WO2001030494A1 - Catalyseur d'hydrotraitement pour huile hydrocarbonee, support pour celle-ci et procede d'hydrotraitement d'huile hydrocarbonee - Google Patents

Catalyseur d'hydrotraitement pour huile hydrocarbonee, support pour celle-ci et procede d'hydrotraitement d'huile hydrocarbonee Download PDF

Info

Publication number
WO2001030494A1
WO2001030494A1 PCT/JP2000/007276 JP0007276W WO0130494A1 WO 2001030494 A1 WO2001030494 A1 WO 2001030494A1 JP 0007276 W JP0007276 W JP 0007276W WO 0130494 A1 WO0130494 A1 WO 0130494A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metal
metal compound
catalyst
inorganic oxide
Prior art date
Application number
PCT/JP2000/007276
Other languages
English (en)
French (fr)
Inventor
Narinobu Kagami
Ryuichiro Iwamoto
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000100286A external-priority patent/JP2001276626A/ja
Priority claimed from JP2000123631A external-priority patent/JP4916044B2/ja
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to DK00969896.0T priority Critical patent/DK1145763T3/da
Priority to EP00969896A priority patent/EP1145763B1/en
Publication of WO2001030494A1 publication Critical patent/WO2001030494A1/ja
Priority to US11/623,782 priority patent/US7598203B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/50Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metal, or compounds thereof

Definitions

  • Hydrotreating catalyst for hydrocarbon oil its carrier, and method for hydrotreating hydrocarbon oil
  • the present invention relates to a catalyst for hydrotreating hydrocarbon oils and a method for hydrotreating hydrocarbon oils, and in particular, to a catalyst for hydrodesulfurization of hydrocarbon oils such as kerosene oil fractions, and a catalyst for hydrodenitrogenation.
  • the present invention relates to a hydrotreating catalyst effective as a catalyst for hydrodearomatization and a method for hydrotreating hydrocarbon oil.
  • the present invention relates to a metal compound-supported treated refractory inorganic oxide carrier, a method for producing the same, and uses thereof, and more particularly, to a metal compound-supported treated refractory inorganic oxide carrier useful mainly as a catalyst or an adsorbent. And its manufacturing method, and its use.
  • NO 2 nitrogen oxides
  • SOX is serious, and its power can be reduced to some extent by post-treatment after generation. It is also important to efficiently remove the sulfur content in fuel oil. As mentioned above, from the viewpoint of environmental protection, the development of hydrotreating catalysts with even more excellent desulfurization activity has been desired in the face of stricter regulations on the sulfur content of gas oil.
  • a catalyst in which cobalt and molybdenum are supported on a refractory inorganic oxide carrier such as alumina has been used as a gas oil hydrodesulfurization catalyst. It is known that the desulfurization activity is greatly affected by the state of molybdenum, which is an active metal. Carriers other than lumina and composites of alumina and other oxides are being studied. Among them, it is known that the titaure component improves the desulfurization activity, and there are a method of supporting titanium on alumina and a method of co-precipitating alumina and titania.
  • a catalyst has been used in which an active metal such as cobalt, nickel, molybdenum, and tungsten is supported on a refractory inorganic oxide carrier such as alumina. Also, in order to improve the activity of these catalysts, a method of using titanium as an auxiliary metal component has been proposed (Applied Catalysis, 63 (1990) 305—3). 17; Japanese Unexamined Patent Publication No. 6-106601). However, it is difficult to say that these methods are not optimal in the state of titanium loading and that the catalyst performance is sufficiently improved.
  • extrusion moldings Conventionally, there have been extrusion moldings, spherical moldings, honeycomb moldings, and the like as moldings of refractory inorganic oxides. When these moldings are used as catalysts, adsorbents, and the like, these moldings are used.
  • a common method is to carry a component having an active ingredient in the body, a component having a cocatalytic effect to promote its activity, a component to promote adsorption, and a third component to control the properties of the carrier. has been adopted.
  • a metal compound to be added to a refractory inorganic oxide carrier Conventionally, when the metal compound is supported by impregnation as a solution, if the interaction between the metal compound and the refractory inorganic oxide carrier is strong, the metal compound is strongly adsorbed to the carrier or rapidly. The occurrence of the hydrolysis reaction or the like causes a problem that it is supported only on the outer surface of the molded body and cannot be uniformly supported inside the pores.
  • the active ingredient is supported only on the outer surface of the refractory inorganic oxide carrier, and not only cannot the expected effect on the reaction be effectively exerted, but also the outer surface of the molded body is not only effective.
  • the components are unevenly distributed, there is also a problem that the diffusion of the reactants into the pores is hindered.
  • the method of supporting titanium on alumina is as follows: (1) impregnation using an aqueous solution of titanium tetrachloride, (2) impregnation using an isopropanol solution of titanium isopropoxide (Applied Catalysis, 6 3 (199 0) 3 0 5 — 3 1 7), and 3) a method of inducing saturated titanium tetrachloride in gaseous form and chemically depositing it on alumina by heat (Japanese Patent Application Laid-Open No. 6-106601). Have been.
  • the present invention has been made from the above viewpoints, and comprises a hydrotreating catalyst having improved desulfurization activity, denitrification activity, and dearomatization activity, a method for hydrotreating hydrocarbon oil using the catalyst, and a metal carrier. It is an object of the present invention to provide a metal compound-supported treated refractory inorganic oxide carrier which is uniformly present inside the inside.
  • the present inventors have found that a carrier containing a water-soluble solution containing a Group 4 metal compound of the periodic table impregnated in a refractory inorganic oxide is supported on the support by a Group 6 metal compound of the Periodic Table and It has been found that the object of the present invention can be effectively achieved by impregnating and supporting an aqueous solution containing at least one of each of the Group 8 to 10 metal compounds, and then performing a heat treatment at 300 ° C. or lower. In particular, it has been found that the above object of the present invention can be effectively achieved by specifying the step of loading the Group 4 metal compound of the periodic table, particularly titanium, on the carrier. did.
  • the refractory inorganic oxide carrier is impregnated with an aqueous solution containing a water-soluble organic compound having a boiling point or a decomposition temperature of 150 ° C or higher, dried, and then impregnated with a solution of a metal compound. It has been found that a metal compound-supported treated refractory inorganic oxide carrier in which the metal is uniformly present inside the carrier can effectively achieve the object of the present invention. The present invention has been completed based on this finding.
  • the gist of the present invention is as follows.
  • the carrier containing a water-soluble solution containing a Group 4 metal compound of the periodic table impregnated with a refractory inorganic oxide has a low content of a Group 6 metal compound and a Group 8-10 metal compound of the Periodic Table, respectively.
  • a hydrotreating catalyst for hydrocarbon oils which is obtained by impregnating and supporting an aqueous solution containing at least one of the above and then heat-treating it at 300 ° C or lower. 2.
  • a hydrotreating catalyst for hydrocarbon oils that is impregnated with an aqueous solution containing one type and supported.
  • a method for hydrotreating hydrocarbon oil comprising using the catalyst for hydrotreating hydrocarbon oil according to any one of the above 1 to 8.
  • a water-soluble organic compound having a boiling point or decomposition temperature of 150 ° C or more is supported on a refractory inorganic oxide carrier in advance, and then a Group 4 metal compound of the periodic table is supported.
  • a method for producing a hydrotreating catalyst comprising supporting at least one of a Group 6 metal compound and a Group 8 to 10 metal compound.
  • a group 4 metal compound of the periodic table is supported on a refractory inorganic oxide carrier together with a water-soluble organic compound having a boiling point or a decomposition temperature of 150 ° C or higher.
  • a method for producing a hydrotreating catalyst comprising supporting at least one group 8 to 10 metal compound.
  • the water-soluble organic compound having a boiling point or a decomposition temperature of 150 ° C. or more is at least one kind selected from diethylene glycol / triene, triethylene glycol cornole, polyethylene glycol, and butanediol. 10.
  • a method for hydrotreating hydrocarbon oil comprising using the hydrotreating catalyst according to 21 above.
  • EPMA Electron 'Probe' Micro 'Analysis
  • the integral value F between the other carrier surface and the X-ray The ratio X (F m / ⁇ ) of the X-ray intensity I m (t) of the tangent to the minimum and minimum value of the curve indicating the intensity to the integral value (F m) during the above is 0.5 or more
  • the refractory inorganic oxide carrier is impregnated with an aqueous solution containing a water-soluble organic compound having a boiling point or a decomposition temperature of 150 ° C or higher, dried, and then impregnated with a solution of a metal compound.
  • the method for producing a refractory inorganic oxide carrier treated with a metal compound according to any one of the above items 23 to 28.
  • FIG. 1 is a diagram showing the relationship between the obtained cross-sectional width direction distance (t) and X-ray intensity (I) when performing line analysis on metal atoms using an EPMA apparatus.
  • FIG. 2 is a perspective view showing an example of a metal compound-supported treated refractory inorganic oxide carrier used for EPMA measurement.
  • the arrow indicates the direction of the line analysis.
  • the invention of the present application provides a carrier in which a solution containing a water-soluble group 4 metal compound of the periodic table is impregnated with a refractory inorganic oxide and supported on the support, and a group 6 metal compound and a group 8 to 10 metal compound of the periodic table are provided.
  • This is a catalyst for hydrotreating hydrocarbon oils, which is obtained by impregnating and supporting an aqueous solution containing at least one of the following, followed by heat treatment at 300 ° C. or lower.
  • alumina, silica, silica 'alumina, magnesia, zinc oxide, crystalline aluminosilicate, clay mineral or a mixture thereof is used as the refractory inorganic oxide.
  • alumina, particularly ⁇ -alumina is preferred.
  • the average pore diameter is preferably in the range of 50 to 15 OA, more preferably in the range of 60 to 14 OA.
  • the shape it may be a powder or a compact such as a cylinder, three-leaf, or four-leaf.
  • titanium and zirconium can be cited as metals belonging to Group 4 of the periodic table supported on the refractory inorganic oxide, with titanium being preferred.
  • Water-soluble titanium such as dimethyl ammonium and water-soluble zirconium can be preferably mentioned.
  • a so-called pore-filling method in which the solution is adjusted to the amount of water absorbed by the carrier and impregnated, or a method of immersing in a large excess of the solution can also be used. It can be performed at normal pressure or reduced pressure.
  • the impregnating solution a solution obtained by dissolving a metal compound with water or an aqueous solution of hydrochloric acid or an aqueous solution of sulfuric acid and stabilizing the metal compound may be used.
  • a solution obtained by dissolving a metal compound with water or an aqueous solution of hydrochloric acid or an aqueous solution of sulfuric acid and stabilizing the metal compound may be used.
  • titanium when titanium peroxyhydroxycarboxylic acid or its ammonium salt is used as a water-soluble titanium compound, the effect of adding titanium is greatly preferred.
  • the hydroxycarboxylic acid cunic acid, lingic acid, lactic acid, and tartaric acid can be used.
  • the loading amount of the Group 4 metal of the periodic table is preferably 0.5 to 30% by mass (more preferably 1 to 15% by mass) with respect to the refractory inorganic oxide carrier on an oxide basis. is there. If the supported amount is too small, the effect of the addition of the metal may not be sufficiently exerted. If the supported amount is too large, the metal solution to be supported becomes high in concentration and becomes unstable, and the metal is deposited on the carrier. It is not preferable because uneven distribution or aggregation may occur.
  • the impregnation with the Group 4 metal compound of the periodic table After completion of the impregnation with the Group 4 metal compound of the periodic table, in order to remove water, at normal pressure or reduced pressure, preferably at 50 to 150 ° C (more preferably at 100 to 120 ° C) ) At a temperature of 0.5 to 100 hours. Further, in order to enhance the bonding property with the alumina carrier, baking is performed as necessary.
  • the firing temperature is preferably from 400 to 65 ° C. (more preferably, 450 ° C.). 6600 ° C.), and the calcination time is usually 0.5 to 100 hours.
  • the content of the anion is set to 5% by mass or less in order to suppress a decrease in the activity of the catalyst due to a decrease in the dispersibility of the active metal to be subsequently carried.
  • steam may be entrained in addition to air at the time of baking, or washed with water or water to which ammonia or ammonia carbonate has been added before or after baking. If cleaning is performed after firing, drying must be performed again.
  • At least one of the Group 6 and Group 8-10 metal compounds of the periodic table as an active metal compound and, if necessary, a phosphorus compound are supported.
  • molybdenum and tungsten are preferred, and molybdenum is particularly preferred.
  • molybdenum compound molybdenum trioxide, ammonium paramolybdate and the like are used, and as the tungsten compound, tungsten trioxide, ammonium tungstate and the like are used.
  • the supported amount is preferably 4 to 40 mass on an oxide basis and a catalyst basis. / 0 , more preferably 8 to 35 % by mass.
  • the metals of Groups 8 to 10 of the periodic table usually include cobalt or nickel. Nickel nitrate, nickel carbonate and the like are used as nickel compounds, and cobalt nitrate and cobalt carbonate and the like are used as cobalt compounds.
  • the supported amount is preferably 1 to 12% by mass, more preferably 2 to 10% by mass, based on the oxide and the catalyst.
  • the supported amount is 0.5 to 8% by mass, preferably 1 to 6% by mass based on the oxide and the catalyst.
  • the active metal compound is supported by the impregnation method.
  • Group 3 metal compounds of the Periodic Table, Group 8-10 metal compounds, and phosphorus compounds May be separately impregnated, but it is efficient to perform them simultaneously.
  • metals of group 6 of the periodic table are in the range of 0.7 to 7.0 mol liter
  • metals of groups 8 to 10 of the periodic table are in the range of 0.3 to 3.6 mol.
  • the phosphorus compound is dissolved in pure water at a ratio of 0 to 2.2 mol Z liter, and the carrier is impregnated with the water after adjusting the water absorption to the same amount.
  • the pH at the time of impregnation is generally 1 to 4, preferably 1.5 to 3.5 in the acidic region. In the alkaline region, it is 9 to 12, preferably 10 to 11.
  • the method of adjusting the pH is not particularly limited, but it may be adjusted using an inorganic acid such as nitric acid, hydrochloric acid, sulfuric acid, an organic acid such as linoleic acid, citric acid, or ethylenediamine tetraacetic acid, or ammonia. it can.
  • water-soluble organic compounds examples include dionoles such as 1,3-butanediol, 1,4-butanediol, butanetriol, 1,2-propanediol, 1,2-pentanediol; and 5-methyl-1-one.
  • Sono-form anolecol alcohols with 5 or more carbon atoms, such as 2-hexanol and 3-hexanol, to which a hydroxyl group is bonded in addition to the terminal carbon; Ether group-containing water-soluble polymers such as polyethylene glycol, polyoxyethylene phenyl ether, and polyoxyethylene octyl phenyl ether; water-soluble polymers such as polybutyl alcohol; Various sugars such as glucose and glucose; water-soluble polysaccharides such as methylcellulose and water-soluble starch; and derivatives thereof. These can be used alone or in combination of two or more.
  • the amount of the water-soluble organic compound to be added is preferably 2 to 20% by mass (more preferably 3 to 15% by mass) with respect to the mass of the carrier.
  • a heat treatment is performed to stabilize the active metal of the catalyst on the support, and the temperature is 300 ° C. or lower, preferably 70 ° C. to 300 ° C. A range of 80 to 150 ° C. is particularly preferred. If the heat treatment temperature is too high, sufficient activity cannot be obtained due to aggregation of the supported component, and if it is too low, sufficient activity cannot be obtained because the supported component and the carrier cannot be sufficiently bonded. May not be possible.
  • the above heat treatment is performed in air, and usually takes 3 to 16 hours.
  • the above heat treatment may be performed at 300 ° C. or more. .
  • the average pore diameter of the catalyst obtained above is usually 40 to 140 A, preferably 60 to 130 A, and the specific surface area is usually 120 to 400 m 2 / g, preferably It is 140-350 mg. Further, the total pore volume is usually 0.2 to: I.OcCZg, preferably 0.25 to 0.9CcZg.
  • the above average pore diameter and total pore volume were measured by a mercury intrusion method, and the specific surface area was measured by a nitrogen adsorption method.
  • the invention is a method for hydrotreating a hydrocarbon oil using the above hydrogenation catalyst.
  • pre-sulfurization should be performed as a stabilization process in advance. Is desirable.
  • the conditions for the pre-sulfurization treatment are not particularly limited, but usually, examples of the pre-sulfurization agent include hydrogen sulfide, carbon disulfide, thiophene, dimethyl disulfide, etc., and the treatment temperature is 200 to 400 °.
  • C Treatment Pressure is from normal pressure to 3 OMPa.
  • the hydrotreating conditions vary depending on the type and purpose of the feedstock, but generally, the reaction temperature is 200 to 550 ° C (preferably 220 to 500 ° C), and the hydrogen partial pressure is 1 The reaction is carried out within a range of 330 MPa (preferably 2 to 25 MPa).
  • the type of reaction is not particularly limited, but usually can be selected from various processes such as a fixed bed, a moving bed, a boiling bed and a suspension bed, but a fixed bed is preferred.
  • both the downflow and upflow formats can be adopted for the feedstock distribution method. '
  • Liquid hourly space velocity (LHSV) is 0.05 to:! O hr— 1 (preferably 0:! To S hr- 1 )
  • Hydrogen Feedstock ratio is 150 to 2
  • 500 N mV k 1 (preferably 200 to 2, OOO NmS / Z kl) It is.
  • All petroleum fractions can be used as the hydrocarbon oil to be processed. Specifically, kerosene, light gas oil, heavy gas oil, cracked gas oil, etc., from normal pressure residual oil, reduced pressure residual oil, depressurized residual oil, etc. Although a wide range of oils such as residual oil, asphaltene oil and tar sands oil can be mentioned, the present invention is particularly effective in reducing the sulfur content of the gas oil fraction to 50 ppm or less.
  • the present invention provides a method for preliminarily supporting a water-soluble organic compound having a boiling point or a decomposition temperature of 150 ° C. or higher on a refractory inorganic oxide carrier, and then supporting a Group 4 metal compound of the periodic table.
  • the present invention provides a method for producing a hydrotreating catalyst, which comprises supporting at least one kind of a metal compound of Group 6 and a metal compound of Groups 8 to 10 and, if necessary, a phosphorus compound.
  • alumina, silica, silica'alumina, magnesia, zirconia, titania, zinc oxide, crystalline aluminosilicate, clay mineral or a mixture thereof is used as the refractory inorganic oxide carrier.
  • alumina is preferred.
  • the average pore size is preferably in the range of 70 to 15 OA, more preferably in the range of 80 to 14 OA.
  • the shape it may be a powder or a molded product such as a cylinder, three leaves, or four leaves.
  • a water-soluble organic compound having a boiling point or a decomposition temperature of 150 ° C. or more (hereinafter simply referred to as a water-soluble organic compound) is supported on a refractory inorganic oxide carrier. If the boiling point or the decomposition temperature is lower than 150 ° C., the catalyst will evaporate or decompose during the preparation of the catalyst, and the effect will be lost. Unless it is water-soluble, its effect is not recognized and it is not preferable.
  • water-soluble organic compound examples include a water-soluble organic compound having a molecular weight of 100 or more and having a hydroxyl group and a Z or ether bond. Specifically, 1,3-butanediol, 1, 4-butane di / re, butane trio, 1, 2-prono II.
  • Water-soluble alcohols having a boiling point of 150 ° C or higher such as 1,2-pentanediol, etc .
  • 5 methylenol 1 _hexanolnole, isoaminoleanololecol (3—methynole 1-butanol), s— Isoaminophenol (3-methyl-2-butanol), isodecanelenolecol, isooctanolone, isopentanol, isogellanol, isohexyl alcohol, 2,4-dimethyl 1-Pentanol, 2, 4, 4-trimethyl-1-pentano-nore and other isocarbon alcohols with 4 or more carbon atoms; 2_hexanonore, 3 and 1-hexanol, etc.
  • Alcohols having a hydroxyl group bonded to the terminal carbon other than the above polyethylene glycol, triethylene glycol, diethylene glycol ⁇ ⁇ , polio Xyethylene Hue- Ether group-containing water-soluble compounds such as polyphenol ethylene glycol / lefeninoleate polyester; water-soluble polymers such as polybutyl alcohol; various saccharides such as saccharose and curcose; water-soluble polysaccharides such as methyl cellulose and water-soluble starch. Saccharides or their derivatives can be mentioned, and they can be used alone or in combination of two or more.
  • the amount of the water-soluble organic compound to be supported is preferably 3 to 15% by mass (more preferably 5 to 10% by mass) based on the mass of the carrier. If the amount of the water-soluble organic compound is too small, the effect may not be obtained. On the other hand, if the amount is too large, the effect corresponding to the amount may not be obtained, which may be economically disadvantageous.
  • the water-soluble organic compound is carried in an aqueous solution, usually by an impregnation method, a so-called pore-filling method, and can be carried out at normal pressure or reduced pressure.
  • the solution After the impregnation with the aqueous solution of the water-soluble organic compound, the solution is subjected to normal pressure or reduced pressure, preferably at a temperature of 50 to 150 ° C (more preferably at a temperature of 100 to 130 ° C), preferably at a temperature of 0.3 to 1 ° C. Dry for 00 hours.
  • a metal compound belonging to Group 4 of the periodic table is loaded in order to highly disperse the active metal to be loaded later.
  • the metal titanium and zirconium are preferable.
  • the compounds of the metal include titanium isopropylate, titanium ethoxide, titanium-1-ethyl-1-hexanolate, ethyl acetate acetate titanium, tetra n-butoxytitanium, tetramethoxytitanium Alkoxides such as zirconium, acetylacetonacetonate, acetylacetate, butoxy, zirconium, zirconium butoxide, titanium sulphate, titanium tetrachloride, titanium hydroxide, zirconium sulfate, zirconium chloride, zirconium oxychloride, zirconium oxysulfate , Zirconium hydroxide, zirconium sulfate, zirconium nitrate, zirconium acetate, zirconium carbonate ammonium, etc., among which alkoxides, sulfates and chlorides are preferred.
  • the supported amount of the above-mentioned Group 4 metal compound is 0.5 to 30 mass on an oxide basis and a catalyst basis. / 0 , preferably 1 to 20% by mass, particularly preferably 1 to 15% by mass. If the amount is too small, the effect may not be obtained. On the other hand, if the amount is too large, the viscosity of the aqueous solution at the time of loading may be too high to be immersed inside the carrier, and the effect may not be obtained.
  • the loading of the Group 4 metal compound of the periodic rule is carried out by an alcohol solution in the case of alkoxides and an aqueous solution of the other compounds, usually by an impregnation method, a so-called pore-filling method, at normal pressure or reduced pressure. it can.
  • the above alcohol is Prono II.
  • butanol, butanol, ethanol, methanol and the like can be used.
  • the impregnation with the Group 4 metal compound of the periodic table it is effective to add a stabilizer to the impregnation liquid in order to prevent hydrolysis and aggregation.
  • the stabilizer include amines such as monoethanolamine, diethanolamine, and triethanolamine, butanediol, butanetrione mono-ole, propanediol, 5-methyl_1-hexano-nore, and iso-ethanol.
  • Aminole alcohol (3-Methinole_1-butanol), s-Isoaminophenol (3-Methyl-2-butanol), Isodecenanolanol, Isooctanol, Isopentanol, Isogelanol, Isohexynole alcohol, 2,4,1-Dimethinole, pentanole, 2,4, 4-Alcohols such as trimethyl_1-pentanol, and acids such as hydrochloric acid, sulfuric acid, acetic acid, citric acid, and malic acid can be mentioned.
  • the amount is usually 1 mole of the Group 4 metal compound in the periodic table. On the other hand, it is 0.1 to 10 mol. After completion of the impregnation with the Group 4 metal compound of the periodic table, the reaction is carried out at normal pressure or reduced pressure, preferably at a temperature of 50 to 600 ° C (more preferably 100 to 550 ° C). Dry for 5-
  • washing to remove sulfate and chlorine is also effective.
  • At least one metal compound belonging to Group 6 of the periodic table and a metal compound belonging to Groups 8 to 10 are supported as active metal compounds, and a phosphorus compound is supported as necessary.
  • Molybdenum and tungsten are preferred as Group 6 metals of the periodic table, and molybdenum is particularly preferred.
  • molybdenum compound dimolybdenum trioxide, ammonium paramolybdate and the like are used, and as the tungsten compound, tungsten trioxide, ammonium tungstate and the like are used.
  • the supported amount is 4 to 40% by mass, preferably 8 to 35% by mass based on the oxide and the catalyst. / 0 , more preferably 8 to 30 mass. / 0 .
  • cobalt or nickel is usually mentioned.
  • nickel compound nickel nitrate, basic nickel carbonate and the like are used, and as the cobalt compound, cobalt nitrate, basic cobalt carbonate and the like are used.
  • the supported amount is preferably 1 to 12 mass on oxide basis and catalyst body basis. / 0 , more preferably 2 to 10% by mass.
  • phosphorus compound phosphorus pentoxide, orthophosphoric acid and the like are used.
  • the supported amount is 0.5 to 8% by mass, preferably 1 to 6% by mass on an oxide basis and a catalyst body basis. / 0 .
  • the above-mentioned method of supporting the active metal compound is preferably an impregnation method.
  • the above metal compounds belonging to the three groups of the 6th group metal compounds, the 8th to 10th group metal compounds, and the phosphorus compounds of the periodic table may be separately impregnated, but it is efficient to perform them simultaneously. Usually, it is dissolved in pure water, adjusted to match the water absorption of the carrier, and then impregnated.
  • the pH at the time of impregnation is generally 1 to 4, preferably 1.5 to 3.5 in the acidic region in consideration of the stability of the impregnating solution. In the alkaline region, it is 9 to 12, preferably 10 to 11.
  • the method for adjusting the pH is not particularly limited, but the pH can be adjusted by using an inorganic acid such as nitric acid, hydrochloric acid, sulfuric acid, an organic acid such as lignoic acid, citric acid, ethylenediaminetetraacetic acid, or an ammonia. .
  • an inorganic acid such as nitric acid, hydrochloric acid, sulfuric acid, an organic acid such as lignoic acid, citric acid, ethylenediaminetetraacetic acid, or an ammonia.
  • water-soluble organic compound may be used simultaneously when carrying the active metal.
  • firing is performed, preferably in the range of 50 to 400 ° C, more preferably 100 to 300 ° C, and particularly preferably in the range of 120 to 250 ° C. Perform for 100 hours. If the calcination temperature is too low, it may not be possible to have a sufficient bond between the carrier component and the carrier, and if it is too high, the carrier component tends to aggregate.
  • the hydrotreating catalyst produced by the method of the present invention is suitable as a desulfurization catalyst.
  • Another invention relating to a method for producing a hydrotreating catalyst comprises supporting a refractory inorganic oxide carrier with a Group 4 metal compound of the periodic table together with a water-soluble organic compound having a boiling point or a decomposition temperature of 150 ° C or higher. Then, at least one kind of a Group 6 metal compound and a Group 8-10 metal compound of the periodic table, and This is a method for producing a hydrotreating catalyst characterized by supporting a phosphorus compound more.
  • impregnation conditions and the like are the same as those of the invention described above (a water-soluble organic compound having a boiling point or a decomposition temperature of 150 ° C. or higher is previously supported on a refractory inorganic oxide carrier, and then a Group 4 metal compound of the periodic table is supported. It is the same as the method for producing a hydrotreating catalyst characterized in that at least one metal compound belonging to Group 6 of the periodic table and a metal compound belonging to Groups 8 to 10 and at least a phosphorus compound are supported as necessary. .
  • drying and firing after the simultaneous impregnation of the water-soluble organic compound and the Group 4 metal compound in the periodic table are the same as those after the impregnation with the Group 4 metal compound in the above-mentioned invention. That is, drying is carried out at normal pressure or reduced pressure, preferably at a temperature of 50 to 600 ° C (more preferably 100 to 550 ° C) for 0.5 to 100 hours.
  • firing is preferably performed at a temperature of 50 to 75 ° C. (more preferably 100 to 65 ° C.) for 0.5 to 100 hours.
  • the firing conditions after the last impregnation of the active metal compound are the same as in the above-mentioned invention. That is, preferably in the range of 50 to 400 ° C, more preferably in the range of 100 to 300 ° C, particularly preferably in the range of 120 to 250 ° C, 0.5 to: 100 Do time.
  • the above-mentioned water-soluble compound may be used at the same time when the active metal is carried.
  • the hydrotreating catalyst produced by this method is suitable as a denitrification catalyst.
  • the invention relating to the method for producing a hydrotreating catalyst comprises at least one kind of a metal compound belonging to Group 6 and 8 to 10 of the periodic table together with a water-soluble organic compound having a boiling point or a decomposition temperature of 150 ° C or more. And, if necessary, a method for producing a hydrotreating catalyst comprising supporting a phosphorus compound on a refractory inorganic oxide carrier and then supporting a metal compound belonging to Group 4 of the periodic table.
  • the impregnation conditions and the like are the same as in the above invention. However, the drying and firing conditions are different.
  • the temperature is preferably from 50 to 150 ° C (more preferably from 100 to 130 ° C), It only needs to be dried for 100 hours.
  • the conditions after the last impregnation of the Group 4 metal compound of the periodic table are the same as those of the firing after the impregnation of the active metal of the invention. That is, preferably in the range of 50 to 400 ° C, more preferably in the range of 100 to 300 ° C, particularly preferably in the range of 120 to 250 ° C, for 0.5 to 100 hours.
  • the hydrotreating catalyst produced by this method is suitable as an aroma catalyst.
  • the average pore diameter of the catalysts obtained by the above three inventions is usually 50 to 15 ⁇ , preferably 80 to 120 A, and the specific surface area is usually 140 to 400. mg, preferably from 160 to 350 mg. Also, the total pore volume is usually between 0.2 and 1.0 OccZg, preferably between 0.25 and 0.8 cc / g.
  • pre-sulfurization treatment When performing hydrotreating, it is desirable to carry out pre-sulfurization as stabilization in advance.
  • the conditions for the pre-sulfurization treatment are not particularly limited, but usually, examples of the pre-sulfurization agent include hydrogen sulfide, carbon disulfide, thiophene, dimethyl disulfide, etc., and the treatment temperature is 200 to 400 °.
  • C Treatment Pressure is from normal pressure to 3 OMPa.
  • Hydrotreating conditions vary depending on the type and purpose of the feedstock, but generally the reaction temperature is 200 to 550 ° C (preferably 220 to 500 ° C) and the hydrogen partial pressure is The reaction is carried out within a range of 330 MPa (preferably 2 to 25 MPa).
  • reaction is not particularly limited, but usually can be selected from various processes such as a fixed bed, a moving bed, a boiling bed and a suspension bed, but a fixed bed is preferred.
  • both the downflow and upflow formats can be adopted for the feedstock distribution method.
  • Reaction conditions other than temperature and pressure for a fixed bed include the liquid hourly space velocity (
  • LHSV is from 0.05 to :! O hr -1 (preferably 0.1 to 5 hr- l , hydrogen / feed oil ratio is 150 to 2,500 Nm 3 / k 1 (preferably 200 to 2,000 Nm 3 / k 1).
  • All petroleum fractions can be used as the hydrocarbon oil to be processed. Specifically, kerosene, light gas oil, heavy gas oil, cracked gas oil, etc., from normal pressure residual oil, reduced pressure residual oil, depressurized residual oil, etc. It can be widely used for residual oil, asphaltene oil and tar sands oil.
  • the metal compound-supported treated refractory inorganic oxide support of the present invention (hereinafter, also simply referred to as a support) is a refractory inorganic oxide support that uses a metal compound to support the metal, and the metal is a carrier. It exists even inside. Although it can be proved by various measurement means, in the present invention, it is performed by using an EPMA.
  • FIG. 1 is a diagram showing the distribution of the amount of metal in the refractory inorganic oxide support treated with a metal compound according to the present invention, and shows the obtained cross-sectional width when a metal atom is subjected to linear analysis measurement using EPM A. It is a figure showing the relationship between directional distance (t) and X-ray intensity (I).
  • FIG. 2 is a perspective view showing an example of the refractory inorganic oxide carrier treated with a metal compound used for the above-mentioned EPMA measurement. The arrow indicates the direction of the line analysis.
  • the refractory inorganic oxide support carrying the metal compound of the present invention has a columnar shape as shown in FIG. 2, for example, a line analysis of the PMMA in a linear direction as shown in FIG. Perform the measurement.
  • the horizontal axis is the distance in the cross-sectional direction (t: distance from one carrier surface) and the vertical axis is the X-ray intensity (I) indicating the metal atom concentration.
  • I X-ray intensity
  • the integral value (F) of the above I with respect to t, and the X-ray of the tangent at the minimum and minimum value of the curve showing the X-ray intensity The ratio X (Fm / F) of the intensity Im (t) to the integral value (Fm) during the above (t; 0 to!;) Is 0.5 or more. If the X value is less than 0.5, the effect of improving the desulfurization activity of the catalyst in which the active metal is supported on the support cannot be obtained because the state of supporting the metal compound is not uniform.
  • the X value is 0.5 or more. Further, the above-mentioned line analysis measurement in the present invention can be applied to any shape, and if it has the above-mentioned X value, the specific effects of the present invention can be obtained.
  • the carrier of the present invention is obtained by impregnating a refractory inorganic oxide carrier with an aqueous solution containing a water-soluble organic compound having a boiling point or a decomposition temperature of 150 ° C. or higher, drying and then impregnating with a metal compound solution.
  • alumina, silica, silica 'alumina, magnesia, zirconia, titania, zinc oxide, crystalline aluminosilicate, clay mineral or a mixture thereof is used as a refractory inorganic oxide carrier.
  • ⁇ -alumina is preferred.
  • a mixture of y-alumina and crystalline aluminosilicate is preferred.
  • metal of the above metal compound a metal belonging to Group 4 of the periodic table is preferable, and among them, titanium and zirconium are particularly preferable.
  • the metal compound examples include titanium sulfate, titanium chloride, titanium peroxide, titanium oxalate, titanium acetate, zirconium oxychloride, and sulfuric acid.
  • examples include zirconium, zirconium nitrate, zirconium acetate, and zirconium carbonate ammonium.
  • the metal alkoxide can also be suitably used, in particular, Te tiger one n - Lee Seo propoxytitanium, Echiruase Toasete Tochitan, Te tiger one n - butoxy, Te Torame Tokishichitan, preparative Riisopuropokishi aluminum, Doo Lee s —Butoxyaluminum, mono — s —butoxydiisopropoxyaluminum, acetylacetotributoxy zirconium.
  • titanium peroxohydroxycarboxylic acid or an ammonium salt thereof as the titanium compound because the effect of adding titanium is large.
  • hydroxycarboxylic acid citric acid, lingic acid, lactic acid, tartaric acid and the like can be used.
  • the amount of the metal compound to be supported on the refractory inorganic oxide carrier is preferably 1 to 30% by mass (more preferably 2 to 15% by mass) relative to the inorganic oxide carrier on an oxide basis. ). If the supported amount is too small, the effect of adding the metal may not be sufficiently exhibited. If the supported amount is too large, aggregation due to the presence of the metal in excess may occur, and a favorable dispersion state may not be obtained.
  • water-soluble organic compound having a boiling point or decomposition temperature of 150 ° C or more immersed in the refractory inorganic oxide carrier
  • 1,3-butanediol, 4 Butanediol, butane triol, 1,2-propanediol, 1,2-pentanedionole, and other dionoles
  • 5 Methyl — 1 — hexanol mono-, isoamyl alcohol
  • the amount of the water-soluble organic compound to be added is 2 to 20% by mass (preferably 3 to 15% by mass) with respect to the mass of the carrier, and adjusted with water to an amount commensurate with the water absorption of the carrier. I do.
  • the effect of the present invention cannot be obtained. If the amount of the aqueous solution of the water-soluble organic compound is too small, the effect of the present invention cannot be obtained. If the amount is too large, the viscosity of the aqueous solution becomes too high to be immersed inside the carrier, and the effect of the present invention cannot be obtained.
  • the impregnation with the aqueous solution of the water-soluble organic compound may be carried out by a so-called pore-filling method, and is carried out at normal pressure or reduced pressure.
  • the mixture After completion of the impregnation with the aqueous solution of the water-soluble organic compound, the mixture is dried at about 120 ° C. until water content disappears, and impregnated with the solution of the metal compound.
  • the method of impregnating the metal compound may be usually a so-called pore-filling method, or a method of immersion in a large excess of solution.
  • Water, alcohol, hexane, heptane, etc. can be used as the solution. It is recommended to use anolecol such as anol, butanol, ethanol, and methanol.
  • amines and other alcohols to the alcohol solution of the genus alkoxide.
  • the amount of the amines or alcohols to be added is preferably 0.3 to 2.5, more preferably 0.6 to 1.5 in molar ratio to the metal alkoxide.
  • the amines include monoethanolamine, diethanolamine, and triethanolamine.
  • the alcohols include 1,3-butanediol. Drying after the impregnation of the metal compound solution may be performed by vacuum drying or normal pressure drying at a temperature in the range of 50 to 130 ° C. After drying sufficiently, usually firing is performed at 300 to 800 ° C, more preferably at 400 to 600 ° C, in order to stabilize the metal on the support. However, the firing step can be omitted.
  • the metal compound-supported treated refractory inorganic oxide carrier prepared as described above is treated with at least one of the metals of Group 6 of the Periodic Table and the Periodic Tables 8 to 1 as active metals by the following method. It carries at least one selected from Group 0 metals and is used as a hydrotreating catalyst, especially a hydrodesulfurization catalyst. Molybdenum and tungsten are used as Group 6 metals in the periodic table, with molybdenum being preferred.
  • the supported amount is 4 to 40% by mass, preferably 8 to 35% by mass, more preferably 8 to 30% by mass based on the oxide and the catalyst. Cobalt or nickel is usually used as a metal in Groups 8 to 10 of the periodic table.
  • the supported amount is 1 to 12 mass on oxide basis and catalyst body basis. / 0 , preferably 2 to 10% by mass. In addition, it carries phosphorus as needed.
  • the supported amount is 0 to 8 mass on oxide basis and catalyst body basis. / 0 , preferably 1 to 6% by mass.
  • the method of supporting the metal is preferably an impregnation method.
  • Molybdenum compounds of Group 6 of the periodic table include molybdenum trioxide and ammonium paramolybdate. Aluminum and the like are used, and as the tungsten compound, tandane trioxide, ammonium tungstate, and the like are used. Nickel nitrate, basic nickel carbonate, and the like are used as nickel compounds in Groups 8 to 10 of the periodic table, and cobalt nitrate, basic cobalt carbonate, and the like are used as cobalt compounds. Is done. Further, if necessary, phosphorus is used, and as the phosphorus compound, phosphorus pentoxide, phosphoric acid, or the like is used.
  • metals of group 6 of the periodic table are in the range of 0.7 to 7.0 mol Z litres
  • metals of groups 8 to 10 of the periodic table are in the range of 0.3 to 3.6 mol Z litres.
  • the title compound and the phosphorus compound are dissolved in pure water at a ratio of 0 to 2.2 moles Z liter, and the carrier is impregnated with the water after adjusting the water absorption to be equal to the water absorption.
  • the pH at the time of impregnation is generally 1 to 4, preferably 1.5 to 3.5 in the acidic region in consideration of the stability of the impregnating solution. In the Al-rich region, it is 9 to 12, preferably 10 to 11.
  • the method of adjusting the pH is not particularly limited, but the pH can be adjusted using an inorganic acid such as nitric acid, hydrochloric acid, sulfuric acid, or the like, an organic acid such as malic acid, citric acid, ethylenediamine tetraacetic acid, or ammonia.
  • the catalyst is heat treated, preferably at a temperature of 80-600 ° C. The range of 120 to 300 ° C. is particularly preferred. If the heat treatment temperature is too high, sufficient activity may not be obtained due to aggregation of the supported components, and if too low, sufficient activity may not be obtained due to insufficient binding between the supported component and the carrier. It may not be possible.
  • the above heat treatment is performed in the air.
  • the average pore size of the obtained catalyst is 50 to 150 A (preferably 80 to 120 A), and the specific surface area is 140 to 400 m 2 / g, preferably 160 ⁇ it is a 3 5 0 m 2 / g.
  • the total pore volume is 0.2 to 1.0 ccZg, preferably 0.25 to 0.8 cc / g.
  • the above average pore diameter and total pore volume were measured by the mercury intrusion method, The area is measured by a nitrogen adsorption method.
  • Another invention is a method for hydrodesulfurization of a hydrocarbon oil using the hydrotreating catalyst of the present invention. It is intended for desulfurization, but may be for denitrification and hydrogenolysis.
  • the conditions for the pre-sulfurization treatment are not particularly limited, but usually, as the pre-sulfurization agent, hydrogen sulfide, carbon disulfide, thiophene, dimethyl disulfide, and the like can be given, and the treatment temperature is 200 to 400 ° C. C.
  • the processing pressure is from normal pressure to 30 MPa.
  • Hydrodesulfurization conditions vary depending on the type and purpose of the feedstock, but generally the reaction temperature is 200 to 550 ° C (preferably 220 to 500 ° C) and the hydrogen partial pressure The reaction is performed in the range of 1 to 30 MPa (preferably 2 to 25 MPa).
  • the type of reaction is not particularly limited, but usually can be selected from various processes such as a fixed bed, a moving bed, a boiling bed and a suspension bed, but a fixed bed is preferred.
  • both the downflow and upflow formats can be adopted for the feedstock distribution method.
  • the liquid hourly space velocity (LHSV) is 0. OS l Ohr- 1 (preferably 0:! To 5 hr), and the hydrogen feedstock ratio is 1 50 to 2,500 Nm 3 / k1 (preferably 200 to 2,000 Nm 3 / kl).
  • All petroleum fractions can be used as the hydrocarbon oil to be processed. Specifically, kerosene, light gas oil, heavy gas oil, cracked gas oil, etc., from normal pressure residual oil, reduced pressure residual oil, depressurized residual oil, etc. It can be widely used for residual oil, asphaltene oil and tar sands oil.
  • the metal compound-supported treated refractory inorganic oxide carrier gold
  • the genus exists uniformly inside the support, and when the active metal is supported on the support, the active metal interacts with the metal inside the support and is more catalytically active than that supported on the surface of the refractory inorganic oxide. Is high. Further, it is considered that the more active metal among the active metals is selectively supported on the metal inside the carrier, and the catalytic activity becomes higher.
  • ⁇ -alumina carrier (Al) having a water absorption of 0.8 cc Zg 52.9 g of a commercially available 30% by mass aqueous solution of titanium sulfate was added with pure water to match the water absorption. Dilute, impregnate at normal pressure, dry in vacuum at 70 ° C for 1 hour, dry in a dryer at 120 ° C for 3 hours, and calcine at 500 ° C for 4 hours A carrier (B 1) was obtained.
  • the amount thereof was 5 wt% or more based on the carrier, of 2 liters Put the carrier B 1 in a beaker, calorie 1 liter of pure water, wash with stirring with a stirring blade, and pour the pure water together with a sieve smaller than the diameter of the carrier. The amount was 2% by mass, and then dried at 120 ° C. for 5 hours to remove water.
  • the water content of the obtained titanium hydroxide gel was measured, and 11 g was collected as titania. 25% by mass of aqueous ammonia was added at 50 cc, and the mixture was stirred for 30 minutes. Further, 38 cc of 30% by mass aqueous hydrogen peroxide was gradually added to obtain a yellow titanium peroxotitanium solution. Then, 29 g of citric acid was gradually added thereto, and the temperature was gradually increased while stirring, and excess hydrogen peroxide solution was removed at 50 ° C. Further, the mixture was heated at 80 ° C. and completely dissolved by forming a complex, and then concentrated until the total amount became 117 cc. T 1) was obtained.
  • T / -alumina carrier (Al) with a water absorption of 0.8 cc, g, dilute 60 cc of T1 aqueous solution with pure water to match the water absorption, and impregnate it at normal pressure. After drying under vacuum at 70 ° C. for 1 hour, it was dried at 120 ° C. for 3 hours with a drier, and calcined at 500 ° C. for 4 hours to obtain a carrier (B 2).
  • Example 2 50 cc of the impregnating liquid (S 1) prepared in Example 1 was sampled, and 6 g of poly (ethylene glycol) (molecular weight: 400) was added to the carrier (B 2). Dilute with purified water to a water absorption of 100 g, dilute to constant volume, impregnate at normal pressure, vacuum dry at 70 ° C for 1 hour, and heat treat at 120 ° C for 16 hours. And Catalyst 2 were prepared. Table 1 shows the catalyst composition and physical properties.
  • a carrier (B 2) was prepared under the same conditions as in Example 2, 50 cc of the impregnating solution (S 1) was collected, and 6 g of polyethylene daricol (molecular weight: 400) was added to the carrier (B 2). Dilute with pure water to match the water absorption of 100 g, dilute at constant volume, impregnate at normal pressure, vacuum dry at 70 ° C for 1 hour, and then at 120 ° C for 3 hours. Subsequently, heat treatment was performed at 500 ° C. for 3 hours to obtain Catalyst 3. Table 1 shows the catalyst composition and physical properties.
  • Example 1 50 cc of the impregnating solution (S 1) prepared in Example 1 was sampled, and 6 g of polyethylene glycol (molecular weight: 400) was added to the T-alumina carrier (Al) having a water absorption of 0.8 ccg. Dilute with pure water to match the water absorption of 100 g.Constant volume, impregnate at normal pressure, vacuum dry at 70 ° C for 1 hour, and heat-treat at 120 ° C for 16 hours. Catalyst 4 was prepared. Table 1 shows the catalyst composition and physical properties.
  • Example 1 In the same manner as in Example 1, after the active metal was impregnated in the same manner, at 70 °. After vacuum drying for 1 hour at 120 ° C., heat treatment was performed at 120 ° C. for 3 hours and then at 500 ° C. for 3 hours to prepare Catalyst 5. Table 1 shows the catalyst composition and physical properties.
  • a heating stirrer charged pure water 1 5 liters of 6 0 ° C, aluminate Sanna Application Benefits ⁇ beam and hydroxide isocyanatomethyl re um respectively, A 1 2 0 3 concentration 8.0 mass 0/0, The solution was added to a NaOH concentration of 3.5% by mass and heated to 60 ° C to prepare a solution A. Put 15 liters of pure water in another heating stirrer, Each emissions aqueous solution and aluminum sulfate aqueous solution, Ding 1 0 2 concentration 0.6 wt%, A 1 2 0 3 concentration 3.0 wt. / 0, and heated to 60 ° C. to prepare a solution B.
  • the solution B was added to the solution A, and the pH was adjusted to 7 to obtain a titania-alumina coprecipitated hydrate gel, which was further aged at 60 ° C. for 1 hour. Thereafter, the gel was washed with 70 times the amount of 0.3% by mass aqueous ammonia to the filter. Pure water was added to the obtained filtrate so that the solid content became 12% by mass, the pH was adjusted to 11 with ammonia water, and the mixture was aged with a heated stirrer at 90 to 13 hours. . Thereafter, the gel was filtered again with a filter, washed with 10 times the amount of pure water of the filtrate, kneaded and dried at 80 ° C, and formed into a 1.58 mm cylindrical shape with an extruder. It was dried at 20 ° C. for 15 hours, and calcined at 500 ° C. for 4 hours to prepare a titania-allumina carrier (B 3).
  • Example 1 50 cc of the impregnating solution (S 1) prepared in Example 1 was sampled, and 6 g of polyethylene glycol (molecular weight) was added to the titania-alumina carrier (B 3) having a water absorption of 0.7 ccg. ) Dilute with constant volume of pure water to match the water absorption of 100 g, impregnate at normal pressure, dry under vacuum at 70 ° C for 1 hour, and dry at 120 ° C for 1 hour. Heat treatment was performed for 6 hours to prepare Catalyst 6. Table 1 shows the catalyst composition and physical properties.
  • the reaction was carried out under the conditions of a reaction temperature of 330 to 360 ° C., a hydrogen partial pressure of 5 MPa, a hydrogen Z feedstock ratio of 250 Nm 3 / k 1, and an LH SV of 1.5 hr ⁇ 1 .
  • a reaction temperature of 330 to 360 ° C.
  • a hydrogen partial pressure of 5 MPa a hydrogen Z feedstock ratio of 250 Nm 3 / k 1
  • an LH SV 1.5 hr ⁇ 1 .
  • the carrier was impregnated and dried at 120 ° C. for 16 hours to obtain a carrier (B 1).
  • Catalyst 8 was obtained in the same manner as in Example 4, except that 5 g of polyethylene glycol (molecular weight: 400) was added to the impregnating liquid (S 1). Table 4 shows the catalyst composition.
  • Example 6 (Supporting method 1) Catalyst 9 was obtained in the same manner as in Example 4, except that sulfuric acid as a stabilizer was not used. Table 4 shows the catalyst composition.
  • Catalyst 12 was obtained in the same manner as in Example 4, except that titanium tetrachloride 16.5 g of dilute hydrochloric acid solution 19.2 g was used instead of titanium sulfate, and sulfuric acid was not used.
  • Table 4 shows the catalyst composition.
  • Example 4 oxychloride zirconium chloride was used instead of titanium sulfate. Catalyst 7 was obtained in the same manner except that 12.4 g of the catalyst was used, and sulfuric acid was not used. Table 4 shows the catalyst composition.
  • the reaction tube of the fixed bed flow reactor was filled with 700 cc of catalyst.
  • the feedstock was circulated along with hydrogen gas in an upflow format in which it was introduced from the lower stage of the reaction tube, and the reactivity was evaluated.
  • the catalyst is presulfurized by passing a feedstock [Middle Eastern straight gas oil (LGO)] with the properties shown in Table 5 together with hydrogen gas at 250 ° C for 24 hours. did.
  • LGO Middle Eastern straight gas oil
  • the above feedstock oil [Middle Eastern straight-run gas oil (LGO)] was passed along with hydrogen gas to carry out hydrotreatment.
  • the reaction was carried out at a reaction temperature of 330 ° C., a hydrogen partial pressure of 5 MPa, a hydrogen feedstock ratio of 250 Nm 3 , kl, and LH SV 2.Ohr- 1 .
  • Table 6 shows the relative activities, with the activity of Comparative Example 1 (catalyst 14) being 100.
  • the desulfurization activity and the denitrification activity are indicated by the relative reaction rate ratio when the reaction rate of the comparative example is set to 100.
  • the relative saturation content ratio when the saturation content of Example 4 was 100 was shown.
  • Table 6 shows that the catalyst produced by the production method of the present invention has improved desulfurization activity, denitrification activity, and degassing activity.
  • catalyst A carrier (C 2) was prepared in the same manner as in Example 11 except that polyethylene glycol (molecular weight: 400, decomposition temperature: 250 or higher, C) was used instead of 1,3-butanediol.
  • the catalyst 17 was obtained under the same conditions. Table 7 shows the physical properties.
  • Example 11 after the active metal was impregnated, heat treatment was performed at 120 ° C. for 16 hours to obtain a catalyst 18.
  • Table 7 shows the physical properties.
  • a carrier (B 2) was prepared by using 1,4-butanediol (boiling point: 23.5 ° C.) instead of 1,3-butanediol. Dilute a commercially available aqueous solution of titanium sulfate (equivalent to 5.26 g with TiO 2 ) to match the water absorption of the carrier, impregnate it at normal pressure, and vacuum at 70 ° ⁇ for 1 hour. After drying, it was dried in a dryer at 120 ° C. for 3 hours and calcined at 500 ° C. for 4 hours. Thereafter, the sulfate was washed off using 50 ° C water (30 times the amount of the carrier), and dried at 120 ° C for 16 hours to prepare a carrier (C3).
  • titanium sulfate equivalent to 5.26 g with TiO 2
  • Example 11 the pretreatment using 1,3-butanediol was not carried out, and the solution was added to the carrier (A l) l O O g so as to match the water absorption.
  • the catalyst 2 was prepared in the same manner as in Example 11 except that the carrier (C 5) was prepared using n-amyl alcohol (boiling point i 37 ° C.) instead of 1,3-butanediol.
  • Got 1 Table 7 shows the physical properties.
  • Example 14 the support (C 6) was prepared without performing the pretreatment using 1,4-butanediol, and the catalyst 23 was obtained in the same manner.
  • Table 7 shows the physical properties.
  • the supports (C 1) to (C 6) obtained during the preparation of the catalyst were embedded in resin (PMMA: polymethyl methacrylate) and cut parallel to the bottom surface. Bring out the measurement surface as shown in Figure 2.
  • the X value was determined by measuring at an acceleration voltage of 1.5 kV, a beam size of 1 ⁇ m, and a sample current of 0.05 ⁇ m. Table 9 shows the results.
  • Each catalyst 16 to 23 was filled into the reaction tube of the fixed bed flow reactor at 100 (0: 0).
  • the feedstock was passed through the bottom of the reaction tube together with hydrogen gas through a single port to increase the reactivity.
  • feedstock [Middle Eastern straight gas oil (LGO)] with the properties shown in Table 8 was distributed with hydrogen gas at 250 ° C and hydrogen partial pressure of 5 MPa for 24 hours.
  • the raw material oil [Middle East straight-run gas oil (LGO)] was passed along with hydrogen gas to carry out hydrodesulfurization treatment. 3360 ° C., hydrogen partial pressure 5 MPa, hydrogen feedstock ratio 250 Nm 3 / k 1, LHSV 2.0 hr 1.
  • Table 9 shows Comparative Example 6 (catalyst 20 The relative activity is shown by setting the desulfurization rate constant of) to 100.
  • Table 9 shows that the catalysts of the examples in which the X value of the carrier C obtained by the EPMA measurement is 0.5 or more have a high desulfurization activity.
  • titanium tetrachloride and 1 L of pure water are each cooled in an ice water cooling bath. This pure water is stirred, and gradually cooled titanium tetrachloride is added dropwise while cooling to obtain a colorless titania sol hydrochloric acid solution.
  • aqueous ammonia concentration: 1 mol / L
  • the gel is separated by suction filtration, redispersed in about 1 L of pure water, and washed by filtration. Repeat this operation 4 to 5 times until the washings are neutral, and remove chlorine.
  • Titanium hydroxide gel obtained was collected as 11 g by weight as titaure I do. And 25 mass. / o Add 50 cc of aqueous ammonia and stir. Further, 100 cc of a 30% hydrogen peroxide solution is gradually added to dissolve the titania gel to obtain a peroxotitanium solution. Thereto, 29 g of citrate monohydrate was gradually added, and the temperature was gradually increased with stirring, and excess hydrogen peroxide solution was removed at 50 ° C. Further, the solution is concentrated at 80 ° C. until the total amount becomes 117 cc to obtain a yellow-orange transparent ammonium peroxoxenoate (T15).
  • T15 yellow-orange transparent ammonium peroxoxenoate
  • a ⁇ -alumina carrier (A15) with a water absorption of 0.8 cc / g dilute 60 cc of a T15 aqueous solution with pure water to match the water absorption, and impregnate it at normal pressure Then, the resultant was dried in a vacuum at 70 ° C for 1 hour, dried in a dryer at 120 ° C for 3 hours, and calcined at 500 ° C for 4 hours to obtain a carrier (B15).
  • Et al is, (2 0 g as an NiO) nickel carbonate 3 7 g, trioxide molybdenum 8 3 g, Seiri phosphate 3 8 g (purity 8 5 mass 0/0) of pure water 2 5 0 cc was added and dissolved at 80 ° C. with stirring. After cooling at room temperature, the volume was adjusted to 250 cc with pure water to prepare an impregnation liquid (S 15).
  • Catalyst 25 was prepared in the same manner as in Example 15 except that calcination after supporting the impregnating liquid S15 was performed at 250 ° C for 3 hours.
  • An impregnating solution (S15) was prepared in the same manner as in Example 15, 50 cc of the solution was collected, 6 g of polyethylene glycol (molecular weight: 400) was added, and a titanium-added alumina carrier (B1 6) Dilute with pure water to match the water absorption of 100 g.Constant volume, impregnate at normal pressure, vacuum dry at 70 ° C for 1 hour, and dry at 120 ° C for 3 hours. Then, the mixture was calcined at 500 ° C. for 3 hours to prepare a catalyst 26.
  • Acid-treated zeolite B is suspended in deionized water of the same weight, and alumina gel Z is introduced into a kneader so that the zeolite B / alumina solid content (mass) becomes 100 Z90 and heated. Then, the mixture was concentrated to a concentration that allows extrusion molding with stirring, and then molded into a 1.6 mm-sized column with an extrusion molding machine. Then, after drying at 110 ° C for 16 hours, 3 hours at 550 ° C During the calcination, the support I was obtained.
  • a Y-type zeolite-containing alumina carrier I 100 cc of a Y-type zeolite-containing alumina carrier I was diluted with 60 cc of a T15 aqueous solution with pure water so as to match the water absorption, and impregnated at normal pressure at 70 ° C. After drying in a vacuum for 1 hour at 120 ° C., the product was dried in a drier for 3 hours and calcined at 500 ° C. for 4 hours to obtain a carrier (C 17).
  • Table 14 shows the physical properties of this catalyst 27.
  • Example 17 Further, the same procedure as in Example 17 was carried out, and the carrier B 11 The catalyst 28 was obtained by supporting ribene.
  • Table 14 shows the physical properties of this catalyst 28.
  • this feed oil was circulated in an up-flow type in which hydrogen was introduced from the lower part of the reaction tube together with hydrogen to perform hydrotreating.
  • SA Specific surface area
  • SA Specific surface area
  • Example 1 Catalyst 1 1 5 0
  • Example 2 Catalyst 2 1 5 1
  • Example 3 Catalyst 3 1 2 8 Comparative Example 1
  • Catalyst 4 1 0 0
  • Comparative Example 2 Catalyst 5 1 1 0
  • Comparative Example 3 Catalyst 6 1 0 5
  • Example catalyst 8 1 4.5 15.5 4.0 5.0 71.0 5
  • Example catalyst 9 1 4.5 15.4 4.1 4.8 71.2 6
  • Example catalyst 10 2 4.4 15.5 4.0 5.0 71.1 7
  • Example catalyst 11 3
  • Example catalyst 12 1 4.4 15.6 3.9 4.9 71.2 9
  • Example Catalyst 13 1 4.5 15.5 4.1 5.0 70.9 10
  • Comparative Example Catalyst 14 4.4 15.6 4.1 0 75.9 4 Comparative Example Catalyst 15 4.5 15.5 4.1 5.0 70.9 5
  • SA Specific surface area
  • SA Specific surface area
  • the hydrotreating catalyst of the present invention has further improved desulfurization activity, denitrification activity, and dearomatic activity as compared with conventional catalysts, and can be effectively used for hydrotreating hydrocarbon oils, especially gas oil.
  • the metal compound-supported refractory inorganic oxide carrier of the present invention has the metal uniformly present inside the carrier, and the X value measured by EPMA is 0.5 or more.
  • the treatment catalyst has a high desulfurization activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

