WO2001019525A1 - Dispositif de traitement des gaz d'echappement d'un moteur a combustion interne - Google Patents

Dispositif de traitement des gaz d'echappement d'un moteur a combustion interne Download PDF

Info

Publication number
WO2001019525A1
WO2001019525A1 PCT/FR2000/002549 FR0002549W WO0119525A1 WO 2001019525 A1 WO2001019525 A1 WO 2001019525A1 FR 0002549 W FR0002549 W FR 0002549W WO 0119525 A1 WO0119525 A1 WO 0119525A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment device
electrostatic precipitator
passage
collecting structure
gases
Prior art date
Application number
PCT/FR2000/002549
Other languages
English (en)
Inventor
Daniel Teboul
Original Assignee
Daniel Teboul
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daniel Teboul filed Critical Daniel Teboul
Priority to AU75262/00A priority Critical patent/AU7526200A/en
Priority to US10/070,932 priority patent/US7198762B1/en
Priority to CA2384755A priority patent/CA2384755C/fr
Priority to JP2001523141A priority patent/JP4870303B2/ja
Priority to EP00964293A priority patent/EP1212141B8/fr
Priority to MXPA02002822A priority patent/MXPA02002822A/es
Priority to BRPI0013978-5A priority patent/BR0013978B1/pt
Priority to DE60034350T priority patent/DE60034350T2/de
Publication of WO2001019525A1 publication Critical patent/WO2001019525A1/fr
Priority to HK03101192.1A priority patent/HK1048963B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/14Plant or installations having external electricity supply dry type characterised by the additional use of mechanical effects, e.g. gravity
    • B03C3/155Filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/01Pretreatment of the gases prior to electrostatic precipitation
    • B03C3/014Addition of water; Heat exchange, e.g. by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/86Electrode-carrying means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0217Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters the filtering elements having the form of hollow cylindrical bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B35/00Engines characterised by provision of pumps for sucking combustion residues from cylinders
    • F02B35/02Engines characterised by provision of pumps for sucking combustion residues from cylinders using rotary pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the treatment of a gaseous medium charged with particles and in particular with polluting components or impurities, solid, liquid or gaseous, contained in a gaseous medium, such as the exhaust gases of an internal combustion engine. .
  • a particular, but not exclusive, application is the purification of exhaust gases from a diesel engine.
  • the pollutants coming out of the exhausts include: carbon components: CO, C0 2 ; nitrogen compounds: NO, N0 2 (generally called nitrogen oxides NO x ) ...; - organic compounds, such as hydrocarbons (HC) ...; sulfur compounds: S0 2 , S0 3 , ...; organic particles; etc.
  • Emissions of organic particles are mainly characteristic of diesel engines and consist of a carbonaceous material (soot), on which various organic species are adsorbed (SOF: Soluble Organic Fraction).
  • oxidation catalysts with a particulate support or with a monolith support, in particular for oxidizing CO and unburnt hydrocarbons.
  • the particles are intended to be trapped in a collecting structure, while with the device described in the second of these two documents, the particles form agglomerates on the collecting structure which then detaches from this collecting surface and are entrained by the flow of gas circulating in the device, before being separated from the latter by means of a mechanical separator.
  • the invention aims to improve known treatment devices, in particular as regards their effectiveness.
  • a device for treating a gaseous medium charged with particles having at least one electrostatic precipitator comprising: a longitudinal envelope; a longitudinal passage for the gases, extending in the envelope and the two opposite ends of which are adjacent to the inlet and outlet of the gases from the electrostatic precipitator, respectively; an emissive structure extending longitudinally and substantially in the center of the passage; and a collecting structure extending longitudinally between the passage and the envelope and comprising a plurality of cavities forming housing for trapping the particles contained in the gaseous medium; characterized in that the emissive structure comprises a plurality of serrated plates arranged transversely to the longitudinal direction of the passage and forming points directed towards the collecting structure. Thanks to such a treatment device, a response is provided to the needs which have just been mentioned. This device is particularly effective in terms of collecting particles, as we will see in more detail below.
  • the serrated plates consist of stars intended to be connected to a circuit providing a stabilized high voltage (several kV).
  • a washer with a central star-shaped recess could, for example, also be suitable.
  • Other solid or perforated geometric shapes preferably having a plurality of vertices directed towards the collecting structure can be arranged between these stars.
  • These geometric shapes can, for example, consist of washers or rings perforated with holes of different diameters.
  • One possible embodiment of the circuit supplying a stabilized high voltage consists in providing a converter or transformer supplying a voltage between 0 and 15 kV with adjustment by a variator.
  • the applied voltage is negative and greater than about 6 kV.
  • the collecting structure preferably includes a separator or eliminator mattress made from a knitted wire.
  • the metallic knitted fabric has an experienced structure facilitating the penetration of the particles into the knitted fabric.
  • the separator is of cylindrical shape and surrounds the serrated plates of the emissive structure, aligned on the axis of the cylindrical shape of the collecting structure.
  • the emissive structure and the collecting structure are mounted on a support structure with which they form a filter cartridge removable from the treatment device.
  • the serrated plates are preferably carried by a rod connected to the circuit supplying a high voltage and which is carried, at each of its ends, by an insulator protected by a bell.
  • the treatment device can advantageously include a second electrostatic precipitator, original in itself, and having metal stars carried by one face of a perforated metal disc connected to the circuit providing a high voltage stabilized and mounted. upstream of a cylindrical separator, made from a knitted wire.
  • the treatment device preferably also includes an oxidation catalyst with a monolithic support upstream of the electrostatic precipitator (s).
  • This treatment device can also include a mechanical filter upstream of the electrostatic precipitator (s) and, where appropriate, the oxidation catalyst, for example for retaining oily emulsions by using a de-saturation filter, for example of the impact type. in inverted V.
  • a mechanical filter upstream of the electrostatic precipitator (s) and, where appropriate, the oxidation catalyst for example for retaining oily emulsions by using a de-saturation filter, for example of the impact type. in inverted V.
  • the mechanical filter comprises a metal mesh filter, that is to say made from a knitted wire or metallic knitted fabric, defining a forced passage for the gaseous medium entering the device treatment and associated with an electrical resistance adapted to raise the temperature of the gaseous medium.
  • Such a filter structure makes it possible to bring the gaseous medium to the operating temperature of the oxidation catalyst. But above all, it makes it possible to produce a particularly compact treatment device by causing the combustion of particles retained in the filter. This results in a lesser quantity of particles to be treated by the electrostatic filter (s) and, consequently, a possible reduction in the size of the treatment device.
  • This treatment device can also be provided with an oxidation air inlet and / or a cleaning air inlet. To combat the back pressure phenomena harmful to the proper functioning of an internal combustion engine and associated with such a device, the latter can also be provided with suction means in downstream of the electrostatic precipitator (s).
  • the treatment device also comprises at least one cylindrical casing for housing the electrostatic precipitator (s) and, if necessary, the oxidation catalyst and / or the mechanical filter.
  • the present invention finally relates to a vehicle equipped with a processing device as defined above.
  • FIG. 1 is a block diagram of an exhaust gas treatment device according to a preferred embodiment of the present invention
  • Figure 2 is a block diagram of a multi-stage exhaust gas treatment device according to another embodiment of the present invention
  • FIG. 3 is a diagram illustrating a motor vehicle equipped with the device of FIG. 2.
  • Such an electrostatic precipitator is based on the combination of the particle charge aspect by creation of ions and the collection of particles under the effect of a local electric field.
  • the energy allowing this excitation and ionization phenomenon can be provided by electromagnetic radiation or by a transfer of kinetic energy by shocks.
  • the corona effect corresponds to the ionization of the gas when the electric field reaches a disruption gradient.
  • the device 1 for treating the exhaust gases of an internal combustion engine of FIG. 1 comprises at least one longitudinal cylindrical casing 10 closed at its ends by two covers 11 and 12 and in which is housed a cartridge 20 provided with a crown effect electrostatic precipitator.
  • This cartridge 20 comprises a cylindrical cage 21 made of sheet metal perforated forming the envelope of this cartridge.
  • Two diametrically opposite openings 22 and 23 are made in this cage 21 to allow the entry and exit of gases in the cartridge 20.
  • These openings 22 and 23 communicate with corresponding passages for entry and exit of gases from the 'envelope 10.
  • Each of these openings 22 and 23 is, moreover, arranged in the longitudinal direction of the cartridge 20, between a collecting structure 24 and an insulator 25, 26 carrying the emissive structure 27 of the electrofilter with crown effect.
  • the collecting structure 24 is produced from a knitted wire in a single piece surrounding the emissive structure 27 between the two openings 22 and 23. It thus delimits a longitudinal cylindrical passage 28 for gases, the two opposite ends of which are adjacent to the two openings 22 and 23.
  • the metal knitted fabric of this collecting structure 24 furthermore comprises a plurality of cavities forming housings capable of trapping the particles contained in the gaseous medium passing through this passage 28, as will be seen more in details below.
  • this knitting makes it possible, by its seasoned structure, to facilitate the penetration of the particles into the thickness of the knitting.
  • the emissive structure 27 comprises a central rod 29 extending axially and carried by the insulators 25 and 26 through which it passes. It comprises, at one of its ends, a terminal 30 for connection to a circuit supplying a stabilized high voltage (not shown in FIG. 1) of the type comprising a converter supplying a negative voltage between 0 and 15 kV, with adjustment by means of a variator. This converter is intended to be connected to the battery of a vehicle receiving the processing device 1.
  • an opening 31 made in the cover 11 allows the passage of a connection cable from the terminal 30 to this high voltage circuit.
  • the cage 21 and, consequently, the collecting structure 24, is, for its part, connected to ground.
  • the serrated plates forming emissive parts and mounted on the rod 29, are constituted by several metal stars 32, that is to say a central support solid provided at its periphery with triangular branches, the points of which are directed towards the collecting structure 24.
  • These stars 32 are arranged transversely to the longitudinal direction of the passage 28 and the first of them is located opposite the inlet opening gas 22.
  • the branches are eight in number here.
  • these stars 32 alternate with metal rings or rings 33 perforated with holes of different diameters.
  • These washers or crowns 33 have, here, the same diameter as that of the stars 32 and are mounted on the rod 29 so as to be arranged transversely to the longitudinal direction of the passage 28.
  • the insulators 25 and 26 are made from vitrified ceramic and each comprise an end disc 34, 35 closing the openings defined by the cage 21 at its two longitudinal ends.
  • a central tubular part 36, 37 surrounds the rod 29 and extends the corresponding disc 34, 35 towards the inside of the cage 21.
  • the external diameter of each of these tubular parts 36, 37 is less than that of the discs 34, 35.
  • a bell 38, 39 is fixed to each of these tubular parts 36, 37, on the side of these opposite the side of connection to the respective disc 34, 35.
  • These bells 38, 39 of diameter smaller than that of the discs 34,
