 2-Hydroxypropyl, 3-Hydroxypropyl, 2-Hydroxy ethyl, 1- Hydroxybutyl, 2,2-Dihydroxyisopropyl. Besonders bevorzugt hat R1 die Bedeutung von 2- Hydroxypropyl, 3-Hydroxypropyl, 2-Hydroxyethyl, 1-Hydroxybutyl. R2 hat bevorzugt die Bedeutung von Methyl, n hat bevorzugt die Bedeutung von eins oder zwei.
Das erfindungsgemässe Polypeptid kann wie oben erwähnt durch Einsatz üblicher Methoden zum Aufschliessen von Mikroorganismen, die dieses Polypeptid bzw. das für das Polypeptid codierende Gen ipuC von Natur aus enthalten, gewonnen werden. Alternativ kann das für das Polypeptid codierende Gen ipuC aus Milcroorganismen, die ein für das Polypeptid codierendes Gen ipuC enthalten, wie oben beschrieben isoliert, wie oben beschreiben kloniert und z.B. in E. coli BL21 mittels eines geeigneten Expressionsvektors, wie vorstehend beschrieben, exprimiert werden. Bevorzugt wird das Polypeptid bzw. das für das Polypeptid codierende Gen ipuC aus Milcroorganismen isoliert, die befähigt sind IPA in L-Alaninol zu transformieren.
Bevorzugt werden hierbei Mikroorganismen der Gattung Pseudomonas, besonders bevorzugt die in WO 99/07199 beschriebenen Pseudomonas sp. KIE171 (DSM 12360), KIE171-B (DSM 11521), KIE171-BI (DSM 11629), oder die erfindungsgemässen KIE171-BIII (DSM 13177) eingesetzt.
/ Bevorzugt wird das erhaltene Gen ipuC nach der Isolation nach üblichen Methoden amplifϊziert und in einen Vektor z.B. Vektor pET 28a(+) (Novagen) oder pET24a(+)
(Novagen) ligiert und anschliessend in kompetente Zellen von E. coli z.B E. coli BL21 (DE3) transformiert.
Unter kompetenten Zellen werden Zellen verstanden, die in der Lage sind freie, auch artfremde DNA aufzunehmen.
Die Kultivation der so erhaltenen transformierten Zellen erfolgt in den üblichen Nähr- Medien, die eine Kohlenstoff- und Stickstoffquelle, Mineralsalze und eine Vitaminquelle enthalten, z.B. in LB -Medium, wobei das erfindungsgemässe Polypeptid mit γ- Glutamylamid-Synthetase-Aktivität wie bereits oben erwähnt durch Aufschliessen der Mikroorganismen mit dem Fachmann geläufigen Methoden gewonnen werden kann oder aber die ganzen Zellen als solche, optional nach Vorbehandlung mit permeabilisierenden Agentien, mit dem darin exprimiertem rekombinantem Protein für die Biotransformation verwandt werden können.
Vorzugsweise ist das erfindungsgemässe Polypeptid ein für eine vereinfachte Aufreinigung getagtes Protein, insbesondere His6Tag - γ-Glutamylamid-Synthetase wie exprimierbar von pME4275.
Durch Einbau des Gens ipuC in Vektor pET24a(+) wurde Plasmid pME4277 erhalten. Vorteilhaft wird das Gen ipuC in Velctor pET 28a (+) eingebaut, welcher in E. coli BL21 (DE3) transformiert wird. Auf diese Weise wurde Plasmid pME4275 erhalten, welches das Gen ipuC angrenzend an eine DNA-Sequenz, die für sechs Histidine kodiert enthält, und welches für das Polypeptid γ-Glutamylamid-Synthetase, an welches sechs Histidinreste angehängt sind (His6Tag - γ-Glutamylamid-Synthetase), codiert. Vermittels des Histidin- Tags ist eine einfache, schnelle Auf- oder Anreinigung des getaggten Proteins möglich, z.B. für den Einsatz in einem Enzymreaktor. Es ist auch möglich, andere Tag-Sequenzen zu verwenden, wie dem Fachmann hinreichend bekannt, beispielsweise Protein A- Fusionen oder das FLAG-Tag.
Milcroorganismen der Spezies E. coli BL21 (DE 3) (DSM 13180) enthaltend Plasmid pME4275 wurden am 03.12.1999, bei der Deutschen Sammlung für Mikroorganismen und Zellkulturen GmbH, Mascheroderweg lb, D-38124 Braunschweig, gemäss Budapester Vertrag hinterlegt.
Das erfindungsgemässe Polypeptid mit γ-Glutamylamid-Synthetase- Aktivität, das befähigt ist γ-Glutamylamide der allgemeinen Formel I oder II zu synthetisieren ist vorzugsweise durch folgende Eigenschaften gekennzeichnet:
a) Substratspezifität für Methylamin, Ethylamin, Ethanolamin, Glycinmethylester, Propylamin, l-Amino-2- propanol, 3-Amino-l-propanol, Isopropylamin, L-Alaninol, D-Alanmol, 2-Amino-l,3- propandiol, Butylamin, 4-Aminobutyratmethylester, Isobutylamin, sec-Butylamin, S-2- Amino-1-butanol, R-2-Amino-l-butanol, tert-Butylamin und/oder Pentylamin.
b) Molekulargewicht des Monomers : 52478 Da
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von γ- Glutamylamiden der allgemeinen Formel I oder II, welches derart durchgefülirt wird, dass L-Glutamat mit einem Amin der allgemeinen Formel
NFL,
III l1
oder der allgemeinen Formel
Figure imgf000016_0001
worin R1 und R2 die oben genannte Bedeutung haben, mittels eines erfindungsgemässen Mikroorganismus oder mittels eines das IpuC-Gen erfmdungsgemäss rekombinant exprimierenden Mikroorganismus oder mittels eines erfindungsgemässen Polypeptides, wie sämtlich oben beschrieben, zum Produkt der allgemeinen Formel I oder II umgesetzt wird.
Die Umsetzung kann auch mit im wesentlichem zellfreiem Enzymextrakt aus den entsprechenden Milcroorganismen oder mit gereinigtem Polypeptid durchgeführt werden. Methoden zur Herstellung eines Enzymextraktes sind dem Fachmann wohlbekannt und umfassen z.B. den Zellaufschluss mittels French Press, die Lysozymmethode, Ultraschallbehandlung. Die Umsetzung kann beispielsweise in einem Puffer wie beispielsweise Tris-HCl zusammen mit Imidazol unter Zugabe von ATP und-Magnesium Ionen durchgeführt werden.
Der pH- Wert kann in einem Bereich von 4 bis 9, vorzugsweise von 5 bis 8 liegen. Die Umsetzung wird zweckmässig bei einer Temperatur von 10 bis 50 °C, vorzugsweise von 20 bis 40 °C, am bevorzugtesten von 25 bis 35 °C, durchgeführt.
Beispiele geeigneter Amine für das vorliegende Verfahren sind z.B. im Abschnitt , Weitere gebildete Glutamylverbindungen',auf S.23, Beispiel 4, aufgelistet.
Die Glutamatkonzentration ist bevorzugt 1 bis 100 mM, weiter bevorzugt 10-30 mM. Geeignete Substratkonzentrationen für das Amin sind beispielszweise 1- 200 mM, vorzugsweise 10-100 mM.
In einer bevorzugten Ausfülirungsform ist das Amin ein primäres Amin der allgemeinen Formel III. Beispiele sind Benzylamin, Ethylamin, Isopropylamin, Butylamin, Isobutylamin, Hydroxy-Butylamin. Die oben gegebenen Definitionen und bevorzugten Ausfül rungsformen von R1 gelten entsprechend.
Nach einer üblichen Umsetzungszeit von 1 bis 20 h können γ-Glutamylisopropylamide der allgemeinen Formel I oder II durch übliche Aufarbeitungsmethoden wie beispielsweise durch isoelelctrische Fokussierung oder Extraktion isoliert werden.
Bevorzugt wird das Verfahren mit ganzen Zellen durchgeführt, analog der Herstellung von L-Alaninol. Die dort gemachten Angaben zur Verfahrensdmchführung gelten entsprechend. Bevorzugt wird dazu bei der Aufzucht der Biomasse bzw. bei Verwendung wachsender Zellen eines erfindungsgemässen Mikroorganismus als Zusatz zum Biotransformationsmedium neben dem als Substratmolekül der Formel III oder IV dienendem Amin eine weiteres, primäres niedermolekulares C1-C4 Alkyl- Amin, beispielsweise Methyl-,Ethyl-, Isopropylamin, als Enzyminduktor hinzugegeben. Am bevorzugtesten handelt es sich um IPA, zweckmässig in einer Konzentration von 1-20 mM, vorzugsweise in einer Konzentration von 1-10 mM. Diese Ausführungsform ist besonders vorteilhaft bei Verwendung eines erfindungsgemässen Mikroorganismus der Gattung Pseudomonas, insbesondere des Stammes KIE-171-BIII (DSM 13177).
In einer weiteren bevorzugten Ausführungsform wird das erfindungsgemässe Verfahren zur Herstellung von Theanin ausgehend von Ethylamin genutzt. Das Verfahren kann mit erfindungsgemässen Milcroorganismen, gereinigtem Polypeptid oder Enzymextrakten wie oben genannt durchgeführt werden. Bevorzugt werden zur Theaninherstellung wachsende Zellen bei niedriger Zelldichte, zweckmässig bei einer Zelldichte von OD650=5 bis 20, am bevorzugtesten bei einer Zelldichte von ungefälir OD650=10, verwandt. In einer besonders bevorzugten Ausfuhrungsform beträgt die Konzentration von Ethylamin 5-60 mM und wird während der Biotransformation, durch wiederholte oder kontinuierliche Zugabe von Ethylamin, ungefähr konstant gehalten. Theanin im Sinne der vorliegenden Anmeldung ist N-5-Ethyl-L-glutamin entsprechend der Formel I.
Beispiele:
Beispiel 1
Aufklärung des ipu-operons
Klonierung des ipu-operons
Gene, die für Proteine kodieren, welche am IPA- Abbau beteiligt sind, konnten dank der Transposon Mutanten BI (Pseudomonas sp. KIE171-BI (DSM 11629)) und BII (Pseudomonas sp. KIE171-BII) ermittelt werden. Die Herstellung von Transposon Mutanten wurde in WO 99/07199 (Beispiel 2b) für die Herstellung von Mutante BI beschrieben. Die Mutante BI kann L-Alaninol aus IPA herstellen baut dieses aber bei einer Biotransformation mit hohen OD650 (>5) wieder ab.
Entsprechend diesem Verfahren wurde ebenfalls die Mutante BII hergestellt. Die Mutante BII wuchs weder auf IPA noch auf L-Alaninol, konnte aber weiterhin L- Alanin, L-Lactat und L- Alanin, und L-Glutamat verwerten. Die Mutante BII stellt kein L-Alaninol her.
Die durch die Transposon Insertion unterbrochenen Gene der Mutanten BI und BII koimten durch die 'transposon rescue' Technik kloniert, und deren Sequenz konnte ermittelt werden. Dazu wurden die DNA-Fragmente, die das inaktivierte Gen enthielten, in einen geeigneten Vektor kloniert. Die 'upstream' und 'downstream' Regionen dieser Insertion wurden sequenziert. DNA-Sequenzen und die abgeleiteten Proteinsequenzen wurden mit dem GCG Software Paket analysiert. Anhand dieser Ergebnisse wurde ein neuer Abbauweg von IPA postuliert.
Konstruktion der Plasmide Die durch die Transposon Insertion unterbrochenen Gene der Mutanten BI und BII wurden entsprechend der 'transposon rescue' Technik kloniert. Es wurden je 25 ml Übernacht- Kulturen der Mutanten BI und BII in Mimmalmedium (MM) (WO 99/07199, Beispiel 1, Tabelle 1) in Anwesenheit von L-Glutamat (20 mM) und mit Kanamycin (Km) (50 μg/ml) in einer 50 ml Flasche angezogen. Davon wurden 10 ml bei 4000 g während 10 Minuten zentrifugiert. Nach Entfernen des Überstandes wurde die genomische DNA aus dem Sediment isoliert. Die präzipitierte genomische DNA wurde in 100 μl sterilem Wasser gelöst. Anschließend wurde die genomische DNA der Mutante BI und BII sowie der Vektor pBluescript KS+ sowie der Vektor pPDl 11 mit den Restriktionsenzymen Xhol,
Sacl, oder Notl und Xhol entsprechend dem üblichen Protokoll verdaut.
Die DNA-Fragmente der Mutanten BI und BII wurden in die Vektoren pBluescript oder pPDl 11 ligiert. Die Ligationsmischung wurde für die Transformation von kompetenten
E.coli DH5α oder kompetenten E.coli XL-I Blue Zellen verwendet.
Die transformierten Zellen wurden auf LB-Platten mit Km (50 μg/ml) oder Ampicillin
(Amp) (200 μg/ml) bzw. Chloramphenicol (Cm) (30 μg/ml) ausplattiert und bei 37 °C 16 h inkubiert. Die daraufiiin erhaltenen Kolonien wurden auf das Vorhandensein der Plasmide pME4254, pME4255, pME4256, pME4257, pME4259 und pME4267 (Tabelle 1) getestet.
Tabelle 1
Plasmid Genotyp oder Beschreibung
pME4254 8 kb Clal Insert von BI in pBluescript II KS+
pME4255 5,2-kb Notl-Xhol Insert von BI in pBluescript II KS+ pME4256 3 leb Sfil Δ Insert in pME4255
pME4257 18-23 leb, Notl-Xhol Insert von BII in pBluescript II KS+ pME4259 19-23 leb, Xhol Insert von BII in pBluescript II KS+ pME4267 8 leb Sacl Insert von BII in pPDl ll pME4755 ipuABCDEFG Operon unter Kontrolle T7 Promotor
Um die Länge der zu sequenzierenden DNA zu verkürzen, wurde das DNA-Fragment des Kanamycin-Resistenz-Gens, welches durch das Mini-Tn5 eingebracht worden war, durch Verdauung mit dem Enzym Sfil und anschliessende Ligation im Plasmid pME4255 entfernt. Es entstand das Plasmid pME4256. Um die ipuABCDEFG-Gene als ein Operon unter die Kontrolle des T7-RNA-Polymerase- Promotors zu stellen, wurden sie in pBBRIMCS (Kovach et al., ibd.) kloniert. Zunächst wurde ein 3,8 leb Xhol-Sacl Fragment aus pME4259 in die Xhol-Sacl Restriktionsstellen von pBluescript II KS(+) kloniert. The 3 leb Bgl ll-Sacl Transposon-Insertion in ipuC, die dieses Plasmid noch enthielt, wurde durch das 0.95 kb Bglll-Sacl Fragment der nativen ipuC Sequenz ersetzt; das so entstandene Plasmid umfasst ipuB und ipuC. Aus diesem Vektor wurde ein 1.6 leb Xhol-Pvull Fragment ausgeschnitten und zusammen mit einem weitere ipu-Gons umfassendem 4.4 kb PvwII-Pstl Fragment enthalten in pME4257 in pBBRl-MCS, der zuvor mit Xhol-Pstl linearisiert worden war, kloniert. Das so entstandene intermediäre Plasmid umfasste die Gene ipuBCDEFG. Um ipuA ohne den Promotor hinzuzufügen, wurde ein Xbal Schnittstelle unmittelbar upstream des ipuA-Gvos mit PCR und den Primern GCCTTCTAGAATTCTTGTAGG und CACCCAGCCTAATCGTGTCG erzeugt. Das PCR Fragment wurde iXXbal und Xhol verdaut und in pBBRIMCS kloniert. Die Abwesenheit einer durch die PCR erzeugten unbeabsichtigten Mutation in der ipuA-Sequenz wurde durch Sequenzierung bestätigt. Schliesslich wurde das 11.6 leb Plasmid pME4755 durch Umklonieren des 0.9 kb Xbal- Xhol ipuA -Fragmentes in das intermediäre Plasmid, das mit Xbal-Xhol linearisiert worden war, erzeugt.
Sequenzierung
Die Sequenzierung wurde durch die Firma Microsynth durchgeführt. Die DNA Sequenzen wurden doppelsträngig nach der 'dideoxy chain termination method' nach Sanger et al., Proc. Natl. Acad. Sei. USA, 74, 1977, 5463 - 5467, ermittelt. Zum Sequenzieren wurden die Plasmide pME4254, pME4256, pME4259, pME4267 und pME4275 verwendet.
Analyse der DNA und Proteinsequenz
Die Analyse von DNA-Sequenzen und von Protein-Sequenzen wurde mit der 'Genetics Computer Group Package Version 9' durchgeführt. Die Ergebnisse sind in Tabelle 2 aufgeführt. Anhand dieser Resultate wird der Abbauweg von IPA, wie in Figur 1 beschrieben, postuliert. Tabelle 2
Figure imgf000022_0001
Beispiel 2
Herstellung der Mutante BIII (Pseudomonas sp. KIE171-BIII (DSM 13177))
Das Plasmid pME4259 wurde mit dem Restriktionsenzym Smal verdaut und die Fragmente durch Agarose-Gel-Elelctrop orese aufgetrennt. Das 7 kb Fragment wurde isoliert und gereinigt. Anschliessend fand ein zweiter Verdau des 7 leb Fragments mit Saä statt und eine erneute Auftrennung der DNA-Fragmente. Das 2.7 leb Sall/Smal Fragment wurde isoliert und gereinigt und in den ebenfalls Sall/Smal verdauten 'low copy' Vektor pPDl 11 kloniert. Das neu entstandene Plasmid pME4268 enthält das Gen ipuH als 2.7 kb Insert. Die Unterbrechung des ipuH-Gems fand durch Insertion eines Gentamycin-Resistenz- Genes statt. Dazu wurde pME4268 mit dem Restriktionsenzym BαmHl verdaut und die 5'- überhängende Restriktionsenden wurden durch das Klenow-Fragment der DNA- Polymerase I in einer 'fill-in'-Reaktion unter Zusatz der vier Desoxynulcleotide in glatte Enden umgewandelt. Das Gentamycin-Resistenz-Gen wurde aus dem Plasmid pUCGM durch Verdauung mit Smαl als 855bp langes Fragment mit glatten Enden erhalten. Das Gentamycin-Resistenz-Gen wurde dann in das lineare pME4268 ligiert, so dass das SαlVSmαl Insert eine Länge von 3.55 kb aufweist. Das neu entstandene Plasmid ist pME4269. Nach Sαl /Smαl Verdauung des Plasmids pME4269 wurde das 3.55 kb Fragment mit dem inaktiven ipuHv'α. den ebenfalls mit Sαll/Smαl verdauten Vektor pEXTCIS umlcloniert. Plasmid pEXTCIS kann in Pseudomonαden nicht replizieren. Das neu entstandene Plasmid pME4270 trägt die Resistenzgene für Gm und Tetracyclin (Tc). Das Plasmid pME4270 wurde in E.coli S17-λpir nach der CaCl2-Methode transformiert. S17-λpir sind E.coli Zellen die für die Konjugation mit der Mutante BI geeignet sind.