明 細 書
炭化水素油の水素化処理触媒、 その担体及び炭化水素油の水素化処 理方法
技術分野
本発明は、 炭化水素油の水素化処理触媒及び炭化水素油の水素化処 理方法に関し、 特に灯軽油留分をはじめとする炭化水素油などの水素 化脱硫用触媒、 水素化脱窒素用触媒、 水素化脱ァロマ用触媒と して有 効な水素化処理触媒及び炭化水素油の水素化処理方法に関する。
更に、 本発明は金属化合物担持処理耐火性無機酸化物担体及びその 製造方法、 並びにその用途に関し、 さらに詳しくは主に触媒や吸着剤 などと して有用な金属化合物担持処理耐火性無機酸化物担体及びその 製造方法、 並びにその用途に関する。
背景技術
近年、 地球規模で環境破壊が極めて深刻な問題となっている。 特に、 石油類や石炭等の化石燃料の燃焼に伴って発生する窒素酸化物 (N O
X ) や硫黄酸化物 (S O x ) を大気中に放出すると、 これらが酸性雨 や酸性霧となって森林や湖沼等の環境を著しく破壊する。 なかでも、
S O Xが深刻であり、発生後の後処理によってある程度低減できる力 燃料油中の硫黄分を効率よく除去することも重要である。 以上のよ う に環境保護の観点から、 軽油の硫黄分の品質規制が強化される中、 脱 硫のより一層優れた活性を有する水素化処理触媒の開発が望まれてい る。
従来より、 軽油の水素化脱硫触媒と しては、 アルミナ等の耐火性無 機酸化物担体にコバルトとモリブデンを担持した触媒が用いられてい る。 その脱硫活性は活性金属であるモリブデンの状態に非常に左右さ れることが知られており、 モリブデンの担持状態を改善するため、 ァ ルミナ以外の担体や、 アルミナと他の酸化物を複合した担体が検討さ れている。 その中でチタユア成分が脱硫活性を向上させることは知ら れており、 チタンをアルミナに担持する方法、 アルミナとチタニアを 共沈させる方法がある。
従来より、 アルミナ等の耐火性無機酸化物担体にコバル ト、 ニッケ ル、 モリ ブデン、 タングステン等の活性金属を担持した触媒が用いら れている。 また、 それらの触媒の活性を向上させる目的で、 補助的な 金属成分と してチタンを使用する方法が提案されている (A p p l i e d C a t a l y s i s , 6 3 ( 1 9 9 0 ) 3 0 5 — 3 1 7 ; 特開 平 6 — 1 0 6 0 6 1号公報) 。 しかし、 これらの方法では、 チタンの 担持状態が最適ではなく、 触媒性能が十分に改良されているとは言い がたい。
従来より、 耐火性無機酸化物の成型体と して、 押し出し成型体、 球 状成型体、 ハニカム成形体などがあるが、 これら成型体を特に触媒や 吸着剤などと して用いる場合、 該成型体に活性成分を有する成分やそ の活性を促進する助触媒効果のある成分、または吸着を促進する成分、 さらには担体の性質を制御するための第三成分等を担持する方法が一 般的に採用されている。
上記において、 反応及び吸着を成型体の外表面だけでなく 、 成型体 の細孔内部まで使用することが非常に重要な因子となる系の場合、 反 応, 吸着に係わる成分を成型体内部まで均一に担持する技術が重要と なる。
しかしながら、 該成分と担体の相互作用が非常に強い場合、 該成分が 成型体の外表面のみに担持され、 細孔内部にまで均一に担持できない という問題が生じる。
具体的には、 耐火性無機酸化物担体に、 担体へ添加する金属化合物 を溶液と して含浸によ り担持する場合において、 従来では、 該金属化 合物と耐火性無機酸化物担体との相互作用が強い場合、 担体に強く吸 着されされること、または急激に加水分解反応等を生じることによ り、 成型体の外表面にのみに担持され、 細孔内部まで均一に担持できない という問題が生じることとなる。
したがって、 従来においては、 有効成分が耐火性無機酸化物担体の外 表面にのみしか担持されず、 反応に対する期待された効果を有効に発 揮できないだけでなく 、 さらに、 該成型体の外表面にのみ成分が偏積 すると、反応物質の細孔内への拡散を妨害するという問題もでてく る。 チタンをアルミナヘ担持する方法については、 ①四塩化チタン水溶 液を用いて含浸する方法、 ②チタニウムィソプロボキシドのイソプロ パノール溶液を用いて含浸する方法 (A p p l i e d C a t a l y s i s , 6 3 ( 1 9 9 0 ) 3 0 5 — 3 1 7 ) 、 および③飽和四塩化チ タンをガス状に誘導し熱によりアルミナへ化学蒸着させる方法 (特開 平 6 — 1 0 6 0 6 1号公報) などが検討されている。
上記のチタンをアルミナに担持する方法、 アルミナとチタ-ァを共 沈させる方法いずれの場合でも、 活性金属である周期律表第 6族及び 周期律表第 8〜 1 0族の金属を担持した後、 触媒体を 5 0 0 °C程度の 高温で焼成する過程を含んでおり、 チタニア上の活性金属の凝集を引 き起こす場合があり、 触媒活性の低下につながるという問題がある。 さらに、 ②のケースでは、 アルコールを使用するため、 プロセスの 中でアルコール回収工程が必要となり経済的に不利となる。 また、 ③ のケースでは、 通常の溶液を用いた含浸法と異なり、 ガスと して原料 を送り込み、 担体を一定の温度に制御したところへ分解担持させると いう方法で、 温度管理、 設備面の管理等、 複雑かつ製造設備面で困難 が生じると考えられる。 さらに、 担体上に塩素が担持されてしまうた め、 該耐火性無機酸化物担体を高温かつ還元雰囲気で使用すると塩化 水素が発生し装置腐食を引き起こす等の問題もある。
一方、 アルミナとチタニアを共沈させる方法については、 チタニア の添加量を 1 5質量%以上と大量でないとチタユアの効果は十分発揮 されず経済的に不利である。
しかしながら、 上記①②のケースでは、 アルミナ成型体の細孔内部 にまで均一な担持状態を得ることができず、 効果が十分に発揮されて いない。 また、 ③のケースでは、 通常の溶液を用いた含浸法と異なり、 ガスと して原料を送り込み、 担体を一定の温度に制御したところへ分 解担持させるという方法で、 温度管理、 設備面の管理等、 複雑かつ製 造設備面で困難が生じると考えられる。 さらに、 担体上に塩素が担持 されてしま うため、 該耐火性無機酸化物担体を高温かつ還元雰囲気で 使用すると塩化水素が発生し装置腐食を引き起こす等の問題もある。 本発明は、 上記観点からなされたもので、 脱硫活性、 脱窒素活性及 び脱ァロマ活性が改良された水素化処理触媒、 その触媒を使用する炭 化水素油の水素化処理方法及び金属が担体の内部まで均一に存在して なる金属化合物担持処理耐火性無機酸化物担体を提供することを目的 とするものである。
発明の開示
本発明者らは、 鋭意研究の結果、 水溶性の周期律表第 4族金属化合 物を含む溶液を耐火性無機酸化物に含浸し担持した担体に、 周期律表 第 6族金属化合物及び第 8〜 1 0族金属化合物をそれぞれ少なく とも 一種含む水溶液を含浸し担持した後、 3 0 0 °C以下で熱処理すること により上記本発明の目的を効果的に達成しうることを見出した。 特 に、 周期律表第 4族金属化合物、 特にチタンの担体への担持工程を特 定することにより上記本発明の目的を効果的に達成しうることを見出 した。 さらに、 耐火性無機酸化物担体に、 沸点又は分解温度が 1 5 0 °C以上の水溶性有機化合物を含有する水溶液を含浸して乾燥させ、 そ の後金属化合物の溶液を含浸することにより得られる、 該金属が担体 の内部まで均一に存在してなる金属化合物担持処理耐火性無機酸化物 担体が上記本発明の目的を効果的に達成しうることを見出した。 本発 明はかかる知見に基づいて完成したものである。
すなわち、 本発明の要旨は下記のとおりである。
1 . 水溶性の周期律表第 4族金属化合物を含む溶液を耐火性無機酸化 物に含浸し担持した担体に、 周期律表第 6族金属化合物及び第 8〜 1 0族金属化合物をそれぞれ少なく とも一種含む水溶液を含浸し担持し た後、 3 0 0 °C以下で熱処理してなる炭化水素油の水素化処理触媒。 2 . 周期律表第 4族金属化合物がチタン化合物である前記 1記載の炭 化水素油の水素化処理触媒。
3 . チタン化合物がチタンペルォキソヒ ドロキシカルボン酸塩である 前記 2記載の炭化水素油の水素化処理触媒。
4 . チタンペルォキソヒ ドロキシカルボン酸塩を含む水溶液を耐火性 無機酸化物に含浸し担持した担体に、 周期律表第 6族金属化合物及び 第 8〜 1 0族金属化合物をそれぞれ少なく とも一種含む水溶液を含浸 し担持してなる炭化水素油の水素化処理触媒。
5 . 耐火性無機酸化物がアルミナである前記 1〜 4のいずれかに記載 の炭化水素油の水素化処理触媒。
6 . チタンの担持量が、 酸化物基準で耐火性無機酸化物担体に対して :!〜 1 5質量%である前記 2〜 5のいずれかに記載の炭化水素油の水 素化処理触媒。
7 . 周期律表第 6族金属がモリブデンであり、 周期律第 8〜 1 0族金 属がニッケルである前記 1〜 6のいずれかに記載の炭化水素油の水素 化処理触媒。
8 . 周期律表第 6族金属化合物及び第 8〜 1 0族金属化合物とともに リ ン化合物を担持するものである前記 1 〜 7のいずれかに記載の炭化 水素油の水素化処理触媒。
9 . 前記 1〜 8のいずれかに記載の炭化水素油の水素化処理触媒を使 用することを特徴とする炭化水素油の水素化処理方法。
1 0 . 沸点又は分解温度が 1 5 0 °C以上の水溶性有機化合物を予め耐 火性無機酸化物担体に担持し、 次いで周期律表第 4族金属化合物を担 持し、 さらに周期律表第 6族金属化合物及び第 8〜 1 0族金属化合物 をそれぞれ少なく とも一種担持することを特徴とする水素化処理触媒 の製造方法。
1 1 . 水素化処理が水素化脱硫処理である前記 1 0記載の水素化処理 触媒の製造方法。
1 2 . 沸点又は分解温度が 1 5 0 °C以上の水溶性有機化合物とともに 周期律表第 4族金属化合物を耐火性無機酸化物担体に担持し、 次いで 周期律表第 6族金属化合物及び第 8〜 1 0族金属化合物をそれぞれ少 なく とも一種担持することを特徴とする水素化処理触媒の製造方法。
1 3 . 水素化処理が水素化脱窒素処理である前記 1 2記載の水素化処 理触媒の製造方法。
1 4 . 沸点又は分解温度が 1 5 0 °C以上の水溶性有機化合物とともに 周期律表第 6族金属化合物及ぴ第 8〜 1 0族金属化合物をそれぞれ少 なく とも一種耐火性無機酸化物担体に担持し、 次いで周期律表第 4族 金属化合物を担持することを特徴とする水素化処理触媒の製造方法。
1 5 . 水素化処理が水素化脱ァロマ処理である前記 1 4記載の水素化 処理触媒の製造方法。 .
1 6 . 周期律表第 6族金属化合物及び第 8〜 1 0族金属化合物ととも にリ ン化合物を担持するものである前記 1 0〜 1 5のいずれかに記載 の水素化処理触媒の製造方法。
1 7 . 周期律第 4族金属がチタン又はジルコニウムである前記 1 0〜 1 6のいずれかに記載の水素化処理触媒の製造方法。
1 8 . 周期律第 6族金属がモリ ブデン又はタングステンであり、 周期 律表第 8〜 1 0族金属がコバルト又は二ッケルである前記 1 0〜 1 7 のいずれかに記載の水素化処理触媒の製造方法。
1 9 . 耐火性無機酸化物担体がアルミナである前記 1 0〜 1 8のいず れかに記載の水素化処理触媒の製造方法。
2 0 . 沸点又は分解温度が 1 5 0 °C以上である水溶性有機化合物が、 ジエチレングリ コー/レ、 ト リエチレングリ コーノレ、 ポリエチレングリ コール及ぴプタンジオールから選ばれる少なく とも一種である前記 1 0〜 1 9のいずれかに記載の水素化処理触媒の製造方法。
2 1 . 前記 1 0〜 2 0のいずれかに記載の製造方法で製造された水素 化処理触媒。
2 2 . 前記 2 1記載の水素化処理触媒を使用することを特徴とする炭 化水素油の水素化処理方法。
2 3 . 金属化合物を用いて該金属を担持した耐火性無機酸化物担体で あって、 該金属が担体の内部まで均一に存在してなる金属化合物担持 処理耐火性無機酸化物担体。
2 4 . 金属化合物を用いて該金属を担持した耐火性無機酸化物担体で あって、 担体の断面をエレク トロン ' プローブ ' マイクロ ' アナリシ ス (E P M A ) を用いて一方向に該金属原子について線分析測定をし て得られる断面幅方向距離 ( t : 一方の担体表面からの距離) と X線 強度 ( I ) の関係を示す図において、 上記 I ( t ) についての tがー 方の担体表面から他方の担体表面の間における積分値 Fと、 上記 X線 強度を示す曲線の極小かつ最小値における該曲線の接線の X線強度 I m ( t ) についての上記の間における積分値 (F m ) との比 X ( F m / ¥ ) が 0 . 5以上である金属化合物担持処理耐火性無機酸化物担体。 2 5 . 耐火性無機酸化物担体が Ί 一アルミナである前記 2 3又は 2 4 に記載の金属化合物担持処理耐火性無機酸化物担体。
2 6 . 金属化合物が金属アルコキシドである前記 2 3〜 2 5のいずれ かに記載の金属化合物担持処理耐火性無機酸化物担体。
2 7 . 金属が周期律表第 4族金属である前記 2 3〜 2 6のいずかに記 載の金属化合物担持処理耐火性無機酸化物担体。
2 8 . 周期律表第 4族金属がチタンである前記 2 7記載の金属化合物 担持処理耐火性無機酸化物担体。
2 9 . 耐火性無機酸化物担体に、 沸点又は分解温度が 1 5 0 °C以上の 水溶性有機化合物を含有する水溶液を含浸して乾燥させ、 その後金属 化合物の溶液を含浸することを特徴とする前記 2 3〜 2 8のいずれか に記載の金属化合物処理耐火性無機酸化物担体の製造方法。
3 0 . 耐火性無機酸化物担体に、 沸点又は分解温度が 1 5 0 °C以上の 水溶性有機化合物を含有する水溶液を含浸して乾燥させ、 その後金属 化合物と しての金属アルコキシ ドのアルコール溶液を含浸することを 特徴とする前記 2 6〜 2 8のいずれかに記載の金属化合物担持処理耐 火性無機酸化物担体の製造方法。
3 1 . 前記 2 3〜 2 8のいずれかに記載の金属化合物担持処理耐火性 無機酸化物担体に、 周期律表第 6族の金属の少なく とも一種及び周期 律表第 8〜 1 0族の金属から選ばれる少なく とも一種を担持してなる 水素化処理触媒。
3 2 . 前記 2 3〜 2 8のいずれかに記載の金属化合物担持処理耐火性 無機酸化物担体に、 周期律表第 6族の金属の少なく とも一種及び周期 律表第 8〜 1 0族の金属から選ばれる少なく とも一種を担持した後、
3 0 0 °C以下の温度で熱処理してなる水素化処理触媒。
3 3 . 前記 3 1又は 3 2に記載の水素化処理触媒を用いた炭化水素油 の水素化脱硫方法。
図面の簡単な説明
図 1は E P M A装置を用いて金属原子について線分析した場合の、 得られる断面幅方向距離 ( t ) と X線強度 ( I ) の関係を表す図であ る。
図 2は E P M A測定に用いる金属化合物担持処理耐火性無機酸化物 担体の一例を斜視図である。 矢印は線分析の方向を示す。
発明を実施するための最良の形態
以下に本発明について詳細に説明する。
本願発明は、 水溶性の周期律表第 4族金属化合物を含む溶液を耐火 性無機酸化物に含浸し担持した担体に、 周期律表第 6族金属化合物及 び第 8〜 1 0族金属化合物をそれぞれ少なく とも一種含む水溶液を含 浸し担持した後、 3 0 0 °C以下で熱処理してなる炭化水素油の水素化 処理触媒である。
本発明において、 耐火性無機酸化物と して、 アルミナ, シリカ, シ リカ 'アルミナ, マグネシア, 酸化亜鉛, 結晶性アルミノシリケー ト, 粘土鉱物又はそれらの混合物が使用される。 中でも、 アルミナ、 特に γ —アルミナが好ましい。 その平均細孔径は 5 0〜 1 5 O Aの範囲の ものが好ましく、 6 0〜 1 4 O Aの範囲のものがより好ましい。 形状 については、 粉体でもよく、 円柱, 三つ葉, 四つ葉等の成形体でもよ レヽ
次に、 耐火性無機酸化物に担持される周期律表第 4族の金属と して チタン、 ジルコニウムを挙げることができ、 中でもチタンが好ましい。 水溶性の周期律表第 4族金属の化合物と して、 硫酸チタン, 塩化チタ ン, 過酸化チタン、 シユウ酸チタン, 酢酸チタン, ォキシ塩化ジルコ ユウム, 硫酸ジルコニウム、 硝酸ジルコニウム、 酢酸ジルコニウム、 炭酸ジルコ二ゥムアンモニゥム等の水溶性チタン、 水溶性ジルコ二ゥ ムを好適に挙げることができる。
水溶性の周期律第 4族金属化合物の担持については、 溶液を担体が 吸水する量に調整して含浸する、 所謂ポアフィ リング法、 または大過 剰の溶液に浸漬する方法も用いることができ、 常圧又は減圧で行う こ とができる。
その場合、 含浸溶液と しては、 水または塩酸水溶液、 硫酸水溶液な どにより金属化合物を溶解させ、 安定にしたものを使用すればよい。 また、 特にチタンの場合、 水溶性のチタン化合物と して、 チタンペル ォキソヒ ドロキシカルボン酸やそのァンモニゥム塩を使用するとチタ ンの添加の効果が大きく好ましレ、。そのヒ ドロキシカルボン酸と して、 クェン酸, リ ンゴ酸, 乳酸, 酒石酸を用いることができる。
上記周期律表第 4族金属の担持量は、 酸化物基準で、 耐火性無機酸 化物担体に対して、 好ましくは 0 . 5〜 3 0質量% (より好ましく は 1〜 1 5質量%) である。 担持量が少なすぎると、 その金属添加の効 果が十分発揮されない場合があり、 担持量が多すぎると、 担持する金 属溶液が高濃度となって不安定となり、 該金属の担体上への偏積も し くは凝集が生じる場合があり好ましく ない。
周期律表第 4族金属化合物の含浸終了後、 水分を除去するために、 常圧または減圧で、 好ましくは 5 0〜 1 5 0 °C (より好ましく は 1 0 0〜: 1 2 0 °C) の温度で、 0 . 5〜: 1 0 0時間乾燥させる。 さらに、 アルミナ担体との結合性を高めるために、必要によ り焼成を実施する。 焼成温度は、 好ましくは 4 0 0〜 6 5 0 °C (さらに好ましくは 4 5 0 〜 6 0 0 °C ) で、 焼成時間は、 通常 0 . 5 〜 : 1 0 0時間である。
また、 陰イオンと して硫酸根や塩素根を含む場合、 その陰イオンを 5質量%以下にすることが、 続いて担持する活性金属の分散性の低下 による触媒の活性低下を抑制するために望ましい。 そのためには、 焼 成の際空気の他に水蒸気を同伴させたり、 乾燥の前又は焼成後に、水、 又はアンモニアや炭酸アンモニアを添加した水で洗浄すればよい。 な お、 焼成後に洗浄を行った場合、 再度乾燥を行う必要がある。
最後に、 活性金属化合物と して周期律表第 6族化合物及び第 8〜 1 0族金属化合物をそれぞれ少なく とも一種及び、 必要により リン化合 物を担持する。
周期律表第 6族金属と して、 モリ ブデン, タングステンが好適に挙 げられ、 特にモリブデンが好ましい。 モリブデン化合物と しては、 三 酸化モリブデン, パラモリブデン酸アンモニゥム等が使用され、 タン グステン化合物と しては、 三酸化タングステン, タングステン酸アン モニゥム等が使用される。 その担持量は酸化物基準、 触媒体基準で好 ましくは 4〜 4 0質量。 /0、 さらに好ましくは 8〜 3 5質量%である。 周期律表第 8〜 1 0族の金属と して、 通常、 コバル ト又はニッケル が挙げられる。 ニッケル化合物と しては、 硝酸ニッケル, 炭酸ニッケ ル等が使用され、 コバル ト化合物と しては、 硝酸コバル ト, 炭酸コバ ルト等が使用される。 その担持量は酸化物基準、 触媒体基準で好まし くは 1〜 1 2質量%、 さらに好ましく は 2〜 1 0質量%である。
リ ン化合物と しては、 五酸化リ ン、 正リ ン酸等が使用される。 その 担持量は酸化物基準、 触媒体基準で 0 . 5〜 8質量%、 好ましく は 1 〜 6質量%である。
上記の活性金属化合物を含浸法により担持する。 以上の周期律表第 6族金属化合物、 第 8〜 1 0族金属化合物、 リ ン化合物の 3グループ に属する金属化合物は別々に含浸してもよいが、 同時に行うのが効率 的である。 上記の金属化合物を、 周期律表第 6族金属は 0 . 7 〜 7 . 0モル リ ッ トル、 周期律表第 8 〜 1 0族の金属は 0 . 3 〜 3 . 6モ ル リ ッ トル、 リ ン化合物は 0 〜 2 . 2モル Zリ ッ トルの割合で純水 に溶解させ、 担体に吸水率と等量になるように調整後含浸する。 含浸 時の p Hは含浸液の安定性を考慮して一般には酸性領域では 1 〜 4 、 好ましく は 1 . 5 〜 3 . 5である。 また、 アルカリ性領域では 9 〜 1 2、 好ましく は 1 0 〜 1 1である。 この p Hの調整方法は特に限定さ れないが、 硝酸, 塩酸, 硫酸等の無機酸、 リ ンゴ酸, クェン酸, ェチ レンジァミン 4酢酸等の有機酸、 アンモニアなどを使用して行うこと ができる。
また、 特にリン化合物で安定化させた含浸液には水溶性有機化合物 を添加することが好ましい。
その水溶性有機化合物と して、 1 , 3—ブタンジオール、 1 , 4 一 ブタンジオール、 ブタン ト リオール、 1 , 2—プロパンジオール、 1 , 2 —ペンタンジオール等のジォーノレ類 ; 5 —メチル一 1 — へキサノー ノレ、 イ ソア ミルアルコール ( 3 —メチル一 1 —ブタノ一ル) 、 s —ィ ソアミノレアルコーノレ ( 3 —メチル一 2—ブタノール) 、 イ ソゥンデシ レンァノレコーノレ、 イ ソォクタノーノレ、 イ ソペンタノ一ル、 イ ソゲラン オール、 イ ソへキシルァノレコール、 2 , 4 —ジメチル一 1 一ペンタ ノ —ル、 2 , 4 , 4 — ト リメチルー 1 —ペンタノール等の炭素数 4以上 のイ ソ体のァノレコール ; 2 —へキサノール、 3 —へキサノール等の炭 素数 5以上で末端の炭素以外にヒ ドロキシル基が結合しているアルコ ール ; ポリエチレングリ コール、 ポリ ォキシェチレンフェニルェ一テ ル、 ポリォキシエチレンォクチルフエ二ルエーテル等のエーテル基含 有水溶性高分子 ; ポリ ビュルアルコール等の水溶性高分子 ; サッカロ ース、 グルコース等の各種糖類 ; メチルセルロース、 水溶性でんぷん 等の水溶性多糖類もしく しはその誘導体などを挙げることができ、 単 独でも二種類以上を混合して使用することもできる。
上記の水溶性有機化合物の添加量は、 担体の質量に対して、 好まし く は、 2〜 2 0質量% (より好ましく は 3〜 1 5質量。/。) とすればよ レヽ o
含浸後、 触媒の活性金属を担体に安定化させるために熱処理するが、 その温度は 3 0 0 °C以下で、 好ましくは 7 0〜 3 0 0 °Cである。 8 0 〜 1 5 0 °Cの範囲が特に好ましい。 熱処理温度が高すぎると、 担持成 分の凝集が生じ十分な活性を得ることができず、 低すぎると、 担持成 分と担体と十分な結合を持つことができず十分な活性を得ることがで きない場合がある。 上記の熱処理は空気中で行う もので、 通常 3〜 1 6時間である。
なお、 耐火性無機酸化物に、 チタン化合物と して、 チタンペルォキ ソヒ ドロキシカルボン酸やそのアンモニゥム塩を担持している場合に は、 上記の熱処理を 3 0 0 °C以上で行っても差し支えない。
上記で得られた触媒の平均細孔径は通常 4 0〜 1 4 0 A、 好ましく は 6 0〜 1 3 0 Aであり、 比表面積は通常 1 2 0〜 4 0 0 m2/ g、 好ましくは 1 4 0〜 3 5 0 m gである。 また、 全細孔容量は通常 0. 2〜: I . O c cZg、 好ましくは 0. 25〜0. 9 c cZgであ る。
なお、 上記の平均細孔径と全細孔容量は水銀圧入法で測定し、 比表 面積は窒素吸着法で測定したものである。
更なる、 発明は、 上記の水素化触媒を使用した炭化水素油の水素化 処理方法である。
水素化処理を行う際には、 予め安定化処理と して予備硫化を行う こ とが望ましい。 この予備硫化処理の条件は特に限定されないが、 通常、 予備硫化剤と して、 硫化水素, 二硫化炭素, チォフェン, ジメチルジ スルフィ ド等を挙げることができ、 処理温度 2 0 0〜 4 0 0 °C、 処理 圧力常圧〜 3 O M P aの範囲で行われる。
水素化処理条件については、 原料油の種類や目的により異なるが、 一般的には反応温度 2 0 0〜 5 5 0 °C (好ましく は 2 2 0〜 5 0 0 °C ) 、 水素分圧 1〜 3 0 M P a (好ましく は 2〜 2 5 MP a ) の範囲で 行われる。
反応形式は特に限定されないが、 通常は、 固定床, 移動床, 沸騰床, 懸濁床等の種々のプロセスから選択できるが、 固定床が好ましい。 ま た、 原料油の流通法については、 ダウンフロー、 アップフローの両形 式を採用することができる。 '
固定床の場合の温度、 圧力以外の.反応条件と しては、 液空間速度 ( L H S V) は 0. 0 5〜:! O h r— 1 (好ましくは 0. :!〜 S h r -1) 水素 原料油比は 1 5 0〜 2, 5 0 0 N mV k 1 (好ましくは 2 0 0〜 2, O O O NmS/Z k l ) である。
処理する炭化水素油と して、 全ての石油留分を用いることができる が、 具体的には灯油, 軽質軽油、 重質軽油、 分解軽油等から常圧残油, 減圧残油, 脱蠟減圧残油, ァスフアルテン油, タールサン ド油まで巾 広く挙げることができるが、 軽油留分の硫黄分を 5 0 p p m以下にす るのに本発明は特に有効である。
さらに、 本発明は、 沸点又は分解温度が 1 5 0 °C以上の水溶性有機 化合物を予め耐火性無機酸化物担体に担持し、 次いで周期律表第 4族 金属化合物を担持し、 さらに周期律表第 6族金属化合物、 第 8〜 1 0 族の金属化合物をそれぞれ少なく とも一種及び、 必要により リン化合 物を担持することを特徴とする水素化処理触媒の製造方法である。 本発明において、 耐火性無機酸化物担体と して、 アルミナ, シリカ, シリカ ' アルミナ, マグネシア, ジルコニァ, チタニア, 酸化亜鉛, 結晶性アルミノシリケー ト, 粘土鉱物又はそれらの混合物が使用され る。 中でもアルミナが好ましい。 また、 その平均細孔径は 7 0〜 1 5 O Aの範囲のものが好ましく、 8 0〜 1 4 O Aの範囲のものがより好 ましい。 形状については、 粉体でもよく 、 円柱, 三つ葉, 四つ葉等の 成形体でもよい。
まず最初に、 耐火性無機酸化物担体に沸点又は分解温度が 1 5 0 °C 以上の水溶性有機化合物 (以下、 単に水溶性有機化合物という。 ) を 担持する。 沸点又は分解温度が 1 5 0 °C未満であると、 触媒調製時に 蒸発又は分解してしまい、 その効果がなくなるので好ましくない。 ま た、 水溶性でないと、 その効果が認められず好ましくない。
その水溶性有機化合物と して、 例えば、 分子量 1 0 0以上で、 かつ 水酸基及び Z又はエーテル結合を有する水溶性有機化合物を挙げるこ とができ、 具体的には、 1, 3—ブタンジオール、 1, 4—ブタンジ ォ一/レ、 ブタン トリオ一ノレ、 1, 2—プロノヽ。ンジォ一ノレ、 1, 2 —ぺ ンタンジオール等の沸点 1 5 0 °C以上の水溶性アルコール類 ; 5 —メ チノレー 1 _へキサノーノレ、 イソア ミ ノレアノレコール ( 3 —メチノレ一 1 一 ブタノール) 、 s —イソア ミ ノレァノレコール ( 3—メチル _ 2—ブタノ 一ノレ) 、 イソゥンデシレンァノレコール、 イソォクタノーノレ、 イ ソペン タノール、 イ ソゲランオール、 イ ソへキシルアルコ一ノレ、 2, 4 —ジ メチル一 1 _ペンタノール、 2, 4, 4 — ト リメチルー 1 —ペンタノ —ノレ等の炭素数 4以上のィソ体のアルコ一ル類 ; 2 _へキサノーノレ、 3一へキサノール等の炭素数 5以上で末端の炭素以外にヒ ドロキシル 基が結合しているアルコール類 ; ポリエチレングリ コール、 トリェチ レングリ コール、 ジエチレングリ コー Λ^、 ポリオキシエチレンフエ - ノレエーテノレ、 ポリオキシエチレンォクチ/レフェニノレエーテノレ等のエー テル基含有水溶性化合物 ; ポリ ビュルアルコール等の水溶性高分子 ; サッカロース、 クルコース等の各種糖類 ; メチルセルロース、 水溶性 でんぷん等の水溶性多糖類もしく しはその誘導体などを挙げることが でき、 単独でも二種類以上を混合して使用することもできる。
予め水溶性有機化合物を担持させることによって、 周期律表第 4族 金属化合物を担持する際に、 その金属と担体との反応が抑制され、 周 期律表第 4族金属化合物が高分散になり、 最終的に高分散化した周期 律表第 4族金属酸化物に活性金属が担持され高い脱硫活性を有する触 媒となる。
上記の水溶性有機化合物の担持量は、 担体の質量に対して、 好まし くは 3〜 1 5質量% (より好ましくは 5〜 1 0質量。/。) とする。 水溶 性有機化合物が少なすぎると、 効果は得られない場合があり、 また多 すぎると、 量に見合う効果は得られず、 経済的に不利になる場合があ る。
水溶性有機化合物の担持は水溶液にして通常含浸法、 所謂ポアフィ リ ング法で行い、 常圧又は減圧で行うことができる。
水溶性有機化合物水溶液を含浸後、 常圧または減圧で、 好ましくは 5 0〜: 1 5 0 °C (よ り好ましくは 1 0 0〜 1 3 0 °C) の温度で、 0 . 3 〜 1 0 0時間乾燥させる。
次いで、 後から担持する活性金属を高分散化させるために、 周期律 表第 4族金属化合物を担持する。 その金属と しては、 チタン、 ジルコ 二ゥムが好ましい。
その金属の化合物と しては、 チタンイ ソプロピレート, チタンエ ト キシド, チタン一 2—ェチルー 1 —へキサノラー ト, ェチルァセ トァ セテートチタン, テ トラー n—プトキシチタン, テ トラメ トキシチタ ン, ジルコニウムァセチルァセ トナート, ァセチルアセ トント リブ ト キシジルコニウム, ジルコニウムブトキシド等のアルコキシド類、 他 に硫酸チタン, 四塩化チタン, 水酸化チタン, 硫酸ジルコニウム, 塩 化ジルコニウム, ォキシ塩化ジルコニウム, ォキシ硫酸ジルコニウム, 水酸化ジルコニウム、 硫酸ジルコニウム、 硝酸ジルコニウム、 酢酸ジ ルコニゥム、 炭酸ジルコ二ゥムアンモニゥム等を挙げることができる が、 アルコキシ ド類、 硫酸塩、 塩化物が好ましい。
上記の周期律第 4族金属化合物の担持量は、 酸化物基準、 触媒体基 準で、 0 . 5〜 3 0質量。 /0、 好ましくは 1〜 2 0質量%、 特に好まし く は 1〜 1 5質量%とする。 量が少なすぎると、 効果は得られない場 合があり、 また多すぎると、 担持する際の水溶液の粘度が高く なりす ぎて担体内部まで浸漬できなく なり効果が得られない場合がある。 周期律第 4族金属化合物の担持については、 アルコキシド類の場合 はアルコール溶液で、 それ以外の化合物は水溶液で、 通常含浸法、 所 謂ポアフィ リ ング法で行い、 常圧又は減圧で行うことができる。
上記アルコールと しては、 プロノヽ。ノ一ノレ, ブタノール, エタノーノレ, メタノ一ル等を使用することができる。
なお、 上記周期律表第 4族金属化合物の含浸時には、 その加水分解や 凝集を防止するために、 安定化剤を含浸液に添加すると有効で.ある。 その安定化剤と しては、 モノエタノールァミン, ジエタノールアミ ン, ト リエタノールァミン等のアミン類、 ブタンジオール, ブタン ト リオ一ノレ, プロパンジオール, 5 _メチル _ 1 _へキサノーノレ, イ ソ ア ミ ノレアルコール ( 3 —メチノレ _ 1 ーブタノ一ノレ) , s —イソア ミ ノレ ァノレコール ( 3—メチル _ 2—ブタノール) , イソゥンデシレンァノレ コール, イソォクタノール, イソペンタノール, イソゲランオール, イソへキシノレアルコ一ノレ, 2 , 4一ジメチノレ一ペンタノ一ノレ, 2 , 4 , 4 — ト リメチル _ 1 —ペンタノール等のアルコール類、 塩酸, 硫酸, 酢酸, クェン酸, リンゴ酸等の酸類を挙げることができ、 その量は通 常周期律表第 4族金属化合物 1モルに対して 0 . 1 〜 1 0モルである。 周期律表第 4族金属化合物の含浸終了後、 常圧または減圧で、 好ま しくは 5 0〜 6 0 0 °C (より好ましくは 1 0 0〜 5 5 0 °C) の温度で、 0 . 5〜 1 0 0時間乾燥させる。
その後、 好ましくは 5 0〜 7 5 0 °C (さらに好ましくは 1 0 0〜 6
5 0 °C) の温度で、 0 . 5〜 1 0 0時間焼成する。
また、 この際硫酸根や塩素を除去するために洗浄することも有効であ る。
最後に、 活性金属化合物と して周期律表第 6族金属化合物、 第 8〜 1 0族金属化合物をそれぞれ少なく とも一種及び、 必要により リン化 合物を担持する。
周期律表第 6族金属と して、 モリブデン, タングステンが好適に挙 げられ、 特にモリブデンが好ましい。 モリブデン化合物と しては、 三 酸 ίヒモリブデン, パラモリブデン酸アンモニゥム等が使用され、 タン グステン化合物と しては、 三酸化タングステン, タングステン酸アン モニゥム等が使用される。 その担持量は酸化物基準、 触媒体基準で 4 〜 4 0質量%、 好ましくは 8〜 3 5質量。 /0、 さらに好ましくは 8〜 3 0質量。 /0である。
周期律表第 8〜 1 0族の金属と して、 通常、 コバルト又はニッケル が挙げられる。 ニッケル化合物と しては、 硝酸ニッケル, 塩基性炭酸 ニッケル等が使用され、 コバルト化合物と しては、 硝酸コバル ト, 塩 基性炭酸コバルト等が使用される。 その担持量は酸化物基準、 触媒体 基準で好ましくは 1〜 1 2質量。 /0、 さらに好ましく は 2〜 1 0質量% である。 リ ン化合物と しては、 五酸化リ ン、 正リ ン酸等が使用される。 その 担持量は酸化物基準、 触媒体基準で 0. 5〜 8質量%、 好ましく は 1 〜 6質量。 /0である。
上記の活性金属化合物の担持法は、 含浸法が好ましい。 以上の周期 律表第 6族金属化合物、 第 8〜 1 0族金属化合物、 リン化合物の 3グ ループに属する金属化合物は別々に含浸してもよいが、 同時に行うの が効率的である。 通常、 純水に溶解させ、 担体の吸水率に見合う よ う に調整後、 含浸する。 含浸時の p Hは含浸液の安定性を考慮して一般 には酸性領域では 1〜 4、 好ましくは 1. 5〜 3. 5である。 また、 アルカリ性領域では 9〜 1 2、 好ましく は 1 0〜 1 1である。 この p Hの調整方法は特に限定されないが、 硝酸, 塩酸, 硫酸等の無機酸、 リ ンゴ酸, クェン酸, エチレンジァミ ン 4酢酸等の有機酸、 アンモ- ァなどを使用して行う ことができる。
また、 以上の活性金属の担持の際も、 前記の水溶性有機化合物を同時 に用いてもよい。
含浸後焼成するが、 好ましく は 5 0〜 4 0 0 °C、 さらに好ましくは 1 0 0〜 3 0 0 °C、 特に好ましく は 1 2 0〜 2 5 0 °Cの範囲で、 0. 5〜 1 0 0時間行う。 焼成温度が低すぎると、 担持成分と担体と十分 な結合を持つことができない場合があり、 高すぎると、 担持成分の凝 集が起こり易く なる。
この発明の方法で製造された水素化処理触媒は脱硫触媒と して好適で ある。
水素化処理触媒の製造方法に関する他の発明は、 沸点又は分解温度 が 1 5 0°C以上の水溶性有機化合物と ともに周期律表第 4族金属化合 物を耐火性無機酸化物担体に担持し、 次いで周期律表第 6族金属化合 物、 第 8〜 1 0族金属化合物をそれぞれ少なく とも一種及び、 必要に より リン化合物を担持することを特徴とする水素化処理触媒の製造方 法である。
含浸の条件等は前記発明 (沸点又は分解温度が 1 5 0°C以上の水溶 性有機化合物を予め耐火性無機酸化物担体に担持し、 次いで周期律表 第 4族金属化合物を担持し、 さらに周期律表第 6族金属化合物、 第 8 〜 1 0族の金属化合物をそれぞれ少なく とも一種及び、 必要により リ ン化合物を担持することを特徴とする水素化処理触媒の製造方法) と 同様である。 なお、 水溶性有機化合物と周期律表第 4族金属化合物の 同時含浸後の乾燥 · 焼成条件は、 前記発明における周期律表第 4族金 属化合物含浸後の場合と同様である。 即ち常圧または減圧で、 好まし くは 5 0〜 6 0 0 °C (より好ましくは 1 0 0〜 5 5 0 °C) の温度で、 0. 5〜; I 0 0時間乾燥させる。
その後、 好ましく は 5 0〜 7 5 0 °C (さらに好ましくは 1 0 0〜 6 5 0 °C) の温度で、 0. 5〜 : 1 0 0時間焼成する。
また、 最後の活性金属化合物の含浸後の焼成条件は前記発明と同様で ある。 即ち、 好ましく は 5 0〜 4 0 0°C、 さらに好ましくは 1 0 0〜 3 0 0 °C、 特に好ましくは 1 2 0〜 2 5 0 °Cの範囲で、 0. 5〜: 1 0 0時間行う。 なお、 以上の活性金属の担持の際も、 前記の水溶性化合 物を同時に用いてもよい。 この方法で製造された水素化処理触媒は脱 窒素触媒と して好適である。
水素化処理触媒の製造方法に関する発明は、 沸点又は分解温度が 1 5 0°C以上の水溶性有機化合物とともに周期律表第 6族金属化合物、 第 8〜 1 0族金属化合物をそれぞれ少なく とも一種及び、 必要によ り リン化合物を耐火性無機酸化物担体に担持し、 次いで周期律表第 4族 金属化合物を担持することを特徴とする水素化処理触媒の製造方法で める。 含浸の条件等は前記発明と同様である。 しかし、 乾燥 ·焼成条件は 異なる。 即ち、 水溶性有機化合物と活性金属化合物の同時含浸後は、 好ましくは 5 0〜: 1 5 0 °C (より好ましくは 1 0 0〜 1 3 0 °C) の温 度で、 0. 5〜 1 0 0時間乾燥させるだけでよい。 また、 最後の周期 律表第 4族金属化合物含浸後は、 前記発明の活性金属含浸後の焼成と 同じ条件である。 即ち、 好ましくは 5 0〜 4 0 0 °C、 さらに好ましく は 1 0 0〜 3 0 0 °C、 特に好ましくは 1 2 0〜 2 5 0 °Cの範囲で、 0. 5〜 1 0 0時間行う。 この方法で製造された水素化処理触媒は脱ァロ マ触媒と して好適である。 以上の三つの発明で得られた触媒の平均細 孔径は通常 5 0〜: 1 5 θ Α、 好ましくは 8 0〜: 1 2 0 Aであり、 比表 面積は通常 1 4 0〜 4 0 0 m g、 好ましくは 1 6 0〜 3 5 0 m gである。 また、 全細孔容量は通常 0. 2〜 1 . O c c Z g、 好まし くは 0. 2 5 0. 8 c c / gである。
水素化処理を行う際には、 予め安定化処理と して予備硫化を行う こ とが望ましい。 この予備硫化処理の条件は特に限定されないが、 通常、 予備硫化剤と して、 硫化水素, 二硫化炭素, チォフェン, ジメチルジ スルフィ ド等を挙げることができ、 処理温度 2 0 0〜 4 0 0 °C、 処理 圧力常圧〜 3 O MP aの範囲で行われる。
水素化処理条件については、 原料油の種類や目的により異なるが、 一般的には反応温度 2 0 0〜 5 5 0 °C (好ましくは 2 2 0〜 5 0 0 °C ) 、 水素分圧 l〜 3 0 MP a (好ましく は 2〜 2 5 MP a ) の範囲で 行われる。
反応形式は特に限定されないが、 通常は、 固定床, 移動床, 沸騰床, 懸濁床等の種々のプロセスから選択できるが、 固定床が好ましい。 ま た、 原料油の流通法については、 ダウンフロー、 アップフローの両形 式を採用することができる。 固定床の場合の温度、 圧力以外の反応条件と しては、 液空間速度 (
L H S V) は 0. 0 5〜:! O h r -1 (好ましくは 0. 1〜 5 h r -リ 、 水素/原料油比は 1 5 0〜 2, 5 0 0 Nm3/ k 1 (好ましくは 2 0 0〜2, 0 0 0 Nm3/ k 1 ) である。
処理する炭化水素油と して、 全ての石油留分を用いることができる が、 具体的には灯油, 軽質軽油、 重質軽油、 分解軽油等から常圧残油, 減圧残油, 脱蠟減圧残油, ァスフアルテン油, タールサンド油まで巾 広く挙げることができる。
本発明の金属化合物担持処理耐火性無機酸化物担体 (以下、 単に担 体ともいう。 ) は、 金属化合物を用いて該金属を担持した耐火性無機 酸化物担体であって、 該金属が担体の内部まで均一に存在しているも のである。 それは、 各種測定手段で証明できるが、 本発明においては、 E PMAを用いて行う ことにする。
図 1はこのような発明の金属化合物担持処理耐火性無機酸化物担体 における金属量分布を示す図であり、 E PM Aを用いて金属原子につ いて線分析測定した場合の、 得られる断面幅方向距離 ( t ) と X線強 度 ( I ) の関係を表す図である。 また、 図 2は上記 E PMA測定に用 いる金属化合物担持処理耐火性無機酸化物担体の一例を示す斜視図で ある。 矢印は線分析の方向を示す。
以下に、 図 1, 図 2を用いて本発明を更に詳細に説明する。 本発明 の金属化合物担持処理耐火性無機酸化物担体が例えば図 2におけるよ うな円柱形状を有するものである場合、 底面に平行な切断面に対し図 に示すような直線方向に E PMAの線分析測定を行う。 図 1 には、 こ め結果得られる、 横軸を断面方向距離 ( t : 一方の担体表面からの距 離) と し、 縦軸を金属原子濃度を示す X線強度 ( I ) と し、 その関係 を示す図が示されている。 本発明の担体は、 tがー方の担体表面 ( t = 0 ) から他方の担体表面 ( t = t。) の間における上記 I の t につ いての積分値 (F ) と、 上記 X線強度を示す曲線の極小かつ最小値に おける接線の X線強度 I m ( t ) について上記の間 ( t ; 0〜!;。) における積分値 (F m ) との比 X ( F m / F ) が 0 . 5以上のもので ある。 上記 X値が 0 . 5より小さい場合には、 金属化合物の担持状態 が均一でないために、 この担体に活性金属を担持した触媒の脱硫活性 向上に対して十分な効果を得ることができない。このよ うな観点から、 本発明においては、 上記 X値は 0 . 5以上であることが必須である。 また、 本発明における上記の線分析測定はいかなる形状のものにも適 用でき、 上記のような X値を有するものであれば本発明の特有の効果 を奏することができるものである。
次に、 本発明の金属化合物担持処理耐火性無機酸化物担体の製造法 について説明する。 本発明の担体は、 耐火性無機酸化物担体に、 沸点 又は分解温度が 1 5 0 °C以上の水溶性有機化合物を含有する水溶液を 含浸して乾燥させ、 その後金属化合物の溶液を含浸することによって 製造される。
まず、 耐火性無機酸化物担体と して、 アルミナ, シリカ, シリカ ' アルミナ, マグネシア, ジルコニァ, チタニア, 酸化亜鉛, 結晶性ァ ルミノシリケ一ト, 粘土鉱物又はそれらの混合物が使用される。 中で も、 γ —アルミナが好ましい。 なお、 炭化水素の水素化分解に使用す る場合には、 y —アルミナと結晶性アルミノシリケート混合物が好ま しい。
上記の金属化合物の金属と して周期律表第 4族の金属が好ましく、 中でも、 チタン、 ジルコニウムが特に好ましい。
金属化合物と して、 具体的には、 硫酸チタン, 塩化チタン, 過酸化チ タン、 シユウ酸チタン, 酢酸チタン, ォキシ塩化ジルコニウム, 硫酸 ジルコニウム、 硝酸ジルコニウム、 酢酸ジルコニウム、 炭酸ジルコ二 ゥムアンモニゥムを挙げることができる。
また、 金属アルコキシドも好適に使用でき、 具体的には、 テ トラ一 n —イ ソプロポキシチタン, ェチルァセ トアセテー トチタン, テ トラ 一 n —ブトキシチタン, テ トラメ トキシチタン, ト リイソプロポキシ アルミニウム, ト リー s —ブトキシアルミニウム, モノ _ s —ブトキ シージイソプロポキシアルミニウム, ァセチルァセ トントリブトキシ ジルコニウムを挙げることができる。
さらに、 特にチタンを使用する場合、 チタン化合物と して、 チタン ペルォキソヒ ドロキシカルボン酸やそのアンモニゥム塩を使用すると チタン添加の効果が大きく、 好ましい。 そのヒ ドロキシカルボン酸と して、 クェン酸、 リ ンゴ酸、 乳酸、 酒石酸等を用いることが出来る。 上記の金属化合物の耐火性無機酸化物担体への担持量は、 酸化物基準 で、 無機酸化物担体に対して、 好ましく は 1〜 3 0質量% (よ り好ま しく は 2〜1 5質量%) である。 担持量が少なすぎると、 その金属添 加の効果が十分発揮されない場合があり、 担持量が多すぎると、 その 金属の過剰の存在による凝集が生じ、 好ましい分散状態が得られない 場合がある。
上記の耐火性無機酸化物担体に浸漬する沸点又は分解温度が 1 5 0 °C以上の水溶性有機化合物 (以下、 水溶性有機化合物という。 ) と し て、 1 , 3 —ブタンジオール、 1 , 4 —ブタンジオール、 ブタン ト リ オール、 1 , 2—プロパンジオール、 1 , 2—ペンタンジォーノレ等の ジォーノレ類 ; 5 —メチル _ 1 —へキサノ一ノレ、 イソアミルアルコーノレ
( 3 —メチル一 1 —ブタノール) 、 s —イソアミルアルコール ( 3 — メチルー 2—ブタノール) 、 イソゥンデシレンアルコール、 イソォク タノ一/レ、 イ ソペンタノール、 イソゲランオール、 イソへキシノレアノレ コーノレ、 2, 4 一ジメチ /レー 1 —ペンタノ一ノレ、 2 , 4 , 4 — ト リ メ チノレ一 1 —ペンタノ一ノレ等の炭素数 4以上のィソ体のァノレコール ; 2 —へキサノール、 3 —へキサノール等の炭素数 5以上で末端の炭素以 外にヒ ドロキシル基が結合しているアルコール ; ポリエチレンダリ コ ール、 ポリオキシエチレンフエ二ルェ一テル、 ポリオキシエチレンォ クチルフエ二ルェ一テル等のエーテル基含有水溶性高分子 ; ポリ ビニ ルアルコール等の水溶性高分子 ; サッ力ロース、 グルコース等の各種 糖類 ; メチルセルロース、 水溶性でんぷん等の水溶性多糖類もしく し はその誘導体などを挙げることができ、 単独でも二種類以上を混合し て使用することもできる。
上記の水溶性有機化合物の添加量は、 担体の質量に対して、 2〜 2 0質量% (好ましくは 3 〜 1 5質量%) と し、 担体の吸水量に見合つ た量に水で調整する。
水溶性有機化合物の水溶液が少なすぎると、 発明の効果は得られず、 また多すぎても、 水溶液の粘度が高く なりすぎて担体内部まで浸漬で きなくなり本発明の効果が得られない。
水溶性有機化合物の水溶液の含浸は、 所謂ポアフィ リ ング法で行つ てもよく、 常圧又は減圧で行う。
水溶性有機化合物の水溶液の含浸が終了すると、 1 2 0 °C程度で水 分がなく なるまで乾燥させ、 前記の金属化合物の溶液を含浸する。 金 属化合物の含浸方法は通常、所謂ポアフィ リング法で行ってもよいし、 大過剰の溶液に浸漬する方法でもよい。 溶液と して、 水, アルコール, へキサン, ヘプタン等を使用でき、 金属アルコキシドの場合は、 プロ ノ、。ノール, ブタノール, エタノール, メタノール等のァノレコールを使 用すればよい。
また、 金属化合物と して金属アルコキシドを使用する場合には、 金 属アルコキシドのアルコール溶液に、 金属アルコキシドの安定性を高 めるために、 アミン類、 他のアルコール類を添加した方が好ましい。 そのアミン類、 アルコール類の添加量は、 金属アルキシドに対しモル 比で、 好ましくは 0 . 3〜 2 . 5、 より好ましく は 0 . 6〜: 1 . 5の 範囲である。 そのアミン類と しては、 モノエタノールァミン, ジエタ ノ一ルァミン, トリエタノールアミン等を挙げることができ、 アルコ ール類と しては、 1, 3 _ブタンジオール等を挙げることができる。 上記金属化合物溶液の含浸後の乾燥は、 5 0〜 1 3 0 °Cの範囲で真 空乾燥や常圧乾燥で行えばよい。 十分に乾燥した後、 通常該金属を担 体に安定化させるために、 好ましくは 3 0 0〜 8 0 0 °C、 より好まし くは 4 0 0〜 6 0 0 °Cで焼成を行うが、 焼成工程を省略することもで きる。
以上のよ うに調製された金属化合物担持処理耐火性無機酸化物担体 に、 下記の方法で、 活性金属と して周期律表第 6族の金属の少なく と も一種及び周期律表第 8〜 1 0族の金属から選ばれる少なく とも一種 を担持し、 水素化処理触媒、 特に水素化脱硫触媒と して使用する。 周 期律表第 6族金属と して、 モリブデン, タングステンが使用され、 モ リブデンが好ましい。 その担持量は酸化物基準、 触媒体基準で 4〜 4 0質量%、 好ましく は 8〜 3 5質量%、 より好ましくは 8〜 3 0質量 %である。 周期律表第 8〜 1 0族の金属と して、 通常、 コバルト又は ニッケルが使用される。 その担持量は酸化物基準、 触媒体基準で 1〜 1 2質量。 /0、 好ま しく は 2〜 1 0質量%である。 また、 必要により リ ンを担持する。 その担持量は酸化物基準、触媒体基準で 0〜 8質量。 /0、 好ましく は 1〜 6質量%である。
上記の金属の担持法は含浸法が好ましい。 周期律表第 6族のモリブ デン化合物と しては、 三酸化モリブデン, パラモリブデン酸アンモニ ゥム等が使用され、 タングステン化合物と しては、 三酸化タンダステ ン, タングステン酸アンモニゥム等が使用される。 また、 周期律表第 8〜 1 0族のニッケル化合物と しては、 硝酸ニッケル, 塩基性炭酸二 ッケル等が使用され、 コバルト化合物と しては、 硝酸コバルト, 塩基 性炭酸コバル ト等が使用される。 さらに、 必要に応じて、 リ ンが使用 され、 リ ン化合物と しては、 五酸化リ ン, リン酸等が使用される。 上 記の金属化合物を、 周期律表第 6族金属は 0. 7〜 7. 0モル Zリ ツ トル、 周期律表第 8〜 1 0族の金属は 0. 3〜 3. 6モル Zリ ッ トル、 リ ン化合物は 0〜 2. 2モル Zリ ッ トルの割合で純水に溶解させ、 担 体に吸水率と等量になるように調整後含浸させる。 含浸時の p Hは含 浸液の安定性を考慮して一般には酸性領域では 1〜 4、好ましくは 1. 5〜 3. 5である。 また、 アル力リ性領域では 9〜 1 2、 好ましく は 1 0〜 1 1である。 この p Hの調整方法は特に限定されないが、硝酸, 塩酸, 硫酸等の無機酸、 りんご酸, クェン酸, エチレンジァミン 4酢 酸等の有機酸、 アンモニアなどを使用して行うことができる。含浸後、 触媒を熱処理するが、 その温度は好ましくは 8 0〜 6 0 0 °Cである。 1 2 0〜 3 0 0 °Cの範囲が特に好ましい。 熱処理温度が高すぎると、 担持成分の凝集が生じ十分な活性を得ることができない場合があり、 低すぎると、 担持成分と担体と十分な結合を持つことができず十分な 活性を得ることができない場合がある。 なお、 上記の熱処理は空気中 で行う ものである。
得られた触媒の平均細孔径は 5 0〜 1 5 0 A (好ましくは 8 0〜 1 2 0 A) であり、 比表面積は 1 4 0〜 4 0 0 m2/ g、 好ましく は 1 6 0〜 3 5 0 m2/ gである。 また、 全細孔容量は 0. 2〜 1. 0 c cZg、 好ましくは 0. 2 5〜 0. 8 c c/gである。
なお、 上記の平均細孔径と全細孔容量は水銀圧入法で測定し、 比表 面積は窒素吸着法で測定したものである。
他の発明は、 本発明の水素化処理触媒を用いた炭化水素油の水素化 脱硫方法である。 脱硫を目的とするものであるが、 脱窒素、 水素化分 解を目的とする場合もある。
水素化脱硫処理を行う際には、 予め安定化処理と して予備硫化を行 うことが望ましい。 この予備硫化処理の条件は特に限定されないが、 通常、 予備硫化剤と して、 硫化水素, 二硫化炭素, チオフユン, ジメ チルジスルフィ ド等を挙げることができ、処理温度 2 0 0〜 4 0 0 °C、 処理圧力常圧〜 3 0 M P aの範囲で行われる。
水素化脱硫処理条件については、 原料油の種類や目的により異なる が、 一般的には反応温度 2 0 0〜 5 5 0 °C (好ましく は 2 2 0〜 5 0 0 °C) 、 水素分圧 1〜 3 0 M P a (好ましくは 2〜 2 5MP a ) の範 囲で行われる。
反応形式は特に限定されないが、 通常は、 固定床, 移動床, 沸騰床, 懸濁床等の種々のプロセスから選択できるが、 固定床が好ましい。 ま た、 原料油の流通法については、 ダウンフロー、 アップフローの両形 式を採用することができる。
固定床の場合の温度、 圧力以外の反応条件と しては、 液空間速度 ( L H S V) は 0. O S l O h r -1 (好ましく は 0. :!〜 5 h r ) 、 水素 原料油比は 1 5 0〜 2, 5 0 0 Nm3/ k 1 (好ましくは 2 0 0〜 2, 0 0 0 Nm3/k l ) である。
処理する炭化水素油と して、 全ての石油留分を用いることができる が、 具体的には灯油, 軽質軽油、 重質軽油、 分解軽油等から常圧残油, 減圧残油, 脱蠟減圧残油, ァスフアルテン油, タールサン ド油まで巾 広く挙げることができる。
本発明においては、 金属化合物担持処理耐火性無機酸化物担体の金 属は担体の内部まで均一に存在しており、 その担体に活性金属を担持 すると、 活性金属は担体内部の金属と相互作用をもち、 耐火性無機酸 化物の表面に担持されたものより触媒活性が高い。 また、 活性金属の うち、 より活性のものが選択的に担体の内部の金属上に担持され、 触 媒活性が高く なると考えられる。
次に、 本発明を実施例により具体的に説明するが、 本発明はこれら の実施例によりなんら制限されるものではない。
〔実施例 1〕
吸水率 0. 8 c c Z gの γ—アルミナ担体 (A l ) 1 0 0 gに、 そ の吸水量に見合うように市販の硫酸チタン 3 0質量%水溶液 5 2. 9 gを純水にて希釈し、 常圧にて含浸し、 7 0 °Cで 1時間真空にて乾燥 させた後、 1 2 0 °Cで 3時間乾燥機にて乾燥させ、 5 0 0 °Cで 4時間 焼成し担体 (B 1 ) を得た。
該担体中の硫酸根 (S 04 2つ の残存量を L E CO (高周波燃焼赤外 検出装置) により測定し、 その量が担体に対し 5質量%以上であった ため、 2 リ ッ トルのビーカーに担体 B 1 を入れ、 純水 1 リ ッ トノレをカロ え、 攪拌羽により攪拌洗浄し、 担体の径より小さな篩に純水ごと注い だ。 この操作を 3回繰り返しところ、 硫酸根の残存量が 2質量%とな つた。 その後、 1 2 0 °Cで 5時間乾燥させ、 水分を除去した。
次に、 炭酸二ッケル 6 9. 5 g (N i Oと して 3 9. 7 g ) 、 三酸 化モリブデン 2 2 0 g、 正リン酸 3 1. 5 g (純度 8 5 % : P 205と して 1 9. 5 g ) を純水 2 5 0 c c に加えて、 攪拌しながら 8 0 °Cで 溶解させ、 室温に冷却後、 再び純水を加えて 2 5 0 c c に定容し、 含 浸液 (S 1 ) を調製した。
含浸液 (S 1 ) を 5 0 c c採取し、 ポリエチレンダリ コール (分子 量 4 0 0 ) 6 gを添加して、 担体 (B l ) 1 0 0 gの吸水量に見合う ように純水にて希釈 · 定容し、 常圧にて含浸し、 7 0 で 1時間真空 乾燥後、 1 2 0°Cで 1 6時間熱処理し、 触媒 1 を調製した。 その触媒 組成と物性を第 1表に示す。
〔実施例 2〕
四塩化チタン 5 0 0 g及びを純水 1 リ ッ トルを氷にて冷却しておい た。 純水を攪拌しておき、 そこに冷却しながら徐々に四塩化チタンを 滴下した。 激しい発熱 · 白煙を生じたが、 その後、 無色のチタニアゾ ルを得た。 このチタニアゾル溶液に、 1. 2倍等量のアンモニア水 ( 濃度 : 1モル リ ッ トル) を滴下し、 1時間攪拌し、 水酸化チタンの ゲルを得た。 そのゲルを吸引濾過で分別し、 約 1 リ ツ トルの純水に再 分散させ濾過洗浄した。 この操作を洗浄液が中性になるまで 4回繰り 返し、 塩素根を取り除いた。 '
得られた水酸化チタンゲルの含水率を測定し、 チタニアと して 1 1 g採取した。 2 5質量%アンモニア水を 5 0 c c添加し、 3 0分間攪 拌した。 さらに、 3 0質量%過酸化水素水を 3 8 c c を徐々に添加し、 黄色のチタンペルォキソチタン溶液を得た。 それにクェン酸を 2 9 g 徐々添加して、 攪拌しながら徐々に昇温させ 5 0 °Cにて余剰の過酸化 水素水を除去した。 さらに、 8 0°Cにて加熱し、 錯体形成させること によ り完全に溶解させ、 次いで全量が 1 1 7 c cになるまで濃縮し、 橙色透明のチタンペルォキソクェン酸アンモ-ゥム (T 1 ) を得た。 吸水率 0. 8 c c ,gの T/—アルミナ担体 (A l ) 1 0 0 gに、 T 1水溶液 6 0 c c をその吸水量に見合う ように純水で希釈し、 常圧に て含浸し、 7 0°Cで 1時間真空にて乾燥後、 1 2 0°Cで 3時間乾燥機 にて乾燥させ、 5 0 0 °Cで 4時間焼成し担体 (B 2 ) を得た。
次に、 実施例 1で調製した含浸液 (S 1 ) を 5 0 c c採取し、 ポリ エチレングリ コール (分子量 4 0 0 ) 6 gを添加して、 担体 (B 2 ) 1 0 0 gの吸水量に見合うように純水にて希釈 · 定容し、 常圧にて含 浸し、 7 0 °Cで 1時間真空乾燥後、 1 2 0 °Cで 1 6時間熱処理し、 触 媒 2を調製した。 その触媒組成と物性を第 1表に示す。
〔実施例 3〕
実施例 2 と同じ条件で担体 (B 2 ) を調製し、 含浸液 (S 1 ) を 5 0 c c採取し、 ポリエチレンダリ コール (分子量 4 0 0 ) 6 gを添加 して、 担体 (B 2 ) 1 0 0 gの吸水量に見合う よ うに純水にて希釈 · 定容し、 常圧にて含浸し、 7 0°Cで 1時間真空乾燥させた後、 1 2 0 °Cで 3時間、 続いて 5 0 0 °Cで 3時間熱処理し、 触媒 3を得た。 その 触媒組成と物性を第 1表に示す。
〔比較例 1〕
実施例 1で調製した含浸液 ( S 1 ) を 5 0 c c採取し、 ポリエチレ ングリ コール (分子量 4 0 0 ) 6 gを添加して、 吸水率 0. 8 c c gの T —アルミナ担体 (A l ) 1 0 0 gの吸水量に見合う ように純水 にて希釈 · 定容し、 常圧にて含浸し、 7 0°Cで 1時間真空乾燥後、 1 2 0°じで 1 6時間熱処理し、 触媒 4を調製した。 その触媒組成と物性 を第 1表に示す。
〔比較例 2〕
実施例 1 において、 活性金属を同様にして含浸した後、 7 0°。で 1 時間真空乾燥後、 1 2 0°Cで 3時間、 続いて 5 0 0 °Cで 3時間熱処理 し、 触媒 5を調製した。 その触媒組成と物性を第 1表に示す。
〔比較例 3〕
加温攪拌器に、 6 0 °Cの純水 1 5 リ ッ トル入れ、 アルミン酸ナ ト リ ゥム及び水酸化ナト リ ウムをそれぞれ、 A 1203濃度 8. 0質量0 /0、 N a OH濃度 3. 5質量%になるように添加し、 6 0°Cに加温し、 溶 液 Aを調製した。 別の加温攪拌器に純水 1 5 リ ツ トル入れ、 硫酸チタ ン水溶液と硫酸アルミニウム水溶液をそれぞれ、 丁 1 02濃度0. 6 質量%、 A 1203濃度 3. 0質量。 /0になるよ うに添加し、 6 0°Cにカロ 温し、 溶液 Bを調製した。 この溶液 Bを溶液 Aに添加し、 p Hを 7に 調整して、 チタニア—アルミナの共沈水和物のゲルを得、 さらに 6 0 °Cにて 1時間熟成した。 その後、 フィルタ一にてゲルに対し 7 0倍量 の 0. 3質量%のアンモニア水で洗净した。 得られた濾過物に固形分 が 1 2質量%になるよ うに純水を添加し、 さらにアンモニア水で p H を 1 1 に調整し、 加温攪拌器にて 9 0 で 1 3時間熟成した。 その後、 ゲルを再びフィルターで濾過し、 濾過物の 1 0倍量の純水で洗浄し、 8 0 °Cで捏和乾燥させ、 押出機で 1. 5 8 mmの円柱状に成形し、 1 2 0 °Cで 1 5時間乾燥させ、 5 0 0°Cで 4時間焼成してチタニア一ァ ルミナ担体 (B 3 ) を調製した。
次に、 実施例 1 で調製した含浸液 (S 1 ) を 5 0 c c採取し、 ポリ エチレングリ コール (分子量) 6 gを添加して、 吸水率 0. 7 c c gのチタニア—アルミナ担体 (B 3 ) 1 0 0 gの吸水量に見合う よ う に純水にて希釈 · 定容し、 常圧にて含浸し、 7 0°Cで 1時間真空乾燥 させた後、 1 2 0 °Cで 1 6時間熱処理し、 触媒 6を調製した。 その触 媒組成と物性を第 1表に示す。
軽油留分の水素化処理
固定床流通反応装置の反応管に各触媒 1〜 5を 1 0 0 c c充填した。 原料油は水素ガスと共に反応管の下段から導入するアップフロー形式 で流通させて反応性を評価した。 前処理と して第 2表に示す性状の原 料油 [中東系直留軽油 (L GO) ] にジメチルジスルフィ ドを加えて 硫黄濃度を 2. 5質量%にしたものを水素ガスと共に 2 9 0°C、 2 4 時間流通させることにより該触媒を予備硫化した。 予備硫化後、 上記 の原料油 [中東系直留軽油 (L GO) ] を水素ガスと共に流通させて 水素化処理を行った。 反応温度 3 3 0〜 3 6 0 °C、 水素分圧 5 M P a、 水素 Z原料油比 2 5 0 Nm3/ k 1 、 LH S V 1. 5 h r -1の条件で実 施した。 第 3表に 3 3 0〜 3 6 0°Cで評価した脱硫速度定数の平均値 を用いて、 比較例 1 (触媒 4 ) の脱硫速度定数の平均値を 1 0 0 と し た相対脱硫活性を示す。
〔実施例 4〕 (担持法 1 )
吸水率 0. 8 c c Z gの —アルミナ担体 (A l ) 9 0 gに、 1, 3—ブタンジオール (沸点 2 0 4 °C) 1 0 gを純水で 8 0 c cに調製 した溶液を含浸し、 1 2 0 °Cで 1 6時間乾燥させ担体 (B 1 ) を得た。 この担体 (B 1 ) 1 0 0 gに、 硫酸チタン 3 0質量。 /0水溶液 4 7. 5 g と硫酸 0. 5 gをその吸水量に見合うように純水にて希釈 · 定容 した溶液を常圧にて含浸し、 1 2 0 °Cで 1 6時間乾燥した後、 5 0 0 °Cで 4時間焼成した。 この担体を純水 1 リ ッ トル中で攪拌しながら洗 浄した後、 1 2 0 °Cで乾燥させて担体 (B 2 ) を得た。
次に、 炭酸二ッケル 4 5. 6 g、 三酸化モリブデン 9 7. 5 g、 正 リン酸 4 2. 2 gを純水 2 5 0 c c に加えて、 攪拌しながら 8 0 °Cで 溶解させ、 室温に冷却後、 再び純水を加えて 2 5 0 c c に定容し、 含 浸液 (S 1 ) を調製した。
担体 (B 2 ) 9 5 gに、 含浸液 ( S 1 ) 4 7. 5 c c をその吸水量 に見合うように純水にて希釈 · 定容し、 常圧にて含浸し、 2 5 0 °Cで 3時間焼成し、 触媒 7を得た。 その触媒組成を第 4表に示す。
〔実施例 5〕 (担持法 1 )
実施例 4において、 含浸液 (S 1 ) にポリエチレングリ コール (分 子量 4 0 0 ) 5 gを添加したこと以外は同様にして触媒 8を得た。 そ の触媒組成を第 4表に示す。
〔実施例 6〕 (担持法 1 ) 実施例 4において、 安定化剤の硫酸を用いなかったこと以外は同様 にして触媒 9を得た。 その触媒組成を第 4表に示す。
〔実施例 7〕 (担持法 2)
γ—アルミナ担体 (A l ) 9 0 gに、 1, 3—ブタンジオール 1 0 g と硫酸チタン 3 0質量。 /0水溶液 4 7. 5 gを純水で 7 2 c c に調製 した溶液を常圧にて含浸し、 1 2 0 °Cで 1 6時間乾燥させた後、 5 0 0°Cで 4時間焼成した。 この担体を純水 1 リ ツ トル中で攪拌しながら 洗浄した後、 1 2 0 °Cで乾燥させて担体 (B 3 ) を得た。 この担体 ( B 3 ) に実施例 4 と同様にして活性金属を担持し触媒 1 0を得た。 そ の触媒組成を第 4表に示す。
〔実施例 8〕 (担持法 3 )
γ—アルミナ担体 ( A 1 ) 1 0 0 gに、 上記含浸液 ( S 1 ) 5 0 c c とポリエチレングリ コ一ル (分子量 4 0 0 ) 5 gをその吸水量に見 合うよ うに純水にて希釈 · 定容し、 常圧にて含浸し、 1 2 0°C、 3時 間乾燥させ担体 (B 4 ) を得た。 この担体 (B 4 ) 1 0 5 gに、 硫酸 チタン 3 0質量%溶液 4 2. 2 gをその吸水量に見合うように純水に て希釈 · 定容し、 常圧にて含浸し、 2 5 0 °Cで 3時間焼成した。 この 担体を純水 1 リ ッ トル中で攪拌しながら洗浄した後、 1 2 0 °Cで乾燥 させて触媒 1 1 を得た。 その触媒組成を第 4表に示す。
〔実施例 9〕 (担持法 1 )
実施例 4において、 硫酸チタンの代わりに、 四塩化チタン 1 6. 5 質量%希塩酸溶液 1 9. 2 gを用いたこと、 また硫酸は使用しなかつ たこと以外は同様にして触媒 1 2を得た。 その触媒組成を第 4表に示 す。
〔実施例 1 0〕 (担持法 1 )
実施例 4において、 硫酸チタンの代わりに、 ォキシ塩化ジルコユウ ム 1 2. 4 gを用いたこと、 また硫酸は使用しなかったこと以外は同 様にして触媒 7を得た。 その触媒組成を第 4表に示す。
〔比較例 4〕
上記担体 (B 1 ) 1 0 0 gに、 上記含浸液 (S I ) 4 5 c cをその 吸水量に見合うよ うに純水にて希釈 · 定溶し、 常圧にて含浸し、 2 5 0°Cで 3時間焼成し、 触媒 1 4を得た。 その触媒組成を第 4表に示す。
〔比較例 5〕
Ύ一アルミナ (A 1 ) 9 0 gに、 硫酸チタン 3 0質量。 /0溶液 4 7. 5 g と硫酸 0. 5 gをその吸水率に見合うように純水にて希釈 · 定容 した溶液を常圧にて含浸し、 1 2 0°Cで 1 6時間乾燥させた後、 6 0 0°Cで 4時間焼成し担体 (B 5 ) を得た。 担体 (B 5 ) 9 5 gに、 前 記含浸液 (S 1 ) をその吸水量に見合う ように純水にて希釈 ·定容し、 常圧にて含浸し、 2 5 0 °Cで 3時間焼成し、 触媒 9を得た。 その触媒 組成を第 4表に示す。
軽油留分の水素化処理
固定床流通反応装置の反応管に触媒 7 0 0 c cを充填した。 原料油 は水素ガスと共に反応管の下段から導入するアップフロー形式で流通 させて反応性を評価した。 前処理と して第 5表に示す性状の原料油 [ 中東系直留軽油 (L GO) ] を水素ガスと共に 2 5 0 °C、 2 4時間流 通させることによ り該触媒を予備硫化した。 予備硫化後、 上記の原料 油 [中東系直留軽油 ( L GO) ] を水素ガスと共に流通させて水素化 処理を行った。 反応温度 3 3 0 °C、 水素分圧 5 M P a、 水素 原料油 比 2 5 0 Nm3,k l 、 LH S V 2. O h r—1の条件で実施した。 第 6 表に比較例 1 (触媒 1 4 ) の活性を 1 0 0 と して相対活性を示す。 な お、 脱硫活性及び脱窒素活性については、 比較例の反応速度を 1 0 0 と した場合の相対反応速度比で示し、 脱ァロマ活性については、 比較 例 4の飽和分を 1 0 0 と した場合の相対飽和分比で示した。
第 6表より、 本発明の製造法で製造された触媒は脱硫活性、 脱窒素 活性及び脱ァ口マ活性が向上していることがわかる。
〔実施例 1 1〕
( 1 ) 触媒の調製
吸水率 0. 8 c c Z gの " V —アルミナ担体 (A l ) 1 0 0 gに、 1, 3—ブタンジオール (沸点 2 0 4 °C) 1 0 gを純水で 8 0 c cに調製 した溶液を含浸し、 1 2 0°Cで 1 6時間乾燥させ担体 (B 1 ) を調製 した。 一方、 イソプロピルアルコール 8 0 c c に、 ジェタノーノレアミ ン 1 3 g (0. 1 2モル) 添加して均一になるまで攪拌し、 続いてテ トラ一 n—イソプロポキシチタンを 3 5. 5 g (0. 1 2モル) を添 加して、 室温にて 1時間攪拌し溶液 (T 1 ) を調製した。 次いで、 担 体 (B 1 ) ]· 0 0 gに、 その吸水量に見合う よ うに溶液 (T 1 ) 5 0 c c をイソプロピルアルコールにて、 希釈 · 定容し、 常圧で含浸し、 7 0°C、 1時間真空にて乾燥後、 1 2 0°C、 3時間乾燥させ、 5 0 0
°C、 4時間焼成し担体 (C 1 ) を得た。
次に、 炭酸コバルト 4 9 g、 三酸化モリブデン 9 7 g、 りんご酸 9 0 gを純水 2 5 0 c c に加えて、 攪拌しながら 8 0 °Cで溶解させ、 室 温に冷却後、 純水にて 2 5 0 c cに定容し、 含浸液 ( S 1 ) を調製し た。
担体 (C 1 ) 1 0 0 gに、 含浸液 ( S 1 ) 5 0 c c をその吸水量に 見合うように純水にて希釈 · 定容し、 常圧にて含浸し、 1 2 0 °Cで、 1 6時間、 続いて 5 0 0 °Cで、 3時間熱処理し、 触媒 1 6を調製した。 その物性を第 7表に示す。
〔実施例 1 2〕
( 1 ) 触媒の調製 実施例 1 1 において、 1, 3 —ブタンジオールの代わりに、 ポリエ チレンダリ コ一ル (分子量 4 0 0、 分解温度 2 5 0。C以上) を使用し て担体 (C 2 ) を調製した他は、 同様な条件で触媒 1 7を得た。 その 物性を第 7表に示す。
〔実施例 1 3〕
( 1 ) 触媒の調製
実施例 1 1 において、 活性金属を含浸後、 熱処理を 1 2 0 °Cで、 1 6時間行い、 触媒 1 8を得た。 その物性を第 7表に示す。
〔実施例 1 4〕
実施例 1 1 において、 1, 3—ブタンジオールの代わりに、 1, 4 —ブタンジオール (沸点 2 3 5 °C) を使用し担体 (B 2 ) を調製した。 その担体の吸水量に見合うよ うに、 市販の硫酸チタン水溶液 (T i O 2で 5. 2 6 g相当量) を希釈し、 常圧にて含浸し、 7 0°〇で 1時間 真空にて乾燥後、 1 2 0 °Cで 3時間乾燥機にて乾燥させ、 5 0 0 °Cで 4時間焼成した。 その後、 5 0°Cの水 (担体の 3 0倍量) を用いて、 硫酸根を洗浄除去し、 1 2 0°Cで 1 6時間乾燥させ担体 (C 3 ) を調 製した。
次に、 炭酸二ッケル 5 0 g、 三酸化モリブデン 9 7 g、 正リン酸 ( 純度 8 0質量。 /0) 2 5 gを純水 2 5 0 c cに加えて、 攪拌しながら 8 0°Cで溶解させ、 室温に冷却後、 純水にて 2 5 0 c cに定容し、 含浸 液 ( S 2 ) を調製した。
担体 (C 3 ) 1 0 0 gに、 含浸液 (S 2) 5 0 c c をその吸水量に 見合うように純水にて希釈 · 定容し、 常圧にて含浸し、 1 2 0 °Cで、 1 6時間、 続いて 2 5 0 °Cで、 3時間熱処理し、 触媒 1 9を調製した。 その物性を第 7表に示す。
〔比較例 6〕 ( 1 ) 触媒の調製
実施例 1 1 において、 1, 3—ブタンジオールを使用する前処理を 実施せず、 担体 (A l ) l O O gに、 その吸水量に見合うよ うに溶液
(T 1 ) 5 0 c cをイ ソプロピルアルコールにて、 希釈 · 定容し、 常 圧で含浸し、 7 0°C、 1時間真空にて乾燥後、 1 2 0 °C、 3時間乾燥 させ、 5 0 0 °C、 4時間焼成し担体 (C 4 ) を得た。 次いで、 担体 ( C 4 ) 1 0 0 gに、 含浸液 ( S 1 ) 5 0 c c をその吸水量に見合う よ うに純水にて希釈 ·定容し、 常圧にて含浸し、 1 2 0 °Cで、 1 6時間、 続いて 5 0 0°Cで、 3時間熱処理し、 触媒 2 0を調製した。 その物性 を第 7表に示す。
〔比較例 7〕
( 1 ) 触媒の調製
実施例 1 1 において、 1, 3—ブタンジオールの代わりに、 n—ァ ミルアルコール (沸点 i 3 7 °C) を使用して担体 (C 5 ) を調製した 他は、 同様な条件で触媒 2 1 を得た。 その物性を第 7表に示す。
〔比較例 8〕
比較例 6において、 活性金属を含浸後、 熱処理を 1 2 0°Cで、 1 6時 間行い、 触媒 2 2を得た。 その物性を第 7表に示す。
〔比較例 9〕
実施例 1 4において、 1, 4—ブタンジオールを使用する前処理を 実施せず、 担体 (C 6 ) を調製し、 さらに同様にして触媒 2 3を得た。 その物性を第 7表に示す。
( 2 ) 触媒の評価等
担体 (C 1 ) 〜 (C 6 ) の E PMA測定
触媒調製の途中で得られた担体 (C 1 ) 〜 (C 6 ) を樹脂 (PMM A : ポリメチルメタク リ レー ト) に包埋し、 底面に平行に切断して、 図 2に示すような測定面を出す。 通常の E PMA装置を用いて、 加速 電圧 1. 5 k V、 ビームサイズ 1 μ m、 試料電流 0. 0 5 μ Αで測定 して X値を求めた。 結果を第 9表に示す。
軽油留分の水素化脱硫処理
固定床流通反応装置の反応管に各触媒 1 6〜 2 3を 1 0 0 (: 0充填 した。 原料油は水素ガスと共に反応管の下部から導入するァップフ口 一形式で流通させて反応性を評価した。 前処理と して第 8表に示す性 状の原料油 [中東系直留軽油 (L GO) ] を水素ガスと共に 2 5 0 °C、 水素分圧 5 MP aで 2 4時間流通させることにより該触媒を予備硫化 した。 予備硫化後、 上記の原料油 [中東系直留軽油 (L GO) ] を水 素ガスと共に流通させて水素化脱硫処理を行った。 反応温度 3 4 0〜 3 6 0 °C、 水素分圧 5 MP a、 水素 原料油比 2 5 0 Nm3/ k 1 、 L H S V 2. 0 h r 1の条件で実施した。 第 9表に比較例 6 (触媒 2 0 ) の脱硫速度定数を 1 0 0 と して相対活性を示す。
第 9表より、 E PMA測定により得られる担体 Cの X値が 0. 5以 上である実施例の触媒は脱硫活性が高いことがわかる。
[実施例 1 5 ]
四塩化チタン 5 0 0 gおよび純水 1 Lをそれぞれ氷水の冷却槽にて 冷却しておく。 この純水を攪拌しておき、 そこに冷却しながら徐々 に冷却した四塩化チタンを滴下して、 無色のチタニアゾル塩酸溶液 を得る。 このチタニアゾル溶液に、 1. 2倍当量のアンモニア水 (濃 度 : 1モル/ L) を滴下し、 1 時間攪拌し、 水酸化チタ ンのゲルを 得る。 そのゲルを吸引濾過で分別し、 約 1 Lの純水に再分散させ濾 過洗浄する。 この操作を洗液が中性になるまで 4〜 5回繰り返し、 塩素根を取り除く。
得られた水酸化チタンゲルを、 チタユアと して 1 1 g重量分採取 する。 それに 2 5質量。/oアンモニア水を 5 0 c c添加し、 攪拌する。 さらに、 3 0 %過酸化水素水 1 0 0 c c を徐々に添加し、 チタニア ゲルを溶解させ、 ペルォキソチタン溶液を得る。 そこへ、 クェン酸 第一水和物を 2 9 g徐々に添加して、 攪拌しつつゆつく り と昇温し 5 0 °Cにて余剰の過酸化水素水を除去する。 さらに、 8 0°Cにて溶液 を全量が 1 1 7 c c になるまで濃縮し、 黄橙色透明なチタンペルォ キソクェン酸アンモニゥム液 (T 1 5 ) を得る。
吸水率 0. 8 c c / gの γ—アルミナ担体 (A 1 5 ) 1 0 0 gに、 T 1 5水溶液 6 0 c c をその吸水量に見合う よ うに純水で希釈し、 常圧にて含浸し、 7 0 °C、 1時間真空にて乾燥後、 1 2 0°C、 3時間 乾燥機にて乾燥させ、 5 0 0 °C、 4時間焼成し担体 (B 1 5 ) を得た。
さ らに、 炭酸ニッケル 3 7 g (NiOと して 2 0 g )、 三酸化モリブ デン 8 3 g、 正リ ン酸 3 8 g (純度 8 5質量0 /0) に純水 2 5 0 c c を加えて、 攪拌しながら 8 0 °Cで溶解させ、 室温にて冷却後、 純水に て 2 5 0 c c に定容し、 含浸液 ( S 1 5 ) を調製した。
含浸液 S 1 5を 5 0 c c採取し、 ポリ エチレングリ コ一ル (分子 量 4 0 0 ) 6 gを添加して、 担体 (B 1 5 ) 1 0 0 gの吸水量に見 合う ように純水にて希釈 · 定容し、 常圧にて含浸し、 7 0 で 1時間 真空乾燥後、 1 2 0°Cで 3時間乾燥、 さらに 5 0 0 °Cで 3時間焼成し て、 触媒 2 4を調製した。
その物性を第 1 0表に示す。
[実施例 1 6]
含浸液 S 1 5担持後の焼成を、 2 5 0 °Cで 3時間実施した他は実施例 1 5 と同様にして、 触媒 2 5を調製した。
その物性を第 1 0表に示す。
[比較例 1 0 ] イ ソプロ ピルアルコール 8 0 c c に、 ジエタノールァ ミ ン 1 3 gを 添加して均一になるまで攪拌し、 続いてチタニウムテ トライ ソプロ ポキシ ド ( T T I P ) 3 5. 5 gを添加し、 室温にて 1 時間攪拌し 溶液 (T 1 ) を調製した。
吸水率 0. 8 c c / gの γ—アルミナ担体 (A 1 5 ) 1 0 0 gに、 その吸水量に見合う よ うに溶液 (T 1 6 ) 5 0 c c をイ ソプロピル アルコールにて希釈 · 定容し、 常圧にて含浸し、 7 0° で 1時間真空 にて乾燥後、 1 2 0 °Cで 3時間乾燥機にて乾燥させ、 5 0 0 °Cで 4時 間焼成し担体 (B 1 6 ) を得た。
実施例 1 5 と同様の方法で含浸液 ( S 1 5 ) を調製しその 5 0 c c を採取し、 ポリエチレングリ コール (分子量 4 0 0 ) 6 gを添加して、 チタン添加アルミナ担体 (B 1 6 ) 1 0 0 gの吸水量に見合う よ うに 純水にて希釈 ·定容し、 常圧にて含浸し、 7 0°Cで 1時間真空乾燥後、 1 2 0 °Cで 3時間乾燥させ、 さ らに 5 0 0 °Cで 3時間焼成して、 触媒 2 6を調製した。
その物性を第 1 0表に示す。
残油の水素化処理
触媒 2 4〜 2 6それぞれ 1 0 0 c c を高圧固定床流通式反応装置の 反応管に充填した。 前処理と して、 該触媒に第 8表に示す L G O (中 東系直流軽油) に DMD S (ジメチルジスルフイ ド) を添加し硫黄分 を 2. 5 w t %に調整し、 水素ガスとと もに 2 5 0 °C、 水素分圧 1 3. 5 MP aにて 2 4時間通油して、 触媒を予備硫化した。 また、 原料油 と しては、 第 1 1表に示す中東系常圧残油を用いた。
第 11表の原料油を下記の条件にて、 水素と ともに反応管下部から 導入するァップフ口一形式で流通させて水素化処理を行った。
水素分圧 : 1 3. 5 M P a 液空間速度 ( L H S V) : 0. 3 h r - 1
水素 Z油比 : S S O NmS/ k L
反応温度 : 3 7 0 °C
結果を、 第 1 2表に示す。
[実施例 1 7]
アンモニゥム Y型ゼオライ ト (N a 20含有 l . 3 w t %、 S i O 2 ZA I 2O 3モル比 5. 0 )、 7 5 0 gを口一タ リ一キノレン内に投入し、 7 0 0°C、 3時間熱処理を行い、 スチ一ミ ングゼオライ ト Aを得た。 このゼォライ ト A 5 0 0 gを、 脱イオン水 6 Lに懸濁させ、 攪拌下で 7 5 °Cに、 1 0 w t %の硝酸水溶液 2 0 0 0 gを 3 0分かけて添加し た。 添加終了後、 濾過し、 得られた固体分を 2 0倍量(質量)の脱ィォ ン水で洗浄し、 酸処理 Y型ゼォライ ト Bを得た。 この Y型ゼォライ ト Bの物性を第 1 3表に示す。
一方、 純水 2 Lに、 水酸化ナ ト リ ウム 7 0 gを溶解させ、 さらに、 アルミン酸ソ一ダ 2 0 0 gを添加して、均一なアルミナ溶液 Vを得た。 更に、 純水 2 Lに硝酸アルミニウム 1 0 0 0 gを溶解させ、 アルミナ 溶液 Wを得た。 純水 4 Lを 7 0 °Cに加温し、 攪拌しながら、 アルミナ 溶液 Vを p H 3. 6になるまで添加した。 次にアルミナ溶液 Wを p H 9. 0になるまで添加して、 5分間攪拌しながら熟成させた。 この様 に p Hを 3. 6から 9. 0の間で変化させる操作を計 6回繰り返した。 その後、 得られたゲルを濾過、 洗浄してアルミナゲル Zを得た。
酸処理ゼォライ ト Bを同重量の脱イオン交換水に懸濁させ、 アルミ ナゲル Zをゼォライ ト B /アルミナ固形分(質量)が 1 0 Z 9 0になる よ うにニーダ一に導入し加熱した後、 攪拌しながら押し出し成型可能 な濃度に濃縮した後、 押し出し成型機で 1. 6 mmサイズの円柱状に 成型した。 次いで、 1 1 0 °Cで 1 6時間乾燥した後、 5 5 0 °Cで 3時 間焼成し担体 Iを得た。
更に、 実施例 1 5 と同様の方法で、 チタンペルォキソクェン酸ァ ンモニゥム液 (T 1 5 ) を得る。
次に、 Y型ゼォライ ト含有アルミナ担体 I、 1 0 0 gに T 1 5水溶 液 6 0 c c をその吸水量に見合う よ うに純水で希釈し、 常圧にて含 浸し、 7 0 °Cで 1時間真空にて乾燥後、 1 2 0 °Cで 3時間乾燥機にて 乾燥させ、 5 0 0 °Cで 4時間焼成し担体 (C 1 7 ) を得た。
更に、 三酸化モリブデンと炭酸ニッケルを脱イオン水に懸濁したも のを 9 0 °Cに加熱し、 次いでリ ンゴ酸を加えて溶解させた。 この溶解 液を担体 C 1 7に触媒全体に対して M o O 3と して 1 5. 1質量%、 N i Oと して 4. 0質量%になるよ うに含浸し、 次いで 1 2 0 °Cで 3 時間乾燥させ、 さらに 5 0 0 °Cで 3時間焼成し、 触媒 2 7を得た。
この触媒 2 7の物性を第 1 4表に示す。
[比較例 1 1 ]
実施例 1 7 と同様に実施して、 Y型ゼォライ ト含有アルミナ担体 I を 得た。
一方、 イ ソプロ ピノ アルコーノレ 8 0 じ じ に、 ジエタノー 7レア ミ ン 1 3 gを添加して均一になるまで攪拌し、 続いてチタ二ゥムテ トラ イ ソプロボキシド (T T I P) 3 5. 5 gを添加し室温にて、 1時 間攪拌し溶液 (T 1 1 ) を調製した。
次に、 Y型ゼオライ ト含有アルミナ担体 I、 1 0 0 gに、 その吸水 量に見合う よ うに溶液 (T i l ) 5 0 c c をイ ソプロ ピルアルコ一 ルにて希釈 · 定容し、 常圧にて含浸し、 7 0°Cで 1時間真空にて乾燥 後、 1 2 0 °Cで 3時間乾燥機にて乾燥し、 5 0 0 °Cで 4時間焼成し担 体 (B 1 1 ) を得た。
さらに、 実施例 1 7 と同様に実施して、 担体 B 1 1 に-ッケルとモ リブデンを担持させ、 触媒 2 8を得た。
この触媒 2 8の物性を第 1 4表に示す。
重質軽油の水素化分解
触媒 2 7および 2 8それぞれ 1 0 0 c c を高圧固定床反応器に充填し た。 その後、 前処理と して、 該触媒に第 8表に示す L GO (中東系直 流軽油) に DMD S (ジメチルジスルフイ ド) を添加し硫黄分を 2. 5 w t %に調整し、 水素ガスとともに 2 5 0 °C、 水素分圧 1 1. 0 M P aにて 2 4時間通油して、 触媒を予備硫化した。 また、 原料油と し ては、 第 1 5表に示す重質軽油を用いた。
この原料油を下記の条件にて、 水素とともに反応管下部から導入 するアップフロ一形式で流通させて水素化処理を行った。
水素分圧 : 1 1. 0 M P a
液空間速度 (L H S V) : 1. O h r -1
水素 油比 : 1 0 0 0 Nm3/k L
反応温度 : 3 8 5 °C
結果を、 第 1 6表に示す。
第 1表一 触媒 触媒 1 触媒 2 触媒 3
N i O 5. 0 5. 1 5. 1 組
M 9 Q o o o O o Q
3 o . Δ o - 成
P 2 O 5 2. 5 2. 6 2. 6 i o2 3. 2 3. 3 3. 3 1 203 6 1 . 1 6 0. 7 6 0. 7 平均細孔直径(PD) 8 5 8 5 8 5
A 比表面積(SA) 2 5 0 2 4 8 2 4 5 m 2 / g 全細孔容積 0. 5 3 0. 5 2 0. 5 2 c c / g
第 1表 2 触媒 触媒 4 触媒 5 触媒 6
N i O 5. 1 5. 1 5. 1 組
成 M o O 3 2 8. 2 2 8. 3 2 8. 3
P 2 O 5 2. 5 2. 4 2. 4 質
% i o2 0 3. 2 3. 2
A 1 203 64. 2 6 1. 0 6 1. 0 平均細孔直径(PD) 8 4 8 5 9 1
A 比表面積(SA) 2 5 5 24 8 1 9 8 m 2 / g 全細孔容積 0. 54 0. 5 2 0. 4 5 c c / g
第 2表 比重 0. 8 5 4 4
、 丄 O / i ^ )
1 頁ガ貝里 o 至 Λ?刀 p p m Q
y o d±: ¾; ¾fc · -β- Οί,
¾ ' 肤ガ A直
1 5. 1
2環以上 1 2. 4 蒸留性状 °c 初留点 2 0 0
9 0 % 3 6 5 終点 3 9 0
第 3表
Η¾媒 +ΡΙ - + RM 3¾ if. M- B对脫硫估 土 実施例 1 触媒 1 1 5 0 実施例 2 触媒 2 1 5 1 実施例 3 触媒 3 1 2 8 比較例 1 触媒 4 1 0 0 比較例 2 触媒 5 1 1 0 比較例 3 触媒 6 1 0 5
第 4表 担持 NiO Mo03 P2O5 Ti02, Zr02 A1203 法 実施例 触媒 7 1 4.5 15.6 4.0 5.1 70.8
4 実施例 触媒 8 1 4.5 15.5 4.0 5.0 71.0 5 実施例 触媒 9 1 4.5 15.4 4.1 4.8 71.2 6 実施例 触媒 10 2 4.4 15.5 4.0 5.0 71.1 7 実施例 触媒 11 3 4.4 15.4 4.0 5.1 71.1 8 実施例 触媒 12 1 4.4 15.6 3.9 4.9 71.2 9 実施例 触媒 13 1 4.5 15.5 4.1 5.0 70.9 10 比較例 触媒 14 4.4 15.6 4.1 0 75.9 4 比較例 触媒 15 4.5 15.5 4.1 5.0 70.9 5 第 5表
i- JEL 、 丄 !0 / ^1: し Πり . o Q y π u ¾ .m. η/
OT ¾貝ガ ^良里 。 1丄 . n(J d Q 至素分 P P m o o o o 方 跌分谷 m%
1 4. 4
2, 3環 1 1 . 3 蒸留性状 °c
初留点 1 1 8
9 0 % 3 7 0 終点 4 1 3
第 6表
Figure imgf000053_0001
第 7表 _ 1 触媒 触媒 1 6 触媒 1 7 触媒 1 8 触媒 1 9 組
C o O 4. 5 4. 4 4. 5
N i O
4. 3 里
% M o O 3 1 5. 5 1 5. 6 1 5. 5 1 4. 6
2. 4
T i o 2 4. 0 4. 1 4. 0 3. 8 1 203 7 6 . 0 7 5. 9 7 6. 0 7 4. 9 平均細孔直径(PD) 8 5 8 5 8 5 8 6
A 比表面積(SA) 2 5 0 2 4 5 2 5 0 2 4 7
全細孔容積 0. 5 3 0. 5 2 0 . 5 3 0. 5 3 c c / g
第 7表— 2 触媒 触媒 2 0 触媒 2 1 触媒 2 2 触媒 2 3 組 C o O 4. 6 4. 4 4. 6 成 N i O 4. 3 里
% M o O 3 1 5. 4 1 5. 6 1 5. 4 1 4. 6
P 2 O 5
2. 4 i o2 0. 9 3. 8 0. 9 3. 8
A 1 203 7 9. 1 7 6. 2 7 9. 1 7 4. 9 平均細孔直径(PD) 8 5 84 8 5 8 5
A 比表面積 (SA) 2 5 5 2 5 3 2 5 5 2 50 m g 全細孔容積 0. 54 0. 5 3 0. 54 0. 5 3 c c z g
第 8表
比重 0. 8 4 9 0
( 1 5/4°C) 硫黄分質量% 1 . 0 3 室素分 p P m 8 8 芳香族分容量%
1環 1 . 4 乙 , ¾ 1 1. 3 蒸留性状。 C 初留点 1 1 8
9 0 % 3 7 0 終点 4 1 3
第 9表 担体 Cの 触媒 相対水素化脱硫活性 X値 実施例 0. 6 4 触媒 1 6 1 3 0
1 1 実施例 0. 5 6 触媒 1 7 1 2 0
1 2 実施例 0. 6 4 触媒 1 8 1 3 5
1 3 実施例 0. 8 5 触媒 1 9 1 3 8
1 4 比較例 0. 0 0 触媒 2 0 1 0 0
6 比較例 0. 4 0 触媒 2 1 1 0 5
7 比較例 0. 0 0 触媒 2 2 1 0 5
8 比較例 0. 2 0 触媒 2 3 1 0 8
9 第 1 0表
Figure imgf000058_0001
o
表 原料油の性状
比重
動粘度 ( 5 0 °C ) 290cst 硫黄 3. 48wt%
1840ppm 残炭分 9, 33wt% ァスファノレテン分 2. 98%
V 37. 6ppm
N i 10. 8ppm
第 1 2表
Figure imgf000059_0002
第 1 3表
Figure imgf000059_0003
第 1 4表
Figure imgf000059_0001
第 1 5表
Figure imgf000060_0001
第 1 6表
Figure imgf000060_0002
中間留分 2 0〜 3 6 0 °Cの留分
産業上の利用可能性
本発明の水素化処理触媒は、 従来の触媒よ り も脱硫活性、 脱窒素活 性及び脱ァロマ活性が一層改良されでおり、 炭化水素油、 特に軽油の 水素化処理に有効に利用される。 本発明の金属化合物担持処理耐火性 無機酸化物担体は該金属が担体の内部まで均一に存在していて、 E P M Aで測定した X値は 0 . 5以上であり、 それに活性金属を担持した 水素化処理触媒は脱硫活性が高い。

Claims

請 求 の 範 囲
1 . 水溶性の周期律表第 4族金属化合物を含む溶液を耐火性無機酸化 物に含浸し担持した担体に、 周期律表第 6族金属化合物及び第 8〜 1
0族金属化合物をそれぞれ少なく とも一種含む水溶液を含浸し担持し た後、 3 0 ◦ °C以下で熱処理してなる炭化水素油の水素化処理触媒。
2 . 周期律表第 4族金属化合物がチタン化合物である請求項 1記載の 炭化水素油の水素化処理触媒。
3 .チタン化合物がチタンペルォキソヒ ドロキシカルボン酸塩である 請求項 2記載の炭化水素油の水素化処理触媒。
4 .チタンペルォキソヒ ドロキシカルボン酸塩を含む水溶液を耐火性 無機酸化物に含浸し担持した担体に、 周期律表第 6族金属化合物及び 第 8〜 1 0族金属化合物をそれぞれ少なく とも一種含む水溶液を含浸 し担持してなる炭化水素油の水素化処理触媒。
5 .耐火性無機酸化物がアルミナである請求項 1〜 4のいずれかに記 載の炭化水素油の水素化処理触媒。
6 .チタンの担持量が、 酸化物基準で耐火性無機酸化物担体に対して ;!〜 1 5質量。/。である請求項 2〜 5のいずれかに記載の炭化水素油の 水素化処理触媒。
7 .周期律表第 6族金属がモリブデンであり、 周期律第 8〜 1 0族金 属がニッケルである請求項 1〜 6のいずれかに記載の炭化水素油の水 素化処理触媒。
8 .周期律表第 6族金属化合物及び第 8〜 1 0族金属化合物とともに リン化合物を担持するものである請求項 1〜 7のいずれかに記載の炭 化水素油の水素化処理触媒。
9 .請求項 1〜 8のいずれかに記載の炭化水素油の水素化処理触媒を 使用することを特徴とする炭化水素油の水素化処理方法。
1 0 . 沸点又は分解温度が 1 5 0 °C以上の水溶性有機化合物を予め耐 火性無機酸化物担体に担持し、 次いで周期律表第 4族金属化合物を担 持し、 さらに周期律表第 6族金属化合物及び第 8〜 1 0族金属化合物 をそれぞれ少なく とも一種担持することを特徴とする水素化処理触媒 の製造方法。
1 1 . 水素化処理が水素化脱硫処理である請求項 1 0記載の水素化処 理触媒の製造方法。
1 2 . 沸点又は分解温度が 1 5 0 °C以上の水溶性有機化合物とともに 周期律表第 4族金属化合物を耐火性無機酸化物担体に担持し、 次いで 周期律表第 6族金属化合物及び第 8〜 1 0族金属化合物をそれぞれ少 なく とも一種担持することを特徴とする水素化処理触媒の製造方法。
1 3 . 水素化処理が水素化脱窒素処理である請求項 1 2記載の水素化 処理触媒の製造方法。
1 4 . 沸点又は分解温度が 1 5 0 °C以上の水溶性有機化合物とともに 周期律表第 6族金属化合物及び第 8〜 1 0族金属化合物をそれぞれ少 なく とも一種耐火性無機酸化物担体に担持し、 次いで周期律表第 4族 金属化合物を担持することを特徴とする水素化処理触媒の製造方法。
1 5 . 水素化処理が水素化脱ァロマ処理である請求項 1 4記載の水素 化処理触媒の製造方法。
1 6 . 周期律表第 6族金属化合物及び第 8〜 1 0族金属化合物ととも にリ ン化合物を担持するものである請求項 1 0〜 1 5のいずれかに記 載の水素化処理触媒の製造方法。
1 7 . 周期律第 4族金属がチタン又はジルコニウムである請求項 1 0 〜 1 6のいずれかに記載の水素化処理触媒の製造方法。
1 8 . 周期律第 6族金属がモリブデン又はタングステンであり、 周期 律表第 8〜 1 0族金属がコバルト又はニッケルである請求項 1 0〜 1 7のいずれかに記載の水素化処理触媒の製造方法。
1 9. 耐火性無機酸化物担体がアルミナである請求項 1 0〜 1 8のい ずれかに記載の水素化処理触媒の製造方法。
2 0. 沸点又は分解温度が 1 5 0 °C以上である水溶性有機化合物が、 ジエチレングリ コーノレ、 ト リエチレングリ コーノレ、 ポリエチレングリ コール及びブタンジオールから選ばれる少なく とも一種である請求項 1 0〜 1 9のいずれかに記載の水素化処理触媒の製造方法。
2 1. 請求項 1 0〜 2 0のいずれかに記載の製造方法で製造された水 素化処理触媒。
2 2. 請求項 2 1記載の水素化処理触媒を使用することを特徴とする 炭化水素油の水素化処理方法。
2 3. 金属化合物を用いて該金属を担持した耐火性無機酸化物担体で あって、 該金属が担体の内部まで均一に存在してなる金属化合物担持 処理耐火性無機酸化物担体。
2 4. 金属化合物を用いて該金属を担持した耐火性無機酸化物担体で あって、 担体の断面をエレク ト ロ ン . プローブ . マイクロ ' アナリ シ ス (E PMA) を用いて一方向に該金属原子について線分析測定をし て得られる断面幅方向距離 ( t : 一方の担体表面からの距離) と X線 強度 ( I ) の関係を示す図において、 上記 I ( t ) についての tがー 方の担体表面から他方の担体表面の間における積分値 Fと、 上記 X線 強度を示す曲線の極小かつ最小値における該曲線の接線の X線強度 I m ( t ) についての上記の間における積分値 (F m) との比 X ( F m ZF) が 0. 5以上である金属化合物担持処理耐火性無機酸化物担体。
2 5. 耐火性無機酸化物担体が γ—アルミナである請求項 2 3又は 2 4に記載の金属化合物担持処理耐火性無機酸化物担体。
2 6. 金属化合物が金属アルコキシドである請求項 2 3〜 2 5のいず れかに記載の金属化合物担持処理耐火性無機酸化物担体。
2 7 . 金属が周期律表第 4族金属である請求項 2 3〜 2 6のいずかに 記載の金属化合物担持処理耐火性無機酸化物担体。
2 8 . 周期律表第 4族金属がチタンである請求項 2 7記載の金属化合 物担持処理耐火性無機酸化物担体。
2 9 . 耐火性無機酸化物担体に、 沸点又は分解温度が 1 5 0 °C以上の 水溶性有機化合物を含有する水溶液を含浸して乾燥させ、 その後金属 化合物の溶液を含浸することを特徴とする請求項 2 3〜 2 8のいずれ かに記載の金属化合物処理耐火性無機酸化物担体の製造方法。
3 0 . 耐火性無機酸化物担体に、 沸点又は分解温度が 1 5 0 °C以上の 水溶性有機化合物を含有する水溶液を含浸して乾燥させ、 その後金属 化合物と しての金属アルコキシドのアルコール溶液を含浸することを 特徴とする請求項 2 6〜 2 8のいずれかに記載の金属化合物担持処理 耐火性無機酸化物担体の製造方法。
3 1 . 請求項 2 3〜 2 8のいずれかに記載の金属化合物担持処理耐火 性無機酸化物担体に、 周期律表第 6族の金属の少なく とも一種及び周 期律表第 8〜 1 0族の金属から選ばれる少なく とも一種を担持してな る水素化処理触媒。
3 2 . 請求項 2 3〜 2 8のいずれかに記載の金属化合物担持処理耐火 性無機酸化物担体に、 周期律表第 6族の金属の少なく とも一種及び周 期律表第 8〜 1 0族の金属から選ばれる少なく とも一種を担持した後、 3 0 0 °C以下の温度で熱処理してなる水素化処理触媒。
3 3 . 請求項 3 1又は 3 2に記載の水素化処理触媒を用いた炭化水素 油の水素化脱硫方法。
PCT/JP2000/007276 1999-10-27 2000-10-19 Catalyseur d'hydrotraitement pour huile hydrocarbonee, support pour celle-ci et procede d'hydrotraitement d'huile hydrocarbonee WO2001030494A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DK00969896.0T DK1145763T3 (da) 1999-10-27 2000-10-19 Hydrogeneringskatalysator til carbonhydridolie, bærestof for denne samt fremgangsmåde til hydrogenering af carbonhydridolie
EP00969896A EP1145763B1 (en) 1999-10-27 2000-10-19 Hydrotreating catalyst for hydrocarbon oil, carrier for the same and method for hydrotreating of hydrocarbon oil
US11/623,782 US7598203B2 (en) 1999-10-27 2007-01-17 Hydrogenation catalyst for hydrocarbon oil, carrier for it, and method of hydrogenation of hydrocarbon oil

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP11/305769 1999-10-27
JP30576999 1999-10-27
JP2000-100286 2000-04-03
JP2000100286A JP2001276626A (ja) 2000-04-03 2000-04-03 水素化処理触媒とその製造方法、及び炭化水素油の水素化処理方法
JP2000117548 2000-04-19
JP2000-117548 2000-04-19
JP2000-123631 2000-04-25
JP2000123631A JP4916044B2 (ja) 2000-04-25 2000-04-25 炭化水素油の水素化処理触媒及び炭化水素油の水素化処理方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09868628 A-371-Of-International 2000-10-19
US11/623,782 Continuation US7598203B2 (en) 1999-10-27 2007-01-17 Hydrogenation catalyst for hydrocarbon oil, carrier for it, and method of hydrogenation of hydrocarbon oil

Publications (1)

Publication Number Publication Date
WO2001030494A1 true WO2001030494A1 (fr) 2001-05-03

Family

ID=27479907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007276 WO2001030494A1 (fr) 1999-10-27 2000-10-19 Catalyseur d'hydrotraitement pour huile hydrocarbonee, support pour celle-ci et procede d'hydrotraitement d'huile hydrocarbonee

Country Status (4)

Country Link
US (1) US7598203B2 (ja)
EP (1) EP1145763B1 (ja)
DK (1) DK1145763T3 (ja)
WO (1) WO2001030494A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999824A (zh) * 2012-09-17 2019-07-12 国际壳牌研究有限公司 制备加氢裂化催化剂的方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425676C (zh) * 2005-04-29 2008-10-15 中国石油化工股份有限公司 一种加氢裂化催化剂组合物
AU2012202587B2 (en) * 2005-04-29 2014-10-09 Altaca Insaat Ve Dis Ticaret A.S. Method and apparatus for converting organic material
CN101198673B (zh) * 2005-04-29 2013-07-24 Scf科技公司 用于转化有机材料的方法和设备
US8883669B2 (en) 2005-04-29 2014-11-11 China Petroleum & Chemical Corporation Hydrocracking catalyst, a process for producing the same, and the use of the same
EA200971028A1 (ru) 2005-04-29 2010-04-30 Скф Технолоджис А/С Способ и аппарат для переработки органического материала
WO2007059783A1 (en) * 2005-11-24 2007-05-31 Scf Technologies A/S Method and apparatus for converting organic material using microwave excitation
MXPA05012893A (es) * 2005-11-29 2007-11-23 Mexicano Inst Petrol Catalizador para la hidrodesulfuracion de residuos y crudos pesados.
US9636662B2 (en) * 2008-02-21 2017-05-02 Saudi Arabian Oil Company Catalyst to attain low sulfur gasoline
EP2401080B8 (en) * 2009-02-26 2015-01-28 Sasol Technology (Proprietary) Limited Process for the preparation of fischer-tropsch catalysts and their use
KR101782658B1 (ko) 2009-08-24 2017-09-27 알베마를 유럽 에스피알엘 Ⅵ족 금속, ⅷ족 금속, 인 및 첨가제를 포함하는 용액 및 촉매
EP3821978B1 (en) 2009-09-10 2023-12-27 Albemarle Europe Sprl. Process for forming a catalyst with concentrated solutions comprising group vi metal, group viii metal, and phosphorus
KR101626541B1 (ko) * 2009-11-19 2016-06-01 에스케이이노베이션 주식회사 암모니아의 선택산화 촉매 및 이의 제조방법
CN102166521B (zh) * 2010-02-25 2013-03-27 中国石油天然气股份有限公司 一种加氢精制催化剂制备方法
WO2011122603A1 (ja) 2010-03-29 2011-10-06 田中貴金属工業株式会社 表面担持触媒の製造方法
US9101914B2 (en) 2011-03-31 2015-08-11 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst, exhaust gas purifying monolith catalyst, and method for manufacturing exhaust gas purifying catalyst
EP2794090B1 (en) * 2011-12-23 2016-08-10 Shell Internationale Research Maatschappij B.V. Process for preparing hydrocracking catalyst compositions
CN102784655A (zh) * 2012-07-31 2012-11-21 宁波市化工研究设计院有限公司 用于煤焦油加氢脱金属的催化剂及其制备方法
CN104602811B (zh) 2012-09-10 2016-06-29 日产自动车株式会社 废气净化催化剂、废气净化整体式催化剂及废气净化催化剂的制造方法
WO2015087938A1 (ja) * 2013-12-11 2015-06-18 出光興産株式会社 水素化分解処理用触媒および炭化水素の製造方法
CN106414664B (zh) * 2014-05-20 2019-09-13 阿尔法金属公司 用于太阳能电池和半导体制作的可喷射的油墨
DK3233764T3 (da) * 2014-12-19 2020-04-06 Shell Int Research Fremgangsmåde til fremstilling af en katalysator
AU2016202495B2 (en) * 2015-04-23 2020-05-21 Reliance Industries Limited Multi-metallic catalyst system and use of the same in preparing upgraded fuel from biomass
CA2987590C (en) 2015-05-29 2021-01-05 Advanced Refining Technologies Llc High hdn selectivity hydrotreating catalyst
CN106944099B (zh) * 2016-01-07 2019-06-11 中国石油化工股份有限公司 一种加氢处理催化剂的制备方法
WO2019016372A1 (en) * 2017-07-21 2019-01-24 Albemarle Europe Sprl HYDROTREATING CATALYST WITH A COACH COMPRISING TITANIUM AND AN ORGANIC ADDITIVE
SG11202000462VA (en) 2017-07-21 2020-02-27 Albemarle Europe Srl Hydrotreating catalyst with a titanium containing carrier and sulfur containing organic additive

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018714A (en) * 1975-12-03 1977-04-19 Filtrol Corporation Hydrodesulfurization catalyst and process for producing the same
EP0199399A2 (en) * 1985-04-24 1986-10-29 Shell Internationale Researchmaatschappij B.V. Improved hydroconversion catalyst and process
EP0239056A2 (en) * 1986-03-24 1987-09-30 Phillips Petroleum Company Catalytic hydrofining of oil
EP0339640A1 (en) * 1988-04-28 1989-11-02 The Harshaw Chemical Company Alumina-titania composition
JPH06106061A (ja) * 1992-09-29 1994-04-19 Chiyoda Corp 軽油の深度脱硫用水素化触媒
JPH08243407A (ja) * 1995-03-06 1996-09-24 Japan Energy Corp 水素化処理触媒の製造方法
JPH11319567A (ja) * 1998-05-11 1999-11-24 Idemitsu Kosan Co Ltd 水素化脱硫触媒

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526711B1 (ja) 1971-02-01 1977-02-24
JPS5325290A (en) * 1976-08-20 1978-03-08 Mitsubishi Heavy Ind Ltd Production of denitration catalyst
US4080286A (en) * 1976-10-20 1978-03-21 Gulf Research & Development Company Hydrodesulfurization process employing a Group IV-B promoted catalyst
US4382854A (en) * 1978-02-03 1983-05-10 Kaiser Aluminum & Chemical Corporation Ni/Co Mo P on titania-alumina hydrodesulfurizing catalyst and process of hydrodesulfurizing using the same
US4260524A (en) 1979-05-24 1981-04-07 Sumitomo Aluminium Smelting Company, Limited Hollow catalyst carrier and hollow catalyst made of transition-alumina and process for production thereof
US4344867A (en) * 1979-08-13 1982-08-17 Exxon Research & Engineering Co. Hydroprocessing catalysts
GB2101005B (en) 1981-06-02 1984-09-05 Asia Oil Co Ltd Hydrogenation catalyst
WO1982004441A1 (en) * 1981-06-09 1982-12-23 Inooka Masayoshi Process for hydrogenolysis of hydrocarbons
US4743359A (en) * 1982-08-19 1988-05-10 Union Oil Company Of California Reforming and related processes
US4720472A (en) * 1985-08-08 1988-01-19 Phillips Petroleum Company Hydrocracking catalyst for middle distillates
US4895816A (en) * 1987-02-06 1990-01-23 Gardner Lloyd E Support material containing catalyst for fixed hydrofining beds
US4870044A (en) * 1987-03-12 1989-09-26 Phillips Petroleum Company Treated alumina material for fixed hydrofining beds
US4831004A (en) 1987-05-20 1989-05-16 Phillips Petroleum Company Impregnated alumina-containing material
US5089453A (en) * 1990-06-25 1992-02-18 Chevron Research And Technology Company Hydroconversion catalyst and method for making the catalyst
US5198100A (en) * 1990-12-24 1993-03-30 Exxon Research And Engineering Company Hydrotreating using novel hydrotreating catalyst
US5229347A (en) * 1991-05-08 1993-07-20 Intevep, S.A. Catalyst for mild hydrocracking of cracked feedstocks and method for its preparation
JPH0683785B2 (ja) * 1991-06-03 1994-10-26 出光興産株式会社 複合酸化物系触媒担体及びその製造方法並びに該担体を用いた触媒による重質油の処理方法
CA2079924A1 (en) * 1991-10-18 1993-04-19 Kazushi Usui Catalyst composition for hydrotreating of hydrocarbon oils and process for manufacturing the same
FR2688149B1 (fr) * 1992-03-06 1994-04-29 Total Raffinage Distribution Nouvelle solution aqueuse pour l'impregnation de supports de catalyseur, catalyseurs prepares a partir de cette solution et applications de ces catalyseurs.
JP2854484B2 (ja) * 1993-02-03 1999-02-03 出光興産株式会社 灯軽油留分の水素化処理方法
US5719097A (en) * 1993-07-22 1998-02-17 Chang; Clarence D. Catalyst comprising a modified solid oxide
DE4339138A1 (de) 1993-11-16 1995-05-18 Basf Ag Trägerkatalysatoren
US6284314B1 (en) 1993-12-09 2001-09-04 Agency Of Industrial Science & Technology, Ministry Of International Trade & Industry Porous ceramic thin film and method for production thereof
JP3802106B2 (ja) 1995-06-08 2006-07-26 日本ケッチェン株式会社 炭化水素油の水素化処理触媒とその製造方法およびその活性化方法
FR2735489B1 (fr) * 1995-06-16 1997-08-22 Inst Francais Du Petrole Procede de transformation catalytique d'hydrocarbures en composes aromatiques avec un catalyseur contenant du titane, zirconium, hafnium, cobalt, nickel et/ou zinc
JPH09241037A (ja) 1996-03-07 1997-09-16 Nissan Motor Co Ltd 防曇性被膜形成基材およびその製造方法
US5733840A (en) * 1996-06-06 1998-03-31 Norton Chemical Process Products Corporation Catalyst carrier
DE19624923C1 (de) * 1996-06-21 1998-03-12 Siemens Ag Verfahren zur Herstellung eines Katalysators sowie danach hergestellter Katalysator
US6635599B1 (en) 1997-07-15 2003-10-21 Exxonmobil Research & Engineering Company Mixed metal catalyst, its preparation by co-precipitation, and its use
US6197991B1 (en) * 1999-04-29 2001-03-06 General Electric Company Method and catalyst system for producing
US6402989B1 (en) * 1999-07-30 2002-06-11 Conoco Inc. Catalytic partial oxidation process and promoted nickel based catalysts supported on magnesium oxide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018714A (en) * 1975-12-03 1977-04-19 Filtrol Corporation Hydrodesulfurization catalyst and process for producing the same
EP0199399A2 (en) * 1985-04-24 1986-10-29 Shell Internationale Researchmaatschappij B.V. Improved hydroconversion catalyst and process
EP0239056A2 (en) * 1986-03-24 1987-09-30 Phillips Petroleum Company Catalytic hydrofining of oil
EP0339640A1 (en) * 1988-04-28 1989-11-02 The Harshaw Chemical Company Alumina-titania composition
JPH06106061A (ja) * 1992-09-29 1994-04-19 Chiyoda Corp 軽油の深度脱硫用水素化触媒
JPH08243407A (ja) * 1995-03-06 1996-09-24 Japan Energy Corp 水素化処理触媒の製造方法
JPH11319567A (ja) * 1998-05-11 1999-11-24 Idemitsu Kosan Co Ltd 水素化脱硫触媒

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999824A (zh) * 2012-09-17 2019-07-12 国际壳牌研究有限公司 制备加氢裂化催化剂的方法

Also Published As

Publication number Publication date
EP1145763A1 (en) 2001-10-17
US20070135300A1 (en) 2007-06-14
US7598203B2 (en) 2009-10-06
EP1145763B1 (en) 2012-07-04
EP1145763A4 (en) 2004-09-15
DK1145763T3 (da) 2012-10-08

Similar Documents

Publication Publication Date Title
WO2001030494A1 (fr) Catalyseur d'hydrotraitement pour huile hydrocarbonee, support pour celle-ci et procede d'hydrotraitement d'huile hydrocarbonee
JP6134334B2 (ja) シリカ含有アルミナ担体、それから生じさせた触媒およびそれの使用方法
KR101751923B1 (ko) 수첨탈황 촉매 및 이의 제조방법
US20150209766A1 (en) Hydrotreating catalyst and process for preparing the same
JP5922372B2 (ja) 水素化処理触媒及びその製造方法
ITMI20110510A1 (it) Ossidi misti di metalli di transizione, catalizzatori di idrotrattamento da essi ottenuti, e processo di preparazione
CN101590425A (zh) 馏分油加氢催化剂及其制备方法
KR20200034753A (ko) 티타늄 함유 운반체 및 황 함유 유기 첨가제를 이용한 수화 촉매
JPS6313727B2 (ja)
KR20200035067A (ko) 티타늄 함유 운반체 및 유기물 첨가제를 이용한 수화 촉매
JP4916044B2 (ja) 炭化水素油の水素化処理触媒及び炭化水素油の水素化処理方法
JP4673966B2 (ja) 炭化水素油の水素化処理触媒の製造方法及び炭化水素油の水素化処理方法
JP4644351B2 (ja) 金属化合物担持処理耐火性無機酸化物担体及び該担体を用いた水素化処理触媒
JP2001276626A (ja) 水素化処理触媒とその製造方法、及び炭化水素油の水素化処理方法
DE102009023877A1 (de) Geträgerter Katalysator, Verfahren zu seiner Herstellung sowie Verwendung
EP2723494B1 (en) Method of making a hydroprocessing catalyst
JP3244695B2 (ja) 水素化処理触媒の製造方法
JP2008168257A (ja) 水素化処理触媒、その製造方法及び重質油の水素化処理方法
JP2004074148A (ja) チタンを含有した担体、その製造方法、炭化水素油の水素化処理触媒及びそれを用いた水素化処理方法
JP2762371B2 (ja) 触媒担体の製造方法およびその担体を使用した炭化水素処理用触媒の製造方法
JP3333232B2 (ja) 水素化脱硫触媒およびその製造方法
JP3376067B2 (ja) 水素化処理触媒の製造方法
JP2001300325A (ja) 炭化水素油の水素化脱硫脱窒素用触媒およびその製造方法
JP2003010682A (ja) 重質炭化水素油の水素化脱金属触媒
JPH0819741A (ja) 炭化水素油の水素化処理用触媒とその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2000969896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09868628

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000969896

Country of ref document: EP