  • Each of the tubular parts 36, 37 of the insulators 25 and 26 is also protected by two concentric deflectors surrounding these tubular parts 36, 37.
  • the deflectors fixed respectively to the disc 34 and to the bell
  • Each pair of concentric deflectors thus forms a baffle for the gas flow present in the cartridge 20.
  • a handle 44 fixed to the disc 35 allows the cartridge 20 to be easily removed from the casing 10.
  • the stars 32 not only play the role of emissive structures of the crown effect electrostatic precipitator, but also make it possible to generate local turbulence and disturbances having in particular the effect of deflecting the particles towards the collecting structure 24 while subjecting them an acceleration, but without however causing a re-flight of the particles already trapped in this collecting structure 24.
  • the efficiency of such a system was measured in the presence and absence of stars.
  • the treatment device was devoid of washers or crowns, of the type with those marked with the numerical reference 33 in FIG. 1.
  • the treatment device subjected to the tests consisted of a metal envelope containing two metallic filter cartridges of the type of that carrying the numerical reference 20 in FIG. 1.
  • the electrofilters of these cartridges were supplied by a stabilized high voltage supply of - 10 kV.
  • This device was mounted on the rear of a Peugeot® 406 HDI brand vehicle equipped with a catalyst, but whose silencer has been removed.
  • the tests were carried out on chassis dynamometers according to the UDC (Urban Driving Cycle i.e. Urban Driving Cycle) and EUDC (Extra Urban Driving Cycle i.e. the Extra-Mu Driving Cycle) ros).
  • the measurement of the collection efficiency of the treatment device was carried out by weighing difference between the gross emissions (without treatment device) and the emissions in the presence of treatment devices placed at the exhaust outlet.
  • this cleaning can be carried out by incorporating an electrical resistance in the collecting structure 24 with a view to burning the particles and regenerating this collecting structure 24 or by injecting air and suction by means of a Venturi system.
  • the increase in the thickness of the metallic knitted fabric of this collecting structure 24 also makes it possible also to reduce the noise produced by the gases during their passage through the treatment device 1.
  • Such a treatment device 1 makes it possible to produce ozone, in particular by reducing to an acceptable extent the space between the stars 32 and the collecting structure 24.
  • This ozone has the advantageous effect of oxidizing certain gaseous compounds present in the exhaust gases.
  • the multi-stage treatment device 100 of FIG. 2 comprises from upstream to downstream, that is to say between an inlet 102 and an outlet 103, a mechanical filter 110, an oxidation catalyst 120, a first electrostatic precipitator 130, a second electrostatic precipitator 130 ′ and suction means 150.
  • the device 1 in FIG. 1 a device for treating the exhaust gas of a diesel engine. All of these elements are housed in two cylindrical envelopes 60, 60 ', insulated at least at the location of the filter 110 and of the oxidation catalyst 120, communicating with each other, and forming in the case of the motor vehicle of FIG. 3, part of the exhaust line located between the exhaust manifold and the silencer of this vehicle.
  • the mechanical filter 110 is, here, fixed to a removable cover 161, closing the upstream end of the longitudinal cylindrical casing 160 and provided with the inlet 2.
  • This mechanical filter 110 comprises two concentric cylinders made of perforated sheet metal 111, 112 having the shape of a strainer. Between these two cylinders 111, 112 are placed an electric heating resistor 113 and a multilayer metallic knit 114. As can be seen in FIG. 2, this mechanical filter 110 defines a forced passage for the exhaust gases entering the device. processing 1 by input 2.
  • the electrical resistance 113 is a resistance known per se, of the type with temperature regulation.
  • a temperature detection probe 115 is provided in the area of the filter 110.
  • This resistor 113 is moreover, here, in the form of a helix and surrounds the inner perforated cylinder 112.
  • Such a mechanical filter 110 makes it possible, if necessary, to bring the exhaust gases to the operating temperature of the oxidation catalyst 120, but also to trap at least part of the particles contained in the exhaust gases and to cause their combustion.
  • the metal knitted fabric 114 is here coated with copper oxide.
  • the electrical resistance 113 will therefore be chosen to bring the exhaust gases to a temperature of at least 200-300 ° C, the maximum being between 700 and 800 ° C.
  • the exhaust gases leaving the mechanical filter 110 with continuous regeneration then pass through the oxidation catalyst 120.
  • the latter comprises a monolith support made of ceramic or metal and intended mainly for ensuring the oxidation of carbon monoxide (CO) , nitrogen monoxide (NO) and hydrocarbons (HC).
  • CO carbon monoxide
  • NO nitrogen monoxide
  • HC hydrocarbons
  • the exhaust gases leaving the oxidation catalyst 120 will then be treated by the first electrostatic precipitator 130 with crown effect, intended to trap at least part of the particles contained in the exhaust gases and which have not been retained by the mechanical filter 110.
  • This electrostatic precipitator 130 comprises an emissive structure 131 upstream of a collecting structure 132. More specifically, the emissive structure comprises a perforated disc 133 having metallic stars 134 projecting from the face of the disc 133 opposite the oxidation catalyst 120. This perforated disc 133 is carried by a threaded rod 135 extending axially and carried by two discs 136a, 136b made of perforated sheet metal enclosing the collecting structure 132. These discs 136a, 136b have a diameter greater than that of the disc 133 and are adjusted to gentle friction inside the casing 160. The downstream end of the threaded rod 135 passes through a removable cover
  • the threaded rod 135 passes through the perforated discs 136a, 136b by means of ceramic insulators 137a-137c.
  • Nuts 138a-138d are arranged on either side of the insulators 137a-137c and the perforated disc 133 to secure the discs 133, 136a and 136b and the threaded rod 135. We will observe, moreover, in the case of the present embodiment, that these discs 133, 136a and 136b extend perpendicular to the threaded rod 135.
  • the collecting structure 132 here connected to ground, comprises a metallic knitted fabric 140, surrounding the insulator 137b and the rod 135, forming a plurality of cavities and extending between the insulator 137b and the casing 160.
  • the metallic knit 114 the latter knit 140 is, here, multilayer.
  • the load-bearing axes stars 134 extend axially. Furthermore, these stars 134 are, here, with eight triangular branches.
  • an air cleaning system making it possible to unclog it periodically before removing it for further cleaning.
  • This system comprises, on the one hand, a non-return valve 141 for injecting air at one of the ends of the zone for receiving the first electrostatic precipitator 130 and a connector 142 mounted on the cover 162, on which one comes connect suction means when it is desired to clean the electrostatic precipitator 130. Thanks to the electrostatic precipitator 130, the particles which have succeeded in passing through the mechanical filter 110 are charged and then attracted by the collecting structure 132, where they are trapped in the pore volume formed by the metallic knit 140.
  • the structure 131 forming an emissive electrode makes it possible to efficiently charge the particles, while the collecting structure 132 makes it possible to effectively retain at least part of the particles passing through the electrostatic precipitator 130, within the cavities. knitting 140.
  • the perforated disc 133 ensures optimum distribution of the exhaust gases before passing through the collecting structure 132.
  • the exhaust gases leaving the electrostatic precipitator then arrive in an expansion box 164 formed by the zone located between the 'downstream end of the electrostatic precipitator 130 and the cap 162.
  • This box 164 communicates by a cylindrical connection 65 with the inside of the cylindrical casing 160', in order to bring the exhaust gases to the second electrostatic precipitator 130 '.
  • the latter is similar to that of FIG. 1, in that the emissive structure 131 'is formed by metallic stars 134' mounted on a threaded rod 135 '.
  • These metallic stars here also with eight branches, are thus aligned on the axis of the envelope 160 ′. They are also offset angularly with respect to each other.
  • the collecting structure 132 ′ is formed by a cylinder made of perforated sheet 139 ′ extending axially, surrounding the stars 134 ′ and surrounded by a metallic knitted fabric 140 ′, forming a plurality of cavities.
  • the emissive structure 131 ′ is here also supplied by a stabilized high voltage (5 kV) by means of the transformer box 163.
  • this second electrostatic precipitator 130 ′ it is possible to treat the exhaust gases once again in order to retain an additional quantity of particles, in particular those which could have escaped from the electrostatic precipitator 130 by flight. It will also be noted that these electrostatic precipitators 130, 130 'constitute cartridges which it is easy to install or remove envelopes 160 and 160', respectively, after having removed the caps 162 and 162 ', respectively.
  • the treatment device 1 preferably comprises suction means 150 downstream of the second electrostatic precipitator 130 ′ and before the outlet 3. These suction the exhaust gas circulating in the envelopes 160 and 160 ′, and comprise, for this purpose, a suction turbine 151 supplied by a motor 152.
  • the exhaust gas treatment device 1 is installed on the exhaust line of a motor vehicle 200 with diesel engine, by means of mounting known per se and between the manifold exhaust and muffler 170 of this vehicle.
  • the management of the operation of the electrical resistance 113, of the transformer box 163 and of the suction means 150 can be ensured by the engine management systems already existing on the vehicle 200, by means of an adaptation of these, or by a additional management system autonomous or coupled to existing systems.
  • the exhaust gases from the vehicle 4 are treated in a particularly efficient manner, both from the point of view of gaseous pollutant components and of particulate pollutant components. Furthermore, this device is easy to install on the vehicle 4 and easy to maintain. In addition, its cost price is relatively moderate by in relation to the benefits provided.
  • the treatment device of the present invention can be used to treat all types of exhaust gas from an internal combustion engine (Diesel, petrol, gas) of any vehicle (automobile, boat, etc.). ..). It can even be installed on a cart for the treatment of exhaust gases from a vehicle under repair in a garage, or even in underground galleries whose gaseous medium is loaded with polluting components.
  • an internal combustion engine Diesel, petrol, gas
  • the treatment device of the present invention can be used to treat all types of exhaust gas from an internal combustion engine (Diesel, petrol, gas) of any vehicle (automobile, boat, etc.). ..). It can even be installed on a cart for the treatment of exhaust gases from a vehicle under repair in a garage, or even in underground galleries whose gaseous medium is loaded with polluting components.
  • the oxidation catalyst with monolithic support can be replaced by an oxidation catalyst with particulate support or any other oxidation catalyst, such as a three-way catalytic converter, or simply be constituted by a catalytic converter. oxidation already existing on the vehicle.
  • electrostatic precipitators of the type of that of FIG. 1 it is possible to use several electrostatic precipitators of the type of that of FIG. 1, one after the other, and if necessary in several cylindrical casings, if the cubic capacity of the internal combustion engine so requires. . It is also possible to use the first electrostatic precipitator 130 without the second electrostatic precipitator 130 'and vice versa.
  • the cylinders made of perforated sheet metal used in the context of the embodiment of FIG. 1 can also be replaced by cylinders produced from a wire mesh or expanded metal.
  • Other mechanical filters such as reverse V-shaped devesiculation filters or finishing filters can complement the treatment device 100 of FIG. 2 or replace the filter 110 or one of the two electrostatic filters 130, 130 ′ .
  • the use of such mechanical filters may prove to be advantageous for optimizing the distribution of the gases or for reducing the noises generated by the device, at the outlet of the latter.
  • the electrical resistance 113 can be replaced by a resistance having a different configuration. One can also consider operating it discontinuously.
  • An air cleaning system can also be provided for second electrostatic precipitator 130 '.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Electrostatic Separation (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Incineration Of Waste (AREA)

Abstract

Le dispositif comporte au moins un électrofiltre (20) à effet couronne comportant une structure émissive (29, 32, 33) et une structure collectrice (24), caractérisé en ce que la structure collectrice (24) comporte une pluralité de cavités piégeant les particules contenues dans le milieu gazeux, tel que des gaz d'échappement d'un moteur à combustion interne. La structure émissive (29, 32, 33) comporte une pluralité de plaques dentelées telles que des étoiles (32), destinées à être reliées à un circuit haute tension. De préférence, la structure collectrice (24) comporte un séparateur réalisé à partir d'un tricot en fil métallique. Avantageusement, ce dispositif est associé à un catalyseur d'oxydation et/ou à un filtre mécanique à régénération en continu et/ou à des moyens d'aspiration.

Description

DISPOSITIF DE TRAITEMENT DES GAZ D'ECHAPPEMENT D'UN MOTEUR A COMBUSTION INTERNE
La présente invention a trait au traitement d'un milieu gazeux chargé de particules et en particulier de composants polluants ou impuretés, solides, liquides ou gazeux, contenus dans un milieu gazeux, tel que les gaz d'échappement d'un moteur à combustion interne.
Une application particulière, mais non exclusive, est la purification des gaz d'échappement d'un moteur Diesel.
Les polluants sortant des échappements comprennent : des composants carbonés : CO, C02 ; des composés azotés : NO, N02 (généralement appelés oxydes d'azote NOx) ... ; - des composés organiques, tels que des hydrocarbures (HC) ... ; des composés soufrés : S02, S03, ... ; des particules organiques ; etc.
Les émissions de particules organiques sont surtout caractéristiques des moteurs Diesel et se composent d'un matériau carboné (suie), sur lequel sont adsorbées des espèces organiques diverses (SOF : Soluble Organic Fraction).
De très nombreux procédés et dispositifs de traitement des gaz d'échappement d'un moteur à combustion interne ont déjà été proposés par le passé.
Il est notamment connu d'utiliser des catalyseurs d'oxydation à support particulaire ou à support monolithe, en particulier pour oxyder le CO et les hydrocarbures imbrûlés.
Pour les particules des moteurs Diesel, il existe également des systèmes de piégeage régénérables.
Des dispositifs de traitement de gaz mettant en œuvre des électrofiltres à effet couronne sont également connus, en particulier des documents EP-A- 0299 197 (US-A-4 871 515) et US-A-4478 613.
Les dispositifs de ces deux documents fonctionnent selon des principes différents. En effet, dans le cas du dispositif objet du premier de ces deux documents, les particules sont destinées à être piégées dans une structure collectrice, tandis qu'avec le dispositif décrit dans le second de ces deux documents, les particules forment des agglomérats sur la structure collectrice qui se détachent ensuite de cette surface collectrice et sont entraînés par le flux de gaz circulant dans le dispositif, avant d'être séparés de celui-ci au moyen d'un séparateur mécanique. L'invention vise à améliorer les dispositifs de traitement connus, notamment en ce qui concerne leur efficacité.
Elle vise également à réaliser un dispositif de traitement qui soit compact, peu onéreux et facile à fabriquer.
Elle propose, à cet effet, un dispositif de traitement d'un milieu gazeux chargé de particules, ayant au moins un électrofiltre à effet couronne comportant : une enveloppe longitudinale ; un passage longitudinal pour les gaz, s'étendant dans l'enveloppe et dont les deux extrémités opposées sont adjacentes à l'entrée et à la sortie des gaz de l'électrofiltre, respectivement ; une structure émissive s'étendant longitudinalement et sensiblement au centre du passage ; et une structure collectrice s'étendant longitudinalement entre le passage et l'enveloppe et comportant une pluralité de cavités formant des logements de piégeage des particules contenues dans le milieu gazeux ; caractérisé en ce que la structure émissive comporte une pluralité de plaques dentelées disposées transversalement à la direction longitudinale du passage et formant des pointes dirigées vers la structure collectrice. Grâce à un tel dispositif de traitement, on apporte une réponse aux besoins qui viennent d'être mentionnés. Ce dispositif s'avère notamment particulièrement efficace en termes de collecte des particules, comme on le verra plus en détail ci-après.
Pour des raisons d'efficacité de collecte et de commodité de réalisation, les plaques dentelées sont constituées par des étoiles destinées à être reliées à un circuit fournissent une haute tension stabilisée (plusieurs kV). Une rondelle avec un évidement central en forme d'étoile pourrait, par exemple, également convenir.
D'autres formes géométriques pleines ou perforées ayant de préférence une pluralité de sommets dirigés vers la structure collectrice peuvent être disposées entre ces étoiles. Ces formes géométriques peuvent, par exemple, être constituées par des rondelles ou couronnes perforées de trous de différents diamètres.
Un mode de réalisation possible du circuit fournissant une haute tension stabilisée consiste à prévoir un convertisseur ou transformateur fournissant une tension comprise entre 0 et 15 kV avec réglage par un variateur.
De préférence, la tension appliquée est négative et supérieure à environ 6 kV.
Egalement pour des raisons d'efficacité, la structure collectrice comporte de préférence un séparateur ou matelas éliminateur réalisé à partir d'un tricot en fil métallique.
Selon le mode de réalisation préféré, le tricot métallique a une structure chevronnée facilitant la pénétration des particules dans le tricot.
En variante, on pourra également mettre en œuvre, par exemple, une structure collectrice pourvue de rainures, cannelures, gorges ... Selon le mode de réalisation préféré, le séparateur est de forme cylindrique et entoure les plaques dentelées de la structure émissive, alignées sur l'axe de la forme cylindrique de la structure collectrice.
Avantageusement, dans ce cas, la structure émissive et la structure collectrice sont montées sur une structure de support avec laquelle elles forment une cartouche filtrante amovible du dispositif de traitement.
Dans le cas d'un dispositif de traitement dont les entrée et sortie de gaz s'étendent transversalement au passage longitudinal pour ces gaz, les plaques dentelées sont, de préférence, portées par une tige reliée au circuit fournissant une haute tension et qui est portée, à chacune de ses extrémités, par un isolateur protégé par une cloche.
Pour augmenter l'efficacité de collecte, le dispositif de traitement peut, avantageusement, comporter un second électrofiltre, original en soi, et ayant des étoiles métalliques portées par une face d'un disque métallique perforé relié au circuit fournissant une haute tension stabilisée et monté en amont d'un séparateur de forme cylindrique, réalisé à partir d'un tricot en fil métallique. Pour traiter les composants polluants gazeux, le dispositif de traitement comporte, de préférence, également un catalyseur d'oxydation à support monolithe en amont du ou des électrofiltres.
Ce dispositif de traitement peut également comporter un filtre mécanique en amont du ou des électrofiltres et, le cas échéant, du catalyseur d'oxydation, par exemple pour retenir des émulsions huileuses par utilisation d'un filtre de dévésiculation, par exemple du type à chocs en V inversé.
Selon une configuration originale en soi, le filtre mécanique comprend un filtre à mailles métalliques, c'est-à-dire réalisé à partir d'un tricot en fil métallique ou tricot métallique, définissant un passage forcé pour le milieu gazeux pénétrant dans le dispositif de traitement et associé à une résistance électrique adaptée à élever la température du milieu gazeux.
Une telle structure filtrante permet d'amener le milieu gazeux à la température de fonctionnement du catalyseur d'oxydation. Mais surtout, elle permet de réaliser un dispositif de traitement particulièrement compact en provoquant la combustion de particules retenues dans le filtre. Il en résulte une quantité moindre de particules à traiter par le ou les électrofiltres et, partant, une réduction possible de la taille du dispositif de traitement.
Ce dispositif de traitement peut également être pourvu d'une entrée d'air d'oxydation et/ou d'une entrée d'air de nettoyage. Pour lutter contre les phénomènes de contre-pression néfastes au bon fonctionnement d'un moteur à combustion interne et associées à un tel dispositif, ce dernier peut également être pourvu de moyens d'aspiration en aval du ou des électrofiltres.
Dans le mode de réalisation préféré, le dispositif de traitement comporte, par ailleurs, au moins une enveloppe cylindrique de logement du ou des électrofiltres et, le cas échéant, du catalyseur d'oxydation et/ou du filtre mécanique.
La présente invention a, enfin, trait à un véhicule équipé d'un dispositif de traitement tel que défini ci-dessus.
D'autres objets, caractéristiques et avantages de la présente invention ressortent de la description qui suit, faite en référence aux dessins annexés sur lesquels : la figure 1 est un schéma de principe d'un dispositif de traitement de gaz d'échappement conforme à un mode de réalisation préféré de la présente invention, la figure 2 est un schéma de principe d'un dispositif de traitement de gaz d'échappement à plusieurs étages, conforme à un autre mode de réalisation de la présente invention ; et la figure 3 est un schéma illustrant un véhicule automobile équipé du dispositif de la figure 2.
Avant de passer à la description de ces figures, on rappellera brièvement le principe de fonctionnement d'un électrofiltre a effet couronne.
Un tel électrofiltre est basé sur la combinaison de l'aspect charge de particules par création d'ions et de la collecte des particules sous l'effet d'un champ électrique local. L'énergie permettant ce phénomène d'excitation et d'ionisation peut être apportée par un rayonnement électromagnétique ou par un transfert d'énergie cinétique par chocs.
L'effet couronne correspond à l'ionisation du gaz lorsque le champ électrique atteint un gradient de disrupture.
Le dispositif 1 de traitement des gaz d'échappement d'un moteur à combustion interne de la figure 1 comporte au moins une enveloppe cylindrique longitudinale 10 fermée à ses extrémités par deux couvercles 11 et 12 et dans laquelle est logée une cartouche 20 pourvue d'un électrofiltre à effet couronne.
Cette cartouche 20 comporte une cage cylindrique 21 en tôle perforée formant l'enveloppe de cette cartouche. Deux ouvertures 22 et 23, diamétralement opposées, sont pratiquées dans cette cage 21 pour permettre l'entrée et la sortie des gaz dans la cartouche 20. Ces ouvertures 22 et 23 communiquent avec des passages correspondant d'entrée et de sortie des gaz de l'enveloppe 10. Chacune de ces ouvertures 22 et 23 est, par ailleurs, disposée dans la direction longitudinale de la cartouche 20, entre une structure collectrice 24 et un isolateur 25, 26 portant la structure émissive 27 de l'électrofiltre à effet couronne.
La structure collectrice 24 est réalisée à partir d'un tricot en fil métallique d'une seule pièce entourant la structure émissive 27 entre les deux ouvertures 22 et 23. Elle délimite ainsi un passage cylindrique longitudinal 28 pour les gaz, dont les deux extrémités opposées sont adjacentes aux deux ouvertures 22 et 23. Le tricot métallique de cette structure collectrice 24 comporte, par ailleurs, une pluralité de cavités formant des logements aptes à piéger les particules contenues dans le milieux gazeux traversant ce passage 28, comme on le verra plus en détails ci-après.
En outre, ce tricot permet, par sa structure chevronnée, de faciliter la pénétration des particules dans l'épaisseur du tricot.
La structure émissive 27 comporte une tige centrale 29 s'étendant axialement et portée par les isolateurs 25 et 26 qu'elle traverse. Elle comporte, à l'une de ses extrémités, une borne 30 de connexion à un circuit fournissant une haute tension stabilisée (non représenté sur la figure 1) du type comportant un convertisseur fournissant une tension négative comprise entre 0 et 15 kV, avec réglage au moyen d'un variateur. Ce convertisseur est destiné à être relié à la batterie d'un véhicule recevant le dispositif de traitement 1.
Une ouverture 31 pratiquée dans le couvercle 11 permet le passage d'un câble de raccordement de la borne 30 à ce circuit haute tension. La cage 21 et, partant, la structure collectrice 24, est, de son côté, reliée à la masse. Dans le cas du mode de réalisation de la figure 1 , les plaques dentelées formant des pièces émissives et montées sur la tige 29, sont constituées par plusieurs étoiles métalliques 32, c'est à dire un support central plein pourvu à sa périphérie de branches triangulaires dont les pointes sont dirigées vers la structure collectrice 24. Ces étoiles 32 sont disposées transversalement à la direction longitudinale du passage 28 et la première d'entre elles est située en face de l'ouverture d'entrée des gaz 22. Les branches sont ici au nombre de huit.
Par ailleurs, ces étoiles 32 alternent avec des rondelles ou couronnes métalliques 33 perforées de trous de différents diamètres. Ces rondelles ou couronnes 33 ont, ici, le même diamètre que celui des étoiles 32 et sont montées sur la tige 29 de manière à être disposées transversalement à la direction longitudinale du passage 28.
Les isolateurs 25 et 26 sont réalisés à partir de céramique vitrifiée et comportent chacun un disque d'extrémité 34, 35 obturant les ouvertures définies par la cage 21 à ses deux extrémités longitudinales. Une partie centrale tubulaire 36, 37 entoure la tige 29 et prolonge le disque correspondant 34, 35 vers l'intérieur de la cage 21. Le diamètre externe de chacune de ces parties tubulaires 36, 37 est inférieur à celui des disques 34, 35.
En outre, une cloche 38, 39 est fixée sur chacune de ces parties tubulaires 36, 37, du côté de celles-ci opposé au côté de raccordement au disque 34, 35 respectif. Ces cloches 38, 39, de diamètre inférieur à celui des disques 34,
35 sont voisines des ouvertures 22 et 23 et ont pour fonction de protéger les isolateurs 25 et 26 du milieu gazeux chargé de particules.
Chacune des parties tubulaires 36, 37 des isolateurs 25 et 26 est, par ailleurs, également protégée par deux déflecteurs concentriques entourant ces parties tubulaires 36, 37.
Les déflecteurs fixés respectivement au disque 34 et à la cloche
38 portent les repères numériques 40 et 41 alors que les déflecteurs fixés respectivement au disque 35 et à la cloche 39 portent les repères numériques
42 et 43. Chaque paire de déflecteur concentrique forme ainsi une chicane pour le flux de gaz présent dans la cartouche 20.
Enfin, une poignée 44 fixée au disque 35 permet de retirer aisément la cartouche 20 de l'enveloppe 10. En fonctionnement, les étoiles 32 jouent non seulement le rôle de structures émissives de l'électrofiltre à effet couronne, mais permettent également de générer des turbulences et perturbations locales ayant notamment pour effet de dévier les particules vers la structure collectrice 24 tout en leur faisant subir une accélération, mais sans toutefois provoquer un réenvol des particules déjà piégées dans cette structure collectrice 24.
Ces turbulences et perturbations sont accrues par la présence des rondelles ou couronnes perforées 33 disposées entre les étoiles 32.
L'efficacité d'un tel système a été mesuré en présence et en l'absence d'étoiles. Dans les deux cas, le dispositif de traitement était dépourvu de rondelles ou couronnes, du type de celles portant le repère numérique 33 sur la figure 1. Le dispositif de traitement soumis aux essais était composé d'une enveloppe métallique contenant deux cartouches filtrantes métalliques du type de celle portant le repère numérique 20 sur la figure 1. Les électrofiltres de ces cartouches étaient alimentés par une alimentation haute tension stabilisée de - 10 kV.
Ce dispositif a été monté à l'arrière d'un véhicule de marque Peugeot® 406 HDI équipé d'un catalyseur, mais dont le silencieux a été supprimé. Les essais ont été réalisés sur bancs à rouleaux selon le cycle d'homologation des véhicules UDC (Urban Driving Cycle c'est à dire Cycle de Conduite Urbaine) et EUDC (Extra Urban Driving Cycle c'est à dire Cycle de Conduite Extra-Mu ros). La mesure d'efficacité de collecte du dispositif de traitement a été effectuée par différence de pesée entre les émissions brutes (sans dispositif de traitement) et les émissions en présence des dispositifs de traitement placés en sortie d'échappement.
Ces essais ont été réalisés sur la base de la norme NF EN ISO 8178-1 à 8.
Ces essais ont révélé des résultats inattendus. En effet, la présence d'étoiles a permis de doubler l'efficacité de collecte et d'atteindre des valeurs moyennes particulièrement élevées de l'ordre de 80 %.
On appréciera également que les contre pressions générées dans ce dispositif de traitement sont minimales et n'augmentent pas au fur et à mesure du colmatage de la structure collectrice 24.
Il est d'ailleurs à noter à cet égard que le nettoyage de cette structure collectrice 24 est relativement facile à effectuer. En effet, il suffit de retirer la cartouche de l'enveloppe 10 en la faisant coulisser dans celle-ci, puis de la plonger par exemple dans un bain à ultrasons.
En variante, ce nettoyage peut être effectué par incorporation d'une résistance électrique dans la structure collectrice 24 en vue de brûler les particules et de régénérer cette structure collectrice 24 ou par injection d'air et aspiration au moyen d'un système à Venturi.
L'augmentation de l'épaisseur du tricot métallique de cette structure collectrice 24 permet par ailleurs également de diminuer le bruit produit par les gaz lors de leur passage dans le dispositif de traitement 1.
On appréciera encore qu'un tel dispositif de traitement 1 permet de produire de l'ozone, en particulier en diminuant dans une mesure acceptable l'espace entre les étoiles 32 et la structure collectrice 24. Cette ozone a pour effet avantageux d'oxyder certains composés gazeux présents dans les gaz d'échappement.
Le dispositif 100 de traitement à plusieurs étages de la figure 2 comporte d'amont en aval, c'est-à-dire entre une entrée 102 et une sortie 103, un filtre mécanique 110, un catalyseur d'oxydation 120, un premier électrofiltre 130, un second électrofiltre 130' et des moyens d'aspiration 150.
Il s'agit, comme pour le dispositif 1 de la figure 1 , d'un dispositif de traitement de gaz d'échappement d'un moteur Diesel. L'ensemble de ces éléments est logé dans deux enveloppes cylindriques 60, 60', calorifugées au moins à l'emplacement du filtre 110 et du catalyseur d'oxydation 120, communiquant l'une avec l'autre, et formant dans le cas du véhicule automobile de la figure 3, une partie de la ligne d'échappement située entre le collecteur d'échappement et le silencieux de ce véhicule. Le filtre mécanique 110 est, ici, fixé à une coiffe amovible 161 , obturant l'extrémité amont de l'enveloppe cylindrique longitudinale 160 et pourvue de l'entrée 2. Ce filtre mécanique 110 comporte deux cylindres concentriques en tôle perforée 111 , 112 ayant la forme d'une crépine. Entre ces deux cylindres 111 , 112 sont placés une résistance électrique chauffante 113 et un tricot métallique multicouche 114. Comme on peut le voir sur la figure 2, ce filtre mécanique 110 définit un passage forcé pour les gaz d'échappement pénétrant dans le dispositif de traitement 1 par l'entrée 2.
La résistance électrique 113 est une résistance connue en soi, du type à régulation de température. A cet égard, il est prévu une sonde 115 de détection de température dans la zone du filtre 110. Cette résistance 113 est par ailleurs, ici, en forme d'hélice et entoure le cylindre perforé intérieur 112.
Elle est, en outre, destinée à être alimentée par la batterie du véhicule pour élever la température des gaz d'échappement traversant le filtre mécanique 110. Un tel filtre mécanique 110 permet, le cas échéant, d'amener les gaz d'échappement à la température de fonctionnement du catalyseur d'oxydation 120, mais également de piéger une partie au moins des particules contenues dans les gaz d'échappement et d'en provoquer la combustion.
A cet égard, afin d'abaisser la température de début d'oxydation des particules carbonées, le tricot métallique 114 est, ici, enduit d'oxyde de cuivre.
En pratique, la résistance électrique 113 sera donc choisie pour amener les gaz d'échappement à une température d'au moins 200-300°C, le maximum étant compris entre 700 et 800°C. Les gaz d'échappement sortant du filtre mécanique 110 à régénération en continu traversent ensuite le catalyseur d'oxydation 120. Ce dernier comporte un support monolithe réalisé en céramique ou en métal et destiné principalement à assurer l'oxydation du monoxyde de carbone (CO), du monoxyde d'azote (NO) et des hydrocarbures (HC). A cet égard, si l'on souhaite favoriser l'oxydation du CO et des hydrocarbures, au détriment du NO, on pourra installer une soupape d'entrée d'air en amont du catalyseur d'oxydation 120. Cet air servira également, dans ce cas, à favoriser la combustion au niveau du filtre 110.
Les gaz d'échappement sortant du catalyseur d'oxydation 120 vont alors être traités par le premier électrofiltre 130 à effet couronne, destiné à piéger au moins une partie des particules contenues dans les gaz d'échappement et n'ayant pas été retenues par le filtre mécanique 110.
Cet électrofiltre 130 comporte une structure émissive 131 en amont d'une structure collectrice 132. Plus précisément, la structure émissive comporte un disque perforé 133 ayant des étoiles métalliques 134 faisant saillie de la face du disque 133 en regard du catalyseur d'oxydation 120. Ce disque perforé 133 est porté par une tige filetée 135 s'étendant axialement et portée par deux disques 136a, 136b en tôle perforée enserrant la structure collectrice 132. Ces disques 136a, 136b ont un diamètre supérieur à celui du disque 133 et sont ajustés à frottement doux à l'intérieur de l'enveloppe 160. L'extrémité aval de la tige filetée 135 traverse une coiffe amovible
162 obturant l'extrémité aval de l'enveloppe 160. Cette extrémité est destinée à être reliée à un boîtier transformateur 163, destiné à être relié à la batterie du véhicule et à permettre d'appliquer à l'électrofiltre 130 une haute tension stabilisée (en pratique environ 110 kV). A cet égard, afin d'isoler la structure émissive 131 de la structure collectrice 132, la tige filetée 135 traverse les disques perforés 136a, 136b par l'intermédiaire d'isolateurs 137a-137c en céramique.
Des écrous 138a-138d sont disposés de part et d'autre des isolateurs 137a-137c et du disque perforé 133 pour solidariser les disques 133, 136a et 136b et la tige filetée 135. On observera, d'ailleurs, dans le cas du présent mode de réalisation, que ces disques 133, 136a et 136b s'étendent perpendiculairement à la tige filetée 135.
La structure collectrice 132, reliée ici à la masse, comporte un tricot métallique 140, entourant l'isolateur 137b et la tige 135, formant une pluralité de cavités et s'étendant entre l'isolateur 137b et l'enveloppe 160. Comme pour le tricot métallique 114, ce dernier tricot 140 est, ici, multicouche. Comme on peut encore le voir sur la figure 2, les axes porteurs des étoiles 134 s'étendent axialement. Par ailleurs, ces étoiles 134 sont, ici, à huit branches triangulaires.
En outre, il est également prévu dans la zone du premier électrofiltre 130 un système de nettoyage par air, permettant de le décolmater périodiquement avant d'en effectuer la dépose pour un nettoyage plus poussé. Ce système comporte, d'une part, une soupape anti-retour 141 d'injection d'air à l'une des extrémités de la zone de réception du premier électrofiltre 130 et un raccord 142 monté sur la coiffe 162, sur lequel on vient brancher des moyens d'aspiration lorsque l'on souhaite nettoyer l'électrofiltre 130. Grâce à l'électrofiltre 130, les particules qui ont réussi à traverser le filtre mécanique 110 sont chargées puis attirées par la structure collectrice 132, où elles sont piégées dans le volume poreux formé par le tricot métallique 140.
Grâce à la mise en œuvre d'étoiles 134, la structure 131 formant électrode émissive permet de charger efficacement les particules, tandis que la structure collectrice 132 permet de retenir efficacement une partie au moins des particules traversant l'électrofiltre 130, au sein des cavités du tricot 140.
Par ailleurs, le disque perforé 133 assure une répartition optimale des gaz d'échappement avant la traversée de la structure collectrice 132. Les gaz d'échappement sortant de l'électrofiltre arrivent alors dans un caisson de détente 164 formé par la zone située entre l'extrémité aval de l'électrofiltre 130 et la coiffe 162. Ce caisson 164 communique par un raccord cylindrique 65 avec l'intérieur de l'enveloppe cylindrique 160', afin d'amener les gaz d'échappement au second électrofiltre 130'. Ce dernier est similaire à celui de la figure 1 , en ce que la structure émissive 131' est formée par des étoiles métalliques 134' montées sur une tige filetée 135'.
Ces étoiles métalliques, ici également à huit branches, sont ainsi alignées sur l'axe de l'enveloppe 160'. Elles sont par ailleurs décalées angulairement l'une par rapport à l'autre.
Pour le reste, on retrouve des disques métalliques perforés 136'a, 136'b, des isolateurs 137'a-137'd et des écrous 138'a-138'l. Par ailleurs, la structure collectrice 132' est formée par un cylindre en tôle perforée 139' s'étendant axialement, entourant les étoiles 134' et entouré par un tricot métallique 140', formant une pluralité de cavités.
La structure émissive 131' est, ici, également alimentée par une haute tension stabilisée (5 kV) au moyen du boîtier transformateur 163.
Grâce à ce second électrofiltre 130' à effet couronne, il est possible de traiter une fois de plus les gaz d'échappement afin de retenir une quantité supplémentaire de particules, en particulier celles qui auraient pu s'échapper de l'électrofiltre à effet couronne 130 par réenvol. On notera également que ces électrofiltres 130, 130' constituent des cartouches qu'il est facile d'installer ou de retirer des enveloppes 160 et 160', respectivement, après avoir ôté les coiffes 162 et 162', respectivement.
Pour lutter contre les phénomènes de contre-pressions néfastes au bon fonctionnement du moteur, le dispositif de traitement 1 comporte, de préférence, des moyens d'aspiration 150 en aval du second électrofiltre 130' et avant la sortie 3. Ceux-ci aspirent les gaz d'échappement circulant dans les enveloppes 160 et 160', et comprennent, à cet effet, une turbine d'aspiration 151 alimentée par un moteur 152.
Comme illustré sur la figure 3, le dispositif de traitement des gaz d'échappement 1 est installé sur la ligne d'échappement d'un véhicule automobile 200 à moteur Diesel, grâce à des moyens de montage connus en soi et entre le collecteur d'échappement et le silencieux 170 de ce véhicule.
La gestion du fonctionnement de la résistance électrique 113, du boîtier transformateur 163 et des moyens d'aspiration 150 peut être assurée par les systèmes de gestion du moteur déjà existants sur le véhicule 200, moyennant une adaptation de ceux-ci, ou bien par un système de gestion additionnel autonome ou accouplé aux systèmes existants.
Grâce à un tel dispositif de traitement 1 , les gaz d'échappement du véhicule 4 sont traités de manière particulièrement efficace, tant du point de vue des composants polluants gazeux que des composants polluants particulaires. Par ailleurs, ce dispositif est facile à installer sur le véhicule 4 et facile à entretenir. En outre, son prix de revient est relativement modéré par rapport aux avantages procurés.
On notera plus généralement que le dispositif de traitement de la présente invention peut être utilisé pour traiter tous types de gaz d'échappement d'un moteur à combustion interne (Diesel, essence, gaz) d'un véhicule quelconque (automobile, bateau, ...). Il peut même être installé sur un chariot pour le traitement des gaz d'échappement d'un véhicule en réparation dans un garage, voire dans des galeries souterraines dont le milieu gazeux est chargé de composants polluants.
Bien entendu, la présente demande ne se limite nullement au mode de réalisation choisi et représenté, mais englobe toute variante à la portée de l'homme du métier.
En particulier, le catalyseur d'oxydation à support monolithe peut être remplacé par un catalyseur d'oxydation à support particulaire ou tout autre catalyseur d'oxydation, tel qu'un pot catalytique à trois voies, ou simplement être constitué par un catalyseur d'oxydation existant déjà sur le véhicule.
Par ailleurs, il est possible de mettre en œuvre plusieurs électrofiltres du type de celui de la figure 1 , l'un à la suite de l'autre, et si nécessaire dans plusieurs enveloppes cylindriques, si la cylindrée du moteur à combustion interne le requiert. Il est également possible d'utiliser le premier électrofiltre 130 sans le second électrofiltre 130' et vice versa.
Les cylindres en tôle perforée utilisés dans le cadre du mode de réalisation de la figure 1 peuvent également être remplacés par des cylindres réalisés à partir d'un treillis métallique ou de métal déployé.
D'autres filtres mécaniques, tels que des filtres de dévésiculation à chocs en V inversé ou des filtres de finition peuvent venir compléter le dispositif de traitement 100 de la figure 2 ou remplacer le filtre 110 ou l'un des deux électrofiltres 130, 130'. L'utilisation de tels filtres mécaniques peut s'avérer intéressante pour optimiser la répartition des gaz ou pour réduire les bruits générés par le dispositif, en sortie de ce dernier. La résistance électrique 113 peut être remplacée par une résistance ayant une configuration différente. On peut également envisager de faire fonctionner celle-ci de façon discontinue. Un système de nettoyage par air peut également être prévu pour du second électrofiltre 130'.

Claims

REVENDICATIONS
1. Dispositif de traitement d'un milieu gazeux chargé de particules, ayant au moins un électrofiltre (20 ; 130') à effet couronne comportant : - une enveloppe longitudinale ; un passage longitudinal (28) pour les gaz, s'étendant dans l'enveloppe et dont les deux extrémités opposées sont adjacentes à l'entrée (22) et à la sortie (23) des gaz de l'électrofiltre, respectivement ; une structure émissive (32, 134') s'étendant longitudinalement et sensiblement au centre du passage ; et une structure collectrice (24 ; 140') s'étendant longitudinalement entre le passage et l'enveloppe et comportant une pluralité de cavités formant des logements de piégeage des particules contenues dans le milieu gazeux ; caractérisé en ce que la structure émissive comporte une pluralité de plaques dentelées (32 ; 134') disposées transversalement à la direction longitudinale du passage et formant des pointes dirigées vers la structure collectrice (24 ; 140').
2. Dispositif de traitement selon la revendication 1 , caractérisé en ce que les plaques dentelées sont constituées par des étoiles destinées à être reliées à un circuit fournissant une haute tension stabilisée.
3. Dispositif de traitement selon la revendication 1 ou 2, caractérisé en ce que la structure collectrice comporte un séparateur réalisé à partir d'un tricot en fil métallique.
4. Dispositif de traitement selon la revendication 3, caractérisé en ce que le séparateur est de forme cylindrique et entoure les plaques dentelées de la structure émissive, alignées sur l'axe de la forme cylindrique de la structure collectrice.
5. Dispositif de traitement selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la structure émissive et la structure collectrice sont montées sur une structure de support avec laquelle elles forment une cartouche filtrante amovible du dispositif de traitement.
6. Dispositif de traitement selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les plaques dentelées alternent avec des rondelles ou couronnes (33) perforées et disposées transversalement à la direction longitudinale du passage.
7. Dispositif de traitement selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comporte une entrée et une sortie de gaz s'étendant transversalement au passage longitudinal pour ces gaz, et les plaques dentelées sont portées par une tige reliée à un circuit fournissant une haute tension stabilisée et qui est portée, à chacune de ses extrémités, par un isolateur protégé par une cloche.
8. Dispositif de traitement selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comporte un second électrofiltre ayant des étoiles métalliques portées par une face d'un disque métallique perforé (133) relié au circuit fournissant une haute tension stabilisée et monté en amont d'un séparateur (132) de forme cylindrique, réalisé à partir d'un tricot en fil métallique.
9. Dispositif de traitement selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comporte un catalyseur d'oxydation (120) à support monolithe en amont du ou des électrofiltres.
10. Dispositif de traitement selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comporte un filtre mécanique (110) en amont du ou des électrofiltres et, le cas échéant, du catalyseur d'oxydation (120).
11. Dispositif de traitement selon la revendication 10, caractérisé en ce que le filtre mécanique (110) comprend un filtre à mailles métalliques (114), définissant un passage forcé pour le milieu gazeux pénétrant dans le dispositif de traitement et associé à une résistance électrique (113) adaptée à élever la température du milieu gazeux.
12. Dispositif de traitement selon l'une quelconque des revendications 1 à 11 , caractérisé en ce qu'il comporte une entrée d'air d'oxydation et/ou une entrée (141) d'air de nettoyage.
13. Dispositif de traitement selon l'une quelconque des revendications 1 à 12, caractérisé en ce qu'il comporte des moyens d'aspiration (150) en aval du ou des électrofiltres (130, 130').
14. Dispositif de traitement selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'il comporte au moins une enveloppe cylindrique de logement du ou des électrofiltres et, le cas échéant, du catalyseur d'oxydation (120) et/ou du filtre mécanique (110).
15. Utilisation d'un dispositif de traitement tel que défini par l'une quelconque des revendications 1 à 14 pour le traitement des gaz d'échappement d'un moteur à combustion interne.
16. Véhicule équipé d'un dispositif de traitement tel que défini par l'une quelconque des revendications 1 à 15.
PCT/FR2000/002549 1999-09-14 2000-09-14 Dispositif de traitement des gaz d'echappement d'un moteur a combustion interne WO2001019525A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU75262/00A AU7526200A (en) 1999-09-14 2000-09-14 Device for treating an internal combustion engine exhaust gases
US10/070,932 US7198762B1 (en) 1999-09-14 2000-09-14 Device for treating an internal combustion engine exhaust gases
CA2384755A CA2384755C (fr) 1999-09-14 2000-09-14 Dispositif de traitement des gaz d'echappement d'un moteur a combustion interne
JP2001523141A JP4870303B2 (ja) 1999-09-14 2000-09-14 内燃機関を備える発動機の排気ガス処理装置
EP00964293A EP1212141B8 (fr) 1999-09-14 2000-09-14 Dispositif de traitement des gaz d'echappement d'un moteur a combustion interne
MXPA02002822A MXPA02002822A (es) 1999-09-14 2000-09-14 Dispositivo de tratamiento de gases de escape de un motor de combustion interna.
BRPI0013978-5A BR0013978B1 (pt) 1999-09-14 2000-09-14 Dispositivo tratamento de um meio gasoso carregado de partículas
DE60034350T DE60034350T2 (de) 1999-09-14 2000-09-14 Vorrichtung zur behandlung von verbrennungsabgasen einer brennkraftmaschine
HK03101192.1A HK1048963B (zh) 1999-09-14 2003-02-18 內燃機的尾氣處理方法和裝置及包括該裝置的運輸工具

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9911474A FR2798303B1 (fr) 1999-09-14 1999-09-14 Dispositif de traitement d'un milieu gazeux, en particulier des gaz d'echappement d'un moteur a combustion interne, et vehicule equipe d'un tel dispositif
FR99/11474 1999-09-14

Publications (1)

Publication Number Publication Date
WO2001019525A1 true WO2001019525A1 (fr) 2001-03-22

Family

ID=9549818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002549 WO2001019525A1 (fr) 1999-09-14 2000-09-14 Dispositif de traitement des gaz d'echappement d'un moteur a combustion interne

Country Status (17)

Country Link
US (1) US7198762B1 (fr)
EP (1) EP1212141B8 (fr)
JP (1) JP4870303B2 (fr)
KR (1) KR100760242B1 (fr)
CN (1) CN1242849C (fr)
AT (1) ATE359124T1 (fr)
AU (1) AU7526200A (fr)
BR (1) BR0013978B1 (fr)
CA (1) CA2384755C (fr)
DE (1) DE60034350T2 (fr)
ES (1) ES2284526T3 (fr)
FR (1) FR2798303B1 (fr)
HK (1) HK1048963B (fr)
MX (1) MXPA02002822A (fr)
RU (1) RU2256506C2 (fr)
WO (1) WO2001019525A1 (fr)
ZA (1) ZA200202074B (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839903A1 (fr) * 2002-05-23 2003-11-28 Renault Sa Dispositif de filtrage de gaz d'echappement charges de particules, ensemble de filtrage et procede de filtrage
WO2005031131A3 (fr) * 2003-09-30 2005-06-09 Tom Tary Silencieux modulaire avec ensemble cartouche amovible
US7316735B2 (en) 2003-08-29 2008-01-08 Mitsusbishi Heavy Industries, Ltd. Dust collector
WO2015155449A1 (fr) 2014-04-07 2015-10-15 Daniel Teboul Dispositif de filtration
CN105464775A (zh) * 2015-12-31 2016-04-06 河南五星科技有限公司 树形出气管路及气体净化器
WO2019243715A1 (fr) 2018-06-22 2019-12-26 Daniel Teboul Dispositif de purification d'un milieu gazeux chargé de particules

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585803B1 (en) * 2000-05-11 2003-07-01 University Of Southern California Electrically enhanced electrostatic precipitator with grounded stainless steel collector electrode and method of using same
FR2822893B1 (fr) * 2001-03-29 2003-07-18 Renault Systeme de traitement des gaz d'echappement
JP4265120B2 (ja) * 2001-07-19 2009-05-20 株式会社豊田中央研究所 内燃機関の排ガス浄化装置
CN1646797A (zh) * 2002-03-01 2005-07-27 普尔泰科有限公司 气流配置装置和从气流中除去污染物的装置的改进
FR2841800B1 (fr) * 2002-07-02 2005-05-06 Faurecia Sys Echappement Procede et dispositif pour collecter des particules de suie dans une zone permettant leur elimination
FR2861802B1 (fr) * 2003-10-30 2006-01-20 Renault Sas Dispositif electronique pour controler le fonctionnement d'un filtre electrostatique dispose dans la ligne d'echappement d'un vehicule automobile
JP4244022B2 (ja) 2004-04-28 2009-03-25 日新電機株式会社 ガス処理装置
WO2006064805A1 (fr) * 2004-12-17 2006-06-22 Munekatsu Furugen Moyen de traitement electrique pour gaz d’echappement de moteur diesel et son dispositif
JP2006224054A (ja) * 2005-02-21 2006-08-31 Matsushita Electric Ind Co Ltd 電気集塵ユニット
DE102005023521B3 (de) * 2005-05-21 2006-06-29 Forschungszentrum Karlsruhe Gmbh Nasselektrostatische Ionisierungsstufe in einer elektrostatischen Abscheideeinrichtung
JP4910932B2 (ja) 2007-08-01 2012-04-04 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE202007016125U1 (de) * 2007-11-19 2009-05-28 Burkhardt, Roswitha Rußpartikelfilter mit variabel gesteuerter Rußabbrennung
DE102009030804B4 (de) * 2009-06-27 2011-07-28 Karlsruher Institut für Technologie, 76131 Elektrostatischer Abscheider zur Partikelabscheidung
US7959883B2 (en) * 2009-08-28 2011-06-14 Corning Incorporated Engine exhaust gas reactors and methods
DE102009041091A1 (de) * 2009-09-14 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Behandlung von Rußpartikel enthaltendem Abgas
US8092768B2 (en) * 2010-02-11 2012-01-10 Energy & Environmental Research Center Foundation Advanced particulate matter control apparatus and methods
FR2961852A1 (fr) 2010-06-28 2011-12-30 Daniel Teboul Dispositif de traitement des gaz d'echappement des moteurs a combustion interne, notamment diesel, comprenant au moins un element filtrant catalytique a plaques minces en metal etire.
RU2445475C1 (ru) * 2010-07-27 2012-03-20 Государственное образовательное учреждение высшего профессионального образования "Самарский государственный университет путей сообщения" (СамГУПС) Нейтрализатор отработавших газов
DE102010045508A1 (de) * 2010-09-15 2012-03-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Behandlung von Rußpartikel enthaltendem Abgas
DE102010051655A1 (de) * 2010-11-17 2012-05-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung zur Behandlung von Rußpartikel enthaltendem Abgas
RU2489646C1 (ru) * 2011-12-27 2013-08-10 Открытое акционерное общество "Российский концерн по производству электрической и тепловой энергии на атомных станциях" (ОАО "Концерн Росэнергоатом") Пароводяной подогреватель
CN102705843B (zh) * 2012-05-25 2014-12-03 华南理工大学 一种烧除尾气中pm2.5颗粒物的处理装置
US9010096B2 (en) * 2012-08-24 2015-04-21 Tenneco Automotive Operating Company Inc. Exhaust component mounting system
TWI579052B (zh) * 2013-06-20 2017-04-21 Electrostatic dust collector and air cleaning equipment to prevent contamination of the electrode
CN103623931A (zh) * 2013-12-06 2014-03-12 朝阳双凌环保设备有限公司 调质器正电荷电极装置及其应用
CN103801457B (zh) * 2014-02-19 2016-04-06 中国日用化学工业研究院 一种湿式静电除雾器用高气速碟型阴极及安装
CN104001400A (zh) * 2014-05-30 2014-08-27 张志鹏 湿式高压电离除尘除雾器
SE538254C2 (sv) * 2014-08-14 2016-04-19 Scania Cv Ab Avgasefterbehandlingssystem innefattande medel för att fångaupp katalysatorgifter
US9546596B1 (en) * 2015-09-16 2017-01-17 General Electric Company Silencer panel and system for having plastic perforated side wall and electrostatic particle removal
CN105649715B (zh) * 2016-03-22 2018-06-29 赵云峰 利用静电式尾气净化捕集装置进行除尘的方法
DE102016220770A1 (de) * 2016-10-21 2018-04-26 Elringklinger Ag Abscheidevorrichtung, Motorvorrichtung und Abscheideverfahren
DE102017203268A1 (de) 2017-03-01 2018-09-06 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Abscheidung von Partikeln aus einem Gasstrom für eine Brennkraftmaschine
CN107339133A (zh) * 2017-07-14 2017-11-10 太仓诚泽网络科技有限公司 车用尾气净化***
KR102066479B1 (ko) * 2018-10-10 2020-01-15 주식회사 알링크 전도성 필터 유닛, 전도성 필터 유닛을 포함하는 전도성 필터 모듈, 및 전도성 필터 모듈이 구비된 미세먼지 제거 시스템
US20220250087A1 (en) * 2018-10-22 2022-08-11 Shanghai Bixiufu Enterprise Management Co., Ltd. Engine exhaust dust removing system and method
CN109629635B (zh) * 2018-12-24 2020-10-30 双峰县九峰农机制造科技有限公司 一种自洁式二次供水水箱
CN109915248B (zh) * 2019-03-21 2020-07-17 福建德普柯发电设备有限公司 用于数据运算中心的具有可拆卸尾气***的柴油发电机组
CN111852621B (zh) * 2020-06-18 2022-06-28 上海宸云环境科技有限公司 电加热再生型柴油机颗粒物净化器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0256325A2 (fr) * 1986-08-01 1988-02-24 Christian Bergemann Filtre d'élimination des particules de suie, en particulier dans le courant des gas d'échappement d'un moteur diesel
EP0367587A2 (fr) * 1988-11-01 1990-05-09 Refaat A. Kammel Oxydeur pour les gaz d'échappement de moteur Diesel
US5492677A (en) * 1993-06-02 1996-02-20 Ajiawasu Kabushiki Kaisha Contaminated air purifying apparatus
US5787704A (en) * 1993-08-10 1998-08-04 Cravero; Humberto Alexander Electronic purification of exhaust gases
WO1999011909A1 (fr) * 1997-09-02 1999-03-11 Thermatrix, Inc. Procede et systeme de reduction des emissions des moteurs a combustion interne

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB256325A (en) 1925-05-07 1926-08-09 Alexander Gemmell Murdoch Improvements in and relating to shop roller blinds
GB367587A (en) 1931-03-12 1932-02-25 Alan Richard Powell Improvements in or relating to the electro-deposition of palladium
JPS56118515A (en) * 1980-02-26 1981-09-17 Toyota Central Res & Dev Lab Inc Device for decreasing soot
JPS6043113A (ja) * 1983-08-18 1985-03-07 Mitsubishi Motors Corp デイ−ゼル排出ガス浄化装置
US5121601A (en) * 1986-10-21 1992-06-16 Kammel Refaat A Diesel engine exhaust oxidizer
AU647491B2 (en) * 1990-07-02 1994-03-24 Carl M. Fleck Process and device for cleaning exhaust gases
JPH0549972A (ja) * 1991-08-09 1993-03-02 Nippondenso Co Ltd サイクロン分離装置
JPH07119437A (ja) * 1993-10-18 1995-05-09 Isuzu Ceramics Kenkyusho:Kk 排気ガス処理装置
JP2908252B2 (ja) * 1994-10-04 1999-06-21 株式会社ヤマダコーポレーション 排ガス浄化排出装置
JP3375790B2 (ja) * 1995-06-23 2003-02-10 日本碍子株式会社 排ガス浄化システム及び排ガス浄化方法
JP4016134B2 (ja) * 1996-06-13 2007-12-05 俊介 細川 ガス処理装置
JPH1047037A (ja) * 1996-07-29 1998-02-17 Teikoku Piston Ring Co Ltd 微粒子分離装置
JPH11141327A (ja) * 1997-11-05 1999-05-25 Toyota Motor Corp 内燃機関の排気浄化装置
US6436170B1 (en) * 2000-06-23 2002-08-20 Air Products And Chemical, Inc. Process and apparatus for removing particles from high purity gas systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0256325A2 (fr) * 1986-08-01 1988-02-24 Christian Bergemann Filtre d'élimination des particules de suie, en particulier dans le courant des gas d'échappement d'un moteur diesel
EP0367587A2 (fr) * 1988-11-01 1990-05-09 Refaat A. Kammel Oxydeur pour les gaz d'échappement de moteur Diesel
US5492677A (en) * 1993-06-02 1996-02-20 Ajiawasu Kabushiki Kaisha Contaminated air purifying apparatus
US5787704A (en) * 1993-08-10 1998-08-04 Cravero; Humberto Alexander Electronic purification of exhaust gases
WO1999011909A1 (fr) * 1997-09-02 1999-03-11 Thermatrix, Inc. Procede et systeme de reduction des emissions des moteurs a combustion interne

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839903A1 (fr) * 2002-05-23 2003-11-28 Renault Sa Dispositif de filtrage de gaz d'echappement charges de particules, ensemble de filtrage et procede de filtrage
WO2003100226A1 (fr) * 2002-05-23 2003-12-04 Renault S.A.S. Dispositif et procede de filtrage de gaz d'echappement charges de particules
US7316735B2 (en) 2003-08-29 2008-01-08 Mitsusbishi Heavy Industries, Ltd. Dust collector
WO2005031131A3 (fr) * 2003-09-30 2005-06-09 Tom Tary Silencieux modulaire avec ensemble cartouche amovible
WO2015155449A1 (fr) 2014-04-07 2015-10-15 Daniel Teboul Dispositif de filtration
CN105464775A (zh) * 2015-12-31 2016-04-06 河南五星科技有限公司 树形出气管路及气体净化器
CN105464775B (zh) * 2015-12-31 2018-05-04 河南五星科技有限公司 树形出气管路及气体净化器
WO2019243715A1 (fr) 2018-06-22 2019-12-26 Daniel Teboul Dispositif de purification d'un milieu gazeux chargé de particules
FR3082760A1 (fr) * 2018-06-22 2019-12-27 Daniel Teboul Dispositif de purification d'un milieu gazeux charge de particules

Also Published As

Publication number Publication date
HK1048963A1 (en) 2003-04-25
EP1212141A1 (fr) 2002-06-12
DE60034350T2 (de) 2007-10-25
HK1048963B (zh) 2006-10-13
US7198762B1 (en) 2007-04-03
CA2384755A1 (fr) 2001-03-22
BR0013978A (pt) 2002-05-07
ATE359124T1 (de) 2007-05-15
AU7526200A (en) 2001-04-17
JP2003509615A (ja) 2003-03-11
JP4870303B2 (ja) 2012-02-08
FR2798303B1 (fr) 2001-11-09
ZA200202074B (en) 2003-06-13
ES2284526T3 (es) 2007-11-16
CN1373689A (zh) 2002-10-09
CN1242849C (zh) 2006-02-22
FR2798303A1 (fr) 2001-03-16
EP1212141B8 (fr) 2007-08-01
CA2384755C (fr) 2010-05-25
KR20020048935A (ko) 2002-06-24
MXPA02002822A (es) 2002-10-23
RU2256506C2 (ru) 2005-07-20
EP1212141B1 (fr) 2007-04-11
KR100760242B1 (ko) 2007-09-19
BR0013978B1 (pt) 2014-05-20
DE60034350D1 (de) 2007-05-24

Similar Documents

Publication Publication Date Title
EP1212141B1 (fr) Dispositif de traitment des gaz d'echappement d'un moteur a combustion interne
EP0907823B1 (fr) Dispositif et procede de filtration des gaz d'echappement d'un moteur a combustion interne et vehicule equipe d'un tel dispositif
FR2871848A1 (fr) Procede et dispositif de regeneration definie de surfaces encombrees de suie
EP1200177B1 (fr) Systeme de neutralisation de gaz polluants par pyrolyse
CA2490790A1 (fr) Filtration electrostatique et transformation de particules des milieux gazeux
WO2008107598A1 (fr) Dispositif de filtre electrostatique pour la capture et la destruction de particules de suie contenues dans les gaz d'echappement d'un moteur a combustion
FR2907843A1 (fr) Dispositif electrique de capture de particules de suie de gaz d'echappement de moteur a combustion interne.
FR2822893A1 (fr) Systeme de traitement des gaz d'echappement
FR2904656A1 (fr) Dispositif de traitement de polluants contenus dans des effluents gazeux d'un vehicule automobile et procede associe.
EP1674160B1 (fr) Filtre à particules pour le traitement de gaz d'échappement issus d'un moteur à combustion interne de véhicule automobile et procédé de filtrage de gaz d'échappement correspondant
FR2829180A1 (fr) Procede de regeneration d'un dispositif de filtration des gaz d'echappement pour un moteur diesel et dispositif de mise en oeuvre
FR2588610A1 (fr) Procede d'elimination des particules carbonees contenues dans des gaz en circulation, notamment dans les gaz d'echappement de moteurs a allumage par compression.
FR2893667A1 (fr) Conduit d'entree pour filtre a particules
FR2861131A1 (fr) Systeme de filtration electrostatique de particules de suie des gaz d'echappement d'un moteur a combustion interne et procede de regeneration d'un tel systeme
FR2891006A1 (fr) Dispositif pour le filtrage et l'elimination des particules contenues dans les gaz d'echappement ameliorant la capture des particules
EP2299075A1 (fr) Ligne d'échappement d'un moteur à combustion
FR3132326A1 (fr) Système de filtration de particules pour un moteur thermique à efficacité améliorée et contre-pression optimisée
FR2944555A1 (fr) Filtre a particules equipant une ligne d'echappement d'un moteur a combustion interne d'un vehicule automobile
EP1300553A1 (fr) Système de traitement des gaz d'échappement d'un moteur à combustion
EP1574680A1 (fr) Système de purification des gaz d'échappement d'un moteur thermique de véhicule automobile et ligne d'échappement comportant un tel système
FR2910530A1 (fr) Systeme et procede de capture et destruction de particules de suie contenues dans les gaz d'echappement d'un moteur a combustion
FR2935301A1 (fr) Dispositif de traitement de l'air entrant dans un habitacle de vehicule automobile.
FR2902348A1 (fr) Corps poreux monolithique a structure en nid d'abeille, notamment filtre a particules pour gaz d'echappement
FR2867508A1 (fr) Filtre a particules pour ligne d'echappement d'un moteur a combustion interne et ligne d'echappement comprenant un tel filtre a particules.
FR2841800A1 (fr) Procede et dispositif pour collecter des particules de suie dans une zone permettant leur elimination

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 008128154

Country of ref document: CN

Ref document number: 2384755

Country of ref document: CA

Ref document number: IN/PCT/2002/386/CHE

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2001 523141

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020027003373

Country of ref document: KR

Ref document number: PA/a/2002/002822

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2000964293

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2002 2002109584

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2002/02074

Country of ref document: ZA

Ref document number: 200202074

Country of ref document: ZA

WWP Wipo information: published in national office

Ref document number: 2000964293

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027003373

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10070932

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000964293

Country of ref document: EP