WO2001064337A1 - Method of preparation of catalyst for use in removing co in hydrogen containing gas - Google Patents

Method of preparation of catalyst for use in removing co in hydrogen containing gas Download PDF

Info

Publication number
WO2001064337A1
WO2001064337A1 PCT/JP2001/001689 JP0101689W WO0164337A1 WO 2001064337 A1 WO2001064337 A1 WO 2001064337A1 JP 0101689 W JP0101689 W JP 0101689W WO 0164337 A1 WO0164337 A1 WO 0164337A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrogen
containing gas
alumina
reaction
Prior art date
Application number
PCT/JP2001/001689
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Umeki
Kozo Takatsu
Tetsuya Fukunaga
Satoshi Nakai
Original Assignee
Idemitsu Kosan Co., Ltd.
Osawa, Mitsuru
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000058558A external-priority patent/JP4478280B2/en
Priority claimed from JP2000058559A external-priority patent/JP4478281B2/en
Priority claimed from JP2000152483A external-priority patent/JP5164297B2/en
Priority claimed from JP2000263199A external-priority patent/JP4620230B2/en
Application filed by Idemitsu Kosan Co., Ltd., Osawa, Mitsuru filed Critical Idemitsu Kosan Co., Ltd.
Priority to AU2001236090A priority Critical patent/AU2001236090A1/en
Publication of WO2001064337A1 publication Critical patent/WO2001064337A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing a C 0 removal catalyst in a hydrogen-containing gas, a C 0 removal catalyst produced by the production method, and a method for removing C 0 in a hydrogen-containing gas using the catalyst.
  • the hydrogen-containing gas is useful as a hydrogen-containing gas for a fuel cell.
  • pure hydrogen is preferable as a fuel for such a fuel cell using a platinum-based electrode catalyst, but from a practical point of view, it is inexpensive and has excellent storage properties, or a complete public supply system is already available.
  • Various fuels eg, methane or natural gas (LNG), propane, butane, etc., petroleum gas (pG), naphtha, gasoline, kerosene, gas oil, etc.
  • Alcohol-based fuels such as tanol
  • a CO oxidation catalyst is conventionally, P t / alumina, P t / S N_ ⁇ 2, P t / C, C o T i Oz, Popukarai bets, which catalyst system which P dZ alumina are known
  • these catalysts do not have sufficient resistance to humidity, have a low and narrow reaction temperature range, and have low selectivity for CO oxidation, so that a large amount of hydrogen such as reformed gas is present.
  • a large amount of hydrogen must be sacrificed by oxidation in order to reduce the small amount of C ⁇ to a low concentration of less than 10 ppm by volume.
  • Japanese Patent Application Laid-Open No. 5-2017702 discloses a method for selectively removing C 0 from a hydrogen-enriched C 0 -containing gas and supplying the same to a fuel cell system for automobiles. A manufacturing method is disclosed.
  • the catalyst a carrier in which Rh or Ru is supported on an alumina carrier is used, but there is a problem that it can be applied only to a low C0 concentration, and there is also room for improvement in the catalytic activity at low temperatures. Is left.
  • ruthenium used for a ruthenium-based catalyst is a noble metal
  • a catalyst used as a supporting component is generally expensive. Therefore, in order to make a catalyst containing a ruthenium component industrially useful, it is necessary to reduce not only the catalyst performance but also the catalyst price.
  • the above-mentioned conventional ruthenium-based catalyst has a practically insufficient catalytic activity per supported ruthenium, and a more active catalyst has been desired.
  • the present invention has been made in view of the above, and provides a catalyst for removing C0 from a hydrogen-containing gas having improved catalytic activity, a method for producing the same, and a method for removing C0 from a hydrogen-containing gas using the catalyst. It is for this purpose.
  • the present inventors have assiduously studied and found that the object of the present invention can be effectively achieved by supporting ruthenium on a refractory inorganic oxide carrier, thereby completing the present invention.
  • the present invention uses a nitrate compound as a ruthenium compound, supports it on a refractory inorganic oxide carrier, dries it, reduces it without firing, and reduces
  • alumina having a pore distribution as a carrier
  • the ruthenium component is dispersed relatively uniformly in the carrier, but the ruthenium component that contributes to the reaction during the reaction is only the one existing near the outer surface of the carrier. And the ruthenium component present inside Did not contribute to the reaction, and found that ruthenium, which is an active component in the carrier, was distributed more on the outer surface side of the carrier. It was found that it could be used as a CO removal catalyst for its purpose. In addition, it has been found that by performing C0 removal treatment using the catalyst obtained by the above method, a hydrogen-containing gas suitably applicable to a fuel cell can be efficiently obtained.
  • the gist of the present invention resides in a method for producing a C0 removal catalyst in a hydrogen-containing gas in which ruthenium is supported on a refractory inorganic oxide carrier.
  • Ruthenium nitrate (a) is supported on a refractory inorganic oxide carrier, dried and reduced without firing, which is a catalyst for removing CO from hydrogen-containing gas. Production method,
  • a cross section of the catalyst is unidirectionally converted to ruthenium atoms using an electron probe microanalysis (EPMA) device.
  • EPMA electron probe microanalysis
  • the ruthenium nitrate (a) is supported on a refractory inorganic oxide carrier, dried, and calcined without firing. Removal catalyst.
  • FIG. 1 is a cross-sectional view of an example of the C ⁇ oxidation catalyst of the present invention, and a diagram showing the relationship between the distance in the width direction and the X-ray intensity.
  • the method for producing a catalyst for removing C ⁇ in a hydrogen-containing gas comprises supporting ruthenium on a refractory inorganic oxide carrier, and in particular, converting ruthenium nitrate (a) into a refractory inorganic oxide 'carrier. It is characterized in that it is reduced after being supported on a carrier and dried without firing, and is further characterized by using alumina or alumina-titania as a carrier, the carrier containing an active metal or a compound in a hydrogen-containing gas carrying a compound.
  • alumina having a maximum value of the pore distribution within a pore radius of 100 A or less. Characterized by
  • Examples of the refractory inorganic oxide carrier used in the present invention include a porous carrier made of alumina, titaure, silica, zirconia, or the like, or a material containing two or more of these. Among them, those composed of alumina and alumina-titaure are preferred. It is sufficient that the raw material of the alumina of the above carrier contains aluminum atoms. Examples of those usually used include aluminum nitrate, aluminum hydroxide, aluminum alkoxide, pseudo-boiling aluminum, ⁇ -alumina, and a-alumina. Pseudo-boehmite alumina, ⁇ -alumina, ⁇ -alumina, etc. can be made from aluminum nitrate, aluminum hydroxide, aluminum alkoxide, and the like.
  • the titania raw material of the above carrier may be any material containing a titan atom, but usually, titanium alkoxide, titan tetrachloride, amorphous titania powder, anata type titania powder, rutile Mold titer powder and the like.
  • Amorphous titania powder, anatase-type titania powder, rutile-type titania powder, and the like can be made from titanium alkoxide, titanium tetrachloride, and the like.
  • any material containing a silicon atom may be used, but silicon tetrachloride, sodium silicate, ethyl silicate, silica gel, silica sol, and the like can be used.
  • Silica gel can be made from silicon tetrachloride, sodium silicate, ethyl silicate, silica sol, and the like.
  • any material containing a zirconium atom may be used, but zirconium hydroxide, zirconium oxychloride, zirconium oxynitrate, zirconium nitrate, zirconium tetrachloride and zirconium powder can be used.
  • Zircoure powder is hydroxyl
  • the refractory inorganic oxide carrier which can be made of zirconium oxide, zirconium oxychloride, zirconium oxynitrate, zirconium nitrate, or zirconium tetrachloride, can be produced from the above-mentioned raw materials by a known method.
  • any method can be used for producing the alumina-titania carrier, as long as a carrier comprising both of them can be produced.
  • the method of adhering titania to the surface is suitably used.
  • a method of mixing titania and aluminum there is a method of mixing titania powder and alumina powder or pseudo-boehmite alumina with water, followed by molding, drying and firing. Extrusion may be usually used for molding, and at that time, an organic binder can be added to improve moldability.
  • a suitable carrier can also be obtained by mixing titania with an alumina binder. In this case, it is preferable that the mass ratio of the obtained chidair / alumina is 10/90 to 90/10.
  • the method of adhering titania to the alumina compact may be as follows. Add and disperse the titania powder and, if necessary, the organic binder and pseudo-boehmite alumina powder in the organic solvent. The alumina compact is immersed in this mixed liquid (usually in a slurry form), and the mixed liquid is sufficiently immersed. After the titania powder is adhered to the alumina compact, the alumina compact is taken out. What is necessary is just to dry and bake this alumina compact.
  • titanium alkoxide or titanium tetrachloride and an aluminum molded body are added to alcohol, and water is added to this solution to hydrolyze titanium alkoxide or titanium tetrachloride, and the aluminum molded body is formed on the aluminum molded body. Is dried and calcined. Is also good.
  • titania may be attached in such a manner that titania is supported on the alumina molded body. In the case of a method in which titania is adhered to an alumina molded body, the obtained titania / alumina mass ratio is 0.199.99 to 50/50, preferably 0.5 / 99.5 to 5. 0/50, more preferably 1/99 to 50/50.
  • the titania / alumina mass ratio is 0.1 / 99.99 to 90/10, preferably 0.5 / 99.95 to 90/10, and more preferably 199. 9 0/10.
  • alumina and titania used in the method for producing the alumina-titania carrier, the same materials as those described above are used.
  • the alumina used for the above-mentioned alumina or alumina-titania carrier preferably has a maximum pore distribution value with a pore radius of 100 or less.
  • alumina having a maximum value of the pore distribution at a location exceeding the pore radius of 100 A is used, the catalytic activity at low temperatures may be reduced. More preferably, alumina having a maximum value of the pore distribution at a pore radius of 60 or less may be used.
  • pseudo-boehmite alumina is used as a raw material for alumina, the carrier changes into low alumina during preparation (after calcination) of the support, and the pore distribution thereof is measured and determined.
  • the pore distribution mentioned above is determined by the N 2 adsorption method, BJH in (B arrett - - J oyner H a 1 enda) present invention is obtained by analyzing with method, the above carriers, the active metal compound
  • a compound may be supported by a ruthenium compound (a) or a ruthenium compound (a) and an alkali metal compound and / or alkaline earth metal. And the like metal compounds (b).
  • a catalyst preparation solution obtained by dissolving a salt in water, ethanol, or the like is used.
  • a ruthenium nitrate [eg, Ru (N 03) 3 ] is used in terms of catalytic activity.
  • the support treatment on the carrier may be performed by the usual impregnation method, coprecipitation method or competitive adsorption method using the catalyst preparation liquid.
  • the treatment conditions are not particularly limited, but usually, the carrier may be brought into contact with the catalyst preparation solution at room temperature to 90 ° C for 1 minute to 10 hours.
  • the ruthenium component is unevenly distributed on the outer surface side. I can do it.
  • the amount of the component (a) to be carried is not particularly limited, but is usually preferably from 0.05 to 10% by mass, more preferably from 0.3 to 3% by mass, as ruthenium metal relative to the carrier. is there. If the amount of the ruthenium is too small, the conversion activity of C0 may be insufficient.If the amount is too large, the conversion activity of C0 corresponding to the amount of ruthenium cannot be obtained, which is economically disadvantageous. In some cases.
  • the support After supporting the ruthenium compound on the support, the support is dried.
  • a drying method for example, natural drying, a rotary evaporator, a blow dryer may be used for 0.5 to 24 hours at 50 to 200 ° C.
  • it after drying, it can be calcined at 350 to 550 ° (: further at 380 to 550, for 2 to 6 hours, further 2 to 4 hours.
  • ruthenium nitrate is used as the compound, it must be subjected to reduction without firing.
  • alkali metal potassium, cesium, rubidium, sodium, and lithium are preferably used.
  • K 2 for example, K 2 ,,. Shed 16, KB r, ⁇ ⁇ ⁇ 0, KCN, ⁇ C 0 3, KC 1, ⁇ C 1 0 3, ⁇ C 1 0, KF, ⁇ ⁇ C 0, ⁇ ⁇ F, ⁇ ⁇ 2 ⁇ 0 4, ⁇ ⁇ 5 (P 0 4) 2, KH S_ ⁇ 4, KI, KI ⁇ 3, KI 0 4, K 4 I 0, ⁇ ⁇ , ⁇ ⁇ 0 2, ⁇ ⁇ 0, Kappa_ ⁇ _Ita, kappa [rho F 6 , ⁇ 3 ⁇
  • norium, calcium, magnesium, and strontium are preferably used.
  • B a salt 2 such as; C a B r 2, C a I 2, C a C l 2, C a (C 1 0 3 ) 2 , C a (IO
  • the component (b) may be supported by a usual impregnation method, a coprecipitation method, or a competitive adsorption method using the catalyst preparation liquid.
  • the treatment conditions are not particularly limited, but usually, the carrier may be brought into contact with the catalyst preparation solution at room temperature to 90 ° C. for 1 minute to 10 hours.
  • the amount of the component (b) to be carried is not particularly limited, but is generally preferably from 0.01 to 10% by mass as a metal relative to the carrier, and most preferably from 0.03 to 3% by mass. . If the amount is too small, the selective oxidation activity of CO may be insufficient, and if it is too large, the selective oxidation activity of CO will be insufficient and the amount of metal used will be unnecessarily excessive. The catalyst cost may increase.
  • the carrier After supporting the component (b) on the carrier, the carrier is dried.
  • a drying method for example, air drying, a rotary evaporator, or a blow dryer may be used. After drying, baking can be carried out usually at 350 to 550 ° C, further at 380 to 550 ° C, for 2 to 6 hours, and further for 2 to 4 hours.
  • the components (a) and (b) may be loaded separately, but they are loaded at the same time because they have higher catalytic activity and are economically advantageous. In the present invention, it is important that the powder is subjected to reduction without drying or firing, if necessary, after firing. In the case where the component (b) is first supported, the component (a) may be subjected to a supporting process after drying, and then, if necessary, a firing step may be performed after each drying.
  • the shape and size of the catalyst prepared in this way examples thereof include powder, spherical, granular, honeycomb, foam, fibrous, cloth, plate, and ring.
  • Various commonly used shapes and structures, such as shapes, can be used.
  • the catalyst itself may be formed by extrusion or the like, or a method of attaching the catalyst to a substrate such as a honeycomb ring may be used, and the method is not particularly limited.
  • '-The present invention also provides a CO oxidation catalyst comprising at least a ruthenium component supported on an inorganic refractory carrier, wherein a cross section of the catalyst is obtained by using an electron probe / microanalysis (EPMA) device.
  • EPMA electron probe / microanalysis
  • FIG. 1 shows a cross-sectional view of an example of the above catalyst and the relationship between the distance in the width direction and the X-ray intensity.
  • the carrier has a spherical or columnar shape. Therefore, r (distance from the center to the catalyst surface) in the present invention refers to the radius when the support is spherical, and refers to the radius of the cross section cut parallel to the bottom surface when the support is cylindrical.
  • Spherical and cylindrical shapes include not only strictly spherical and cylindrical shapes but also those which can be regarded as substantially spherical and cylindrical although some of the shapes are deformed.
  • the ruthenium distribution of the present invention can be achieved by preparing a catalyst in a carrier having a shape other than the spherical and cylindrical shapes according to the above-mentioned spherical and cylindrical shapes.
  • the diameter of the above-mentioned C0 oxidation catalyst or the diameter of the above-mentioned cross section is preferably from 1 to 1 Omm, and more preferably from 2 to 6 mm. If the diameter of the catalyst is smaller than the above range, the effect of supporting the outer surface is not sufficient, and if it is larger than the above range, the catalytic activity may not be sufficient and may not be preferable.
  • Hydrogen reduction is usually carried out under a stream of hydrogen at a temperature of 450-550 ° C, preferably 480-530 ° C, for 1-5 hours, preferably 1-2 hours. Do.
  • the method for oxidizing and removing C ⁇ of the present invention mainly comprises hydrogen obtained by reforming or partially oxidizing a raw material for hydrogen production that can be converted into a hydrogen-containing gas by a reforming reaction and a partial oxidation reaction. It is suitably used to selectively remove C 0 in gas (hereinafter also referred to as reformed gas, etc.) and is used to produce hydrogen-containing gas for fuel cells, but is not limited to this. Absent.
  • the step for obtaining the reformed gas or the like can be performed by any method such as a conventional hydrogen production step, particularly a method implemented or proposed in a hydrogen production step in a fuel cell system. it can. Therefore, in a fuel cell system provided with a reformer or the like in advance, the reformed gas may be prepared by using the reformer as it is.
  • Hydrocarbons that can be used to produce hydrogen-rich gas by steam reforming and partial oxidation as raw materials for hydrogen production, for example, hydrocarbons such as methane, ethane, propane, and butane. Hydrogen or natural gas (LNG), naphtha, gasoline, kerosene, light oil, heavy oil, hydrocarbons such as asphalt, alcohols such as methanol, ethanol, propanol, butanol, methyl formate, Oxygenated compounds such as methyl tertiary butyl ether (MTBE) and dimethyl ether, as well as various city gases, LPG, synthesis gas, and coal can be used as appropriate.
  • LNG Hydrogen or natural gas
  • MTBE methyl tertiary butyl ether
  • dimethyl ether as well as various city gases, LPG, synthesis gas, and coal can be used as appropriate.
  • what kind of raw material for hydrogen production should be used should be determined in consideration of various conditions such as the scale of the fuel cell system and the supply situation of the raw material, but usually, methanol and methane are also used. Alternatively, LNG, propane or LPG, naphtha or lower saturated hydrocarbon, city gas, etc. are suitably used.
  • the desulfurization method is not particularly limited, hydrodesulfurization, adsorption desulfurization and the like can be used as appropriate.
  • reforming reaction Technologies belonging to reforming or partial oxidation (hereinafter also referred to as reforming reaction, etc.) include steam reforming, partial oxidation, combined steam reforming and partial oxidation, autothermal reforming, and others. Such as reforming reactions.
  • steam reforming steam reforming
  • partial oxidation or other reforming reactions for example, thermal reforming reactions such as thermal decomposition
  • catalytic reforming reactions such as catalytic decomposition shift reaction, etc.
  • a steam reforming reaction is generally an endothermic reaction, so a steam reforming reaction and a partial oxidation may be combined (automatic reforming) to compensate for this endothermic component, are possible various combinations, such as previously by utilizing the shift reaction is reduced by converting a part in advance in the C 0 2 and H 2 is reacted with H 2 0 to C_ ⁇ to live
  • steam Reforming can also be performed.
  • the heat generated by the partial oxidation can be used as it is for steam reforming, which is an endothermic reaction.
  • the raw material is hydrogen-containing gas of the present invention, hereinafter the same
  • reformed gas due to said reaction into contains a large amount in addition to C 0 2 and unreacted steam, etc. and some C ⁇ hydrogen
  • the effective catalyst for the reforming reaction is the type of raw material (fuel) and the reaction.
  • a wide variety are known according to the type of the compound or the reaction conditions. Specific examples of some of them include catalysts that are effective for steam reforming of hydrocarbons, methanol, and the like.
  • Cu—Zn0-based catalysts Cu—Cr 2 0-based catalyst, supported Ni-based catalyst, Cu—Ni—Zn0-based catalyst, Cu—Ni—MgO-based catalyst, Pd—Zn0-based catalyst, and the like.
  • the catalyst effective for the catalytic reforming reaction and partial oxidation of hydrocarbons include a supported Pt-based catalyst, a supported Ni-based catalyst, and a supported Ru-based catalyst.
  • the reformer There is no particular limitation on the reformer, and any type of reformer, such as those commonly used in conventional fuel cell systems, can be applied, but many reforming reactions such as steam reforming reaction and decomposition reaction are endothermic.
  • the reaction is a reaction
  • a reaction device or a reactor heat exchanger type reaction device or the like having a good heat supply property
  • examples of such a reactor include a multitubular reactor, a plate-fin reactor, and the like.
  • the heat supply method include heating using a burner, a method using a heating medium, and a partial heating method. There is heating by catalytic combustion using oxidation, and the like, but is not limited thereto.
  • the reaction conditions for the reforming reaction vary depending on the raw materials used, the reforming reaction, the catalyst, the type of the reaction apparatus, the reaction system, and other conditions, and may be appropriately determined.
  • the conditions should be such that the conversion of the feedstock (fuel) is sufficiently high (preferably to 100% or close to 100%) and the hydrogen yield is as high as possible. It is desirable to select one. If necessary, a method of separating and recycling unreacted hydrocarbons and alcohols may be adopted. If necessary, generated or unreacted C 0 and water may be appropriately removed.
  • the hydrogen content is high, and hydrocarbons and alcohols To obtain a desired reformed gas in which raw material components other than hydrogen such as hydrogen are sufficiently reduced.
  • the present invention it is intended to be C 0 2 by selectively oxidizing the C 0 by adding oxygen to the source gas (reformed gas) containing C ⁇ a small amount as a main component, hydrogen Oxidation must be minimized. Further, generation or, (because in the feed gas hydrogen is present, there is a possibility that the reverse shift reaction occurs.) C 0 conversion reaction to 2 of CO was present in the feed gas this both to suppress is necessary. Since the catalyst according to the present invention is usually used in a reduced state, it is preferable to perform a reduction operation with hydrogen or the like when not in a reduced state. With this catalyst,
  • C 0 course and this show good results against 2 content of less raw material gas to the selective oxidation removal of C ⁇ , good results can be obtained even with C 0 2 content is more conditions.
  • the reformed gas of a typical C 0 2 concentration in the fuel cell system or the like i.e., C ⁇ 2 5 to 3 3 volume%, preferred properly 1 0-2 5 volume%, more preferred properly 1 Gas containing 5 to 20% by volume is used.
  • steam is usually present in the raw material gas obtained by steam reforming, etc., but the lower the steam concentration in the raw material gas, the better.
  • 5 to 3 0 capacity 0/0 If this degree has been included degree problem is not the name o
  • the C 0 concentration in the raw material gas having a low C 0 concentration (0.6% by volume or less) can be effectively reduced, and the CO concentration is relatively high (0.6 to 2.6%). (0% by volume) C 0 in the source gas can also be suitably reduced.
  • the temperature is 60 to 300 ° C. In this temperature range, the selective conversion and removal of C ⁇ can be performed efficiently.
  • the conversion and removal reaction of C 0 is an exothermic reaction like the oxidation reaction of hydrogen, which occurs at the same time, and the recovery of the generated heat and utilization in the fuel cell improves the power generation efficiency. Is effective.
  • oxygen gas When adding oxygen gas to the reformed gas or the like, usually, pure oxygen (0 2), air or oxygen-enriched air is preferably used.
  • the addition amount of the oxygen gas is suitably adjusted so that ⁇ 2 / C 0 (molar ratio) is preferably 0.5 to 5, and more preferably 1 to 4. If this ratio is too small, the removal rate of C0 will be low, and if it is too large, the consumption of hydrogen will be too high, which is not preferred.
  • the reaction pressure is not particularly limited, but in the case of a fuel cell, the reaction is usually carried out within a pressure range from normal pressure to IMPa (Gauge), preferably from normal pressure to 0.5 MPa (Gauge). If the reaction pressure is set too high, it is economically disadvantageous because it is necessary to increase the power for the pressure increase, and in particular, if the reaction pressure exceeds IMP a (Gauge), the regulation of the High Pressure Gas Control Law will be imposed. In addition, there is a problem that the safety is reduced because the explosion limit is widened.
  • the reaction is generally carried out in a very wide temperature range of 60 ° C. or more, preferably 60 to 300 ° C., while maintaining the selectivity to the C 0 conversion reaction stably. Can be performed at any time. If the reaction temperature is lower than 60 ° C, the reaction rate becomes slow, so that the CO removal rate (conversion rate) tends to be insufficient within the practical range of GHSV (gas volume space velocity).
  • the reaction is suitably carried out by selecting the normal, the GHSV to 5, 0 0 0-1 0 0 0 0 range hr 1.
  • the GHSV is reduced, a large amount of catalyst is required, while the GHSV is reduced. Larger values decrease the CO removal rate.
  • it is selected in the range of 6,000 to 600,000 hr '. Since the C • conversion reaction in the CO conversion removal process is an exothermic reaction, the reaction raises the temperature of the catalyst layer. If the temperature of the catalyst layer is too high, the selectivity of the catalyst for C ⁇ conversion is usually deteriorated. For this reason, it is not preferable to react a large amount of C 0 on a small amount of catalyst in a short time. For this reason, it may be better not to make GHSV too large.
  • the reactor used for the conversion and removal of C ⁇ is not particularly limited, and various types can be used as long as the above reaction conditions can be satisfied, but this conversion reaction is an exothermic reaction. Therefore, in order to facilitate temperature control, it is desirable to use a reactor or a reactor having good removability of reaction heat.
  • a heat exchange type reactor such as a multi-tube type or a plate-fin type reactor is suitably used.
  • a method of circulating the cooling medium in the catalyst layer or flowing the cooling medium outside the catalyst layer can be adopted.
  • JP-A-3-9362 and JP-A-11-86892 disclose a method of contacting a Ru / a-alumina catalyst with a hydrogen gas containing CO. It has been disclosed. However, when hydrogen gas contains carbon dioxide, a methane conversion reaction of carbon dioxide, which is a side reaction, also occurs, and hydrogen is consumed correspondingly, which is not desirable. Therefore, the development of a catalyst with high selectivity for the main reaction of CO methane conversion is desired. Was.
  • the step of removing C ⁇ by the methanation reaction is the same as the catalyst used as the above-mentioned catalyst for selective oxidation and removal of C ⁇ , that is, the nitrate (a) ′ of ruthenium is applied to the refractory inorganic oxide carrier. It is possible to use a reduced catalyst without drying after the supporting treatment and calcination.
  • the catalyst is a catalyst for removing carbon monoxide in a hydrogen-containing gas having a high selectivity in a metathesis reaction of carbon monoxide, which is a main reaction.
  • the removal of C ⁇ by the methanation reaction can be carried out under almost the same conditions as the reaction conditions in the above-mentioned selective oxidation removal step of C ⁇ , but the reaction temperature is usually 100 to 350 °. C, preferably, in a very wide temperature range of 150 to 300 ° C., it can be suitably carried out while maintaining the selectivity of C 0 to the methane reaction stably. If the reaction temperature is lower than 100 t, the reaction rate becomes slow. Therefore, the CO removal rate (conversion rate) tends to be insufficient within a practical range of GH SV (gas space velocity). On the other hand, when the temperature exceeds 350 ° C., the selectivity decreases, that is, C 02 becomes more likely to form a methanation, which is not preferable.
  • a C0 selective oxidation removal step may be performed before or after the removal step.
  • P t / alumina, P t / S n 0 2 , P t / C, C o / T i 02, P d / alumina, R UZ alumina, the R u- K / alumina can be used.
  • the reaction conditions normally temperature 6 0 ⁇ 3 0 0 ° C, pressure atmospheric pressure ⁇ IMP a (G auge), 0 2 / CO ( molar ratio) 0.
  • the hydrogen-containing gas produced according to the present invention by adopting the range of 0 to 100,000 hr 1 is as described above.
  • the C ⁇ concentration is sufficiently reduced, the poisoning and deterioration of the platinum electrode catalyst of the fuel cell can be sufficiently reduced, and the life and power generation efficiency-power generation performance can be greatly improved. It is also possible to recover the heat generated by this CO conversion reaction.
  • the CO concentration in the hydrogen-containing gas containing a relatively high concentration of C ⁇ can be sufficiently reduced.
  • the hydrogen-containing gas obtained by the present invention can be suitably used as a fuel for various hydrogen-oxygen fuel cells, and in particular, platinum (platinum) is used for at least the fuel electrode (negative electrode).
  • platinum platinum
  • Fuel to various types of hydrogen-oxygen fuel cells such as phosphoric acid fuel cells, KOH fuel cells, and solid polymer fuel cells, etc. It can be used advantageously.
  • the C0 removal catalyst in a hydrogen-containing gas with improved catalytic activity can be produced.
  • Catalyst 2 was obtained in the same manner as in Example 1, except that the alumina was changed to one having a maximum value of the pore distribution in 29 pore radii.
  • the supported amount of ⁇ 1 was 1.0% by mass (based on the carrier).
  • Ruthenium nitrate aqueous solution (Ru content: 50 g / liter) 2 cc was added with water so that the water absorption of the alumina carrier as a whole was obtained to obtain an impregnation liquid. Then, after impregnating the impregnating solution with 10 g of the alumina powder having a pore distribution maximum value in a pore radius of 19 persons and drying at 120 ° C. for 2 hours, 500 ° C. Calcination was performed for 4 hours at C to obtain Catalyst 4. The supported amount of 811 was 1.0% by mass (based on the carrier).
  • Catalyst 5 was obtained in the same manner as in Example 4, except that j-alumina was changed to one having a maximum value of the pore distribution at a pore radius of 29.
  • the supported amount of 1 ⁇ 1 was 1.0.0% by mass (based on the carrier).
  • Catalyst 6 was obtained in the same manner as in Example 4, except that alumina was changed to one having a maximum value of the pore distribution in 200 pore radii. .
  • the supported amount of 1 ⁇ 11 was 1.0% by mass (based on the carrier).
  • Ruthenium chloride (hydrate) (Ru content: 39.15% by mass) 0.2554 g was dissolved in water equivalent to the amount of water absorbed by the alumina carrier to obtain an impregnating liquid.
  • 10 g of alumina powder having a pore distribution maximum value in a pore radius of 19 persons was impregnated with the above impregnating liquid, dried at 120 ° C for 2 hours, and then dried at 500 ° C. After calcining for 4 hours, catalyst 8 was obtained.
  • the supported amount of R ⁇ was 1.0% by mass (based on the carrier).
  • Catalyst 9 was obtained in the same manner as in Example 1, except that ⁇ -alumina was changed to one having a maximum value of the pore distribution in 200 pore radii.
  • the supported amount of Ru was 1.0% by mass (based on the carrier).
  • a catalyst 10 was obtained in the same manner as in Example 7, except that the iron alumina was changed to one having a maximum value of the pore distribution for 200 pore radii.
  • the loading of 1 to 11 was 1.0% by mass (based on the carrier)
  • Rutile type titania powder (Ishihara Sangyo Co., Ltd., CR_EL) 160 g and pseudo-boehmite alumina powder (Catalyst Chemical Co., Ltd., Cata 10 id -AP) 59.7 g was mixed well in a beaker and then put into a kneader. Ion-exchanged water was added thereto, and the mixture was sufficiently kneaded and heated to adjust the water content to an appropriate hardness for extrusion. This was formed into a cylindrical shape having a diameter of 2 mm using an extruder, dried at 120 ° C. for 24 hours, and subsequently baked at 500 ° (: 24 hours. Toalumina was converted to iron alumina, and had a maximum value of the pore distribution at a pore radius of 25 A. The mass ratio of titania / alumina in this molded product was 80/20.
  • Ruthenium chloride (Ru content: 38.03% by mass) was dissolved in 0.263 g of water and 0.026 g of potassium nitrate to form a mixed solution. This impregnating liquid was impregnated into 10 g of the above molded product, and dried at 60 ° C. for 12 hours. This was calcined at 500 ° C. for 4 hours to obtain catalyst 11.
  • the supported amount of Ru was 1.0% by mass (based on the carrier), and the supported amount of ⁇ was 0.1% by mass (based on the carrier).
  • Catalyst 12 was prepared in the same manner as in Example 9 except that the pseudo-boehmite alumina powder was changed to a-alumina powder having a pore distribution maximum value at a pore radius of 45 A and the amount was also changed to 40 g. Prepared.
  • the supported amount of Ru was 1.0% by mass (based on the carrier), and the supported amount of K was 0.1% by mass (based on the carrier).
  • the S value of the catalyst obtained in each of the following examples and the C The degree was measured by the following method.
  • Hydrogen-containing gas A C 0/0 / C 0 2 / H 0 / N / H
  • Ruthenium nitrate (Ru (NO 3 )) aqueous solution 50 g / liter as Ru metal 2 Milliliters are transferred to a 50-milliliter beaker, and ion exchanged water 1 .6 Milliliters were added and stirred until uniform.
  • alumina support KHD24 manufactured by Sumitomo Chemical Co., Ltd., spherical shape having a diameter of 2 to 4 mm.
  • the ruthenium nitrate aqueous solution prepared above was added dropwise to the alumina carrier while thoroughly stirring the carrier with a glass rod, and the mixture was further thoroughly stirred for about 1 minute. Then, the mixture was allowed to stand at room temperature for 3 hours, then placed in a drier, and dried at 120 ° C. for 24 hours to obtain a catalyst 13 having Ru supported on an alumina carrier at 1.0% by weight.
  • Rutile titania (T i 0 2, Ishihara Sangyo Kaisha Ltd., CR- EL, one surface area: 7 m2 / g) 1 6 0 g and pseudo Bemai Toarumi Na powder (Catalysts & Chemicals Industries Co., Ltd., C ata 1 0 id-AP) 59.7 g was mixed and sufficiently kneaded with ion exchange water in a kneader under heating to adjust the water content to an extent suitable for extrusion molding. This was extruded into a cylindrical shape with a diameter of 2 mm and a length of 0.5 to 1 cm using an extruder, and dried at 120 ° (: 24 hours) with a dryer. The mixture was calcined at 0 ° (: 4 hours to obtain a titania / alumina carrier. The weight ratio of titania / alumina was 80/20.
  • Ruthenium chloride (RuC1a ⁇ nH20, Ru metal content ': 38.0 3% by weight) Weigh 0.263 g into a beaker. This placed the nitrate force re um (KN 0 3) 0. 2 5 9 g, was further added and dissolved Ion exchange water 1 ml.
  • Example 12 the carrier was a ruthenium-containing or urea-containing solution. , And 1% by weight of Ru and 0.1% by weight of K were loaded on the titania / alumina carrier in the same manner as in Example 12 except that the mixture was left at room temperature for 3 hours before being put into a dryer. Catalyst 15 was obtained. Table 2
  • Catalysts were prepared in the same manner as in each of Examples 1 to 3, and Examples 11 to 14 were performed using the catalysts in the following manner.
  • Each catalyst was prepared in 16 to 32 mesh, and the microreactor was filled with 1 cc of the catalyst, and reacted under the following conditions.
  • Table 3 shows the concentration of C ⁇ at the outlet of the reactor (volume, p pm), the concentration of methane at the outlet (volume, p pm), and the selectivity of the C ⁇ methanation reaction (%).
  • C 0 methanation reaction selectivity (%) [(inlet C concentration (volume ppm) one outlet CO concentration (volume ppm)) / (outlet CH 4 concentration (volume ppm)] X 100
  • H 2 0 (2 0 volume 0/0), H 2 ( 6 4 5 volume 0/0.)
  • GHSV 8 , 0 0 0 hr
  • the present invention relates to a method for producing a catalyst for removing C 0 from a hydrogen-containing gas, a catalyst for removing C 0 from a hydrogen-containing gas produced by the production method, and a method for removing C 0 from a hydrogen-containing gas using the catalyst.
  • the hydrogen-containing gas is useful as a hydrogen-containing gas for a fuel cell.

Abstract

A method of preparation of a catalyst for use in removing CO in a hydrogen-containing gas in which an active metal compound such as a nitrate of ruthenium is carried on a refractory inorganic oxide carrier such as alummina and alumina-titania, wherein a catalyst having the carrier and the active compound carried thereon is dried and then reduced without burning, or wherein use is made of an alumina having the maximal value of the distribution of fine pores hereof in the range of a pore radius of 100 Å or less; and a catalyst prepared by the method. The catalyst has a significantly improved catalyst activity.

Description

明 細 書 水素含有ガス中の C 0除去触媒の製造方法 技術分野  Description Manufacturing method of C0 removal catalyst in hydrogen-containing gas
本発明は、 水素含有ガス中の C 0除去触媒の製造方法、 及びその 製造方法で製造された C 0除去触媒、 並びに該触媒を用いる水素含 有ガス中の C 0の除去方法に関する。 その水素含有ガスは燃料電池 用の水素含有ガスと して有用である。 背景技術  The present invention relates to a method for producing a C 0 removal catalyst in a hydrogen-containing gas, a C 0 removal catalyst produced by the production method, and a method for removing C 0 in a hydrogen-containing gas using the catalyst. The hydrogen-containing gas is useful as a hydrogen-containing gas for a fuel cell. Background art
燃料電池による発電は、 低公害でエネルギ一ロスが少なく 、 設置 場所の選択、 増設、 操作性等の点でも有利であるなど種々の利点を 有することから、 近年特に注目を集めている。 燃料電池には、 燃料 や電解質の種類あるいは作動温度等によつて種々の夕ィプのものが 知られているが、 中でも水素を還元剤 (活物質) とし、 酸素 (空気 等) を酸化剤とする、 いわゆる水素一酸素燃料電池 (低温作動型の 燃料電池) の開発が最も進んでおり、 今後ますます普及が見込まれ ている。  Power generation by fuel cells has attracted particular attention in recent years because it has various advantages such as low pollution, low energy loss, and advantages in terms of installation location, expansion, operability, and the like. Various types of fuel cells are known depending on the type of fuel and electrolyte, operating temperature, etc. Among them, hydrogen is used as a reducing agent (active material), and oxygen (air, etc.) is used as an oxidizing agent. The development of so-called hydrogen-oxygen fuel cells (low-temperature operation type fuel cells) is the most advanced, and is expected to become more widespread in the future.
このよ うな水素一酸素燃料電池にも電解質の種類や電極等の種類 によって種々のタイプのものがあり、 その代表的なものと して、 例 えば、 リ ン酸型燃料電池、 K O H型燃料電池、 固体高分子型燃料電 池などがある。 このような燃料電池、 特に固体高分子型燃料電池等 の低温作動型燃料電池の場合には、 電極に白金 (白金触媒) が使用 されている。 ところが、 電極に用いている白金は C◦によって被毒 されやすいので、 燃料中に C◦がある レベル以上含まれていると発 電性能が低下したり、 濃度によっては全く発電ができなく なつてし ま う という重大な問題点がある。 この C◦被毒による触媒の活性劣 化は、 特に低温ほど著しいので、 この問題は、 低温作動型の燃料電 池の場合に特に深刻となる。 There are various types of such hydrogen-oxygen fuel cells depending on the type of electrolyte, the type of electrodes, etc. Typical examples thereof include a phosphoric acid fuel cell and a KOH fuel cell. And solid polymer fuel cells. In the case of such a fuel cell, particularly a low-temperature operation type fuel cell such as a polymer electrolyte fuel cell, platinum (platinum catalyst) is used for an electrode. However, the platinum used for the electrodes is easily poisoned by C◦, so if the fuel contains C◦ at a certain level or more, it will occur. There is a serious problem that the power performance is reduced and power cannot be generated at all depending on the concentration. This problem is particularly acute in the case of low-temperature fuel cells, since the deterioration of the activity of the catalyst due to the C poisoning is particularly significant at lower temperatures.
したがって、 こう した白金系電極触媒を用いる燃料電池の燃料と しては純粋な水素が好ましいが、 実用的な点からは安価で貯蔵性等 に優れたあるいは既に公共的な供給システムが完備されている各種 の燃料 〔例えば、 メ タンもしく は天然ガス ( L N G ) 、 プロパン、 ブタン等の石油ガス (し p G ) 、 ナフサ、 ガソ リ ン、 灯油、 軽油等 の各種の炭化水素系燃料あるいはメ タノール等のアルコール系燃料 Therefore, pure hydrogen is preferable as a fuel for such a fuel cell using a platinum-based electrode catalyst, but from a practical point of view, it is inexpensive and has excellent storage properties, or a complete public supply system is already available. Various fuels (eg, methane or natural gas (LNG), propane, butane, etc., petroleum gas (pG), naphtha, gasoline, kerosene, gas oil, etc. Alcohol-based fuels such as tanol
、 あるいは都市ガス、 その他の水素製造用燃料〕 の水蒸気改質等に よって得られる水素含有ガスを用いることが一般的になっており、 このよ うな改質設備を組み込んだ燃料電池発電システムの普及が進 められている。 しかしながら、 こう した改質ガス中には、 一般に、 水素の他にかなりの濃度の C 0が含まれているので、 この C〇を白 金系電極触媒に無害な C◦ 2 等に転化し、 燃料中の C O濃度を減少 させる技術の開発が強く望まれている。 その際、 C Oの濃度を、 通 常 1 , 0 0 0容量 p p m以下、 好ま しく は 1 0 0容量 p p m以下、 更に好ま しく は 1 0容量 p p m以下という低濃度にまで低減するこ とが望ま しいとされている。 Or city gas or other hydrogen-producing fuels). It is common to use hydrogen-containing gas obtained by steam reforming, etc., and the spread of fuel cell power generation systems incorporating such reforming equipment has become widespread. Is being promoted. However, during this the reformed gas, typically because it contains C 0 in addition to significant concentrations of hydrogen, to convert the C_〇 into harmless C◦ 2 etc. platinum based electrode catalyst, Development of technology to reduce the CO concentration in fuel is strongly desired. In doing so, it is desirable to reduce the CO concentration to a low concentration of usually less than 1,000 ppm by volume, preferably less than 100 ppm by volume, and more preferably less than 10 ppm by volume. It is believed to be.
上記の問題を解決するために、 燃料ガス (改質ガス中の水素含有 ガス) 中の C 0の濃度を低減させる手段の一つと して、 下記の式 ( 1 ) で表されるシフ 卜反応 (水性ガスシフ ト反応) を利用する技術 が提案されている。  In order to solve the above problem, one of the means to reduce the concentration of C 0 in fuel gas (hydrogen-containing gas in reformed gas) is a shift reaction represented by the following formula (1). Technology using (water gas shift reaction) has been proposed.
C O + H 2 0 = C 0 2 + H 2 ( 1 ) しかしながら、 このシフ ト反応のみによる反応では、 化学平衡上 の制約から C◦濃度の低減には限界があり、 一般に、 C◦濃度を 1CO + H 2 0 = C 0 2 + H 2 (1) However, in the reaction using only this shift reaction, There is a limit to the reduction of C◦ concentration due to the restrictions of
%以下にするのは困難である。 It is difficult to make it below%.
そこで、 C 0濃度をよ り低濃度まで低減する手段と して、 改質ガ ス中に酸素又は酸素含有ガス (空気等) を導入し、 C Oを C 02 に 変換する方法が提案されている。 しかしながら、 この場合改質ガス 中には水素が多量存在しているため、 C 0を酸化しょう とすると水 素も酸化されてしまい、 C◦濃度が十分に低減できないことがある この問題を解決するための方法としては、 改質ガス中に酸素又は 酸素含有ガスを導入して C 0を C 02 に酸化するに際し、 C Oだけ を選択的に酸化する触媒を使用する方法が考えられる。 Therefore, as a means of reducing to a low concentration Ri by a C 0 concentration, introducing oxygen or an oxygen-containing gas (such as air) in the reformed gas scan, the CO has been proposed a method of converting a C 0 2 I have. However, in this case, since a large amount of hydrogen is present in the reformed gas, if C 0 is oxidized, hydrogen is also oxidized, and the C concentration may not be sufficiently reduced. as a method for, upon the introduction of oxygen or an oxygen-containing gas in the reformed gas to oxidize C 0 to C 0 2, a method using a catalyst to selectively oxidize CO only it is considered.
C Oの酸化触媒と しては、 従来、 P t /アルミ ナ、 P t /S n〇 2 、 P t /C、 C o T i Oz 、 ポプカライ ト、 P dZアルミ ナな どの触媒系が知られているが、 これらの触媒は対湿度耐性が十分で なく 、 反応温度域が低く かつ狭く、 また、 C Oの酸化に対する選択 性が低いため、 改質ガスのような水素が多量に存在している中の少 量の C◦を 1 0容量 p p m以下の低濃度まで低減するためには、 同 時に大量の水素も酸化により犠牲にしなければならない。 And a CO oxidation catalyst is conventionally, P t / alumina, P t / S N_〇 2, P t / C, C o T i Oz, Popukarai bets, which catalyst system which P dZ alumina are known However, these catalysts do not have sufficient resistance to humidity, have a low and narrow reaction temperature range, and have low selectivity for CO oxidation, so that a large amount of hydrogen such as reformed gas is present. At the same time, a large amount of hydrogen must be sacrificed by oxidation in order to reduce the small amount of C ◦ to a low concentration of less than 10 ppm by volume.
特開平 5— 2 0 1 7 0 2号公報には、 水素富化 C 0含有ガスから C 0を選択除去して自動車用燃料電池系に供給するための C 0を含 まない水素含有ガスの製造方法が開示されている。 触媒として、 ァ ルミナ担体に R hも しく は R uを担持したものが使用されているが 、 低い C 0濃度にしか適用できないという問題点があり、 また低温 における触媒活性についても改良の余地が残されている。  Japanese Patent Application Laid-Open No. 5-2017702 discloses a method for selectively removing C 0 from a hydrogen-enriched C 0 -containing gas and supplying the same to a fuel cell system for automobiles. A manufacturing method is disclosed. As the catalyst, a carrier in which Rh or Ru is supported on an alumina carrier is used, but there is a problem that it can be applied only to a low C0 concentration, and there is also room for improvement in the catalytic activity at low temperatures. Is left.
また、 ルテニウム系触媒に用いるルテニウムは貴金属であるため 、 これを担持成分と して用いる触媒は一般的に高価なものとなるこ とから、 ルテニウム成分を含有する触媒を工業的に有用なものとす るためには、 触媒性能のみならず触媒価格を低減させる必要がある 。 一方で、 上記従来のルテニウム系触媒は担持ルテニウム当たりの 触媒活性が実用的に十分でなく 、 更に高活性の触媒が望まれていたIn addition, since ruthenium used for a ruthenium-based catalyst is a noble metal, a catalyst used as a supporting component is generally expensive. Therefore, in order to make a catalyst containing a ruthenium component industrially useful, it is necessary to reduce not only the catalyst performance but also the catalyst price. On the other hand, the above-mentioned conventional ruthenium-based catalyst has a practically insufficient catalytic activity per supported ruthenium, and a more active catalyst has been desired.
。 従って、 水素含有ガス中の C 0を広い反応温度範囲で効率よく選 択的に酸化除去するこ とができ、 かつ担持ルテニゥムあたりの触媒 活性が著しく優れた触媒、 及びこれを使用して得られた水素含有ガ ス、 特に燃料電池用に好適に適用できる水素含有ガスの製造方法が 望まれていた。 発明の開示 . Therefore, it is possible to efficiently and selectively oxidize and remove C 0 in a hydrogen-containing gas over a wide reaction temperature range, and to obtain a catalyst having extremely excellent catalytic activity per supported ruthenium, and a catalyst using the same. There has been a demand for a method for producing a hydrogen-containing gas, particularly a hydrogen-containing gas that can be suitably applied to fuel cells. Disclosure of the invention
本発明は、 上記観点がらなされたもので、 触媒活性が改良された 水素含有ガス中の C 0除去触媒とその製造方法、 かつその触媒を用 いた水素含有ガス中の C 0除去方法を提供するこ とを目的とするも のである。  The present invention has been made in view of the above, and provides a catalyst for removing C0 from a hydrogen-containing gas having improved catalytic activity, a method for producing the same, and a method for removing C0 from a hydrogen-containing gas using the catalyst. It is for this purpose.
本発明者らは鋭意研究の結果、 ルテニウムを耐火性無機酸化物担 体に担持するこ とによ り、 上記本発明の目的を効果的に達成しう る こ とを見出し本発明を完成させるに到った。 特に、 本発明は、 ルテ ニゥム化合物と して硝酸塩を使用し、 それを耐火性無機酸化物担体 に担持処理後乾燥させ、 焼成を行う ことなく 、 還元することによ り 、 また、 特定の細孔分布を有するアルミナを担体と して使用するこ とによ り、 上記本発明の目的を効果的に達成しうるこ とを見出し本 発明を完成させるに到った。 更に、 従来のルテニウム系酸化触媒に おいては、 ルテニゥム成分が担体中に比較的均一に分散されている が、 反応時において反応に寄与するルテニウム成分は、 担体の外表 面近傍に存在するもののみであり、 内部に存在するルテニウム成分 はほとんど反応に寄与しないことを見出し、 担体中における活性成 分であるルテニウムを、 担体の外表面側に多く分布させたものが、 同一担持量であってもその.触媒活性において著しく優れており C O 除去触媒と してその目的に適合しうることを見出した。 また、 上記 方法によ り得られた触媒を用い C 0除去処理するこ とによ り、 燃料 電池に好適に適用できる水素含有ガスが効率よ く得られることを見 出した。 The present inventors have assiduously studied and found that the object of the present invention can be effectively achieved by supporting ruthenium on a refractory inorganic oxide carrier, thereby completing the present invention. Reached. In particular, the present invention uses a nitrate compound as a ruthenium compound, supports it on a refractory inorganic oxide carrier, dries it, reduces it without firing, and reduces By using alumina having a pore distribution as a carrier, they have found that the object of the present invention can be effectively achieved, and have completed the present invention. Furthermore, in the conventional ruthenium-based oxidation catalyst, the ruthenium component is dispersed relatively uniformly in the carrier, but the ruthenium component that contributes to the reaction during the reaction is only the one existing near the outer surface of the carrier. And the ruthenium component present inside Did not contribute to the reaction, and found that ruthenium, which is an active component in the carrier, was distributed more on the outer surface side of the carrier. It was found that it could be used as a CO removal catalyst for its purpose. In addition, it has been found that by performing C0 removal treatment using the catalyst obtained by the above method, a hydrogen-containing gas suitably applicable to a fuel cell can be efficiently obtained.
すなわち、 本発明の要旨は、 ルテニウムを耐火性無機酸化物担体 に担持する水素含有ガス中の C 0除去触媒の製造方法にあり、 特に That is, the gist of the present invention resides in a method for producing a C0 removal catalyst in a hydrogen-containing gas in which ruthenium is supported on a refractory inorganic oxide carrier.
、 以下の通りである。 It is as follows.
( 1 ) ルテニウムの硝酸塩 ( a ) を耐火性無機酸化物担体に担持処 理後乾燥させ、 焼成を行う こ となく、 還元するこ とを特徴とする水 素含有ガス中の C 0除去触媒の製造方法、  (1) Ruthenium nitrate (a) is supported on a refractory inorganic oxide carrier, dried and reduced without firing, which is a catalyst for removing CO from hydrogen-containing gas. Production method,
( 2 ) アルミナ又はアルミナーチタニアを担体と し、 該担体に活性 金属化合物を担持する水素含有ガス中の C◦除去触媒の製造方法に おいて、 細孔半径 1 0 0 A以下に細孔分布の極大値を有するアルミ ナを使用するこ とを特徴とする水素含有ガス中の C 0除去触媒の製 造方法、  (2) In a method for producing a catalyst for removing C◦ in a hydrogen-containing gas in which an active metal compound is supported on alumina or alumina-titania as a carrier, a pore distribution having a pore radius of 100 A or less is provided. A method for producing a catalyst for removing C 0 in a hydrogen-containing gas, characterized by using an alumina having a maximum value of
( 3 ) 無機耐火性担体に少なく ともルテニウム成分を担持してなる C 0除去触媒において、 該触媒の断面を、 エレク トロンプローブ . マイ クロアナリ シス ( E P M A ) 装置を用いて、 一方向にルテニゥ ム原子について線分析測定をして得られる断面幅方向距離 r (中心 から触媒表面までの距離) と X線強度 I との関係を示す図において 、 上記 rがー方の触媒表面一 r 。 から他方の触媒表面 r Q の間にお ける I ( r .) の積分値 N。 から、 — 2 / 3 r 。 から 2 / 3 r 。 の間 における I ( r ) の積分値 N , を減じた値を Nと し、 上記 N。 に対 する Nの割合 S = ( N / N。 ) x 1 0 0の値が 5 0以上であること を特徴とする C◦除去触媒、 (3) In a C0 removal catalyst in which at least a ruthenium component is supported on an inorganic refractory carrier, a cross section of the catalyst is unidirectionally converted to ruthenium atoms using an electron probe microanalysis (EPMA) device. In the figure showing the relationship between the cross-sectional width direction distance r (the distance from the center to the catalyst surface) and the X-ray intensity I obtained by performing a line analysis measurement on, the above-mentioned r is the catalyst surface-r From the other catalyst surface r Q to the integral value N of I (r.). From — 2/3 r. From 2/3 r. N is the value obtained by subtracting the integral value N, of I (r) between. To C = removal catalyst, wherein the value of S = (N / N.) × 100 is 50 or more.
( 4 ) ルテニウムの硝酸塩 ( a ) を耐火性無機酸化物担体に担持処 理後乾燥させ、 焼成を行う ことなく 、 還元してなる一酸化炭素のメ タネーショ ンによる水素含有ガス中の一酸化炭素除去触媒。  (4) The ruthenium nitrate (a) is supported on a refractory inorganic oxide carrier, dried, and calcined without firing. Removal catalyst.
( 5 ) 上記 ( 1 ) 〜 ( 4 ) のいずれかに記載の製造方法あるいは触 媒を用いて C Oを酸素で酸化して除 ¾するこ とを特徴とする水素含 有ガス中の C◦の除去方法、 及び  (5) The method of any one of (1) to (4) above, or the method of removing CO by oxidizing CO with oxygen using a catalyst to remove CO from hydrogen-containing gas. Removal method, and
( 6 ) 水素含有ガスが、 燃料電池用水素含有ガスである上記 ( 5 ) 記載の水素含有ガス中の C 0の除去方法。 図面の簡単な説明  (6) The method for removing C0 from a hydrogen-containing gas according to the above (5), wherein the hydrogen-containing gas is a hydrogen-containing gas for a fuel cell. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の C◦酸化触媒の一例の断面図、 及び幅方向距離 と X線強度の関係を示す図である。 発明を実施するための最良の形態  FIG. 1 is a cross-sectional view of an example of the C◦ oxidation catalyst of the present invention, and a diagram showing the relationship between the distance in the width direction and the X-ray intensity. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail.
先ず、 本発明の水素含有ガス中の C 0除去触媒の製造方法につい て説明する。  First, a method for producing a catalyst for removing C0 in a hydrogen-containing gas according to the present invention will be described.
本発明の水素含有ガス中の C◦除去触媒の製造方法は、 ルテニゥ ムを耐火性無機酸化物担体に担持するものであり、 特に、 ルテニゥ ムの硝酸塩 ( a ) を耐火性無機酸化物'担体に担持処理後乾燥させ、 焼成を行う ことなく 、 還元するこ とを特徴とし、 また、 アルミナ又 はアルミナーチタニアを担体と し、 該担体に活性金属.化合物を担持 する水素含有ガス中の C◦除去触媒の製造方法において、 細孔半径 1 0 0 A以下に細孔分布の極大値を有するアルミ ナを使用するこ と を特徴とする The method for producing a catalyst for removing C◦ in a hydrogen-containing gas according to the present invention comprises supporting ruthenium on a refractory inorganic oxide carrier, and in particular, converting ruthenium nitrate (a) into a refractory inorganic oxide 'carrier. It is characterized in that it is reduced after being supported on a carrier and dried without firing, and is further characterized by using alumina or alumina-titania as a carrier, the carrier containing an active metal or a compound in a hydrogen-containing gas carrying a compound. ◦ In the production method of the removal catalyst, use alumina having a maximum value of the pore distribution within a pore radius of 100 A or less. Characterized by
本発明に用いる耐火性無機酸化物担体と しては、 アルミ ナ、 チタ ユア、 シリ カ、 ジルコユア等或いはこれらの二種以上を含むものか らなる多孔質担体を挙げることができる。 中でも、 アルミナ、 アル ミ ナ—チタユアからなる ものが好ま しい。 上記担体のァルミ ナの原料と してはアルミ ニゥム原子を含んでい ればよい。 通常用いられる ものと しては、 硝酸アルミ ニウム、 水酸 ィ匕アルミニウム、 アルミ ニウムアルコキサイ ド、 擬べ一マイ トアル ミ ナ、 α —アルミ ナ、 ァ —アルミ ナなどが挙げられる。 擬べ一マイ トアルミナ、 α —アルミ ナ、 ァ —アルミナなどは硝酸アルミニウム 、 水酸化アルミ ニウム、 アルミ ニウムアルコキサイ ド等から作る こ とができる。  Examples of the refractory inorganic oxide carrier used in the present invention include a porous carrier made of alumina, titaure, silica, zirconia, or the like, or a material containing two or more of these. Among them, those composed of alumina and alumina-titaure are preferred. It is sufficient that the raw material of the alumina of the above carrier contains aluminum atoms. Examples of those usually used include aluminum nitrate, aluminum hydroxide, aluminum alkoxide, pseudo-boiling aluminum, α-alumina, and a-alumina. Pseudo-boehmite alumina, α-alumina, α-alumina, etc. can be made from aluminum nitrate, aluminum hydroxide, aluminum alkoxide, and the like.
上記担体のチタニア原料と しては、 チタ ン原子を含むものであれ ばよいが、 通常はチタニゥムアルコキサイ ド、 四塩化チタ ン、 ァモ ルファスチタニア粉末、 アナタ一ゼ型チタニア粉末、 ルチル型チタ ユア粉末などが挙げられる。 アモルファスチタニア粉末、 アナター ゼ型チタニア粉末、 ルチル型チタニア粉末などはチタニウムアルコ キサイ ド、 四塩化チタ ンなどから作ることができる。  The titania raw material of the above carrier may be any material containing a titan atom, but usually, titanium alkoxide, titan tetrachloride, amorphous titania powder, anata type titania powder, rutile Mold titer powder and the like. Amorphous titania powder, anatase-type titania powder, rutile-type titania powder, and the like can be made from titanium alkoxide, titanium tetrachloride, and the like.
上記担体のシ リ力の原料と しては珪素原子を含むものであればよ いが、 四塩化珪素、 珪酸ナ ト リ ウム、 珪酸ェチル、 シ リ カゲル、 シ リ カゾルなどが利用できる。 シ リ カゲルは四塩化珪素、 珪酸ナ ト リ ゥム、 珪酸ェチル、 シ リ カゾルなどから作るこ とができる。  As a raw material for the silicon force of the carrier, any material containing a silicon atom may be used, but silicon tetrachloride, sodium silicate, ethyl silicate, silica gel, silica sol, and the like can be used. Silica gel can be made from silicon tetrachloride, sodium silicate, ethyl silicate, silica sol, and the like.
' 上記担体のジルコユアの原料と してはジルコニウム原子を含むも のであればよいが、 水酸化ジルコニウム、 ォキシ塩化ジルコニウム 、 ォキシ硝酸ジルコニウム、 硝酸ジルコニウム、 四塩化ジルコユウ ムおよびジルコニァ粉末などが利用できる。 ジルコユア粉末は水酸 化ジルコニウム、 ォキシ塩化ジルコニウム、 ォキシ硝酸ジルコユウ ム、 硝酸ジルコニウム、 四塩化ジルコニウムから作るこ とができる 上記耐火性無機酸化物担体は、 上記の原料から公知の方法で製造 する こ とができる。 As the raw material of the zirconium for the carrier, any material containing a zirconium atom may be used, but zirconium hydroxide, zirconium oxychloride, zirconium oxynitrate, zirconium nitrate, zirconium tetrachloride and zirconium powder can be used. Zircoure powder is hydroxyl The refractory inorganic oxide carrier, which can be made of zirconium oxide, zirconium oxychloride, zirconium oxynitrate, zirconium nitrate, or zirconium tetrachloride, can be produced from the above-mentioned raw materials by a known method.
アルミナ—チタユア担体の製造方法と しては、 この両者からなる 担体ができればどのよ うな方法でもよいが、 例えばチタニアとアル ミ ナを混合する方法、 アルミ ナ成形体 (アルミナ粒子、 粉末を含む ) にチタニアを付着させる方法が好適に用いられる。 チタニアとァ ルミ ナを混合する方法と しては、 チタニア粉末とアルミナ粉末また は擬ベーマイ トアルミ ナとを水と と もに混合し、 その後成形、 乾燥 、 焼成する方法がある。 成形には通常押出成形を用いればよ く 、 そ の際有機物のバイ ンダ一を添加して成形性を向上させる こ とができ る。 チタニアをアルミ ナバイ ンダ一と混合するこ とによつても好適 な担体が得られる。 この場合、 得られたチダユア/アルミ ナの質量 比は 1 0 / 9 0〜 9 0 / 1 0 であるこ とが好ま しい。  Any method can be used for producing the alumina-titania carrier, as long as a carrier comprising both of them can be produced. For example, a method of mixing titania and alumina, an alumina compact (including alumina particles and powder) The method of adhering titania to the surface is suitably used. As a method of mixing titania and aluminum, there is a method of mixing titania powder and alumina powder or pseudo-boehmite alumina with water, followed by molding, drying and firing. Extrusion may be usually used for molding, and at that time, an organic binder can be added to improve moldability. A suitable carrier can also be obtained by mixing titania with an alumina binder. In this case, it is preferable that the mass ratio of the obtained chidair / alumina is 10/90 to 90/10.
一方、 アルミ ナ成形体にチタニアを付着させる方法と しては下記 のよ う にすればよい。 有機溶媒中にチタニア粉末、 および必要に応 じ有機バイ ンダ一、 擬べ一マイ トアルミナ粉末を加えよ く 分散させ る。 この混合液 (通常スラ リー状である) にアルミナ成形体を浸し て混合液が十分浸漬しアルミ ナ成形体上にチタニア粉末を付着させ た後アルミ ナ成形体を取り出す。 このアルミ ナ成形体を乾燥、 焼成 すればよい。 または、 チタニウムアルコキサイ ドまたは四塩化チタ ンとアルミ ナ成形体をアルコール中に加え、 この溶液に水を加えて チタニウムアルコキサイ ドまたは四塩化チタ ンを加水分解して、 ァ ルミ ナ成形体上に水酸化チタ ンを沈殿させたものを乾燥、 焼成して もよい。 これらの付着方法からもわかるようにアルミナ成形体にチ タニアを担持させる要領でチタニアを付着させてもよい。 アルミナ 成形体にチタニアを付着させる方法の場合は、 得られたチタニア/ アルミナの質量比は 0. 1 9 9. 9〜 5 0 / 5 0、 好ま しく は 0 . 5 / 9 9. 5〜 5 0 / 5 0、 さ らに好ま しく は 1 / 9 9〜 5 0 / 5 0である。 On the other hand, the method of adhering titania to the alumina compact may be as follows. Add and disperse the titania powder and, if necessary, the organic binder and pseudo-boehmite alumina powder in the organic solvent. The alumina compact is immersed in this mixed liquid (usually in a slurry form), and the mixed liquid is sufficiently immersed. After the titania powder is adhered to the alumina compact, the alumina compact is taken out. What is necessary is just to dry and bake this alumina compact. Alternatively, titanium alkoxide or titanium tetrachloride and an aluminum molded body are added to alcohol, and water is added to this solution to hydrolyze titanium alkoxide or titanium tetrachloride, and the aluminum molded body is formed on the aluminum molded body. Is dried and calcined. Is also good. As can be seen from these attaching methods, titania may be attached in such a manner that titania is supported on the alumina molded body. In the case of a method in which titania is adhered to an alumina molded body, the obtained titania / alumina mass ratio is 0.199.99 to 50/50, preferably 0.5 / 99.5 to 5. 0/50, more preferably 1/99 to 50/50.
チタニア/アルミナの質量比は 0. 1 / 9 9. 9〜 9 0 / 1 0、 好ま しく は 0. 5 / 9 9. 5〜 9 0 / 1 0、 さ らに好ま しく は 1 9 9〜 9 0 / 1 0である。  The titania / alumina mass ratio is 0.1 / 99.99 to 90/10, preferably 0.5 / 99.95 to 90/10, and more preferably 199. 9 0/10.
上記アルミナ—チタニア担体の製造方法に用いられるアルミナ、 チタニアの原料と しては、 前記の場合と同様のものが用いられる。  As a raw material of alumina and titania used in the method for producing the alumina-titania carrier, the same materials as those described above are used.
また、 上記のアルミナ、 アルミナ—チタニア担体に使用されるァ ルミナは細孔半径 1 0 0人以下に細孔分布の極大値を有するものが 好ま しい。 細孔半径 1 0 0 Aを超えるところに細孔分布の極大値が あるアルミナを使用すると、 低温における触媒活性が低く なる場合 がある。 さ らに好ま しく は、 細孔半径 6 0人以下に細孔分布の極大 値を有するアルミナを使用すればよい。 なお、 アルミナの原料と し て擬ベーマイ トアルミナを使用する場合には、 担体を調製中 (焼成 後) にァーアルミナに変化するので、 その細孔分布を測定し求める ものとする。  The alumina used for the above-mentioned alumina or alumina-titania carrier preferably has a maximum pore distribution value with a pore radius of 100 or less. When alumina having a maximum value of the pore distribution at a location exceeding the pore radius of 100 A is used, the catalytic activity at low temperatures may be reduced. More preferably, alumina having a maximum value of the pore distribution at a pore radius of 60 or less may be used. When pseudo-boehmite alumina is used as a raw material for alumina, the carrier changes into low alumina during preparation (after calcination) of the support, and the pore distribution thereof is measured and determined.
また、 上記の細孔分布は N 2 吸着法で測定し、 B J H ( B a r r e t t - J o y n e r - H a 1 e n d a ) 法で解析したものである 本発明においては、 上記の担体に、 活性金属化合物を担持するが 、 このよ うな化合物と しては、 ルテニウム化合物 ( a ) 、 またはル テニゥム化合物 ( a ) とアルカ リ金属化合物及び/又はアル力 リ土 類金属化合物 ( b ) が挙げられる。 Furthermore, the pore distribution mentioned above is determined by the N 2 adsorption method, BJH in (B arrett - - J oyner H a 1 enda) present invention is obtained by analyzing with method, the above carriers, the active metal compound Such a compound may be supported by a ruthenium compound (a) or a ruthenium compound (a) and an alkali metal compound and / or alkaline earth metal. And the like metal compounds (b).
まず、 ( a ) 成分のルテニウム化合物を担体に担持するには、 例 えば、 R u C l 3 · n H 2 0、 R u ( N O 3 ) 3 、 R u 2 (OH)First, (a) a component of the ruthenium compound supported on the carrier, if example embodiment, R u C l 3 · n H 2 0, R u (NO 3) 3, R u 2 (OH)
2 C 1 4 · 7 N H 3 - 3 H 2 0. K 2 ( R u C 1 5 (H2 0) ) 、 ( N H 4 ) 2 ( R u C 1 5 ( H 2 0 ) ) . K 2 ( R u C 1 5 ( N 02 C 14.7 NH 3-3 H 20 .K 2 (RuC 15 (H 20 )), (NH 4) 2 (RuC 15 (H 20)) .K 2 ( R u C 15 (N 0
) ) 、 R u B r 3 - n H 2 O . N a 2 R u O 4 . R u (N O) ( N 〇 3 ) 3 、 ( R u 3 0 ( 0 A c ) 6 (H2 0) 3 ) OA c - nH2 〇、 K4 (R u (C N) 6 ) - n H2, O. K2 ( R u ( N 02 ) . 4 (O H) (N O) ) . (R u (NH3 ) a ) C l 3 > ( R u ( N H )), R u B r 3 -.. N H 2 O N a 2 R u O 4 R u (NO) (N 〇 3) 3, (R u 3 0 (0 A c) 6 (H 2 0) 3 ) OA c-nH 2 〇, K 4 (R u (CN) 6 )-n H 2 , O.K 2 (R u (N 0 2 ) .4 (OH) (NO)). NH 3 ) a) C l 3 > (R u (NH
3 ) 6 ) B r 3 . (R u (NH3 ) 6 ) C l 2 、 .(R u (N H3 )(R u (NH 3 ) 6 ) Cl 2 ,. (R u (NH 3 )
6 ) B r 2 、 ( R u 3 02 ( N H 3 ) 14) C 1 6 · Η2 〇、 ( R u ( N 0 ) ( N H 3 ) 5 ) C 1 3 . ( R u (OH) (N O) ( N H 3 ) 4 ) ( N O 3 ) 2 R u G l 2 (P P h 3 ) 3 、 R u C l 2 ( P P h 3 ) 4 、 (R u C l H (P P h 3 ) 3 ) · C 7 H 8 . R u H 2 (P P h 3 ) 4 、 R u C l H (C O) (P P h 3 ) 3 、 R u H2 ( C O) (P P h 3 ) 3 、 ( R u C 1 2 ( c o d ) ) n 、 R u (C 〇) 12、 R u ( a c a c ) 3 、 (R u (H C O O) (C O) 2 ) n R u 2 I 4 (p— c ym e n e ) 2 などのルテニウム塩を水、 ェ タノール等に溶解させて得られる触媒調製液が甩いられる。 好ま し く は、 触媒活性の点でルテユウムの硝酸塩 〔例えば、 R u ( N 03 ) 3 〕 が用いられる。 6) Br 2 , (Ru 302 (NH 3) 14 ) C 16 · Η2 〇, (R u (N 0) (NH 3) 5) C 1 3. (R u (OH) (NO ) (NH 3) 4) ( NO 3) 2 R u G l 2 (PP h 3) 3, R u C l 2 (PP h 3) 4, (R u C l H (PP h 3) 3) · C 7 H 8. R u H 2 (PP h 3) 4, R u C l H (CO) (PP h 3) 3, R u H 2 (CO) (PP h 3) 3, (R u C 1 2 (cod)) n, R u (C 〇) 12, R u (acac) 3, (R u (HCOO) (CO) 2) n R u 2 I 4 (p- c ym ene) , such as 2 ruthenium A catalyst preparation solution obtained by dissolving a salt in water, ethanol, or the like is used. Preferably, a ruthenium nitrate [eg, Ru (N 03) 3 ] is used in terms of catalytic activity.
担体への担持処理は、 その触媒調製液を用いて、 通常の含浸法、 共沈法、 競争吸着法によ り行えばよい。 処理条件は、 特に限定され ないが、 通常、 室温〜 9 0 °Cで 1分〜 1 0時間、 担体を触媒調製液 と接触させればよい。 特に、 担体の吸水量以下の水溶液で含浸後、 直ちに乾燥するこ とによって、 ルテニウム成分を外表面側に偏在せ しめる こ とができる。 The support treatment on the carrier may be performed by the usual impregnation method, coprecipitation method or competitive adsorption method using the catalyst preparation liquid. The treatment conditions are not particularly limited, but usually, the carrier may be brought into contact with the catalyst preparation solution at room temperature to 90 ° C for 1 minute to 10 hours. In particular, by immediately impregnating with an aqueous solution having a water absorption less than that of the carrier and immediately drying, the ruthenium component is unevenly distributed on the outer surface side. I can do it.
( a ) 成分の担持量は特に限定されないが、 通常、 担体に対して ルテニウム金属と して 0. 0 5〜 1 0質量%が好ま しく 、 特に 0. 3〜 3質量%の範囲が最適である。 このルテニゥムの量が少なすぎ る と、 C 0の転化活性が不十分となる場合があ り、 多すぎる と、 ル テニゥムの量に見合う C 0の転化活性が得られず経済的に不利にな る場合がある。  The amount of the component (a) to be carried is not particularly limited, but is usually preferably from 0.05 to 10% by mass, more preferably from 0.3 to 3% by mass, as ruthenium metal relative to the carrier. is there. If the amount of the ruthenium is too small, the conversion activity of C0 may be insufficient.If the amount is too large, the conversion activity of C0 corresponding to the amount of ruthenium cannot be obtained, which is economically disadvantageous. In some cases.
担体にルテニウム化合物を担持処理した後、 乾燥させる。 乾燥方 法と しては、 例えば、 自然乾燥、 ロータ リーエバポレータ一、 送風 乾燥機を使用し 5 0〜 2 0 0 °Cで 0. 5 ~ 2 4時間行えばよい。 本 発明においては、 乾燥後、 3 5 0〜 5 5 0 ° (:、 更に 3 8 0〜 5 5 0 でで、 2〜 6時間、 更に 2〜 4時間焼成するこ と もできるが、 ルテ ニゥム化合物と してルテニゥムの硝酸塩を用いる場合は、 焼成する こ とな く 還元に供するこ とが必要である。  After supporting the ruthenium compound on the support, the support is dried. As a drying method, for example, natural drying, a rotary evaporator, a blow dryer may be used for 0.5 to 24 hours at 50 to 200 ° C. In the present invention, after drying, it can be calcined at 350 to 550 ° (: further at 380 to 550, for 2 to 6 hours, further 2 to 4 hours. When ruthenium nitrate is used as the compound, it must be subjected to reduction without firing.
次いで、 ( b ) 成分の担体への担持処理について説明する。  Next, the process of supporting the component (b) on the carrier will be described.
まず、 アルカ リ金属と しては、 カ リ ウム、 セシウム、 ルビジウム 、 ナ ト リ ウム、 リチウムが好適に用いられる。  First, as the alkali metal, potassium, cesium, rubidium, sodium, and lithium are preferably used.
アルカ リ金属化合物を担持処理するには、 例えば、 K2 Β ,。ひ 16 、 K B r、 Κ Β Γ 0 、 K C N、 Κ C 03 、 K C 1 、 Κ C 1 03 、 Κ C 1 0 、 K F、 Κ Η C 0 、 Κ Η F 、 Κ Η 2 Ρ 04 、 Κ Η 5 (P 04 ) 2 、 KH S〇 4 、 K I、 K I 〇 3 、 K I 04 、 K4 I 0 、 Κ Ν 、 Κ Ν 02 、 Κ Ν 0 、 Κ〇Η、 Κ Ρ F 6 、 Κ 3 ΡTo carry out the alkali metal compound loading treatment, for example, K 2 ,,. Shed 16, KB r, Κ Β Γ 0, KCN, Κ C 0 3, KC 1, Κ C 1 0 3, Κ C 1 0, KF, Κ Η C 0, Κ Η F, Κ Η 2 Ρ 0 4, Κ Η 5 (P 0 4) 2, KH S_〇 4, KI, KI 〇 3, KI 0 4, K 4 I 0, Κ Ν, Κ Ν 0 2, Κ Ν 0, Kappa_〇_Ita, kappa [rho F 6 , Κ 3 Ρ
0 、 K S C N、 Κ 2 S 0 、 Κ S 0 、 Κ S 0 、 Κ S 0 、 Κ S 0 、 Κ S 0 、 Κ ( C Η C 00 ) 等の 塩 : C s C l 、 C s C 1 03 、 C s C 1 0 、 C s H C 03 、 C s I、 C s N 03 、 C s S 0 、 C s ( C H C O O) 、 C s 2 C 0 3 、 C s F等の C s塩 ; R b 2 B , o 0 1 6 R b B r、 R b B r 0 3 、 R b C l 、 R b C 1 0 3 、 P b C l 〇 4 、 R b l 、 R b N 0 3 、 R b 2 S 04 、 R b ( C H 3 C O O ) 2 、 R b 2 C 0 3 等の R b塩 ; N a 2 B 4 07 、 N a B , o 0 , 6 N a B r、 N a B r 0 3 、 N a C N、 N a 2 C 〇 3 、 N a C l 、 N a C 1 0、 N a C 1 0 3 、 N a C 1 04 、 N a F、 N a H C 0 3 、 N a H P 0 3 、 N a 2 H P 0 3 、 N a 2 H P 04 、 N a H 2 P 04 、 N a 3 H P 2 0 6 、 N a 2 H 2 P 2 0 7 、 N a l 、 N a I 0 3 N a I 04 、 N a N 3 、 N a N 02 、 N a N 0 3 、 N a 〇 H、 N a 2 P 0 3 、 N a 3 P 04 、 N a 4 P 2 0 7 、 N a 2 S、 N a S C N、 N a 2 S 0 3 、 N a 2 S 04 、 N a 2 S 2 05 、 N a 2 S 2 06 、 N a ( C H 3 C O O ) 等 の N a塩 ; L i B 02 、 L i 2 B 4 07 、 L i B r、 L i B r 0 3 、 L i 2 C 〇 3 、 し i C l 、 L i C 1 0 a . L i C 1 04 、 L i H C 0 3 、 L i 2 H P 0 3 、 L i I 、 L i N 3 、 L i N H 4 S 04 、 L i N 02 、 L i N 0 3 、 L i O H、 L i S C N、 L i 2 S 04 、 L i 3 V 04 等の L i 塩を水、 エタ ノール等に溶解させて得られる 触媒調製液を用いる。 . 0, KSCN, Κ 2 S 0 , Κ S 0, Κ S 0, Κ S 0, Κ S 0, Κ S 0, Κ (C Η C 00) salts such as: C s C l, C s C 1 03 , C s C 1 0, C s HC 0 3, C s I, C s N 03, C s S 0, C s (CHCOO), C s 2 C R b 2 B, o 0 16 R b B r, R b B r 03, R b C l, R b C 103, P b C l 0 4, R bl, R b N 0 3, R b 2 S 04, R b (CH 3 COO) 2, R b 2 C 0 of 3 such R b salt; N a 2 B 4 07, N a B, o 0, 6 N a B r, N a B r 0 3, N a CN, N a 2 C 〇 3, N a C l, N a C 1 0, N a C 1 0 3, N a C 1 04, N a F, N a HC 0 3, N a HP 0 3, N a 2 HP 0 3, N a 2 HP 04, N a H 2 P 0 4, N a 3 HP 2 0 6, N a 2 H 2 P 2 0 7, N al, N a I 0 3 N a I 0 4, N a N 3, N a N 02, N a N 0 3, N a 〇 H, N a 2 P 0 3 , N a 3 P 0 4, N a 4 P 2 0 7, N a 2 S, N a SCN, N a 2 S 0 3, N a 2 S 04, N a 2 S 2 05, N a 2 S 2 0 6, N N a salt such as a (CH 3 COO); L i B 0 2, L i 2 B 4 0 7, L i B r, L i B r 0 3, L i 2 C 〇 3, and i C l, L i C 1 0 a. L i C 1 0 4, L i HC 0 3, L i 2 HP 0 3, L i I, L i N 3, L i NH 4 S 0 4, L i N 02, L i N 0 3, L i OH , L i SCN, L i 2 S 0 4 And a catalyst preparation obtained by dissolving a Li salt such as Li 3 V04 in water, ethanol or the like. .
アル力 リ土類金属と しては、 ノ リ ウム、 カルシウム、 マグネシゥ ム、 ス ト ロ ンチウムが好適に用いられる。  As the alkaline earth metal, norium, calcium, magnesium, and strontium are preferably used.
アルカ リ土類金属化合物を担持処理するには、 B a B r 2 、 B a ( B r 0 3 ) 2 、 B a C l 2 、 B a ( C l 〇 2 ) 2 、 B a ( C 1 0 3 ) 2 、 B a ( C l 〇 4 ) 2 、 B a I 2 、 B a ( N 3 ) 2 、 B a ( N 02 ) 2 、 B a ( N O 3 ) 2 、 B a ( O H ) 2 、 B a S、 B a STo carry handle alkaline earth metal compound, B a B r 2, B a (B r 0 3) 2, B a C l 2, B a (C l 〇 2) 2, B a (C 1 0 3 ) 2 , B a (C l 〇 4 ) 2 , B a I 2 , B a (N 3 ) 2 , B a (N 02) 2, B a (NO 3 ) 2, B a (OH) 2 , B a S, B a S
2 0 6 、 B a S 4 06 、 B a ( S 0 3 N H 2 ) 2 等の B a塩 ; C a B r 2 、 C a I 2 、 C a C l 2 、 C a ( C 1 0 3 ) 2 、 C a ( I O 2 0 6, B a S 4 06, B a (S 0 3 NH 2) B a salt 2 such as; C a B r 2, C a I 2, C a C l 2, C a (C 1 0 3 ) 2 , C a (IO
3 ) 2 、 C a ( N 02 ) 2 、 C a ( N〇 3 ) 2 、 C a S 04 、 C a S 0 、 C a S 0 、 C a ( S 03 N H 2 ) 2 、 C a ( C H 3 C O O) 、 C a ( H P 0 ) 等の C a塩 ; M g B r 2 、 M g C〇 3 、 M g C l 2 、 M g (C 1 03 ) 2 、 M g I 2 、 M g ( 1 0 3 ) 2 、 M g (N 02 ) 2 、 M g (N 03 ) 2 、 M g S〇 3 、 M g S〇 4 、 M g S 26 、 M g ( C H C〇〇) 2 、 M g (OH) 、 M g ( C 1 0 ) 2 等の M g塩 ; S r B r 2 、 S r C 1 2 、 S r I 、 S r ( N 0 、 S r〇、 S r S 2 03 、 S r S 2 06 、 S r S 06 、 S r ( C H 3 C O 0 ) 2 、 S r (〇H) 2 等の S r塩を水、 エタノール等に溶解させて得られ.る触媒調製液を用い る。 3) 2, C a (N 0 2 ) 2, C a (N〇 3 ) 2 , C a S 0 4 , C a Ca salts such as S 0, C a S 0, C a (S 0 3 NH 2 ) 2 , C a (CH 3 COO), and C a (HP 0); M g B r 2 , M g C〇 3 , M g C l 2, M g (C 1 0 3) 2, M g I 2, M g (1 0 3) 2, M g (N 0 2) 2, M g (N 0 3) 2, M g S_〇 3, M g S_〇 4, M g S 26, M g (CHC_〇_〇) 2, M g (OH) , M g salt such as M g (C 1 0) 2 ; S r B r 2, S r C 1 2 , S r I, S r (N 0, S R_〇, S r S 2 0 3, S r S 2 0 6, S r S 0 6, S r (CH 3 CO 0 2 ) A catalyst preparation solution obtained by dissolving an Sr salt such as 2, Sr (〇H) 2 in water, ethanol or the like is used.
( b ) 成分の担持処理は、 上記触媒調製液を用いて、 通常の含浸 法、 共沈法、 競争吸着法によ り行えばよい。 処理条件は、 特に限定 されないが、 通常、 室温〜 9 0 °Cで 1分〜 1 0時間、 担体を触媒調 製液と接触させればよい。  The component (b) may be supported by a usual impregnation method, a coprecipitation method, or a competitive adsorption method using the catalyst preparation liquid. The treatment conditions are not particularly limited, but usually, the carrier may be brought into contact with the catalyst preparation solution at room temperature to 90 ° C. for 1 minute to 10 hours.
( b ) 成分の担持量は特に限定されないが、 通常、 担体に対して 金属として 0. 0 1 〜 1 0質量%が好ま しく 、 特に 0. 0 3〜 3質 量%の範囲が最適である。 その量が少なすぎると、 C Oの選択的酸 化活性が不十分となる場合があり、 多すぎても、 C Oの選択的酸化 活性が不十分となるとともに金属の使用量が必要以上に過剰となり 触媒コス トが大き く なる場合がある。  The amount of the component (b) to be carried is not particularly limited, but is generally preferably from 0.01 to 10% by mass as a metal relative to the carrier, and most preferably from 0.03 to 3% by mass. . If the amount is too small, the selective oxidation activity of CO may be insufficient, and if it is too large, the selective oxidation activity of CO will be insufficient and the amount of metal used will be unnecessarily excessive. The catalyst cost may increase.
担体に (b ) 成分を担持した後、 乾燥させる。 乾燥方法としては 、 例えば自然乾燥、 ロータ リーエバポレーター、 送風乾燥機で行え ばよい。 乾燥後、 通常、 3 5 0〜 5 5 0 °C、 更に 3 8 0〜 5 5 0 °C で、 2〜 6時間、 更に 2〜 4時間焼成するこ と もできる。 しかし、 前述のよう に、 使用するルテニウム化合物によっては、 焼成工程を 省略した方がよい場合がある。 すなわち、 硝酸ルテニウムを使用す る場合、 焼成工程を省略することが好ま しい。 After supporting the component (b) on the carrier, the carrier is dried. As a drying method, for example, air drying, a rotary evaporator, or a blow dryer may be used. After drying, baking can be carried out usually at 350 to 550 ° C, further at 380 to 550 ° C, for 2 to 6 hours, and further for 2 to 4 hours. However, as described above, depending on the ruthenium compound used, it may be better to omit the firing step. That is, using ruthenium nitrate In this case, it is preferable to omit the firing step.
なお、 ( a ) 成分と ( b ) 成分の担持は、 別々に行ってもよいが 、 同時に担持した方が触媒活性も高く、 経済的にも有利である。 本発明においては、 乾燥後、 焼成することなく 、 あるいは必要に 応じ焼成した後還元に供することが肝要である。 なお、 ( b ) 成分 を先に担持処理する場合には、 乾燥後、 ( a ) を担持処理し、 乾燥 させ、 必要に応じ焼成工程を各乾燥後に行なえばよい。  The components (a) and (b) may be loaded separately, but they are loaded at the same time because they have higher catalytic activity and are economically advantageous. In the present invention, it is important that the powder is subjected to reduction without drying or firing, if necessary, after firing. In the case where the component (b) is first supported, the component (a) may be subjected to a supporting process after drying, and then, if necessary, a firing step may be performed after each drying.
このよ う にして調製される触媒の形状及びサイズと しては、 特に 制限はなく、 例えば、 粉末状、 球状、 粒状、 ハニカム状、 発泡体状 、 繊維状、 布状、 板状、 リ ング状など、 一般に使用されている各種 の形状及び構造のものが利用可能である。 なお、 たとえば触媒その ものを押出成形等によ り成形してもよいし、 ハニカムゃリ ング状な どの基体に触媒を付着させる方法でもよ く 、 その方法については特 に限定されない。 ' - 本発明は、 また、 無機耐火性担体に少なく ともルテニウム成分を 担持してなる C 0酸化触媒において、 該触媒の断面を、 エレク ト 口 ンプローブ · マイ クロアナ リ シス ( E P M A ) 装置を用いて、 一方 向にルテニゥム原子について線分析測定をして得られる断面幅方向 距離 r (中心から触媒表面までの距離) と X線強度 I との関係を示 す図において、 上記 rがー方の触媒表面一 r 。 から他方の触媒表面 r 0 の間における I ( r ) の積分値 N。 から、 一 2 / 3 r 。 から 2 / 3 r 。 の間における I ( r ) の積分値 N , を減じた値を Nと し、 上記 N。 に対する Nの割合 S = ( N / N。 ) X 1 0 0の値が 5 0以 上であるこ とを特徴とする C 0酸化触媒をも提供するものである。  There is no particular limitation on the shape and size of the catalyst prepared in this way, and examples thereof include powder, spherical, granular, honeycomb, foam, fibrous, cloth, plate, and ring. Various commonly used shapes and structures, such as shapes, can be used. For example, the catalyst itself may be formed by extrusion or the like, or a method of attaching the catalyst to a substrate such as a honeycomb ring may be used, and the method is not particularly limited. '-The present invention also provides a CO oxidation catalyst comprising at least a ruthenium component supported on an inorganic refractory carrier, wherein a cross section of the catalyst is obtained by using an electron probe / microanalysis (EPMA) device. In the figure showing the relationship between the cross-sectional width direction distance r (distance from the center to the catalyst surface) and the X-ray intensity I obtained by performing line analysis measurement on ruthenium atoms in one direction, Surface one r. From N to the other catalyst surface r 0. From one 2/3 r. From 2/3 r. N is the value obtained by subtracting the integrated value N, of I (r) between. The present invention also provides a C0 oxidation catalyst characterized in that the ratio of N to S = (N / N.) X100 is 50 or more.
図 1 に、 上記触媒の一例の断面図及びその幅方向距離と X線強度 の関係を示す。 上記 N Q に対する Nの割合 S = ( N / N Q ) x 1 0 0の値は 5 0 以上であることが必要であるが、 好ま しく は 5 5以上、 更に好ま し く は 7 0以上である。 上記のルテニウム分布を有すること、 すなわ ち、 ルテニゥム成分を担体の外表面側に多く分布きせるこ とによ り 、 担持ルテニウム当たりの触媒活性が著しく優れた C◦酸化触媒が 得られる。 FIG. 1 shows a cross-sectional view of an example of the above catalyst and the relationship between the distance in the width direction and the X-ray intensity. Above the value of N the ratio of N for Q S = (N / N Q ) x 1 0 0 is required to be 5 0 or more, favored properly 5 5 above, rather further favored 7 0 or more is there. By having the above-mentioned ruthenium distribution, that is, by distributing a large amount of ruthenium components to the outer surface side of the support, a C◦ oxidation catalyst having extremely excellent catalytic activity per supported ruthenium can be obtained.
上記担体は、 球状あるいは円柱状の形状を有するものであるこ と が好ま しい。 従って、 本発明における r (中心から触媒表面までの 距離) とは、 担体が球状の場合はその半径をいい、 円柱状である場 合はその底面に平行に切断した断面の半径をいう。 球状及び円柱状 の形状には、 厳密にいう球及び円柱のみならず、 その一部の形状が 変形してはいるが実質的には球及び円柱とみなすことができるもの も包含する。 また、 球状及び円柱状以外の他の形状の担体において も、 上記球状及び円柱状の場合に準じて触媒を調製することによ り 本発明のルテニウム分布を達成するこ とができる。  It is preferable that the carrier has a spherical or columnar shape. Therefore, r (distance from the center to the catalyst surface) in the present invention refers to the radius when the support is spherical, and refers to the radius of the cross section cut parallel to the bottom surface when the support is cylindrical. Spherical and cylindrical shapes include not only strictly spherical and cylindrical shapes but also those which can be regarded as substantially spherical and cylindrical although some of the shapes are deformed. Further, the ruthenium distribution of the present invention can be achieved by preparing a catalyst in a carrier having a shape other than the spherical and cylindrical shapes according to the above-mentioned spherical and cylindrical shapes.
上記 C 0酸化触媒は通常その直径あるいは上記断面の直径が 1 〜 1 O m m、 更に 2 〜 6 m mであることが好ま しい。 触媒の径が上記 範囲よ り小さい場合は、 外表面担持の効果が十分でなく 、 また、 上 記範囲よ り大き.い場合は触媒活性が十分でなく好ま しく ない場合が ある。  The diameter of the above-mentioned C0 oxidation catalyst or the diameter of the above-mentioned cross section is preferably from 1 to 1 Omm, and more preferably from 2 to 6 mm. If the diameter of the catalyst is smaller than the above range, the effect of supporting the outer surface is not sufficient, and if it is larger than the above range, the catalytic activity may not be sufficient and may not be preferable.
上記調製された触媒を反応器に充填した後、 反応前に水素還元を 行う。 水素還元は、 通常、 水素気流下、 4 5 0 〜 5 5 0 °C、 好ま し く は 4 8 0 〜 5 3 0 °Cの温度で、 1 〜 5時間、 好ま しく は 1 〜 2時 間行う。  After charging the prepared catalyst into a reactor, hydrogen reduction is performed before the reaction. Hydrogen reduction is usually carried out under a stream of hydrogen at a temperature of 450-550 ° C, preferably 480-530 ° C, for 1-5 hours, preferably 1-2 hours. Do.
以上のようにして得られる触媒を用いて、 水素を主成分と し、 か つ少なく とも C 0を含有する水素含有ガスに酸素を添加して、 C O の酸素による選択的酸化反応を行う。 本発明の C◦の酸化除去方法 は、 改質反応及び部分酸化反応によって水素を含有するガスにでき る水素製造用原料を改質又は部分酸化するこ とによって得られる水 素を主成分とするガス (以下、 改質ガス等ともいう。 ) 中の C 0を 選択的に除去するのに好適に利用され、 燃料電池用水素含有ガスの 製造に利用されるが、 これに限定されるものではない。 Using the catalyst obtained as described above, adding oxygen to a hydrogen-containing gas containing hydrogen as a main component and at least containing C Selective oxidation reaction with oxygen. The method for oxidizing and removing C◦ of the present invention mainly comprises hydrogen obtained by reforming or partially oxidizing a raw material for hydrogen production that can be converted into a hydrogen-containing gas by a reforming reaction and a partial oxidation reaction. It is suitably used to selectively remove C 0 in gas (hereinafter also referred to as reformed gas, etc.) and is used to produce hydrogen-containing gas for fuel cells, but is not limited to this. Absent.
以下、 水素を主成分とするガス中の C 0を酸化除去して燃料電池 用等の水素含有ガスにする方法について説明する。  Hereinafter, a method of oxidizing and removing C 0 in a gas containing hydrogen as a main component to obtain a hydrogen-containing gas for a fuel cell or the like will be described.
1 . 水素製造用原料の改質又は部分酸化工程  1. Reforming or partial oxidation of raw material for hydrogen production
本発明においては、 各種の水素製造用原料の改質等によって得ら れる改質ガス等に含まれる C◦を触媒を用いて選択的に酸化除去し 、 C 0濃度が十分に低減された所望の水素含有ガスを製造する。 該 改質ガス等を得るための工程は、 以下に示すよ う に、 従来の水素製 造工程、 特に燃料電池システムにおける水素製造工程において実施 あるいは提案されている方法など任意の方法によって行う ことがで きる。 したがって、 予め改質装置等を備えた燃料電池システムにお いては、 それをそのまま利用して改質ガスを調製してもよい。  In the present invention, it is desirable to selectively oxidize and remove C◦ contained in a reformed gas or the like obtained by reforming various raw materials for hydrogen production or the like using a catalyst, so that the C 0 concentration is sufficiently reduced. To produce a hydrogen-containing gas. As described below, the step for obtaining the reformed gas or the like can be performed by any method such as a conventional hydrogen production step, particularly a method implemented or proposed in a hydrogen production step in a fuel cell system. it can. Therefore, in a fuel cell system provided with a reformer or the like in advance, the reformed gas may be prepared by using the reformer as it is.
まず、 水素製造用原料の改質又は部分酸化について説明する。 水 素製造用原料と して、 水蒸気改質ゃ部分酸化によ り水素に富んだガ スを製造できる炭化水素類、 具体的には例えば、 メ 夕ン, エタン, プロパン, ブタ ン等の炭化水素、 あるいは天然ガス ( L N G ) , ナ フサ, ガソ リ ン, 灯油, 軽油, 重油, ァスフアルト等の炭化水素系 原料、 メ タノール, エタノール, プロパノール, ブタノール等のァ ルコ一ル類、 蟻酸メ チル, メチルターシャ リ一ブチルエーテル ( M T B E ) , ジメチルエーテル等の含酸素化合物、 更には、 各種の都 巿ガス、 L P G、 合成ガス、 石炭などを適宜使用するこ とができる 。 これらのうち、 どのような水素製造用原料を用いるかは、 燃料電 池システムの規模や原料の供給事情などの諸条件を考慮して定めれ ばよいが、 通常は、 メ タノール、 メ タンもしく は L N G、 プロパン も しく は L P G、 ナフサもしく は低級飽和炭化水素、 都市ガスなど が好適に使用される。 First, reforming or partial oxidation of a raw material for hydrogen production will be described. Hydrocarbons that can be used to produce hydrogen-rich gas by steam reforming and partial oxidation as raw materials for hydrogen production, for example, hydrocarbons such as methane, ethane, propane, and butane. Hydrogen or natural gas (LNG), naphtha, gasoline, kerosene, light oil, heavy oil, hydrocarbons such as asphalt, alcohols such as methanol, ethanol, propanol, butanol, methyl formate, Oxygenated compounds such as methyl tertiary butyl ether (MTBE) and dimethyl ether, as well as various city gases, LPG, synthesis gas, and coal can be used as appropriate. . Among these, what kind of raw material for hydrogen production should be used should be determined in consideration of various conditions such as the scale of the fuel cell system and the supply situation of the raw material, but usually, methanol and methane are also used. Alternatively, LNG, propane or LPG, naphtha or lower saturated hydrocarbon, city gas, etc. are suitably used.
また一般に、 これらの原料炭化水素中に硫黄分が存在する場合は 、 脱硫工程を通して、 通常、 硫黄分が 0. 1 p p m程度以下になるま で脱硫を行う ことが好ま しい。 原料炭化水素中の硫黄分が 0. 1 p p m程度よ り多く なると、 改質触媒が失活する原因となるこ とがある 。 脱硫方法は特に限定されないが、 水添脱硫, 吸着脱硫などを適宜 用いることができる。  In general, when a sulfur content is present in these raw material hydrocarbons, it is generally preferable to perform desulfurization through the desulfurization step until the sulfur content is reduced to about 0.1 ppm or less. If the sulfur content of the raw material hydrocarbons exceeds about 0.1 ppm, the reforming catalyst may be deactivated. Although the desulfurization method is not particularly limited, hydrodesulfurization, adsorption desulfurization and the like can be used as appropriate.
改質又は部分酸化に属する技術 (以下、 改質反応等ともいう。 ) と しては、 水蒸気改質をはじめ部分酸化、 水蒸気改質と部分酸化の 複合化したもの、 オー トサーマル改質、 その他の改質反応などを挙 げることができる。 通常、 改質反応等としては、 水蒸気改質 (スチ ーム リホーミ ング) が最も一般的であるが、 原料によっては、 部分 酸化やその他の改質反応 (例えば、 熱分解等の熱改質反応、 接触分 解ゃシフ ト反応等の各種接触改質反応など) も適宜適甩することが できる。  Technologies belonging to reforming or partial oxidation (hereinafter also referred to as reforming reaction, etc.) include steam reforming, partial oxidation, combined steam reforming and partial oxidation, autothermal reforming, and others. Such as reforming reactions. Usually, steam reforming (steam reforming) is the most common reforming reaction, but depending on the raw material, partial oxidation or other reforming reactions (for example, thermal reforming reactions such as thermal decomposition) , Various types of catalytic reforming reactions such as catalytic decomposition shift reaction, etc.) can also be appropriately applied.
その際、 異なる種類の改質反応を適宜組み合わせて利用してもよ い。- 例えば、 水蒸気改質反応は一般に吸熱反応であるので、 この吸 熱分を補うべく水蒸気改質反応と部分酸化を組み合わせ (オートザ 一マル改質) てもよいし、 水蒸気改質反応等によって副生する C〇 をシフ ト反応を利用して H 2 0と反応させその一部を予め C 0 2 と H 2 に転化して減少させておく など各種の組み合わせが可能であるIn this case, different types of reforming reactions may be used in appropriate combination. -For example, a steam reforming reaction is generally an endothermic reaction, so a steam reforming reaction and a partial oxidation may be combined (automatic reforming) to compensate for this endothermic component, are possible various combinations, such as previously by utilizing the shift reaction is reduced by converting a part in advance in the C 0 2 and H 2 is reacted with H 2 0 to C_〇 to live
。 無触媒、 または接触的に部分酸化を行った後、 その後段で水蒸気 改質を行う こ ともできる。 この場合、 部分酸化で発生した熱をその まま吸熱反応である水蒸気改質に利用することもできる。 . After non-catalytic or catalytic partial oxidation, steam Reforming can also be performed. In this case, the heat generated by the partial oxidation can be used as it is for steam reforming, which is an endothermic reaction.
以下、 代表的な改質反応として水蒸気改質反応を中心に説明する このような改質反応は、 一般に、 水素の収率ができるだけ大き く なるように、 触媒や反応条件等を選定するが、 C Oの副生を完全に 抑制するこ とは困難であり、 たとえシフ ト反応を利用しても改質ガ ス中の C◦濃度の低減には限界がある。 実際、 メ タン等の炭化水素 の水蒸気改質反応については、 水素の得率及び C Oの副生の抑制の ために、 次の式 ( 2 ) あるいは式 ( 3 ) :  In the following, a description will be given mainly of a steam reforming reaction as a typical reforming reaction. In such a reforming reaction, catalysts and reaction conditions are generally selected so as to maximize the hydrogen yield. It is difficult to completely suppress the by-product of CO, and there is a limit to the reduction of the C◦ concentration in reformed gas even if the shift reaction is used. In fact, for the steam reforming reaction of hydrocarbons such as methane, the following formula (2) or (3) can be used to reduce the yield of hydrogen and the by-product of CO:
C H 4 + 2 H 2 0→ 4 H 2 + C 0 2 ( 2 ) CH 4 + 2 H 2 0 → 4 H 2 + C 0 2 (2)
C n H m + 2 n H 2 〇→ ( 2 n + m / 2 ) H 2 + n C 0 2 ( 3 ) で表される反応ができるだけ選択性よく起こるように諸条件を選定 するのが好ま しい。 C n H m + 2 n H 2 〇 → (2 n + m / 2) It is preferable to select various conditions so that the reaction represented by H 2 + n C 0 2 (3) occurs as efficiently as possible. New
また、 同様に, メ タ ノールの水蒸気改質反応については、 次の式 ( 4 ) :  Similarly, for the steam reforming reaction of methanol, the following equation (4):
C H 3 0 H + H 2 0 → 3 H 2 + C〇 2 ( 4 ) で表される反応ができるだけ選択性よく起こるように諸条件を選定 するのが好ま しい。 It is preferable to select various conditions so that the reaction represented by CH 3 0 H + H 2 0 → 3 H 2 + C 2 (4) occurs as efficiently as possible.
更に、 C Oを前記 ( 1 ) 式で表されるシフ ト反応を利用して変成 改質しても、 このシフ ト反応は平衡反応であるのでかなりの濃度の Furthermore, even if CO is reformed and reformed using the shift reaction represented by the above formula (1), since this shift reaction is an equilibrium reaction, a considerable concentration of CO is obtained.
C 0が残存する。 したがって、 こう した反応による改質ガス等 (本 発明の原料である水素含有ガス、 以下同じ) 中には、 多量の水素の 他に C 0 2 や未反応の水蒸気等と若干の C◦が含まれることになる 前記改質反応に有効な触媒と しては、 原料 (燃料) の種類や反応 の種類あるいは反応条件等に応じて多種多様なものが知られている 。 その中のいくつかを具体的に例示すると、 炭化水素やメ タノール 等の水蒸気改質に有効な触媒と しては.、 例えば、 C u— Z n 0系触 媒、 C u— C r 2 0 系触媒、 担持 N i 系触媒、 C u— N i — Z n 0系触媒、 C u— N i — M g O系触媒、 P d— Z n 0系触媒などを 挙げることができ、 また、 炭化水素類の接触改質反応や部分酸化に 有効な触媒と しては、 例えば、 担持 P t系触媒、 担持 N i 系触媒、 担持 R u系触媒などを挙げることができる。 改質装置としても特に 制限はなく、 従来の燃料電池システム等に常用されるものなど任意 の形式のものが適用可能であるが、 水蒸気改質反応や分解反応等の 多く の改質反応は吸熱反応であるので、 一般に、 熱供給性のよい反 応装置もしく は反応器 (熱交換器型の反応装置など) が好適に使用 される。 そのような反応装置と しては、 例えば、 多管型反応器、 プ レー ト フィ ン型反応器などがあり、 熱供給の方式としては、 例えば 、 バーナー等による加熱、 熱媒による方法、 部分酸化を利用する触 媒燃焼による加熱などがあるが、 これらに限定されるものではない 。 改質反応の反応条件は、 用いる原料、 改質反応、 触媒、 反応装置 の種類あるいは反応方式等の他の条件によって異なるので適宜定め ればよい。.いずれにしても、 原料 (燃料) の転化率を十分に (好ま しく は 1 0 0 %あるいは 1 0 0 %近く まで) 大きく し、 かつ、 水素 の得率ができるだけ大きく なるように諸条件を選定するのが望ま し い。 また、 必要に応じて、 未反応の炭化水素やアルコール等を分離 しリサイ クルする方式を採用してもよい。 また、 必要に応じて、 生 成したあるいは未反応の C 0 や水分等を適宜除去してもよい。C 0 remains. Therefore, (the raw material is hydrogen-containing gas of the present invention, hereinafter the same) reformed gas due to said reaction into, contains a large amount in addition to C 0 2 and unreacted steam, etc. and some C◦ hydrogen The effective catalyst for the reforming reaction is the type of raw material (fuel) and the reaction. A wide variety are known according to the type of the compound or the reaction conditions. Specific examples of some of them include catalysts that are effective for steam reforming of hydrocarbons, methanol, and the like. For example, Cu—Zn0-based catalysts, Cu—Cr 2 0-based catalyst, supported Ni-based catalyst, Cu—Ni—Zn0-based catalyst, Cu—Ni—MgO-based catalyst, Pd—Zn0-based catalyst, and the like. Examples of the catalyst effective for the catalytic reforming reaction and partial oxidation of hydrocarbons include a supported Pt-based catalyst, a supported Ni-based catalyst, and a supported Ru-based catalyst. There is no particular limitation on the reformer, and any type of reformer, such as those commonly used in conventional fuel cell systems, can be applied, but many reforming reactions such as steam reforming reaction and decomposition reaction are endothermic. Since the reaction is a reaction, generally, a reaction device or a reactor (heat exchanger type reaction device or the like) having a good heat supply property is suitably used. Examples of such a reactor include a multitubular reactor, a plate-fin reactor, and the like. Examples of the heat supply method include heating using a burner, a method using a heating medium, and a partial heating method. There is heating by catalytic combustion using oxidation, and the like, but is not limited thereto. The reaction conditions for the reforming reaction vary depending on the raw materials used, the reforming reaction, the catalyst, the type of the reaction apparatus, the reaction system, and other conditions, and may be appropriately determined. In any case, the conditions should be such that the conversion of the feedstock (fuel) is sufficiently high (preferably to 100% or close to 100%) and the hydrogen yield is as high as possible. It is desirable to select one. If necessary, a method of separating and recycling unreacted hydrocarbons and alcohols may be adopted. If necessary, generated or unreacted C 0 and water may be appropriately removed.
2 . C Oの選択的酸化除去工程 2. Selective oxidation removal process of CO
上記のよ う にして、 水素含有量が多く 、 かつ、 炭化水素やアルコ ール等の水素以外の原料成分が十分に低減された所望の改質ガスを 得る。 As described above, the hydrogen content is high, and hydrocarbons and alcohols To obtain a desired reformed gas in which raw material components other than hydrogen such as hydrogen are sufficiently reduced.
本発明においては、 水素を主成分と し少量の C◦を含む原料ガス (改質ガス等) に酸素を添加して C 0を選択的に酸化して C 0 2 と するものであり、 水素の酸化は極力抑える必要がある。 また、 生成 したり、 原料ガス中に存在した C 0 2 の C Oへの転化反応 (原料ガ ス中には水素が存在するので、 逆シフ ト反応が起こる可能性がある 。 ) を抑えるこ とも必要である。 本発明に係る触媒は、 通常、 還元 状態で使用されるので、 還元状態になつていない場合は水素等によ る還元操作を行っておく ことが好ま しい。 この触媒を使用すると、In the present invention, it is intended to be C 0 2 by selectively oxidizing the C 0 by adding oxygen to the source gas (reformed gas) containing C◦ a small amount as a main component, hydrogen Oxidation must be minimized. Further, generation or, (because in the feed gas hydrogen is present, there is a possibility that the reverse shift reaction occurs.) C 0 conversion reaction to 2 of CO was present in the feed gas this both to suppress is necessary. Since the catalyst according to the present invention is usually used in a reduced state, it is preferable to perform a reduction operation with hydrogen or the like when not in a reduced state. With this catalyst,
C 0 2 含有量の低い原料ガスに対して C◦の選択的酸化除去に良好 な成績を示すこ とは勿論、 C 0 2 含有量が多い条件でも良好な成績 が得られる。 通常、 燃料電池システムにおいては一般的な C 0 2 の 濃度の改質ガス等、 すなわち、 C◦ 2 を 5 〜 3 3容量%、 好ま しく は 1 0 〜 2 5容量%、 更に好ま しく は 1 5 〜 2 0容量%含有するガ スが用いられる。 - 一方、 水蒸気改質等によ り得られる原料ガス中には、 通常、 スチ —ムが存在するが、 原料ガス中のスチーム濃度は低い方がよい。 通 常は、 5 〜 3 0容量0 /0程度含まれており この程度であれば問題はな い o C 0 course and this show good results against 2 content of less raw material gas to the selective oxidation removal of C◦, good results can be obtained even with C 0 2 content is more conditions. Usually, the reformed gas of a typical C 0 2 concentration in the fuel cell system or the like, i.e., C◦ 2 5 to 3 3 volume%, preferred properly 1 0-2 5 volume%, more preferred properly 1 Gas containing 5 to 20% by volume is used. -On the other hand, steam is usually present in the raw material gas obtained by steam reforming, etc., but the lower the steam concentration in the raw material gas, the better. Usually from 5 to 3 0 capacity 0/0 If this degree has been included degree problem is not the name o
また、 本発明に係る触媒を使用すると、 C 0濃度が低い ( 0 . 6 容量%以下) 原料ガス中の C 0濃度も有効に低減でき、 C O濃度が 比較的高い ( 0 . 6 〜 2 . 0容量%) 原料ガス中の C 0も好適に低 減するこ とができる。  Further, when the catalyst according to the present invention is used, the C 0 concentration in the raw material gas having a low C 0 concentration (0.6% by volume or less) can be effectively reduced, and the CO concentration is relatively high (0.6 to 2.6%). (0% by volume) C 0 in the source gas can also be suitably reduced.
本発明においては、 前記の触媒を用いるこ とによ り原料ガス中に In the present invention, the use of the catalyst described above allows
C 0 2 が 1 5容量%以上存在するような条件でも 6 0 〜 3 0 0 °C と いう比較的高い温度を含む.温度域において C◦の選択転化除去を効 率的に行う こ とができる。 また、 C 0の転化除去反応は同時に起こ る副反応の水素の酸化反応と同様、 発熱反応であり、 そこで発熱し た熱を回収して燃料電池内で活用することは発電効率を向上させる 上で効果がある。 Even under conditions where C 0 2 is present at 15% by volume or more, the temperature is 60 to 300 ° C. In this temperature range, the selective conversion and removal of C◦ can be performed efficiently. In addition, the conversion and removal reaction of C 0 is an exothermic reaction like the oxidation reaction of hydrogen, which occurs at the same time, and the recovery of the generated heat and utilization in the fuel cell improves the power generation efficiency. Is effective.
改質ガス等に酸素ガスを添加する場合、 通常、 純酸素 ( 02 ) 、 空気あるいは酸素富化空気が好適に使用される。 該酸素ガスの添加 量は、 〇 2 /C 0 (モル比) が好ま しく は、 0. 5〜 5、 更に好ま しく は 1 〜 4 となるように調整するのが適当である。 この比が小さ いと C 0の除去率が低く なり、 大きいと水素の消費量が多く なり過 ぎて好ま しく ない。 When adding oxygen gas to the reformed gas or the like, usually, pure oxygen (0 2), air or oxygen-enriched air is preferably used. The addition amount of the oxygen gas is suitably adjusted so that 〇 2 / C 0 (molar ratio) is preferably 0.5 to 5, and more preferably 1 to 4. If this ratio is too small, the removal rate of C0 will be low, and if it is too large, the consumption of hydrogen will be too high, which is not preferred.
反応圧力は特に限定されないが、 燃料電池の場合は通常、 常圧〜 I M P a ( G a u g e ) 、 好ま しく は常圧〜 0. 5 M P a ( G a u g e ) の圧力範囲で行う。 反応圧力をあま り高く設定すると、 昇圧 のための動力をその分大き くする必要があるので経済的に不利にな る し、 特に、 I M P a ( G a u g e ) を超えると高圧ガス取締法の 規制を受けるし、 また、 爆発限界が広がるので安全性が低下すると いう問題も生じる。 前記反応は、 通常、 6 0 °C以上、 好ま しく は、 6 0 〜 3 0 0 °C という非常に広い温度範囲で、 C 0転化反応に対す る選択性を安定的に維持しつつ、 好適に行う こ とができる。 この反. 応温度が 6 0 °C未満では反応速度が遅ぐなるので実用的な G H S V (ガス体積空間速度) の範囲では C Oの除去率 (転化率) が不十分 とな りやすい。  The reaction pressure is not particularly limited, but in the case of a fuel cell, the reaction is usually carried out within a pressure range from normal pressure to IMPa (Gauge), preferably from normal pressure to 0.5 MPa (Gauge). If the reaction pressure is set too high, it is economically disadvantageous because it is necessary to increase the power for the pressure increase, and in particular, if the reaction pressure exceeds IMP a (Gauge), the regulation of the High Pressure Gas Control Law will be imposed. In addition, there is a problem that the safety is reduced because the explosion limit is widened. The reaction is generally carried out in a very wide temperature range of 60 ° C. or more, preferably 60 to 300 ° C., while maintaining the selectivity to the C 0 conversion reaction stably. Can be performed at any time. If the reaction temperature is lower than 60 ° C, the reaction rate becomes slow, so that the CO removal rate (conversion rate) tends to be insufficient within the practical range of GHSV (gas volume space velocity).
また、 前記反応は、 通常、 G H S Vを 5 , 0 0 0〜 1 0 0 , 0 0 0 h r 1の範囲に選定して行うのが好適である。 ここで、 G H S V を小さ く すると多量の触媒が必要となり、 一方、 G H S Vをあま り 大き く すると C Oの除去率が低下する。 好ま しく は、 6 , 0 0 0 〜 6 0 , 0 0 0 h r 'の範囲に選定する。 この C Oの転化除去の工程 における C ◦の転化反応は発熱反応であるため、 反応によ り触媒層 の温度は上昇する。 触媒層の温度が高く なりすぎると、 通常、 触媒 の C◦転化除去の選択性が悪化する。 このため、 少量の触媒上であ ま り多く の C 0を短時間で反応させることは好ま しく ない。 その意 味からも G H S Vは大きすぎない方がよい場合もある。 Further, the reaction is suitably carried out by selecting the normal, the GHSV to 5, 0 0 0-1 0 0 0 0 0 range hr 1. Here, when the GHSV is reduced, a large amount of catalyst is required, while the GHSV is reduced. Larger values decrease the CO removal rate. Preferably, it is selected in the range of 6,000 to 600,000 hr '. Since the C • conversion reaction in the CO conversion removal process is an exothermic reaction, the reaction raises the temperature of the catalyst layer. If the temperature of the catalyst layer is too high, the selectivity of the catalyst for C◦ conversion is usually deteriorated. For this reason, it is not preferable to react a large amount of C 0 on a small amount of catalyst in a short time. For this reason, it may be better not to make GHSV too large.
この C 〇の転化除去に用いる反応装置と しては、 特に制限はなく 、 上記の反応条件を満たせるものであれば各種の形式のものが適用 可能であるが、 この転化反応は発熱反応であるので、 温度制御を容 易にするために反応熱の除去性のよい反応装置もしく は反応器を用 いることが望ま しい。 具体的には、 例えば、 多管型、 あるいは、 プ レー トフィ ン型等の熱交換型の反応器が好適に使用される。 場合に よっては、 冷却媒体を触媒層内に循環したり、 触媒層の外側に冷却 媒体を流通させたりする方法を採用することができる。  The reactor used for the conversion and removal of C に is not particularly limited, and various types can be used as long as the above reaction conditions can be satisfied, but this conversion reaction is an exothermic reaction. Therefore, in order to facilitate temperature control, it is desirable to use a reactor or a reactor having good removability of reaction heat. Specifically, for example, a heat exchange type reactor such as a multi-tube type or a plate-fin type reactor is suitably used. Depending on the case, a method of circulating the cooling medium in the catalyst layer or flowing the cooling medium outside the catalyst layer can be adopted.
なお、 本発明においては、 上記 C◦選択的酸化除去工程に代えて 、 あるいはその前あるいは後に C 0のメ タン化反応による除去工程 を設けるこどができる。  In the present invention, it is possible to provide a step of removing C 0 by a methane conversion reaction instead of, before, or after the step of selectively oxidizing and removing C.
すなわち、 最近 C Oを水素でメ タネ一シヨ ン (以下、 メ タン化と もいう。 ) するこ とによ り メ タ ンに変換する方法が見直されている 。 例えば、 特開平 3 — 9 3 6 0 2号公報、 特開平 1 1 — 8 6 8 9 2 号公報には、 R u /ァ —アルミ ナ触媒と、 C Oを含有する水素ガス を接触させる方法が開示されている。 しかし、 水素ガスに二酸化炭 素が含まれている場合、 副反応である二酸化炭素のメ タン化反応も 起こ り、 それだけ水素が消費され望ま しく ない。 したがって、 主反 応である C Oのメ タン化反応の選択率の高い触媒の開発が望まれて いた。 In other words, recently, a method of converting CO into methane by metasizing it with hydrogen (hereinafter, also referred to as methane) has been reviewed. For example, JP-A-3-9362 and JP-A-11-86892 disclose a method of contacting a Ru / a-alumina catalyst with a hydrogen gas containing CO. It has been disclosed. However, when hydrogen gas contains carbon dioxide, a methane conversion reaction of carbon dioxide, which is a side reaction, also occurs, and hydrogen is consumed correspondingly, which is not desirable. Therefore, the development of a catalyst with high selectivity for the main reaction of CO methane conversion is desired. Was.
上記 C◦のメ タ ン化反応による除去工程は、 上記 C◦選択的酸化 除去触媒と して用いた触媒と同様のもの、 すなわち、 ルテニウムの 硝酸塩 ( a ) 'を耐火性無機酸化物担体に担持処理後乾燥させ、 焼成 を行う こ となく 、 還元してなる触媒を用いる こ とができる。 該触媒. は、 主反応である一酸化炭素のメ タネーシ ヨ ン反応の選択率の高い水 素含有ガス中の一酸化炭素除去触媒である。  The step of removing C◦ by the methanation reaction is the same as the catalyst used as the above-mentioned catalyst for selective oxidation and removal of C◦, that is, the nitrate (a) ′ of ruthenium is applied to the refractory inorganic oxide carrier. It is possible to use a reduced catalyst without drying after the supporting treatment and calcination. The catalyst is a catalyst for removing carbon monoxide in a hydrogen-containing gas having a high selectivity in a metathesis reaction of carbon monoxide, which is a main reaction.
C〇のメ タ ン化反応による除去は、 上記 C◦選択的酸化除去工程 における反応条件とほぼ同様の条件で行なう こ とができるが、 反応 温度は、 通常、 1 0 0〜 3 5 0 °C、 好ま しく は、 1 5 0 ~ 3 0 0 °C という非常に広い温度範囲で、 C 0のメ タ ン反応に対する選択性を 安定的に維持しつつ、 好適に行う こ とができる。 この反応温度が 1 0 0 t未満では反応速度が遅く なるので実用的な G H S V (ガス体 積空間速度) の範囲では C Oの除去率 (転化率) が不十分とな りや すい。 また、 3 5 0 °Cを超える と、 選択性が低下し、 すなわち C 0 2 のメ タ ン化が起きやすく な り好ま しく ない。  The removal of C〇 by the methanation reaction can be carried out under almost the same conditions as the reaction conditions in the above-mentioned selective oxidation removal step of C◦, but the reaction temperature is usually 100 to 350 °. C, preferably, in a very wide temperature range of 150 to 300 ° C., it can be suitably carried out while maintaining the selectivity of C 0 to the methane reaction stably. If the reaction temperature is lower than 100 t, the reaction rate becomes slow. Therefore, the CO removal rate (conversion rate) tends to be insufficient within a practical range of GH SV (gas space velocity). On the other hand, when the temperature exceeds 350 ° C., the selectivity decreases, that is, C 02 becomes more likely to form a methanation, which is not preferable.
上記 C◦のメ タ ン化反応による除去工程を行なう場合、 その前あ るいは後に C 0選択的酸化除去工程を行なう こ と もできるが、 その 場合、 該 C 0選択的酸化除去工程では、 触媒と して、 P t /アルミ ナ、 P t / S n 02 、 P t /C、 C o /T i 02 、 P d /アルミ ナ、 R uZアルミ ナ、 R u— K /アルミナ等を使用するこ とができ る。 また、 その反応条件と して、 通常、 温度 6 0〜 3 0 0 °C、 圧力 常圧〜 I M P a ( G a u g e ) 、 02 /C O (モル比) 0. 5〜 5 、 G H S V 5 , 0 0 0〜 1 0 0 , 0 0 0 h r 1の範囲が採用される こ う して本発明によって製造された水素含有ガスは、 上記のよう に C◦濃度が十分に低減されているので燃料電池の白金電極触媒の 被毒及び劣化を十分に低減することができ、 その寿命及び発電効率 - 発電性能を大幅に向上するこ とができる。 また、 この C Oの転化 反応によ り発生した熱を回収することも可能である。 また、 比較的 高濃度の C◦を含む水素含有ガス中の C 0濃度を十分に低下するこ とができる。 燃料電池用の水素含有ガス中の C◦濃度は 1 0 0 p p m以下、 好ま しく は 5 0 p p m以下、 さ らに好ま しく は 1 O p p m 以下であることが望ま しいが、 本発明によれば広い反応条件下でこ れを達成することは十分可能である。 When performing the step of removing C◦ by the methanation reaction, a C0 selective oxidation removal step may be performed before or after the removal step.In that case, however, in the C0 selective oxidation removal step, as a catalyst, P t / alumina, P t / S n 0 2 , P t / C, C o / T i 02, P d / alumina, R UZ alumina, the R u- K / alumina Can be used. Also, as the reaction conditions, normally temperature 6 0~ 3 0 0 ° C, pressure atmospheric pressure ~ IMP a (G auge), 0 2 / CO ( molar ratio) 0. 5~ 5, GHSV 5, 0 The hydrogen-containing gas produced according to the present invention by adopting the range of 0 to 100,000 hr 1 is as described above. In addition, since the C◦ concentration is sufficiently reduced, the poisoning and deterioration of the platinum electrode catalyst of the fuel cell can be sufficiently reduced, and the life and power generation efficiency-power generation performance can be greatly improved. It is also possible to recover the heat generated by this CO conversion reaction. In addition, the CO concentration in the hydrogen-containing gas containing a relatively high concentration of C◦ can be sufficiently reduced. According to the present invention, it is desirable that the C◦ concentration in the hydrogen-containing gas for a fuel cell be 100 ppm or less, preferably 50 ppm or less, and more preferably 1 O ppm or less. It is quite possible to achieve this under a wide range of reaction conditions.
本発明によ り得られた水素含有ガスは、 各種の水素一酸素燃料電 池の燃料と して好適に使用することができ、 特に、ノ少なく とも燃料 極 (負極) の電極に白金 (白金触媒) を用いるタイプの各種の水素 一酸素燃料電池 (リ ン酸型燃料電池、 K O H型燃料電池、 固体高分 子型燃料電池をはじめとする低温作動型燃料電池など) への供給燃 料と して有利に利用することができる。  The hydrogen-containing gas obtained by the present invention can be suitably used as a fuel for various hydrogen-oxygen fuel cells, and in particular, platinum (platinum) is used for at least the fuel electrode (negative electrode). Fuel to various types of hydrogen-oxygen fuel cells (such as phosphoric acid fuel cells, KOH fuel cells, and solid polymer fuel cells, etc.) It can be used advantageously.
本発明の方法によれば、 触媒活性が改良された水素含有ガス中の C 0除去触媒を製造することができる。  ADVANTAGE OF THE INVENTION According to the method of this invention, the C0 removal catalyst in a hydrogen-containing gas with improved catalytic activity can be produced.
次に、 本発明を実施例によ り更に具体的に説明するが、 本発明は これらの実施例になんら制限されるものではない。  Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
実施例 1 Example 1
硝酸ルテユウム水溶液 ( R uの含有量 ; 5 0 g /リ ッ トル) 2 c c を全体でアルミナ担体の吸水量になるように水を加えて含浸液と した。 次いで、 細孔半径 1 9人に細孔分布の極大値を有するァ―ァ ルミナ粉末 1 0 gに上記含浸液を含浸させ 1 2 0 tで 2時間乾燥さ せ触媒 1 を得た。 R uの担持量は 1 . 0質量% (担体基準) であつ た。 実施例 2 Water was added to 2 cc of an aqueous solution of ruthenium nitrate (Ru content; 50 g / liter) so that the water absorption of the alumina carrier as a whole was obtained to obtain an impregnating liquid. Next, 10 g of an alumina powder having a maximum value of the pore distribution in 19 pore radii was impregnated with the above impregnating liquid, and dried at 120 t for 2 hours to obtain a catalyst 1. The supported amount of Ru was 1.0% by mass (based on the carrier). Example 2
実施例 1 において、 ァ—アルミナを細孔半径 2 9 人に細孔分布の 極大値を有するものに変えたこと以外は同様にして触媒 2 を得た。  Catalyst 2 was obtained in the same manner as in Example 1, except that the alumina was changed to one having a maximum value of the pore distribution in 29 pore radii.
^ 1の担持量は 1 . 0質量% (担体基準) であった。 The supported amount of ^ 1 was 1.0% by mass (based on the carrier).
実施例 3 Example 3
硝酸ルテニウム水溶液 ( R uの含有量 : 5 0 g /リ ッ トル) 2 c c及び硝酸力 リ ウム 0 . 0 2 6 gを全体でアルミナ担体の吸水量に なるように水を加えて含浸液とした。 次いで、 細孔半径 1 9 人に細 孔分布の極大値を有するァ一アルミナ粉末 1 0 gに上記含浸液を含 浸させ 1 2 0 °Cで 2時間乾燥させ触媒 3 を得た。 R uの担持量は 1 . 0質量% (担体基準) であり、 Kの担持量は 0. 1質量% (担体 基準) であった。  2 cc of ruthenium nitrate aqueous solution (Ru content: 50 g / liter) and 0.026 g of lithium nitrate were added to water so that the total water absorption of the alumina carrier was attained, and the impregnation liquid was added. did. Then, the impregnating solution was impregnated into 10 g of monoalumina powder having a pore distribution maximum value in a pore radius of 19 persons and dried at 120 ° C. for 2 hours to obtain a catalyst 3. The supported amount of Ru was 1.0% by mass (based on the carrier), and the supported amount of K was 0.1% by mass (based on the carrier).
実施例 4 Example 4
硝酸ルテニウム水溶液 ( R uの含有量 ; 5 0 g /リ ッ トル) 2 c c を全体でアルミナ担体の吸水量になるように水を加えて含浸液と した。 次いで、 細孔半径 1 9人に細孔分布の極大値を有するァ―ァ ルミナ粉末 1 0 gに上記含浸液を含浸させ 1 2 0 °Cで 2時間乾燥さ せた後、 5 0 0 °Cで 4時間焼成し触媒 4 を得た。 811の担持量は 1 . 0質量% (担体基準) であった。  Ruthenium nitrate aqueous solution (Ru content: 50 g / liter) 2 cc was added with water so that the water absorption of the alumina carrier as a whole was obtained to obtain an impregnation liquid. Then, after impregnating the impregnating solution with 10 g of the alumina powder having a pore distribution maximum value in a pore radius of 19 persons and drying at 120 ° C. for 2 hours, 500 ° C. Calcination was performed for 4 hours at C to obtain Catalyst 4. The supported amount of 811 was 1.0% by mass (based on the carrier).
実施例 5 Example 5
実施例 4 において、 j 一アルミナを細孔半径 2 9人に細孔分布の 極大値を有するものに変えたこ と以外は同様にして触媒 5 を得た。  Catalyst 5 was obtained in the same manner as in Example 4, except that j-alumina was changed to one having a maximum value of the pore distribution at a pore radius of 29.
1^ 1の担持量は 1 .. 0質量% (担体基準) であった。 The supported amount of 1 ^ 1 was 1.0.0% by mass (based on the carrier).
比較例 1 Comparative Example 1
実施例 4 において、 ァ—アルミナを細孔半径 2 0 0人に細孔分布 の極大値を有するものに変えたこ と以外は同様にして触媒 6 を得た 。 1^ 11の担持量は 1 . 0質量% (担体基準) であった。 Catalyst 6 was obtained in the same manner as in Example 4, except that alumina was changed to one having a maximum value of the pore distribution in 200 pore radii. . The supported amount of 1 ^ 11 was 1.0% by mass (based on the carrier).
実施例 6 Example 6
塩化ルテユウム (水和物) ( R uの含有量 ; 3 9 . 1 5質量0 /0) 0 . 2 5 5 4 gをアルミナ担体の吸水量分の水に溶解させ含浸液と した。 次いで、 細孔半径 1. 9入に細孔分布の極大値を有するァーァ ルミナ粉末 1 0 gに上記含浸液を含浸させ 1 2 0 °Cで 2時間乾燥さ せ 媒 7 を得た。 R uの担持量は 1 . 0質量% (担体基準) であつ た。 Ruteyuumu chloride (hydrate). (The content of R u;. 3 9 1 5 mass 0/0) 0 2 5 5 4 g was impregnated liquid was dissolved in water amount of water in the alumina support. Next, 10 g of an alumina powder having a maximum value of pore distribution with a pore radius of 1.9 was impregnated with the above impregnating liquid, and dried at 120 ° C. for 2 hours to obtain a medium 7. The supported amount of Ru was 1.0% by mass (based on the carrier).
実施例 7 Example 7
塩化ルテニウム (水和物) ( R uの含有量 ; 3 9 . 1 5質量%) 0 . 2 5 5 4 gをアルミナ担体の吸水量分の水に溶解させ含浸液と した。 次いで、 細孔半径 1 9人に細孔分布の極大値を有するァーァ ルミナ粉末 1 0 gに上記含浸液を含浸させ 1 2 0 °Cで 2時間乾燥さ せた後、 5 0 0 °Cで 4時間焼成し触媒 8 を得た。 R υの担持量は 1 . 0質量% (担体基準) であった。  Ruthenium chloride (hydrate) (Ru content: 39.15% by mass) 0.2554 g was dissolved in water equivalent to the amount of water absorbed by the alumina carrier to obtain an impregnating liquid. Next, 10 g of alumina powder having a pore distribution maximum value in a pore radius of 19 persons was impregnated with the above impregnating liquid, dried at 120 ° C for 2 hours, and then dried at 500 ° C. After calcining for 4 hours, catalyst 8 was obtained. The supported amount of Rυ was 1.0% by mass (based on the carrier).
実施例 8 Example 8
実施例 1 において、 ァ —アルミ ナを細孔半径 2 0 0 人に細孔分布 の極大値を有するものに変えたこと以外は同様にして触媒 9 を得た 。 R uの担持量は l . 0質量% (担体基準) であった。  Catalyst 9 was obtained in the same manner as in Example 1, except that α-alumina was changed to one having a maximum value of the pore distribution in 200 pore radii. The supported amount of Ru was 1.0% by mass (based on the carrier).
比較例 2 Comparative Example 2
実施例 7 において、 ァ —アルミ ナを細孔半径 2 0 0 人に細孔分布 の極大値を有するものに変えたこ と以外は同様にして触媒 1 0 を得 た。 1? 11の担持量は 1 . 0質量% (担体基準) であった  A catalyst 10 was obtained in the same manner as in Example 7, except that the iron alumina was changed to one having a maximum value of the pore distribution for 200 pore radii. The loading of 1 to 11 was 1.0% by mass (based on the carrier)
実施例 9 Example 9
ルチル型チタニア粉末 (石原産業社製、 C R _ E L ) 1 6 0 g と 擬ベーマイ トアルミ ナ粉末 (触媒化成工業社製、 C a t a 1 0 i d - A P ) 5 9 . 7 gをビーカ一中でよく混合した後、 混練機に入れ た。 そこにイオン交換水を加え、 充分混練し、 かつ温度をかけて、 押出成形に適当な固さに水分を調整した。 これに押出成形機を用い て直径 2 m mの円柱状に成形し、 1 2 0 °C、 2 4時間乾燥させ、 続 いて、 5 0 0 ° (:、 2 4時間焼成した。 この時擬ベーマイ トアルミ ナ はァーアルミナに変化し、 その細孔半径 2 5 Aに細孔分布の極大値 を有していた。 この成形体のチタニア/アルミナの質量比は 8 0 / 2 0であった。 Rutile type titania powder (Ishihara Sangyo Co., Ltd., CR_EL) 160 g and pseudo-boehmite alumina powder (Catalyst Chemical Co., Ltd., Cata 10 id -AP) 59.7 g was mixed well in a beaker and then put into a kneader. Ion-exchanged water was added thereto, and the mixture was sufficiently kneaded and heated to adjust the water content to an appropriate hardness for extrusion. This was formed into a cylindrical shape having a diameter of 2 mm using an extruder, dried at 120 ° C. for 24 hours, and subsequently baked at 500 ° (: 24 hours. Toalumina was converted to iron alumina, and had a maximum value of the pore distribution at a pore radius of 25 A. The mass ratio of titania / alumina in this molded product was 80/20.
上記成形体 (担体) を 0 . 5 〜 l c mの長さに揃えたものに以下 の方法でルテニウムと力 リ ゥムを担持した。  Ruthenium and a force rim were supported on the molded product (carrier) having a length of 0.5 to lcm by the following method.
塩化ルテニウム ( R u含有量 ; 3 8 . 0 3質量%) 0 . 2 6 3 g 及び硝酸力 リ ウム 0 . 0 2 6 gの水に溶解させ混合溶液を含浸液と した。 この含浸液を上記成形体 1 0 gに含浸させ、 6 0 °Cで 1 2時 間乾燥させた。 これを 5 0 0 ΐで 4時間焼成して触媒 1 1 を得た。 R uの担持量は 1 . 0質量% (担体基準) であり、 Κの担持量は 0 . 1 質量% (担体基準) であった。  Ruthenium chloride (Ru content: 38.03% by mass) was dissolved in 0.263 g of water and 0.026 g of potassium nitrate to form a mixed solution. This impregnating liquid was impregnated into 10 g of the above molded product, and dried at 60 ° C. for 12 hours. This was calcined at 500 ° C. for 4 hours to obtain catalyst 11. The supported amount of Ru was 1.0% by mass (based on the carrier), and the supported amount of Κ was 0.1% by mass (based on the carrier).
実施例 1 0 Example 10
実施例 9 において、 擬ベーマイ トアルミナ粉末を細孔半径 4 5 A に細孔分布の極大値を有するァ —アルミナ粉末に変え、 その量も 4 0 gにしたこと以外は同様にして触媒 1 2 を調製した。 R uの担持 量は 1 . 0質量% (担体基準) であり、 Kの担持量は 0 . 1 質量% (担体基準) であった。  Catalyst 12 was prepared in the same manner as in Example 9 except that the pseudo-boehmite alumina powder was changed to a-alumina powder having a pore distribution maximum value at a pore radius of 45 A and the amount was also changed to 40 g. Prepared. The supported amount of Ru was 1.0% by mass (based on the carrier), and the supported amount of K was 0.1% by mass (based on the carrier).
C 0の選択的酸化反応 Selective oxidation of C 0
各触媒を 1 6 〜 3 2 メッシュに揃え、 マイ クロ リアクタ一に触媒 を 1 c c充填し、 下記の条件で反応を行った。 リアク タ一出口の C 0の濃度 (容量 p p m ) をを第 1 表に示す。 前処理 : リアク タ一中で 5 0 0 °C 1 時間水素還元 Each catalyst was adjusted to 16 to 32 mesh, 1 cc of the catalyst was filled in a microreactor, and the reaction was performed under the following conditions. Table 1 shows the C0 concentration (ppm by volume) at the outlet of the reactor. Pretreatment: hydrogen reduction at 500 ° C for 1 hour in the reactor
ガス組成 : C〇 ( 0 . 6容量0 /0) C 02 ( 1 5容量0 /0) Gas composition: C_〇 (. 0 6 vol 0/0) C 0 2 (1 5 volume 0/0)
2 ( 0 . 6容量0 /0) H 2 0 ( 2 0容量0 /0) 2 (0.6 volume 0/0) H 2 0 (2 0 volume 0/0)
N 2 ( 2 . 容量0 /0) H 2 ( 6 1 . ' 4容量0 /0) N 2 (2. Capacity 0/0) H 2 (6 1. '4 capacity 0/0)
G H S V : 1 0 , O O O h r— 1 反応温度 : 1 5 0 °C なお、 実施例 9 , 実施例 0 においては、 下記のガス組成で実施 した。 GHSV: 10, OOO hr- 1 Reaction temperature: 150 ° C In Examples 9 and 0, the following gas compositions were used.
ガス組成 (11) : C 0 ( 0 6容量%) 、 C◦ 2 ( 1 5容量0 /0) Gas composition (11): C 0 (0 6 volume%), C◦ 2 (1 5 volume 0/0)
02 ( 1 5容量0 /0) 、 H 2 0 ( 2 0容量0 /0)02 (1 5 volume 0/0), H 2 0 (2 0 volume 0/0)
N 2 ( 6 0容量。/ Q) 、 H2 ( 5 6. 9容量0 /0) 第 1 表 N 2 (6 0 volume ./ Q), H 2 (5 6. 9 capacity 0/0) Table 1
Figure imgf000030_0001
Figure imgf000030_0001
以下の各例で得られた触媒の Sの値及び選択酸化反応後の C◦濃 度は、 下記の方法によ り測定した。 The S value of the catalyst obtained in each of the following examples and the C The degree was measured by the following method.
< Sの測定 >  <Measurement of S>
球状触媒の球の中心を通る断面、 あるいは円柱状触媒の円柱底面 と平行に切断した断面において、 触媒表面からその半径の 3分の 1 の距離までの外周部分に含まれる R u金属の量を電子線マイ クロア ナライザ一 ( E P MA) を用いて線分析して得た値を Nとし、 触媒 全体に含まれる R u金属の線分析値を N 0 とした時の Sの値を、 S = ( N / N 0 ) X I 0 0 (%) の式から求めた。  In a section passing through the center of the sphere of the spherical catalyst or a section cut parallel to the bottom of the cylinder of the columnar catalyst, the amount of Ru metal contained in the outer peripheral portion from the catalyst surface to a distance of one-third of its radius is calculated. The value obtained by performing a line analysis using an electron beam microanalyzer (EPMA) is assumed to be N, and the value of S when the line analysis value of Ru metal contained in the entire catalyst is assumed to be N 0 is expressed as S = (N / N 0) XI 00 (%)
く C◦濃度の測定 >  Measurement of C◦ concentration>
各触媒 1 0 c c を内径 2 5 mmの石英反応管に充填した。 反応管 内で触媒を 5 0 0 °Cで 1 時間水素による還元処理を行なつた後、 G H S V : 1 0 0 0 0 h 1の条件で下記水素含有ガス A, Bを入り口 温度 1 0 0 °Cで導入し、 C 0選択酸化反応を実施した。 得られたガ スをサンプリ ングしてガスク ロマ ト グラフィーにて C 0濃度を測定 した。 結果を第 2表に示す。 10 cc of each catalyst was filled in a quartz reaction tube having an inner diameter of 25 mm. After the reduction treatment by 1 hour of hydrogen the catalyst with 5 0 0 ° C was line summer in the reaction tube, GHSV: 1 0 0 0 0 h 1 conditions the following hydrogen-containing gas A, B an inlet temperature 1 0 0 ° C was introduced to carry out a CO selective oxidation reaction. The obtained gas was sampled, and the C0 concentration was measured by gas chromatography. The results are shown in Table 2.
水素含有ガス A ; C 0/0 /C 02 /H 0/N /H Hydrogen-containing gas A; C 0/0 / C 0 2 / H 0 / N / H
(容量%) 0. 6 /0. 6 / 1 5 / 2 0 /2. 4 /Balance 水素含有ガス B ; C 0/0 / O z /H 0/N /H  (Volume%) 0.6 /0.6 / 15/2 0 /2.4 / Balance Hydrogen-containing gas B; C 0/0 / Oz / H 0 / N / H
(容量%) 0. 6 / 1. 5 / 1 5 / 2 0 /6. 0 /Balance 実施例 1 1  (Volume%) 0.6 / 1.5 / 15/20 / 6.0 / Balance Example 1 1
硝酸ルテニウム ( R u ( N O 3 ) ) 水溶液 ( R u金属と して 5 0 g /リ ツ トル) 2 ミ リ リ ツ トルを 5 0 ミ リ リ ツ トルビーカーにと り、 これにィォン交換水 1. 6 ミ リ リ ッ トルを入れ、 均一になるまで 攪拌した。 Ruthenium nitrate (Ru (NO 3 )) aqueous solution (50 g / liter as Ru metal) 2 Milliliters are transferred to a 50-milliliter beaker, and ion exchanged water 1 .6 Milliliters were added and stirred until uniform.
別の 5 0 ミ リ リ ツ トルビーカ一にアルミナ担体 K H D 2 4 (住友 化学製、 直径 2〜 4 mmの球状) 1 0 gをはかり とつた。 該アルミナ担体に上記調製した硝酸ルテニウム水溶液を、 ガラス 棒で担体をよ く かき混ぜながら滴下した後、 更に、 1 分間程度よ く かき混ぜた。 次いで、 3時間室温に放置した後乾燥器に入れ、 1 2 0 °Cで 2 4時間乾燥して、 アルミナ担体に R uを 1. 0重量%担持し た触媒 1 3 を得た。 Another 50 milliliters tol beaker was weighed with 10 g of alumina support KHD24 (manufactured by Sumitomo Chemical Co., Ltd., spherical shape having a diameter of 2 to 4 mm). The ruthenium nitrate aqueous solution prepared above was added dropwise to the alumina carrier while thoroughly stirring the carrier with a glass rod, and the mixture was further thoroughly stirred for about 1 minute. Then, the mixture was allowed to stand at room temperature for 3 hours, then placed in a drier, and dried at 120 ° C. for 24 hours to obtain a catalyst 13 having Ru supported on an alumina carrier at 1.0% by weight.
実施例 1 2 Example 1 2
ルチル型チタニア (T i 02 、 石原産業 (株) 製、 C R— E L、一 表面積 : 7 m2 / g ). 1 6 0 g と擬ベーマイ トアルミ ナ粉末 (触媒 化成工業株式会社製、 C a t a 1 0 i d— A P ) 5 9. 7 gを混合 し、 イオン交換水とともに混練機で加温下で十分混練し、 押出成形 に適する程度に水分を調整した。 これを押出成形機で直径 2 mm、 長さ 0 . 5〜 1 c mの円柱'状に成形し、 乾燥機で 1 2 0 ° (:、 2 4時 間乾燥した。 続いて、 焼成炉で 5 0 0 ° (:、 4時間焼成してチタニア /アルミナ担体を得た。 チタニア/アルミ ナの重量比は 8 0 / 2 0 であった。 Rutile titania. (T i 0 2, Ishihara Sangyo Kaisha Ltd., CR- EL, one surface area: 7 m2 / g) 1 6 0 g and pseudo Bemai Toarumi Na powder (Catalysts & Chemicals Industries Co., Ltd., C ata 1 0 id-AP) 59.7 g was mixed and sufficiently kneaded with ion exchange water in a kneader under heating to adjust the water content to an extent suitable for extrusion molding. This was extruded into a cylindrical shape with a diameter of 2 mm and a length of 0.5 to 1 cm using an extruder, and dried at 120 ° (: 24 hours) with a dryer. The mixture was calcined at 0 ° (: 4 hours to obtain a titania / alumina carrier. The weight ratio of titania / alumina was 80/20.
塩化ルテニウム ( R u C 1 a · n H 2 0、 R u金属含有量': 38. 0 3重量%) 0. 2 6 3 gをビーカ一にはかり とる。 これに、 硝酸力 リ ウム ( K N 03 ) 0. 2 5 9 gを入れ、 更にィォン交換水 1 ミ リ リ ッ トルを加え溶解させた。 Ruthenium chloride (RuC1a · nH20, Ru metal content ': 38.0 3% by weight) Weigh 0.263 g into a beaker. This placed the nitrate force re um (KN 0 3) 0. 2 5 9 g, was further added and dissolved Ion exchange water 1 ml.
別の 5 0 ミ リ リ ッ トルビ一力一に上記調製した担体 1 0 gをはか り と り、 これに上記調製したルテニウム溶液をかき混ぜながら注い だ後、 放置するこ となく乾燥器にいれ 1 2 0 °Cで 1 晚乾燥した。 更 に、 焼成炉に入れ 5 0 0 °Cで 4時間焼成して、 チタニア/アルミナ 担体に R uを 1 重量%、 Kを 0. 1重量%担持した触媒 1 4 を得た。 実施例 1 3  Weigh 10 g of the carrier prepared above in another 50 milliliter bottle, pour the ruthenium solution prepared above with stirring, and put it in a dryer without standing. It was dried at 120 ° C for 1 晚. Further, the resultant was placed in a firing furnace and fired at 500 ° C. for 4 hours to obtain a catalyst 14 in which Ru and K were supported on a titania / alumina carrier at 1% by weight and 0.1% by weight, respectively. Example 13
実施例 1 2 において、 担体にルテニゥムおよび力 リ ゥム含有溶液 を注いだ後、 乾燥器にいれる前に 3時間室温放置を行った以外は実 施例 1 2 と同様にしてチタユア/アルミナ担体に R uを 1 重量%、 Kを 0. 1 重量%担持した触媒 1 5 を得た。 第 2 表 In Example 12, the carrier was a ruthenium-containing or urea-containing solution. , And 1% by weight of Ru and 0.1% by weight of K were loaded on the titania / alumina carrier in the same manner as in Example 12 except that the mixture was left at room temperature for 3 hours before being put into a dryer. Catalyst 15 was obtained. Table 2
Figure imgf000033_0001
Figure imgf000033_0001
実施例 1 4 〜 1 6 Examples 14 to 16
実施例 1 〜 3の各々と同様の方法で触媒を調製し、 これらを用い てそれぞれ下記の方法で実施例 1 1 〜 1 4 を行なった。  Catalysts were prepared in the same manner as in each of Examples 1 to 3, and Examples 11 to 14 were performed using the catalysts in the following manner.
結果を第 3表に示す。 Table 3 shows the results.
C 0の選択的メ タ ン化反応 Selective methanation reaction of C 0
各触媒を 1 6 〜 3 2 メ ッ シュに揃え、 マイ クロ リアクターに触媒 を 1 c c充填し、 下記の条件で反応を行った。 リアクタ一出口の C 〇の濃度 (容量 p p m) 、 出口のメ タ ン濃度 (容量 p p m) 及び C 〇メ タン化反応選択率 (%) を第 3表に示す。  Each catalyst was prepared in 16 to 32 mesh, and the microreactor was filled with 1 cc of the catalyst, and reacted under the following conditions. Table 3 shows the concentration of C〇 at the outlet of the reactor (volume, p pm), the concentration of methane at the outlet (volume, p pm), and the selectivity of the C 化 methanation reaction (%).
なお、 C Oのメ タン化反応選択率 (%) は下記の式で算出した。 C 0のメ タン化反応選択率 (%) = 〔 (入口 C◦濃度 (容量 p p m ) 一出口 C O濃度 (容量 p p m) ) / (出口 C H 4 濃度 (容量 p p m) 〕 X 1 0 0 The selectivity (%) of the methane conversion reaction of CO was calculated by the following equation. C 0 methanation reaction selectivity (%) = [(inlet C concentration (volume ppm) one outlet CO concentration (volume ppm)) / (outlet CH 4 concentration (volume ppm)] X 100
前処理 : リアク ター中で 5 0 0 °C、 1 時間水素還元 ガス組成 : C ◦ ( 0 . 5容量%) 、 C 02 ( 1 5容量0 /0) Pretreatment: Reduction of hydrogen in a reactor at 500 ° C for 1 hour Gas composition: C ◦ (. 0 5 volume%), C 0 2 (1 5 volume 0/0)
H 2 0 ( 2 0容量0 /0) 、 H 2 ( 6 4 . 5容量0 /0) G H S V : 8 , 0 0 0 h r H 2 0 (2 0 volume 0/0), H 2 ( 6 4 5 volume 0/0.) GHSV: 8 , 0 0 0 hr
反応温度 : 2 5 0 °C Reaction temperature: 250 ° C
第 ύ 表  Table ύ
Figure imgf000034_0001
産業上の利用可能性
Figure imgf000034_0001
Industrial applicability
本発明は、 水素含有ガス中の C 0除去触媒の製造方法、 及びその 製造方法で製造された水素含有ガス中の C 0除去触媒、 並びに該触 媒を用いる水素含有ガス中の C 0の除去方法に関する。 その水素含 有ガスは燃料電池用の水素含有ガスとして有用である。  The present invention relates to a method for producing a catalyst for removing C 0 from a hydrogen-containing gas, a catalyst for removing C 0 from a hydrogen-containing gas produced by the production method, and a method for removing C 0 from a hydrogen-containing gas using the catalyst. About the method. The hydrogen-containing gas is useful as a hydrogen-containing gas for a fuel cell.

Claims

請求の範囲 The scope of the claims
1 . ルテニゥムを耐火性無機酸化物担体に担持するこ とを特徴と する水素含有ガス中の C 0除去触媒の製造方法。 1. A method for producing a catalyst for removing C0 from a hydrogen-containing gas, which comprises supporting ruthenium on a refractory inorganic oxide carrier.
2 . ルテニウムの硝酸塩 ( a ) を耐火性無機酸化物担体に担持処 理後乾燥させ、 焼成を行う ことなく、 還元することを特徴とする請 求の範囲第 1 項記載の水素含有ガス中の C 0除去触媒の製造方法。 2. The range of claim 1 wherein the ruthenium nitrate (a) is supported on a refractory inorganic oxide carrier, dried and reduced without firing. Method for producing C 0 removal catalyst.
3 . ルテニウムの硝酸塩 ( a ) とアルカ リ金属化合物及び/又は アルカ リ土類金属化合物 ( b ) を耐火性無機酸化物担体に担持処理 後乾燥させ、 焼成を行う ことなく 、 還元することを特徴とする請求 の範囲第 1 項記載の水素含有ガス中の C 0除去触媒の製造方法。 3. Ruthenium nitrate (a) and alkali metal compound and / or alkaline earth metal compound (b) are supported on a refractory inorganic oxide carrier, dried, and reduced without firing. The method for producing a catalyst for removing C 0 in a hydrogen-containing gas according to claim 1.
4 . 耐火性無機酸化物担体がアルミ ナ、 チタニア、 シ リ カ及びジ ルコユアから選ばれる少なく とも一種である請求の範囲第 2項記載 の水素含有ガス中の C◦除去触媒の製造方法。 4. The method for producing a catalyst for removing C◦ in a hydrogen-containing gas according to claim 2, wherein the refractory inorganic oxide carrier is at least one selected from alumina, titania, silica and zirconia.
5 . 耐火性無機酸化物担体がアルミナ又はアルミナーチタニアで ある請求の範囲第 2項記載の水素含有ガス中の C 0除去触媒の製造 方法。 5. The method for producing a C0 removal catalyst in a hydrogen-containing gas according to claim 2, wherein the refractory inorganic oxide carrier is alumina or alumina-titania.
6 . 請求の範囲第 2 〜 5項のいずれかに記載の製造方法によ り得 られる、 一酸化炭素のメ タネーショ ンによる水素含有ガス中の C 〇 除去触媒。 6. A catalyst for removing carbon dioxide in a hydrogen-containing gas by carbon monoxide metamorphosis, obtained by the production method according to any one of claims 2 to 5.
7. 耐火性無機酸化物担体と してアルミ ナ又はアルミナーチ夕二 ァを使用し、 かつ細孔半径 1 0 0 A以下に細孔分布の極大値を有す るアルミ ナを使用するこ とを特徴とする請求の範囲第 1項記載の水 素含有ガス中の C 0除去触媒の製造方法。 7. The use of alumina or alumina foil as the refractory inorganic oxide support and the use of alumina having a maximum pore size distribution with a pore radius of 100 A or less. 2. The method for producing a catalyst for removing C0 in a hydrogen-containing gas according to claim 1, characterized by the following.
8. アルミナが細孔半径 6 0 A以下に細孔分布の極大値を有する ものである請求の範囲第 7項記載の水素含有ガス中の C 0除去触媒 の製造方法。 8. The method for producing a catalyst for removing C 0 in a hydrogen-containing gas according to claim 7, wherein the alumina has a maximum value of pore distribution at a pore radius of 60 A or less.
9. 更に、 アルカ リ金属化合物及び/又はアルカ リ土類金属化合 物 ( b ) を耐火性無機酸化物担体に担持することを特徴とする請求 の範囲第 7項記載の水素含有ガス中の C◦除去触媒の製造方法。 9. The method according to claim 7, wherein the alkali metal compound and / or the alkaline earth metal compound (b) is further supported on a refractory inorganic oxide carrier. ◦Method of manufacturing the removal catalyst.
10. 請求の範囲第 1 〜 5及び 7〜 9のいずれかに記載の製造方法 によ り製造された水素含有ガス中の C 0除去用触媒。 10. A catalyst for removing CO in a hydrogen-containing gas produced by the production method according to any one of claims 1 to 5 and 7 to 9.
11. 耐火性無機酸化物担体に少なく ともルテニゥムを担持してな る C◦除去触媒において、 該触媒の断面を、 エレク トロンプローブ - マイ クロアナリ シス ( E FMA) 装置を用いて、 一方向にルテ二 ゥム原子について線分析測定をして得られる断面幅方向距離 r (中 心から触媒表面までの距離) と X線強度 I との関係を示す図におい て、 上記 rがー方の触媒表面一 r。 から他方の触媒表面 r。 の間に おける I ( r ) の積分値 N。 から、 一 2 / 3 r。 から 2 / 3 r。 の 間における I ( r ) の積分値 N を減じた値を Nと し、 上記 N。 に 対する Nの割合 S = (N/NQ ) x 1 0 0の値が 5 0以上であるこ とを特徴とする請求の範囲第 1 0項記載の C O除去触媒。 11. In a C◦ removal catalyst in which at least ruthenium is supported on a refractory inorganic oxide carrier, a cross section of the catalyst is unidirectionally ruthenium-treated using an electron probe-microanalysis (EFMA) device. In the figure showing the relationship between the cross-sectional width direction distance r (distance from the center to the catalyst surface) and the X-ray intensity I obtained by performing line analysis measurement on the dium atoms, r. From the other catalyst surface r. The integral value N of I (r) between. From one 2/3 r. From 2/3 r. N is the value obtained by subtracting the integral value N of I (r) between. 10. The CO removal catalyst according to claim 10, wherein the value of S = (N / N Q ) × 100 is 50 or more.
12. 球状あるいは円柱状の形状を有する請求の範囲第 1 1項記載 の触媒。 12. The catalyst according to claim 11, which has a spherical or cylindrical shape.
13. 担体に、 更にアル力 リ金属成分及び/又はアル力 リ土類金属 成分を担持してなる請求の範囲第 1 1項記載の触媒。 13. The catalyst according to claim 11, wherein the catalyst further supports an alkali metal component and / or an alkaline earth metal component.
14. 請求の範囲第 6 、 1 0 〜 1 3項のいずれかに記載の触媒を使 用して C Oを酸素で酸化して除去することを特徴とする水素含有ガ ス中の C◦の除去方法。 14. Removal of C◦ in hydrogen-containing gas, characterized by removing CO by oxidizing CO with oxygen using the catalyst according to any one of claims 6, 10 to 13. Method.
15. 水素含有ガスが、 燃料電池用水素含有ガスである請求の範囲 第 1 4項記載の水素含有ガス中の C◦の除去方法。 15. The method for removing C◦ in a hydrogen-containing gas according to claim 14, wherein the hydrogen-containing gas is a hydrogen-containing gas for a fuel cell.
PCT/JP2001/001689 2000-03-03 2001-03-05 Method of preparation of catalyst for use in removing co in hydrogen containing gas WO2001064337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001236090A AU2001236090A1 (en) 2000-03-03 2001-03-05 Method of preparation of catalyst for use in removing co in hydrogen containing gas

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2000058558A JP4478280B2 (en) 2000-03-03 2000-03-03 Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst
JP2000-58559 2000-03-03
JP2000058559A JP4478281B2 (en) 2000-03-03 2000-03-03 Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst
JP2000-58558 2000-03-03
JP2000-152483 2000-05-24
JP2000152483A JP5164297B2 (en) 2000-05-24 2000-05-24 CO oxidation catalyst and method for producing hydrogen-containing gas
JP2000263199A JP4620230B2 (en) 2000-08-31 2000-08-31 Carbon monoxide removal catalyst in hydrogen-containing gas and method for removing carbon monoxide in hydrogen-containing gas using the catalyst
JP2000-263199 2000-08-31

Publications (1)

Publication Number Publication Date
WO2001064337A1 true WO2001064337A1 (en) 2001-09-07

Family

ID=27481095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001689 WO2001064337A1 (en) 2000-03-03 2001-03-05 Method of preparation of catalyst for use in removing co in hydrogen containing gas

Country Status (2)

Country Link
AU (1) AU2001236090A1 (en)
WO (1) WO2001064337A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075761A1 (en) * 2006-12-20 2008-06-26 Nippon Oil Corporation Catalyst for reducing carbon monoxide concentration
WO2010113381A1 (en) 2009-03-31 2010-10-07 新日本石油株式会社 Method for producing catalyst for use in selective oxidation reaction of carbon monoxide
CN103203236A (en) * 2013-04-03 2013-07-17 北京三聚创洁科技发展有限公司 Organic sulphur hydrogenation catalyst and preparation and use methods thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393602A (en) * 1989-09-07 1991-04-18 Asahi Chem Ind Co Ltd Selective removing of carbon monoxide
JPH07256112A (en) * 1994-03-19 1995-10-09 Masahiro Watanabe Reformed gas oxidation catalyst and oxidation of carbon monoxide in reformed gas using the same
JPH11102719A (en) * 1997-09-26 1999-04-13 Toyota Motor Corp Carbon monoxide concentration reducing device, carbon monoxide concentration reducing method, and carbon monoxide selectively oxidizing catalyst
JP2001017861A (en) * 1999-07-05 2001-01-23 Tanaka Kikinzoku Kogyo Kk Selective oxidizing catalyst of carbon monoxide in modified gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0393602A (en) * 1989-09-07 1991-04-18 Asahi Chem Ind Co Ltd Selective removing of carbon monoxide
JPH07256112A (en) * 1994-03-19 1995-10-09 Masahiro Watanabe Reformed gas oxidation catalyst and oxidation of carbon monoxide in reformed gas using the same
JPH11102719A (en) * 1997-09-26 1999-04-13 Toyota Motor Corp Carbon monoxide concentration reducing device, carbon monoxide concentration reducing method, and carbon monoxide selectively oxidizing catalyst
JP2001017861A (en) * 1999-07-05 2001-01-23 Tanaka Kikinzoku Kogyo Kk Selective oxidizing catalyst of carbon monoxide in modified gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075761A1 (en) * 2006-12-20 2008-06-26 Nippon Oil Corporation Catalyst for reducing carbon monoxide concentration
JPWO2008075761A1 (en) * 2006-12-20 2010-04-15 新日本石油株式会社 Catalyst for reducing carbon monoxide concentration
US8093178B2 (en) 2006-12-20 2012-01-10 Nippon Oil Corporation Catalyst for reducing carbon monoxide concentration
WO2010113381A1 (en) 2009-03-31 2010-10-07 新日本石油株式会社 Method for producing catalyst for use in selective oxidation reaction of carbon monoxide
JP2010234257A (en) * 2009-03-31 2010-10-21 Jx Nippon Oil & Energy Corp Method of producing catalyst for selective oxidation reaction of carbon monoxide
US8349762B2 (en) 2009-03-31 2013-01-08 Jx Nippon Oil & Energy Corporation Method for producing catalyst for use in preferential oxidation reaction of carbon monoxide
CN103203236A (en) * 2013-04-03 2013-07-17 北京三聚创洁科技发展有限公司 Organic sulphur hydrogenation catalyst and preparation and use methods thereof

Also Published As

Publication number Publication date
AU2001236090A1 (en) 2001-09-12

Similar Documents

Publication Publication Date Title
KR101280200B1 (en) Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
KR100981517B1 (en) Article for carbon monoxide removal
US20020004452A1 (en) Process for carbon monoxide preferential oxidation for use with fuel cells
WO2000030745A1 (en) Carbon monoxide oxidation catalyst, method for preparation of carbon monoxide oxidation catalyst and method for production of hydrogen-containing gas
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP5702910B2 (en) Treatment conditions for Pt-Re bimetallic water gas shift catalyst
JP4460126B2 (en) Method for removing carbon monoxide from hydrogen-containing gas
JP4398670B2 (en) Oxygen-containing hydrocarbon reforming catalyst, hydrogen or synthesis gas production method using the same, and fuel cell system
JP4620230B2 (en) Carbon monoxide removal catalyst in hydrogen-containing gas and method for removing carbon monoxide in hydrogen-containing gas using the catalyst
JP3756565B2 (en) Method for removing CO in hydrogen gas
JP3756229B2 (en) Catalyst for removing CO in hydrogen-containing gas and method for removing CO in hydrogen-containing gas using the same
JP4478280B2 (en) Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst
JP4478281B2 (en) Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst
JP5164297B2 (en) CO oxidation catalyst and method for producing hydrogen-containing gas
JP4172139B2 (en) CO removal catalyst and CO removal method using the same
JP2005238025A (en) Fuel reforming catalyst and fuel reforming system using the same
WO2001064337A1 (en) Method of preparation of catalyst for use in removing co in hydrogen containing gas
JP2001179097A (en) Method for manufacturing catalyst for removing co in hydrogen-containing gas, catalyst manufactured thereby and method for removing co in hydrogen gas
JP2000169107A (en) Production of hydrogen-containing gas reduced in carbon monoxide
JP4463914B2 (en) Method for producing hydrogen-containing gas for fuel cell
JP2005044651A (en) Method of manufacturing hydrogen rich gas
JPH07315825A (en) Method for oxidizing co into co2 and production of hydrogen-containing gas for fuel cell
JP3943606B2 (en) Method for selective removal of carbon monoxide
JPH07309603A (en) Production of hydrogen-containing gas for fuel cell
JP2001213612A (en) Process of producing hydrogen containing gas for fuel cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase