WO2001057942A1 - Battery and method of manufacture thereof - Google Patents

Battery and method of manufacture thereof Download PDF

Info

Publication number
WO2001057942A1
WO2001057942A1 PCT/JP2000/000607 JP0000607W WO0157942A1 WO 2001057942 A1 WO2001057942 A1 WO 2001057942A1 JP 0000607 W JP0000607 W JP 0000607W WO 0157942 A1 WO0157942 A1 WO 0157942A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
battery
power generation
generation element
electrolytic solution
Prior art date
Application number
PCT/JP2000/000607
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Hiroi
Jun Aragane
Shoji Yoshioka
Yasuhiro Yoshida
Tetsuyuki Kurata
Yukiyasu Nakao
Hiroaki Urushibata
Yoshio Kasuga
Seiichi Mimura
Hironori Ozaki
Hideo Ichimura
Daigo Takemura
Hisashi Shiota
Shigeru Aihara
Takashi Nishimura
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2000/000607 priority Critical patent/WO2001057942A1/en
Priority to KR1020017012386A priority patent/KR20020019008A/en
Publication of WO2001057942A1 publication Critical patent/WO2001057942A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a battery. More specifically, the present invention relates to a method for manufacturing a lithium secondary battery. Background technology
  • Lithium-ion rechargeable batteries are currently being actively improved as rechargeable batteries capable of realizing high voltage and high working energy density. Its main components are a pair of positive and negative electrodes and a power generating element consisting of a pair of electrodes separated from each other so as not to short-circuit between the two electrodes. The body and the electrolyte filled in the power generation element body. Lithium rechargeable batteries that are in practical use are inserted into an outer can with the positive and negative electrodes and separators wrapped around each other and sealed after filling with electrolyte. Manufactured by mouth-to-mouth procedures. An example of such a manufacturing method can be found in Japanese Patent Application Laid-Open No. 10-333488, for example.
  • the amount of electrolyte required for a lithium ion battery is ideally enough to fill both the positive and negative electrodes, which are porous materials, and the voids in the separator. .
  • a battery such as a gap between an outer can and an electrode or a gap in a winding center formed when an electrode is overlapped and wound.
  • the space filled with the electrolyte is irrelevant to this function. Due to the presence of the electrolyte in the space irrelevant to the battery function, the amount of the electrolyte is much larger than the ideally required amount, and the weight increase is necessary.
  • the electrolyte present in the space irrelevant to the battery function flows and flows out as compared with the electrolyte held in a porous body such as an electrode and a separator. It's easy to do . This can cause a battery fluid accident.
  • the electrolyte present in the space unrelated to the battery function is less in terms of suppressing the leakage of the battery even in the heavy surface. I want to do that. Disclosure of the invention
  • the present invention has been made to solve the above problems, and the amount of the electrolyte present in the space irrelevant to the above-mentioned battery function is extremely large.
  • the aim is to produce a small number of batteries.
  • the present inventors have conducted research on a battery manufacturing method for the purpose of obtaining a small, lightweight and high-performance battery, and have found that the battery manufacturing method, the battery manufacturing apparatus, and the battery described below are used. Completed.
  • the present invention is a.
  • a part of the electrolyte adhering to the electricity-generating element body filled with the electrolyte is a liquid in which the amount of dissolved solids is less than that of the electrolyte and is compatible with the electrolyte.
  • the method for producing a battery described in Claim 1 having a step of diluting with a battery (Claim 9 of the claim), the amount of solid dissolved more than the electrolytic solution is defined as the electrolytic solution.
  • the method for producing a battery according to Claim 9, wherein the liquid having a low level of compatibility and being compatible with the electrolyte is a solvent constituting the electrolyte. 10 terms)
  • FIG. 1 shows the power generation element according to one embodiment of the present invention, which is attached to the power generation element by irradiating the airflow ejected from the nozzle onto the power generation element.
  • FIG. 2 is a schematic view showing an outline of a step of removing a part of the electrolyte solution.
  • FIG. 2 shows a nozzle having a slit-shaped outlet for generating a band-shaped airflow corresponding to a power generating element according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an outline of the shape.
  • FIG. 3 shows a nozzle having a series of holes in the form of holes that generate a band-shaped airflow that strikes the power generating element according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing an outline of the above.
  • FIG. 4 shows an example of the embodiment of the present invention, in which one of the flow paths into which the power generating element is inserted is depressurized to create an airflow, thereby adhering to the power generating element.
  • FIG. 4 is a schematic view showing an outline of a process for removing a part of the electrolyte solution thus obtained.
  • 1 indicates a power generating element
  • 2 indicates a nozzle for ejecting gas
  • 3 indicates an air flow.
  • reference numeral 2 denotes a nozzle for ejecting gas
  • reference numeral 3 denotes an air flow
  • reference numeral 2 denotes a nozzle for ejecting gas
  • reference numeral 3 denotes an air flow
  • 1 indicates a power generating element
  • 3 indicates an air flow
  • 4 indicates a gas flow path. Best form to carry out the invention
  • the battery manufacturing method of the present invention comprises the following steps: (i) charging the electrolyte into the power generating element in which the positive electrode, the negative electrode, and the separator are integrated; Removing part of the electrolytic solution adhering to the generated power element, and (iii) cleaning the power element from which a part of the adhering electrolytic solution has been removed. It has a process of storing it in an outer container. The details of the content are described below.
  • the power generation element of the battery is a combination of the positive electrode, the negative electrode, and the separator-electrode.
  • the positive sheet and the negative sheet And the separator file that separates them from each other.
  • lithium conodate powder is bound on aluminum foil using polyvinylidene fluoride as a binder. Coated and dried products can be used.
  • polyvinylidene fluoride is used as a binder, and graphite carbon powder is applied to a copper foil and dried. You can use the dried one.
  • a porous polylene film can be used as a separator.
  • an electrolytic solution When an electrolytic solution is filled in a power generating element having a self-supporting structure, it becomes a state of functioning as a battery.
  • an electrolytic solution obtained by dissolving various kinds of electrolytes in an arbitrary solvent can be used.
  • a solvent for the electrolytic solution for example, ethylene carbonate and dimethyl carbonate are used. Mixed solvents can be used.
  • the electrolyte for example, lithium hexafluoride can be used.
  • the electrolyte can be filled outside the battery outer container. If the power generation element is relatively large or the electrode has a dense layer, impregnate and fill the electrolyte with high efficiency up to the innermost part of the power generation element. Is difficult. If the pressure is reduced or centrifugal force is applied while the entire power generating element is submerged in the electrolyte, the electrolyte is impregnated with a high efficiency and a high filling rate to fill the electrolyte. Can be done.
  • the degree of decompression can be, for example, slightly higher than the pressure at which the electrolyte undergoes reduced pressure boiling.
  • the centripetal force can be, for example, about four times the rotational speed and gravity that generates 4G.
  • the amount of the surplus electrolyte existing in the space irrelevant to the battery function is reduced. It can be reduced.
  • the power generating element By placing the power generating element in the airflow, it is possible to remove a part of the electrolyte adhering to the power generating element.
  • the gas that creates the airflow is, for example, dry air. , Dry nitrogen can be used. Dry air and dry nitrogen do not adversely affect battery performance.
  • a method for removing excess electrolyte is to blow high-speed airflow. There is a way to attach it. A part of the electrolyte adhering to the power generation element can be removed by irradiating the air flow ejected from the nozzle onto the power generation element.
  • Fig. 1 shows the outline of the process of removing a part of the electrolyte adhering to the power generation element by applying the airflow blasted from nozzle nozzles to the power generation element. Indicate Blowing the airflow from the nozzle onto the surface of the power-generating element causes the attached electrolyte to be removed by the pressure.
  • the part that removes the electrolyte is moved strongly, that is, the part where the airflow is directly applied is moved (Scanning)-it is possible to remove excess electrolyte efficiently over the entire power generation element body.
  • the part to which the airflow is directly applied is scanned by moving the power generating element or the nozzle. You can do it.
  • the scanning speed can be, for example, about 5 cm per second.
  • the air flow ejected from the nozzle is in a range of 30 to 90 ° with respect to a normal of a surface of the power generating element body from which liquid is removed. If the angle is less than 30 °, the blown droplets are not scattered in one direction and the possibility of contaminating the already removed surface is increased.
  • Nozzles are shaped like a strip-shaped ejected rocker with a band-like airflow, and a band-shaped nozzle from a row of hole-shaped outlets. Those that generate airflow are preferred.
  • Figure 2 shows an outline of a nozzle with a slit-shaped outlet.
  • Figure 3 shows an outline of a nozzle with a series of holes.
  • the velocity of the airflow ejected from the nozzle can be about 40 m / s. Intention to erupt from the nozzle If the flow speed is too slow, there is a tendency that it is difficult to sufficiently remove the excess electrolyte. If the flow speed is too fast, the power generation element will lose airflow. It may be deformed by the pressure.
  • a method for removing excess electrolyte there is a method in which a power generating element is placed in a flow path, and a high-speed airflow is caused to flow through the flow path.
  • the flow velocity of the airflow flowing through the channel can be, for example, about 20 m / sec. If the flow velocity is too high, the power generating element tends to deform, and if the flow velocity is too low, it is difficult to remove excess electrolyte sufficiently. Tend .
  • Gas can be created by sending gas from one of the channels into which the power generating element is inserted, or by depressurizing one of the channels.
  • Fig. 4 shows the outline of the process of removing a part of the electrolyte adhering to the power generation element body by reducing the pressure in one of the flow paths in which the power generation element body is inserted and creating an air flow. .
  • a method of removing excess electrolyte there is a method of contacting with an object having a function of absorbing the electrolyte.
  • an object having a function of absorbing and retaining an electrolytic solution for example, a nonwoven fabric, a woven fabric, a sponge-like resin or the like that absorbs the liquid material may be used. I can do it.
  • the battery can be formed.
  • the external container for example, use a metal can or aluminum laminate file made of stainless steel. can do .
  • the weight of the battery can be reduced, and the possibility of liquid leakage can be significantly reduced.
  • the step of removing excess electrolyte, depending on the type of electrolyte solids in the electrolyte are remarkably deposited on the surface of the power generating element due to evaporation of the solvent depending on the type of the electrolyte. May be issued.
  • concaves and convexes may appear on the surface of the external container, resulting in an unfavorable appearance. .
  • a part of the electrolyte adhering to the power generating element body is dissolved in a smaller solid component than the electrolyte.
  • Dilution with a liquid (washing solution) that is compatible with the constituents of the electrolytic solution can reduce the precipitation of solid components.
  • a part of the electrolytic solution attached to the power generation element body can be diluted by rinsing the power generation element body with the cleaning liquid.
  • a washing liquid a liquid in which solid components are not dissolved or a liquid with a small amount of dissolution, for example, a solid component in which the solid components are dissolved less than the electrolytic solution is smaller.
  • Liquids can be used, and liquids that have little effect on battery performance and liquids that are compatible with the electrolyte can be used.
  • a solvent obtained by removing solutes such as salts from the constituent components of the electrolyte solution should be used favorably because it does not affect battery performance.
  • the cleaning liquid include, but are not limited to, ethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, and the like. You can use bottles, cubractons, and so on.
  • the amount of electrolyte that does not contribute to the function of the battery is reduced, so that the battery is lightweight and hard to leak. Batteries that do not have problems with their performance or appearance can be manufactured.
  • the battery manufacturing apparatus comprises: (i) a step of filling a positive electrode, a negative electrode, and a power generating element united with a cell and a battery with an electrolyte; Means for removing part of the electrolytic solution adhering to the power generating element, and (iii) storing the power generating element from which the part of the adhering electrolytic liquid has been removed in an outer container.
  • the means for filling the power generating element body with the electrolytic solution has, for example, an electrolytic solution tank for immersing the power generating element body in the electrolytic solution.
  • Means for removing a part of the electrolyte adhering to the power generating element include, for example, a nozzle that blows out an air current, a flow path, and a blower that creates an air flow. Or a pressure reducing device or an object having a function of absorbing an electrolyte.
  • the active material Meso-Fu-Zumicrobi-Zukabon (manufactured by Osaka Gas Co., Ltd.) is 95% by weight.
  • a negative electrode active material paste prepared by mixing 5% by weight of vinylidene fluoride and NMP as a solvent is a collector made of a 12-m-thick copper foil. Thickness 2 according to doctor blade method
  • the negative electrode material was prepared by coating and drying the solution to a thickness of 100 m and then rolling it to a thickness of 120 m.
  • the cathode and anode materials prepared as described above were used for 50 mm
  • the power generating element was put into the electrolyte, the whole was depressurized with a pump, kept at 50 t0 rr for 3 minutes, and then returned to normal pressure.
  • the electrolyte is generated by a jet of dry air at a rate of 1 liter per second converted to normal pressure from a slit-shaped nozzle with a length of 70 mm and a width of 0.3 mm. Removal was performed. The angle at which the airflow is applied is assumed to be an inclination of 45 from the normal to the surface of the power generation element body. The distance from the end to the surface of the power generation element body was 5 mm. The removal was performed by scanning at a speed of 5 cm per second from one end of the power generating element body surface to the other end. The above operations were performed on both sides of the power generation element.
  • the power-generating element body created in the above process was sealed with an aluminum film under a reduced pressure of about 50 torr to form an exterior.
  • the aluminum film is an aluminum foil with a thickness of 50 / zm and a polystyrene telemeter with a thickness of 12 // m.
  • a laminate of an irem and a 5 m thick polyethylene film was cut into 70 mm x 120 mm. This filem was folded in two to make it 70 mm X 60 mm, and the other three sides were sealed with a heat seal with the power generating element body sandwiched. .
  • a hole with a diameter of 2 mm was drilled at the end of the exterior and held for 5 minutes with the hole down, and the amount of electrolyte flowing out was estimated from the weight change before and after.
  • the weight of the battery prepared according to the above procedure was 13.5 g, and the amount of effluent from the liquid leakage evaluation was 0.05.
  • Example 2 (when placed in a flow path)
  • a cylindrical flow path was designed so that the gap between the inner wall of the flow path and the power generating element was 0.5 mm when the battery power generating element was inserted inside.
  • the power generation element is fixed in this flow path, and excess air is removed by flowing dry air through the gap between the flow path and the power generation element. did .
  • Power generation differential pressure of the upper stream side and the downstream side of the element body is 0. 5 kgf Roh cm 2 and dry air supply amount Adjusts to the jar by that Do not.
  • a battery was prepared in the same manner as in Example 1 except that excess electrolyte was removed by the above-described method.
  • the weight of this battery was 13.3 g, and the amount of effluent from the liquid leakage evaluation was 0.01 g.
  • Example 3 (when non-woven fabric is used)
  • Example 2 Same as Example 1 except that excess electrolyte is removed by wiping off the electrolyte adhering to the outside of the power generation element after injection with a non-woven polypropylene fabric.
  • the battery was made like this.
  • the weight of this battery was 13.6 g, and the amount of effluent by liquid leakage evaluation was 0.07 g. According to this method, a large amount of dry gas supply equipment is not required, but excess liquid in the center of the wound structure cannot be removed.
  • Example 1 Immediately after immersing the power generating element body after filling the electrolyte in a JET CARBON for 10 seconds, a run to remove the excess electrolyte was performed. A battery was made in the same manner as in Example 1.
  • the weight of this battery was 13.5 g, and the amount of effluent from the liquid leakage evaluation was 0.05 g. No minute solid deposits on the surface of the power generation element as observed in Example 1 were observed. No irregularities due to solid precipitates appeared on the surface even after the external mounting.
  • the power generation element body is sandwiched between aluminum laminate films and sealed except one side to form a bag. Inside the bag-shaped external film The electrolyte solution was injected into the sample to perform vacuum impregnation of the electrolyte solution. The excess electrolyte solution after the impregnation was removed with a pipette, and the other side was sealed and sealed.
  • Example 1 except for the above operations A battery was created in the same procedure as described above. The weight of this battery was 14.1 lg, and the amount of effluent from the liquid leakage evaluation was 0.9 g.
  • the power generating element body is sandwiched between aluminum laminate films, sealed except for one side to form a bag, and the electrolytic film is placed inside the bag-shaped external film.
  • the solution was injected to adjust the total weight of the battery to 13.5 g-. This weight is the same as in Example 1. After that, it was kept at 50 t0 rr for 3 minutes, and the other side was sealed and sealed.
  • a battery was created in the same procedure as in Example 1 except for the above operation.
  • the weight of this battery was 13.5 g, and the amount of effluent from the liquid leakage evaluation was 0.07 g.
  • the discharge capacity was about 80% as compared with Example 1. It was.
  • a battery was prepared in the same manner as in Example 1 except that the air flow at the time of removing the excess electrolyte was set to 0.2 liter per second. Even after the operation of removing the excess electrolyte, a noticeable electrolyte residue was observed on the surface of the power generation element body.
  • the weight of this battery was 13.9 g, and the amount of effluent by liquid leakage evaluation was 0.5 g. In comparison, there was an increase in the amount of electrolyte due to excess electrolyte and an increase in the amount of electrolyte leading to liquid leakage, but it was remarkable when compared with Comparative Example 1 and Comparative Example 1. The effect was seen.
  • a battery was prepared in the same manner as in Example 1 except that the air flow at the time of removing excess electrolyte was set to 2 liters per second.
  • the amount of excess electrolyte which does not contribute to the battery function is small, so that the battery is lightweight and has a low possibility of liquid leakage. Can be manufactured.
  • the battery according to claim 12 has a high weight energy density due to a decrease in the weight of the electrolyte, and an excess of the electrolyte is reduced. Therefore, the possibility of causing a liquid leakage accident is low.
  • the battery manufacturing method, the battery manufacturing apparatus, and the battery according to the present invention include a lithium ion battery, such as a lithium ion battery, in a power generating element body impregnated with an electrolytic solution, and in an outer container for housing the power generating element body. It can be widely applied to batteries configured by this method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

A battery is produced by charging liquid electrolyte to a power generator element that integrally comprises a positive plate, a negative plate and a separator; removing part of the liquid electrolyte from the power generator element; and housing the power generator element in a container.

Description

明 糸田 電池製 造 方 法 お よ びそ れ を 用 い た 電 池 技術分 野  Akira Itoda Battery Manufacturing Method and Battery Technology Area Using It
本発 明 は電池 の 製造 方法 に 関 す る も の で あ る 。 さ ら に 詳 し く は リ チ ウ ム 二次 電池 の 製造方法 に 関す る も の で あ る 。 背景 技術  The present invention relates to a method for manufacturing a battery. More specifically, the present invention relates to a method for manufacturing a lithium secondary battery. Background technology
リ チ ウ ム イ オ ン 二次電池 は高 電圧、 高 工 ネ リレ ギ ー 密度 が実現可能 な 二次電池 と し て 現在改 良が盛 ん に 進 め ら れ て い る 。 そ の 主要 な構成要素 は 、 正極 と 負極 の 一対 の 電 極お よ び こ の 両電極間 を 短絡 し な い よ う に 隔 て-る セ ゾ、 ° レ 一 夕 か ら な る 発 電 要素体 と 、 発 電要素体 に 充填 さ れ る 電 解液で あ る 。 実用 に 供 さ れて い る リ チ ウ ム 二次 電池 で は 正 負 両極 と セ パ レ 一 夕 を 重ね巻 き し た 状態 で外 装缶 に 挿 入 し 電解液 を 充填 し た 後 に 封 口 す る と い う 手 順 で 製造 さ れて い る 。 こ う し た 製造方法 の 例 は特 開 平 1 0 — 3 3 4 8 8 4 号公報 な ど に 見 る こ と が で さ る 。  Lithium-ion rechargeable batteries are currently being actively improved as rechargeable batteries capable of realizing high voltage and high working energy density. Its main components are a pair of positive and negative electrodes and a power generating element consisting of a pair of electrodes separated from each other so as not to short-circuit between the two electrodes. The body and the electrolyte filled in the power generation element body. Lithium rechargeable batteries that are in practical use are inserted into an outer can with the positive and negative electrodes and separators wrapped around each other and sealed after filling with electrolyte. Manufactured by mouth-to-mouth procedures. An example of such a manufacturing method can be found in Japanese Patent Application Laid-Open No. 10-333488, for example.
リ チ ウ ム イ オ ン 電池 に 必要 な 電解液量 は理 想 的 に は多 孔 質体で あ る 正負 両電極 と セ パ レ 一 夕 の 空 孔 部 を ち よ う ど 満た す量で あ る 。 と こ ろ が前述 の よ う な 製造 方 法 に よ る と 外装缶 と 電極 の 間 隙や 電 極 を 重ね巻 き し た と き に で き る 巻 き 中 心 の 間 隙な ど 、 電 池 の 機能 に 無 関 係 な 空 間 に ま で電解液 を 充 填 し て し ま う こ と に な る 。 こ う し た 電池 機能 に 無 関 係 な 空 間 に 存在す る 電解液 に よ り 電解液量 は 理 想的 必要量 よ り も か な り 増 大 し て お り 重 量 増 力 Π の 要 因 と な っ て い る ' The amount of electrolyte required for a lithium ion battery is ideally enough to fill both the positive and negative electrodes, which are porous materials, and the voids in the separator. . According to the manufacturing method as described above, a battery such as a gap between an outer can and an electrode or a gap in a winding center formed when an electrode is overlapped and wound. In other words, the space filled with the electrolyte is irrelevant to this function. Due to the presence of the electrolyte in the space irrelevant to the battery function, the amount of the electrolyte is much larger than the ideally required amount, and the weight increase is necessary. Cause '
ま た 電 池機能 に 無 関 係 な 空 間 に 存在す る 電解液 は 、 電 極ゃ セ パ レ ー 夕 な ど の 多孔体 に 保持 さ て い る 電解液 に 比 較 し て 流動 、 流 出 し や す い 。 そ の た め 電池液漏れ事故 の 原 因 と な り 得 る 。  In addition, the electrolyte present in the space irrelevant to the battery function flows and flows out as compared with the electrolyte held in a porous body such as an electrode and a separator. It's easy to do . This can cause a battery fluid accident.
以 上 の よ う に 電池機 能 に 無 関 係 な 空 間 に存在す る 電解 液 は重 量面 で も 電 池液漏 れ事故 を 抑止す る と い う 観点 か ら も よ り 少 な く す る こ と が望 ま し い 。 発 明 の 開 示  As described above, the electrolyte present in the space unrelated to the battery function is less in terms of suppressing the leakage of the battery even in the heavy surface. I want to do that. Disclosure of the invention
本発 明 は以上 の よ う な 問 題点 を 解決す る た め に な さ れ た も の で あ り 、 前述 の 電池機能 に 無 関係 な 空 間 に 存在す る 電解液 の 量が 非常 に 少 な い 電池 を 製造す る こ と を 目 的 と す る も の で あ る 。 本発 明者 ら は 小型軽量で 高 性能 の 電 池 を得 る 目 的 に対 して電池製造方法 の研究 を重ねた結果 、 以下 に 記述す る 電池製造方法 、 電池製造装置お よ び電池 を 完成 さ せた 。  The present invention has been made to solve the above problems, and the amount of the electrolyte present in the space irrelevant to the above-mentioned battery function is extremely large. The aim is to produce a small number of batteries. The present inventors have conducted research on a battery manufacturing method for the purpose of obtaining a small, lightweight and high-performance battery, and have found that the battery manufacturing method, the battery manufacturing apparatus, and the battery described below are used. Completed.
本発 明 は 、  The present invention
( i ) 正極 、 負極お よ びセ パ レ ー 夕 が一体 と な っ た 発 電要素体 に 電解液 を 充填す る 工程 、 ( i i ) 電解液 を 充填 し た発電 要 素体 に付着 し た電解液 の一部 を除去する 工程 、 お よ び、 ( i i i ) 付着 し た 電解液 の 一部 を 除去 し た 発電要 素体 を 外装容器 に 収納す る 工程 を 有す る こ と を 特徴 と す る 電池製造方法 ( 請求 の 範 囲 第 1 項) 、  (i) a process in which the positive electrode, the negative electrode, and the separator are integrated into a power generating element body with an electrolyte; (ii) a process in which the electrolyte element is attached to the power generating element body; A step of removing a part of the electrolytic solution, and (iii) a step of storing the power generating element from which a part of the adhered electrolytic solution has been removed in an outer container. Battery manufacturing method (Scope of Claim 1),
発電要素体 を 電解液 に 浸漬す る こ と に よ っ て 発電要素 体 に 電解液 を 充填す る 請求 の 範 囲 第 1 項 記載 の 電池製造 方法 (請求 の 範 囲 第 2 項) 、  The battery manufacturing method according to claim 1, wherein the electrolytic element is filled with the electrolyte by immersing the power generating element in the electrolytic solution (claim 2).
発電要素体 を 気流 中 に お く こ と に よ っ て発電 要 素体 に 付着 し た 電解液 の 一部 を 除去す る 請求 の 範 囲 第 1 項記載 の 電池 製造方 法 ( 請求 の 範 囲 第 3 項 ) 、 By placing the power generating element in the airflow, it becomes a power generating element. Claims for removing a part of the adhered electrolyte solution The battery manufacturing method described in claim 1 (claim 3),
発 電 要 素体 に ノ ズル カゝ ら 噴 出 し た 気流 を 当 て る こ と に よ っ て 発電要 素体 を 気 流 中 に お く 請求 の 範 囲 第 3 項記載 の 電池 製造 方 法 ( 請 求 の 範 囲 第 4 項) 、  The battery manufacturing method according to claim 3, wherein the power generation element is placed in the air current by applying the airflow blasted from the nozzles to the power generation element. (Section 4 of the Claims),
発電 要 素体 に 気流 を 当 て る 部分 を 移動 さ せ る 請求 の 範 囲 第 4 項記載 の 電 池 製造方法 (請求 の 範 囲 第 5 項) 、 発 電 要 素体 を 挿入 し た 流路 の一方 を 減圧 し て 気流 を 作 る こ と に よ っ て 発電要 素体 を 気流 中 に お く 請求 の 範 囲第 3 項記載 の 電池製造方 法 (請求 の 範 囲 第 6 項) 、  Claims for moving a portion of the power generating element that is exposed to the air flow Claim: The battery manufacturing method according to claim 4 (Claim 5 of the claim), a flow path in which the power generating element is inserted The battery manufacturing method according to Claim 3 (Claim 6), wherein the power generating element is placed in the airflow by reducing the pressure of one of the two to create an airflow.
発電要 素体 を 挿 入 し た 流路 の 一方 を 加 圧 し て気流 を 作 る こ と に よ っ て発電要 素体 を 気流 中 に お く 請求 の 範 囲第 3 項記載 の 電池製造方 法 (請求 の 範 囲第 7 項) 、  The battery manufacturing method according to claim 3, wherein the power generation element is placed in the air flow by applying pressure to one of the flow paths into which the power generation element is inserted, thereby creating an air flow. Law (paragraph 7 of the claim),
電解液 を 吸収 し 、 保持する 機能 を 有す る 物体 と 接触 さ せ る こ と に よ っ て発電要素体 に 付着 し た 電解液 の 一部 を 除去す る 請求 の 範 囲 第 1 項記載 の電池製造方 法 (請求 の 範 囲第 8 項) 、  The claim according to claim 1, wherein a part of the electrolyte adhering to the power generating element body is removed by being brought into contact with an object having a function of absorbing and retaining the electrolyte. Battery manufacturing method (Claim 8),
電解液 を 充填 し た 発 電要素体 に 付着 し た 電解液 の 一部 を 、 溶解 し て い る 固 形 分量 が電解液 よ り も 少 な く か つ 電 解液 と 相 溶性 の あ る 液体で希釈す る 工程 を 有す る 請求 の 範 囲第 1 項記載 の 電 池 製造方 法 ( 請求 の 範 囲 第 9 項) 、 電解液 よ り も 溶解 し て い る 固 形 分量が電解液 よ り も 少 な く か つ 電解液 と 相 溶 性 の あ る 液体が、 電解.液 を 構成す る 溶媒で あ る 請求 の 範 囲 第 9 項記載 の 電 池製造方法 (請 求 の 範 囲 第 1 0 項 ) 、  A part of the electrolyte adhering to the electricity-generating element body filled with the electrolyte is a liquid in which the amount of dissolved solids is less than that of the electrolyte and is compatible with the electrolyte. The method for producing a battery described in Claim 1 having a step of diluting with a battery (Claim 9 of the claim), the amount of solid dissolved more than the electrolytic solution is defined as the electrolytic solution The method for producing a battery according to Claim 9, wherein the liquid having a low level of compatibility and being compatible with the electrolyte is a solvent constituting the electrolyte. 10 terms),
( i ) 正極 、 負 極お よ びセ パ レ 一 夕 が 一体 と な っ た発 電要 素体 に 電解液 を 充 填す る 手 段 、 ( i i ) 電解 液 を 充填 した発電要 素体 に付着 し た電解液 の一部 を除去 す る 手 段 、 お よ び、 ( Π ί ) 付着 し た 電解液 の 一部 を 除去 し た 発 電要 素体 を 外装 容器 に 収納す る 手 段 を 有す る こ と を 特徴 と す る 電池製造 装 置 ( 請求 の 範 囲 第 1 1 項) 、 お よ び 、 (i) a means for charging the electrolyte into a power generating element in which the positive electrode, the negative electrode, and the separator are integrated; and (ii) a power generating element filled with the electrolyte. A method for removing a part of the attached electrolyte, And (Π) a battery manufacturing device characterized by having a means for storing the power generating element from which a part of the attached electrolyte has been removed in an outer container. Scope of Claim (11.1), and
請求 の 範 囲 第 1 項記載 の 製造 方法 に よ っ て 製造 さ れ る 電池 ( 請求 の 範 囲 第 1 2 項)  Claims Batteries manufactured by the method of claim 1 (Claims 12)
に 力ゝ カゝ わ る 。 図 面 の 簡単な 説 明 It is powerful. Brief explanation of the drawing
図 1 は 、 本発 明 の 一実施 の 形態 に お け る 発 電 要 素 体 に ノ ズルか ら 噴 出 し た気 流 を 当 て る こ と に よ っ て 発電-要 素 体 に 付着 し た 電解液 の 一部 を 除去す る 工程 の 概 略 を 示す 模式 図 で あ る 。  Fig. 1 shows the power generation element according to one embodiment of the present invention, which is attached to the power generation element by irradiating the airflow ejected from the nozzle onto the power generation element. FIG. 2 is a schematic view showing an outline of a step of removing a part of the electrolyte solution.
図 2 は、 本発 明 の 一実施 の 形態 に お け る 発電要 素体 に 当 て る 帯状 の 気流 を 発 生 さ せ る ス リ ツ ト 状 の 噴 出 口 を 有 す る ノ ズル の 形 状 の概略 を 示す模式 図 で あ る 。  Fig. 2 shows a nozzle having a slit-shaped outlet for generating a band-shaped airflow corresponding to a power generating element according to an embodiment of the present invention. FIG. 2 is a schematic view showing an outline of the shape.
図 3 は 、 本発 明 の 一実施 の 形態 に お け る 発電要 素体 に 当 てる 帯状 の 気流 を 発 生 さ せ る 並 ん だ穴 状 の 噴 出 口 を 有 す る ノ ズル の 形 状 の 概略 を 示す模式 図 で あ る 。  Fig. 3 shows a nozzle having a series of holes in the form of holes that generate a band-shaped airflow that strikes the power generating element according to an embodiment of the present invention. FIG. 2 is a schematic view showing an outline of the above.
図 4 は 、 本発 明 の 一 実施 の 形 態 に お け る 発電 要 素 体 を 挿 入 し た 流路 の 一方 を 減圧 し て 気流 を 作 る こ と に よ っ て 発電要 素体 に 付着 し た 電解液 の 一部 を 除去す る 工 程 の 概 略 を 示す模式 図 で あ る 。  Fig. 4 shows an example of the embodiment of the present invention, in which one of the flow paths into which the power generating element is inserted is depressurized to create an airflow, thereby adhering to the power generating element. FIG. 4 is a schematic view showing an outline of a process for removing a part of the electrolyte solution thus obtained.
図 1 中 、 1 は発 電要 素体 、 2 は気体 を 噴 出 す る ノ ズル 、 3 は気流 を 示す 。  In FIG. 1, 1 indicates a power generating element, 2 indicates a nozzle for ejecting gas, and 3 indicates an air flow.
図 2 中 、 2 は気体 を 噴 出 す る ノ ズル 、 3 は気 流 を 示す 。 図 3 中 、 2 は気体 を 噴 出 す る ノ ズル 、 3 は気 流 を 示す 。 図 4 中 、 1 は発 電要 素体 、 3 は気流 、 4 は気体 の 流路 を 示す 。 発 明 を 実施 す る た め の 最 良 の 形態 In FIG. 2, reference numeral 2 denotes a nozzle for ejecting gas, and reference numeral 3 denotes an air flow. In FIG. 3, reference numeral 2 denotes a nozzle for ejecting gas, and reference numeral 3 denotes an air flow. In FIG. 4, 1 indicates a power generating element, 3 indicates an air flow, and 4 indicates a gas flow path. Best form to carry out the invention
以 下 に 本 発 明 の 実施 の 形 態 を 説 明 す る 。  An embodiment of the present invention will be described below.
本 発 明 の 電池 製造方 法 は 、 ( i ) 正極 、 負 極 お よ びセ パ レ一夕 が一体 と な っ た 発電 要 素体 に 電解液 を 充填す る ェ程 、 ( 電解液 を 充填 し た 発 電要 素体 に 付着 し た 電 解液 の 一部 を 除去 す る ェ程 、 お よ び、 ( i i i ) 付着 し た 電 解液 の 一部 を 除去 し た 発 電要 素体 を 外装容器 に 収納す る 工程 を 有す る 。 以下 に そ の 内 容 の 詳細 を 説 明 す る 。  The battery manufacturing method of the present invention comprises the following steps: (i) charging the electrolyte into the power generating element in which the positive electrode, the negative electrode, and the separator are integrated; Removing part of the electrolytic solution adhering to the generated power element, and (iii) cleaning the power element from which a part of the adhering electrolytic solution has been removed. It has a process of storing it in an outer container.The details of the content are described below.
電池 の 発電要 素体 は 、 正極 、 負極お よ びセ パ レ ー-夕 が 一体 と な っ た も の で あ り 、 た と え ば、 正極 シ ― ト お よ び 負 極 の シ ー ト と そ れ ら を 隔て る セ パ レ ー タ フ イ リレ ム と を 重ね巻 き し た も の 力 あ る 。 重ね巻 き し た 各要素 を 樹脂 な ど で 接着 し た り 、 外部 か ら テ ー プな ど で 固 定す る と 発電 要素体 と し て 自 立 し た 構造 と な る 。  The power generation element of the battery is a combination of the positive electrode, the negative electrode, and the separator-electrode. For example, the positive sheet and the negative sheet And the separator file that separates them from each other. When the lap-wound elements are bonded together with a resin or the like, or fixed from outside with a tape or the like, the structure becomes a self-supporting structure as a power generation element.
正極 と し て は 、 た と え ば、 コ ノ ル ト 酸 リ チ ウ ム 粉体 を ポ リ フ ッ 化 ビ 二 リ デ ン を バ イ ン ダー と し て ア ル ミ ニ ウ ム 箔 上 に 塗布 、 乾燥 し た も の を 使用 す る こ と がで き る 。 負 極 と し て は 、 た と え ば 、 ポ リ フ ッ 化 ビ ニ リ デ ン を ノ ィ ン ダ一 と し て グ ラ フ ァ イ ド カ ー ボ ン粉体 を 銅 箔 上 に 塗布乾 燥 し た も の を 使用 す る こ と が で き る 。 セ パ レ ー 夕 と し て は 、 た と え ば、 多孔 質 状 の ポ リ ェ チ レ ン フ ィ ル ム を 使用 す る こ と がで き る 。  For the positive electrode, for example, lithium conodate powder is bound on aluminum foil using polyvinylidene fluoride as a binder. Coated and dried products can be used. As the negative electrode, for example, polyvinylidene fluoride is used as a binder, and graphite carbon powder is applied to a copper foil and dried. You can use the dried one. For example, a porous polylene film can be used as a separator.
自 立 し た構造 を 有す る 発 電要 素体 に 電解液 を 充填す る と 電池 と し て機能 す る 状態 に な る 。 電解液 と し て は 、 た と え ば、 任意 の 溶 媒 に 各種 の 電解質 を 溶解 さ せ た 電解液 を 使用 す る こ と がで き る 。 電解液 の 溶 媒 と し て は 、 た と え ば、 エチ レ ン カ ー ボ ネ一 卜 と ジ メ チ ル カ ー ボ ネ ー ト の 混合 溶 媒 を 使用 す る こ と がで き る 。 電解質 と し て は 、 た と え ば 、 六 フ ッ 化 リ ン 酸 リ チ ウ ム を 使用 す る こ と がで き る 。 When an electrolytic solution is filled in a power generating element having a self-supporting structure, it becomes a state of functioning as a battery. As the electrolytic solution, for example, an electrolytic solution obtained by dissolving various kinds of electrolytes in an arbitrary solvent can be used. As a solvent for the electrolytic solution, for example, ethylene carbonate and dimethyl carbonate are used. Mixed solvents can be used. As the electrolyte, for example, lithium hexafluoride can be used.
電解 液 は電池外 装 容器 の外 部 で充填す る こ と ができ る 。 発電 要 素 体 が 比 較的 大型 で あ っ た り 、 電極 に 緻 密 な 層 力 あ る 場 合 、 発 電 要 素 体 最 内 部 ま で 効 率 良 く 電 解 液 を 含 浸 · 充填す る こ と は 困 難で あ る 。 発 電要 素体全体 を 電解 液 中 に 沈 め た状態 で減圧 し た り 遠 心 力 を か けた り す る と 、 電解液 を 効 率 よ く 、 高 い 充填率で含浸 さ せ 、 充填 さ せ る こ と が で き る 。 減圧 の 程度 は 、 た と え ば、 電解液が-減圧 沸縢す る 圧 力 よ り も やや 高 い 圧 力 程度 と す る こ と がで き る 。 遠 心 力 は 、 た と え ば、 4 G を 発 生す る 回転速度 、 重 力 の 4 倍程度 と す る こ と がで き る 。  The electrolyte can be filled outside the battery outer container. If the power generation element is relatively large or the electrode has a dense layer, impregnate and fill the electrolyte with high efficiency up to the innermost part of the power generation element. Is difficult. If the pressure is reduced or centrifugal force is applied while the entire power generating element is submerged in the electrolyte, the electrolyte is impregnated with a high efficiency and a high filling rate to fill the electrolyte. Can be done. The degree of decompression can be, for example, slightly higher than the pressure at which the electrolyte undergoes reduced pressure boiling. The centripetal force can be, for example, about four times the rotational speed and gravity that generates 4G.
電解液 を 充填 し た発電要素体 を 電解液か ら 引 き 上 げる と 、 そ の 外部や巻 き 中 心 に は電池機能 に 寄与 し な い 電解 液 (余剰電解液) が付着 し て い る 。 こ の 余剰電解液 は重 量増加 や 液漏れ の 原 因 と な る た め 、 で き る 限 り 低減す る こ と が望 ま し い 。  When the power generating element body filled with the electrolyte is pulled up from the electrolyte, the electrolyte (excess electrolyte) that does not contribute to the battery function adheres to the outside and the center of the winding. . Since this excess electrolyte causes an increase in weight and leakage, it is desirable to reduce the excess as much as possible.
電解液 を 充填 し た発電要 素体 に 付着 し た 電解液 の 一部 を 除去す る こ と に よ っ て 、 電池機能 に 無 関 係 な 空 間 に存 在す る 余剰電解液 の 量 を 低減す る こ と がで き る 。 発電要 素体 を 気流 中 に お く こ と に よ っ て 発 電 要 素 体 に 付着 し た 電解液 の 一部 を 除去す る こ と がで き る 。 気 流 に よ っ て発 電要素 体 に 付着 し た 電解液 の 一部 を 気 流 に よ っ て 除去す る 場合 、 気 流 を 作 る ガ ス と し て は 、 た と え ば、 乾燥空気 、 乾燥窒 素 を 使用 す る こ と がで き る 。 乾燥 空 気や 乾燥窒素 は電池 性能 に 悪影 響 を 与 え る こ と が な い 。  By removing a part of the electrolyte adhering to the power generation element filled with the electrolyte, the amount of the surplus electrolyte existing in the space irrelevant to the battery function is reduced. It can be reduced. By placing the power generating element in the airflow, it is possible to remove a part of the electrolyte adhering to the power generating element. When a part of the electrolytic solution attached to the power generating element body by the airflow is removed by the airflow, the gas that creates the airflow is, for example, dry air. , Dry nitrogen can be used. Dry air and dry nitrogen do not adversely affect battery performance.
余剰電解液 を 除去す る 方 法 と し て は 高 速 の 気 流 を 吹き 付 け る 方法 が あ る 。 発電要 素体 に ノ ズル か ら 噴 出 し た 気 流 を 当 て る こ と に よ っ て発電 要 素体 に 付着 し た 電解液の 一部 を 除去す る こ と がで き る 。 図 1 に 発 電要 素体 に ノ ズ ル カゝ ら 噴 出 し た 気流 を 当 て る こ と に よ っ て 発電 要 素体 に 付着 し た 電解液 の 一部 を 除去す る 工程 の 概略 を 示す 。 ノ ズルか ら 噴 出 す る 気流 を 発電 要 素体表面 に 吹 き 付 け る と 付着 し た 電解液 はそ の 圧 力 に よ っ て 除去 さ れ る 。 A method for removing excess electrolyte is to blow high-speed airflow. There is a way to attach it. A part of the electrolyte adhering to the power generation element can be removed by irradiating the air flow ejected from the nozzle onto the power generation element. Fig. 1 shows the outline of the process of removing a part of the electrolyte adhering to the power generation element by applying the airflow blasted from nozzle nozzles to the power generation element. Indicate Blowing the airflow from the nozzle onto the surface of the power-generating element causes the attached electrolyte to be removed by the pressure.
発電 要素体 に ノ ズルか ら 噴 出 し た 気流 を 当 て る 際 に 、 電解液 を 除去す る 力 が強 い 部分 、 すな わ ち 、 気流が直接 当 た っ て い る 部分 を 移動 ( 走査) さ せ る こ と に よ つ-発電 要 素体全体 に わ た つ て効率 よ く 余剰電解液 を 除去す る こ と がで き る 。 発 電要素体 に ノ ズルか ら 噴 出 し た 気流 を 当 て る 際 に 、 発電要素体 ま た は ノ ズル を 移 動す る こ と に よ つ て気流が直接 当 た る 部位 を 走査す る こ と がで き る 。 走 査速度 は、 た と え ば、 毎秒 5 c m程度 と す る こ と が で き る 。  When the airflow blown out from the nozzle is applied to the power generating element, the part that removes the electrolyte is moved strongly, that is, the part where the airflow is directly applied is moved ( (Scanning)-it is possible to remove excess electrolyte efficiently over the entire power generation element body. When the airflow blown out of the nozzle is applied to the power generating element, the part to which the airflow is directly applied is scanned by moving the power generating element or the nozzle. You can do it. The scanning speed can be, for example, about 5 cm per second.
ノ ズルか ら 噴 出 し た 気流 は 、 発電要素体 の 除液 を 行な う 面 の 法線 に 対 し て 3 0 〜 9 0 ° の 範 囲 に あ る こ と が好 ま し い 。 3 0 ° 未満で は 、 吹 き 飛 ば さ れ た 液滴 の 飛散が 1 方 向 と な ら ず 、 既 に 除去 し た 面 を 汚染す る 可 能性が増 す 。  It is preferable that the air flow ejected from the nozzle is in a range of 30 to 90 ° with respect to a normal of a surface of the power generating element body from which liquid is removed. If the angle is less than 30 °, the blown droplets are not scattered in one direction and the possibility of contaminating the already removed surface is increased.
ノ ズル と し て は 、 ス リ ッ ト 状 の 噴 出 ロ カゝ ら 帯 状 の 気流 が噴 出 す る 形 状 の も の 、 ま た 、 並 ん だ穴 状 の 噴 出 口 か ら 帯状 の 気流 を 発 生 さ せ る も の が好 ま し い 。 ス リ ッ ト 状 の 噴 出 口 を 有 す る ノ ズル の概略 を 図 2 に 示す 。 並 ん だ穴 状 の 噴 出 口 を 有す る ノ ズル の 概略 を 図 3 に 示す 。  Nozzles are shaped like a strip-shaped ejected rocker with a band-like airflow, and a band-shaped nozzle from a row of hole-shaped outlets. Those that generate airflow are preferred. Figure 2 shows an outline of a nozzle with a slit-shaped outlet. Figure 3 shows an outline of a nozzle with a series of holes.
ノ ズル か ら 噴 出 さ せ る 気流 の 速度 は 、 た と え ば 、 秒速 4 0 m程度 と す る こ と がで き る 。 ノ ズル か ら 噴 出 す る 気 流 の 速度が遅す ぎ る 場合 に は 余 剰電解液 を 充 分 に 除去す る こ と が 困 難 に な る 傾 向 が あ り 、 速す ぎ る 場 合 に は発電 要 素 体が気流 の 圧 力 に よ っ て 変 形 す る 場 合が あ る 。 For example, the velocity of the airflow ejected from the nozzle can be about 40 m / s. Intention to erupt from the nozzle If the flow speed is too slow, there is a tendency that it is difficult to sufficiently remove the excess electrolyte.If the flow speed is too fast, the power generation element will lose airflow. It may be deformed by the pressure.
余剰電解液 を 除去す る 方 法 と し て は発 電要 素 体 を 流路 に 置 き 、 流路 に 高 速 の 気流す方 法 が あ る 。 流 路 に 流す気 流 の 流速 は 、 た と え ば、 秒速 2 0 m程度 と す る こ と がで き る 。 流速が速す ぎ る 場合 に は 発 電要素体が変 形 す る 傾 向 が あ り 、 流速 が遅す ぎ る 場合 に は余剰電解液 を 充分 に 除去す る こ と が 困 難 に な る 傾 向 が あ る 。  As a method for removing excess electrolyte, there is a method in which a power generating element is placed in a flow path, and a high-speed airflow is caused to flow through the flow path. The flow velocity of the airflow flowing through the channel can be, for example, about 20 m / sec. If the flow velocity is too high, the power generating element tends to deform, and if the flow velocity is too low, it is difficult to remove excess electrolyte sufficiently. Tend .
発電 要素体 を挿入 し た流路 の一方か ら 気体 を送 っ た り 、 ま た は 、 流路 の 一方 を 減圧 し た り す る こ と に よ っ て 気流 .を 作 る こ と がで き る 。 図 4 に 、 発電要素体 を 挿入 し た 流 路 の 一方 を 減圧 し て気流 を 作 る こ と に よ っ て 発電要素体 に 付着 し た 電解液 の 一部 を 除去す る 工程 の概略 を 示す。  Gas can be created by sending gas from one of the channels into which the power generating element is inserted, or by depressurizing one of the channels. Wear . Fig. 4 shows the outline of the process of removing a part of the electrolyte adhering to the power generation element body by reducing the pressure in one of the flow paths in which the power generation element body is inserted and creating an air flow. .
余剰電解液 を 除去す る 方法 と し て は電解液 を 吸 収す る 機能 を 有す る 物体 と 接触 さ せ る 方法が あ る 。 電解液 を 吸 収 、 保持す る 機能 を 有す る 物体 と し て は 、 た と え ば、 液 体 を 吸収す る 不織布 、 織布 、 ス ポ ン ジ 状樹脂 な ど を 使用 す る こ と がで き る 。  As a method of removing excess electrolyte, there is a method of contacting with an object having a function of absorbing the electrolyte. As an object having a function of absorbing and retaining an electrolytic solution, for example, a nonwoven fabric, a woven fabric, a sponge-like resin or the like that absorbs the liquid material may be used. I can do it.
付着 し た 電解液 の 一部 を 除去 し た発電 要 素体 を 外装容 器 に 収納す る こ と に よ っ て 電 池 機 能 に寄 与 し な い 余剰電 解液 を 大幅 に 低減 し た 電池 を 形 成 す る こ と が で き る 。 外 装容器 と し て は 、 た と え ば 、 ス テ ン レ ス ゃ ァ リレ ミ ニ ゥ ム で で き た 金属缶 も し く は ア ル ミ ラ ミ ネ ー ト フ イ リレ ム を 使 用 す る こ と がで き る 。  By storing the power generation element from which a part of the attached electrolyte has been removed in an outer container, the amount of excess electrolyte that does not contribute to the battery function has been significantly reduced. The battery can be formed. For the external container, for example, use a metal can or aluminum laminate file made of stainless steel. can do .
本発 明 に よ れ ば、余剰電解液 を 低減す る こ と に よ っ て 、 電池 を 軽量化 し 、 ま た 、 液漏れ の 可能性 を 著 し く 減 少 さ せ る こ と がで き る 。 余剰電解 液 を 除 去 す る 工程 を 経 る と 、 電解液 の 種類 に よ っ て は溶 媒 の 蒸 発 に よ っ て電解液 中 の 固 形 分 が発電要 素体表 面 に 顕著 に 析 出 す る 場合 が あ る 。 固 形分 が表面 に 析 出 し た 発 電要 素 体 で 電池 を 製造す る と 、 外 装容 器表面 に 凹 凸 が現 れ 、 好 ま し く な い 外観 と な る 場 合が あ る 。 According to the present invention, by reducing excess electrolyte, the weight of the battery can be reduced, and the possibility of liquid leakage can be significantly reduced. . After the step of removing excess electrolyte, depending on the type of electrolyte, solids in the electrolyte are remarkably deposited on the surface of the power generating element due to evaporation of the solvent depending on the type of the electrolyte. May be issued. When a battery is manufactured from a power generating element with solid components deposited on the surface, concaves and convexes may appear on the surface of the external container, resulting in an unfavorable appearance. .
余剰電解 液 を 除去す る 工程 の 前 ま た は後 に 、 発 電要素 体 に 付着 し た 電解液 の 一部 を 、 溶解 し て い る 固 形分量が 電解液 よ り も 少 な く か つ 電解液 の 構成成分 と 相 溶性 の あ る 液体 (洗浄液) で 希釈す る こ と に よ っ て 固 形 分 の析 出 を 低減す る こ と がで き る 。 た と え ば、 洗浄液 で 発 電要素 体 を 洗 い 流す こ と に よ っ て 、 発電要素体 に 付着 し た 電解 液 の 一部 を 希釈す る こ と がで き る 。  Before or after the step of removing the surplus electrolyte, a part of the electrolyte adhering to the power generating element body is dissolved in a smaller solid component than the electrolyte. Dilution with a liquid (washing solution) that is compatible with the constituents of the electrolytic solution can reduce the precipitation of solid components. For example, a part of the electrolytic solution attached to the power generation element body can be diluted by rinsing the power generation element body with the cleaning liquid.
洗浄液 と し て は 、 固 形分が溶解 し て い な い 液体 ま た は 溶解量 の 少 な い 液体 、 た と え ば、 電解液 よ り も 溶解 し て い る 固 形 分量が少 な い 液体 を 使用 す る こ と がで き 、 ま た 、 電池性能 に影響が少 な い 液体、 電解液 と 相 溶性 が あ る 液 体 を 使用 す る こ と がで き る 。 た と え ば、 電解液 の 構成成 分 か ら 塩な ど の 溶質 を 除 い た 溶媒 は 、 電池性能 に 影響 を 及 ぼす こ と がな い た め 、 好 ま し く 用 い る こ と が で き る 。 洗浄液 と し て は 、 た と え ば、 ジ ェ チル カ ー ボ ネ ー ト 、 ジ メ チル カ ー ボ ネ ー 卜 、 メ チル ェ チ ル カ ー ボ ネ ー 卜 、 プ ロ ピ レ ン カ ー ボ ネ ー ト 、 カ ブ ロ ラ ク ト ン な ど を 使用 す る こ と がで き る 。  As a washing liquid, a liquid in which solid components are not dissolved or a liquid with a small amount of dissolution, for example, a solid component in which the solid components are dissolved less than the electrolytic solution is smaller. Liquids can be used, and liquids that have little effect on battery performance and liquids that are compatible with the electrolyte can be used. For example, a solvent obtained by removing solutes such as salts from the constituent components of the electrolyte solution should be used favorably because it does not affect battery performance. Can be obtained. Examples of the cleaning liquid include, but are not limited to, ethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, propylene carbonate, and the like. You can use bottles, cubractons, and so on.
余剰電解液 を 除 去す る 工程 の 前 も し く は後 に 、 発電要 素体 を こ う し た 溶媒 で 洗 い 流す と 固 形 分 の 析 出 が抑制 さ れ る 。  Rinse the power generating element with such a solvent before or after the step of removing the excess electrolytic solution, so that the precipitation of solid components is suppressed.
本発 明 の 電池 製造方 法 に よ れ ば、 電池 の 機 能 に 寄与 し な い 電解液が低減 さ れ る た め 軽量で液漏れ し に く く 、 か つ 電池 性 能 や 外観 上 の 問 題 の な い 電池 を 製造す る こ と が で き る According to the battery manufacturing method of the present invention, the amount of electrolyte that does not contribute to the function of the battery is reduced, so that the battery is lightweight and hard to leak. Batteries that do not have problems with their performance or appearance can be manufactured.
本発 明 の 電池 製造装置 は 、 ( i ) 正極 、 負 極 お よ びセ レ ― 夕 一体 と な つ た 発 電 要素体 に 電解液 を 充填する 手 段 、 ( i i ) 電解 液 を 充填 し た 発電要 素体 に 付着 し た電 解液 の 一部 を 除去す る 手段 、 お よ び、 ( i i i ) 付着 し た電 解液 の 一部 を 除去 し た 発電要 素体 を 外装容器 に 収納す る 手 段 を 有す る  The battery manufacturing apparatus according to the present invention comprises: (i) a step of filling a positive electrode, a negative electrode, and a power generating element united with a cell and a battery with an electrolyte; Means for removing part of the electrolytic solution adhering to the power generating element, and (iii) storing the power generating element from which the part of the adhering electrolytic liquid has been removed in an outer container. Have the means to
発電要素体 に 電解液 を 充填す る 手 段 は 、 た と え ば、 発 電 要 素体 を 電解液 に 浸漬す る た め の 電解液槽 を 有す-る 。 発電要 素体 に 付着 し た電解液 の 一部 を 除去す る 手段 は、 た と え ば、 気流 を 噴 出 す る ノ ズル 、 流路 お よ び気流 を作 る た め の 送風装 置 ま た は減圧装置 、 ま た は 、 電解液 を 吸 収す る 機能 を 有す る 物体 を 有す る 。  The means for filling the power generating element body with the electrolytic solution has, for example, an electrolytic solution tank for immersing the power generating element body in the electrolytic solution. Means for removing a part of the electrolyte adhering to the power generating element include, for example, a nozzle that blows out an air current, a flow path, and a blower that creates an air flow. Or a pressure reducing device or an object having a function of absorbing an electrolyte.
実施例 Example
以下本発 明 の 詳細 に つ い て 実施例 に よ り 説 明 す る が、 本発 明 は こ れ ら に 限定 さ れ る も の で はな い 。  Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
実施例 1 Example 1
(電解液 の 作 成)  (Creation of electrolyte)
ェ チ レ ン 力 ー ポ ネ ー 卜 と ジ メ チル カ 一 ポ ネ 一 ト を 重量 比 で 1 : 1 に 混 合 し た 溶媒 に 支持塩 と し て L i P F 6 粉 末 を 溶解 し て 1 m o 1 / 1 に 調整 し た 。 The E Ji les down force over port conservation over Bok and di methylation mosquito one port Ne one bets in a weight ratio 1: 1 by dissolving L i PF 6 flour powder as a supporting salt to mixed-with solvent 1 It was adjusted to mo 1/1.
( 電極 の 作成 )  (Creating electrodes)
活物 質 で あ る L i C o 0 2 を 8 7 重 量 % 、 導電 性黒 鉛 粉 を 8 重 量 % 、 ノ イ ン ダー 樹脂 と し て ポ リ フ ツ イヒ ビ ニ リ デ ン 5 重 量 % と 溶媒で あ る N — メ チル ピ ロ リ ド ン ( 以下Katsubutsu quality Oh Ru by L i C o 0 2 8 7 by weight%, a conductive black lead powder 8 by weight%, Roh Lee emissions Zehnder resin and to port re off Tsu torquecontrol bicycloalkyl two Li Devon fivefold % And the solvent N-methylpyrrolidone (hereinafter
N M P ) を 混 L 製 し た 正極活物 質 ペ ー ス ト を 厚 さN MP) and the paste of the positive electrode active material made of L
2 0 u m の ァ ル ミ ニ ゥ ム 箔 か ら な る 集電体 上 に ド ク タ ー ブ レ ー ド 法 に よ っ て 厚 さ 2 0 0 m に 塗布 · 乾燥 し 、 さ ら に こ れ を 厚 さ 1 2 0 i m に 圧延す る こ と で 正 極材 を 作 成 し た Doctor on a current collector consisting of 20 um aluminum foil The positive electrode material was created by coating and drying to a thickness of 200 m by the blade method, and then rolling this to a thickness of 120 im.
活 物 質 で あ る メ ソ フ エ — ズマ イ ク ロ ビ - - ズカ ー ボ ン( 大 阪瓦斯 ( 株) 製 ) 9 5 重量 %、 ノ イ ン ダ一 樹脂 と し て ポ The active material, Meso-Fu-Zumicrobi-Zukabon (manufactured by Osaka Gas Co., Ltd.) is 95% by weight.
U フ ッ 化 ビ ニ リ デ ン 5 重量 % と 溶媒 で あ る N M P を 混合 し て 調 製 し た 負 極活物質 ペ ー ス ト を 厚 さ 1 2 m の 銅 箔 か ら な る 集電体 上 に ド ク タ ー ブ レ ー ド 法 に よ っ て 厚 さ 2U A negative electrode active material paste prepared by mixing 5% by weight of vinylidene fluoride and NMP as a solvent is a collector made of a 12-m-thick copper foil. Thickness 2 according to doctor blade method
0 0 m に 塗布 · 乾燥 し 、 さ ら に こ れ を 厚 さ 1 2 0 m に 圧延す る こ と で 負 極材 を 作成 し た 。 The negative electrode material was prepared by coating and drying the solution to a thickness of 100 m and then rolling it to a thickness of 120 m.
以 上 の よ う に 作製 し た正極材お よ び負 極材 を 5 0 m m The cathode and anode materials prepared as described above were used for 50 mm
X 2 0 0 m m に 切 断 し て正極お よ び負極 と し 、 そ の 端 部 に集電用 の 端子 を 取 り 付 け た 。 It was cut into X200 mm to form a positive electrode and a negative electrode, and a current collecting terminal was attached to the end.
(発 電要素体 の 形成)  (Formation of power generation element body)
正極 と 負 極 の 間 に 5 2 m m X 2 1 0 m m に 切 断 し た セ パ レ一夕( へ キ ス ト セ 夕 二ニー ズ製セ ルガ - - ド # 2 4 0 0 ) を 挟 み 、 こ れ を 重 ね た 状態 の ま ま 巻 き 取 り 、 さ ら に 押 し つ ぶ し て 平板状巻 き 構造 と し て ポ リ イ ミ ド 粘着 テ ー プで 固 定 し た 。 巻 き 回 数 に つ い て は押 し つ ぶ し た 時 に 幅 が約 5 0 m m に な る よ う に 調 即 し た 。  Insert a cut-in piece (Hex-Semi-Neils Celga-# 1004) cut into a size of 52 mm x 210 mm between the positive and negative electrodes. Then, it was wound up in a stacked state, pressed down further, and fixed with a polyimide adhesive tape as a flat-plated structure. The number of turns was adjusted so that the width was about 50 mm when squeezed.
(電解液 の 注液)  (Injection of electrolyte)
電解液 中 に 発 電 要 素体 を 入れ 、 全体 を ポ ン プ で 減圧 し 5 0 t 0 r r で 3 分 間保持 し た 後 に 常圧 に 戻 し た 。  The power generating element was put into the electrolyte, the whole was depressurized with a pump, kept at 50 t0 rr for 3 minutes, and then returned to normal pressure.
(余剰電解液 の 除去)  (Removal of excess electrolyte)
長 さ 7 0 m m ス リ ツ ト 幅 0 . 3 m m の ス リ ッ ト 状 の ノ ズル か ら 常圧換算 で毎秒 1 リ ツ ト ル の 乾燥空 気 を 噴 出 さ せた 気流で電解液 の 除去 を 行な っ た 。 気流 を 当 て る 角 度 は発 電要素体面 の 法線か ら 4 5 で の 傾 き と し 、 ノ ズル 先 端か ら 発 電要 素 体表面 ま で の 距離 は 5 m m と し た 。 発 電 要素体面 の 一方 の 端部 か ら も う 一方 の 端 部 ま で 毎秒 5 c m の 速度 で 走査 し て 除去 を 行 な っ た 。 以 上 の 操 作 を 発電 要素体 両.面 に 対 し て 行 な つ た The electrolyte is generated by a jet of dry air at a rate of 1 liter per second converted to normal pressure from a slit-shaped nozzle with a length of 70 mm and a width of 0.3 mm. Removal was performed. The angle at which the airflow is applied is assumed to be an inclination of 45 from the normal to the surface of the power generation element body. The distance from the end to the surface of the power generation element body was 5 mm. The removal was performed by scanning at a speed of 5 cm per second from one end of the power generating element body surface to the other end. The above operations were performed on both sides of the power generation element.
余剰 電解液除去 操作後 の 発電 要素体表 面 に は微 少 な 固 体析 出 物 が観察 さ れた 。  After the operation to remove the excess electrolyte, a small amount of solid precipitate was observed on the surface of the power generating element body.
( ァ リレ ミ ラ ミ ネ一 ト フ イ ルム に よ る 外 装)  (Exterior by Arille Miranet Film)
以 上 の ェ程 で作成 さ れた 発電要素体 を 約 5 0 t o r r の 減圧下 に お い て ア ル ミ ラ ミ ネ 一 卜 フ ィ ル ム で シ ー ル し て外装 と し た 。  The power-generating element body created in the above process was sealed with an aluminum film under a reduced pressure of about 50 torr to form an exterior.
ア ル ミ ラ ミ ネ一 卜 フ ィ ル ム は厚 さ 5 0 /z m の ア ル ミ 二 ゥ ム 箔 と 厚 さ 1 2 // m の ポ リ エ チ レ ン テ レ フ タ レ ー ト フ イ リレム と 厚 さ 5 m の ポ リ エ チ レ ン フ ィ ル ム を 積層 し た も の を 7 0 m m X 1 2 0 m m に 裁 断 し て 用 い た 。 こ の フ イ リレ ム を 2 つ 折 り に し て 7 0 m m X 6 0 m m に し て発 電 要素体 を 挟 ん た 状態 で残 り 3 辺 を ヒ ー ト シ ー ル し て 密封 し た 。  The aluminum film is an aluminum foil with a thickness of 50 / zm and a polystyrene telemeter with a thickness of 12 // m. A laminate of an irem and a 5 m thick polyethylene film was cut into 70 mm x 120 mm. This filem was folded in two to make it 70 mm X 60 mm, and the other three sides were sealed with a heat seal with the power generating element body sandwiched. .
(液漏 れ性 の 評価)  (Evaluation of liquid leakage)
外装 の 端部 に 直 径 2 m m の 穴 を 開 け穴 を 下 に し た 状態 で 5 分 間 保持 し 、 前後 の 重量変化 か ら 流 出 し た 電解液量 を見積 も つ た 。  A hole with a diameter of 2 mm was drilled at the end of the exterior and held for 5 minutes with the hole down, and the amount of electrolyte flowing out was estimated from the weight change before and after.
以 上 の 手順で 作成 さ れ た 電池 の 重量 は 1 3 . 5 g 、 液 漏れ性 評価 に よ る 流 出 液量 は 0 . 0 5 で あ っ た 。  The weight of the battery prepared according to the above procedure was 13.5 g, and the amount of effluent from the liquid leakage evaluation was 0.05.
実施例 2 ( 流路 に お い た 場合) Example 2 (when placed in a flow path)
電池発電要 素体 を 内 部 に 入 れ た 際 に 流 路 内 壁 と 発電要 素体 の 間 隙 が 0 . 5 m m に な る よ う に 設 計 し た 筒 状流路 を 作成 し た 。 こ の 流路 中 に 発 電 要 素体 を 固 定 し 、 流路 と 発電要 素体 の 間 隙 に 乾燥空 気 を 流 し て 余 剰電解液 を 除去 し た 。 発 電要素 体 の 上 流側 と 下流側 の 差圧 が 0 . 5 k g f ノ c m 2 と な る よ う に 乾燥空気 供給量 を 調 節 し た 。 A cylindrical flow path was designed so that the gap between the inner wall of the flow path and the power generating element was 0.5 mm when the battery power generating element was inserted inside. The power generation element is fixed in this flow path, and excess air is removed by flowing dry air through the gap between the flow path and the power generation element. did . Power generation differential pressure of the upper stream side and the downstream side of the element body is 0. 5 kgf Roh cm 2 and dry air supply amount Adjusts to the jar by that Do not.
余 剰 電解液除去 を 上 記 の 方法で行 な う ほ か は 、 実施例 1 と 同 様 に 電池 を 作成 し た 。 こ の 電池 の 重量 は 1 3 . 3 g 、 液漏れ性評価 に よ る 流 出 液量 は 0 . 0 1 g で あ っ た 。 実施例 3 (不織布 を 用 い た 場合)  A battery was prepared in the same manner as in Example 1 except that excess electrolyte was removed by the above-described method. The weight of this battery was 13.3 g, and the amount of effluent from the liquid leakage evaluation was 0.01 g. Example 3 (when non-woven fabric is used)
注液後 の 発 電要 素体外部 に 付着す る 電解液 を ポ リ プ ロ ピ レ ン 製不織布 で ふ き 取 る こ と で余剰電解液 を 除去 す る こ と 以外 は実施例 1 と 同 様 に 電池 を 作成 し た 。 こ の 電池 の 重 量 は 1 3 . 6 g 、 液漏れ性評価 に よ る 流 出 液量 は 0 . 0 7 g で あ っ た 。 こ の 方法 に よ る と 大量 の 乾燥 ガ ス 供給 設備 な ど が不要 に な る が 、 巻 き 構造 中 心部 の 余剰液 を 除 去す る こ と はで き な カゝ っ た 。  Same as Example 1 except that excess electrolyte is removed by wiping off the electrolyte adhering to the outside of the power generation element after injection with a non-woven polypropylene fabric. The battery was made like this. The weight of this battery was 13.6 g, and the amount of effluent by liquid leakage evaluation was 0.07 g. According to this method, a large amount of dry gas supply equipment is not required, but excess liquid in the center of the wound structure cannot be removed.
実施例 4 (溶媒で洗浄 し た 場合) Example 4 (when washed with solvent)
電解液充填後 の 発電 要素体 を 直 ち に ジ ェ チル カ ー ボ ネ — ト 中 に 1 0 秒 間 浸漬 し た 後 に 余剰電解液 を 除去す る 走 査 を ί亍 な う こ と 以外 は実施例 1 と 同 様 に電池 を 作成 した。  Immediately after immersing the power generating element body after filling the electrolyte in a JET CARBON for 10 seconds, a run to remove the excess electrolyte was performed. A battery was made in the same manner as in Example 1.
こ の 電池 の 重量 は 1 3 . 5 g 、 液漏れ性評価 に よ る 流 出 液量 は 0 . 0 5 g で あ っ た 。 実施例 1 に 観 察 さ れ た よ う な 発電要素体表面 の 微少 な 固体析 出 物 は観察 さ れな か つ た 。 外 装後 も 固 体析 出 物 に よ る 凹 凸 が表面 に 現 れ る こ と は な か っ た 。  The weight of this battery was 13.5 g, and the amount of effluent from the liquid leakage evaluation was 0.05 g. No minute solid deposits on the surface of the power generation element as observed in Example 1 were observed. No irregularities due to solid precipitates appeared on the surface even after the external mounting.
比較例 1 Comparative Example 1
発 電要 素体 を ア ル ミ ラ ミ ネ ー ト フ ィ ル ム で挟 み 1 辺 を 残 し て シ ー ル し て 袋状 と し 、 袋状 に な っ た外 装 フ ィ ル ム 内 に 電解液 を 注入 し て 電解 液 の 減圧含浸 を 行 な っ た 。 含 浸後 の 余分 な電解液 を ピ ペ ッ ト で 抜 き 取 っ た 後 に 、 残 り 一辺 を シ ー ル し て 密封 し た 。 以 上 の 操作 以外 は 実施例 1 と 同 様 の 手 順で 電池 を 作 成 し た 。 こ の 電池 の 重 量 は 1 4 . l g 、 液漏 れ性評価 に よ る 流 出 液量 は 0 . 9 g で あ っ た 。 The power generation element body is sandwiched between aluminum laminate films and sealed except one side to form a bag. Inside the bag-shaped external film The electrolyte solution was injected into the sample to perform vacuum impregnation of the electrolyte solution. The excess electrolyte solution after the impregnation was removed with a pipette, and the other side was sealed and sealed. Example 1 except for the above operations A battery was created in the same procedure as described above. The weight of this battery was 14.1 lg, and the amount of effluent from the liquid leakage evaluation was 0.9 g.
こ の 比較例 の よ う に 、 外装 し た 後 に 余 分 な 電解液 を 抜 き 取 る 操作で は電池機能 に 寄与 し な い 余 分な 電解液 を 十 分 に 低減す る こ と は 困 難で あ る 。 そ の 結果電池 重量 が重 く な り 液漏れ の 原 因 と な る 電解液 も 多 く な る 。  As in the case of this comparative example, it is difficult to sufficiently reduce the amount of excess electrolyte that does not contribute to the battery function by removing excess electrolyte after packaging. It is difficult. As a result, the weight of the battery increases, and the amount of electrolyte that causes leakage of the battery also increases.
比 較例 2 Comparative Example 2
発電要素体 を ア ル ミ ラ ミ ネ ー ト フ ィ ル ム で 挟 み 1 辺 を 残 し て シ ー ル し て袋状 と し 、 袋状 に な っ た外 装 フ ィ ル ム 内 に 電解液 を 注入 し て電池全体 の 重量が 1 3 . 5 g-に な る よ う に 調 節 し た 。 こ の重量 は実施例 1 と 同 じ 重量 で あ る 。 そ の後 5 0 t 0 r r で 3 分 間保持 し た 後 に 残 り 一辺 を シー ル し て 密封 し た 。 以上 の 操作以外 は実施例 1 と 同 様 の 手順で電池 を 作成し た 。  The power generating element body is sandwiched between aluminum laminate films, sealed except for one side to form a bag, and the electrolytic film is placed inside the bag-shaped external film. The solution was injected to adjust the total weight of the battery to 13.5 g-. This weight is the same as in Example 1. After that, it was kept at 50 t0 rr for 3 minutes, and the other side was sealed and sealed. A battery was created in the same procedure as in Example 1 except for the above operation.
こ の 電池 の 重 量 は前述 の よ う に 1 3 . 5 g 、 液漏れ性 評価 に よ る 流 出 液量 は 0 . 0 7 g で あ っ た 。 こ の電池 と 実施例 1 の 電池 を 用 い て 0 . 5 C の レ 一 ト で 充放電 試験 を行な う と 、実 施例 1 に比較 し てそ の放電容量 は約 8 0 % で あ っ た 。  As described above, the weight of this battery was 13.5 g, and the amount of effluent from the liquid leakage evaluation was 0.07 g. When a charge and discharge test was performed at a rate of 0.5 C using this battery and the battery of Example 1, the discharge capacity was about 80% as compared with Example 1. It was.
こ れは電池性能 に寄 与 し な い 空 間 に も 電解液が存在 し て い る た め に 電 池性能 上電解液 が必要 な 空 間 に 十分 に 電 解液で 満 た さ れ な か っ た 結果 で あ る 。  This is because the electrolyte exists even in the space that does not contribute to the battery performance, so the space that needs the electrolyte for the battery performance is not sufficiently filled with the electrolyte. This is the result.
実施例 5 ( 気流 が遅 い 場合) Example 5 (when airflow is slow)
余剰電解液 を 除去す る 際 の 気流 流量 を 毎秒 0 . 2 リ ッ ト ル と す る 以外 は実施例 1 と 同 様 に 電池 を 作成 し た 。 余 剰電解液除去 操 作後 も 発電要 素 体表面 に は顕著 な 電解液 残 り が観察 さ れ た 。 こ の 電池 の 重 量 は 1 3 . 9 g 、 液漏 れ性評価 に よ る 流 出 液量 は 0 . 5 g で あ り 、 実施例 1 と 比 較す る と 余剰電解液 に よ る 重 量増 加 、 液漏 れ に つ な が る 電 解液量増 加 が見 ら れ た が 、 比 較例 1 と 比 較 と 比較す る と 顕著 な 効果 が見 ら れた 。 A battery was prepared in the same manner as in Example 1 except that the air flow at the time of removing the excess electrolyte was set to 0.2 liter per second. Even after the operation of removing the excess electrolyte, a noticeable electrolyte residue was observed on the surface of the power generation element body. The weight of this battery was 13.9 g, and the amount of effluent by liquid leakage evaluation was 0.5 g. In comparison, there was an increase in the amount of electrolyte due to excess electrolyte and an increase in the amount of electrolyte leading to liquid leakage, but it was remarkable when compared with Comparative Example 1 and Comparative Example 1. The effect was seen.
比 較例 4 (気流 が速 い 場合 ) Comparative example 4 (when the airflow is fast)
余剰 電解液 を 除去す る 際 の 気流 流量 を 毎秒 2 リ ッ ト ル と す る 以外 は実施例 1 と 同 様 に 電 池 を 作成 し た 。  A battery was prepared in the same manner as in Example 1 except that the air flow at the time of removing excess electrolyte was set to 2 liters per second.
余剰電解液 除去操作後 の 発 電 要 素体 は部分 的 に 構成要 素 間 剥 離 が観察 さ れ た 。 こ の 電 池 の 重量 は 1 3 . 4 g 、 液漏れ性評価 に よ る 流 出 液量 は 0 . 0 2 g で あ っ た 。  After the removal of the surplus electrolyte, the separation of the constituent elements was partially observed in the generator. The weight of this battery was 13.4 g, and the amount of effluent by liquid leakage evaluation was 0.02 g.
請求 の 範 囲 第 1 項〜 第 8 項記載 の 製造方法 に よ れば、 電池機 能 に 寄与 し な い 余分 な電解液が少 な い た め 、 軽量 で液漏れ の 可能性が低 い 電池 を 製造す る こ と が で き る 。  According to the manufacturing method described in claims 1 to 8, the amount of excess electrolyte which does not contribute to the battery function is small, so that the battery is lightweight and has a low possibility of liquid leakage. Can be manufactured.
請求 の 範 囲第 9 項お よ び第 1 0 項記載 の 製造方法 に よ れ ば、 発電要 素体表面 の 析 出 物 に 起 因 す る 外観上好 ま し く な い 凹 凸 の 少 な い 電池 を 製造す る こ と がで き る 。  According to the manufacturing method described in Claims 9 and 10 of the Claims, the number of unfavorable irregularities caused by deposits on the surface of the power generating element is reduced. Batteries can be manufactured.
請求 の 範 囲 第 1 1 項記載 の 製造 装置 に よ れ ば、 軽量で 液漏れ の 可能性 が低 い 電池 を 製造す る こ と がで き る 。  According to the manufacturing apparatus described in claim 11, it is possible to manufacture a battery that is lightweight and has a low possibility of liquid leakage.
請求 の 範 囲 第 1 2 項記載 の 電 池 は 、 電解液重量が低減 さ れ る た め に 重量エ ネ ルギ ー 密度 が高 く 、 ま た 、 余分 な 電解液 が低減 さ れて い る た め 、 液漏れ事故 を 起 こ す可能 性が低 い 。 産業上 の 利 用 可 能性  The battery according to claim 12 has a high weight energy density due to a decrease in the weight of the electrolyte, and an excess of the electrolyte is reduced. Therefore, the possibility of causing a liquid leakage accident is low. Industrial applicability
本発 明 に よ る 電池製造方法 、 電池製造 装 置 お よ び電池 は 、 リ チ ウ ム イ オ ン 電池な ど 電解液 を 含浸 し た 発電要素 体 と そ れ を 収 納す る 外装容器 に よ っ て 構成 さ れ る 電池 に 広 く 適用 す る こ と がで き る 。  The battery manufacturing method, the battery manufacturing apparatus, and the battery according to the present invention include a lithium ion battery, such as a lithium ion battery, in a power generating element body impregnated with an electrolytic solution, and in an outer container for housing the power generating element body. It can be widely applied to batteries configured by this method.

Claims

言青 求 の 範 囲 Scope of demand
1. ( i ) 正極 、 負 極 お よ びセ パ レ 一 夕 が一体 と な っ た 発電要 素体 に 電解 液 を 充填す る 工程 、 ( i i ) 電解液 を 充填 し た 発 電 要 素 体 に 付着 し た 電解液 の 一部 を 除去す る 工程 、 お よ び、 ( i i i) 付着 し た電解液 の 一部 を 除去 し た 発電要 素体 を 外 装容器 に 収納す る 工程 を 有す る こ と を 特徴 と す る 電 池 製造方法。 1. (i) a process of filling the electrolyte into the power generating element in which the positive electrode, the negative electrode and the separator are integrated, and (ii) a power generating element filled with the electrolyte. A step of removing a part of the electrolyte adhering to the battery, and (iii) a step of storing the power generating element from which the part of the electrolyte adhering is removed in an external container. A battery manufacturing method characterized in that:
2. 発電要 素体 を 電解液 に 浸漬す る こ と に よ っ て 発電要 素体 に 電解液 を 充填す る 請求 の 範 囲 第 1 項記載 の-電池 製造方法。  2. The method for producing a battery according to claim 1, wherein the power generation element is filled with the electrolyte by immersing the power generation element in the electrolyte.
3. 発電要素体 を 気 流 中 に お く こ と に よ っ て 発電 要 素体 に 付着 し た 電解液 の 一部 を 除去す る 請求 の 範 囲第 1 項 記載 の電池製造方 法 。  3. The battery manufacturing method according to claim 1, wherein a part of the electrolytic solution attached to the power generation element is removed by placing the power generation element in an airflow.
4. 発電要素体 に ノ ズルか ら 噴 出 し た 気流 を 当 て る こ と に よ っ て発電要素体 を 気流 中 に お く 請求 の 範 囲第 3 項 記載 の 電池製造方 法 。  4. The battery manufacturing method according to claim 3, wherein the power generation element body is placed in the air current by applying an air flow blasted from the nozzle to the power generation element body.
5. 発電要素体 に 気 流 を 当 て る 部分 を 移動 さ せ る 請求 の 範 囲第 ' 4 項記載 の 電池製造方法 。  5. The battery manufacturing method according to claim 4, wherein a portion of the power generation element body that is exposed to the airflow is moved.
6. 発電要素体 を 挿 入 し た 流路 の 一方 を 減圧 し て 気流 を 作 る こ と に よ っ て 発 電 要 素体 を 気流 中 に お く 請求 の 範 囲 第 3 項記載 の 電池 製造方法。  6. The battery according to claim 3, wherein the power generation element is placed in the airflow by reducing the pressure in one of the flow paths into which the power generation element is inserted, thereby creating an airflow. Method.
7. 発電要素体 を 挿 入 し た 流路 の 一方 を 加圧 し て 気流 を 作 る こ と に よ っ て 発 電 要 素体 を 気流 中 に お く 請求 の 範 囲 第 3 項記載 の 電 池 製造方法。  7. The electric power generation device according to claim 3, wherein the power generation element body is placed in the air flow by creating an air flow by pressurizing one of the flow paths into which the power generation element body is inserted. Pond Manufacturing method.
8. 電解液 を 吸 収す る 機 能 を 有す る 物 体 と 接触 さ せ る こ と に よ っ て発電要 素 体 に 付着 し た 電解液 の 一部 を 除去 す る 請求 の 範 囲 第 1 項記載 の 電池製造方 法 。 8. Claims to remove a part of the electrolyte adhering to the power generation element by contacting it with a substance having a function of absorbing the electrolyte The battery manufacturing method described in item 1.
9 . 電解液 を 充 填 し た 発電 要 素体 に 付着 し た 電解液 の一 部 を 、 溶解 し て い る 固 形 分量が電解液 よ り も 少 な く か つ 電解液 と 相 溶性 の あ る 液体で希釈す る 工 程 を 有す る 請求 の 範 囲 第 1 項記載 の 電池製造方法。 9. A part of the electrolytic solution attached to the power generating element filled with the electrolytic solution is dissolved in a less solid part than the electrolytic solution and is compatible with the electrolytic solution. The method for producing a battery according to claim 1, further comprising a step of diluting with a liquid.
10. 電解液 よ り も 溶解 し て い る 固 形 分量 が電解液 よ り も 少 な く か つ 電解液 と 相 溶性 の あ る 液体が 、 電解液 を 構 成す る 溶媒で あ る 請求 の 範囲第 9 項記載 の 電池製造方 法。  10. Claims in which the liquid having a solid content less than that of the electrolytic solution and less than that of the electrolytic solution and being compatible with the electrolytic solution is a solvent constituting the electrolytic solution. Item 9. The battery manufacturing method according to Item 9.
11. ( i ) 正極 、 負極お よ びセ パ レ ー 夕 が一体 と な っ た 発電要 素体 に 電解液 を 充填す る 手段お よ び ( Π ) -電解 液 を 充填 し た 発 電要 素体 に 付着 し た電解液 の 一部 を 除 去す る 手段 を 有す る こ と を 特徴 と す る 電池 製造 装置。  11. (i) Means for filling the electrolyte into the power generating element in which the positive electrode, the negative electrode, and the separator are integrated, and (ii) the power generating element filled with the electrolyte A battery manufacturing device characterized by having a means for removing a part of an electrolytic solution attached to a body.
1 2 . 請求 の 範 囲 第 1 項記載 の 製造方法 に よ っ て 製造 さ れ る 電池。  1 2. A battery manufactured by the manufacturing method according to claim 1.
PCT/JP2000/000607 2000-02-04 2000-02-04 Battery and method of manufacture thereof WO2001057942A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2000/000607 WO2001057942A1 (en) 2000-02-04 2000-02-04 Battery and method of manufacture thereof
KR1020017012386A KR20020019008A (en) 2000-02-04 2000-02-04 Battery and method of manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/000607 WO2001057942A1 (en) 2000-02-04 2000-02-04 Battery and method of manufacture thereof

Publications (1)

Publication Number Publication Date
WO2001057942A1 true WO2001057942A1 (en) 2001-08-09

Family

ID=11735655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000607 WO2001057942A1 (en) 2000-02-04 2000-02-04 Battery and method of manufacture thereof

Country Status (2)

Country Link
KR (1) KR20020019008A (en)
WO (1) WO2001057942A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109162A (en) * 2008-10-30 2010-05-13 Jcc Engineering Co Ltd Method of manufacturing electrolytic capacitor, impregnation device for electrolytic capacitor, and machine for assembling electrolytic capacitor
JP2016095987A (en) * 2014-11-13 2016-05-26 株式会社豊田自動織機 Method of manufacturing electrode and cleaning device of electrode

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043608A2 (en) * 2009-10-07 2011-04-14 주식회사 엘지화학 Method for manufacturing a lithium ion polymer battery, battery cell, and lithium ion polymer cell comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210769A (en) * 1989-02-10 1990-08-22 Seiko Electronic Components Ltd Manufacture of nonaqueous battery
JPH02262276A (en) * 1989-03-31 1990-10-25 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JPH0714609A (en) * 1993-06-21 1995-01-17 Haibaru:Kk Battery
JPH10223255A (en) * 1997-02-04 1998-08-21 Toshiba Battery Co Ltd Manufacture of polymer electrolyte secondary battery
JPH10334926A (en) * 1997-06-03 1998-12-18 Toshiba Corp Battery manufacturing device and manufacture
JP2000123860A (en) * 1998-10-13 2000-04-28 Ngk Insulators Ltd Electrolyte filling method of lithium secondary battery and electrode terminal structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210769A (en) * 1989-02-10 1990-08-22 Seiko Electronic Components Ltd Manufacture of nonaqueous battery
JPH02262276A (en) * 1989-03-31 1990-10-25 Matsushita Electric Ind Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JPH0714609A (en) * 1993-06-21 1995-01-17 Haibaru:Kk Battery
JPH10223255A (en) * 1997-02-04 1998-08-21 Toshiba Battery Co Ltd Manufacture of polymer electrolyte secondary battery
JPH10334926A (en) * 1997-06-03 1998-12-18 Toshiba Corp Battery manufacturing device and manufacture
JP2000123860A (en) * 1998-10-13 2000-04-28 Ngk Insulators Ltd Electrolyte filling method of lithium secondary battery and electrode terminal structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109162A (en) * 2008-10-30 2010-05-13 Jcc Engineering Co Ltd Method of manufacturing electrolytic capacitor, impregnation device for electrolytic capacitor, and machine for assembling electrolytic capacitor
JP2016095987A (en) * 2014-11-13 2016-05-26 株式会社豊田自動織機 Method of manufacturing electrode and cleaning device of electrode

Also Published As

Publication number Publication date
KR20020019008A (en) 2002-03-09

Similar Documents

Publication Publication Date Title
JP4563503B2 (en) Nonaqueous electrolyte secondary battery
TWI447988B (en) Degassing method of secondary battery using centrifugal force
JP4499088B2 (en) Lithium secondary battery using separator membrane partially coated with gel polymer
WO2012111612A1 (en) Electrochemical device
JP2002512430A (en) Composite polymer electrolyte for rechargeable lithium batteries
EP2476129B1 (en) Treatment and adhesive for microporous membranes
JP5882549B1 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP7206763B2 (en) Electrode and its manufacturing method, electrode element, non-aqueous electrolyte storage element
JP5288223B2 (en) Method for manufacturing battery electrode
KR20020019608A (en) Battery
WO1999023714A1 (en) Method of fabricating an electrochemical device and the resultant device
JP2006338917A (en) Electronic component and separator therefor
JP2023036922A (en) Electrode and method for manufacturing the same, electrode element, power storage element, and liquid material
JPH10302749A (en) Non-aqueous electrolytic secondary battery
JP2008282799A (en) Electrode for non-aqueous secondary battery and its manufacturing method
WO2010128548A1 (en) Cell separator manufacturing method
FR3007207A1 (en) SECONDARY BATTERY PLANE
JP7088969B2 (en) Lithium ion separator for secondary batteries and lithium ion secondary batteries
WO2001057942A1 (en) Battery and method of manufacture thereof
Miyagawa et al. Electrochemical Evaluation of Lithium Metal Batteries Using Separators with Different Pore Sizes
JP7160034B2 (en) Porous composite film, battery separator, and method for producing porous composite film
JP6081333B2 (en) Lithium ion secondary battery manufacturing method and lithium ion secondary battery manufacturing apparatus
CN113903923B (en) Battery and method for manufacturing same
CN115207444A (en) Wet powder and method for producing nonaqueous electrolyte secondary battery comprising electrode composed of wet powder
JP2006086148A (en) Electric double layer capacitor and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 557100

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR

WWE Wipo information: entry into national phase

Ref document number: 1020017012386

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09926264

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020017012386

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWR Wipo information: refused in national office

Ref document number: 1020017012386

Country of ref document: KR