E.coli S17-λpir, welches das Plasmid pME4270 mit dem Gentamycin- und Tetracyclin- Resistenz-Gen enthält, wurde mit der Mutante BI konjugiert. Dabei wurde das Vorgehen, wie in WO 99/07199, Beispiel 2b beschrieben, gewählt. Unterschiede dazu sind: E.coli S17-λpir wurde in Anwesenheit der Antibiotika Gm (25 μg/ml) und Tc (35 μg/ml) auf LB bei 37°C aufgezogen. Die Mutante BI wurde in 25 ml MM mit L-Glutamat (20 mM) und Km (50 μg/ml) bei 30 °C aufgezogen. 300 μl der Zellsuspension wurden direkt auf MM- Platten mit L-Glutamat (20 mM) und Gm (25 μg/ml) ausplatiert und bei 30°C inkubiert. Die daraufhin erhaltenen Kolonien wurden dann auf MM-Platten mit Tc (35 μg/ml) auf Wachstum getestet. Bei den Kolonien die in Gegenwart beider Antibiotika wachsen konnten, fand ein erfolgreicher erstes 'crossover' des Plasmids pME4270 in die chromosomale DNA der Mutante BI statt. Eine dieser Kolonien wurde auf MM-Flüssigkultur mit L-Glutamat (20 mM) und den
Antibiotika Gm(25 μg/ml), Tc (35 μg/ml) und Km (50 μg/ml) über Nacht bei 30°C bei 150 rpm aufgezogen. Davon wurden je 300 μl auf einer frischen LB-Platte mit Saccharose (5%) ausplatiert und bei 30°C über Nacht inkubiert. Die daraufhin erhaltenen Kolonien wurden auf Wachstum auf MM-Platten mit L-Glutamat (20 mM) und Tc (35 μg/ml) getestet. Die Mutante BIII (Pseudomonas sp. KIE171-BIII, Stamm DSM 13177) die aus diesem Vorgehen entstanden ist, hat den Phänotyp auf MM-Platten mit L-Glutamat (20 mM) und Gm (25 μg/ml) oder Km (50 μg/ml) wachsen zu können aber nicht mit Tc (35 μg/ml). Bei Ihr hat ein zweites 'crossover' stattgefunden. Dabei hat sie das ins Chromosom integrierte Plasmid mit dem aktiven ipuH Gen deletiert. Dies ermöglicht Saccharose zu tolerieren. Die Mutante BIII besitzt nur noch das durch Insertion der Gm-Resistenz Kassette inaktivierte ipuHGen.
Beispiel 3
Biotransformation von IPA zu L-Alaninol mit der Mutante BIII
Für die Biotransformation von IPA zu L-Alaninol benützte man eine 25 ml Übernacht- Vorkultur der Mutante BIII (Stamm DSM 13177). Diese wurde auf MM-Medium mit L- Glutamat (20 mM) angezogen und zum Animpfen einer Kultur von 250 ml in einer 11 Flasche des selben Mediums benützt. Nach Kultivierung von BIII bis zum Beginn der exponentiellen Phase (OD650 von 0.3 bis 0.6) wurde IPA (10 mM) zugegeben. Nach
Erreichen einer OD650 von 1-1.3 wurde die Kultur bei 4000 rpm 15 min. zentrifugiert und das Sediment zweimal mit der halben Menge an Kulturmedium ohne C-Quelle gewaschen. Anschliessend konnten die Zellen im gewünschten Volumen MM-Medium mit L-Glutamat (25 mM) aufgenommen werden, so dass 3 ml konzentrierter Zellsuspension (OD650~50) erhalten wurden. Die Kultur wurde bei 4°C 16 Stunden gelagert. Nach Zugabe von IPA (20, 50 bzw. 100 mM) schüttelte man diese Kultur mit 150 rpm bei 30 °C. Die Entnahme der Proben fand zu verschiedenen Zeitpunkten (1 h, 3 h, 5 h, 7 h, 23 h und 58 h) statt. Mit den drei Anfangskonzentrationen von IPA (20, 50 bzw. 100 mM) wurde nach 58 h der Biotransformation eine L-Alaninol Endkonzentration von 8, 14.5 bzw. 19 mM erreicht. Dies entspricht einer molaren Ausbeute von 40, 29 bzw. 19 %. Es fand kein Abbau von L- Alaninol mehr statt. Der Verlauf der Biotransformation von BIII bei einer Anfangs- konzentration von 20 mM ist, verglichen mit der Biotransformation von BI, in Figur 12 dargestellt.
Beispiel 4
Herstellung von Glutamylisopropylamiden
Klonierung des ipuC Gens:
Es wurden 25 ml einer Übernacht-Kultur von Pseudomonas sp. KLEI 71 (DSM 12360) in MM (WO 99/07199, Beispiel l.Tabellel) in Anwesenheit von IPA (20 mM) bei 30 °C in einer 50 ml Flasche angezogen. Davon wurden 10 ml bei 4000 g während 10 Minuten zentrifugiert. Nach Entfernen des Überstandes wurde die genomische DNA aus dem Sediment isoliert. Die präzipitierte genomische DNA wurde in 20 μl sterilem Wasser gelöst und durch Messung der Absorption bei 260 nm quantifiziert. Das ipuC Gen wurde mittels PCR aus der genomischen DNA von Pseudomonas sp. KLEI 71 (DSM 12360) amplifiziert. Dafür wurden 2 ng/μl genomischer DNA, 0.6 μM der Primer 5'-AACAGGTGATACATATGAGCGAAG-3' sowie 5'-TTTGAAGCTTAGGATCTGGGCG-3', 0.2 mM dNTP, 1.75 mM MgCl2, Pfu Puffer und 0.015 U/μl Pfu DNA Polymerase in einem Endvolumen von 50 μl verwendet. Das 1.4 kb große PCR Produkt wurde gereinigt und danach mit den Enzymen Ndel und Hindlll verdaut und nochmals gereinigt. Das verdaute 1.4 leb PCR Produkt wurde in den Vektor pET28a(+) (Novagen), welcher ebenfalls mit den Enzymen Ndel und Hindlll verdaut worden war, ligiert. Das neu entstandene Plasmid wurde pME4275 benannt und in kompetente Zellen von E.coli BL21(DE3) nach der CaCl2-Methode transformiert. Analog wurde das verdaute 1,4 kb PCR-Produkt in den Vektor pET24a(+) (Novagen) ligiert, was Plasmid ρME4277 ergab. Plasmid pME4275 enthält das Gen ipuC angrenzend an eine DNA-Sequenz, welche für sechs Histidine kodiert. Diese Fusion fand durch die Klonierung von ipuC in den Vektor pET28a(+) statt. Die somit neu entstandene DNA-Sequenz kodiert für das Polypeptid Tag- γ-Glutamylamid-Synthetase. Das Protein Tag-γ-Glutamylamid-Synthetase wurde dann mit Chelat Affinitäts Chromatorgaphie mit 'His*Bind Resin' gereinigt. Dabei interagiert das N- terminale Histidinende des rekombinanten Proteins mit dem Trägermaterial 'His»Bind Resin'.
Überexpression und Reinigung von Tag-γ-Glutamylamid-Synthetase (His6-ipuCp)
Für die Herstellung von reiner Tag-γ-Glutamylamid-Synthetase benützte man eine Übernacht-Vorkultur von E.coli BL21(DE3) (DSM 13180) enthaltend pME4275. Diese wurde auf 5 ml LB-Medium bei 37°C mit Km (50μg/ml) angezogen und zum Animpfen einer Kultur von 100 ml in einer 500 ml Flasche des selben Mediums benützt. Nach Erreichen einer OD650 von 1.0 wurde die Kultur mit 0.4 mM IPTG bei 30° während 3 Stunden induziert. Anschließend wurde die Kultur für 5 Minuten auf Eis gekühlt und danach bei 4 °C und 5000g zentrifugiert. Das Sediment wurde mit kaltem 50 mM Tris- HC1 mit 2 mM EDTA bei pH 8.0 gewaschen und nochmals unter den selben Bedingungen zentrifugiert. Das Sediment konnte dann bei -20 °C gelagert werden.
Um den Zellextrakt herzustellen, wurde das gefrorene Sediment in 4 ml Bindungs-Puffer (enthaltend 10 μg/ml DNase I) resuspendiert. Der Zellextrakt wurde nach zwei Passagen durch die French-Press bei 5.5 Mpa und anschließender Zentrifugation bei 39000g während 20 Minuten erhalten. Der Überstand wurde durch ein 0.2 μm Filter filtriert. Tag-γ- Glutamylamid-Synthetase wurde bei 4°C mit „His#Bind Resin" gereinigt. Die für die Chromatographie verwendeten Lösungen waren folgende:
Bindungs-Puffer: 5 mM Imidazol, 0.5 mM NaCl, 20 mM Tris-HCl, pH 7.9
Elutions-Puffer: 1 M Imidazol, 0.5 M NaCl, 20 mM Tris-HCl pH 7.9
NiSO4-Lösung: 50 mM NiSO4 Wasch-Puffer: 60 mM Imidazol, 0.5 M NaCl, 20 mM Tris-HCl, pH 7.9
Die Reinigung von Tag-γ-Glutamylamid-Synthetase wurde auf folgende Weise durchgeführt. 2.5 ml Trägermaterial 'His»Bind Resin' wurden in eine Kolonne eingeführt und zuerst mit 7.5 ml sterilem Wasser gewaschen. Anschließend wurden 12.5 ml NiSO4- Lösung durchlaufen gelassen und erneut mit 7.5 ml sterilem Wasser gewaschen. 7.5 ml Bindungs-Puffer wurden benützt um die Durchflussrate auf 25 ml pro Stunde einzustellen. Der Zellextrakt wurde auf die Kolonne aufgeladen und diese wurde mit 25 ml Bindungs- Puffer sowie 15 ml Wasch-Puffer gewaschen. Die gebundene Tag-γ-Glutamylamid- Synthetase konnte anschliessend mit 15 ml Elutions-Puffer eluiert und bei 4°C gelagert werden. Das Molekulargewicht des Monomers der Tag-γ-Glutamylamid-Synthetase beträgt 52478 Da.
Biotransformation von Ethylamin und L-Glutamat zu Theanin mit dem Protein Tag- γ-Glutamylamid-Synthetase His6-IpuCp)
Für die Biotransformation von Ethylamin mit L-Glutamat zu Theanin wurden 10 mM ATP (pH 7), 10 mM IPA (pH 7), 10 mM L-Glutamat (pH 7), 50 mM MgCl2 (pH 7), 50 mM Imidazol (pH 7), 3.5 mM NaCl, 0.1 mM Tris-HCl (pH 7) und 57 ng/μl Tag-γ- Glutamylamid-Synthetase in einem Endvolumen von 400 μl miteinander vermengt und bei 25 C reagieren gelassen. Nach einem Zeitraum von fünf Stunden war 8 mM Theanin entstanden. Dies entspricht einer molaren Ausbeute von 80%.
Nachweis von Theanin mittels HPLC
Theanin, welches durch die Biotransformation des Enzyms IpuC hergestellt worden war, konnte mittels HPLC nachgewiesen und durch Cochromatographie mit der reinen Verbindung in seiner Identität bestätigt werden. Dafür wurde die Probe vorgängig der HPLC mit Phenylisothiocyanat derivatisiert. Zur Analyse wurde eine Nucleosil-C18 'reverse-phase' Kolonne bei 25 °C verwendet. Die Detektion erfolgte bei 254 nm.
Laufmittel: Lösung A 10 mM Kaliumphosphat Puffer (pH 6.5)
Lösung B 10 mM Kaliumphosphat Puffer (pH 6.5) mit 80% (v/v) Methanol
Figure imgf000028_0001
Retentionszeiten: Theanin 13.3 min
L-Glutamat 8.2 min
Ethylamin 16.0 min
Nachweis von Theanin mittels GC-MS Theanin, konnte ebenfalls mittels GC-MS nachgewiesen werden. Das
Fragmentierungsmuster war identisch mit demjenigen der Referenzverbindung.
Weitere gebildete γ-Glutamylamidverbindungen
Anstelle von Ethylamin konnten weitere Verbindungen eingesetzt werden: Methylamin, Ethanolamin, Glycinmethylester, Propylamin, l-Amino-2-propanol, 3-Amino-l-propanol, Isopropylamin, L-Alaninol, D-Alaninol, 2-Amino-l,3-propandiol, Butylamin, 4- Aminobutyratmethylester, Isobutylamin, sec-Butylamin, S-2-Amino-l-butanol, R-2- Amino-1-butanol, tert-Butylamin und Pentylamin. Die Umsetzung dieser Verbindungen wurde analog der oben beschriebenen Biotransformation von Ethylamin und L-Glutamat zu Theamin bei pH 7 durchgeführt (die Umsetzung vom Pentylamin wurde bei pH 8 durchgeführt) und mittels Messung des entstanden anorganischen Phosphats analysiert (s. Fig. 12). Mit HPLC konnte die Entstehung neuer Peaks der möglichen γ-Glutamylamidverbindungen beobachtet werden.
Beispiel 5 Biotransformation von Ethylamin zu Theanin mit der Mutante BIII
Die Biotransformation wurde im wesentlichen analog zum Beispiel 3 mit dem Stamm KLEI 71 -Bill (DSM 13177) durchgeführt, mit dem Unterschied, dass wachsenden Zellen bei niedriger Zelldichte (OD650=10) verwandt wurden. In Gegenwart von 20 mM Glutamate und 5 mM Isopropylamin, wurden mit 50 mM Ethylamin als Substrat nach 24 h 31.8 mM Theanin (Ausbeute 63%) erhalten. Die Produktausbeute wurde mit HPLC bestimmt. Eine niedrige Zelldichte erwies sich als wesentlich für die Erzielung hoher Volumenausbeuten.
Die Umsetzung konnte auch mit ruhenden Zellen bei gleicher Zelldichte durchgeführt werden, wenn auch mit schlechteren Ausbeuten (max. 45% bei 20 mM Ethylamin als Ausgangsmaterial und 18 h Reaktionszeit). Höhere Ausgangskonzentrationen an Ethylamine sowie höhere Zelldichten verringerten die Volumenausbeute.
Beispiel 6
Biotransformation von IPA zu L-Alaninol mit einem Expressionsvektor in E.coli.
Mit dem Expressionsvektor pME4755 transformierte E.coli BL21 (DE3) wurden bis zur stationären Phase bei 37°C und 180 rpm in 25 ml Medium umfassend 64 mM Kalium phosphate (pH 7.2), 33 mM NH4C12, 1 mM MgCl2, 10 mM Glucose, 0.5 μM (NH4)2SO4, 1% trace elements (Thurnheer et al., J. Gen. Microbiol. 132: 1215 ff, 1986) and 20 μg/ml chloramphenicol. Die Vorkultur wurde benutzt, um 100 ml Medium mit einer OD650 von 0.15 zu inoculieren und dann auf 0.4 aufwachsen zu lassen. Nach Induktion mit 400 μM IPTG (thio-beta-D-1-Galactosid) wurde die Kultur bis zu einer OD650 von 0.8 weiter angezogen. Die Zellen wurden durch Zentrifugation bei 6000 g/10 min. bei
Raumtemperatur geerntet und zu einer Zellsuspension mit OD650 50 in Medium ohne Chloramphenicol aufgenommen. Nach Lagerung für 14 h bei 4°C wurden 20 mM IPA (Isopropylamin) zugegeben und die Kultur bei 30°C geschüttelt (150 rpm). Produkt- und Eduktkonzentrationen wurden mit HPLC bestimmt. Nach 22 h wurde das Edukt IPA mit 13 mM, das Produkt L-Alaninol mit 4 mM bestimmt . Nach total 58 h waren diese Werte nur geringfügig verändert. L-Alaninol wurde durch den E.coli Expressionsstamm nicht abgebaut.
BUDAPEST TREATY ON THE INTERNATIONAL
RECOGNIΉON OF THE DEPOSIT OF MICROORGA SMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNATIONAL FORM
Lonza AG
Abt . Biotechnologie
CH-3930 Visp
RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the
INTERNATIONAL DEPOSITARY AUTHORITY identified at the hottom of this page
I. IDENTIFICATION OF THE MICROORGANISM
Identification reference given by the DEPOSITOR: Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: XL1 -Blue/p E4259
DSM 13417
II. SCIENΗFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION
The mioroorganism identified under I. above was accompanied by:
(X ) a scientific description
(X ) a proposed taxonomic designation
(Mark with a cross where applicable).
III. RECEIPT AND ACCEPTANCE
This International Depositary Authority accepts the microorganism identified under I. above, which was received by it on 2 000 - 03 - 31 (Date of the original deposit)1.
IV. RECEIPT OF REQUEST FOR CONVERSION
The microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).
V. INTERNATIONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signature(s) of person(s) having the power to represent the MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official(s):
Address: Mascheroder Weg lb D-38124 Brauπsohweig
Date: 2000 - 04 - 03
1 Where Rule 6.4 (d) applies, such date is the date on which the Status of international depositary authority was acquired. Form DSMZ-BF/4 (sole page) 0196 BUDAPEST TREATY ON THE INTERNATIONAL
RECOGNΠTON OF THE DEPOSIT OF MICROORGANISMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNATIONAL FORM
Lonza AG
Abt . Biotechnologie
CH-3930 Visp
VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
Figure imgf000032_0001
1 Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).
2 In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.
3 Mark with a cross the βpplicable box.
4 Fill in if the Information has been requested and if the results of the test were negative.
Form DSMZ-BP/9 (sole page) 0196 BUDAPEST TREATY ON TUE INTERNATIONAL
RECOGNITION OF THE DEPOSIT OF MICROORGANISMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNAΗONAL FORM
Lonza AG
Abt . Biotechnologie
CH-3930 Visp
VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNAΗONAL DEPOSITARY AUTHORITY identified at the bottom of this page
I. DEPOSITOR II. IDENTIFICATION OF THE MICROORGANISM
Name: Lo za AG Accession number given by the
Abt . Biotechnologie INTERNATIONAL DEPOSITARY AUTHORITY:
Address: DSM 13389
CH- 3930 Visp
Date of the deposit or the transfer': 2000 - 03 - 24
III. VIABILITY STATEMENT
The viability of the microorganism identified under II above was tested on 2000 - 03 - 24 2 .
On that date, the said microorganism was
(X)' viable
( )' no longer viable
IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERFORMED4
V. INTERNATIONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signature(s) of person(s) having the power to represent the
MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized officiaI(s):
Address: Mascheroder Weg lb D-38124 Braunschweig
Date: 2000 - 03 - 27
' Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer). 2 In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.
5 Mark with a cross the applicable box.
4 Fill in if the information has been requested and if the results of the test were negative.
Form DSMZ-BP/9 (sole page) 0196 BUDAPEST TREATY ON THE INTERNAΗONAL
RECOGNITION OF THE DEPOSIT OF MICROORGANISMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNATIONAL FORM
Lonza AG
Ab . Biotechnologie
CH-3930 Visp
RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the
INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottoiit of this page
I. IDENΗFICATION OF THE MICROORGANISM
Identification reference given by the DEPOSITOR: Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY: KIE171-BI I
DSM 13389
II. SCIENΗFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION
The microorganism identified under I. above was accompanied by:
(X ) a scientifie description
(X ) a proposed taxonomic designation
(Mark with a cross where applicable).
πi. RECEIPT AND ACCEPTANCE
This International Depositary Authority accepts the microorganism identified under I. above, which was received by it on 2000 - 03 - 24 (Date of the original deposit)1.
IV. RECEIPT OF REQUEST FOR CONVERSION
The mioroorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).
V. INTERNAΗONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signature(s) of person(s) having the power to represent the MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or.of authorized official(s):
Address: Mascheroder Weg lb D-38124 Braunschweig
Date: 2000 - 03 -27
1 Where Rule 6.4 (d) applies, such date is the date on which the Status of international depositary authority was acquired. Form DSMZ-BP/4 (sole page) 0196 BUDAPEST TREATY ON THE INTERNAΗONAL
RECOGNIΗON OF THE DEPOSIT OF MICROORGANISMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNATIONAL FORM
Lonza AG
Abt. Biotechnologie
CH-3930 Visp
VIABILITY STATEMENT issucd pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
I. DEPOSITOR II. IDENΗFICATION OF THE MICROORGANISM
Name: Lonza AG Accession numbcr given by the
Abt . Biotechnologie INTERNATIONAL DEPOSITARY AUTHORITY:
Address: DSM 13388
CH-3930 Visp
Date of the deposit or the transfer': 2000 - 03 -24
III. VIABILITY STATEMENT
The viability of the microorganism identified under II above was tested on 2000 - 03 - 24 ' , On that date, the said microorganism was
(X)' viable
( )' no longer viable
IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERFORMED4
V. INTERNATIONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signature(s) of person(s) having the power to represent the
MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official(s):
Address: Mascheroder Weg lb D-38124 Braunschweig
Date: 2 000 - 03 - 27
1 Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).
2 In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.
3 Mark with a cross the applicable box.
4 Fill in if the information has been requested and if the results of the test were negative.
Form DSMZ-BP/9 (sole page) 0196 BUDAPEST TREATY ON THE INTERNATIONAL
RECOGNITION OF THE DEPOSIT OF MICROORGANISMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNATIONAL FORM
Lonza AG
Abt . Biotechnologie
CH-3930 Visp
RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the
INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
L IDENΗFICATION OF THE MICROORGANISM
Identification reference given by the DEPOSITOR: Accession number given by the INTERNAΗONAL DEPOSITARY AUTHORITY: XLl -Blue/pME4755
DSM 13388
II. SCIENTIFIC DESCRIPTTON AND/OR PROPOSED TAXONO C DESIGNATION
The mioroorganism identified under I. above was accompanied by:
(X ) a scientific description
(X ) a proposed taxonomic designation
(Mark with a cross where applicable).
III. RECEIPT AND ACCEPTANCE
This International Depositary Authority accepts the microorganism identified under I. above, which was received by it on 2000 - 03 - 24 (Date of the original deposit)1.
rV. RECEIPT OF REQUEST FOR CONVERSION
The microorganism identified under I above was received by this International Depositaiy Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).
V. INTERNAΗONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signature(s) of person(s) having the power to represent the MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or,of authorized official(s):
Address: Mascheroder Weg lb D-38124 Braunschweig
Date: 2000 - 03 -27
1 Where Rule 6.4 (d) applies, such date is the date on which the Status of international depositary authority was aoquired. Form DSMZ-BP/4 (sole page) 0196 BUDAPEST TREATY ON THE INTERNATIONAL
RECOGNITION OF THE DEPOSIT OF MICROORGANISMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNATIONAL FORM
Lonza AG
Abt. Biotechnologie
CH-3930 Visp
RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
I. IDENTIFICATION OF THE MICROORGANISM
Identification reference given by the DEPOSITOR: Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY. BL21/pME4275
DSM 13180
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION
The microorganism identified under I. above was accompanied by:
(X ) a scientific description
(X ) a proposed taxonomic designation
(Mark with a cross where applicable).
III. RECEIPT AND ACCEPTANCE
This International Depositary Authority accepts the microorganism identified under I. above, which was received b it on 199 9 - 12 - 03 (Date of the original deposit)'.
IV. RECEIPT OF REQUEST FOR CONVERSION
The microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).
V. INTERNATIONAL DEPOSITARY AUTHORITY
Name' DSMZ-DEUTSCHE SAMMLUNG VON Sιgnature(s) of person(s) having the power to represent the MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official(s):
Address: Mascheroder Weg lb D-38124 Braunschweig
Date: 1999 - 12 - 06
1 Where Rule 6.4 (d) applies, such date is the date on which the Status of international depositary authority was acquired. Form DSMZ-BP/4 (sole page) 0196 BUDAPEST TREATY ON THE INTERNATIONAL
RECOGNITION OF THE DEPOSIT OF MICROORGANISMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNATIONAL FORM
Lonza AG
Abt. Biotechnologie
CH-3930 Visp
VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
Figure imgf000038_0001
' Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).
2 In the cεses referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.
3 Mark with a cross the applicable box. Fill in if the information has been requested and if the results of the test were negative.
Form DSMZ-BP/9 (sole page) 0196 BUDAPEST TREATY ON THE INTERNATIONAL
RECOGNIΗON OF THE DEPOSIT OF MICROORGANISMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNAΗONAL FORM
Lonza AG
Abt. Biotechnologie
CH-3 30 Visp
RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNAΗONAL DEPOSITARY AUTHORITY identified at the bottom of this page
Figure imgf000039_0001
Form DSMZ-BP/4 (sole page) 0196 BUDAPEST TREATY ON THE INTERNATIONAL
RECOGNIΗON OF THE DEPOSIT OF MTCROORGANISMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNATIONAL FORM
Lonza AG
Ab . Biotechnologie
CH-3930 Visp
VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
I. DEPOSITOR π. IDENTIFICATION OF THE MICROORGANISM
Name: Lonza AG Accession number given by the
Abt . Biotechnologie INTERNATIONAL DEPOSITARY AUTHORITY:
Address: DSM 13179
CH-3930 Visp
Date of the deposit or the transfer1: 1999 - 12 - 03
III. VIABILITY STATEMENT
The viability of the microorganism identified under II above was tested on 1999 - 12 - 03 2 . On that date, the said microorganism was
(X)3 viable
( )3 no longer viable
IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERFORMED4
V. INTERNATIONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signature(s) of person(s) having the power to represent the MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official(s):
Address: Mascheroder Weg lb D-38124 Braunschweig
Date: 199 9 - 12 - 06
Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).
In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.
Mark with a cross the applicable box.
Fill in if the Information has been requested and if the results of the test were negative.
Form DSMZ-BP/9 (sole page) 0196 BUDAPEST TREATY ON THE INTERNATIONAL
RECOGNΠTON OF HE DEPOSIT OF MICROOROANISMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNATIONAL FORM
Lonza AG
Abt. Biotechnologie
CH-3930 Visp
VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
Figure imgf000041_0001
' Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer). 2 In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.
1 Mark with a cross the applicable box.
4 Fill in if the infoimation has been requested and if the results of the test were negative.
Form DSMZ-BP/9 (sole page) 0196 BUDAPEST TREATY ON THE INTERNAΗONAL
RECOGNΓΠON OF THE DEPOSIT OF MICROORGANISMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNATIONAL FORM
Lonza AG
Abt. Biotechnologie
CH-3930 Visp
RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Ruie 7.1 by the
INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
I. IDENTIFICATION OF THE MICROORGANISM
Identification reference given by the DEPOSITOR. Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY.
DH5α/pME4255
DSM 13 178
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION
The microorganism identified under I above was accompamed by
(X ) a scientifio description
(X ) a proposed taxonomic designation
(Mark with a cross where applicable).
III. RECEIPT AND ACCEPTANCE
This International Depositary Authority accepts the microorganism identified under I. above, which was received by it on 1999 - 12 - 03 (Date of the original deposit)'
IV. RECEIPT OF REQUEST FOR CONVERSION
The microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion)
V INTERNATIONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signature(s) of person(s) having the power to represent the
MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authonzed official(s):
Address Mascheroder Weg lb D-38124 Braunschweig
Date- 1999 - 12 - 06
1 Where Rule 64 (d) applies, such date is the date on which the Status of international depositary authority was acquired Form DSMZ-BP/4 (sole page) 0196 BUDAPEST TREATY ON THE INTERNAΗONAL
RECOGNITION OF THE DEPOSIT OF MICROORGANISMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNATIONAL FORM
Lonza AG
Abt. Biotechnologie
CH-3930 Visp
RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT issued pursuant to Rule 7.1 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
I. IDENTIFICATION OF THE MICROORGANISM
Identification reference given by the DEPOSITOR: Accession numbcr given by the INTERNATIONAL DEPOSITARY AUTHORITY:
KIE171-BIII
DSM 13177
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONO C DESIGNATION
The microorganism identified under I. above was accompanied by:
(X ) a scientific description
(X ) a proposed taxonomic designation
(Mark with a cross where applicable).
III. RECEIPT AND ACCEPTANCE
This International Depositaiy Authority accepts the microorganism identified under I. above, which was received by it on 1999 - 12 - 03 (Date of the original deposit)1.
IV. RECEIPT OF REQUEST FOR CONVERSION
The microorganism identified under I above was received by this International Depositary Authority on (date of original deposit) and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on (date of receipt of request for conversion).
V. INTERNATIONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signature(s) of person(s) having the power to represeπt the MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositaiy Authority or of authorized official(s):
Address: Mascheroder Weg lb D-3812 Braunschweig
Date: 1999 - 12 - 06
1 Where Rule 6.4 (d) applies, such date is the date on which the Status of international depositary authority was acquired. Form DSMZ-BP/4 (sole page) 0196 BUDAPEST TREATY ON THE INTERNAΗONAL
RECOGNITION OF THE DEPOSIT OF MICROORGANISMS
FOR THE PURPOSES OF PATENT PROCEDURE
INTERNATIONAL FORM
Lonza AG
Abt. Biotechnologie
CH-3930 Visp
VIABILITY STATEMENT issued pursuant to Rule 10.2 by the INTERNATIONAL DEPOSITARY AUTHORITY identified at the bottom of this page
I. DEPOSITOR II IDENTIFICATION OF THE MICROORGANISM
Name: Lo za AG Accession number given by the
Abt. Biotechnologie INTERNATIONAL DEPOSITARY AUTHORITY:
Address: DSM 13177
CH- 3930 Visp
Date of the deposit or the transfer': 1999- 12 - 03
III. VIABILITY STATEMENT
The viability of the microorganism identified under II above was tested on 1999 - 12 - 03 On that date, the said microorganism was
(X)3 viable
( f no longer viable
IV. CONDITIONS UNDER WHICH THE VIABILITY TEST HAS BEEN PERFORMED4
V. INTERNATIONAL DEPOSITARY AUTHORITY
Name: DSMZ-DEUTSCHE SAMMLUNG VON Signature(s) of person(s) having the power to represent the MIKROORGANISMEN UND ZELLKULTUREN GmbH International Depositary Authority or of authorized official(s):
Address: Mascheroder Weg lb D-38124 Braunschweig
Date: 1999 - 12 - 06
Indicate the date of original deposit or, where a new deposit or a transfer has been made, the most recent relevant date (date of the new deposit or date of the transfer).
In the cases referred to in Rule 10.2(a) (ii) and (iii), refer to the most recent viability test.
Mark with a cross the applicable box.
Fill in if the information has been requested and if the results of the test were negative.
Form DSMZ-BP/9 (sole page) 0196 Applicant's or agent's f" International appl: inNo. referencenumber LP. 1886
T DICATIONS RELATI G TO ADEPOSITED MICROORGANISM
(PCT Rule 136»)
A. The indications made below relate to the microorganism referred to in the description on age § , liπe 32
B. DDENTIIilCATIONOFDEPOSrr Further deposits are identified on an additional sheet
Name of depositary Institution
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ)
Address of depositary Institution (including postal code and country) Mascheroderweg 1b 38124 Braunschweig Deutschland
Date of deposit AccessionNumber
31.03.2000 (31. März 2000) DSM 13417
C. ADDITIONAL INDICATIONS (leave blank if not applicable) This informationiscontinuedon an additional sheet | |
Zugang zu dem hinterlegtem biologischem Material soll nur im Rahmen der Expertenlösungen, wie vorgesehen in R. 28(4) EPUe bzw. Regulation 3.25 (3) Australian Patents Act, d.h. durch Herausgabe einer Probe an einen Sachverständigen hergestellt werden.
Diese Regelung gilt, vorbehaltlich der genauen Bestimmungen des EPUe bzw. Patent Act, auch nach Zurücknahme oder Zurückweisung der Patentanmeldung oder aber bis zu dem Tag, an dem der Hinweis auf die Erteilung des jeweiligen Patentes bekannt gemacht wird.
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (ifthe indications are not for all designated States)
EP, AU
E. SEPARATE FURNISHING OF INDICATIONS (leaveblankifnotapplicable)
The indications listed below will be submitted to the International Bureau later (specißi the general nahire ofthe indications e.g., "Accession Nϊimber of Deposit")
For reeeiving Office use only ForlnternationalBureauuse only öj This sheet was received with the international application | | This sheetwas receivedby the International Bureau on:
Authorizedo ficer Authorizedofficer
•O. G rge
Form PC17RO/134 (July 1992) 45 PfflEPfH / 0 3 6 5 1
Applicant's or'agent's : International appl >nNo. referencenumber LP. 1886
INDICATIONS RELATING TO ADEPOSITED MICROORGANISM
(PCT Rule bis)
A. The indications made below relate to the microorganism ref erred to in the description onpage 10 , line 32
B. TJ)ENTIFICATIONOFDEPOSΓΓ Further deposits are identified on an additional sheet
Name of depositary Institution
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ)
Address of depositary institution (including postal code and country) Mascheroderweg 1 b 38124 Braunschweig Deutschland
Date of deposit AccessionNumber
24.03.2000 (24. März 2000) DSM 13388
C ADDITIONAL INDICATIONS (leave blank if not applicable) This Information iscontinuedon an additional sheet _]
Zugang zu dem hinterlegtem biologischem Material soll nur im Rahmen der Expertenlösungen, wie vorgesehen in R. 28(4) EPUe bzw. Regulation 3.25 (3) Australian Patents Act, d.h. durch Herausgabe einer Probe an einen Sachverständigen hergestellt werden.
Diese Regelung gilt, vorbehaltlich der genauen Bestimmungen des EPUe bzw. Patent Act, auch nach Zurücknahme oder Zurückweisung der Patentanmeldung oder aber bis zu dem Tag, an dem der Hinweis auf die Erteilung des jeweiligen Patentes bekannt gemacht wird.
D. DESIGNATED STATES FOR WHICH INDIC TIONS ARE MADE (ifthe indications are not for all designated States)
EP, AU
E. SEPARATE FURNISHING OF INDICATIONS (leaveblankif not applicable)
The indications listed below will be submitted to the International Bureau later (specify the general nature ofthe indications e.g., "Accession Number of Deposit")
For receiving Office use only For International Bureau use only
This sheet was received with the international application ti I | This sheetwasreceivedbythelnternationalBureauon:
Authorized ofßcer Authorized officer
Form PCT/RO/134 (July 1992)
Figure imgf000047_0001
INDICATIONS RE ATTNG TO ADEPOS1TED MICROORGANISM
(PCT Rule 136«)
A. The indications made below relate to the microorganism referred to in the description onpage 9 ,liπe 32
B. JBE TIFICATIONOFDEPOSΓΓ Further deposits are identified on an additional sheet ^ζ
Name of depositary institution
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ)
Address of depositary institution (including postal code and country) Mascheroderweg 1 b 38124 Braunschweig Deutschland
Date of deposit AccessionNumber
31.03.2000 (31. März 2000) DSM 13180
C. ADDITIONAL INDICATIONS (leave blank if not applicable) This Information iscontinuedon an additional sheet | |
Zugang zu dem hinterlegtem biologischem Material soll nur im Rahmen der Expertenlösungen, wie vorgesehen in R. 28(4) EPUe bzw. Regulation 3.25 (3) Australian Patents Act, d.h. durch Herausgabe einer Probe an einen Sachverständigen hergestellt werden.
Diese Regelung gilt, vorbehaltlich der genauen Bestimmungen des EPUe bzw. Patent Act, auch nach Zurücknahme oder Zurückweisung der Patentanmeldung oder aber bis zu dem Tag, an dem der Hinweis auf die Erteilung des jeweiligen Patentes bekannt gemacht wird.
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (ifthe indications are notfor all designated States)
EP, AU
E. SEPARATE FURNISHING OF INDICATIONS (leaveblankif not applicable)
The indications listed below will be submitted to the International Bureau later (specdy the general nature ofthe indications e.g., "Accession Number of Deposit")
For receiving Office use only ForlnternationalBureauuse only d Thissheetwas received with the international application | I ThissheetwasreoeivedbythelnternationalBureauon:
Authorizedofficer Authorized ofScer
O. «Sorge
Form PCT/RO/134 ( y 1992)
Figure imgf000048_0001
INDICATIONS RELATING TO ADEPOSITED MICROORGANISM
(PCT Rule 13te)
A. The indications made below relate to the microorganism referred to in the descπption onpage 14 ,line 29
B. IDENTIFICATIONOFDEPOSΓΓ Further deposits are identified on an additional sheet
Name of depositaiy institution
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ)
Address of depositary Institution (including postal code and country) Mascheroderweg 1 b 38124 Braunschweig Deutschland
Date of deposit AccessionNumber
03.12.1999 (03. Dezember 1999) DSM 13180
C. ADDITIONAL INDICATIONS (leaveblankif not applicable) This information iscontinuedon an additional sheet [_j
Zugang zu dem hinterlegten! biologischem Material soll nur im Rahmen der Expertenlόsungen, wie vorgesehen in R. 28(4) EPUe bzw. Regulation 3.25 (3) Australian Patents Act, d.h. durch Herausgabe einer Probe an einen Sachverständigen hergestellt werden
Diese Regelung gilt, vorbehaltlich der genauen Bestimmungen des EPUe bzw. Patent Act, auch nach Zurücknahme oder Zurückweisung der Patentanmeldung oder aber bis zu dem Tag, an dem der Hinweis auf die Erteilung des jeweiligen Patentes bekannt gemacht wird.
D. DESIGNATΕD STATES FOR WHICH INDICATIONS ARE MADE
Figure imgf000048_0002
EP, AU
E. SEPARATE FURNISHING OF INDICATIONS (leaveblankif not applicable)
The indications listed below will be submitted to the International Bureau later (speajythegeneialnatureofthewώcationseg, "Accession Number of Deposit")
Forreceiving Office use only For International Bureauuse only
85 This sheet was received with the international apphcation | ] This sheet was recervedby the International Bureau on
Authorized officer Authorized officer
Ay Taorgθ
Form PCT RO/134 (July 1992) PCDEPO 1 / 01 6 5 1
Applicant's or ägeht's International appl; No. referencenumber LP. 1886
INDICATIONS RELATING TO ADEPOSITED MICROORGANISM
(PCT Rule 13bis)
Figure imgf000049_0001
Applicant's or agetrt's F International appli riNo. PCT EP0 1 / f) fi reference number L.P. 1886
INDICATIONS RELATING TO ADEPOSITED MICROORGANISM
(PCT Rule ttbis)
A. The indications made below relate to the microorganism referred to in the descπption onpage ? ,lme ?8
B. π ENTTFlCATIONOFDEPOSrr Further deposits are identified on an additional sheet \)ζ\
Name of depositary Institution
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ)
Address of depositary Institution (including postal code and country) Mascheroderweg 1b 38124 Braunschweig Deutschland
Date of deposit AccessionNumber
03.12.1999 (03. Dezember 1999) DSM 13178
C. ADDITIONAL INDICATIONS (leaveblankif not applicable) This Information iscontinuedon an additional sheet | |
Zugang zu dem hinterlegtem biologischem Material soll nur im Rahmen der Expertenlosungen, wie vorgesehen in R. 28(4) EPUe bzw. Regulation 3.25 (3) Australian Patents Act, d.h. durch Herausgabe einer Probe an einen Sachverstandigen hergestellt werden.
Diese Regelung gilt, vorbehaltlich der genauen Bestimmungen des EPUe bzw. Patent Act, auch nach Zurücknahme oder Zurückweisung der Patentanmeldung oder aber bis zu dem Tag, an dem der Hinweis auf die Erteilung des jeweiligen Patentes bekannt gemacht wird.
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (ifthe indications are not for all designated States)
EP, AU
E. SEPARATE FURNISHING OF INDICATIONS (leave blankif not applicable)
The indications listed below will be submitted to the International Bureau later (speay ie general nature ofthe indications eg., "Accession Number of Deposit")
For receivmg Office use only For International Bureau use only
\ f\ This sheet was received with the international apphcation | l This sheet was received by the International Bureau on-
Authorized officer <s Authorized officer
Gorge
Form PCT/RO/134 ( y 1992)
Figure imgf000051_0001
INDICATIONS RE AT1NG TO ADEPOSITED MICROORGANISM
(PCT Rule 13όzs)
A. The indications made below relate to the microorganism ref erred to in the descnpbon on age ,lme
B. IDENTIFICATIONOFDEPOSΓΓ Further deposits are identified on an additional sheet \)ζ\
Name of depositary Institution
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ)
Address of depositary Institution (including postal code and country) Mascheroderweg 1 b 38124 Braunschweig I Deutschland
Date of deposit AccessionNumber
24.03.2000 (24. März 2000) DSM 13177
C. ADDITIONAL INDICATIONS (leave blank ifnot applicable) This Information iscontinuedon an additional sheet j
Zugang zu dem hinterlegtem biologischem Material soll nur im Rahmen der Expertenlösungen, wie vorgesehen in R. 28(4) EPUe bzw. Regulation 3.25 (3) Australian Patents Act, d.h. durch Herausgabe einer Probe an einen Sachverständigen hergestellt werden
Diese Regelung gilt, vorbehaltlich der genauen Bestimmungen des EPUe bzw. Patent Act, auch nach Zurücknahme oder Zurückweisung der Patentanmeldung oder aber bis zu dem Tag, an dem der Hinweis auf die Erteilung des jeweiligen Patentes bekannt gemacht wird.
D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (ifthe indications ai e not for all designated States)
EP, AU
E. SEPARATE FURNISHING OF INDICATIONS (leaveblankif not applicable)
The indications hsted below will be submitted to the International Bureau later (specißi ήe gaieral natwe ofthe indications eg, "Accession Number of Deposit")
Forreceiving Office use only For International Bureau use only
This sheet was received with the international app cation | | This sheet was received by the International Bureau on- tf
Authorized officer Authoπzed officer
O. Gorge
Form PCT RO/134 (July 1992)

Claims

Patentansprüche
1. Mikroorganismen, die befähigt sind, Isopropylamin in L-Alaninol zu überführen, dadurch gekennzeichnet, dass die Gene ipuH und ipul, die für Enzyme codieren, welche an der Verstoffwechselung von L-Alaninol beteiligt sind, inalctiviert sind, sowie Enzymextrakte aus diesen Mikroorganismen.
2. Mikroorganismen nach Anspruch 1 der Gattung Pseudomonas.
3. Mikroorganismen nach Anspruch 2 der Spezies Pseudomonas sp. entsprechend der Spezies des Stammes Pseudomonas sp. KIE171-BIII wie hinterlegt unter DSM 13177 oder deren funktionell äquivalente Mutanten.
4. DNA-Fragment umfassend eines oder mehrere Gene ausgewählt aus der Gruppe umfassend die Gene ipuA, ipuB, ipuC, ipuD, ipuE, ipuF, ipuG, ipuH und ipul, wobei diese Gene für Enzyme codieren, welche an der Verstoffwechselung von Isopropylamin zu L-Alaninol und/oder der Verstoffwechselung von L-Alaninol beteiligt sind.
5. DNA-Fragment nach Anspruch 4, dadurch gekennzeichnet, dass die Gene aus
Milcroorganismen der Gattung Pseudomonas isoliert sind.
6. DNA-Fragment nach Anspruch 5, dadurch gekennzeichnet, dass die Gene aus Mikroorganismen der Spezies Pseudomonas sp. KIE171 (DSM 12360), Pseudomonas sp. KIE171-BI (DSM 11629) und/oder Pseudomonas sp. KIE171-
BII (DSM 13389) isoliert sind.
7. DNA-Fragment nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Gene ipuA, ipuB, ipuC, ipuD, ipuE, IpuF und ipuG in der Reihenfolge ipuA, ipuB, ipuC, ipuD, ipuE, ipuF, ipuG angeordnet sind und als eine einzige
Transkriptionseinheit vorliegen.
8. DNA-Fragment nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass die auf dem Fragment vorhandenen Gene ipuA, ipuB, ipuC, ipuD, ipuE, IpuF, ipuG und/oder ipuH durch die in Fig. 3 dargestellte Nukleotid-Sequenz sowie deren funktionell aequivalente genetische Varianten umfasst sind.
9. DNA-Fragment nach emem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass das auf dem Fragment vorhandene codierende Gen ipul durch die in SEQ ID No. 1 dargestellte Nukleotid-Sequenz sowie deren funktionell aequivalente genetische Varianten umfasst ist.
10. Vektor enthaltend ein DNA-Fragment nach einem der Ansprüche 4 bis 9, vorzugsweise ein zur Expression der vom DNA-Fragment umfassten ipu-Gene befähigter Vektor.
11. Vektor mit der Bezeichnung pME4255, wie hinterlegt in E. coli DH5α (DSM
13178), Vektor mit der Bezeichnung ρME4267 (DSM 13179) wie hinterlegt in E. coli XLl-Blue und Vektor mit der Bezeichnung pME4259.
12. Vektor mit der Bezeichnung pME4275 wie liinterlegt in E. coli BL21 (DE3) (DSM 13180).
13. Rekombinanter Mikroorganismus, enthaltend einen Vektor nach einem der Ansprüche 10 bis 12.
14. Rekombinanter Mikroorganismus nach Anspruch 13 der Gattung Escherichia.
15. Rekombinanter Mikroorganismus nach Anspruch 14 der Spezies Escherichia coli.
16. Verfahren zur Herstellung von L-Alaninol, dadurch gekennzeichnet, dass Isopropylamin mittels eines Mikroorganismus wie definiert in den Ansprüchen
Ansprüche 1 bis 3 oder wie definiert in Anspruch 10 bis 15 oder Enzymextrakten aus diesen Mikroorganismen zu L-Alariinol umgesetzt wird. Polypeptid mit γ-Glutamylamid-Synthetase- Aktivität, das befähigt ist, γ- Glutamylamide der allgemeinen Formel
Figure imgf000054_0001
oder der allgemeinen Formel
Figure imgf000054_0002
worin R1 eine gegebenenfalls substituierte Alkylgruppe, eine gegebenenfalls substituierte Aralkylgruppe, eine gegebenenfalls substituierte Alkoxyalkylgruppe oder eine gegebenenfalls substituierte Arylgruppe, R2 Wasserstoff oder eine gegebenenfalls substituierte Alkylgruppe und n eins bis fünf bedeuten, zu synthetisieren.
Polypeptid nach Anspruch 17 dadurch gekennzeichnet, dass es folgende
Eigenschaften besitzt: a) Substratspezifität für Methylamin, Ethylamin, Ethanolamin, Glycinmethylester, Propylamin, 1-Amino- 2-propanol, 3-Amino-l-propanol, Isopropylamin, L-Alaninol, D-Alaninol, 2-
Amino-l,3-propandiol, Butylamin, 4-Aminobutyratmethylester, Isobutylamin, sec-Butylamin, S-2-Amino-l-butanol, R-2-Amino-l-butanol, tert-Butylamin und/oder Pentylamin. b) Molekulargewicht des Monomers: 52478 Da
19. Polypeptid nach Anspruch 17 oder 18 erhältlich aus Mikroorganismen der Gattung
Pseudomonas, vorzugsweise das Translationsprodulct der von SEQ ID No.6 dargestellten ipuC-Gensequenz sowie dazu mindestens 95% homologe, fiinktionell aequivalente Proteinsequenzen.
20. Verfahren zur Herstellung von γ-Glutamylamiden der allgemeinen Formel I oder II dadurch gekennzeichnet, dass L-Glutamat mit einem Amin der allgemeinen Formel
Figure imgf000055_0001
oder der allgemeinen Formel
Figure imgf000055_0002
worin R1 und R2 die genannte Bedeutung haben, mittels eines Mikroorganismus nach den Ansprüchen 1 bis 3 oder mittels eines das ipuC-Genprodukt exprimierenden Mikroorganismus nach den Ansprüchen 10 bis 12, mittels Enzymextralcten aus diesen Mikroorganismen oder mittels eines Polypeptides nach den Ansprüchen 17 bis 19, zum Produkt der allgemeinen Formel I oder II umgesetzt wird.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass die Umsetzung bei einem pH von 4 bis 9 und einer Temperatur von 10 bis 50 °C durchgeführt wird.
22. Verfahren nach Anspruch 20 oder 21, dadurch gekennzeichnet, dass die
Umsetzung mittels eines Polypeptides bewirkt wird und das Polypeptid ein getagtes Protein ist.
23. Verfahren nach Anspruch 20 oder 21 , dadurch gekennzeichnet, dass die
Umsetzung mittels Mikroorganismen der Gattung Pseudomonas wie definiert in Anspruch 1 vorgenommen wird, vorzugsweise mit Mikroorganismen des Stammes KIE 171-BIII wie hinterlegt unter DSM 13177.
24. Verfahren nach Anspruch 20 oder 21, dadurch gekennzeichnet, dass die
Umsetzung mit L-Glutamat und Ethylamin durchgeführt wird und das Produlct Theanin ist.
PCT/EP2001/003651 2000-03-31 2001-03-30 Verfahren zur biotechnologischen herstellung von l-alaninol WO2001073038A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU46521/01A AU4652101A (en) 2000-03-31 2001-04-03 Method for the biotechnological production of l-alaninol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00106888.1 2000-03-31
EP00106888 2000-03-31

Publications (2)

Publication Number Publication Date
WO2001073038A2 true WO2001073038A2 (de) 2001-10-04
WO2001073038A3 WO2001073038A3 (de) 2002-10-24

Family

ID=8168302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/003651 WO2001073038A2 (de) 2000-03-31 2001-03-30 Verfahren zur biotechnologischen herstellung von l-alaninol

Country Status (2)

Country Link
AU (1) AU4652101A (de)
WO (1) WO2001073038A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344182B2 (en) 2007-12-20 2013-01-01 Basf Se Process for the preparation of (S)-2-amino-1-propanol (L-alaninol) from (S)-1-methoxy-2-propylamine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652291A1 (de) * 1992-07-07 1995-05-10 Fuso Pharmaceutical Industries Ltd. Sonde zur diagnose einer ansteckenden krankheit
WO1999007199A2 (de) * 1997-08-08 1999-02-18 Lonza Ag Verfahren zur herstellung von l-alaninol und gamma-glutamylisopropylamid und mikroorganismusstamm des genus pseudomonas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0652291A1 (de) * 1992-07-07 1995-05-10 Fuso Pharmaceutical Industries Ltd. Sonde zur diagnose einer ansteckenden krankheit
WO1999007199A2 (de) * 1997-08-08 1999-02-18 Lonza Ag Verfahren zur herstellung von l-alaninol und gamma-glutamylisopropylamid und mikroorganismusstamm des genus pseudomonas

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
DATABASE EM_HTG [Online] EMBL; ID AC004396, AC AC004396, 16. März 1998 (1998-03-16) ROE B A: "Pseudomonas sp. chromosome genomic clone cos3b, WORKING DRAFT SEQUENCE, 2 unordered pieces" XP002189827 *
DATABASE EM_PRO [Online] EMBL; ID AB039965, AC AB039965, 14. März 2000 (2000-03-14) KURUSU Y: "Pseudomonas putida icd, mutS, fdxA genes for isocitrate dehydrogenase, mismatch repair system component MutS, ferredoxin, partial and complete cds" XP002189826 *
DATABASE EM_PRO [Online] EMBL; ID AF073359, AC AF073359, 4. Januar 1999 (1999-01-04) KIM S ET AL.: "Pseudomonas sp. DJ77 4-hydroxy-2-ketovalerate aldolase (phnJ) gene, partial cds; and 4-oxalocrotonate decarboxylase (phnK), 4-oxalocrotonate isomerase (phnL), plant-type 2Fe-2S ferredoxin (phnM), and benzaldehyde dehydrogenase (phnN) genes, complete cds" XP002189828 *
DATABASE SWALL [Online] EMBL; Entry name CPXA_PSEPU, 21. Juli 1986 (1986-07-21) UNGER B P ET AL.: "Cytochrome P450-cam (EC 1.14.15.1) (camphor 5-monooxygenase) (P450cam)" XP002189830 *
DATABASE SWALL [Online] EMBL; Entry name O33455, 1. Januar 1998 (1998-01-01) EATON R W: "p-Cumic aldehyde dehydrogenase" XP002189831 *
DATABASE SWALL [Online] EMBL; Entry name Q00360, 1. November 1996 (1996-11-01) MADHUSUDHAN K T ET AL.: "Hypothetical protein in bkdA1 5' region (fragment)" XP002189829 *
IURESCIA S ET AL.: "Identification and sequencing of beta-myrcene catabolism genes from Pseudomonas sp. strain M1." APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Bd. 65, Nr. 7, Juli 1999 (1999-07), Seiten 2871-2876, XP002180238 ISSN: 0099-2240 *
JONES A ET AL.: "Microbial metabolism of amino alcohols - 1-aminopropan-2-ol and ethanolamine metabolism via propionaldehyde and acetaldehyde in a Pseudomonas sp." BIOCHEMICAL JOURNAL, Bd. 134, Nr. 1, 1973, Seiten 167-182, XP001030697 ISSN: 0264-6021 *
PEROZICH J ET AL.: "Relationships within the aldehyde dehydrogenase extended family." PROTEIN SCIENCE, Bd. 8, Nr. 1, Januar 1999 (1999-01), Seiten 137-146, XP001030674 ISSN: 0961-8368 *
TACHIKI T ET AL.: "gamma-Glutamyl transfer reactions by glutaminase from Pseudomonas nitroreducens IFO 12694 and their application for the syntheses of theanine and gamma-glutamylmethylamide." BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, Bd. 62, Nr. 7, Juli 1998 (1998-07), Seiten 1279-1283, XP002180239 ISSN: 0916-8451 *
TACHIKI T ET AL.: "Production of gamma-glutamylethylamide and gamma-glutamylmethylamide by coupling of baker's yeast preparations and bacterial glutamine synthetase" JOURNAL OF GENERAL AND APPLIED MICROBIOLOGY, Bd. 32, Nr. 6, Dezember 1986 (1986-12), Seiten 545-548, XP001030636 ISSN: 0022-1260 *
TACHIKI T ET AL: "Purification and some properties of glutaminase from Pseudomonas nitroreducens IFO 12694." BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, Bd. 60, Nr. 7, 1996, Seiten 1160-1164, XP002189825 ISSN: 0916-8451 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344182B2 (en) 2007-12-20 2013-01-01 Basf Se Process for the preparation of (S)-2-amino-1-propanol (L-alaninol) from (S)-1-methoxy-2-propylamine

Also Published As

Publication number Publication date
AU4652101A (en) 2001-10-08
WO2001073038A3 (de) 2002-10-24

Similar Documents

Publication Publication Date Title
DE60025976T2 (de) DNA die für eine mutierte Isopropylmalatsynthase kodiert, Microorganismus, das L-Leucin produziert, und Verfahren zur Herstellung von L-Leucin
DE60030988T2 (de) Verfahren zur Herstellung Von L-Aminosäuren durch Erhöhung des zellulären NADPH
DE60301031T2 (de) Verfahren zur Herstellung von L-Aminosäuren
DE60033151T2 (de) L-aminosäure herstellendes bakterium und verfahren zur herstellung von l-aminosäure
DE69929264T2 (de) Methode zur Herstellung von L-Serin mittels Fermentation
DE112007002880T5 (de) Verfahren zur Herstellung von Hydroxytyrosol
EP1067192A1 (de) L-Lysin produzierende coryneforme Bakterien und Verfahren zur Herstellung von L-Lysin
EP1445310B1 (de) Verfahren zur fermentativen Herstellung von L-Methionin
DE69735192T2 (de) Mikrobische herstellung von substanzen aus dem aromatischen metabolismus / i
DE60313866T2 (de) Polypeptide mit alpha-h alpha amino acid amide racemase aktivitität und nukleinsäuren kodierend dafür
DE69327170T2 (de) Verbesserte indol-biosynthese
DE19818541C2 (de) Mikrobielle Herstellung von Substanzen aus dem aromatischen Stoffwechsel / III
DE10331291A1 (de) Varianten der 3-Phosphoglyceratdehydrogenase mit reduzierter Hemmung durch L-Serin und dafür codierende Gene
DE102013209274A1 (de) Mikroorganismus und Verfahren zur fermentativen Überproduktion von Gamma-Glutamylcystein und Derivaten dieses Dipeptids
WO2010075960A2 (de) Verfahren zur herstellung von riboflavin
EP1924694A1 (de) Verfahren zur produktion von aminosäuren mit mikroorganismen
DE112019000467T5 (de) Rekombinanter Mikroorganismus, Verfahren zu dessen Herstellung und seine Anwendung bei der Herstellung von Coenzym Q10
WO1998001568A2 (de) Verfahren zur herstellung von (s)- oder (r)-3,3,3-trifluor-2-hydroxy-2-methylpropionsaüre
DE10258127A1 (de) Verfahen zur fermentativen Herstellung von R-α-Liponsäure
WO2001073038A2 (de) Verfahren zur biotechnologischen herstellung von l-alaninol
EP1244776B1 (de) Tetrahydropyrimidin-dioxygenase-gen, dadurch kodierte polypeptide und verfahren zur deren herstellung
EP1592785A2 (de) Verbessertes verfahren zur herstellung von vitamin b12
WO2000026355A2 (de) Konstruktion von produktionsstämmen für die herstellung von substituierten phenolen durch gezielte inaktivierungen von genen des eugenol- und ferulasäure-katabolismus
DE69938427T2 (de) An der herstellung von homo-glutaminsäure beteiligtes gen und dessen verwendung
KR100576341B1 (ko) 5&#39;-뉴클레오티다제를 코딩하는 유전자가 불활성화된 코리네박테리움 속 미생물 및 이를 이용한 5&#39;-이노신산의 제조방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP