WO2001053083A1 - Transparente, biaxial orientierte, uv-stabilisierte barrierefolie, verfahren zu ihrer herstellung und ihre verwendung - Google Patents

Transparente, biaxial orientierte, uv-stabilisierte barrierefolie, verfahren zu ihrer herstellung und ihre verwendung Download PDF

Info

Publication number
WO2001053083A1
WO2001053083A1 PCT/EP2001/000203 EP0100203W WO0153083A1 WO 2001053083 A1 WO2001053083 A1 WO 2001053083A1 EP 0100203 W EP0100203 W EP 0100203W WO 0153083 A1 WO0153083 A1 WO 0153083A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
weight
thermoplastic
transparent
film according
Prior art date
Application number
PCT/EP2001/000203
Other languages
English (en)
French (fr)
Inventor
Ursula Murschall
Ulrich Kern
Wolfgang Dietz
Günther Crass
Original Assignee
Mitsubishi Polyester Film Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Polyester Film Gmbh filed Critical Mitsubishi Polyester Film Gmbh
Priority to JP2001553113A priority Critical patent/JP2003529461A/ja
Publication of WO2001053083A1 publication Critical patent/WO2001053083A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/023Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets using multilayered plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • B32B2419/06Roofs, roof membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2590/00Signboards, advertising panels, road signs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the invention relates to a transparent, biaxially oriented, UV-stabilized barrier film made of a crystallizable thermoplastic, the thickness of which is in the range from 10 to 500 ⁇ m.
  • the film contains at least one UV stabilizer as a light stabilizer, at least one barrier or barrier layer to reduce gas and aroma permeability and is characterized by good stretchability and very good optical and mechanical properties.
  • the invention further relates to a method for producing this film and its use.
  • Transparent films made of crystallizable thermoplastics with a thickness between 10 and 500 ⁇ m are well known.
  • These films do not contain any UV stabilizers as light stabilizers, so that neither the films nor the articles made from them are suitable for outdoor use. In outdoor applications, these films show yellowing and deterioration of the mechanical properties after a short time due to photooxidative degradation by sunlight.
  • EP-A-0620245 describes films which are improved with regard to their thermal stability. These films contain antioxidants which are suitable for trapping radicals formed in the film and for degrading the peroxide formed. However, this document does not give any suggestion of how the UV stability of such films could be improved.
  • the object of the present invention was to provide a transparent film with a thickness in
  • the invention therefore relates to a transparent, biaxially oriented, UV-stabilized film with a thickness in the range from 10 to 500 ⁇ m, which contains a crystallizable thermoplastic as the main constituent and which is characterized in that it additionally comprises at least one UV- soluble in the thermoplastic.
  • a crystallizable thermoplastic as the main constituent and which is characterized in that it additionally comprises at least one UV- soluble in the thermoplastic.
  • a high UV stability means that the film is not or only slightly damaged by sunlight or other UV radiation, so that the film is suitable for outdoor applications and / or critical indoor applications.
  • the film should not yellow when used outdoors for several years, should not show embrittlement or cracking of the surface, and should also not show any deterioration in the mechanical properties.
  • High UV stability means that the film absorbs the UV light and only lets light pass through in the visible area. The film thus has a barrier against the short-wave, aggressive UV light in the wavelength range of ⁇ 380 nm. This means that the film completely absorbs the aggressive short-wave radiation, which is responsible, for example, for fat oxidation in foods, in the wavelength range ⁇ 380 nm.
  • Good optical properties include, for example, high light transmission (> 74%), high surface gloss (> 120), extremely low haze ( ⁇ 20%) and low yellowness index (YID ⁇ 10).
  • the good mechanical properties include a high modulus of elasticity (E MD > 3200 N / mm 2 ; E TD > 3500 N / mm 2 ) and good tensile strength values (in MD> 100 N / mm 2 ; in TD> 130 N) / mm 2 ).
  • a good barrier effect against the passage of gas and aroma means that the oxygen permeability is ⁇ 15 cm 3 / (m 2 • 24h - bar).
  • Good stretchability includes the fact that the film can be oriented excellently in both the longitudinal and transverse directions and without tears.
  • the film according to the invention contains a crystallizable thermoplastic as the main component.
  • Suitable crystallizable or partially crystalline thermoplastics are, for example, polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate, with polyethylene terephthalate being preferred.
  • a crystallizable thermoplastic is understood to mean crystallizable homopolymers, crystallizable copolymers, crystallizable compounds (mixtures), crystallizable recyclate and other variations of crystallizable thermoplastics.
  • the film according to the invention is generally one layer, but it can also be multi-layer. It can also be coated with various copolyesters or adhesion promoters.
  • At least one surface side of the film according to the invention is coated with SiO x , ethylene-vinyl alcohol copolymer, PVDC (polyvinylidene dichloride), EVOH (ethylene vinyl alcohol) or PVOH (polyvinyl alcohol).
  • the thickness of this coating is generally in the range from 10 to 8000 nm, preferably from 30 to 4000 nm.
  • the SiO x coating can, for example, by electron beam evaporation or by conventional evaporation in a high vacuum, as in a conventional one
  • silicon dioxide Si0 2
  • Si0 2 silicon dioxide
  • the Si0 2 With conventional vapor deposition in a high vacuum, the Si0 2 is brought to a high temperature in a melting tank. The temperature is around 1400 ° C. In both methods, the Si0 2 sublimes and condenses on the film surface - depending on the 0 2 content of the atmosphere - as SiO x .
  • thermoplastic surface with SiO x results in a transparent layer with good adhesion to the polar polyester surface.
  • the polyester surface may have been corona-treated prior to deposition.
  • the coating has already significantly reduced the oxygen permeability without the SiO x layer being protected.
  • the SiO x layer in the composite ie when it is covered by a second transparent film, has an oxygen permeability which is reduced again by a factor of 5 to 10.
  • Portions of SiO x , the film according to the invention can also be coated with ethylene-vinyl alcohol copolymer, PVDC, EVOH or PVOH.
  • the barrier layer serves as a gas, in particular oxygen, or aroma barrier and has an oxygen permeability of ⁇ 15 cm 3 / (m 2 ⁇ 24h ⁇ bar).
  • the barrier layer according to the embodiment of the invention just described is a layer of essentially silicon dioxide, the film according to the invention can be easily recycled. Silicon dioxide is often used as an antiblocking agent in the production of polyester films, which is why there is a single-raw material composite.
  • Light especially the ultraviolet portion of solar radiation, i.e. the wavelength range from 280 to 400 nm generally initiates degradation processes in thermoplastics, as a result of which not only the visual appearance adversely changes as a result of color change or yellowing, but also the mechanical-physical properties are adversely affected.
  • Polyethylene terephthalates for example, begin to absorb UV light below 360 nm, their absorption increases considerably below 320 nm and is very pronounced below 300 nm. The maximum absorption is between 280 and 300 nm.
  • UV stabilizers or UV absorbers as light stabilizers are chemical compounds that can intervene in the physical and chemical processes of light-induced degradation. Soot and other pigments can partially protect against light. However, these substances are unsuitable for transparent films because they lead to discoloration or color change. For transparent, matt films, only organic and organometallic compounds are suitable which give the thermoplastic to be stabilized no or only an extremely small color or color change, i.e. H. which are soluble in the thermoplastic.
  • UV stabilizers suitable as light stabilizers for the purposes of the present invention are UV stabilizers which absorb at least 70%, preferably 80%, particularly preferably 90%, of the UV light in the wavelength range from 180 nm to 380 nm, preferably 280 to 350 nm. These are particularly suitable if they are thermally stable in the temperature range from 260 to 300 ° C, ie they do not decompose and do not lead to outgassing.
  • Suitable UV stabilizers as light stabilizers are, for example, 2-hydroxybenzophenones, 2-hydroxybenzotriazoles, organic nickel compounds, salicylic acid esters, cinnamic acid ester derivatives, resorcinol monobenzoates, oxalic acid anilides, hydroxybenzoic acid esters, sterically hindered amines and triazines, the 2-hydroxybenzotriazoles being preferred.
  • the film according to the invention contains at least one UV stabilizer as light stabilizer, the concentration of the UV stabilizer preferably in the range from 0.01% by weight to 5.0% by weight, in particular in the range from 0.1%. -% to 3 wt .-%, based on the weight of the layer of crystallizable thermoplastic.
  • the UV stabilizer can expediently be metered in directly during film production using the so-called masterbatch technology.
  • UV stabilizers which absorb the UV light and thus generally offer protection
  • the UV stabilizer has a poor thermal stability and decomposes or outgasses at temperatures between 200 ° C. and 240 ° C.
  • Large amounts (approx. 10 to 15% by weight) of UV stabilizer have to be incorporated so that the UV light is absorbed and the film is not damaged.
  • the film already has a yellow appearance after production, with yellowness index differences (YID) around 25. Furthermore, the mechanical properties are adversely affected. Unusual problems such as stretching occur
  • the yellowness index of the film does not change compared to an unstabilized film within the scope of the measurement accuracy; - No outgassing, no nozzle deposits, no frame evaporation set, so that the film has an excellent appearance and an excellent profile and flatness;
  • the UV-stabilized film is characterized by excellent stretchability, so that it can be produced reliably and reliably on high speed film lines up to speeds of 420 m / min.
  • the film according to the invention is therefore also economically viable.
  • the film absorbs the aggressive, short-wave light in the wavelength range up to 380 nm, preferably up to 360 nm, i.e. does not let pass.
  • the regrind can also be used again without negatively affecting the yellowness index of the film.
  • the film according to the invention contains 0.01% by weight to 5.0% by weight of 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- ( hexyl) oxy-phenol of the formula
  • mixtures of these two UV stabilizers or mixtures of at least one of these two UV stabilizers with other UV stabilizers can also be used, the total concentration of light stabilizer preferably being between 0.01% by weight and 5.0% by weight. -%, based on the weight of crystallizable polyethylene terephthalate.
  • At least one surface is vapor-coated with ethylene-vinyl alcohol copolymer, EVOH, PVOH, PVDC or SiO x , with SiO x being preferred and with x being in the range from 1.2 to 1.9.
  • the surface gloss of the non-vaporized surface is greater than 80, preferably greater than 100, the light transmission L *, measured according to ASTM D 1003, is more than 74%, preferably more than 76% and the haze of the film, measured according to ASTM D 1003, is less than 20%, preferably less than 15%, which is surprisingly good for the UV stability achieved in combination with the barrier layer and the sealing layer.
  • the standard viscosity SV (DCE) of the thermoplastic measured in dichloroacetic acid according to DIN 53728, is between 600 and 1000, preferably between 700 and 900.
  • the film according to the invention can be either single-layer or multi-layer.
  • the film is composed of at least one core layer and at least one cover layer, a three-layer ABA or ABC structure being preferred in particular.
  • the UV stabilizer is preferably contained in the cover layer or layers.
  • the core layer can also be equipped with UV stabilizers as required.
  • the concentration of the stabilizer or stabilizers here relates to the weight of the thermoplastics in the layer equipped with UV stabilizer (s).
  • the UV-stabilized, multi-layer films produced with a known coextrusion technology become economically interesting in comparison to the completely UV-stabilized monofilms, since significantly less UV stabilizer is required for comparable UV stability.
  • thermoplastic film can also be provided on at least one side with a copolyester or with an adhesion promoter.
  • a copolyester or with an adhesion promoter Preferably the surface is provided with a copolyester or an adhesion promoter to which the heat seal layer is applied.
  • the UV-stabilized film can be oriented excellently in the longitudinal and transverse directions without tears. Furthermore, no outgassing of the UV stabilizer was found in the production process, which is essential to the invention, since most UV stabilizers show disruptive, unpleasant outgassing at extrusion temperatures above 260 ° C. and are therefore unsuitable.
  • the barrier film according to the invention can be easily recycled without polluting the environment, which makes it suitable, for example, for use as a short-lived article.
  • the film absorbs not only the particularly low oxygen permeability but also the short-wave UV light in the wave range from 260 nm to 380 nm, in particular up to 360 nm, the film also offers a barrier against the aggressive short-wave light which, for. B. causes the dreaded fat oxidation in food. Consequently, the film according to the invention is outstandingly suitable as packaging film for sensitive goods on packaging machines in the vertical and horizontal range (vFFs and hFFs machines).
  • the film can also be used as a composite film, the composite of the film according to the invention, i.e. with the barrier coating, and a second film.
  • This second film can also be a UV-stable thermoplastic film or a standard thermoplastic film or a polyolefin film. This second film is preferably applied to the barrier side of the film according to the invention.
  • the second film can have one or more layers and, like the first UV-stable film, can have been oriented by stretching and can have at least one sealing layer to have.
  • the second film can be bonded to the first barrier film according to the invention with or without adhesive.
  • the thickness of this second film is generally between 10 and 100 microns.
  • the films are generally obtained by laminating or laminating the films used, with or without an intermediate adhesive layer, by passing them between rollers heated to 30 to 90 ° C.
  • adhesives are used, they are applied to a film surface by known methods, in particular by application from solutions or dispersions in water or organic solvents.
  • the solutions usually have an adhesive concentration of 5.0 to 40.0% by weight in order to give an amount of adhesive on the film of 1.0 to 10.0 g / m 2 .
  • Adhesives made from thermoplastic resins, such as cellulose esters and ethers, alkyl and acrylic esters, polyimides, polyurethanes or polyesters, or from thermosetting resins, such as epoxy resins, urea / formaldehyde, phenyl / formaldehyde or melamine / - Formaldehyde resins, or consist of synthetic rubbers.
  • thermoplastic resins such as cellulose esters and ethers, alkyl and acrylic esters, polyimides, polyurethanes or polyesters
  • thermosetting resins such as epoxy resins, urea / formaldehyde, phenyl / formaldehyde or melamine / - Formaldehyde resins, or consist of synthetic rubbers.
  • Suitable solvents for the adhesive are e.g. Hydrocarbons such as ligroin and toluene, esters such as ethyl acetate or ketones such as acetone and methyl ethyl ketone.
  • the production of the film according to the invention can, for example, according to known Extrusion processes take place in an extrusion line.
  • the thermoplastic film is first produced, then stretched and the surfaces provided with the barrier layer.
  • the light stabilizer can already be metered in at the thermoplastic raw material manufacturer or metered into the extruder during film production.
  • the additive is first fully dispersed in a carrier material.
  • the thermoplastic itself comes as a carrier material, e.g. polyethylene terephthalate or other polymers that are compatible with the thermoplastic, in question. After metering into the thermoplastic for film production, the components of the masterbatch melt during the extrusion and are thus dissolved in the thermoplastic.
  • the concentration of the UV absorber in addition to the thermoplastic in the masterbatch is 2.0 to 50.0% by weight, preferably 5.0 to 30.0% by weight, the sum of the constituents always being 100% by weight.
  • the grain size and bulk density of the masterbatch are similar to the grain size and bulk density of the thermoplastic, so that homogeneous distribution and thus homogeneous UV stabilization can take place.
  • the films can be made from a thermoplastic raw material, optionally with further raw materials and the UV stabilizer and / or other conventional additives, in a conventional amount of 0.1 to a maximum of 10.0% by weight, both as monofilms and as multi-layered, optionally coextruded Films with the same or differently shaped surfaces are produced, one surface being pigmented, for example, and the other surface containing no pigment. As well one or both surfaces of the film can be provided with a conventional functional coating by known methods.
  • the melted material is extruded through a slot die and quenched as a largely amorphous pre-film on a chill roll.
  • This film is then heated again and stretched in the longitudinal and transverse directions or in the transverse and longitudinal directions or in the longitudinal, transverse and again in the longitudinal direction and / or transverse direction.
  • the stretching ratio of the longitudinal stretching is usually 2 to 6, in particular 3 to 4.5
  • that of the transverse stretching is 2 to 5, in particular at 3 to 4.5
  • that of the second longitudinal stretching which may be carried out at 1, 1 to 3.
  • the first longitudinal stretching can optionally be carried out simultaneously with the transverse stretching (simultaneous stretching).
  • the film is then heat-set at oven temperatures of 180 to 260 ° C, in particular at 220 to 250 ° C.
  • the film is then cooled and wound up.
  • a surface layer is coated with ethylene-vinyl alcohol copolymer, EVOH, PVOH or PVDC, the thickness of the coating being between 0.5 and 8.0 ⁇ m or being vaporized with SiO x on an electron beam system, where x is between 1, 2 and 1 , 9 lies.
  • the SiO x layer has a thickness in the range from 10 nm to 200 nm.
  • On the other surface side is a 10 ⁇ m to 100 ⁇ m thick LDPE film, which may contain 0.1 to 3% by weight of light stabilizer is equipped and contains the other usual additives, laminated.
  • the film according to the invention is outstandingly suitable for a large number of different applications, for example for interior cladding, for trade fair construction and trade fair articles, as displays, for signs, for protective glazing of machines and vehicles, in lighting sector, in shop and shelf construction, as promotional items, laminating medium, for thermal applications of all kinds, as packaging film for sensitive products.
  • the film is also suitable for outdoor applications, e.g. B. for greenhouses, in the advertising sector, roofing, external cladding, covers, applications in the construction sector and illuminated advertising profiles.
  • the individual properties are measured in accordance with the following standards or methods.
  • the surface gloss is measured at a measuring angle of 20 ° according to DIN 67530.
  • the light transmission is the ratio of the total transmitted light to the amount of incident light.
  • the light transmission is measured with the measuring device "® Hazegard plus” according to ASTM D 1003.
  • Haze is the percentage of the transmitted light that deviates by more than 2.5 ° on average from the incident light beam.
  • the image sharpness is determined at an angle of less than 2.5 °.
  • the surface defects are determined visually.
  • the modulus of elasticity, tensile strength and elongation at break are measured in the longitudinal and transverse directions according to ISO 527-1-2.
  • the standard viscosity SV (DCE) is measured based on DIN 53726 in dichloroacetic acid.
  • the intrinsic viscosity (IV) is calculated as follows from the standard viscosity (SV)
  • UV stability is tested according to the test specification ISO 4892 as follows
  • Xenon lamp inner and outer filter made of borosilicate irradiation cycles 102 minutes of UV light, then 18 minutes of UV light with
  • the oxygen permeability is measured according to DIN 53380.
  • Yellowness index G The yellowness index G (YID) is the deviation from the colorlessness in the "yellow” direction and is measured in accordance with DIN 6167. Yellowness values of ⁇ 5 are not visually visible.
  • the examples below and the comparative example are each transparent films of different thicknesses which are produced on the extrusion line described.
  • a 50 ⁇ m thick, transparent film is produced, the main component of which is polyethylene terephthalate 0.3% by weight ⁇ Sylobloc and 1.0% by weight of the UV stabilizer 2- (4,6-diphenyl-1,3,5 -triazin-2-yl) -5- (hexyl) oxyphenol ( ® Tinuvin 1577 from Ciba-Geigy).
  • Tinuvin 1577 has a melting point of 149 ° C and is thermally stable up to approx. 330 ° C.
  • the polyethylene terephthalate from which the transparent film is made has a standard viscosity SV (DCE) of 810, which means an intrinsic viscosity IV (DCE) of Corresponds to 0.658 dl / g.
  • DCE standard viscosity SV
  • DCE intrinsic viscosity IV
  • a transparent film is produced analogously to Example 1, the UV stabilizer being 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyl) -oxyphenol (Tinuvin 1577) in the form of a Masterbatches is metered.
  • the masterbatch is composed of 5% by weight of Tinuvin 1577 as the active ingredient and 95% by weight of the polyethylene terephthalate from Example 1.
  • Example 1 Before the extrusion, 90% by weight of the polyethylene terephthalate from Example 1 with 10% by weight of the masterbatch are dried at 170 ° C. for 5 hours. The extrusion, the film production and the SiO x coating are carried out analogously to Example 1.
  • Example 2 Analogously to Example 2, a transparent 350 ⁇ m thick UV-stabilized PET film is produced. One surface side is coated with SiO x analogously to Example 1.
  • Coextrusion technology is used to produce a 50 m thick multilayer PET film with the layer sequence A-B-A, where B represents the core layer and A the top layers.
  • the core layer B is 48 m thick and the two outer layers, which cover the core layer, are each 1 m thick.
  • the polyethylene terephthalate used for the core layer B is identical to that from the example, but contains no sylobloc.
  • the polyethylene terephthalate of the outer layers A is identical to the polyethylene terephthalate from Example 2, ie the outer layer raw material is equipped with 0.3% by weight of Sylobloc.
  • Example 2 Analogously to Example 2, the 5% by weight Tinuvin 1577 masterbatch is used, but only 20% by weight of the masterbatch is metered into the 1 ⁇ m thick outer layers using the masterbatch technology.
  • a cover layer A is coated with SiO x as in Example 1.
  • the films from Examples 1 to 4 absorb the UV light in the wavelength range up to 390 nm, ie they only let the radiation through from 390 nm and show an oxygen barrier of ⁇ 5 cm 3 / (m 2 ⁇ 24 h - bar) at 23 ° C.
  • the films from Examples 1 to 4 are weathered on the uncoated side for 1000 hours with the Atlas CI 65 Weather Ometer.
  • the films show excellent UV resistance.
  • the films show no cracks or embrittlement.
  • the yellowness index of the film does not change.
  • the films from Examples 1 to 4 are weathered on the side coated with SiO x for 1000 hours with the Atlas CI 65 Weather Ometer.
  • the films show no cracks or embrittlement.
  • the yellowness index of the film does not change.
  • Example 1 Analogously to example 1, a 50 ⁇ m thick PET monofilm is produced. In contrast to Example 1, the film contains no UV stabilizer and no barrier layer.
  • the film lets the UV radiation through from 280 nm. After weathering one side with Atlas CI 65 Weather Ometer for 1000 hours, the film shows cracks and embrittlement on this surface. A precise property profile - especially that mechanical properties - can therefore no longer be measured. The film also shows a visually visible yellow color.
  • the oxygen barrier of the film is> 15 cm 3 / (m 2 ⁇ 24h ⁇ bar) at 23 ° C.
  • the film is completely unsuitable for packaging sensitive packaged goods that have to be protected from the aggressive, short-wave light and that require an oxygen barrier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Die Erfindung betrifft eine transparente, biaxial orientierte, UV-stabilisierte Barrierefolie aus einem kristallisierbaren Thermoplast, deren Dicke im Bereich von 10 bis 500 νm liegt. Die Folie enthält mindestens einen UV-Stabilisator als Lichtschutzmittel, mindestens eine Sperr- oder Barriereschicht zur Verringerung der Gas- und Aromadurchlässigkeit und zeichnet sich durch eine gute Verstreckbarkeit sowie durch sehr gute optische und mechanische Eigenschaften aus. Die Erfindung betrifft ferner ein Verfahren zur Herstellung dieser Folie und ihre Verwendung.

Description

Transparente, biaxial orientierte, UV-stabilisierte Barrierefolie, Verfahren zu ihrer Herstellung und ihre Verwendung
Die Erfindung betrifft eine transparente, biaxial orientierte, UV-stabilisierte Barrierefolie aus einem kristallisierbaren Thermoplast, deren Dicke im Bereich von 10 bis 500 μm liegt. Die Folie enthält mindestens einen UV-Stabilisator als Lichtschutzmittel, mindestens eine Sperr- oder Barriereschicht zur Verringerung der Gas- und Aromadurchlässigkeit und zeichnet sich durch eine gute Verstreckbarkeit sowie durch sehr gute optische und mechanische Eigenschaften aus. Die Erfindung betrifft ferner ein Verfahren zur Herstellung dieser Folie und ihre Verwendung.
Transparente Folien aus kristallisierbaren Thermoplasten mit einer Dicke zwischen 10 und 500 μm sind hinreichend bekannt.
Diese Folien enthalten keinerlei UV-Stabilisatoren als Lichtschutzmittel, so dass sich weder die Folien noch die daraus hergestellten Artikel für Außenanwendungen eignen. Bei Außenanwendungen zeigen diese Folien bereits nach kurzer Zeit eine Vergilbung und eine Verschlechterung der mechanischen Eigenschaften infolge eines photooxidativen Abbaus durch Sonnenlicht.
In der EP-A-0620245 sind Folien beschrieben, die hinsichtlich ihrerthermischen Stabilität verbessert sind. Diese Folien enthalten Antioxidationsmittel, welche geeignet sind, in der Folie gebildete Radikale abzufangen und gebildetes Peroxid abzubauen. Ein Vorschlag, wie die UV-Stabilität solcher Folien verbessert werden könnte, ist dieser Schrift jedoch nicht zu entnehmen.
Aufgabe der vorliegenden Erfindung war es, eine transparente Folie mit einer Dicke im
Bereich von 10 bis 500 μm bereitzustellen, die neben guter Verstreckbarkeit und guten mechanischen und optischen Eigenschaften vor allen Dingen eine hohe UV-Stabilität und eine hohe und wirksame Sperrwirkung gegen den Durchtritt von Gas und Aroma aufweist. Gegenstand der Erfindung ist daher eine transparente, biaxial orientierte, UV-stabilisierte Folie mit einer Dicke im Bereich von 10 bis 500 μm, die als Hauptbestandteil einen kristallisierbaren Thermoplasten enthält und die dadurch gekennzeichnet ist, dass sie zusätzlich mindestens einen in dem Thermoplasten löslichen UV-Absorber enthält und mit mindestens einer Sperr- oder Barriereschicht gegen den Durchtritt von Gasen oder Aromen versehen ist und dass sie in Längs- und Querrichtung gestreckt ist.
Es ist somit gelungen, eine transparente Folie mit einer Dicke von 10 bis 500 μm bereitzustellen, die neben einer guten Verstreckbarkeit, guten mechanischen sowie optischen Eigenschaften vor allem eine UV-Absorption und eine hohe UV-Stabilität, eine hohe Sperr- oder Barrierewirkung gegen Gase aufweist.
Eine hohe UV-Stabilität bedeutet, dass die Folie durch Sonnenlicht oder andere UV- Strahlung nicht oder nur extrem wenig geschädigt wird, so dass sich die Folie für Außenanwendungen und/oder kritische Innenanwendungen eignet. Insbesondere soll die Folie bei mehrjähriger Außenanwendung nicht vergilben, keine Versprödung oder Rißbildung der Oberfläche zeigen und auch keine Verschlechterung der mechanischen Eigenschaften aufweisen. Hohe UV-Stabilität bedeutet demnach, dass die Folie das UV- Licht absorbiert und Licht erst im sichtbaren Bereich hindurchtreten durchläßt. Die Folie besitzt somit eine Barriere gegen das kurzwellige, aggressive UV-Licht im Wellenlängenbereich von < 380 nm. Dies bedeutet, dass die Folie die aggressiven kurzwelligen Strahlungen, die beispielsweise für die Fettoxidation bei Lebensmitteln verantwortlich sind, im Wellenlängenbereich < 380 nm komplett absorbiert.
Zu den guten optischen Eigenschaften zählt beispielsweise eine hohe Lichttransmission (> 74 %), ein hoher Oberflächenglanz (> 120), eine extrem niedrige Trübung (< 20 %) sowie ein niedriger Gelbwert (YID < 10). Zu den guten mechanischen Eigenschaften zählt unter anderem eine hoher E-Modul (EMD > 3200 N/mm2; ETD > 3500 N/mm2) sowie gute Reißfestigkeitswerte (in MD > 100 N/mm2; in TD > 130 N/mm2).
Eine gute Sperrwirkung gegen den Durchtritt von Gas und Aroma bedeutet, dass die Sauerstoffdurchlässigkeit bei < 15 cm3/(m2 • 24h - bar) liegt.
Zu der guten Verstreckbarkeit zählt, dass sich die Folie bei ihrer Herstellung sowohl in Längs- als auch in Querrichtung hervorragend und ohne Abrisse orientieren läßt.
Die Folie gemäß der Erfindung enthält als Hauptbestandteil einen kristallisierbaren Thermoplasten. Geeignete kristallisierbare bzw. teilkristalline Thermoplaste sind beispielsweise Polyethylenterephthalat (PET), Polybutylenterephthalat, Polyethylennaphthalat, wobei Polyethylenterephthalat bevorzugt ist.
Erfindungsgemäß versteht man unter einem kristallisierbaren Thermoplasten kristallisierbare Homopolymere, kristallisierbare Copolymere, kristallisierbare Compounds (Mischungen), kristallisierbares Rezyklat und andere Variationen von kristallisierbaren Thermoplasten.
Die Folie gemäß der Erfindung ist im allgemeinen einschichtig, sie kann aber auch mehrschichtig sein. Außerdem kann sie mit verschiedenen Copolyestern oder Haftvermittlern beschichtet sein.
Wenigstens eine Oberflächenseite der erfindungsgemäßen Folie ist mit SiOx, Ethylen- Vinylalkohol-Copolymer, PVDC (Polyvinylidendichlorid), EVOH (Ethylenvinylalkohol) oder PVOH (Polyvinylalkohol) beschichtet. Die Dicke dieser Beschichtung liegt im allgemeinen im Bereich von 10 bis 8000 nm, vorzugsweise von 30 bis 4000 nm. Eine geringe Sauerstoffdurchlässigkeit wird beispielsweise erreicht, wenn der Stöchiometriefaktor von SiOx bei x = 1 ,2 bis 1 ,9 liegt. Liegt x größer als 2,0, verschlechtert sich die Sperrwirkung.
Die SiOx-Beschichtung kann beispielsweise durch Elektronenstrahlverdampfung oder durch konventionelle Verdampfung im Hochvakuum, wie bei einer herkömmlichen
Metallisierung erfolgen.
Bei der Elektronenstrahlverdampfung wird Siliciumdioxid (Si02), das als Granulat oder in Stückform vorliegt, mittels gelenktem Elektronenstrahl zur Rotglut gebracht und verdampft, was aufgrund der hohen Energie der Strahlen in sehr kurzer Zeit geschieht.
Bei der konventionellen Bedampfung im Hochvakuum wird das Si02 in einer Schmelzwanne auf hohe Temperatur gebracht. Die Temperatur liegt bei etwa 1400 °C. Bei beiden Methoden sublimiert das Si02 und kondensiert auf der Folienoberfläche - je nach 02- Gehalt der Atmosphäre - als SiOx.
Durch das Bedampfen der Thermoplastoberfläche mit SiOx erhält man eine transparente Schicht, deren Haftung auf der polaren Polyesteroberfläche gut ist. In einer bevorzugten Ausführungsform kann die Polyesteroberfläche vordem Bedampfen coronabehandelt sein.
Es zeigt sich, dass durch die Beschichtung bereits ohne dass die SiOx-Schicht geschützt ist eine deutliche Verringerung der Sauerstoffdurchlässigkeit eingetreten ist.
Es zeigt sich weiter, dass die SiOx-Schicht im Verbund, d. h. wenn sie durch eine zweite transparente Folie abgedeckt ist, eine nochmals um einen Faktor 5 bis 10 verringerte Sauerstoffdurchlässigkeit aufweist. Ansteile von SiOx kann die Folie gemäß der Erfindung auch mit Ethylen-Vinylalkohol- Copolymer, PVDC, EVOH oder PVOH beschichtet sein.
Die Sperrschicht dient als Gas-, insbesondere Sauerstoff-, oder Aroma-Barriere und besitzt eine Sauerstoffdurchlässigkeit von < 15 cm3/(m2 ■ 24h bar).
Da es sich bei der Barriereschicht nach der gerade beschriebenen Ausführungsform der Erfindung um eine Schicht aus im wesentlichen Siliciumdioxid handelt, ist die erfindungsgemäße Folie ohne weiteres rezyklierbar. Siliziumdioxid wird nämlich bei der Herstellung von Polyesterfolien häufig als Antiblockmittel eingesetzt, daher liegt ein sortenreiner Rohstoffverbund vor.
Licht, insbesondere der ultraviolette Anteil der Sonnenstrahlung, d.h. der Wellenlängenbereich von 280 bis 400 nm, leitet bei Thermoplasten in aller Regel Abbauvorgänge ein, als deren Folge sich nicht nur das visuelle Erscheinungsbild infolge von Farbänderung bzw. Vergilbung nachteilig verändert, sondern auch die mechanisch-physikalischen Eigenschaften negativ beeinflußt werden.
Die Inhibierung dieser photooxidativen Abbauvorgänge ist von erheblicher technischer und wirtschaftlicher Bedeutung, da andernfalls die Anwendungsmöglichkeiten von zahlreichen Thermoplasten drastisch eingeschränkt sind.
Polyethylenterephthalate beginnen beispielsweise schon unterhalb von 360 nm UV-Licht zu absorbieren, ihre Absorption nimmt unterhalb von 320 nm beträchtlich zu und ist unterhalb von 300 nm sehr ausgeprägt. Die maximale Absorption liegt zwischen 280 und 300 nm.
In Gegenwart von Sauerstoff werden hauptsächlich Kettenspaltungen, jedoch keine Vernetzungen beobachtet. Kohlenmonoxid, Kohlendioxid und Carbonsäuren stellen die mengenmäßig überwiegenden Photooxidationsproduktedar. Neben der direkten Photoiyse der Estergruppen müssen noch Oxidationsreaktionen in Erwägung gezogen werden, die über Peroxidradikale ebenfalls die Bildung von Kohlendioxid zur Folge haben.
Die Photooxidation von Polyethylenterephthalaten kann auch über Wasserstoffabspaltung in α-Stellung der Estergruppen zu Hydroperoxiden und deren Zersetzungsprodukten sowie zu damit verbundenen Kettenspaltungen führen (H. Day, D. M. Wiles: J. Appl. Polym. Sei 16, 1972, Seite 203).
UV-Stabilisatoren bzw. UV-Absorber als Lichtschutzmittel sind chemische Verbindungen, die in die physikalischen und chemischen Prozesse des lichtinduzierten Abbaus eingreifen können. Ruß und andere Pigmente können teilweise einen Lichtschutz bewirken. Diese Substanzen sind jedoch für transparente Folien ungeeignet, da sie zur Verfärbung oder Farbänderung führen. Für transparente, matte Folien sind nur organische und metallorganische Verbindungen geeignet, die dem zu stabilisierenden Thermoplasten keine oder nur eine extrem geringe Farbe oder Farbänderung verleihen, d. h. die in dem Thermoplasten löslich sind.
Im Sinne dervoriiegenden Erfindung geeignete UV-Stabilisatoren als Lichtschutzmittel sind UV-Stabilisatoren, die mindestens 70 %, vorzugsweise 80 %, besonders bevorzugt 90%, des UV-Lichtes im Wellenlängenbereich von 180 nm bis 380 nm, vorzugsweise 280 bis 350 nm absorbieren. Diese sind insbesondere geeignet, wenn sie im Temperaturbereich von 260 bis 300 °C thermisch stabil sind, d. h. sich nicht zersetzen und nicht zur Ausgasung führen. Geeignete UV-Stabilisatoren als Lichtschutzmittel sind beispielsweise 2-Hydroxybenzophenone, 2-Hydroxybenzotriazole, nickelorganische Verbindungen, Salicylsäureester, Zimtsäureester-Derivate, Resorcinmonobenzoate, Oxalsäureanilide, Hydroxybenzoesäureester, sterisch gehinderte Amine und Triazine, wobei die 2- Hydroxybenzotriazole und die Triazine bevorzugt sind. Die Folie gemäß der Erfindung enthält mindestens einen UV-Stabilisator als Lichtschutzmittel, wobei die Konzentration des UV-Stabilisators vorzugsweise im Bereich von 0,01 Gew.-% bis 5,0 Gew.-%, insbesondere im Bereich von 0,1 Gew.-% bis 3 Gew.-%, bezogen auf das Gewicht der Schicht des kristallisierbaren Thermoplasten, liegt. Der UV- Stabilisator kann zweckmäßigerweise überdie sogenannte Masterbatch-Technologie direkt bei der Folienherstellung zudosiert werden.
Es ist völlig überraschend, daß der Einsatz der obengenannten UV-Stabilisatoren in Folien zu dem gewünschten Ergebnis führt. Wenn versucht wird, eine gewisse UV-Stabilität über ein Antioxidanz zu erreichen, wird die Folie nach Bewitterung schnell gelb.
Werden handelsübliche UV-Stabilisatoren eingesetzt, die das UV-Licht absorbieren und im allgemeinen somit Schutz bieten, wird aber festgestellt, daß der UV-Stabilisator eine mangelnde thermische Stabilität hat und sich bei Temperaturen zwischen 200°C und 240°C zersetzt oder ausgast , große Mengen (ca. 10 bis 15 Gew.-%) UV-Stabilisator eingearbeitet werden müssen, damit das UV-Licht absorbiert wird und die Folie nicht geschädigt wird.
Bei diesen hohen Konzentrationen weist die Folie schon nach der Herstellung ein gelbes Erscheinungsbild auf, bei Gelbwertunterschieden (YID) um die 25. Desweiteren werden die mechanischen Eigenschaften negativ beeinflußt. Beim Verstrecken treten ungewöhnliche Probleme auf wie
Abrisse wegen mangelnder Festigkeit, d.h. E-Modul zu niedrig Düsenablagerungen, was zu Profilschwankungen führt - Walzenablagerungen vom UV-Stabilisator, was zur Beeinträchtigung der optischen
Eigenschaften (schlechte Trübung, Klebedefekte, inhomogene Oberfläche) führt Ablagerungen in Streck- oder Fixierrahmen, die auf die Folie tropfen.
Daher war es mehr als überraschend, dass bereits mit niedrigen Konzentrationen des erfindungsgemäß eingesetzten UV-Stabilisatorsein hervorragender UV-Schutz erzielt wird.
Sehr überraschend ist, dass sich bei diesem hervorragenden UV-Schutz der Gelbwert der Folie im Vergleich zu einer nicht stabilisierten Folie im Rahmen der Meßgenauigkeit nicht ändert; - keine Ausgasungen, keine Düsenablagerungen, keine Rahmenausdampfungen einstellten, wodurch die Folie eine exzellente Optik aufweist und ein ausgezeichnetes Profil und eine ausgezeichnete Planlage hat; sich die UV-stabilisierte Folie durch eine hervorragende Streckbarkeit auszeichnet, so dass sie verfahrenssicher und stabil auf high speed film lines bis zu Geschwindigkeiten von 420 m/min produktionssicher hergestellt werden kann.
Damit ist die Folie gemäß der Erfindung auch wirtschaftlich rentabel.
Außerdem war es sehr überraschend, dass die Folie das aggressive, kurzwellige Licht im Wellenlängenbereich bis 380 nm, vorzugsweise bis 360 nm absorbiert, d.h. nicht durchtreten lässt.
Desweiteren ist sehr überraschend, dass auch das Regenerat wieder einsetzbar ist, ohne den Gelbwert der Folie negativ zu beeinflussen.
In einer ganz besonders bevorzugten Ausführungsform enthält die erfindungsgemäße Folie 0,01 Gew.-% bis 5,0 Gew.-% 2-(4,6-Diphenyl-1 ,3,5-triazin-2-yl)-5-(hexyl)oxy-phenol der Formel
Figure imgf000009_0001
oder 0,01 Gew.-% bis 5,0 Gew.-% 2,2-Methylen-bis(6-(2H-benzotriazol-2-yl)-4-(1 , 1 ,3,3- tetramethylbutyl)-phenol der Formel
Figure imgf000010_0001
In einer bevorzugten Ausführungsform können auch Mischungen dieser beiden UV- Stabilisatoren oder Mischungen von mindestens einem dieser beiden UV-Stabilisatoren mit anderen UV-Stabilisatoren eingesetzt werden, wobei die Gesamtkonzentration an Lichtschutzmittel vorzugsweise zwischen 0,01 Gew.-% und 5,0 Gew.-%, bezogen auf das Gewicht an kristallisierbarem Polyethylenterephthalat, liegt.
Wenigstens eine Oberfläche ist mit Ethylen-Vinyialkohol-Copolymer, EVOH, PVOH, PVDC oder SiOxbedampft, wobei SiOx bevorzugt ist, und wobei x im Bereich von 1 ,2 bis 1 ,9 liegt.
Der Oberflächenglanz der unbedampften Oberfläche, gemessen nach DIN 67530 (Meßwinkel = 20°), ist größer als 80, vorzugsweise größer als 100, die Lichttransmission L*, gemessen nach ASTM D 1003, beträgt mehr als 74 %, vorzugsweise mehr als 76 % und die Trübung der Folie, gemessen nach ASTM D 1003, beträgt weniger als 20 %, vorzugsweise weniger als 15 %, welches für die erzielte UV-Stabilität in Kombination mit der Barriereschicht und der Siegelschicht überraschend gut ist.
Die Standardviskosität SV (DCE) des Thermoplasten, gemessen in Dichloressigsäure nach DIN 53728, liegt zwischen 600 und 1000, vorzugsweise zwischen 700 und 900. Die erfindungsgemäße Folie kann sowohl einschichtig als auch mehrschichtig sein.
In der mehrschichtigen Ausführungsform ist die Folie aus mindestens einer Kernschicht und mindestens einer Deckschicht aufgebaut, wobei insbesondere ein dreischichtiger ABA- oder ABC-Aufbau bevorzugt ist. In der mehrschichtigen Ausführungsform ist der UV- Stabilisator vorzugsweise in der bzw. den Deckschichten enthalten. Jedoch kann nach Bedarf auch die Kernschicht mit UV-Stabilisatoren ausgerüstet sein.
Die Konzentration des oder der Stabilisatoren bezieht sich hier auf das Gewicht der Thermoplasten in der mit UV-Stabilisator (en) ausgerüsteten Schicht.
Ganz überraschend haben Bewitterungsversuche nach der Testspezifikation ISO 4892 mit dem Atlas CI65 WeatherOmeter gezeigt, dass es im Falle einer dreischichtigen Grundfolie durchaus ausreichend ist, die 0,5 bis 2 μm dicken Deckschichten mit UV-Stabilisatoren auszurüsten, um eine verbesserte UV-Stabilität zu erreichen.
Dadurch werden die mit einer bekannten Koextrusionstechnologie hergestellten UV- stabilisierten, mehrschichtigen Folien im Vergleich zu den komplett UV-stabilisierten Monofolien wirtschaftlich interessant, da deutlich weniger UV-Stabilisator zu einer vergleichbaren UV-Stabilität benötigt werden.
Die Thermoplastfolie kann auch mindestens einseitig mit einem Copolyester oder mit einem Haftvermittler versehen sein. Vorzugsweise ist die Oberfläche mit einem Copolyester oder einem Haftvermittlerversehen, auf diedie Heißsiegelschicht aufgebracht wird.
Bewitterungstests haben ergeben, dass die Folien gemäß der Erfindung selbst bei Bewitterungstests nach hochgerechnet 5 bis 7 Jahren Außenanwendung im allgemeinen keine Vergilbung, keine Versprödung, kein Glanzverlust der Oberfläche, keine Rißbildung an der Oberfläche und keine Verschlechterung der mechanischen Eigenschaften aufweisen.
Bei der Herstellung der Folie wurde festgestellt, dass sich die UV-stabilisierte Folie hervorragend in Längs- und in Querrichtung ohne Abrisse orientieren läßt. Desweiteren wurden keinerlei Ausgasungen des UV-Stabilisators im Produktionsprozess gefunden, was erfindungswesentlich ist, da die meisten UV-Stabilisatoren bei Extrusionstemperaturen über 260 °C störende, unangenehme Ausgasungen zeigen und damit untauglich sind.
Desweiteren ist die Barrierefolie gemäß der Erfindung ohne Umweltbelastung problemlos rezyklierbar, wodurch sie sich beispielsweise für die Verwendung als kurzlebige Artikel eignet.
Da die Folie neben der besonders gringen Sauerstoffdurchlässigkeit auch das kurzwellige UV-Licht im Wellenbereich von 260 nm bis 380 nm, insbesondere bis 360 nm absorbiert, bietet die Folie auch eine Barriere gegen das aggressive kurzwellige Licht, das z. B. die gefürchtete Fettoxydation bei Lebensmitteln verursacht. Folglich eignet sich die erfindungsgemäße Folie hervorragend als Verpackungsfolie für empfindliche Güter auf Verpackungsmaschinen im vertikalen und horizontalen Bereich (vFFs und hFFs- Maschinen).
Desweiteren kann die Folie auch als Verbundfolie eingesetzt werden, wobei der Verbund aus der Folie gemäß der Erfindung, d.h. mit der Barriere-Beschichtung, und einer zweiten Folie besteht. Diese zweite Folie kann ebenfalls eine UV-stabile Thermoplastfolie oder eine Standardthermoplastfolie oder eine Polyolefinfolie sein. Diese zweite Folie wird bevorzugt auf die Barriereseite der Folie gemäß der Erfindung aufgebracht.
Die zweite Folie kann einschichtig oder mehrschichtig und kann wie die erste UV-stabile Folie durch Verstrecken orientiert worden sein und kann mindestens eine Siegelschicht haben. Der zweite Film kann mit oder ohne Klebstoff mit der ersten Barrierefolie gemäß der Erfindung verbunden sein.
Die Dicke dieser zweiten Folie liegt im allgemeinen zwischen 10 und 100 μm.
Die Folien, insbesondere die Verbundfolien, erhält man im allgemeinen durch Aufeinanderlaminieren oder Kaschieren der eingesetzten Folien mit oder ohne dazwischenliegender Klebstoffschicht, indem man diese zwischen auf 30 bis 90 °C temperierten Walzen durchleitet.
Es ist aber beispielsweise auch möglich, die Beschichtung (en) durch In-Iine-Beschichtung (Schmelzextrusion auf eine bestehende Schicht) aufzubringen.
Bei Verwendung von Klebstoffen werden diese auf eine Folienoberfläche nach bekannten Verfahren aufgebracht, insbesondere durch Auftragen aus Lösungen oder Dispersionen in Wasser oder organischen Lösungsmitteln. Die Lösungen haben hierbei gewöhnlich eine Klebstoffkonzentration von 5,0 bis 40,0 Gew.-%, um auf dem Film eine Klebstoffmenge von 1 ,0 bis 10,0 g/m2 zu ergeben.
Als besonders zweckmäßig haben sich Klebstoffe erwiesen, die aus thermoplastischen Harzen, wie Celluloseestern und -ethern, Alky- und Acrylestem, Polyimiden, Polyurethanen oder Polyestern, oder aus hitzehärtbaren Harzen, wie Epoxidharzen, Harnstoff/Formaldehyd-, Phenyl/Formaldehy- oder Melamin/- Formaldehyd-Harzen, oder aus synthetischen Kautschuken bestehen.
Als Lösungsmittel für den Klebstoff eigenen sich z.B. Kohlenwasserstoffe, wie Ligroin und Toluol, Ester, wie Ethylacetat, oder Ketone, wie Aceton und Methylethylketon.
Die Herstellung der Folie gemäß der Erfindung kann beispielsweise nach bekannten Extrusionsverfahren in einer Extrusionsstraße erfolgen. Hierbei wird erst die Thermoplastfolie hergestellt, dann verstreckt und die Oberflächen mit der Barriereschicht versehen.
Erfindungsgemäß kann das Lichtschutzmittel bereits beim Thermoplast-Rohstoffherstelier zudosiert werden oder bei der Folienherstellung in den Extruder dosiert werden.
Bevorzugt ist die Zugabe des Lichtschutzmittels über die Masterbatchtechnologie. Hierbei wird der Zusatz zunächst in einem Trägermaterial voll dispergiert. Als Trägermaterial kommen der Thermoplast selbst, z.B. das Polyethylenterephthalat oder auch andere Polymere, die mit dem Thermoplasten verträglich sind, in Frage. Nach derZudosierung zu dem Thermoplasten für die Folienherstellung schmelzen die Bestandteile des Masterbatches während der Extrusion und werden so in dem Thermoplasten gelöst.
Die Konzentration des UV-Absorbers neben dem Thermoplast im Masterbatch beträgt 2,0 bis 50,0 Gew.-%, vorzugsweise 5,0 bis 30,0 Gew.-%, wobei die Summe der Bestandteile stets 100 Gew.-% beträgt.
Wichtig bei der Masterbatch-Technologie ist, dass die Korngröße und das Schüttgewicht des Masterbatches ähnlich der Korngröße und dem Schüttgewicht des Thermoplasten ist, so dass eine homogene Verteilung und damit eine homogene UV-Stabilisierung erfolgen kann.
Die Folien können nach bekannten Verfahren aus einem Thermoplastrohstoff mit gegebenenfalls weiteren Rohstoffen und dem UV-Stabilisator und/oder weiteren üblichen Additiven in üblicher Menge von 0,1 bis maximal 10,0 Gew.-% sowohl als Monofolien als auch als mehrschichtige, gegebenenfalls koextrudierte Folien mit gleichen oder unterschiedlich ausgebildeten Oberflächen hergestellt werden, wobei eine Oberfläche beispielsweise pigmentiert ist und die andere Oberfläche kein Pigment enthält. Ebenso können eine oder beide Oberflächen der Folie nach bekannten Verfahren mit einer üblichen funktionalen Beschichtung versehen werden.
Bei dem bevorzugten Extrusionsverfahren zur Herstellung der Thermoplastfolie wird das aufgeschmolzene Material durch eine Schlitzdüse extrudiert und als weitgehend amorphe Vorfolie auf einer Kühlwalze abgeschreckt. Diese Folie wird anschließend erneut erhitzt und in Längs- und Querrichtung bzw. in Quer- und Längsrichtung bzw. in Längs-, in Quer- und nochmals in Längsrichtung und/oder Querrichtung gestreckt. Die Strecktemperaturen liegen im allgemeinen bei Tg + 10 °C bis Tg + 60 °C (Tg = Glastemperatur), das Streckverhältnis der Längsstreckung liegt üblicherweise bei 2 bis 6, insbesondere bei 3 bis 4,5, das der Querstreckung bei 2 bis 5, insbesondere bei 3 bis 4,5, und das der gegebenenfalls durchgeführten zweiten Längsstreckung bei 1 ,1 bis 3. Die erste Längsstreckung kann gegebenenfalls gleichzeitig mit der Querstreckung (Simultanstreckung) durchgeführt werden. Anschließend folgt die Thermofixierung der Folie bei Ofentemperaturen von 180 bis 260 °C, insbesondere bei 220 bis 250 °C. Anschließend wird die Folie abgekühlt und aufgewickelt.
Eine Oberflächenschicht wird mit Ethylen-Vinyialkohol-Copolymer, EVOH, PVOH oder PVDC beschichtet, wobei die Dicke der Beschichtung zwischen 0,5 und 8,0 μm liegt oder wird auf einer Elektronenstrahlanlage mit SiOx bedampft, wobei x zwischen 1 ,2 und 1 ,9 liegt. Die SiOx-Schicht hat eine Dicke im Bereich von 10 nm bis 200 nm. Auf die andere Oberflächenseite wird eine 10 μm bis 100 μm dicke LDPE-Folie, die gegebenenfalls mit 0,1 Gew.-% bis 3 Gew.-% Lichtschutzmittel ausgerüstet ist und die weiteren üblichen Additive enthält, kaschiert.
Durch die überraschende Kombination ausgezeichneter Eigenschaften eignet sich die Folie gemäß der Erfindung hervorragend für eine Vielzahl verschiedener Anwendungen, beispielsweise für Innenraumverkleidungen, für Messebau und Messeartikel, als Displays, für Schilder, für Schutzverglasungen von Maschinen und Fahrzeugen, im Beleuchtungs- sektor, im Laden- und Regalbau, als Werbeartikel, Kaschiermedium, für Thermoan- wendungen jeder Art, als Verpackungsfolie für empfindliche Produkte.
Aufgrund der guten UV-Stabilität eignet sich die Folie ebenfalls für Außenanwendungen, z. B. für Gewächshäuser, im Werbesektor, Überdachungen, Außenverkleidungen, Abdeckungen, Anwendungen im Bausektor und Lichtwerbeprofile.
In den nachfolgenden Ausführungsbeispielen erfolgt die Messung der einzelnen Eigenschaften gemäß der folgenden Normen bzw. Verfahren.
Meßmethoden
Oberflächenglanz
Der Oberflächenglanz wird bei einem Meßwinkel von 20° nach DIN 67530 gemessen.
Lichttransmission
Unter der Lichttransmission ist das Verhältnis des insgesamt durchgelassenen Lichtes zur einfallenden Lichtmenge zu verstehen.
Die Lichttransmission wird mit dem Messgerät "® Hazegard plus" nach ASTM D 1003 gemessen.
Trübung
Trübung ist der prozentuale Anteil des durchgelassenen Lichtes, der vom eingestrahlten Lichtbündel im Mittel um mehr als 2,5° abweicht. Die Bildschärfe wird unter einem Winkel kleiner als 2,5° ermittelt.
Die Trübung wird mit dem Meßgerät "Hazegard plus" nach ASTM D 1003 gemessen. Oberfiächendefekte
Die Oberflächendefekte werden visuell bestimmt.
Mechanische Eigenschaften
Der E-Modul, die Reißfestigkeit und die Reißdehnung werden in Längs- und Querrichtung nach ISO 527-1-2 gemessen.
SV (DCE), IV (DCE)
Die Standardviskosität SV (DCE) wird angelehnt an DIN 53726 in Dichloressigsäure gemessen.
Die intrinsische Viskosität (IV) berechnet sich wie folgt aus der Standardviskosität (SV)
IV (DCE) = 6,67 10"4 SV (DCE) + 0,118
Bewitterung, UV-Stabilität
Die UV-Stabilität wird nach der Testspezifikation ISO 4892 wie folgt geprüft
Testgerät Atlas Ci 65 Weather Ometer
Testbedingungen ISO 4892, d. h. künstliche Bewitterung Bestrahlungszeit 1000 Stunden (pro Seite)
Bestrahlung 0,5 W/m2, 340 nm
Temperatur 63 °C
Relative Luftfeuchte 50 %
Xenonlampe innerer und äußerer Filter aus Borosilikat Bestrahlungszyklen 102 Minuten UV-Licht, dann 18 Minuten UV-Licht mit
Wasserbesprühung der Proben, dann wieder 102
Minuten UV-Licht usw. Sauerstoffbarriere
Die Sauerstoffdurchlässigkeit wird nach DIN 53380 gemessen.
Gelbwert: Der Gelbwert G (YID) ist die Abweichung von der Farblosigkeit in Richtung "Gelb" und wird gemäß DIN 6167 gemessen. Gelbwerte von < 5 sind visuell nicht sichtbar.
Beispiele
Bei nachstehenden Beispielen und dem Vergleichsbeispiel handelt es sich jeweils um transparente Folien unterschiedlicher Dicke, die auf der beschriebenen Extrusionsstraße hergestellt werden.
Alle Folien wurden nach der Testspezifikation ISO 4892 1000 Stunden mit dem Atlas Ci 65 Weather Ometer der Fa. Atlas bewittert und anschließend bezüglich der Verfärbung, der Oberflächendefekte, der Trübung und des Glanzes geprüft.
Beispiel 1
Es wird eine 50 μm dicke, transparente Folie hergestellt, die als Hauptbestandteil Polyethylenterephthalat 0,3 Gew.-% ©Sylobloc und 1 ,0 Gew.-% des UV-Stabilisators 2- (4,6-Diphenyl-1 ,3,5-triazin-2-yl)-5-(hexyl)oxyphenol (®Tinuvin 1577 der Firma Ciba-Geigy) enthält.
Tinuvin 1577 hat einen Schmelzpunkt von 149 °C und ist bis ca. 330 °C thermisch stabil.
Zwecks homogener Verteilung werden 0,3 Gew.-% Sylobloc und 1 ,0 Gew.-% des UV- Stabilisators in das Polyethylenterephthalat eingearbeitet.
Das Polyethylenterephthalat, aus dem die transparente Folie hergestellt wird, hat eine Standardviskosität SV (DCE) von 810, was einer intrinsischen Viskosität IV (DCE) von 0,658 dl/g entspricht.
Eine Oberflächenschicht wird auf einer Elektronenstrahlanlage der Fa. Leybold mit SiOx bedampft , wobei die SiOx-Schicht (x = 1 ,6) eine Dicke von 50 nm hat.
Beispiel 2
Analog Beispiel 1 wird eine transparente Folie hergestellt, wobei der UV-Stabilisator 2-(4,6- Diphenyl-1 ,3,5-triazin-2-yl)-5-(hexyl)-oxyphenol (Tinuvin 1577) in Form eines Masterbatches zudosiert wird. Das Masterbatch setzt sich aus 5 Gew.-% Tinuvin 1577 als Wirkstoffkomponente und 95 Gew.-% des Polyethylenterephthalats aus Beispiel 1 zusammen.
Vor der Extrusion werden 90 Gew.-% des Polyethylenterephthalats aus Beispiel 1 mit 10 Gew.-% des Masterbatches 5 Stunden bei 170°C getrocknet. Die Extrusion die Folienherstellung und die SiOx-Beschichtung erfolgen analog zu Beispiel 1.
Beispiel 3
Analog Beispiel 2 wird eine transparente 350 μm dicke UV-stabilisierte PET-Folie hergestellt. Die eine Oberflächenseite wird analog Beispiel 1 mit SiOx beschichtet.
Beispiel 4
Mit der Koextrusionstechnologie wird eine 50 m dicke mehrschichtige PET-Folie mit der Schichtreihenfolge A-B-A hergestellt, wobei B die Kernschicht und A die Deckschichten repräsentieren. Die Kernschicht B ist 48 m dick und die beiden Deckschichten, welche die Kernschicht überziehen, sind jeweils 1 m dick.
Das für die Kernschicht B eingesetzte Polyethylentherephthalat ist identisch mit dem aus Beispiel, enthält aber kein Sylobloc. Das Polyethylentherephthalat der Deckschichten A ist identisch mit dem Polyethylentherephthalat aus Beispiel 2, d. h. der Deckschichtrohstoff ist mit 0,3 Gew.-% Sylobloc ausgerüstet.
Analog Beispiel 2 wird das 5 Gew.-%ige Tinuvin 1577 Masterbatch eingesetzt, wobei aber lediglich den 1 μm dicken Deckschichten 20 Gew.-% des Masterbatches über die Masterbatchtechnologie zudosiert werden.
Eine Deckschicht A wird anlaog Beispiel 1 mit SiOx beschichtet.
Die Folien aus den Beispielen 1 bis 4 absorbieren das UV-Licht im Wellenlängenbereich bis 390 nm, d. h. sie lassen die Strahlung erst ab 390 nm durch und zeigen eine Sauerstoffbarriere von < 5 cm3/(m2 ■ 24h - bar) bei 23 °C.
Die Folien aus den Beispielen 1 bis 4 werden auf der nicht beschichteten Seite 1000 Stunden mit dem Atlas CI 65 Weather Ometer bewittert. Die Folien zeigen eine hervorragende UV-Beständigkeit. Die Folien weisen keine Risse oder Versprödungserscheinungen auf. Der Gelbwert der Folie ändert sich nicht.
Die Folien aus den Beispielen 1 bis 4 werden auf der mit SiOx-beschichteten Seite 1000 Stunden mit dem Atlas CI 65 Weather Ometer bewittert. Die Folien weisen keine Risse oder Versprödungserscheinungen auf. Der Gelbwert der Folie ändert sich nicht.
Vergleichsbeispiel 1
Analog Beispiel 1 wird eine 50 μm dicke PET-Monofolie hergestellt. Im Gegensatz zu Beispiel 1 enthält die Folie keinen UV-Stabilisator und keine Sperrschicht.
Die Folie lässt die UV-Strahlung ab 280 nm durch. Nach 1000 Stunden Bewitterung einer Seite mit Atlas CI 65 Weather Ometer weist die Folie an dieser Oberfläche Risse und Versprödungserscheinungen auf. Ein präzises Eigenschaftsprofil - insbesondere die mechanischen Eigenschaften - kann daher nicht mehr gemessen werden. Außerdem zeigt die Folie eine visuell sichtbare Gelbfärbung. Die Sauerstoffbarriere der Folie liegt bei >15 cm3/(m2 ■ 24h bar) bei 23 °C.
Die Folie ist zur Verpackung von empfindlichen Packgütern, die vor dem aggressiven, kurzwelligen Licht geschützt sein müssen und die eine Sauerstoffbarriere benötigen, völlig ungeeignet.

Claims

Patentansprüche
1. Transparente, biaxial orientierte, UV-stabilisierte Folie mit einer Dicke im Bereich von 10 bis 500 μm, die als Hauptbestandteil einen kristallisierbaren Thermoplasten enthält, dadurch gekennzeichnet, dass sie zusätzlich mindestens einen im
Thermoplasten löslichen UV-Absorber enthält und mit mindestens einer Sperr- oder Barriereschicht gegen Gase versehen und in Längs- und Querrrichtung verstreckt ist.
2. Folie nach Anspruch 1 , dadurch gekennzeichnet, dass der kristallisierte Thermoplast ein Polyethylenterephthalat, Polybutylenterephthalat, Polyethylen- naphthalat oder Mischungen daraus, bevorzugt Polyethylenterephthalat, ist.
3. Folie nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Konzentration des UV-Absorbers im Bereich von 0,01 Gew.-% bis 5,0 Gew.-% vorzugsweise 0,1 Gew.-
% bis 3 Gew.-%, bezogen auf das Gewicht des kristallisierbaren Thermoplasten, liegt.
4. Folie nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie als UV-Absorber 2-Hydroxybenzophenone, 2-Hydroxybenzotriazole, nickelorganische Verbindungen, Salicylsäureester, Zimtsäureester-Derivate, Resorcinmonobenzoate, Oxalsäureanilide, Hydroxybenzoesäureester, sterisch gehinderte Amine und/ oder Triazine, vorzugsweise 2-Hydroxybenzotriazole und Triazine und insbesondere 2-(4,6-Diphenyl-1 ,3,5-triazin-2-yl)-5-(hexyl)oxy-phenol oder2,2'-Methylen-bis(6-(2H-benzotriazol-2-yl)-4-(1 ,1 ,3,3,-tetramethylbutyl)-phenol enthält.
5. Folie nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Barriereschicht aufgebaut ist auf Basis von SiOx, eines Ethylen- Vinylalkohol-Copolymeren, Polyvinylalkohol oder Polyvinylidendichlorid, vorzugsweise von SiOx, wobei x = 1 ,2 bis 1 ,9 ist oder einem Ethylen-Vinylalkohol- Copolymeren mit einem Ethylengehalt von 15 - 60 Mol-% und einem
Verseifungsgrad von mindestens 90 Mol-%, vorzugsweise größer als 96 Mol-%, insbesondere größer als 99 Mol-%.
6. Folie nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Regenerat eingesetzt wird.
7. Verfahren zur Herstellung einer transparenten, biaxial orientierten, UV-stabilisierten Barrierefolie aus einem kristallisierbaren Thermoplasten, deren Dicke im Bereich von 10 bis 500 μm liegt, dadurch gekennzeichnet, dass ein Thermoplast mit mindestens einem UV-Absorber versetzt wird, anschließend nach einem
Extrusionsverfahren zu einem Schmelzefilm geformt, über eine Abzugswalze abgezogen und als amorphe Vorfolie verfestigt, dann in Längs- und Querrichtung gestreckt, thermofixiert und mit einer Barriereschicht versehen wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der UV-Absorber beim Thermoplast-Rohstoffhersteller oder bei der Folienherstellung in den Extruder zudosiert wird, wobei die Zugabe über die Masterbatchtechnologie bevorzugt ist.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das Materbatch neben dem Thermoplast 2,0 bis 50,0 Gew.-%, vorzugsweise 5,0 bis 30,0 Gew.-% UV- Absorber enthält, wobei die Summe der Bestandteile stets 100 Gew.-% beträgt.
10. Verwendung der Folie nach einem oder mehreren der Ansprüche 1 bis 6 für die Anwendung im Innen- und/oder im Außenbereich.
2.3 -
11. Verwendung nach Anspruch 10 im Innenbereich für Innenraumverkleidungen, für Messebau und Messeartikel, als Displays, für Schilder, für Schutzverglasungen von Maschinen und Fahrzeugen, im Beleuchtungssektor, im Laden- und Regalbau, als Werbeartikel, Kaschiermedium, für Thermoanwendungen jeder Art, als Verpackungsfolie für empfindliche und werbewirksame Produkte und im Außenbereich für Gewächshäuser, im Werbesektor, Überdachungen, Außenverkleidungen, Abdeckungen im Bausektor und Lichtwerbeprofile.
PCT/EP2001/000203 2000-01-20 2001-01-10 Transparente, biaxial orientierte, uv-stabilisierte barrierefolie, verfahren zu ihrer herstellung und ihre verwendung WO2001053083A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001553113A JP2003529461A (ja) 2000-01-20 2001-01-10 ガスバリヤー性および耐紫外線性を有する二軸延伸透明フィルムおよびその使用ならびにその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10002175A DE10002175A1 (de) 2000-01-20 2000-01-20 Transparente, biaxial orientierte, UV-stabilisierte Barrierefolie, Verfahren zu ihrer Herstellung und ihre Verwendung
DE10002175.1 2000-01-20

Publications (1)

Publication Number Publication Date
WO2001053083A1 true WO2001053083A1 (de) 2001-07-26

Family

ID=7628048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/000203 WO2001053083A1 (de) 2000-01-20 2001-01-10 Transparente, biaxial orientierte, uv-stabilisierte barrierefolie, verfahren zu ihrer herstellung und ihre verwendung

Country Status (4)

Country Link
JP (1) JP2003529461A (de)
KR (1) KR100716762B1 (de)
DE (1) DE10002175A1 (de)
WO (1) WO2001053083A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052731A2 (en) * 2002-12-09 2004-06-24 Kimberly-Clark Worldwide, Inc. Yellowing prevention of cellulose-based consumer products
CN103862685A (zh) * 2012-12-13 2014-06-18 深圳市阳光普照广告有限公司 扶手带薄膜制造方法
WO2020127227A1 (de) 2018-12-17 2020-06-25 Polycine Gmbh Flexible mehrschichtfolie mit uv-vis-sperrschicht für medizinische verpackungen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101983846B1 (ko) 2017-11-21 2019-05-30 (주)거성피엔피 자외선 차단 기능이 있는 산업용 필름 제조방법
KR102105060B1 (ko) * 2018-04-05 2020-04-28 주식회사 넥스필 자외선 차단이 가능한 pet 필름 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230238A (ja) * 1992-02-18 1993-09-07 Toyobo Co Ltd 白色ポリエステルフィルム
WO1998006575A1 (en) * 1996-08-15 1998-02-19 Imperial Chemical Industries Plc Polymeric film
EP0952176A1 (de) * 1998-04-22 1999-10-27 Mitsubishi Polyester Film GmbH Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung
US5990248A (en) * 1993-06-10 1999-11-23 Nkk Corporation Film formed from polyethylene-2,6-naphthalate resin, process for producing said film and package using said film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230238A (ja) * 1992-02-18 1993-09-07 Toyobo Co Ltd 白色ポリエステルフィルム
US5990248A (en) * 1993-06-10 1999-11-23 Nkk Corporation Film formed from polyethylene-2,6-naphthalate resin, process for producing said film and package using said film
WO1998006575A1 (en) * 1996-08-15 1998-02-19 Imperial Chemical Industries Plc Polymeric film
EP0952176A1 (de) * 1998-04-22 1999-10-27 Mitsubishi Polyester Film GmbH Mehrschichtige, biaxial orientierte Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 9340, Derwent World Patents Index; AN 1993-317600, XP002166611 *
GACHTER R., MULLER H.: "TASCHENBUCH DER KUNSTSTOFF - ADDITIVE. STABILISATOREN, HILFSSTOFFE, WEICHMACHER, FULLSTOFFE, VERSTARKUNGSMITTEL, FARBMITTEL FUR THERMOPLASTISCHE KUNSTSTOFFE.", 1 January 1989, MUNCHEN, CARL HANSER VERLAG., DE, article GAECHTER R, MUELLER H: "TASCHENBUCH DER KUNSTSTOFF-ADDITIVE", pages: 269, XP002166610, 018019 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052731A2 (en) * 2002-12-09 2004-06-24 Kimberly-Clark Worldwide, Inc. Yellowing prevention of cellulose-based consumer products
WO2004052731A3 (en) * 2002-12-09 2004-08-12 Kimberly Clark Co Yellowing prevention of cellulose-based consumer products
CN103862685A (zh) * 2012-12-13 2014-06-18 深圳市阳光普照广告有限公司 扶手带薄膜制造方法
CN103862685B (zh) * 2012-12-13 2016-03-23 深圳市阳光普照广告有限公司 扶手带薄膜制造方法
WO2020127227A1 (de) 2018-12-17 2020-06-25 Polycine Gmbh Flexible mehrschichtfolie mit uv-vis-sperrschicht für medizinische verpackungen

Also Published As

Publication number Publication date
KR20020068405A (ko) 2002-08-27
JP2003529461A (ja) 2003-10-07
KR100716762B1 (ko) 2007-05-14
DE10002175A1 (de) 2001-07-26

Similar Documents

Publication Publication Date Title
EP1265949B1 (de) Transparente, biaxial orientierte, uv-stabilisierte, thermoformbare folie aus kristallisierbaren thermoplasten, verfahren zu ihrer herstellung und ihre verwendung
EP1052269B2 (de) Weisse, UV-stabilisierte Folie aus einem kristallisierbaren Thermoplast
EP1118635B1 (de) Transparente, schwerentflammbare, UV-stabile Folie aus einem kristallisierbaren Thermoplasten
EP1274788B1 (de) Weisse, schwerentflammbare, uv-stabile, thermoformbare folie aus einem kristallisierbaren thermoplasten
EP1125968B1 (de) Weiss-opake, UV-stabilisierte Folie mit niedriger Transparanz aus einem kristallisierbaren Thermoplasten
EP1038905A2 (de) Transparente, UV-stabilisierte Folie aus einem kristallisierbaren Thermoplast
EP1272551B1 (de) Weisse, schwerentflammbare, uv-stabile folie aus einem kristallisierbaren thermoplasten, verfahren zu ihrer herstellung und ihre verwendung
DE10002173A1 (de) Transparente, schwerentflammbare, thermoformbare, UV-stabile Folie aus kristallisierbaren Thermoplasten, Verfahren zu ihrer Herstellung und ihre Verwendung
EP1268645B1 (de) Weisse, uv-stabilisierte, thermoformbare folie aus einem kristallisierbaren thermoplast, verfahren zu ihrer herstellung und ihre verwendung
WO2001053083A1 (de) Transparente, biaxial orientierte, uv-stabilisierte barrierefolie, verfahren zu ihrer herstellung und ihre verwendung
WO2001053403A2 (de) Amorphe, strukturierte, transparent eingefärbte, uv-licht absorbierende folie, ein verfahren zu ihrer herstellung und ihre verwendung
WO2001053390A1 (de) Amorphe, transparent eingefärbte, uv-licht absorbierende, thermoformbare folie, ein verfahren zu ihrer herstellung und ihre verwendung
WO2001053084A1 (de) Transparente, biaxial orientierte, uv-stabilisierte, siegelbare folie, verfahren zu ihrer herstellung und ihre verwendung
WO2001053392A1 (de) Amorphe, transparente, uv-licht absorbierende, thermoformbare folie, ein verfahren zu ihrer herstellung und ihre verwendung
WO2001053085A1 (de) Hochtransparente, hochglänzende, uv-licht absorbierende, siegelbare, scherentflammbare, thermoformbare folie, verfahren zu ihrer herstellung und ihre verwendung
WO2002068511A1 (de) Amorphe, funktionalisierte folie aus einem bibenzolmodifizierten thermoplasten, verfahren zu ihrer herstellung und ihre verwendung
WO2001053402A1 (de) Amorphe, strukturierte, transparente, uv-licht absorbierende folie, verfahren zu ihrer herstellung und ihre verwendung
DE19913982A1 (de) Transparente, UV-stabilisierte Folie aus einem kristallisierbaren Thermoplast
DE19945560A1 (de) Transparente, UV-stabilisierte Folie aus einem kristallisierbaren Thermoplast
DE10101903A1 (de) Amorphe, antimikrobiell ausgerüstete, transparente Folie aus einem kristallisierbaren Thermoplast mit zusätzlicher Funktionalität, Verfahren zu ihrer Herstellung und ihre Verwendung
DE19921341A1 (de) Weiße, UV-stabilisierte Folie aus einem kristallisierbaren Thermoplast
DE10042329A1 (de) Verbundfolie aus einer weißen, UV-stabilisierten, schwerentflammbaren Polyesterfolie enthaltend Cycloolefincopolymer (COC), Verfahren zu ihrer Herstellung und ihre Verwendung
DE19945559A1 (de) Weiße, UV-stabilisierte Folie aus einem kristallisierbaren Thermoplast
DE10023623A1 (de) Weiße, schwerentflammbare, UV-stabile, thermoformbare Folie aus einen kristallisierbaren Thermoplasten, Verfahren zu ihrer Herstellung und ihre Verwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 553113

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027009318

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027009318

Country of ref document: KR

122 Ep: pct application non-entry in european phase